ON YISIBLE SURFACE GENERATION BY A PRICRI TREE STEUCTURES*

Henry Fuchs
University of North Carelina at Chapel Hill

Zvi M.

The University of
Bruce F.

The University of

ABSTRACT
This paper describes a nevw algorithnm
for solving the hidden surface (or line)
problen, to nore rapidiy generate

realistic images of 3-D scenes composed of
polygons, and presents the development of
theoretical foundations in the area as
well as additional related algorithms. As
in many applications the environment to be
displayed consists of polygoas wmany of
whose relative geometric relations are
static, we atteapt to capitalize on this
by preprocessing the environment's
database so as to decrease the rin-time
conputations required to geansrate a scenc.

This preprocessing is based on generating
a "pinary space pactitioning" tree whase
inorder traversal of visibility priority

at run—time will produce a limear order,
dependent upen the viewiny position, on
{parts of) the polygons, whica can taen be
used to easily solve the hidden surface
problen. In tne application wWwnere the
enticte environment is static with only tue
viewing-position changing, as is common in
simulation, the results presented will be
sufficient to solve completely the nidden
surface proplem.
IBTRODUCTION

One of <the long-tern goalis of
computer grapnics has been, and continues
to be, the rapid, possibly real-time
generation of fealiscic images of
simulated 3-D environments, "Real-time, "
in curremt practice, has come to mean
creating an image in 1730 of a second—-
fast enougi to continually genecate images
on a videc monitor. With this fast image
generation, there is no discernable delay
between specifying paramneters ror an image
{using knobs, switches, or cockpit
controlis) and tne

¥*This research was partially supported by
NSF under Grants MNCS579-00163 and HCS7S-
02593, and was rucilitated by the use of
Theory Net (NSF Grant MCS78-01689).

Permission to copy without fee all or part of this material is
granted provided that the coples are not made ar distributed
for direct commercial advantaga, the ACM copyright notice and
the title of the publication and its date appaar, and notice
1s given that copying is by permission of the Association for
Computing Machipery. To copy otherwise, or te republish,
requires a fee and/or specific permission.

©1980 ACM 0-89791-021-4/80/0700-0124 $00.75

¥eden
Texas at Dallias
Naylor
Taxas at Dallas

inage!s appearance on the moenitor's
screena Systems which can achieve this
kind of performance are currently sQ

expensive (51M and up) that very few users
can afford them. Users with more modest
budgyets have to be content with severely

more limited performance--either a lower
quality image (“wire frame™ instead of
solid=-object nodeling) or slower

interaction {a time lag of several seconds

to several minutes for a solid-object

image).

PRUBLEM STATENENT

The problem to be sclved is:

Given

Ta a data pase describing a 3-D
environment in terms of, say, a few
thousands tiles (polygons) describing

the surtfaces of the various objects in

the environment, one or more light
sources and
2. the {sinmalated) viewiny position,

oriencation , and field of view,
sergrate a color video image of the
environment as it would appear from the
Jiven viewing position and orientation.

This image generation task consists,
broadly, of the following three steps:

1. transforming points into the
space,

image

2. clipping away outside the

field of view,

polygons

3. generatiny the imaye from the
that remain, Generating the image
consists of determining the proper
¢olor (intensities of red, yreen, and
blue) for each of perhaps 250,000
picture elements {approximately 500
rows of dots, with 500 dots in each
LOW}. For each picture clement
("pixel"},

polyyous

a) find the polygon closest to the
viewing positiona {This will be the
visiple polygon at this pixel, the

polygon which obstructs all others.)
b) given tne visible polygon, determine
the proper color tor the pixel by
evaluating a lighting model {formula,
s€e, €eGu, (Newman and Sproull,
1979) .

PROPQSED_SCLUTION

Since current moderately-priced ($40-
80k) reai-time line-drawing systems (e.g.
Evans and Sutherland Picture System 2,
Vector General Model 3404) can easily
perform steps 1 and 2, we shall
conceatrdate on solutiohs to step 3. bNew
solutions to this remaining step could
then ope combined with already available
solutions to produce a conplete system.
Further, we& believe step 3b can
effectively solved by distriouting tie
individual pixel calculations among nany
small processors (Fuchs and Johnson,
1979) . We thus concentrate in this paper
on step 3a, determining the visible
polygon at each pixel.

be

an alternative solution to
approach first wutilized a4 decade
{(Schumaker et al., 1909) out due to a
difficulties, not wiagely exploited. The
general aporoaca is vased an the
observation that in a wide variety ot
applications many images are jenecated of
the same environment with only a change in
the viewing position and orientation, but
no change in the environmenc. For
example, pilots in a simulator may
practice many ditterent landings at the
Same alrport, with ¢acm landing generating
taousands of npew dmages. Similarly, an
architect may "walk" throuyn a newly
designed house or housing deveiopment; a
biocuemist may 1rotate or mnove apout a
complicated protein moleculc. To tahke
advantaye ot such Statlc envirconmenis, tlie

We propose an
ago
iew

data wase 1s preprocessed once (for all
time, or until the data pase is cnanged)
pefore any imayes are generated. In this

preprocessing stagje, certaln geometric
reilationsulps ure exiracted which can then
be useq to speed up tiae visiple ypolygon
determination fLor eacn pixel, ror all
possiple images.

It 1s 1mportant to note tnat although
the development hefe is given only rigjia
ocpjects and environments, these concepts
cah be extended to handle environments
witii Some moving objecrts.

SOLUTION C(VERVLZE

determine the visibie
pixel, traditionally tae
viewiny position to €dcu
maps onte that pixel is
Most methads attempt to
inuanber of peolygons to be so0

In order to
surface at each
distance from tac
polygon wihilca
cdiculated.
winimize the

125

considered. Our approach eliminates these
distance calculations entirely. Rather,
it transforms tae polyyonal data base
(splitting polygons when necessary} into a
binary tree which can be traversed at
image generation time to yield a
visibility priority value for each
polygon. These visibility priorities are
assigned in such a way that at each pixel
the closest polygon to the viewing
position will be the one with the highest
visipility priority. As we shall see, the
visibility priorities are a function of
the vieving position; they remain constant

for all pixels in every image generated
fror the same viewing position. 1In cases
for which these visibility priority

numpers canpot be assigned to the original
polygons (see, e.g., £fig. 6) and some
polygons need +to be split, the splitting
is done only once -- during the
preprocessing phase -- never at image
generation time-

EKEFROCESSING PHAS

Let us now consider the set of
polygons P = (P;sPyre=sspP,} which define
the 3-D environment. Choose an arbitrary
{for now) polygon p, from this set. e
note that the plane in which this polygon
lies partitions the rest of 3~space into
two half-spaces—--call these 5 and Sra
The two half-spaces are identified with
the positive and negative sides of the
pelygon p, . Iif p wvas defined with a
fifrront" si%e, then that side is considered
as tLhe positive ome; otherwise, one of the
sides is arbitrarily cnosen at this time
to be the positive side.

What can we say about
pfiorities of these
that if the viewing position is in one
hali-space, say in S, , that no polygon
Within Si can obstruct "either polygon py
or any polygoen in Sk(see figure. 1).

visibility
polygons? We know

Therefore,
nglygqons ia P

we split each of the
- {p)} along the plane of
Pps butting the polygens {or parts of
tiuem) which lie in Sy into one set and
polygons which lie in Sg into another set.
{ Folygons coplarar with ©p, can be put
into either set.) Wa can represent the
results of this splitting process by a
binary tree {we'll call it a Binary Space
Partitioning, or "BSP" tree} 1in which the
root contains p, and each branch's subtree
contains tane Set of polygons associated
with one of the half-spaces (Fige 2).

two ney
say the oLe in S,. ¥e
remove a polygyon, say p., and spli the
remaining polygons ia along the plane
of p,;, putting those polygons (orL parts
ther%ot) itying on the positive side in one

ie next counsider one of the
sets of polygons,

set (Sk j) and tnose lying on the negative
side 1l another set (S, y). The overall
tree after tiis step is é%own in Fig. 3.

To complete the construction of the
B5P tree we continue splitting sets until
no non-null sets remain.

The entire preprocessiny phase, then,
consists of transforming the entire
polygonal datd base into a BSD tree by the
followingy recursive procedure {stated in a
simnple pseudo~PASCAL):

PROC Make_tree (pl:polygon_list): tree;
BEGIN

k=Select_polygon (pl);

pes_list := null; neg_list ;= null;

/* pos refers to positive parts
ney refers to negyative parts %/

FOR 1 := 1 I0 Size_of[pl}) DO
BEGIN
IF i <> k THEN
BEGIN
Split_polygon(pi[i], plik],

FOs_parts,ney_pdrts);

add (pos_parts, pos_list);
Add (ney_parcts, ney_list)
END
END;
RETURN Combine_tree (Maka_tree (pos_list),
p1(k),
ake_tree (neg_list))
END;

Ke note again that this process 1is
only performed once for &ll possivle
imayes trom all viewing positions; tae
tree remains valid as longy as the scene

doesn't change.

INAGE GENEEATICN cHASE

Calculating the visibility
priorities, once tue viewing position is
known, 1is & vwvariant of an in-order
traversal of tue environmunt's BSP tree
(traverse one subtree, visit the root,
traverse the othel sSudtree). HWe wisn, for
example, to nave an order of traversal
that visits tae polyyons irom those
farthest away to tiose closest to tue
current viewliny position. At any given
node, there are tvo possinilities:
positive side subtree, node, negative side

subtree or negative side subiree, node,
positive side suotree. #We cuoose one of
these two orderings based an tue
relationsnip or tne current viewing
position Lo the nade's polyyon.
Specifically, e are interested in the
side (positive or neygative) oL the node's

pelygon where the current viewing position

is located. Let's call the two sides the
"containing® side and the "otner" sidea
The traversal £or a back-to-front orderingy
is 1) the "other" side, 2) the node, and
3) the Y"containing" sided { Tals side-orL-

126

node-polyyon determination is, of course,

just a check of the sign of the Z
compounent of the node polygon's normal
vector after the usual transformation to
the screen coordinate system.)

This notion of a traversal may bpe

embodied imn at least two different ways
tor visible surface image yeneration. One
alternative 1is to assign priorities to
polygons in the corder that we visit taoem.
Using <the +traversal order just descriped
we wWilli get a low-to-high visibility
privrity assignment. These values can
then be used within a conventional visitle
surrace display algorithm Wherever
visibility determinations need to be made.
The other obvious alternative, which in
fact is the one that we nave implemented,
does not assign explicit wvisibility
priority values to pulygons but uses the
traversal to drive a4 "painter!'s" algorithm
which paints onto the screen's image
pufrer each polygon as it is encountered
in the traversal. Since aigyher priority
rolyyons are visited later in the
traversal and thus paiater later, they
vill overwrite any overlapping polygons of
lower priority. 7TIae following recursive
procedure Jenerates a visible surface
imagce in the apove-described manner,

PROC Back_to_front{eye:viewing_position;
t: 452 tree);

BDGIN

IFf Not_null (t} THEN
IF pos_side_of (coot {t],ey=)
THEN

3TG1N

pack_tu_tront {eye, neq_branch { t]};
Display_polygon (reat t]);
sack_to_rront {eve, pos_branca[t])
END

ZLSE

BEGIN

Back_to_frout (eye, pos_branch{t]);
Display_pclyyon {reot[t]):
sack_to_rront (eye, neg_branchpt])

TND
D
Ffigaraes ,5,and & illustrate this
visible surtace alyoritnm. Since the
display used had only one bit per pixel,

the procedure Display_polygoun painted the
interior of the polyjon the Dbackgyround
suade and painted the outline of the
polyyon in the otuer shade.

The possivle weakness of this
dapproach is that tne number of polygons imn

tne tree may increase sSharply. (Recall,
everly root polygon splits all crossing
2olygons in its list in order to put any
palygon in one or the other of lits

Limit
root
ane vhose
namber of
indicates

subtrees.) We aave attaumpted
this increase Y selecting
pelygon at each stagye to be the
plane splits tae ainimun

polygons in its list. Table 1

to
the

the performance of the syster 1n limitiny
the numper of polygqons in tae BSP tree.
Figures 7 and 8 show Ltne BSP tree for the
environments oL Fijures 4 and 6,
respectively.
Fo. of
No. of Polygons in
Fig. no. Original Polygons BSP Tree
4 11 11
5 72 100
& 3 5
Table 1: Number of polyyons in tree

versus original data base

We ate currently examining a more
sopaisticatea strateyy for minimizing the
number of polygons in the BSP treed In
addition to the just-descriuved criterion
of choosSing a node polyqon as one that
minimizes the number of polygons that are
split, a second criterion is also
considered. This one maximizes the number
ot "polygon conriicts® eliminatea. We
define a polyyon conflict as an occurrence

between two polygyons in one iist in whica
the plane of one polygon intersects the
other polygon. The hope 1is that these
eliminated polyjyon conflicts will redace
the numper ot polygons whicu will need o
be cut in taue descendant subtrees. MNore
precisely, ii P is the set of polygons,
then rorm the sets 5., S5 , 5. for each
polygon p P as follows: I 2 3

51 {94 P i 9 is entirely in the
positive nalf space of p}

S, = [ge £ |1 g is intersected by the
p%ane of pj

S3 7 {ge P 1 g is ehtifely in the

negative hali-space of p}

We define a fucction

1; polygon s: and the plane

f(si, sj) = of s; intersect
0; otherwise
and
1 = I b f(s;, s,
m,n b
ieS sjesn

We tanen Select the p such that for

8 1(P) +S () 454 (P)

the explessioh [Iy 5+ I3 1= {is,l* weigat)]
» »

127

which is maximal.

FOEMAL DEVELOPHENT

Let us now exanine the nature of the
oinary sSpace-partitioning (BSP) tree more
closely. The construction can be carried,
in essentijally identical manner, for any
dimension; noretheless, it is only the
taree-diaensional version that is of major
interest to us here. However, it is
easier to explain its pature in the tvo-
dimensional setting, as the various
geometric structures acising can be
clearly drawn; thus the discussion of the
properties of the tree will be presented
dssuning a t#o~dimensional universe.
Nonetheless, we encourage the reader, as
the next section of the paper is read, to

extrapolate the three-dimensional
interpretation. In tne latter portion of
the paper, vhere combinatorial issues are
examined, the results will be given for
both two and three dimensions, since
combinatorial complexity is dimension
dependent. Ve ROW begin with some

(sligntly non-standard) terminology.

Segment - an oriented closed convex subset
af a line, i.e., a finite segment, a
ray, or a line, with a direction
associated with it.

Region - a closed convex set of points of
a plane. (A region is normally defined
as an open connected set.)*

Extension of a

Segment in a

kegion - given a seyment s and a region R,
define the extension of s in R tc be
the intersectioa of the line on whick s
lies with the region B, obtaining the
segment 4. Assign to Sp the direction
induced Ey s (we indicate this by
pointing an arrow to the rjight)

Note that a region can be unbounded

(a plane} "partially bounded" ({e.g., a
half-plane), or (completaly) bounded
(emgey, a finite polyyon). The motivation
for defining regions and segments in this
maunnet is that in general we have no
interest in distinguishing between the
bounded, partially bounded, and unbounded
sets. The 3J-space analogies to segments

%A set is open if there 1is an M"iaplicit
boundary"® which is not in the set.
Foramally, a set of points & in the plane

is opem if and only if ¥x6R, e> 0 such
that *y[ix-yi<e => yER]+ A closed set is
the cosplement of an open set (if bounded,
the set includes the boundary). Formally,
a set of points R in a plane is closed iff
for every coaverging sequence I =-> X,
*a{x &R => XxE&R].

and regions are polygons (orC alternately,

regions) and sectors (or volumes)
respectively. The orientation of the
polygons corresponds to the usual motion

of the frent and back sides. We are now
ready to examine the general algorithm for

construction of a labeled binary space-
partitioning tree.
Algorithm I: Construction of a (2=-space)

B5P tree

Input - a region R and a set of segmentsI lying
in R

Qutput - A BSP Tree

Method - call the functfon, BSPT, with R and I as
parameters and I + §,

Procedure - BSPT (R:region; L:set of segments)

tnode
Begin
If T # ¢ then
begin
choose 8 € L and form 3
A R
P u { g
Partition R and Z by s into Rs’ RE’ ZRS, ERg

defipned as:

i A
R_={penr | pe Y

ight of 6.}
right of &

or p lies to the

A
-~ ={peR|pes, or plies to the

R
left of QR }

st ={BnR |Beiisl}
I ={BnR | Bei-{s}}

Create a nev node v

leftson{v) :=BSPT{ E-,I_)
g Rg
BSPT {BS,ZR)

rightson{v) ;=
label({v) := SR
retucn{v)

Ead

Blse

Create a leaf }
label{%):=R

return{})

End BSPT L
Let us look at an exaaple before examining
the properties of this algoritaa.

128

Let B be a square and I:={ a,b,c}, as in
figure Sa.
If a is chosen first, we get figure 9o
which creates figure %c. 1If, next, bR is
a

chosen before c, the final result will
appear as in figure 10.

A
Consider now the set I of segments, which

0of course lies wholly within the original
Be It is easily seen that it partitions R
into convex reyions {polygons}j. Each such
region, together with its boundary, will
be referred +to as an area {volume for 3~
space). The set of all the areas created
by the algorithm will be referred to as a
tessellation. The areas may be thought of
as the intersection of half-planes (half-
spaces for 3-D) created Ly th lines on
whicu the elements of ¢ (or £) lie. The
purpose of orientation of the segmeants is
to distinguish between the +two half-
planes. The subscripts of each region,
generated by algorithm I, indicate the
half-planes whose intersection forms the
region, As an example, refer to figure 11
vhich is a BSP tree for the tessellation
in fig. 10 vhere parentheses are used to
indicate subscripting of regions.

CHAFACTERISTICS QF A_BSP TREE

It shouid be clear by now that the
algorithn pecforms a recursive
partitioning of the plane by the segments

lying in it.
a set of segments ,

however, observe that given
that wmore than one
tessellations can be generated by the
algorithm dependingy wupon the order in
which segments are selected. ©Observe that
in fig. 9, bad the order of selection
peen ¢, b, a, £fig. 12 would have been
produced, which not only looks dJdifferent
from figa 10, but baas four areas, as
opposed to five. Since a tessellation is
foraed by the extended segments, as
opposed to the segments themselves and the
length of an extended segment is dependent
on the Size of the region containing it at
the time it is extended, selecting
segnents in different orders produces
different regions, and thus the dependence
of the tessellation on the order of
selection.

It is also possible to have, for a
set of segments, more than one tree
which describes the same tessellation.
Assume that at some stage of the
construction of the tree, we are examining
the region Rk and the associated set of

given

{sl, s, If

2

egnents eewsS }=
seq sz r ’ m}
1 a with respect

e* }y pernutat1on T on i=

result in a different subtree,

]

to F , then
142 4eee ,n will
vhere the

subtree is jeherated ny selecting seygments

in the order yaewr Sy (),
Nonetheless, every describe

the same tessellation af By .

Consequently, taere are distinct trecs

describing the sawme tessellation o©of the
original reyion R. For exasple, in fiqure

13, either tree specifies the sdne

tessellation.

£2
suntree wili

An important special case occurs when
the initial set of seyments is equivalent
to the extended set, i.€., u{s|sel} =
ui8i8edy. If in addition the initial
region is a plane, all of the e€lements of
L, would pe lines. Since extension has no
effect, the tessellation is fixed befare
the algorithm ©eginsa We call such a
tessellation a maximum tessella
because any set of segments lying on the
same set ot lines can produce only
tessellations whose arCeas are the union of
the aredas of the maximum tessellation, as
can be seen by coumparing figures 10 and 12

with fig. 14. it follows that any set-of
segRENLS has a corresponding maximum
tessellation whose «cardinality is the

maxinum of the number of areas produced by
any tessellation resulting from the set.
In general, the number of different
tessellations that can be derived from a
set I is, in some sense, the complement of
the number of distinct trees which
describe the same tessellations.

A BSP tree constructed by algorithm I
contaias nodes labeled with segments and
nodes labeled with areas. The segnent
nodes are exactly the interior nodes of
the tree and the Marea" nodes are the
leaves. The algoritha can be thought of
as first geperating a binary tree composed
of only the segment nodes. There will
then be segment nodes which bave one or
tvo empty sons. (Every node of a bimary
tree has potentially two sons, left and
right. If a node does not have one or
both sons, we refer to these as Meapty
sons. "} At each epmpty son, an area node
is added. The resulting tree is such that
all segment nodes have both a left and a
rtight son, either of which could be
another segment node or am area node.
Since binary trees of n nodes have n+41!
eapty soms, it follows that the mumber of
area nodes:is one more thanm the number of
Segment nodes, thus a tree of 2n—-1 nodes
is needed to Trepresent a tesselliation
containing n areas.,

Each subtree of a BSP tree represents
some region By in the sense that the union
of all the arcas represented by the leaves
of Ry equals Ry (the seyments represented
by the segment nodes of &, are thus, also
inc¢luded in this union). PFor notational
purpeses we Wwill designate the region
represented oY the entire tree as B .
This, of course, is the original region
from whica the tessellation is formed.
The extension of the segment s represented

129

by the root ¢ of a subtree partitions a
tegion Ry, and the regions represented by
the two subtrees of g arcg the two half-
spaces formed from Bi by 5 o I1f, wupon
traversing the tree one reaches ¢, then
taking the left or right branch of q would

have a geomekric corcespondence to
selecting one of these two half-spaces. A
path in the tree, taen, reflects a
successive selection of smaller and
smaller portions of B - In fact the
region represented by a’ subtree is the
intersection of the half-spaces with
respect to R, formed by the extension of

the segments which are on the path to the
root of the subtree g (but not including
q) - It immediately follows that the area
which is "added" at each eapty son is
exactly the intersection of +the half-
spaces with respect to E, formed by the
extension of segments whose nodes are on
the path to the son.

It is easy to see how a BSP tree carn

be wused to locate which area of the
tessellation a point lies. Beginning at
the root, determine on which side of a
segment the point lies aad proceed to the
son representiag the hal f-space
corcresponding to that side (points on the

kine being assigned arbitrarily to one of
the two half-spaces). Repetition of this
process will generate a path to a leaf
node that represents the area in which the
point 1lies, thus solving what might be
called the M"location problem® with respect
to a tessellationd

BSp Tree Used for Priority Ordering

Tac ability of a BSP tree to be used
tor the generation of a priority orde:ing
is based apon the principle that given inm
which balf-space lies thae point to which
the ordering is relative (usually thought
of as the "eye" or vieving position), all
points in this same half-space will have
priority over all points in tke other
palf-space. Although this fact is fairly
self evident for half-spaces, it is also
true for any two convex regionse.

To obtain a priority ordering from

the tree, an inorder traversal is
performed. The choice of taking the left
or right branch of a node q representing

seqnent s is alvays sade in favor of the
subtree which vrTepresents the regiom that
is contained in the same half-space that

the viewing position is n, this half-
space having been formed by with respect
to B,. it is easy to see that such a

policy will result in the first area node
to be reached being the one in which the
viewing position lies, i.e. the solution
to the location problea mertioned earlier.
Priority is assigned to a node apon
backing-up from it during the traversal.

Thys for each node g, all nedes of the
chosen subtree receive higher priorities
than g, and similarly, all nodes of the
remaining subtree obtain a lower pricrity
than g« The entire traversal of the tree
will then produce a total ordering of the
nodes, and this is precisely the
visibility priority of the elements
represented by the nodes. Note that it is
requisite that R, be convex to guarantee
this property. GSince the partitioning of
a convex object produces two convex
objects, the convexity of & implies the
Same pPropecty for ail subsequent
refinerents of R, during the construction
of the tree. Thus all areas are convex
which is sufficient to guarantee the
existence of a priority ordering of the
areas.

a [*] ._Lthe BSP Tree
The first appearance of a BSP tree in
the gemeral literature was in Sutherland,

ek al. {1974) reviewing the work of
Schusaker, et al. {1969), although the
tree ~as ngt nased aad its .general
properties were not developed. The
application presented was that in which
invisible “dividing planes® vere
latrodaced to the data base., The method

inwolved the dJdesigmer of a simglation
8cene manually positioning *clusters" such
as baildiags, trees, mountains, etc., 80
that wertical dividing planes could be
placed between the clusters to varying
extents. This resulted, in tecrms of a BSP
tree, in the generation of a tessellation
of -the suvface by the dividing places

vhick are represented by segment nodes,
and each cluster was contained wholly
within an area. Thus each cluster

corresponded to aa area node. A priority
ordering could then be obtained on the
clusters.

Additional pover is available if «the
tessellation is a maxiaum tessellation.
In this case, it is possible to compute
off-line the priority ordering for each
cdse of the viewing position being in a
different area. This follows from the
fact that since the areas are formed by a
maximam tessellatioa, it is not possible
for two different poimnts in the same area
to be on different sides of the extension
of a segment vith respect to R, {(since in
a4 maximun tessellation all seqgments are
egqual to their extensions with respect to
B }le Thus for each area the traversal of
the tfee is fixed. The Sutherland, st

- presentation suggests taking
advantage of this by pre-coaputing aand
storing for each area its inberent
priority ordering on the c¢lusters {since
the dividing planes are not part of tae
scene they meed aot be included im the
ordering) - It was then sufficient to
solve the liocation problem in order to
obtain the priority ordering. Since this
method veguires n? storage space (where =n

130

is the nupber of clusters} and the
traversal of the tree is O{n), it is not
clear whether this approach is
advantageous. Also since a naxianm

tessellation is required the tree will be

the laryest possible for a given set of
clusters.

Tae application of BSP trees
introduced in this paper is something of a
complement to that presented in
Sutherland, et al. Here those objects
represented by the segment (or polygoa)

nodes constitute the visible data while
the areas of the tessellation are of no
importance. In fact, the function
Make_tree presented earlier produces only
the segment nodes. The area nodes are
only implied by the eapty sons. Also,
Hake tree forms a BSP tree for three
dimensions while the former method,
although wockiang in 3-D, forms a BSP tree
for two dirmensions, and Make_treels
tessellation in general is not maximal.

Clearly the BSP tree can be wused with
dividing planes to divide 3-space into
volumes, and a hybrid of polygons and

dividing planes could also be developed.
For instance, each area node of a tree
constructed with dividing planes could be
replaced with a BSP tree constructed of
polygons for the cluster contained in the
area.

Combinatorics of the BSP Tree

e vill now examine the size of the
BSP trees. The previous discussion was
presented, for simplicity's sake, for the
2-D case; here we will derive some
forsulas both for the 2-D and 3-D BSP
trees. Although we are most interested in
the 3-D case, 2-D is inmportant 3in the
speclial 3~D case in which all of the
objects "sit™ on the ground and can be
separated by vertical planes. This is
equivaleat %o a 2-D BSP tree corresponding
to the 2-D sScene obtained by projecting
the objects and the separating plane on
the ground plane.

As noted previously, the BSP tree can
be created by both infinite and finite
objects. The infimite objects are planes
for the 3-D case are lines for the 2-D
case. The corresponding €Einite objects
are npon-intersecting conveXx polygons and
segments, We will examine these two
extremal cases in torn.

A d-dimensional BsSPp
the d-dimensional space by {d-1)~-
dimensional objects. de thus examnine
first, what is the maximum anumber £3(n) of
Yolumes of a d-dimeasional space that can
be created by & (d~1)-dimensional planes.
In the 2-D case we have been considecing,
this corresponds to the maximue
tessellation of the plane using lines.

tree partitions

The yeneral formula is

g
Ea(m) =ik

n
).
i

As there is a one-to-one
correspondence petween the volumes and the
leaves of tuoe binary DSP tree, the number
of the nodes of the BSP tres is 2fd(n)-1.

How

nany {d-1)-dimensional regions
created from {d-i)~dimensional planes
under the assumption that no 3 planes

intecrsect alony a single (d-2)-dimensional

line? It can be shown that the number is
d
n
Ioio(4)
i=o

In tpe other extremal case, where the
objects given are n (d~-1)-dimensional ron-
interpenetrating COnvex polygons, e
examine the worst case, namely corpute the

maximum number of the (d-1)=dimensional
regions that are obtained frem the
polygons by tue intersuction of the n (d-
1) ~dimensional planes on wuich they lie.

It can be shown that tme number is

n

() + nd7t
We summarize the results in Table 2
the two Lnteresting cases G=2 and 8=3.
Unbounded Objects

2 2
n +n 1 2 n +n

2 b Pl
n3 + 3n +1 n3 - n2 + 2n n3 + 3n2 + 2n
6 2 6
Maximum possible nodes in BSP
tree.

for

Volumes

39
o

nclusion

A solution has been presented to the
visible surface problem which appears to
be more eificient tian previous solutions
whenever many imdges are to be generated
of the sSame Static environmenta The
algoritum is easy to implement since both
phases, tae preprocessing and the image
yereration, can each be succinctly stated
in a short recursive procedure. Tae ma jor
potential weaknoss, a large increase from
the number of original polygons 4in the
data base to the number in the BSP tree,
has not occurred in any environment so far
encountered.

Acknowledgement
We wish to thank Greg Abram for much

needed and appreciated progran
development, Mike Cronin for numerous
improvements to the narcative, and the
teferees for helpful and thorough reviews
of the first draft of this paper.
Eeferences
Berman, G. and Fryer, K.D. Introduction

to Combipatorics, (1972) Acadenic

Press.

Bounded Objects

131

Fuchs, H. and JokmRson, B. M"an
Multiprocessor Architecture for Video
Graphics" proc. &th Arnual Symp. on
Computer Architecture , {1979) pp 58~67

Expandable

Schumaker, KeAa., Brand, F., Gilliland, M.
and Sharp, H. “Study for Epplying
Comnputer-Generated Images to Visual
Simulation," AFHRL-TR-69-14, U.S. Air

Fforce Human Resources Laboratory {1969)

Sutheriand, I.E., Sproull, R.F. and
Schumaker, R.A. "A Characterization of
Ten Hidden-Surface Algorithms®™, [1974}

ACM Ccmputing Surveys, 1-55

6 (1):

Figure 1: Enviranment split by plane of Py

[polygon p,]

+ -

set of polygons set of polygons

Figure 2! Beginning of BSP tree constructien

[polygon p,]
+ _

[polygon p

set of polygons
in §_
k

set of polygons set of palygons
in S in 5§
k, 3 k,]

Figure 3: BSP tree after two steps

L B

Figure 4: Wire-frame and visible line/surface images of same environment
(11 original pelygens; 11 in BSP tree)

line/surface images of same environment

Wire-frame and wvisible
100 polygons in BSP tree)

Figure 5:
(72 original pelygoens;

(arrows on positive
side of polygons)

(left branches

Figure 6: Visible line/surface image are positive)
of simple cobject whose polygons

cannot be directly assigned visibility
priorities (some pol¥gens here have
been split during preprocessing)

B
A-top C-bottom -

C-ton A-bottom
(left branches are positive;
positive sides of all polvgons are visible)

&6 (A and C have each been split into

Figure 7: BSP tree and polygons of Fig.4

BSP tree and pelygens of Fig.

Figure 8:
two parts by plane of polygon B)

132

Figure 9a

Figure 10

b

a(R)

(R{2)) b(R(a))

ANAN

3

R(a(b))

Fipgure 13

A

>

a(R(b))

/YN

Figure 9b

/\

R(a)

R(a(b))

Figure 11

b(R)

|

a(R(b))

(end)

133

R(a)

R(a(b))

4 \\\\\\?
R(a(b(c))) Rla(b(e)))

R
a
R— c
a
el
&
b
Figure 9c
R(a(b)}

Figure 12

a
'Cl

The maximum

'b! tessellation

for Figure 9

Figure 14

