
Improved Alpha-Tested Magnification for Vector Textures and Special Effects

Chris Green∗

Valve

(a) 64x64 texture, alpha-blended (b) 64x64 texture, alpha tested (c) 64x64 texture using our technique

Figure 1: Vector art encoded in a 64x64 texture using (a) simple bilinear filtering (b) alpha testing and (c) our distance field technique

Abstract

A simple and efficient method is presented which allows improved
rendering of glyphs composed of curved and linear elements. A
distance field is generated from a high resolution image, and then
stored into a channel of a lower-resolution texture. In the simplest
case, this texture can then be rendered simply by using the alpha-
testing and alpha-thresholding feature of modern GPUs, without a
custom shader. This allows the technique to be used on even the
lowest-end 3D graphics hardware.

With the use of programmable shading, the technique is extended
to perform various special effect renderings, including soft edges,
outlining, drop shadows, multi-colored images, and sharp corners.

1 Introduction

For high quality real-time 3D rendering, it is critical that the limited
amount of memory available for the storage of texture maps be used
efficiently. In interactive applications such as computer games, the
user is often able to view texture mapped objects at a high level
of magnification, requiring that texture maps be stored at a high
resolution so as to not become unpleasantly blurry, as shown in
Figure 1a, when viewed from such perspectives.

When the texture maps are used to represent “line-art” images, such
as text, signs and UI elements, this can require the use of very high
resolution texture maps in order to look acceptable, particularly at
high resolutions.

In addition to text and UI elements, this problem is also common
in alpha-tested image-based impostors for complicated objects such
as foliage. When textures with alpha channels derived from cover-
age are magnified with hardware bilinear filtering, unpleasant “wig-
gles” as seen in Figure 1b appear because the coverage function is
not linear.

In this chapter, we present a simple method to generate and ren-
der alpha-tested texture maps in order to minimize the artifacts that
arise when such textures are heavily magnified. We will demon-
strate several usage scenarios in a computer game context, both for

∗e-mail: cgreen@valvesoftware.com

3D renderings and also user-interface elements. Our technique is
capable of generating high quality vector art renderings as shown
in Figure 1c.

2 Related work

Many techniques have been developed to accurately render vec-
tor graphics using texture-mapping graphics hardware. In [Frisken
et al. 2000], distance fields were used to represent both 2-
dimensional glyphs and 3-dimensional solid geometry. Quadtrees
and octrees were used to adaptively control the resolution of the
distance field based upon local variations. While GPU rendering
of such objects was not discussed, recent advances in the general-
ity of GPU programming models would allow this method to be
implemented using DirectX10 [Blythe 2006].

In [Sen 2004] and [Tumblin and Choudhury 2004], texture maps
are augmented with additional data to control interpolation between
texel samples so as to add sharp edges in a controllable fashion.
Both line-art images and photographic textures containing hard
edges were rendered directly on the GPU using their representa-
tion.

In [Loop and Blinn 2005], implicit cubic curves were used to model
the boundaries of glyphs, with the GPU used to render vector tex-
tures with smooth resolution-independent curves.

In [Qin et al. 2006], a distance based representation is used, with
a precomputed set of “features” influencing each Voronoi region.
Given these features, a pixel shader is used to analytically compute
exact distance values.

Alpha-testing, in which the alpha value output from the pixel shader
is thresholded so as to yield a binary on/off result, is widely used
in games to provide sharp edges in reconstructed textures. Unfortu-
nately, because the images that are generally used as sources for this
contain “coverage” information which is not properly reconstructed
at the subtexel level by bilinear interpolation, unpleasant artifacts
are usually seen for non-axis-aligned edges when these textures are
magnified.

4 RENDERING

3 Representation and Generation

In order to overcome the artifacts of simple alpha testing while
keeping storage increase to a minimum, we sought a method for
displaying vector textures that could

• work on all levels of graphics hardware, including systems
lacking programmable shading

• run as fast as, or nearly as fast as, standard texture mapping

• take advantage of the bilinear interpolation present in all mod-
ern GPUs

• function inside of a pre-existing complex shader sys-
tem [Mitchell et al. 2006] with few changes

• add at most a few instructions to the pixel shader so that vector
textures can be used in existing shaders without overflowing
instruction limits

• not require that input images be provided in a vector form.

• use existing low-precision 8-bit texture formats

• be used as a direct replacement for alpha-tested impostor im-
ages

We chose to implement a simple uniformly-sampled signed-
distance field representation, with the distance function stored in
an 8-bit channel. By doing so, we are able to take advantage of
the native bilinear texture interpolation which is present in all mod-
ern GPUs in order to accurately reconstruct the distance between
a sub-texel and a piecewise-linear approximation of the true high-
resolution image. While this representation is limited in terms of
the topology of features which can be represented compared to
other approaches, we felt that its high performance, simplicity, and
ease of integration with our existing rendering system made it the
right choice for Valve’s Source engine.

While it is possible to generate the appropriate distance data from
vector-based representations of the underlying art, we choose in-
stead to generate the low-resolution distance fields from high reso-
lution source images. In a typical case, a 4096x4096 image will be
used to generate a distance field texture with a resolution as low as
64x64, as shown in Figure 2.

At texture-generation time, the generator takes as its input a high
resolution binary texture where each texel is classified as either “in”
or “out.” The user specifies a target resolution, and also a “spread
factor,” which controls the range which is used to map the signed
distance into the range of 0 to 1 for storage in an 8-bit texture chan-
nel. The spread factor also controls the domain of effect for such
special rendering attributes as drop-shadows and outlines, which
will be discussed in section 4.2.

For each output texel, the distance field generator determines
whether the corresponding pixel in the high resolution image is “in”
or “out.” Additionally, the generator computes 2D distance (in tex-
els) to the nearest texel of the opposite state. This is done by ex-
amining the local neighborhood around a given texel. While there
are more efficient and complex algorithms to compute the signed
distance field than our simple “brute-force” search, because of the
limited distance range which may be stored in an 8-bit alpha chan-
nel, only a small neighborhood must be searched. The execution
time for this simple brute-force method is negligible.

Once this signed distance has been calculated, we map it into the
range 0..1, with 0 representing the maximum possible negative dis-
tance and 1.0 representing the maximum possible positive distance.
A texel value of 0.5 represents the exact position of the edge and,
hence, 0.5 is generally used for the alpha threshold value.

(a) High resolution input (b) 64x64 Distance field

Figure 2: (a) A high resolution (4096x4096) binary input is used
to compute (b) a low resolution (64x64) distance field

4 Rendering

In the simplest case, the resulting distance field textures can be used
as-is in any context where geometry is being rendered with alpha-
testing. Under magnification, this will produce an image with high-
resolution (albeit, aliased) linear edges, free of the false curved con-
tours (see Figure 1b) common with alpha-tested textures generated
by storing and filtering coverage rather than a distance field. With
a distance field representation, we merely have to set the alpha test
threshold to 0.5. Since it is fairly common to use alpha testing
rather than alpha blending for certain classes of primitives in or-
der to avoid the costly sorting step, this technique can provide an
immediate visual improvement with no performance penalty.

Figure 3: 128x128 “No trespassing” distance image applied to a
surface in Team Fortress 2

In Figure 3, we demonstrate a 128x128 distance field representation
of a “No Trespassing” sign rendered as a decal over the surface of
a wall in the game Team Fortress 2. The apparent resolution of this
decal is incredibly high in world space and holds up well under any
level of magnification that it will ever undergo in the game. We
will refer to this particular decal example in the next section as we
discuss other enhancements available to us when representing our
vector art in this manner.

4.1 Antialiasing

If alpha-blending is practical for a given application, the same dis-
tance field representation can be used to generate higher quality

c©2007 Valve Corporation. All Rights Reserved

4.3 Sharp corners 4 RENDERING

Figure 4: Zoom of 256x256 “No Trespassing” sign with hard (left) and softened edges (right)

renderings than mere alpha testing, at the expense of requiring cus-
tom fragment shaders.

Figure 4 demonstrates a simple way to soften up the harsh aliased
pixel edges. Two distance thresholds, Distmin and Distmax, are
defined and the shader maps the distance field value between these
two values using the smoothstep() function. On graphics hardware
which supports per-pixel screen-space derivatives, the derivatives of
the distance field’s texture coordinates can be used to vary the width
of the soft region in order to properly anti-alias the edges of the vec-
tor art [Qin et al. 2006]. When the texture is minified, widening of
the soft region can be used to reduce aliasing artifacts. Addition-
ally, when rendering alpha-tested foliage, the alpha threshold can
be increased with distance, so that the foliage gradually disappears
as it becomes farther away to avoid LOD popping.

4.2 Enhanced Rendering

In addition to providing crisp high resolution antialiased vector art
using raster hardware, we can apply additional manipulations using
the distance field to achieve other effects such as outlining, glows
and drop shadows. Of course, since all of these operations are func-
tions of the distance field, they can be dynamically controlled with
shader parameters.

4.2.1 Outlining

By changing the color of all texels which are between two user-
specified distance values, a simple texture-space outlining can be
applied by the pixel shader as shown in our decal example in Fig-
ure 5. The outline produced will have crisp high quality edges when
magnified and, of course, the color and width of the outline can be
varied dynamically merely by changing pixel shader constants.

4.2.2 Glows

When the alpha value is between the threshold value of 0.5 and 0,
the smoothstep function can be used to substitute a “halo” whose
color value comes from a pixel shader constant as shown in Fig-
ure 6. The dynamic nature of this effect is particularly powerful
in a game, as designers may want to draw attention to a particular
piece of vector art in the game world based on some game state by
animating the glow parameters (blinking a health meter, emphasiz-
ing an exit sign etc).

Figure 5: Outline added by pixel shader

4.2.3 Drop Shadows

In addition to effects which are simple functions of a single dis-
tance, we can use a second lookup into the distance field with a
texture coordinate offset to produce drop shadows or other similar
effects as shown in Figure 7.

In addition to these simple 2D effects, there are surely other ways
to reinterpret the distance field to give designers even more options.

4.3 Sharp corners

As you may have noticed in all of the preceding examples, encoding
edges using a single signed distance “rounds off” corners as the
resolution of the distance field decreases [Qin et al. 2006]. For
example, the hard corners of the letter G in Figure 2a become more
rounded off as illustrated in Figures 5, 6 and 7.

Sharp corners can be preserved, however, by using more than
one channel of the texture to represent different edges intersect-
ing within a texel. For instance, with two channels, the intersection
of two edges can be accurately represented by performing a logical
AND in the pixel shader. In Figure 8, we have stored these two edge
distances in the red and green channels of a single texture, resulting
in a well-preserved pointy corner. This same technique could also
be performed on the “No Trespassing” sign if we wished to repre-
sent sharper corners on our text. As it stands, we like the rounded
style of this text and have used a single distance field for this and
other decals in Team Fortress 2.

c©2007 Valve Corporation. All Rights Reserved

REFERENCES REFERENCES

Figure 6: Scary flashing “Outer glow” added by pixel shader

Figure 7: Soft drop-shadow added by the pixel shader. The direc-
tion, size, opacity, and color of the shadow are dynamically con-
trollable.

5 Conclusion

In this chapter, we have demonstrated an efficient vector texture
system which has been integrated into the Source game engine
which has been previously used to develop games such as the Half-
Life 2 series, Counter-Strike: Source and Day of Defeat: Source.
This vector texture technology is used in the upcoming game Team
Fortress 2 with no significant performance degradation relative to
conventional texture mapping. We were able to effectively use
vector-encoded images both for textures mapped onto 3D geom-
etry in our first person 3D view and also for 2D screen overlays.
This capability has provided significant visual improvements and
savings of texture memory.

References

BLYTHE, D. 2006. The direct3d 10 system. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, ACM Press, New York, NY,
USA, 724–734.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general
representation of shape for computer graphics. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 249–254.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. In SIG-

f l o a t d i s tAlphaMask = b a s e C o l o r . a ; i f (OUTLINE &&
(d i s tAlphaMask >= OUTLINE MIN VALUE0) &&
(d i s tAlphaMask <= OUTLINE MAX VALUE1))

{
f l o a t o F a c t o r = 1 . 0 ;
i f (d i s tAlphaMask <= OUTLINE MIN VALUE1)
{

o F a c t o r = s m o o t h s t e p (OUTLINE MIN VALUE0 ,
OUTLINE MIN VALUE1 ,
d i s tAlphaMask) ;

}
e l s e
{

o F a c t o r = s m o o t h s t e p (OUTLINE MAX VALUE1 ,
OUTLINE MAX VALUE0 ,
d i s tAlphaMask) ;

}
b a s e C o l o r = l e r p (baseCo lo r , OUTLINE COLOR , o F a c t o r) ;

}

i f (SOFT EDGES) {
b a s e C o l o r . a ∗= s m o o t h s t e p (SOFT EDGE MIN ,

SOFT EDGE MAX ,
d i s tAlphaMask) ;

} e l s e {
b a s e C o l o r . a = d i s tAlphaMask >= 0 . 5 ;

} i f (OUTER GLOW) {
f l o a t 4 g lowTexel =

tex2D (BaseTex tu reSample r ,
i . baseTexCoord . xy+GLOW UV OFFSET) ;

f l o a t 4 glowc = OUTER GLOW COLOR ∗ s m o o t h s t e p (
OUTER GLOW MIN DVALUE,
OUTER GLOW MAX DVALUE,
glowTexel . a) ;

b a s e C o l o r = l e r p (glowc , baseCo lo r , mskUsed) ;
}

Figure 9: HLSL source code for outline, glow/dropshadow, and
edge softness.

GRAPH ’05: ACM SIGGRAPH 2005 Papers, ACM Press, New
York, NY, USA, 1000–1009.

MITCHELL, J., MCTAGGART, G., AND GREEN, C. 2006. Shading
in valve’s source engine. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Courses, ACM Press, New York, NY, USA, 129–142.

QIN, Z., MCCOOL, M. D., AND KAPLAN, C. S. 2006. Real-time
texture-mapped vector glyphs. In I3D ’06: Proceedings of the
2006 symposium on Interactive 3D graphics and games, ACM
Press, New York, NY, USA, 125–132.

RAY, N., NEIGER, T., CAVIN, X., AND LEVY, B. 2005. Vector
texture maps. In Tech Report.

SEN, P. 2004. Silhouette maps for improved texture magnifica-
tion. In HWWS ’04: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, ACM Press,
New York, NY, USA, 65–73.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Rendering Techniques,
255–264.

c©2007 Valve Corporation. All Rights Reserved

REFERENCES REFERENCES

Figure 8: Corner encoded at 64x64 using one distance field (left) and the AND of two distance fields (right)

c©2007 Valve Corporation. All Rights Reserved

