27 Bits Are Not ?ﬂnuugh for 2. The Simple Case

) ”iﬂii /%{‘,{fu e We can represent each of the 90 decimal integers 10,
8-1 LI < :y 11, -+, 98, 99 by the equivalent 7-bit integer, with no

[, Besyurr Gorppeea®
Cenerval Ilectric Company, Cawmbridge, Mass,

From the inequality 10" < 2”, we are likely to conclude
that we can represent 8-digit decimal floating-point numbers
accurately by 27-bit floating-point numbers, However, we need
28 significant bits to represent some 8-digit numbers accu-
rately. In general, we can show thatif 10" < 27", then g signif-
icant bits are always enough for p-digit decimal accuracy.
Finally, we can define a compact 27-bit floating-point rep-
resentation that will give 28 significant bits, for numbers of
practical importance,

1. Introduction

27

This paper shows that even though 10° < 27, 27 signif-
icant bits are not cnough for 8-digit' floating-point ac-
curacy. In other words, an input routine may convert an
8-digit fAoating-point number into the corresponding 27-
bit floating-point number, and an output routine may
convert the 27-bit number back to the form of the 8-
digit number; but the final result is not necessarily the
original number (even if we allow the routines to fudge the
27th bit and the 8th digit).

To show how the situation arises, we first consider the
<mple case, of representing 2 digits by 7 bits, in fixed-
point notation. Then, we discuss the general case, of re-
presenting p digits by ¢ bits, in floating-point notation.
We prove that if 107 < 277 then ¢ bits are enough for
p-digit aceuraey, Applying this rule to the 8-digit problem
(10° < 9™ we conclude that 28 bits are enough for 8-
digit aceuracy. Finally, we define a compact 27-bit float-
mg-point representation that will give us the 28th signifi-
fant bit for free, for all mwmbers of practical importance.

Although we ean generalize the diseussion to any pair of
rndices, wo consider flonting-point numbers of radix 2 and
10 only, for simplicity. We shalb ignove {ho sign, sinee it is
not used in oo eadix conversion.

“Rosident visitor at Bell Telepbone Laboratories, Murray
I, N L December 1065 January 1067,

PWe shall abbrevinte binary digit as “bit” and deecimal digit
s i We shall omait “Ssignifieant” where ifg intend 15 obvious.

Volume 10 / Number 2/ February, 1907

question regarding accuracy, as follows:

10 0001010
11 60001011
12 0001100
9 7 1100001
9 8 110001

9 9 1100011

We can represent each of the 90 decimal fractions .10,

Al -, 98, .99 represented by the approxgmate binary
fraction rounded to 7 places:

10 0001101

11 0001110

.12 0001111

9 7 1111100

9 8 Jd 111101

9 9 111111

The binary rounding error cannot exceed =1/256.
Therefore, a decimal fraction and its approximate binary
fraction cannot be more than 1/256 apart. Since 1/256
< 005, we conclude that the binary fraction must convert
back to the original decimal fraction, if we round to 2
decimal places. (See Section 3 for a more rigorous dis-
cussion of rounding.)

However, a problem arises when we try to represent the
20 decimal numbers 8.0, 8.1, -+, 9.8, 9.9 by 7 bits. The
integer digit requires 4 bits:

8.0 100 0X X X
8.1 1 000X X X
9.8 100 1L.X X X
9.9 100 1.X X X

No matter how we compute the fraction bits XXX,
there can be only 16 distinet binary numbers. Hence, we
can recover only 16 of the original 20 decimal numbers.
Floating-point notation does not change the situation, The
binary numbers become J1000XXX 2" and .1001XXX -2,
Therefore, 7 bits are not enough for 2-digit accuracy.

The same problem arises trying to represent the
10,000,000 decimal numbers 9000000.0, 9000000.1, ---,
0999999.8, 9999999.9 by 27 bits. The integer part requires
24 bits (2% = 8,388,608), and there can be only 8,000,000
distinet binary numbers. Therefore 27 bits are not enough
for 8-digit accuracy.

It another significant bit were used in either example,
then we would have twice as many binary numbers (more
than enough), at intervals of 1/16 < 1/10. Then we
could represent the fraction digit.

3. The General Case
Y 3 2 dien . ot P By
We have scen from the 2-digit case that if 107 < 2%
then ¢ bits may not be enough for p-digit accuracy. Now

Communications of the ACM 105



we may ask whether ¢-41 bits are enough. In other
words, if 10° < 277", are ¢ bits enough for p-digit aceuracy?
Tarowem. Lel x be any decimal floating-point nwnber
with p significant digits (p > Q). Lel y be the corresponding
bimary floating-point nwmber, rounded {o g significant bils.
For vy, let z be the corresponding dectmal floaling-point
number, rounded to p significant digits, Then, f 107 < 2° "
we have x = z, and y is accurale to p significant digus.
Proor. Since floating-point zero can be defined
uniquely as zero with the smallest possible machine expo-
nent,we may assume that @ > 0,y > 0,and 2 > 0. There-
fore, we can find integers m and n, such that 27" £ »
< 2% and 10" £ y < 10", Since y is rounded to ¢
significant bits, we have:
y=o+ @272 <y 4277 (1)
2" <. (2)
The quantity 2" 00---01-2" is the interval be-
tween two successive binary numbets .ygs- - y,-2" If
x = 2" then y = 2"
Since z is rounded to p significant digits, we have:
2y 4+ (10"7)/2 <z 4 10™°. (3)

The quantity 10™” = .00 --- 01-10™ is the interval be-
tween two successive decimal numbers .zizo- - -2, 107,

Combining (2) with ¥y < 10” and rephrasing 107
< 277 we get:

v
L
IA

y < 10" (4)
271 < 107, (5)

Multiplying (4) and (5), we have:
20T < 1077, (6)

Rephrasing (1) and (3), we obtain:
=272 2w —-y < (272 (7)

—(10"")/2 £y — 2z < (10"77)/2. (8)

Combining (6) with (7), we find:
—(10"7")/2 <& —y < (10™77)/2. (9)
Adding (8) and (9), we have:

=107 <z -z < 1077, (10)

Therefore v = 2, and y is accurate to p significant digits.
This completes the proof of the theorem.

We conclude that if 107 < 27 then ¢ bits are erniough
for p-digit accuracy. The smallest value of ¢ for which this
rule applies satisfies the inequalities 27 < 107 < 277
which are equivalent to ¢—2 < p-log10 < ¢ — 1. Since
q—2 is a positive integer, we have ¢ — 2 = [p-log,10],
where brackets denote “the integer part of” in other
words:

¢ = [p-log10] + 2 = [3.322.p] + 2. (11)

106

Communications of the ACM

(1) w applied to p 12,
the following table:

, 28, then we obtain

poolo2 o3 45 6 T8 00 H 12 43
g 5 8 1L 15 I8 20025 9N 3135 38 41 4 g

22 2% 9 o

po15 6 17 I8 1o 2l
51 8185 88 01 o

55 568 61 65 68 T

g o

We conclude that 8 bits ave suflicient for 2-digit aceurapy,
and 28 bits for 8-digit acenraey.
To show that 4 bits are not enough for L-dieit ac
: e oo i sl aceuraey,
we cousider the following case:

100027 = 82 7 2 8470107 22 8107

= g) L

1001-2 %

- - 0 . B .
We cannot recover 9-1077, unless there is fudging in the

output routine.

4. A Compact 27-Bit Representation

We have seen that 28 bits are enough for 8-digit floating.
point accuracy. We now ask whether we can squeese 98
significant bits into a compact 27-bit representation, for
numbers of practical importance.

Let us examine a typical floating-point number y

Yy oy 2" with 28 significant bits. We have
= 1, unless y = floating-point zero = 00---00-2"
where —e is the smallest possible machine exponent. But
we do not use y; alone, to distinguish Hoating-point zer
from other floating-point numbers.

Let us now define a compact 27-bit representation fo
storing 28 significant bits. We must recognize two distine
cases: (1) For n = —e, assume that ys = 0 and stox
Y Yy . (2) Form 3% —e, assume that 4 = 1 and
SLOTe s+ ifaryss -

We can still represent floating-point zero and very small
numbers (L00---01-27° to 11---11-2°°) with the same
27-bit precision as beforc, For all other floating-point
numbers, we get the 28th significant bit as a bonus.

If we use the compact 27-bit representation in memory,
then we should still use the full 28-bit representation in the
arithmetic registers. Otherwise, the normalized floating
point instructions will not be compatible with the other
arithmetic Therefore, normalized
struction must translate from one representation

instructions. rach
another, whenever necessary. On a machine with operation
overlap, this translation should normally occur during the
execution of another instruction. A delay should occt
only when the second of two consecutive normalized
instructions fetches the number stored by the first instre
tlon (a normalized store instruction ),

Acknowledgment. T would like to thank Dr. R W
Hamming of Bell Telephone Laboratories for his sugge®
tions and assistance in preparing this paper.

REcEven Aveuse, 1966; nevisen Ocroser, 1966

, X 1960
Volume 10 / Number 2 / February, 1



