
MPFR: A Multiple-Precision Binary
Floating-Point Library With Correct Rounding

LAURENT FOUSSE, GUILLAUME HANROT, VINCENT LEFÈVRE,
PATRICK PÉLISSIER, and PAUL ZIMMERMANN

LORIA

This article presents a multiple-precision binary floating-point library, written in the ISO C lan-
guage, and based on the GNU MP library. Its particularity is to extend to arbitrary-precision, ideas
from the IEEE 754 standard, by providing correct rounding and exceptions. We demonstrate how
these strong semantics are achieved—with no significant slowdown with respect to other arbitrary-
precision tools—and discuss a few applications where such a library can be useful.

Categories and Subject Descriptors: D.3.0 [Programming Languages]: General—Standards;
G.1.0 [Numerical Analysis]: General—Computer arithmetic, multiple precision arithmetic; G.1.2
[Numerical Analysis]: Approximation—Elementary approximation, special function approxima-
tion; G.4 [Mathematical Software]: Algorithm design and analysis, efficiency, portability

General Terms: Algorithms, Standardization, Performance

Additional Key Words and Phrases: Multiple-precision arithmetic, IEEE 754 standard, floating-
point arithmetic, correct rounding, elementary function, portable software

ACM Reference Format:
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., and Zimmermann, P. 2007. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw., 33,
2, Article 13 (June 2007), 15 pages. DOI = 10.1145/1236463.1236468 http://doi.acm.org/
10.1145/1236463.1236468

INTRODUCTION AND MOTIVATION

The ANSI/IEEE 754-1985 standard for floating-point arithmetic (IEEE 754)
has now become a common standard, even if some features like gradual un-
derflow (i.e. subnormals) are still discussed [IEEE 1985]. An important conse-
quence is that programs using the formats and operations specified by IEEE
754 have exactly the same behaviour on every configuration, as long as the

The development of MPFR was supported by INRIA Lorraine and LORIA, and by the Conseil
Régional de Lorraine.
Authors’ address: LORIA, 615 rue du jardin botanique, F-54602 Villers-lès-Nancy Cedex, France;
email: Paul.Zimmerman@loria.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0098-3500/2007/06-ART13 $5.00 DOI 10.1145/1236463.1236468 http://doi.acm.org/
10.1145/1236463.1236468

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

2 • L. Fousse et al.

processor, operating system and compiler are IEEE 754 compliant.1 Another
consequence is that researchers are able to design efficient algorithms us-
ing those formats and operations, and prove their correctness: interval arith-
metic, floating-point expansions [Priest 1991], correctly-rounded elementary
functions [Ziv 1991; The Arenaire project 2005; de Dinechin et al. 2005; Sun
Microsystems 2004]. Thus, despite the fact that the IEEE 754 standard received
some criticisms—both from hardware constructors who argued it would be too
difficult to implement in a chip, and from software engineers who thought it
would significantly slow down their programs—it is now accepted by every-
body, and has enabled great progress in terms of correctness and portability of
numerical software.

However, the IEEE 754 standard specifies fixed formats only, in partic-
ular single and double precision, with respectively 24 and 53 bits of man-
tissa. Several software tools exist for multiple-precision floating-point arith-
metic, for example, MP [Brent 1978], GMP [Granlund 2004], CLN [Haible
and Kreckel 2005], PARI/GP [Batut et al. 2000], but they do not provide clear
semantics, or only claim “almost always correctly rounded” results like the
FM package [Smith 1991]. As pointed out by Ziv [1991], although the accu-
racy provided by those packages is quite satisfactory, any slight change in the
algorithm may produce changes in the output. Therefore, even an improve-
ment in accuracy may have unwanted consequences for programs using those
libraries.

This paper presents a library for multiple-precision floating-point arithmetic
with such clear semantics, which extends IEEE 754. This library, called MPFR
[Hanrot et al. 2005], is written in the C language on top of the GNU MP library
(GMP) [Granlund 2004], and freely distributed under the GNU Lesser General
Public License (LGPL). MPFR provides correct rounding for all the operations
and mathematical functions it implements, with an efficiency comparable to
other arbitrary-precision software—and even faster in most cases. As a conse-
quence, applications using such a library inherit the same nice properties as
programs using IEEE 754—portability, well-defined semantics, ability to design
robust programs and prove their correctness—with no significant slowdown on
average, with respect to multiple-precision libraries with ill-defined semantics.

The article is organized as follows. Section 1 presents existing software and
related work. Section 2 describes the MPFR library, its user interface, and its
internals (data representation and algorithms). Section 3 presents the results
obtained, in terms of efficiency, accuracy and portability, and compares them
with other software. Finally, some companion tools and applications are dis-
cussed in Section 4.

1. EXISTING SOFTWARE AND RELATED WORK

As a floating-point package, MPFR only deals with real arguments. We thus
restrict ourselves to software for real numbers here.

1Assuming no extended precision is used internally, and the compiler does not overoptimize floating-
point expressions.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 3

Several multiple-precision floating-point tools exist, so we do not aim at
an exhaustive list. We can mainly distinguish two classes of such software:
libraries and interactive programs. The latter often provide other functional-
ities; this is the case for computer algebra systems like Maple [Char et al.
1991] or Mathematica [Wolfram 1996], or of number-theoretic programs like
PARI/GP. Most floating-point libraries provide the four basic arithmetic oper-
ations (+, −, ×, ÷), but they differ in the underlying programming language
(Fortran, C, C++), internal radix (2, 232, 264, 10, 104, 109), the mathematical
functions available, and the efficiency of the algorithms and/or implementa-
tion. For example, the MPF class from GMP [Granlund 2004] is quite efficient,
but it only provides basic arithmetic operations. The PARI library, on top of
which the GP program is written, implements several mathematical functions,
including in the complex plane. The CLN library includes asymptotically fast
algorithms for large numbers [Haible and Papanikolaou 1997].

However, these programs do not implement correct rounding. Noticeable ex-
ceptions are Maple, which includes since version 6 an environment variable
to control the rounding of basic arithmetic operations,2 the MPIEEE class from
Arithmos [Cuyt et al. 2001], which implements correct rounding in several
possible radices; and NTL 5.4 [Shoup 2005], which guarantees correct
rounding—to nearest only—for the four basic operations and the square root,
and “almost correct rounding”—platform independent—for other mathematical
functions. In radix 10, the decNumber package guarantees correct rounding for
the four basic operations, the square root, and the integer power, and “almost
correct rounding” for a few transcendental functions (exp, log and base-10 log)
[Cowlishaw 2005].

2. THE MPFR LIBRARY

2.1 User Interface

The MPFR library is a smooth extension of the IEEE 754 standard [IEEE 1985],
with radix 2. This choice of radix 2 follows from two requirements. For the sake
of efficiency, we wanted to use the GMP mpn layer: this required a radix of the
form 2k . A natural idea would have been to take for k, the word size in bits.
Several libraries, in particular MPF, made this choice, however it leads to two
problems. First, floating-point mantissae using an odd number of words on a
32-bit computer—for example, 32 or 96 bits—would have no equivalent on a
64-bit computer, which would lead to portability problems. Second, it would not
be possible to emulate the IEEE 754 formats of 24 or 53 bits (nor, for the same
reason, quadruple precision—113 bits).

The main idea is that any floating-point number has its own precision in
bits, which can vary from 2 to the largest possible precision with the available
memory.3 Consider a floating-point number x of precision p, another number

2However some bugs still remain, for example, in versions 6 to 10 of Maple, 1.0 - 9e-5 gives 1.0

with a precision of 3 decimal digits and rounding towards zero, where the expected result is 0.999.
3With a precision of 1 bit, the round-even rule is not sufficient to completely define the rounding of
the binary value (0.11)2, since both surrounding numbers 1.0 and 0.1 have an odd mantissa!

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

4 • L. Fousse et al.

y of precision q, and a rounding mode r. Let mpfr_f be the library function
corresponding to a mathematical function f . The result of mpfr_f (y, x, r)
is to put the value of

round(f (x), q, r)

into the floating-point number y , which means that the exact result f (x) is
rounded to precision q according to the direction r.

As an example, let x = 601 · 2−10 = (0.1001011001)2; then the correct
rounding of exp x with rounding to nearest and a target precision of 17 bits
is 58931 · 2−15 = (1.1100110001100110)2.

As any arithmetic following the IEEE 754 standard, each function input is
considered as exact by MPFR. In other words, correct rounding is provided for
atomic operations only; no information is kept about the “accuracy” of interme-
diate results. Thus, for any sequence of operations, it is the user’s responsibility
to compute the corresponding error bounds. This work is simplified by the fact
that each atomic operation yields rigorous error bounds. Some methods ex-
ist to semi-automatically solve this problem, for example interval arithmetic,
the Real RAM model, or significance arithmetic; see the corresponding imple-
mentations in MPFI [Revol and Rouillier 2005], IRRAM [Müller 1997] and
Mathematica [Sofroniou and Spaletta 2005] respectively.

Each MPFR function returns a ternary value, called the “inexact flag,” which
indicates the rounding direction with respect to the exact value: the inexact
flag is negative (resp. positive, zero) when the rounded output is smaller than
(resp. larger than, equal to) the exact value. This information is useful for some
applications.

2.2 Data Representation

The internal data representation used by MPFR is the following. A floating-
point number x is represented by a mantissa m, a sign s and a signed exponent
e.4 If the (binary) precision of x is p, the mantissa m has p significant bits. Spe-
cial numbers like NaN, infinities or zeroes have a special representation. The
mantissa m is represented by an array of GMP “limbs” (an unsigned machine-
integer type), and is interpreted as 1

2 ≤ m < 1. The most significant bit of the
mantissa is always 1: MPFR does not allow subnormal numbers, and does not
use an implicit bit. The most significant bit of the mantissa corresponds to the
most significant bit of the most significant limb; in other words, when the preci-
sion is not a multiple of the number of bits per word, the unused bits are in the
least significant limb, and they are always zero. For example, the mantissa of
the 17-bit number (1.1100110001100110)2 would be stored on a 5-bit computer
as follows (with the most significant limb written on the left, and in each limb,
the most significant bit on the left):

11100 11000 11001 10000
limb 3 limb 2 limb 1 limb 0

4The exponent is represented by a machine word; as mentioned in Brent [1981a], this limit is quite
reasonable. Note that with an arbitrary-precision exponent, no underflow or overflow can occur.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 5

The unit in last place (or simply ulp) of a nonzero floating-point number is the
weight of its last mantissa bit; for example, ulp(1) = 21−p for a p-bit mantissa.

As mentioned in Hull [1978], it is important that a 17-bit number is repre-
sented by exactly 17 bits, and not at least 17 bits; indeed, if computations with
requested precisions of 17 and say 32 bits give similar results, the effect of the
precision on roundoff errors cannot be measured.

2.3 Semantics

The semantics chosen in MPFR is the following: for each assignment a ← b � c
or a ← f (b, c), the variables a, b, c may all have different precisions; the inputs
b, c are considered to their full precision, and a correct rounding to the full
target precision of a is computed. This semantics is less restrictive than other
models: Brent [1981a] uses a global precision, and first rounds the operands to
that precision before performing the operation; on the other hand, Hull [1978]
defines a precision for each variable and computations are performed in blocks
with possibly different precisions. If ft represents the function f rounded to
precision t, the MPFR semantics is:

a ← fta (b, c),

where ta is the precision of the variable a; the semantics from Brent [1981a] is:

a ← ft(◦t(b), ◦t(c)),

where ◦t denotes rounding to the global precision t, and that from Hull [1978]
is:

a ← ft(b, c),

where t is the precision of the current block. Semantics from both Brent [1981a]
and Hull [1978] can be emulated by MPFR, either by first applying the mpfr set
function to round the inputs b and c to the target precision, or by first setting
the precision of a to the block precision.

Yet, this semantics is not the most general possible. The radix is fixed to 2
for reasons of efficiency. Unlike Hull [1978], in MPFR 2.2.0 there is no special
value to distinguish unassigned variables from NaNs. Note that a higher-level
language may extend or restrict the semantics. One may for example imagine
that in C++, for an assignment a = f(b), b is first rounded to the precision of
a. Alternatively, a computer algebra system may define a different exponent
range for each variable, as in Hull [1978].

2.4 Basic Operations

We call “basic operations,” those for which it is possible to directly compute the
correct rounding, in contrast to other functions where Ziv’s strategy has to be
used (see next section). Among those basic operations are the four arithmetic
operations (addition, subtraction, multiplication, division) and the square root.
These operations admit a native implementation using the GMP mpn layer; for
example, the addition is described in full detail in Lefèvre [2004].

The multiplication of two n-bit numbers with an n-bit result is performed by
a “short product,” either using a naive algorithm [Krandick and Johnson 1993]

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

6 • L. Fousse et al.

or Mulders’ algorithm [Mulders 2000], which gives a speedup of up to about
20% with respect to a full product in the Karatsuba range. MPFR does not use
a cutoff point of the form �βn� as in Mulders’ original algorithm, but instead
the optimal cutoff is determined by a tuning program, up to some limit (1024
words for example). Above that limit, a simple formula is used (e.g. 2n/3 words,
where n is the output size). This allows us to get close to optimal behaviour for
the target processor: Mulders’ algorithm is used for from 17 words upward on
a Pentium 4, 8 words on an Opteron, 19 words on an Athlon, 11 words on a
Pentium 3, and 10 words on an Itanium 1. When the inputs have a much larger
precision than the output, they are first truncated (of course, one checks at the
end if the correct rounding is guaranteed, otherwise the full multiplication is
performed). Indeed, if a short product of size m of two operands is computed
(for instance by Mulders’ algorithm), the relative error is at most

4
∞∑

k=m

(k + 1)β−k ,

where β = 232 or 264 according to the processor type. For m + 4 ≤ β, this
expression is bounded by 4(m + 2)β−m; this means that in the practical case
where the output size n is much smaller than β, taking m = n + 1 gives good
possibility to be able to round, since the computed value is within ≈ n/β ulps
from the correct result.

Division and square root use the corresponding integer functions mpn divrem
and mpn sqrtrem from the GMP mpn layer. As a consequence, the remain-
der is always exactly known, which enables one to compute the correct
rounding.

For each basic operation, several auxiliary functions are available when
one of the operands is of another type: mpfr add ui for an unsigned long,
mpfr add si for a signed long, and mpfr add z for a GMP multiple-precision
integer.

Among those basic operations, the fused-multiply add, x y + z, is also pro-
vided. It is quite easy to implement in arbitrary-precision software: first com-
pute t := x y with t having a large enough precision so that the product is exact,
then call the addition routine to correctly round t + z.

The efficiency of the basic operations is merely that of the corresponding
routines from the GMP mpn layer. These routines use different algorithms de-
pending on the number size; for example, the mpn mul n routine calls either the
schoolbook method, Karatsuba’s algorithm, Toom-Cook 3-way, or an FFT-based
algorithm, with thresholds tuned for the target processor.

2.5 Advanced Functions

Release 2.2.0 of MPFR implements all mathematical functions from the ISO
C99 standard mathematical library—except modf to extract integer and frac-
tional parts, and fmod and remainder for floating-point remainder—and 4 math-
ematical constants (log 2, π , Euler’s and Catalan’s constants).

The definition of these functions at special points (NaN, infinities) and the
choice of the sign of the zero results are done according to Section F.9 of the ISO

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 7

C99 standard for functions defined in this standard, and according to continuity
rules [Defour et al. 2004] more generally.

Those functions for which a direct implementation is not possible are imple-
mented using Ziv’s strategy:

(1) treat special input values (NaN, infinities, zeroes), and values outside the
function domain, for example, acos(2);

(2) treat inputs that clearly give an underflow or overflow, for example, exp(299);
(3) treat inputs x such that f (x) is exactly representable, for example, log(1);
(4) choose a working precision w slightly larger than the target precision p;
(5) compute an approximation y to f (x) in precision w, together with a bound

ε for the corresponding error;
(6) if round(y − ε, p) = round(y + ε, p), return that common value;
(7) otherwise, increase w and go to step 5. In version 2.2.0 of MPFR, w is by

default increased by the number of bits in a limb at the first iteration,
and w/2 at the next iterations. A discussion about this choice in given in
appendix.

This approach requires being able to identify all inputs that give an out-
put that is exactly representable in step (3), otherwise Ziv’s strategy will not
terminate.5 It also requires that the error bound ε is rigorous: both the mathe-
matical error—for example, when truncating a Taylor series—and the roundoff
error should be taken into account. However, the error bound does not need to
be tight; it is sufficient that it converges to zero when the working precision w
increases to infinity.

In practice the bound ε at step (5) is rounded to 2k ulp(y), which makes step
(6) easier; indeed, it suffices to check whether adding or subtracting 2k ulp(y) to
y changes the rounded value, which reduces to searching for runs of consecutive
zeroes or ones between the round bit of y—for the target precision p—and the
bit position corresponding to 2k ulp(y).

For example, we describe what happens in MPFR when one asks for cos x for
x = 1 with a target precision of 42 bits, and rounding to nearest. The working
precision is set to 63 bits. In a first step (argument reduction), one computes
x ′ = x/25; then one computes an approximation to the Taylor expansion of cos x ′

up to order 6:

s = (0.111111111110000000000000101010101010100100111110100101011000011)2.

Then the reconstruction performs 5 times s ← 2s2 − 1, with result:

y = (0. 100010100101000101000000011111011010100000︸ ︷︷ ︸
42

110100010100100110100)2.

The error bound ε corresponds to 214 ulps (the underlined bit), and we see that

5Indeed, assume for example f (x) = 1, the rounding mode is towards zero, and we get the approx-
imation y = 1; then even if ε > 0 is very small, we cannot decide whether f (x) rounds to 1 or to
1 − 2−p.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

8 • L. Fousse et al.

round(y − ε, p) = round(y + ε, p), so the correct rounding to nearest is:

0.100010100101000101000000011111011010100001.

Input and output functions—base conversion functions—also implement cor-
rect rounding using Ziv’s strategy, in the whole range of values supported by
the library. For example, the 53-bit binary number

x = 6965949469487146 · 2−249

is correctly rounded to 0.77003665618896 · 10−59 with 14 digits and rounding
to +∞. Previous work shows that this problem is difficult, even in fixed pre-
cision [Clinger 1990; Gay 1990; Steele and White 1990]. For example, IEEE
754 requires correct rounding for double precision for numbers in the range
[10−27, 1044] only, and allows an error of up to 0.97 ulps outside this range (for
rounding to nearest). Steele and White say in their retrospective [Steele and
White 2003]:

. . . can one derive, without exhaustive testing, the necessary amount of
extra precision solely as a function of the precision and exponent range
of a floating-point format? This problem is still open, and appears to
be very hard.

Indeed, this is related to the closest convergent p/q of a ratio 2e/10 f for e, f
in the exponent range, and as noted in Hack [2004], to the size of the following
partial quotient.

The implementation of advanced functions also relies on different algorithms
depending on the target precision. For example, the exponential uses a naive
series evaluation for small precision, then a baby-step/giant-step evaluation—
called “concurrent series” in Smith [1991]—, and finally a binary splitting
method for huge operands. As for basic operations, the corresponding thresh-
olds are optimized by a tuning program.

2.6 Exceptions

MPFR supports exceptions similar to those of the IEEE 754 standard: inexact,
overflow, underflow, invalid operation (i.e., functions that return a NaN), but
no exceptions yet for division by zero.6 When an exception occurs, a global flag
is set; it is sticky: it remains set as long as the user does not explicitly clear it.
Unlike the IEEE 754 standard, MPFR does not provide trap mechanisms (this
could be a future extension). It does not have subnormals either, but as the de-
fault exponent range is very large, subnormals are not very useful. However, if
subnormals are necessary (e.g., for full IEEE 754 emulation), a special function
mpfr_subnormalize can be used to generate them.

Care has been taken in the MPFR code to handle exceptions correctly. For
instance, we avoid overflows on C integer types, and concerning the global

6There is no difficulty here, however it is not clear if the “division by zero” exception should be
extended to other functions that return an exact infinite value from finite values, like log 0. We
expect the revision of IEEE 754 will solve that issue.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 9

flags, their state is saved before the internal computations (which can generate
exceptions that the user must not see) and restored afterwards.

2.7 Testing

Testing is a major issue, especially for a library claiming correct rounding in
arbitrary precision [Verdonk et al. 2001]. Checking that the results given by
MPFR are correctly-rounded is quite a challenge, since except for Arithmos,
Maple, NTL and decNumber (the last three only for +, −, ×, ÷,

√·) no other
software can compute, and thus check, a correct rounding. As a consequence,
we used standard software engineering testing strategies: internal consistency
checks such as

√
x2 = |x| for rounding to nearest, or −1 ≤ x√

x2+ y2
≤ 1 for

rounding to nearest [Kahan 1996] or toward +∞, comparison with known or
computed values in fixed precision, comparison with hard-to-round cases in
fixed precision, comparison for random inputs evaluated with different target
precisions. . . We also used some known properties of some operations, for ex-
ample, the FastTwoSum property: If |x| ≥ | y |, u = ◦(x − y), v = ◦(u − x),
w = ◦(v+ y), then x − y = u−w exactly (where ◦ denotes rounding to nearest).
So the “inexact flag” of u = ◦(x − y) should be coherent with the sign of w.

We also tried to construct test cases covering all the nasty parts of the source
code of each function, in particular underflow and overflow, special values for
input and output (±0, ±∞, NaN), checking the inexact flag for exact results. . .
Such a search is sometimes difficult; however in some cases, it allowed simpli-
fication of the code, by discovering that some branches could not be visited.

3. RESULTS

In this section we compare MPFR and other libraries concerning the following
properties: efficiency, accuracy and portability.

3.1 Efficiency

Table I compares MPFR, CLN, PARI, and NTL, all configured to use GMP-4.1.4.
The timing shows that MPFR is quite efficient compared to other libraries,
except for acos and atan where faster algorithms still have to be implemented.

3.2 Accuracy

For each of the CLN, PARI and NTL libraries, several functions f , and a pre-
cision of 53 bits, we have made the following experiment (Table II). For some
random input x, let z be the value computed by the corresponding library.7 We
compared the ulp error between z—or its rounded value in the case of PARI—
and f (x), where f (x) was computed with increased precision; this ulp error is
given with four significant digits, and rounding away from zero. For rounding

7We made sure that no error was made while translating x from the MPFR internal format to the
target library format. When translating the computed value z back to the MPFR format, two cases
are possible. Either the target library rounded z to 53 bits, as in the case of CLN and NTL, or it
used internally more bits, so we had to round to nearest the value of z.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

10 • L. Fousse et al.

Table I. Timing in Milliseconds for Several Operations on a 1.8 GHz Athlon under Linux
(laurent5.medicis.polytechnique.fr). The Inputs Correspond to x = √

3 − 1, y = √
5.

Boldface Values Indicate the Fastest Times for a Given Function and Precision, and Italics,
the Use of a Nonstandard Function: CLN Only Provides a Complex acos Function. “NA”

Means that the Corresponding Function is Not Available

MPFR CLN PARI NTL
operation digits 2.2.0 1.1.11 2.2.12-beta 5.4
x × y 102 0.00048 0.00071 0.00056 0.00079

104 0.48 0.81 0.58 0.57
x/ y 102 0.0010 0.0013 0.0011 0.0020

104 1.2 2.4 1.2 1.2√
x 102 0.0014 0.0016 0.0015 0.0037

104 0.81 1.58 0.82 1.23
exp x 102 0.017 0.060 0.032 0.140

104 54 70 68 1740
log x 102 0.031 0.076 0.037 0.772

104 34 79 40 17940
sin x 102 0.022 0.056 0.032 0.155

104 78 129 134 1860
cos x 102 0.017 0.050 0.029 0.164

104 77 123 133 8530
acos x 102 0.32 0.076 0.085 NA

104 720 154 153 NA
atan x 102 0.28 0.067 0.076 NA

104 610 149 151 NA

Table II. Some Incorrectly Rounded Values From CLN 1.1.11, PARI 2.2.12.Beta and NTL 5.4,
With a Precision of 53 Bits. Inputs are the 53-Bit Numbers Nearest to the Given 17-Digit

Values; Errors are Rounded Away From Zero. Note: PARI Computes with 64 Bits

library f () x or x, y ulp error
NTL ex 0.60337592897831904 0.5009
NTL ex − 1 0.66690478331490088 1.002
NTL log10 x 0.59145421077101468 −0.5019
NTL log(1 + x) 0.61574695303550087 0.5005
NTL x y 22.172328425393630, 0.18478812559152935 0.5011
PARI sin x 0.092436882176912372 0.5006
PARI tan x −0.74316551642999262 0.5008
PARI acos x 0.99999480067740643 8.245
PARI x y 0.0054835146127132361, 14.809742565349817 0.5249
CLN atan x −0.92184053351615713 −0.5010
CLN asin x 0.70044840147400333 0.5013
CLN sinh x 0.90564218340505143 0.5005
CLN asinh x 0.44463173722234539 0.5016
CLN x y 3684.4155953211484, 85.582808072565101 −0.9812

to nearest, that ulp error should not exceed 0.5 in absolute value for a correct
rounding.

Note: in case of argument reduction, PARI does not increase the in-
ternal working precision to guarantee the result accuracy, thus large er-
rors of more than 104 ulps can be obtained, for example sin x for x ≈
863.93798795269947. For CLN, the symmetry is sometimes not respected; for
example for x = 0.83070210528807542, we have sinh(−x) �= − sinh(x).

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 11

3.3 Portability

Since MPFR is built on top of GMP, it suffers from all the portability problems of
GMP. The main assumption is that the ISO C types long and unsigned long can
represent 2k different values. It was extensively tested for k = 32 and k = 64.
Since its implementation uses integer types only, MPFR should work correctly
on a non-IEEE 754-compliant configuration, except for the conversions from/to
machine floating-point types.

4. APPLICATIONS AND COMPANION TOOLS

The MPFR library is distributed under the LGPL, which allows one to use it in
any software. We list here some “companion tools” and some applications that
use MPFR.

4.1 Companion Tools

Several companion tools are built on top of MPFR:

—MPFI is an interval library, developed by Revol and Rouillier [2005]; MPFR++
is a C++ interface for MPFR developed by Revol; both are available at http:
//perso.ens-lyon.fr/nathalie.revol/software.html;

—MPC (http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Mpc.html) is
a library for complex numbers, developed by Enge and Zimmermann. MPC
uses the Cartesian representation: a complex number x + i y is stored as a
pair (x, y) of two MPFR variables. Similarly, a complex rounding mode is a
pair of two real rounding modes, giving a total of 16 modes of the four from
IEEE 754.

—MPCHECK (http://www.loria.fr/~zimmerma/mpcheck/) is a program that
checks properties of mathematical libraries in fixed precision (correct round-
ing, monotonicity. . .), developed by Pélissier, Revol and Zimmermann.

4.2 Other Applications

A multiple-precision library with correct rounding is useful for many applica-
tions. For instance, the Fortran compiler (gfortran) distributed within GCC-
4.0 uses MPFR to evaluate constant expressions that can be computed stati-
cally. The Magma Computational Algebra System makes use of MPFR for its
floating-point arithmetic.8 The Computational Geometry Algorithms Library
(CGAL, www.cgal.org) uses MPFR to convert rationals into double-precision
intervals, while ensuring that the input rational lies in the computed inter-
val. Stehlé uses MPFR in his guaranteed floating-point LLL implementation
[Nguyen and Stehlé 2005]. Even a Matlab toolbox exists, to provide multiple-
precision floating-point numbers within Matlab.9

In Booker et al. [2006], the authors use MPFR—through the MPFI interval
arithmetic library—for the effective computation of Maass cusp forms; similarly

8https://magma.maths.usyd.edu.au/magma/export/mpfr_gmp.shtml
9http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6446

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

12 • L. Fousse et al.

in Booker [2005], the author performs rigorous computations with 30-digit ac-
curacy for the verification of Artin’s conjecture.

The FLUCTUAT static analyzer developed at CEA [Goubault 2001] represents
the roundoff errors at step i of the program with a linear term li; computations
are performed using a higher precision with MPFR, to ensure rigorous and tight
error bounds.

5. CONCLUSION

This article shows that correct rounding for arbitrary-precision floating-point
numbers can be achieved at low cost. Moreover, software implementing correct
rounding enables one to build other applications with well-defined floating-
point foundations, as quoted in Smith [1991]:

Kahan . . . has pointed out that even if rounding is only slightly sloppy,
it can sometimes lead to highly inaccurate results. He also notes that
it is a great boon to the user to know that the results are correctly
rounded. The fact that identities are true and bounds on the errors
are known simplifies any analysis of a computation enough to justify
a small time penalty.

We hope this work will motivate developers of multiple-precision floating-
point software to provide well-defined semantics. Ultimately, we may dream
of a standard for multiple-precision floating-point arithmetic, so that a given
multiple-precision computation would give the same result with any software;
in the same way that thanks to the IEEE 754 standard, a given double-precision
computation now gives the same result on any hardware.

Concerning the set of implemented functions, as in Brent [1981b]:

A never-ending project is to implement multiple-precision versions
of ever more special functions, and to improve the efficiency of those
multiple-precision routines already implemented.

APPENDIX

A. PRECISION INCREMENT IN ZIV’S STRATEGY

We may wonder if the chosen precision increment in Ziv’s strategy is the “opti-
mal” one. It really depends on unknown data, but we can consider a probabilistic
point of view: We assume that if we know that the result y is in some small
interval of radius ε, then the probability of y being in some small subinterval
of radius η is η/ε. Under this probabilistic hypothesis (and a high enough pre-
cision increment, e.g. larger than 30, such as the number of bits in a limb), it
is extremely unlikely to need to go beyond a second iteration in Ziv’s strategy.
If this is not the case, then this means that the probabilistic hypothesis may
no longer hold. So, the choice of the increment for the second and following
iterations should not be regarded as critical. However one may want to do a
cost analysis on average under this probabilistic hypothesis; we do not try to
be rigorous here.

We assume that the cost of a computation in precision n is Cnα, where the
constants C and α satisfy C > 0 and α ≥ 1. The constant C would appear as a

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 13

factor in every cost expression, so we can assume that C = 1. Now let us assume
that we are at some iteration of Ziv’s strategy; n denotes the precision chosen
in the previous iteration (the target precision at the first iteration). Let k be the
increment; the goal is to determine the best value of k. The next increment is
denoted i; we assume that i is chosen in such a way that there exists some small
constant β ≥ 1 such that i ≤ βn (intuitively, this is not a bad choice, which we
will confirm here). So, the total cost can be written:

(n + k)α + 2−k(n + i)α + 2−i(. . .),

where the unwritten expression depends only on the following increments. We
assume that i and the following increments have been fixed, so k will be ex-
pressed as a function of n, α, and i. We seek to minimize the part that depends
on k:

(n + k)α + 2−k(n + i)α.

Its derivative is:

α(n + k)α−1 − 2−k(n + i)α log 2, (1)

which is an increasing function of k on [−n, +∞), where it has a unique zero
(since it is negative for k = −n and goes to 1 or +∞ as k → +∞); κ now denotes
this zero. One has:

2κ ≤ (n + βn)α log 2
αnα−1

= (1 + β)α log 2
α

n.

Therefore κ ≤ log2(n) + δ, where δ = log2(log 2) − log2 α + α log2(1 + β), and log2
denotes the base-2 logarithm. Thus for reasonable values of α and β, we have:
κ ≤ βn. Then:

2κ ≥ nα log 2
α(n + βn)α−1

= log 2
α(1 + β)α−1

n.

Therefore κ ≥ log2(n) + γ , where γ = log2(log 2) − log2 α − (α − 1) log2(1 + β).
This shows that a precision increment n → n + log2 n at each iteration is

a good choice. This differs from the model of Kreinovich and Rump [2006]—
where the optimal increment is n → cn—because here we take into account the
probability of failure of Ziv’s strategy, which vanishes exponentially with the
working precision.

Note also that this strategy may be suboptimal in some rare cases, like√
x2 + y2 for y � x, where the working precision w has to be much larger

than the target precision p to be able to round correctly. Those cases should be
detected before applying Ziv’s strategy.

ACKNOWLEDGMENTS

Apart from the authors of this article, other people contributed to the library:
Sylvie Boldo, David Daney, Emmanuel Jeandel, Mathieu Dutour, and Fabrice
Rouillier. We thank Richard Kreckel and Karim Belabas for their help with the
CLN and PARI libraries respectively, Jean-Luc Szpyrka who set up the MPFR
CVS archive, and finally all users of MPFR for their feedback which enables us
to improve the library.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

14 • L. Fousse et al.

REFERENCES

BATUT, C., BELABAS, K., BERNARDI, D., COHEN, H., AND OLIVIER, M. 2000. User’s Guide to PARI/GP.
http://pari.math.u-bordeaux.fr/pub/pari/manuals/2.1.6/users.pdf.

BOOKER, A. R. 2005. Artin’s conjecture, Turing’s method and the Riemann hypothesis. http://
www.arxiv.org/abs/math.NT/0507502. 37 pages.

BOOKER, A. R., STRÖMBERGSSON, A., AND VENKATESH, A. 2006. Effective computation of Maass cusp
forms. http://www.math.uu.se/~astrombe/papers/papers.html. Preprint. 29 pages.

BRENT, R. P. 1978. A Fortran multiple-precision arithmetic package. ACM Trans. Math. Soft. 4, 1,
57–70.

BRENT, R. P. 1981a. An idealist’s view of semantics for integer and real types. Tech. Rep. TR-CS-
81-14, Australian National University, 12 pp.

BRENT, R. P. 1981b. MP user’s guide. Tech. Rep. TR-CS-81-08, Australian National University.
4th ed. 73 pp.

CHAR, B. W., GEDDES, K. O., GONNET, G. H., LEONG, B. L., MONAGAN, M. B., AND WATT, S. M. 1991.
Maple V: Language Reference Manual. Springer-Verlag.

CLINGER, W. D. 1990. How to read floating point numbers accurately. In Proceedings of the ACM
SIGPLAN’90 Conference on Programming Language Design and Implementation. White Plains,
NY, 92–101.

COLLINS, G. E. AND KRANDICK, W. 2000. Multiprecision floating point addition. In Proceedings
of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC’2000),
C. Traverso, Ed. ACM Press, 71–77.

COWLISHAW, M. 2005. The decNumber C library, 3.32 ed. IBM UK Laboratories. 55 pp.
CUYT, A., KUTERNA, P., VERDONK, B., AND VERVLOET, J. 2001. Arithmos: a reliable integrated com-

putational environment. http://www.cant.ua.ac.be/arithmos/index.html.
DE DINECHIN, F., ERSHOV, A. V., AND GAST, N. 2005. Towards the post-ultimate libm. In Proceedings

of 17th IEEE Symposium on Computer Arithmetic. Cape Cod.
DEFOUR, D., HANROT, G., LEFÈVRE, V., MULLER, J.-M., REVOL, N., AND ZIMMERMANN, P. 2004. Proposal

for a standardization of mathematical function implementation in floating-point arithmetic. Nu-
merical Algorithms 37, 1–4, 367–375.

GAY, D. M. 1990. Correctly rounded binary-decimal and decimal-binary conversions. Numerical
Analysis Manuscript 90-10, AT&T Bell Laboratories.

GOUBAULT, E. 2001. Static analyses of the precision of floating-point operations. In Proceedings
of SAS’01. Lecture Notes in Computer Science, vol. 2126. Springer-Verlag, 234–259.

GRANLUND, T. 2004. GNU MP: The GNU Multiple Precision Arithmetic Library, 4.1.4 ed. http://
gmplib.org/.

HACK, M. 2004. On intermediate precision required for correctly-rounding decimal-to-binary
floating-point conversion. In Proceedings of the 6th Conference Real Numbers and Computers
(RNC’6). Schloss Dagstuhl, Germany.

HAIBLE, B. AND KRECKEL, R. 2005. CLN, a class library for numbers. http://www.ginac.de/CLN/.
Version 1.1.11.

HAIBLE, B. AND PAPANIKOLAOU, T. 1997. Fast multiprecision evaluation of series of rational num-
bers. Tech. Rep. TI-7/97, Darmstadt University of Technology.

HANROT, G., LEFÈVRE, V., PÉLISSIER, P., AND ZIMMERMANN, P. 2005. The MPFR library. http://www.
mpfr.org/. Version 2.2.0.

HULL, T. E. 1978. Desirable floating-point arithmetic and elementary functions for numerical
computation. In Proceedings of the 4th IEEE Symposium on Computer Arithmetic (Arith’4). 63–
69.

IEEE. 1985. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985.
KAHAN, W. 1996. Lecture notes on the status of IEEE standard 754 for binary floating-point

arithmetic. http://http.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps. 30 pp.
KRANDICK, W. AND JOHNSON, J. R. 1993. Efficient multiprecision floating point multiplication with

optimal directional rounding. In Proceedings of the 11th IEEE Symposium on Computer Arith-
metic (Arith’11). Windsor, Ontario.

KREINOVICH, V. AND RUMP, S. 2006. Towards optimal use of multi-precision arithmetic: A remark.
http://www.ti3.tu-harburg.de/~rump/. 4 pp.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

A Multiple-Precision Binary Floating-Point Library With Correct Rounding • 15

LEFÈVRE, V. 2004. The generic multiple-precision floating-point addition with exact rounding (as
in the MPFR library). In Proceedings of 6th Conference on Real Numbers and Computers (RNC’6).
Schloss Dagstuhl, Germany.

MULDERS, T. 2000. On short multiplications and divisions. AAECC 11, 1, 69–88.
MULLER, J.-M. 2005. Elementary Functions. Algorithms and Implementation, 2nd ed. Birkhäuser.
MÜLLER, N. T. 1997. Towards a real RealRAM: a prototype using C++. In Proceedings of the 6th

International Conference on Numerical Analysis. Plovdiv.
NGUYEN, P. AND STEHLÉ, D. 2005. Floating-point LLL revisited. In Proceedings of Eurocrypt 2005.

Lecture Notes in Computer Science, vol. 3494. Springer-Verlag, 215–233.
PRIEST, D. M. 1991. Algorithms for arbitrary precision floating point arithmetic. In Proceedings of

the 10th Symposium on Computer Arithmetic, P. Kornerup and D. Matula, Eds. IEEE Computer
Society Press, Grenoble, France, 132–144.

REVOL, N. AND ROUILLIER, F. 2005. MPFI, a multiple precision interval arithmetic library based
on MPFR. http://mpfi.gforge.inria.fr/.

SHOUP, V. 2005. NTL: A library for doing number theory. http://www.shoup.net/ntl/. Version
5.4.

SMITH, D. M. 1991. Algorithm 693: A Fortran package for floating-point multiple-precision arith-
metic. ACM Trans. Math. Soft. 17, 2, 273–283.

SOFRONIOU, M. AND SPALETTA, G. 2005. Precise numerical computation. Journal of Logic and Al-
gebraic Programming. Special Issue on Practical Development of Exact Real Number Computa-
tion 64, 1, 113–134.

STEELE, G. L. AND WHITE, J. L. 1990. How to print floating-point numbers accurately. In Proceed-
ings of the ACM SIGPLAN’90 Conference on Programming Language Design and Implementation.
White Plains, NY, 112–126.

STEELE, G. L. AND WHITE, J. L. 2003. How to print floating-point numbers accurately. In 20 Years of
the ACM/SIGPLAN Conference on Programming Language Design and Implementation (1979-
1999): A Selection. Retrospective. 3 pp.

SUN MICROSYSTEMS. 2004. Libmcr 0.9 beta: A reference correctly-rounded library of basic double-
precision transcendental elementary functions. http://www.sun.com/download/products.xml?
id=41797765.

THE ARENAIRE PROJECT. 2005. CR-Libm, a library of correctly rounded elementary functions in
double-precision. http://lipforge.ens-lyon.fr/projects/crlibm/. Version 0.8.

VERDONK, B., CUYT, A., AND VERSCHAEREN, D. 2001. A precision- and range-independent tool for
testing floating-point arithmetic I: Basic operations, square root, and remainder. ACM Trans.
Math. Soft. 27, 1, 92–118.

WOLFRAM, S. 1996. The Mathematica Book, 3rd ed. Cambridge University Press.
ZIV, A. 1991. Fast evaluation of elementary mathematical functions with correctly rounded last

bit. ACM Trans. Math. Soft. 17, 3, 410–423.

Received June 2005; revised March 2006; accepted May 2006

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 13, Publication date: June 2007.

