

BIRKHAUSER

Jean-Michel Muller
Nicolas Brisebarre
Florent de Dinechin
Claude-Pierre Jeannerod
Vincent Lefevre
Guillaume Melquiond
Nathalie Revol

Damien Stehlé

Serge Torres

Handbook of

Floating-Point
Arithmetic

Birkhauser
Boston ¢ Basel * Berlin

Jean-Michel Muller
CNRS, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
jean-michel.muller@
ens-lyon.fr

Claude-Pierre Jeannerod

INRIA, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Ttalie

69364 Lyon Cedex 07

France

claude-pierre.jeannerod @
ens-lyon.fr

Nathalie Revol
INRIA, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
nathalie.revol @ens-lyon.fr

ISBN 978-0-8176-4704-9

DOI 10.1007/978-0-8176-4705-6

Nicolas Brisebarre
CNRS, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
nicolas.brisebarre @
ens-lyon.fr

Vincent Lefevre

INRIA, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Ttalie

69364 Lyon Cedex 07

France

vincent@vincl7.net

Damien Stehlé

CNRS, Macquarie University,
and University of Sydney

School of Mathematics
and Statistics

University of Sydney

Sydney NSW 2006

Australia

damien.stehle @ gmail.com

e-ISBN 978-0-8176-4705-6

Library of Congress Control Number: 2009939668

Mathematics Subject Classification (2000): 65Y99, 68N30

ACM Subject Classification: G.1.0, G.4

© Birkhiuser Boston, a part of Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Birkhiuser Boston, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Florent de Dinechin
ENSL, Laboratoire LIP
Ecole Normale
Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
France
florent.de.dinechin @
ens-lyon.fr

Guillaume Melquiond

INRIA Saclay — ile-de-
France

Parc Orsay Université

4, rue Jacques Monod

91893 Orsay Cedex

France

guillaume.melquiond @
inria.fr

Serge Torres

ENSL, Laboratoire LIP

Ecole Normale
Supérieure de Lyon

46, allée d’Italie

69364 Lyon Cedex 07

France

serge.torres @ens-lyon.fr

Birkhauser Boston is part of Springer Science+Business Media (www.birkhauser.com)

Contents

Preface XV

List of Figures xvii

List of Tables xxi

I Introduction, Basic Definitions, and Standards 1

1 Introduction 3

1.1 SomeHistory 3

1.2 Desirable Properties., 6

1.3 Some Strange Behaviors 7

131 Somefamousbugs 7

1.3.2 Difficult problems, 8

2 Definitions and Basic Notions 13

2.1 Floating-Point Numbers 13

22 Rounding. 20

221 Roundingmodes 20

222 Useful properties 22

2.2.3 Relative error duetorounding 23

23 Exceptions o 25
24 Lost or Preserved Properties of the Arithmetic on the Real

Numbers e 27

2.5 Note on the ChoiceoftheRadix 29

251 Representationerrors. 29

252 Acaseforradix10 30

2.6 Tools for Manipulating Floating-Point Errors 32

26.1 Theulpfunction 32

2.6.2 Errors in ulps and relative errors 37

2.6.3 Anexample:iterated products 37

2.6.4 Unitroundoff 39

2.7 NoteonRadixConversion 40

vi

Contents

2.7.1 Conditionsontheformats
2.72 Conversion algorithms
2.8 The Fused Multiply-Add (FMA) Instruction
2.9 Interval Arithmetic
29.1 Intervals with floating-pointbounds
29.2 Optimizedrounding

Floating-Point Formats and Environment
3.1 ThelEEE 754-1985Standard
3.1.1 Formats specified by IEEE 754-1985
3.1.2 Little-endian, big-endian
3.1.3 Rounding modes specified by IEEE 754-1985
3.14 Operations specified by IEEE 754-1985
3.1.5 Exceptions specified by IEEE 754-1985
3.1.6 Specialvalues
3.2 ThelEEE 854-1987 Standard
3.2.1 Constraints internaltoaformat
3.2.2 Various formats and the constraints between them . . .
3.2.3 Conversions between floating-point numbers and
decimalstrings
324 Rounding
325 Operations.
32,6 Comparisons
327 Exceptions
3.3 TheNeedforaRevision
3.3.1 A typical problem: “double rounding”
3.3.2 Various ambiguities
3.4 The New IEEE 754-2008 Standard
3.4.1 Formats specified by the revised standard
3.4.2 Binary interchange format encodings
3.4.3 Decimal interchange format encodings
344 Largerformats
3.4.5 Extended and extendable precisions
34.6 Attributes oo o oo
3.4.7 Operations specified by the standard
348 Comparisons
349 Conversions
3.4.10 Default exception handling
3.4.11 Recommended transcendental functions
3.5 Floating-Point Hardware in Current Processors
3.5.1 The common hardware denominator
352 Fused multiply-add
3.5.3 Extended precision
3.54 Rounding and precisioncontrol

Contents vii

3.5.5 SIMDinstructions 106

3.5.6 Floating-point on x86 processors: SSE2 versus x87 . . . 106

3.5.7 Decimal arithmetic 107

3.6 Floating-Point Hardware in Recent Graphics Processing Units 108
3.7 Relations with Programming Languages 109
3.7.1 The Language Independent Arithmetic (LIA) standard 109

3.7.2 Programminglanguages 110

3.8 Checking the Environment 110
381 MACHAR 111

382 Paranoia o 111

383 UCBTest 115

384 TestFloat 116

385 TeeeCC754 116

38.6 Miscellaneous 116

II Cleverly Using Floating-Point Arithmetic 117
4 Basic Properties and Algorithms 119
4.1 Testing the Computational Environment 119
411 Computingtheradix 119

412 Computing the precision. 121

42 ExactOperations 122
421 Exactaddition. 122

42.2 Exact multiplications and divisions 124

4.3 Accurate Computations of Sums of Two Numbers 125
43.1 TheFast2Sum algorithm 126

43.2 The2Sum algorithm 129

43.3 If we donot use rounding tonearest 131

44 Computation of Products 132
441 Veltkamp splitting 132
4.4.2 Dekker’s multiplication algorithm 135

45 Complexnumbers. 139
451 \Variouserrorbounds 140

45.2 Error bound for complex multiplication 141

453 Complexdivision 144
454 Complexsquareroot 149

5 The Fused Multiply-Add Instruction 151
51 The 2MultFMA Algorithm 152
5.2 Computation of Residuals of Division and Square Root 153
5.3 Newton-Raphson-Based Division withan FMA 155

5.3.1 Variants of the Newton-Raphson iteration 155

viii

54

55

5.6
57

Contents

53.2 Using the Newton-Raphson iteration for correctly

rounded division o o000 160
Newton-Raphson-Based Square Root with an FMA 167
54.1 Thebasiciterations 167
542 Using the Newton-Raphson iteration for correctly

rounded squareroots L L L 168
Multiplication by an Arbitrary-Precision Constant 171
5.5.1 Checking for a given constant C' if Algorithm 5.2 will

alwayswork oo 172
Evaluation of the ErrorofanFMA 175
Evaluation of Integer Powers 177

6 Enhanced Floating-Point Sums, Dot Products, and Polynomial

Values 181
6.1 Preliminaries. 182
6.1.1 Floating-point arithmeticmodels 183

6.1.2 Notation for error analysis and classical error estimates 184

6.1.3 Properties for deriving running error bounds 187

6.2 Computing Validated Running Error Bounds 188
6.3 Computing Sums More Accurately 190
6.3.1 Reordering the operands, and a bitmore 190

6.32 Compensatedsums. 192

6.3.3 Implementing a “long accumulator” 199

6.3.4 On the sum of three floating-point numbers 199

6.4 Compensated Dot Products 201
6.5 Compensated Polynomial Evaluation 203
7 Languages and Compilers 205
7.1 APlay withMany Actors 205
7.1.1 Floating-point evaluation in programming languages . 206

7.1.2 Processors, compilers, and operating systems 208

7.1.3 In the hands of the programmer 209

7.2 Floating Point in the C Language 209
7.2.1 Standard C99 headers and IEEE 754-1985 support . . . 209

722 Iypes 210

72.3 Expressionevaluation 213

724 Code transformations 216

7.2.5 Enabling unsafe optimizations 217

7.2.6 Summary: a few horror stories 218

7.3 Floating-Point Arithmetic in the C++ Language 220
73.1 Semantics 0L 220

7.3.2 Numericlimits 221

7.3.3 Overloaded functions 222

74 FORTRAN Floating Pointin a Nutshell 223

Contents ix

741 Philosophy. 223

742 IEEE 754 supportin FORTRAN 226

7.5 Java Floating Pointina Nutshell 227

751 Philosophy. 227

752 Typesandclasses 228

7.5.3 Infinities, NaNs, and signed zeros 230

754 Missing features. L. 231

755 Reproducibility 0 .. 232

7.5.6 The BigDecimal package 233

76 Conclusion o 234

III Implementing Floating-Point Operators 237

8 Algorithms for the Five Basic Operations 239

8.1 Opverview of Basic Operation Implementation 239

8.2 Implementing IEEE 754-2008 Rounding 241
8.2.1 Rounding a nonzero finite value with unbounded

exponentrange 241

822 Overflow o 243

8.2.3 Underflow and subnormal results 244

824 Theinexactexception 245

8.2.5 Rounding for actual operations 245

8.3 Floating-Point Addition and Subtraction. 246

8.3.1 Decimal addition 249

8.3.2 Decimal addition using binary encoding 250

8.3.3 Subnormal inputs and outputs in binary addition . . . 251

8.4 Floating-Point Multiplication 251

84.1 Normalcase 252

8.4.2 Handling subnormal numbers in binary multiplication 252

8.4.3 Decimalspecifics 253

8.5 Floating-Point Fused Multiply-Add 254

8.5.1 Case analysis for normalinputs 254

8.5.2 Handling subnormalinputs 258

8.5.3 Handling decimal cohorts 259

8.5.4 Overview of a binary FMA implementation 259

8.6 Floating-Point Division 262

8.6.1 Overview and specialcases 262

8.6.2 Computing the significand quotient 263

8.6.3 Managing subnormal numbers 264

8.6.4 Theinexactexception 265

8.6.5 Decimalspecifics 265

8.7 Floating-Point SquareRoot. 265

8.7.1 Overview and specialcases 265

X Contents
8.7.2 Computing the significand squareroot 266
8.7.3 Managing subnormal numbers 267
8.74 Theinexactexception 267
8.7.5 Decimal specifics 267
9 Hardware Implementation of Floating-Point Arithmetic 269
9.1 Introductionand Context 269
9.1.1 Processor internal formats 269
9.1.2 Hardware handling of subnormal numbers 270
9.1.3 Full-custom VLSI versus reconfigurable circuits 271
9.14 Hardware decimal arithmetic 272
915 Pipelining o 0L 273
9.2 The Primitives and TheirCost 274
921 Integeradders. 274
9.2.2 Digit-by-integer multiplication in hardware 280
9.2.3 Using nonstandard representations of numbers 280
9.24 Binary integer multiplication 281
9.25 Decimal integer multiplication 283
926 Shifters o o 284
9.2.7 Leading-zerocounters 284
9.28 Tables and table-based methods for fixed-point
function approximation 286
9.3 Binary Floating-Point Addition 288
931 Overview 288
9.3.2 A first dual-path architecture 289
9.3.3 Leading-zero anticipation 291
9.3.4 Probing further on floating-point adders 295
9.4 Binary Floating-Point Multiplication 296
9.4.1 Basicarchitecture 296
942 FPGA implementation 296
9.43 VLSIimplementation optimized for delay 298
944 Managing subnormals 301
9.5 Binary Fused Multiply-Add 302
9.5.1 Classicarchitecture 303
952 Toprobefurther. 305
9.6 Division 305
9.6.1 Digit-recurrence division 306
9.6.2 Decimaldivision 309
9.7 Conclusion: Beyond the FPU 309
9.7.1 Optimization in context of standard operators 310
9.7.2 Operation with a constantoperand 311
9.73 Block floatingpoint. 313
9.7.4 Specific architectures for accumulation 313

9.7.5 Coarser-grain operators 317

Contents X1

9.8 ProbingFurther 320
10 Software Implementation of Floating-Point Arithmetic 321
10.1 Implementation Context 322
10.1.1 Standard encoding of binary floating-point data 322
10.1.2 Available integer operators 323
10.1.3 Firstexamples 326
10.1.4 Design choices and optimizations 328
10.2 Binary Floating-Point Addition 329
10.2.1 Handling special values 330
10.2.2 Computing the sign of theresult 332
10.2.3 Swapping the operands and computing the alignment
shift 333
10.2.4 Getting the correctly rounded result 335
10.3 Binary Floating-Point Multiplication 341
10.3.1 Handling special values 341
10.3.2 Sign and exponent computation 343
10.3.3 Overflow detection 345
10.3.4 Getting the correctly rounded result 346
10.4 Binary Floating-Point Division 349
10.4.1 Handling special values 350
10.4.2 Sign and exponent computation 351
10.4.3 Overflow detection 354
10.4.4 Getting the correctly rounded result 355
10.5 Binary Floating-Point Square Root 361
10.5.1 Handling special values 362
10.5.2 Exponent computation 364
10.5.3 Getting the correctly rounded result 365
IV Elementary Functions 373
11 Evaluating Floating-Point Elementary Functions 375
11.1 Basic Range Reduction Algorithms 379
11.1.1 Cody and Waite’s reduction algorithm 379
11.1.2 Payne and Hanek’s algorithm 381
11.2 Bounding the Relative Error of Range Reduction 382
11.3 More Sophisticated Range Reduction Algorithms 384
11.3.1 An example of range reduction for the exponential
function L 386
11.3.2 An example of range reduction for the logarithm . . . 387
11.4 Polynomial or Rational Approximations 388
1141 L2CaS€ v v v v v e e i 389

1142 L°,or minimax Ccase « v v v v v v v v e e 390

xii

12

Contents

11.4.3 “Truncated” approximations

11.5 Evaluating Polynomials

11.6 Correct Rounding of Elementary Functions to binary64

11.6.1 The Table Maker’s Dilemma and Ziv’s onion peeling

strategy o oo

11.6.2 Whenthe TMDissolved

11.6.3 Roundingtest

11.64 Accuratesecondstep
11.6.5 Error analysis and the accuracy/performance tradeoff

11.7 Computing Error Bounds

11.7.1 The point with efficientcode

11.7.2 Example: a “double-double” polynomial evaluation . .

Solving the Table Maker’s Dilemma
12.1 Introduction
12.1.1 The Table Maker’s Dilemma.
12.1.2 Brief historyofthe TMD
12.1.3 Organization of the chapter
12.2 Preliminary Remarks on the Table Maker’s Dilemma
12.2.1 Statistical arguments: what can be expected in practice
12.2.2 In some domains, there is no need to find worst cases .
12.2.3 Deducing the worst cases from other functions or
domains
12.3 The Table Maker’s Dilemma for Algebraic Functions
12.3.1 Algebraic and transcendental numbers and functions .
12.3.2 The elementary case of quotients
12.3.3 Around Liouville’s theorem
12.3.4 Generating bad rounding cases for the square root
using Hensel 2-adic lifting
12.4 Solving the Table Maker’s Dilemma for Arbitrary Functions
12.4.1 Lindemann’s theorem: application to some
transcendental functions
12.4.2 A theorem of Nesterenko and Waldschmidt.
12.4.3 A first method: tabulated differences
12.4.4 From the TMD to the distance between a grid and a
segment oL
12.4.5 Linear approximation: Lefevre’s algorithm
12.4.6 TheSLZ algorithm
12.4.7 Periodic functions on large arguments
125 SomeResults
12.5.1 Worst cases for the exponential, logarithmic,
trigonometric, and hyperbolic functions
12.5.2 A special case: integer powers
12.6 Current Limits and Perspectives

394
395
396
400
401
402
402
403

405
405
406
410
411
412
412
416

419
420
420
422
424

425
429

429
430
432

434
436
443
448
449

Contents xiii

V Extensions 461
13 Formalisms for Certifying Floating-Point Algorithms 463
13.1 Formalizing Floating-Point Arithmetic 463
13.1.1 Defining floating-point numbers 464
13.1.2 Simplifying the definition 466
13.1.3 Defining rounding operators 467
13.1.4 Extending the setof numbers 470
13.2 Formalisms for Certifying Algorithmsby Hand 471
13.2.1 Hardwareunits 471
13.2.2 Low-level algorithms 472
13.2.3 Advanced algorithms, 473
13.3 Automating Proofs 474
13.3.1 Computingonbounds 475
13.3.2 Countingdigits 477
13.3.3 Manipulating expressions 479
13.3.4 Handling the relativeerror 483
134 UsingGappa o 484
13.4.1 Toy implementationofsine 484
13.4.2 Integer division on Itanium 488
14 Extending the Precision 493
14.1 Double-Words, Triple-Words... 494
14.1.1 Double-word arithmetic 495
14.1.2 Static triple-word arithmetic. 498
14.1.3 Quad-word arithmetic 500
14.2 Floating-Point Expansions 503
14.3 Floating-Point Numbers with Batched Additional Exponent . 509
14.4 Large Precision Relying on Processor Integers 510
14.4.1 Using arbitrary-precision integer arithmetic for
arbitrary-precision floating-point arithmetic 512
1442 A brief introduction to arbitrary-precision integer
arithmetic Lo oL 513
VI Perspectives and Appendix 517
15 Conclusion and Perspectives 519

16 Appendix: Number Theory Tools for Floating-Point Arithmetic 521

16.1 Continued Fractions 521
16.2 The LLL Algorithm 524
Bibliography 529

Index 567

Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of
approximating real-number arithmetic for performing numerical calcu-
lations on modern computers. A rough presentation of floating-point arith-
metic requires only a few words: a number z is represented in radix
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that z = s xm x 3°. Making such an arithmetic reliable, fast, and portable
is however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s 5.33Hz Z3 computer.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 16, and 10 were then
considered), and the sizes of the significand and exponent fields were not
standardized. The approaches for rounding and for handling underflows,
overflows, or “forbidden operations” (such as 5/0 or v/—3) were significantly
different from one machine to another. This lack of standardization made it
difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic,
and its follower, the IEEE 854-1987 “radix-independent standard.” The stan-
dardization process was expertly orchestrated by William Kahan. The IEEE
754-1985 standard was a key factor in improving the quality of the compu-
tational environment available to programmers. It has been revised during
recent years, and its new version, the IEEE 754-2008 standard, was released
in August 2008.

By carefully specifying the behavior of the arithmetic operators, the 754-
1985 standard allowed researchers to design extremely smart yet portable al-
gorithms; for example, to compute very accurate sums and dot products, and
to formally prove some critical parts of programs. Unfortunately, the sub-
tleties of the standard are hardly known by the nonexpert user. Even more
worrying, they are sometimes overlooked by compiler designers. As a conse-
quence, floating-point arithmetic is sometimes conceptually misunderstood
and is often far from being exploited to its full potential.

XV

xvi Preface

This and the recent revision of the IEEE 754 standard led us to the
decision to compile into a book selected parts of the vast knowledge on
floating-point arithmetic. This book is designed for programmers of numer-
ical applications, compiler designers, programmers of floating-point algo-
rithms, designers of arithmetic operators, and more generally the students
and researchers in numerical analysis who wish to more accurately under-
stand a tool that they manipulate on an everyday basis. During the writing,
we tried, whenever possible, to illustrate by an actual program the described
techniques, in order to allow a more direct practical use for coding and
design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.), and
various aspects of the IEEE 754 and 854 standards and the new revised stan-
dard. The second part shows how the features of the standard can be used
to develop smart and nontrivial algorithms. This includes summation algo-
rithms, and division and square root relying on a fused multiply-add. This
part also discusses issues related to compilers and languages. The third part
then explains how to implement floating-point arithmetic, both in software
(on an integer processor) and in hardware (VLSI or reconfigurable circuits).
The fourth part is devoted to the implementation of elementary functions.
The fifth part presents some extensions: certification of floating-point arith-
metic and extension of the precision. The last part is devoted to perspectives
and the Appendix.

Acknowledgements

Some of our colleagues around the world and students from Ecole Normale
Supérieure de Lyon and Université de Lyon greatly helped us by reading
preliminary versions of this book: Nicolas Bonifas, Pierre-Yves David, Jean-
Yves 1’Excellent, Warren Ferguson, John Harrison, Nicholas Higham, Nicolas
Louvet, Peter Markstein, Adrien Panhaleux, Guillaume Revy, and Siegfried
Rump. We thank them all for their suggestions and interest.

We have been very pleased working with our publisher, Birkhduser
Boston. Especially, we would like to thank Tom Grasso, Regina Gorenshteyn,
and Torrey Adams for their help.

Jean-Michel Muller, Nicolas Brisebarre Lyon, France
Florent de Dinechin, Claude-Pierre Jeannerod July 2009
Vincent Lefévre, Guillaume Melquiond

Nathalie Revol, Damien Stehlé

Serge Torres

List of Figures

2.1
2.2
2.3
24

25
2.6
2.7
2.8
29
2.10
211
212

3.1
3.2

41

5.1
52

53

6.1

8.1
8.2
8.3
8.4
8.5

Positive floating-point numbers for 3 =2andp=3. 18
Underflow before and after rounding. 19
The four rounding modes. 21
Relative error committed by rounding a real number to nearest

floating-pointnumber. o o 0oL 24
Values of ulp according to Harrison’s definition. 33
Values of ulp according to Goldberg’s definition. 33
Counterexample in radix 3 for a property of Harrison’s ulp. . 34
Conversion from ulps to relative errors. 38
Conversion from relative errors toulps. 39
Converting from binary to decimal, and back. 42
Possible values of the binary ulp between two powers of 10. . 43
Ilustration of the conditions (2.10) in the case b =2°¢. 47
Binary interchange floating-point formats. 81
Decimal interchange floating-point formats. 84
Independent operations in Dekker’s product. 139
Convergence of iteration (5.4). 157
The various values that should be returned in round-to-nearest

mode, assuming ¢ is within one ulp(b/a) from b/a. 164
Position of C'z with respect to the result of Algorithm 5.2. . . . 174
Boldo and Melquiond’s algorithm for computing RN(a+b+c)

in radix-2 floating-point arithmetic. 200
Specification of the implementation of a FP operation. 240
Product-anchored FMA computation for normal inputs. 255
Addend-anchored FMA computation for normal inputs. . . . 256
Cancellationinthe FMA. 257

FMA ab — ¢, where a is the smallest subnormal, ab is
nevertheless in the normal range, |c| < |ab|, and we have an
effective subtraction., 258

xviii

8.6

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10

9.11
9.12

9.13
9.14

9.15

9.16
9.17

9.18
9.19
9.20

9.21

11.1

11.2

11.3

114

12.1

12.2

List of Figures

Significand alignment for the single-path algorithm. 260
Carry-rippleadder. 275
Decimal addition. 275
An implementation of the decimal DAbox. 276
An implementation of the radix-16 DAbox. 276
Binary carry-save addition. 277
Partial carry-save addition. 278
Carry-selectadder. 279
Binary integer multiplication. 282
Partial product array for decimal multiplication. 283
A multipartite table architecture for the initial approximation

of I/m.. . oo oo 288
A dual-path floating-pointadder. 289
Possible implementations of significand subtraction in the

closepath. o o 290
A dual-path floating-point adder with LZA. 292
Basic architecture of a floating-point multiplier without

subnormal handling. 297
A floating-point multiplier using rounding by injection,

without subnormal handling. 300
The classic single-path FMA architecture. 304
A pipelined SRT4 floating-point divider without subnormal

handling. o 306
Iterative accumulator. 0L 313
Accumulator and post-normalization unit. 315
Accumulation of floating-point numbers into a large

fixed-point accumulator. o Lo 0oL 315
The 25um and 2Mul operators. 319
The difference between In and its degree-5 Taylor

approximation in the interval [1,2]. 377
The difference between In and its degree-5 minimax

approximation in the interval [1,2]. 377
The L? approximation p* is obtained by projecting f on the

subspace generated by To, T, ..., Tp. . o o o o o oo oo 390
The exp(cos(xz)) function and its degree-4 minimax

approximationon [0,5].. Lo 391

Example of an interval around f(z) containing f(z) but no
breakpoint. Hence, RN(f(z)) = RN(f(z)). 407
Example of an interval around f(z) containing f(z) and a
breakpoint. L 408

List of Figures

12.3

124

12.5

12.6

14.1

14.2

14.3
144

16.1
16.2

Computing P(1), P(2), P(3), ..., for P(X) = X3 with 3
additionspervalue. oL
The graph of f (and f~!) and a regular grid consisting of points
whose coordinates are the breakpoints.
The integer grid and the segment y = b — a.z; the
two-dimensional transformation modulo 1; and the
representation of the left segment (corresponding to « € Z)
modulo lasacircle.
Two-length configurations fora = 17/45.

The representation of Algorithm 25um [180]. Here, s = RN(a+
b),ands+e=a+bexactly.
The representation of rounded-to-nearest floating-point
addition and multiplication [180].
SimpleAddQD: sum of two quadwords.
Graphic representation of Shewchuk’s Scale-Expansion
Algorithm [377] (Algorithm 14.10).

The lattice Z(2,0) ® Z(1,2). oo
Two bases of the lattice Z(2,0) ® Z(1,2).

Xix

435

438
439

501

501
502

508

List of Tables

1.1

2.1
2.2
2.3

3.1

3.2

3.3

34

3.5
3.6

3.7

3.8
39

3.10
3.11
3.12
3.13
3.14

3.15

Results obtained by running Program 11 on a
Pentium4-based workstation, using GCC and Linux.

Rounding a significand using the “round” and “sticky” bits.
ARRE and MRRE of various formats.
Converting from binary to decimal and back without error. .

Main parameters of the formats specified by the IEEE
754-1985standard. Lo oL
Sizes of the various fields in the formats specified by the IEEE
754-1985 standard, and values of the exponent bias..
Binary encoding of various floating-point data in single
precision.
How to interpret the binary encoding of an IEEE 754-1985
floating-point number. 0L
Extremal values in the IEEE 754-1985 standard.
The thresholds for conversion from and to a decimal string,
as specified by the IEEE 754-1985 standard.
Correctly rounded decimal conversion range, as specified by
the IEEE 754-1985 standard.
Comparison predicates and the four relations.
Floating-point from/to decimal string conversion ranges in
the IEEE 854-1987 standard
Correctly rounded conversion ranges in the IEEE 854-1987
standard. oo
Results returned by Program 3.1 on a 32-bit Intel platform.

Results returned by Program 3.1 on a 64-bit Intel platform.

Main parameters of the binary interchange formats of size up
to 128 bits specified by the 754-2008 standard [187].
Main parameters of the decimal interchange formats of size
up to 128 bits specified by the 754-2008 standard [187].
Width (in bits) of the various fields in the encodings of the
binary interchange formats of size up to 128 bits [187].

44

57

57

59

60
61

65

65
66

73

73

75

76

81

81

82

Xxi

xxii

3.16

3.17

3.18

3.19

3.20

3.21
3.22

3.23

3.24
3.25

3.26
4.1

51
5.2

6.1
6.2

7.1
7.2
7.3

8.1

8.2
8.3

8.4

8.5
8.6

10.1

List of Tables

Width (in bits) of the various fields in the encodings of the

decimal interchange formats of size up to 128 bits [187]. . . . 85
Decimal encoding of a decimal floating-point number (IEEE
754-2008). 87
Binary encoding of a decimal floating-point number (IEEE
754-2008). 88
Decoding the declet byb bz - - - by of a densely packed decimal
encoding to three decimal digits dodida. 89

Encoding the three consecutive decimal digits dyd;d>, each of
them being represented in binary by four bits, into a 10-bit

declet bpb1bs - - - bg of a densely packed decimal encoding. . . 89
Parameters of the interchange formats. 93
Parameters of the binary256 and binary1024 interchange
formats deduced from Table 3.21. 93
Parameters of the decimal256 and decimal512 interchange
formats deduced from Table 3.21. 94

Extended format parameters in the IEEE 754-2008 standard. . 94
Minimum number of decimal digits in the decimal external
character sequence that allows for an error-free write-read

cycle, for the various basic binary formats of the standard. . . 100
Execution times of decimal operations on POWER6. 108
The four cases of Brent, Percival, and Zimmermann. 143
Quadratic convergence of iteration (5.4). 157

Comparison of various methods for checking Algorithm 5.2. 176

Errors of various methods for Y z; with ; = RN(cos(7)). . . 198
Errors of various methods for » | z; with z; = RN(1/47). 198
FLT EVAL_METHOD macrovalues. 213
FORTRAN allowable alternatives. 225
FORTRAN forbidden alternatives. 226
Specification of addition/subtraction when both x and y are

ZETO. « v v i i e e e e 247
Specification of addition for positive floating-point data. . . . 247
Specification of subtraction for floating-point data of positive

SIgN. . . . 247
Specification of multiplication for floating-point data of

positivesign. Lo 251
Special values for |z|/|y|. 263
Special values for sqrt(z). 265

Standard integer encoding of binary32 data. 324

List of Tables xxiii

10.2

11.1
11.2

12.1

12.2

12.3

124

12.5

12.6

12.7

12.8

12.9

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17

14.1

Some floating-point data encoded by X. 330
Some worst cases for range reductions. 385
Degrees of minimax polynomial approximations for various

functions and approximationranges. 385

Actual and expected numbers of digit chains of length &
of the form 1000---0 or 0111---1 just after the p-th bit of
the infinitely precise significand of sines of floating-point
numbers of precision p = 16 between 1/2and 1. 413
Actual and expected numbers of digit chains of length k
of the form 1000---0 or 0111---1 just after the p-th bit of
the infinitely precise significand of sines of floating-point
numbers of precision p = 24 between1/2and 1. 414
Length kp,ax of the largest digit chain of the form 1000---0
or 0111---1 just after the p-th bit of the infinitely precise
significands of sines and exponentials of floating-point

numbers of precision p between 1/2 and 1, for various p. . . . 415
Some results for small values in the binary64 format,
assuming rounding tonearest. 417
Some results for small values in the binary64 format,
assuming rounding toward —oo. oL 418

Some bounds on the size of the largest digit chain of the form
1000---0 or 0111---1 just after the p-th bit of the infinitely

precise significand of f(x) (or f(x,y)). 426
Worst cases for the function 1/+/z, for binary floating-point
systems and various values of the precisionp. 427

On the left, data corresponding to the current two-length
configuration: the interval I containing b, its length, and the
position of b in I. On the right, data one can deduce for the
next two-length configuration: the new interval I’ containing

band the positionof bin I'. 440
Example witha = 17/45and b=23.5/45. 442
Worst cases for functions e*, e* — 1, 2%, and 10*. 451
Worst cases for functions In(z) and In(1 +x). 452
Worst cases for functions log,(z) and logo(z). 453
Worst cases for functions sinh(x) and cosh(z). 454
Worst cases for inverse hyperbolic functions. 455
Worst cases for the trigonometric functions. 456
Worst cases for the inverse trigonometric functions. 457
Longest runs k of identical bits after the rounding bit in the

worst cases of function 2", for 3 < n < 1035, in binary64. . . 459

Asymptotic complexities of multiplication algorithms. 514

Part1

Introduction, Basic Definitions,
and Standards

Chapter 1

Introduction

EPRESENTING AND MANIPULATING real numbers efficiently is required in
many fields of science, engineering, finance, and more. Since the early
years of electronic computing, many different ways of approximating real
numbers on computers have been introduced. One can cite (this list is
far from being exhaustive): fixed-point arithmetic, logarithmic [220, 400]
and semi-logarithmic [294] number systems, continued fractions [228, 424],
rational numbers [227] and possibly infinite strings of rational numbers [275],
level-index number systems [71, 318], fixed-slash and floating-slash number
systems [273], and 2-adic numbers [425].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: clever compromises must be found between,
e.g., speed, accuracy, dynamic range, ease of use and implementation, and
memory cost. It appears that floating-point arithmetic, with adequately cho-
sen parameters (radix, precision, extremal exponents, etc.), is a very good
compromise for most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-3, precision-p, floating-point num-
ber is a number of the form

e
:I:mo.mlmg e Mp—1 X ﬂ R

where ¢, called the exponent, is an integer, and mg.myms - - - m,_1, called the
significand, is represented in radix (. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_1, 3
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

4 Chapter 1. Introduction

In The Art of Computer Programming [222], Donald Knuth presents a short
history of floating-point arithmetic. He views the radix-60 number system
of the Babylonians as some kind of early floating-point system. Since the
Babylonians did not invent the zero, if the ratio of two numbers is a power
of 60, then their representation in the Babylonian system is the same. In that
sense, the number represented is the significand of a radix-60 floating-point
representation of w.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives an
approximation to v/2 with four sexagesimal places (the digits represented on
the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [434], and a
very interesting analysis of the Babylonian mathematics related to YBC 7289
was done by Fowler and Robson [138].

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [433], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are prob-
ably Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described
an electro-mechanical implementation of Babbage’s Analytical Engine with
floating-point arithmetic [341]. And yet, the first real, modern implementa-
tion of floating-point arithmetic was in Konrad Zuse’s Z3 computer, built in
1941 [66]. It used a radix-2 floating-point number system, with 14-bit signifi-
cands, 7-bit exponents and 1-bit sign. The Z3 computer had special represen-
tations for infinities and indeterminate results. These characteristics made the
real number arithmetic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [347]. Photographs of Konrad Zuse and
the Z3 can be viewed at http://www.computerhistory.org/projects/zuse_
z23/ and http://www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent book by Aspray et al. [15].

Radix 10 is what humans use daily for representing numbers and per-
forming paper and pencil calculations. Therefore, to avoid input and output
radix conversions, the first idea that springs to mind for implementing auto-
mated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the easiest
to implement. Hence, choosing the right radix for the internal representation
of floating-point numbers was not obvious. Indeed, several different solu-
tions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10, and the Burroughs 570 and 6700 for example. The IBM 360
had a radix-16 floating-point arithmetic. Radix 10 has been extensively

1.1. Some History 5

used in financial calculations! and in pocket calculators, and efficient

implementation of radix-10 floating-point arithmetic is still a very active
domain of research [63, 85, 90, 91, 129, 414, 413, 428, 429]. The computer
algebra system Maple also uses radix 10 for its internal representation of
numbers. It therefore seems that the various radices of floating-point arith-
metic systems that have been implemented so far have almost always been
either 10 or a power of 2.

There has been a very odd exception. The Russian SETUN computer,
built in Moscow University in 1958, represented numbers in radix 3, with dig-
its —1, 0, and 1. This “balanced ternary” system has several advantages. One
of them is the fact that rounding to nearest is equivalent to truncation [222].
Another one [177] is the following. Assume you use a radix-{3 fixed-point
system, with p-digit numbers. A large value of 3 makes the implementation
complex: the system must be able to “recognize” and manipulate 5 different
symbols. A small value of 3 means that more digits are needed to represent
a given number: if 3 is small, p has to be large. To find a compromise, we can
try to minimize 3 x p, while having the largest representable number 37 — 1
(almost) constant. The optimal solution? will almost always be 3 = 3. See
http://www.computer-museum.ru/english/setun.htm for more information
on the SETUN computer.

Various studies (see references [44, 76, 232] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention (see Chapter 2) gives better
worst-case or average accuracy than all other radices. This and the ease of
implementation explain the current prevalence of radix 2.

The world of numerical computation changed much in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was
released [10]. This standard specifies various formats, the behavior of the
basic operations and conversions, and exceptional conditions. As a matter of
fact, the Intel 8087 mathematics co-processor, built a few years before in 1980,
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. Now, most
systems of commercial significance offer compatibility® with IEEE 754-1985.
This has resulted in significant improvements in terms of accuracy, reliability,
and portability of numerical software. William Kahan played a leading role
in the conception of the IEEE 754-1985 standard and in the development of
smart algorithms for floating-point arithmetic. His web page* contains much
useful information.

!Financial calculations frequently require special rounding rules that are very tricky to
implement if the underlying arithmetic is binary.

2If p and 3 were real numbers, the value of 3 that would minimize 8 x p while letting 57
be constant would be e = 2.7182818 - - -

*Even if sometimes you need to dive into the compiler documentation to find the right
options: see Section 3.3.2 and Chapter 7.

*http://www.cs.berkeley.edu/~wkahan/

6 Chapter 1. Introduction

IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard,
released in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [11], is devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The
new revised standard, called IEEE 754-2008 in this book, merges the two
old standards and brings significant improvements. It was adopted in June
2008 [187].

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
requires us to find compromises between requirements that are seldom fully
compatible. Among the various properties that are desirable, one can cite:

e Speed: Tomorrow’s weather must be computed in less than 24 hours;

e Accuracy: Even if speed is important, getting a wrong result right now
is worse than getting the correct one too late;

e Range: We may need to represent large as well as tiny numbers;

e Portability: The programs we write on a given machine must run on
different machines without requiring modifications;

e Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy close to 107'°. This of course means that
in some cases, we must be able to represent numerical data with a similar
accuracy (which is easily done, using formats that are implemented on
almost all current platforms). But this also means that we might sometimes be
able to carry out computations that must end up with a relative error less than
or equal to 1015, which is much more difficult. Sometimes, one will need a
significantly larger floating-point format or smart “tricks” such as those pre-
sented in Chapter 4.

An example of a huge calculation that requires much care was car-
ried out by Laskar’s team at the Paris observatory [243]. They computed
long-term numerical solutions for the insolation quantities of the Earth (very
long-term, ranging from —250 to 4250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance,

1.3. Some Strange Behaviors 7

in 2002, Kanada’s group computed 1241 billion decimal digits of 7 [19], using
the two formulas

1 1 1
m = 48arctan 0 + 128 arctan A 20 arctan 239 + 48 arctan 110443

1 1 1 1
= 1 — +2 tan — — 4 — .
76 arctan £ + 28 arctan 539 8 arctan 682 + 96 arctan 12943

These last examples are extremes. One should never forget that with 50
bits, one can express the distance from the Earth to the Moon with an error
less than the thickness of a bacterium. It is very uncommon to need such
an accuracy on a final result and, actually, very few physical quantities are
defined that accurately.

1.3 Some Strange Behaviors

Designing efficient and reliable hardware or software floating-point systems
is a difficult and somewhat risky task. Some famous bugs have been widely
discussed; we recall some of them below. Also, even when the arithmetic is
not flawed, some strange behaviors can sometimes occur, just because they
correspond to a numerical problem that is intrinsically difficult. All this is
not surprising: mapping the continuous real numbers on a finite structure
(the floating-point numbers) cannot be done without any trouble.

1.3.1 Some famous bugs

e The divider of the first version of the Intel Pentium processor, released
in 1994, was flawed [290, 122]. In extremely rare cases, one would get
three correct decimal digits only. For instance, the computation of

8391667/12582905
would give 0.666869 - - - instead of 0.666910 - - - .

o With release 7.0 of the computer algebra system Maple, when
computing
1001!
1000!
we would get 1 instead of 1001.

e With the previous release (6.0) of the same system, when entering
21474836480413647819643794
you would get

413647819643790) +' — — .(— — (

8 Chapter 1. Introduction

e Kahan [208] mentions some strange behavior of some versions of the
Excel spreadsheet. They seem to be due to an attempt to mimic a deci-
mal arithmetic with an underlying binary one.

An even more striking behavior happens with some early versions of
Excel 2007: When you try to compute

65536 — 2737

the displayed result is 100001. This is an error in the binary-to-
decimal conversion used for displaying that result: the internal
binary value is correct, if you add 1 to that result you get 65537.
An explanation can be found at http://blogs.msdn.com/excel/
archive/2007/09/25/calculation-issue-update.aspx, and a patch is
available from http://blogs.msdn.com/excel/archive/2007/10/09/
calculation-issue-update-fix-available.aspx

e Some bugs do not require any programming error: they are due to poor
specifications. For instance, the Mars Climate Orbiter probe crashed
on Mars in September 1999 because of an astonishing mistake: one
of the teams that designed the numerical software assumed the unit
of distance was the meter, while another team assumed it was the
foot [7, 306].

Very similarly, in June 1985, a space shuttle positioned itself to receive
a laser beamed from the top of a mountain that was supposedly 10,000
miles high, instead of the correct 10,000 feet [7].

Also, in January 2004, a bridge between Germany and Switzerland did
not fit at the border because the two countries use a different definition
of the sea level.

1.3.2 Difficult problems

Sometimes, even with a correctly implemented floating-point arithmetic, the

result of a computation is far from what could be expected.

A sequence that seems to converge to a wrong limit

Consider the following example, due to one of us [289] and analyzed by
Kahan [208, 291]. Let (uy,) be the sequence defined as

uyg = 2

up = —4 (1.1)
11

v — 111- 30 3000

Up—1 Up—1Un—2

5See http://www.spiegel.de/panorama/0, 1518,281837,00.html.

1.3. Some Strange Behaviors 9

One can easily show that the limit of this sequence is 6. And yet, on any
system with any precision, the sequence will seem to go to 100.

For example, Table 1.1 gives the results obtained by compiling
Program 1.1 and running it on a Pentium4-based workstation, using the GNU
Compiler Collection (GCC) and the Linux system.

#include <stdio.h>

int main(void)

{
double u, v, w;
int i, max;

printf("n =");

scanf("%d",&max) ;

printf("uo = ");

scanf ("%Lf",&u);

printf("ul = ");

scanf("%lf",&v);

printf("Computation from 3 to n:\n");
for (i = 3; i <= max; i++)

{
w = 111. - 1130./v + 3000./(vx*u);
u=yv;
V = w;
printf("u%sd = %1.17g\n", i, v);
}
return 0;

}

Program 1.1: A C program that is supposed to compute sequence w,, using double-
precision arithmetic. The obtained results are given in Table 1.1.

The explanation of this weird phenomenon is quite simple. The general
solution for the recurrence

1130 3000
+

Up—1 Up—1Un—2

up, = 111 —

i
S __a.100n+1+_ﬁ‘6n+1+_7.5n+1
I T 00n + 3 6n -5

where «, 3, and v depend on the initial values ug and ;. Therefore, if & # 0
then the limit of the sequence is 100, otherwise (assuming 3 # 0), it is 6. In
the present example, the starting values vy = 2 and u; = —4 were chosen so
that o = 0, 8 = —3, and v = 4. Therefore, the “exact” limit of w,, is 6. And yet,
when computing the values u,, in floating-point arithmetic using (1.1), due
to the various rounding errors, even the very first computed terms become
slightly different from the exact terms. Hence, the value « corresponding to

10

Chapter 1. Introduction

H Computed value

Exact value

|

18.5

18.5

9.378378378378379

9.3783783783783783784

7.8011527377521679

7.8011527377521613833

7.1544144809753334

7.1544144809752493535

n
3
4
b}
6
1

1

6.2744386627644761

6.2744385982163279138

12

6.2186967691620172

6.2186957398023977883

16

6.1661267427176769

6.0947394393336811283

17

7.2356654170119432

6.0777223048472427363

18

22.069559154531031

6.0639403224998087553

19

78.58489258126825

6.0527217610161521934

20

98.350416551346285

6.0435521101892688678

21

99.898626342184102

6.0360318810818567800

22

99.993874441253126

6.0298473250239018567

23

99.999630595494608

6.02474965236684 78987

30

99.999999999998948

6.0067860930312057585

31

99.999999999999943

6.0056486887714202679

Table 1.1: Results obtained by running Program 1.1 on a Pentium4-based worksta-
tion, using GCC and the Linux system, compared to the exact values of sequence uy,.

these computed terms is very tiny, but nonzero. This suffices to make the

computed sequence “converge” to 100.

The Chaotic Bank Society

Recently, Mr. Gullible went to the Chaotic Bank Society, to learn more about
the new kind of account they offer to their best customers. He was told:

You first deposit $¢ — 1 on your account, where e = 2.7182818 - - -
is the base of the natural logarithms. The first year, we take $1
from your account as banking charges. The second year is better
for you: We multiply your capital by 2, and we take $1 of banking
charges. The third year is even better: We multiply your capital
by 3, and we take $1 of banking charges. And so on: The n-th
year, your capital is multiplied by n and we just take $1 of charges.
Interesting, isn’t it?

Mr. Gullible wanted to secure his retirement. So before accepting the
offer, he decided to perform some simulations on his own computer to see
what his capital would be after 25 years. Once back home, he wrote a C pro-
gram (Program 1.2).

1.3. Some Strange Behaviors 11

#include <stdio.h>

int main(void)
{
double account = 1.71828182845904523536028747135;
int i;
for (i = 1; i <= 25; i++)
{
account = ixaccount - 1;

}

printf("You will have $%1.17e on your account.\n", account);

Program 1.2: Mr. Gullible’s C program.

On his computer (with an Intel Xeon processor, and GCC on Linux, but
strange things would happen with any other equipment), he got the follow-
ing result:

You will have $1.20180724741044855e+09 on your account.

So he immediately decided to accept the offer. He will certainly be sadly
disappointed, 25 years later, when he realizes that he actually has around
$0.0399 on his account.

What happens in this example is easy to understand. If you call ag the
amount of the initial deposit and a,, the capital after the end of the n-th year,
then

1 1 1
= nix <a0_(€_1)+(n+1)!+(n+2)!+(n+3)!+'”>’

so that:

e if ag < e — 1, then a,, goes to —oo;

e if ag = e — 1, then a,, goes to 0;

e if ag > e — 1, then a,, goes to +oo.
In our example, ap = e — 1, so the exact sequence a, goes to zero. This
explains why the exact value of ags is so small. And yet, even if the arith-
metic operations were errorless (which of course is not the case), since e — 1 is

not exactly representable in floating-point arithmetic, the computed sequence
will go to +o00 or —oo, depending on rounding directions.

12 Chapter 1. Introduction

Rump’s example

Consider the following function, designed by Siegfried Rump in 1988 [352],
and analyzed by various authors [93, 268],

fa,b) = 333.7505 + a2 (11a2b% — b5 — 1216* — 2) + 5.56° + %
and try to compute f(a,b) for a = 77617.0 and b = 33096.0. On an IBM 370
computer, the results obtained by Rump were

e 1.172603 in single precision;
e 1.1726039400531 in double precision; and
e 1.172603940053178 in extended precision.

Anybody looking at these figures would feel that the single precision result
is certainly very accurate. And yet, the exact result is —0.8273960599- - -.
On more recent systems, we do not see the same behavior exactly. For
instance, on a Pentium4-based workstation, using GCC and the Linux
system, the C program (Program 1.3) which uses double-precision compu-
tations, will return 5.960604 x 10%°, whereas its single-precision equivalent
will return 2.0317 x 10?° and its double-extended precision equivalent will
return —9.38724 x 107323, We still get totally wrong results, but at least, the
clear differences between them show that something weird is going on.

#include <stdio.h>
int main(void)
{
double a = 77617.0;
double b = 33096.0;
double b2,b4,b6,b8,a2,firstexpr,f;

b2 = bxb;
b4 = b2xb2;
b6 = b4xb2;
b8 = b4xb4;
a2 = axa;

firstexpr = 11xa2xb2-b6-121xb4-2;
f = 333.75%xb6 + a2 x firstexpr + 5.5%b8 + (a/(2.0xb));
printf("Double precision result: $ %1.17e \n",f);

Program 1.3: Rump’s example.

Chapter 2

Definitions and Basic Notions

S SAID IN THE INTRODUCTION, roughly speaking, a radix-/3 floating-point
number z is a number of the form

m'ﬁe7

where [is the radix of the floating-point system, m such that |m| < (3 is the
significand of =, and e is its exponent. And yet, portability, accuracy, and the
ability to prove interesting and useful properties as well as to design smart
algorithms require more rigorous definitions, and much care in the specifi-
cations. This is the first purpose of this chapter. The second one is to deal
with basic problems: rounding, exceptions, properties of real arithmetic that
become wrong in floating-point arithmetic, best choices for the radix, and
radix conversions.

2.1 Floating-Point Numbers

Let us now give a more formal definition of the floating-point numbers.
Although we try to be somewhat general, the definition is largely inspired
from the various IEEE standards for floating-point arithmetic (see Chapter 3).
Main definitions

A floating-point format is (partially)! characterized by four integers:

e aradix (or base) 8 > 2;

e a precision p > 2 (roughly speaking, p is the number of “significant
digits” of the representation);

' A full definition of a floating-point format also specifies the binary encoding of the signif-
icands and exponents. It also deals with special values: infinities, results of invalid operations,
etc.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_2, 13
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

14 Chapter 2. Definitions and Basic Notions

o two extremal exponents emin and emax such that emin < emax. In all
practical cases, epin < 0 < emax.

A finite floating-point number in such a format is a number for which
there exists at least one representation (M, e) such that

x =M .pe Pt (2.1)
where

e M is an integer of absolute value less than or equal to 5P — 1. It is called
the integral significand of the representation of z;

e ¢ is an integer such that ey,in < e < epax, called the exponent of the
representation of x.

The representation (1, e) of a floating-point number is not necessarily
unique. For instance, with # = 10 and p = 3, the number 17 can be repre-
sented either by 17 x 10° or by 170 x 10}, since both 17 and 170 are less than
BP = 1000. The set of these equivalent representations is called a cohort.

The number
ﬁe —p+1

from Equation (2.1) is called the quantum of the representation of x. We will
call the quantum exponent the number

g=e—p+1.

The notion of quantum is closely related to the notion of ulp (unit in the last
place); see Section 2.6.1.

Another way to express the same floating-point number z is by using
the triplet (s, m, e), so that

x=(-1)%-m-g°
where
e ¢ is the same as before;

e m = |M|- 7P is called the normal significand (or, more simply, the
significand of the representation). It has one digit before the radix point,
and at most p — 1 digits after (notice that 0 < m < (3); and

e s € {0, 1} is the sign of x.

The significand is also frequently (and slightly improperly) called the
mantissa in the literature.? According to Goldberg [148], the term “signifi-
cand” was coined by Forsythe and Moler in 1967 [136].

The mantissa of a non-negative number is the fractional part of its logarithm.

2.1. Floating-Point Numbers 15

Consider the following “toy system.” We assume radix 3 = 2, precision
p =4, émin = —7, and epax = +8. The number® 416,y = 1101000004 is a
floating-point number. It has one representation only, with integral signifi-
cand 1319 and exponent 8, since

416 = 13- 2874+,

The quantum of this representation is 2° = 32. Note that a representation
such as 26 - 27741 is excluded because 26 > 2P — 1 = 15. In the same toy
system, the number 4.25,9 = 17 - 272 is not a floating-point number, as it
cannot be exactly expressed as M - 3P with |M| < 2 — 1.

When z is a nonzero arbitrary real number (i.e., x is not necessarily rep-
resentable in a given floating-point format), we will denote infinitely precise
significand of x (in radix) the number

X

gllogs lal]”

where 3 Lo 1#1] s the largest integer power of 3 smaller than |z|.

Normalized representations, normal and subnormal numbers

As explained above, some floating-point numbers may have several repre-
sentations (M, e). Nevertheless, it is frequently desirable to require unique
representations. In order to have a unique representation, one may want to
normalize the finite nonzero floating-point numbers by choosing the represen-
tation for which the exponent is minimum (yet larger than or equal to eyin).
The obtained representation will be called a normalized representation. Requir-
ing normalized representations allows for easier expression of error bounds,
it somewhat simplifies the implementation, and it allows for a one-bit saving
in radix 2.* Two cases may occur.

e In general, such a representation satisfies 1 < |m| < (3, or, equivalently,
BP~1 < |M| < BP. In such a case, one says that the corresponding value
x is a normal number. When z is a normal floating-point number, its
infinitely precise significand is equal to its significand.

e Otherwise, one necessarily has e = ey, and the corresponding value
x is said to be a subnormal number (the term denormal number is often
used too). In that case, |m| < 1 or, equivalently, |[M| < P~ — 1. The
special case of zero will be dealt with later.

3We will frequently write “xxx- - - xx” to designate the number whose radix-b representa-
tion is xxx: - - xx. To avoid complicated notation, we will tend to omit b each time its value is
obvious from the context.

*We will see in Chapter 3 that the new IEEE 754-2008 standard requires normalized repre-
sentations in radix 2, but not in radix 10.

16 Chapter 2. Definitions and Basic Notions

With such a normalization, as the representation of a finite nonzero
number z is unique, the values M, ¢, m, and e only depend on the value of x.
We therefore call e the exponent of z, g its quantum exponent (¢ = e —p+1),
M its integer significand, and m its significand.

For instance, in radix-2 normalized floating-point arithmetic, with?
p = 24,emin = —126, and epnax = 127, the floating-point number f that is
nearest to 1/3 is a normal number. Its exponent is —2, and its integral signifi-
cand is 11184811. Therefore,

f=11184811 x 2727241 — (0.33333334326744079589843751

and the quantum of f is 272724*1 &~ 2.98 x 1078, while its quantum exponent
is —25.

In the same floating-point system, the number 3 x 27128 is a subnormal
number. Its exponent is ey, = —126, its quantum is 27149, and its integral
significand is

3 x 21197128 = 6291456.

In radix 2, the first digit of the significand of a normal number is a 1,
and the first digit of the significand of a subnormal number is a 0. If we have
a special encoding (in practice, in the exponent) that tells us if a number is
normal or subnormal, there is no need to store the first bit of its significand.
This leading bit convention, or implicit bit convention, or hidden bit convention is
frequently used.

Hence, in radix 2, the significand of a normal number always has the
form

1.m1m2m3 e Mp—1,

whereas the significand of a subnormal number always has the form
0.m1m2m3 cee mp_l.

In both cases, the digit sequence .mimoms---m,_; is called the trailing
significand of the number. It is also sometimes called the fraction.

Some “extremal” floating-point numbers are important and will be used
throughout this book:

o the smallest positive normal number is F°mi»;

e the largest finite floating-point number is

Q= (8- B77)- g

*Tt is the single-precision format of IEEE 754-1985, and the binary32 format of IEEE 754-2008.
See Chapter 3 for details.

2.1. Floating-Point Numbers 17

e and the smallest positive subnormal number is

o = ﬁeminfp‘Fl.

For instance, still using the format (8 = 2, p = 24, emin = —126, and
emax = +127) of the example given above, the smallest positive normal
number is

27126 1,175 x 10738;

the smallest positive subnormal number is
a=2""%1.401x 107%;
and the largest finite floating-point number is

Q= (2-2"%).2"7 ~ 3.403 x 10",

A note on subnormal numbers

Subnormal numbers have probably been the most controversial part of
IEEE 754-1985 [148, 207]. As stated by Schwarz et al. [371], they are the
most difficult type of numbers to implement in floating-point units. As a
consequence, they are sometimes implemented in software rather than in
hardware, which may result in huge execution times when such numbers
appear in a calculation.

One can of course define floating-point systems without subnormal
numbers. And yet, the availability of these numbers allows for what Kahan
calls gradual underflow: the loss of precision is slow instead of being abrupt.
For instance [205, 176], the availability of subnormal numbers implies the
following interesting property: if a # b, then the computed value of b — a
is necessarily nonzero.® This is illustrated by Figure 2.1. Gradual underflow
is also sometimes called graceful underflow. In 1984, Demmel [110] analyzed
various numerical programs, including Gaussian elimination, polynomial
evaluation, and eigenvalue calculation, and concluded that the availabil-
ity of gradual underflow significantly eases the writing of stable numerical
software.

Many properties presented in Chapter 4, such as Sterbenz’s lemma
(Lemma 2, page 122), are true only if subnormal numbers are available
(otherwise, we must add the condition if no underflow occurs then... in these
properties). Reference [370] presents techniques for implementing subnormal
numbers in hardware at a reasonable cost.

®Note that this property is also true if a and b are subnormal numbers.

18 Chapter 2. Definitions and Basic Notions

O Bemin /Belllill+1 6emin+2

O ﬁemin /gemilx+1 ﬂemin‘i‘z

Figure 2.1: The positive floating-point numbers in the toy system = 2 and p = 3.
Above: normal floating-point numbers only. In that set, b — a cannot be represented,
so that the computation of b — a in round-to-nearest mode (see Section 2.2) will
return 0. Below: the subnormal numbers are included in the set of floating-point
numbers.

A note on underflow

The word “underflow”can be ambiguous. For many naive users, it may mean
that the exact result of an arithmetic operation has an absolute value below
the smallest nonzero representable number (that is, when subnormal numbers
are available, o = Bemin=P+1). This is not the definition chosen in the context of
floating-point arithmetic. As a matter of fact, there are two slightly different
definitions. Unfortunately, the IEEE 754-1985 and 754-2008 standards did not
make a choice between them (see Chapter 3). As a consequence, for the very
same sequence of calculations, the underflow exception may be signaled on
one “conforming” platform, and not signaled on another one.

Definition 1 (Underflow before rounding). In radix-3 arithmetic, an arithmetic
operation or function underflows if the exact result of that operation or function is of
absolute value strictly less than 3¢min.

Definition 2 (Underflow after rounding). In radix-{3, precision-p arithmetic, an
arithmetic operation or function underflows if the result we would compute with
an unbounded exponent range and precision p would be nonzero and of absolute
value strictly less than 3.

Figure 2.2 illustrates these two definitions by pointing out (assuming
round-to-nearest—see Section 2.2—and radix 2) the tiny domain in which

2.1. Floating-Point Numbers 19

they lead to a different conclusion. For instance in radix-2, precision-p
arithmetic, as soon as 2epi, < —p — 2 (which holds in all practical cases),
sin(2¢min) should underflow according to Definition 1, and should not under-

flow according to Definition 2.

If we had unbounded exponents, Floating-point numbers
these would be FP numbers

2€min

b
4"

with unbounded exponents,
numbers in that domain

would round to 26min

with unbounded exponents,
numbers in that domain
would not round to 2¢min

Figure 2.2: In this radix-2 example, if the exact result is in the grey area, then there
is an underflow before rounding (Definition 1), and no underflow after rounding

(Definition 2).

One should not worry too much about this ambiguity, as the two defini-
tions disagree extremely rarely. What really matters is that when the returned
result is a subnormal number, an underflow is signaled. This is useful since
it warns the user that the arithmetic operation that returned that result might
be less accurate (in terms of relative error) than usual. Indeed, we will see
throughout this book that many algorithms and properties hold “provided
that no underflow occurs.”

Special floating-point data

Some data cannot be expressed as normal or subnormal numbers. An obvious
example is the number zero, which will require a special encoding. There are
also other examples that are not fully “numeric.”

e It is in general highly desirable to have a closed system so that any
machine operation can be well specified (without generating any
trap’), even if it is an invalid operation over the real numbers

7A trap is a transfer of control to a special handler routine.

20 Chapter 2. Definitions and Basic Notions

(e.g., v/—5 or 0/0). A special datum, called NaN (Not a Number) in IEEE
754-1985 and its successors, can be introduced for this purpose. Any
invalid operation will return a NaN.®

e Moreover, due to the limited exponent range, one needs to introduce
more special values. To cope with values whose magnitude is larger
than the maximum representable one, either an unsigned infinity (oco)
or two signed infinities (+o0o and —o0) can be added to the floating—
point system. If signed infinities are chosen, one may want signed
zeros (denoted +0 and —0) too, for symmetry. The IEEE standards for
floating-point arithmetic have signed zeros and infinities. As noticed
by Kahan [204], signed zeros also help greatly in dealing with branch
cuts of complex elementary functions. However, unless at least a third,
unsigned zero is introduced, this choice also yields an asymmetry for
the exact zero and the result of (+0) + (—0). As an example, the system
of the Texas Instruments pocket calculators has 3 zeros and 3 infinities:
positive, negative, and with indeterminate sign.’

Konrad Zuse’s Z3 computer, built in 1941, already had mechanisms
for dealing with floating-point exceptions [346]. The current choices will be
detailed in Chapter 3.

2.2 Rounding

2.21 Rounding modes

In general, the result of an operation (or function) on floating-point num-
bers is not exactly representable in the floating-point system being used, so
it has to be rounded. In the first floating-point systems, the way results were
rounded was not always fully specified. One of the most interesting ideas
brought out by IEEE 754-1985 is the concept of rounding mode: how a numer-
ical value is rounded to a finite (o1, possibly, infinite) floating-point number
is specified by a rounding mode (or rounding direction attribute), that defines a
rounding function o. For example, when computing a + b, where a and b are
floating-point numbers, the returned result is o(a + b). One can define many
possible rounding modes. For instance, the four rounding modes that appear
in the IEEE 754-2008 standard are:

e round toward —oo: RD(x) is the largest floating-point number (possibly
—00) less than or equal to z;

e round toward +oo: RU(x) is the smallest floating-point number (possi-
bly +o00) greater than or equal to z;

8The IEEE 754-1985 standard actually defines two kinds of NaN: quiet and signaling NaNs.
See Section 3.1.6 page 69 for an explanation.
“http:/ /tigee.ticalc.org/doc/timath.html

2.2. Rounding 21

e round toward zero: RZ(x) is the closest floating-point number to « that
is no greater in magnitude than z (it is equal to RD(z) if > 0, and to
RU(z) if z < 0);

e round to nearest: RN(z) is the floating-point number that is the closest
to x. A tie-breaking rule must be chosen when z falls exactly halfway
between two consecutive floating-point numbers. A frequently chosen
tie-breaking rule is called round to nearest even: x is rounded to the only
one of these two consecutive floating-point numbers whose integral sig-
nificand is even. This is the default mode in the IEEE 754-2008 Standard
(see Chapter 3). The IEEE 754-2008 Standard also defines another tie-
breaking rule: called round ties to away (see Section 3.4.6). In general,
properties one might expect from a tie-breaking rule are sign symme-
try!® RN(—z) = —RN(z), lack of statistical bias, ease of implementa-
tion, and reproducibility.

Figure 2.3 illustrates these four rounding modes.

RN(z)
RZ(z) RZ(y) RN(y)
RD(z) RU(z) RD(y) RU(y)

Figure 2.3: The four rounding modes. Here we assume that x and y are positive
numbers.

When the exact result of a function is rounded according to a given
rounding mode (as if the result were computed with infinite precision and
unlimited range, then rounded), one says that the function is correctly rounded.
The term exactly rounded is sometimes used [148].

In radix 2 and precision p, how a positive real value x, whose infinitely
precise significand is 1.m;mams . . ., is rounded can be expressed as a function
of the bit round = m,, (round bit) and the bit sticky = my,11Vmy2 V... (sticky
bit), as summarized in Table 2.1 (see Chapter 8).

In the following, we will call a rounding breakpoint a value where the
rounding function changes. In round-to-nearest mode, the rounding break-
points are the exact middles of consecutive floating-point numbers. In the

!0This is the only property required by the LIA-2 Standard, see Section 3.7.1, page 109.

22 Chapter 2. Definitions and Basic Notions

round / sticky || RD | RU | RN
0/0 - -] -
0/1 - |+ | -
1/0 - |+ | =/+
1/1 - | + +

Table 2.1: Rounding a radix-2 infinitely precise significand, depending on the
“round” and “sticky” bits. Let o € {RN,RD,RU} be the rounding mode we
wish to implement. A “—" in the table means that the significand of o(x) is
1.mymams ... my_1, i.e., the truncated exact significand. A “+"” in the table means
that one needs to add 27PT to the truncated significand (possibly leading to an expo-
nent change if all the m;’s up to my,_y are 1). The “— /4" corresponds to the halfway
cases for the round-to-nearest (RN) mode (the rounded result depends on the chosen
convention).

other rounding modes, called directed rounding modes, they are the floating-
point numbers themselves.

Returning a correctly rounded result is fairly easily done for the
arithmetic functions (addition/subtraction, multiplication, division) and the
square root, as Chapters 8, 9 and 10 will show. This is why the IEEE
754-1985 standard for floating-point arithmetic requires that these functions
be correctly rounded (see Chapter 3). And yet, it may be extremely difficult
for some functions.!! In such a case, if for any exact result y, one always
returns either RD(y) or RU(y), one says that the returned value is a faithful
result and that the arithmetic is faithful. Beware: sometimes, this is called a
“faithful rounding” in the literature, but this is not a rounding mode as defined
above, since the obtained result is not a fully specified function of the input
value.

2.2.2 Useful properties

As shown later (especially in Chapters 4, 5, and 6), correct rounding is useful
to design and prove algorithms and to find tight and certified error bounds.

An important and helpful property is that for any of the four rounding
modes presented above, the rounding function o is a nondecreasing function;
ie, if z < y, then o(x) < o(y). Moreover, if y is a floating-point number,
then o(y) = y, which means that when the exact result of a correctly rounded
function is a floating-point number, we get that result exactly.

Also, if the rounding mode is symmetric (i.e., it is RZ or RN with a sym-
metrical choice in case of a tie), then a correctly rounded implementation

1f the exact value of the function is very close to a rounding breakpoint, the function
must be approximated with great accuracy to make it possible to decide which value must be
returned. This problem, called the Table Maker’s Dilemma, is addressed in Chapter 12.

2.2. Rounding 23

preserves the symmetries of a function. With the other rounding modes,
properties such as
RU(a +b) = —RD(—a —b)

or
RD(a x b) = —RU((—a) x b)

can sometimes be used for saving a change of rounding mode if it is a com-
plicated or costly operation.

Finally, we note that in the case of tiny or huge values, the rounding
modes of the IEEE standards behave as shown by the following property.
This property is useful in particular when optimizing the implementation of
correctly rounded arithmetic operators (see Chapters 8, 9, and 10).

Property 1. With a = [°min=PT! (smallest positive subnormal number) and
Q = (8- pYP) - pemax (largest finite floating-point number), one has the following
values when rounding the real x:

+0 if 0<z<a/2

* RN@) = {+oo if x> (- B77/2) - o

+0 if 0<z<aq
° RD(J:) = {+oo Z.f X 2 /Bemax-‘rl;
o if 0<z<a,
+oo if x>

e RU(z) = {

2.2.3 Relative error due to rounding

In the following, we call the normal range the set of the real numbers of abso-
lute value between mi» and Q = (3 — 317P) - 3°max, and the subnormal range
the set of the numbers less than 3°»i». When approximating a nonzero real
number z by o(z) (where o is the active rounding mode), a relative error

x — o(x)

e(x) = .

happens. That relative error is plotted in Figure 2.4 in a simple case. When
o(z) = = = 0, we consider that the relative error is 0.
If x is in the normal range, the relative error ¢(z) is less than or equal to

]. 1—p
50

in round-to-nearest mode, and less than

prr

24 Chapter 2. Definitions and Basic Notions

Figure 2.4: Relative error |z —RN(z)|/|x| that occurs when representing a real num-
ber x in the normal range by its nearest floating-point approximation RN(zx), in the
toy floating-point format 3 = 2,p = 3.

in the “directed” rounding modes. If z is in the subnormal range (thus,
assuming subnormal numbers are available), the relative error can become
very large (it can be close to 1). In that case, we have a bound on the absolute
error due to rounding:

1
|x _ RN(:E)| S 5ﬁemin*p“l’l
in round-to nearest mode, and
2 of@)] < gomnPH

if o is one of the directed rounding modes. More generally, by combining
these relative and absolute error bounds, we find that if z is the result of the
correctly rounded operation aTb (that is, if 2 = o(aTb)), and if no overflow
occurs, then

z=(aTb)(1+¢€)+¢,
with
e || < 1p'Pand |¢| < 1Bwin~P*! in round-to-nearest mode, and
e |e| < 7P and |¢'| < gemin~PHL in directed rounding modes.
Moreover, € and €' cannot both be nonzero [205]. One should notice that

e if 2 is in the normal range (i.e., if no underflow occurred) then ¢ = 0;

2.3. Exceptions 25

e if 2 is in the subnormal range, then ¢ = 0. Moreover, in that case, if the
arithmetic operation being performed is addition or subtraction (T is +
or —), then we will see (Chapter 4, Theorem 3, page 124) that the result
is exact, so that z = aTbh (i.e., € = 0).

The bound on € (namely 33'~7 of 37?7, depending on the rounding
mode) is frequently called the unit roundoff (see Definition 6). The bounds
given here on the errors due to rounding will be used in particular in
Chapter 6.

2.3 Exceptions

In IEEE 754-1985 arithmetic (but also in other standards), an exception can be
signaled along with the result of an operation. This can take the form of a
status flag (which must be “sticky,” so that the user does not need to check
it immediately, but after some sequence of operations, for instance at the end
of a function) and/or some trap mechanism.

Invalid: This exception is signaled when an input is invalid for the function.
The result is a NaN (when supported). Examples: (+00) — (+0), 0/0,
v —1.

DivideByZero, a.k.a. infinitary (in the LIA-2 standard): This exception is
signaled when an exact infinite result is defined for a function on finite
inputs, e.g., at a pole. Examples: 1/0, log(+0).

Overflow: This exception is signaled when the rounded result with an
unbounded exponent range would have an exponent larger than eax.

Underflow: This exception is signaled when a tiny (less than §°»i») nonzero
result is detected. This can be according to Definition 1 (i.e., before
rounding), or according to Definition 2 (i.e., after rounding).

Underflow handling can be different whether the exact result is exactly
representable or not, which makes sense: the major interest in signaling
the underflow exception is to warn the user that the obtained result
might not be very accurate (in terms of relative error). Of course, this
is not the case when the obtained result is exact. This is why, in the
IEEE 754-2008 standard, if the result of an operation is exact, then the
underflow flag is not raised (see Chapter 3).

Inexact: This exception is signaled when the exact result y is not exactly
representable (o(y) # y, y not being a NaN).

Unlike the IEEE standards, the LIA-2 standard [191] does not regard an
inexact value as an exception. It also defines an additional exception: abso-
lute_precision_underflow, which is used when the angle argument of a trigono-
metric function is larger than some threshold (which can be changed by the

26 Chapter 2. Definitions and Basic Notions

implementation). The reason for that choice is that even if a large input argu-
ment to a sine, cosine, or tangent is accurate to 1/2 ulp (see Section 2.6.1 for
the definition of ulp), the result could be very inaccurate or even meaning-
less.!1? Moreover, the underflow exception is not signaled in some particular
cases where such an exception would not really be useful, e.g., for the sine of
a subnormal number.

In general, the values of enin and enax are chosen to be almost symmet-
rical: emin & —emax. One of the reasons for that is that we expect an accept-
able behavior of the reciprocal function 1/z. The minimum positive normal
number is 3°in. Its reciprocal is 5~ “»i», which is below the maximum nor-
mal number threshold as long as —emin < €max, i-€., €min > —€max. S0, if one
chooses emin = —€max OF €min = 1 — emax (Which is the choice in IEEE 754-
2008, probably for parity reasons: the number of different exponents that can
be represented in a given binary integer format is an even number, whereas
if epin Were exactly equal to —emax, we would have an odd number of expo-
nents), one has the following properties.

e If x is a normal number, 1/x never produces an overflow.

e If x is a finite floating-point number, 1/2 can underflow, but the
rounded result is not zero (for common values of p), as soon as sub-
normal numbers are available.

As explained, by Hauser [176], among others, it is often easier and
cheaper to deal with an exception after the fact than to prevent it from
occurring in the first place. When exception handling is not available, avoid-
ing exceptional cases in programs requires artful numerical tricks that make
programs slower and much less clear. Hauser gives the example of the calcu-
lation of the norm

where the z;’s are floating-point numbers. Consider computing N using a
straightforward algorithm (Algorithm 2.1).

Algorithm 2.1 Straightforward calculation of 1/ Z]\L L z? [176].

S 0.0
fori=1to N do
S — RN(S + RN(I’Z‘ X xz))
end for
return RN(V/S)

12This is a debatable choice, since in some cases, the input argument might well be exact.

2.4. Lost or Preserved Properties of the Arithmetic on the Real Numbers 27

Even when the exact value of N lies in the normal range of the
floating-point format being used, Algorithm 2.1 may fail, due to underflow
or overflow when evaluating the square of one or several of the z;’s, or when
evaluating their sum. There are many solutions for avoiding that. We may for
instance emulate an extended range arithmetic or scale the operands (i.e., first
examine the input operands, then multiply them by an adequate factor K, so
that Algorithm 2.1 can be used with the scaled operands'® without underflow
or overflow, and finally divide the obtained result by K).

These solutions would lead to programs that would be reliable, yet the
extended range arithmetic as well as the scaling would significantly slow
down the calculations. This is unfortunate since, in the vast majority of
practical cases, Algorithm 2.1 would have behaved in a satisfactory way. A
possibly better solution, when exception handling is available, is to first use
Algorithm 2.1, and then to resort to an extended range arithmetic or a scaling
technique only when overflows or underflows occurred during that prelimi-
nary computation.

2.4 Lost or Preserved Properties of the Arithmetic on
the Real Numbers

The arithmetic on real numbers has several well-known properties. Among
them:

e addition and multiplication are commutative operations: a +b = b+ a
and a x b =0 x aforall ¢ and b;

e addition and multiplication are associative operations: a + (b + ¢) =
(a+b)+canda x (bxc)=(axb)xcforalla,b, and ¢;

e distributivity applies:a x (b+c¢) =a xb+a x c.

When the arithmetic operations are correctly rounded, in any of the four
rounding modes presented in Section 2.2, floating-point addition and mul-
tiplication remain commutative:!* if o is the active rounding mode then, of
course, o(a + b) = o(b+ a) and o(a x b) = o(b x a) for all floating-point
numbers a and b. However, associativity and distributivity are lost. More pre-
cisely, concerning associativity, the following can occur.

BNotice that Hammarling’s algorithm for routine xXNRM2 in LAPACK goes only once
through the z;’s but nevertheless avoids overflow. This is done by computing the scaling
factor K on the fly while computing the norm.

“However, in a programming language, swapping the terms may yield a different result in
practice. This can be noticed in the expressiona * b + ¢ * d when a Fused multiply-add is
used; see, e.g., Section 7.2.3.

28

Chapter 2. Definitions and Basic Notions

e In some extreme cases, o(a + o(b + ¢)) can be drastically different from

o(o(a+b)+c). A simple example, in radix-(3, precision-p arithmetic with
round-to-nearest mode is a = P!, b = —3PT!, and ¢ = 1, since

RN(a +RN(b + ¢)) = RN(8PF! — gP*) = 0,

whereas
RN(RN(a+0b) +¢) =RN(0+1) =1.

Many studies have been devoted to the finding of good ways of
reordering the operands when one wants to evaluate the sum of sev-
eral floating-point numbers. See Chapter 6 for more details.

If no overflow or underflow occurs, P, = o(o(a x b) x ¢) can be slightly
different from P, = o(axo(bxc)). More precisely, in radix-/3, precision-p
arithmetic with round-to-nearest mode:

RN(axb)=axbx (1+e€),
with [e;]| < £377, so that
Py =RN(RN(axb) xc)=axbxex (1+¢€)(1+e2),
with |ez| < 2377, Similarly,
P, =RN(axRN(bxc))=axbxecx (1+e€3)(1+eyq),

with |es], |es| < 23177, Therefore,

2 2
1—4ipl-»p 14 ipl-p
%ﬁ SES % 7
14+ 5ﬁl—p Py 1— §ﬂl—;ﬂ

which gives

h_ I+e
P2 ’
with
e <287 +2 (87)° +3/2 (8"7)° +---. 2.2)

One should notice that this bound is rather tight. For instance, in the
binary32 arithmetic of the IEEE 754-2008 standard (3 = 2, p = 24,
emin = —126, emax = 127; see Section 3.4, page 79), the bound on € given
by (2.2) is 4.00000048 x 2724, whereas, if a = 8622645, b = 16404663, and

c = 8647279, then
P1

—24
5—3.86--- x 275,

In case of overflow or underflow, o(a x o(b x ¢)) can be drastically differ-

ent from o(o(a x b) x ¢). For instance, in binary64 arithmetic (8 = 2,

p = 53, emin = —1022, epax = 1023; see Section 3.4 page 79), with

a="b=2"and c = 27192 RN(RN(a x b) x c) will be +00, whereas

RN(a x RN(b x ¢)) will be 16.

2.5. Note on the Choice of the Radix 29

2.5 Note on the Choice of the Radix

2.5.1 Representation errors

As stated in Chapter 1, various different radices were chosen in the early
days of electronic computing, and several studies [56, 44, 76, 232] have been
devoted to the best radix choice, in terms of maximal or average representa-
tion error. These studies have shown that radix 2 with the implicit leading bit
convention gives better worst-case or average accuracy than all other radices.

Cody [76] studied static and dynamic characteristics of various floating-
point formats. Let us present his explanations in what is called the static case.
Assume that floating-point numbers are represented in radix 3, where 3 is a
power of 2, and that their significands and exponents are stored on w, and w,
bits, respectively. As explained in Section 2.2.3, when a nonzero number z in
the normal range is represented by the nearest floating-point number RN(x),
a relative representation error

x — RN(x)

x

is committed. We want to evaluate the maximum and average values of this
relative error, for all x between the smallest positive normal floating-point
number 3%min and the largest one (2 = gémax . (3 — 317P).

First, notice that for any given integer k, if 5"z remains between 3°min
and ©, (8*r — RN(B*z))/(8*) is equal to (x — RN(x))/x, so that it suffices
to compute the maximum and average values for = between two consecutive
powers of 3, say, 1/ and 1.

Second, for evaluating average values, one must choose a probability
distribution for the significands of floating-point numbers. For various rea-
sons [161, 222], the most sensible choice is the logarithmic distribution, also
called Benford’s law [24]:

1
P(s) = S’

We easily get the following results.

e If 3 > 2, orif § = 2 and we do not use the hidden bit convention (that
is, the first “1” of the significand is actually stored), then the maximum
relative representation error is

MRRE(w,, §) = 27713,

e If 3 = 2 and we use the hidden bit convention, we have

MRRE (w;, 2) = 27 %1,

30 Chapter 2. Definitions and Basic Notions

e If 3 > 2, orif 5 = 2 and we do not use the hidden bit convention, then
the average relative representation error is

! 1 \2%ds pB-1
ARRE(ws, 3) =~ = 27,
(ws. 8) /1/5 (slnﬂ) 4s 4In 3

e If 3 = 2 and we use the hidden bit convention, that value is halved and
we get

ARRE(w,, 2) ~ 9 ws

8ln2

These values seem much in favor of small radices, and yet, we must take
into account the following. To achieve the same dynamic range (i.e., to have
a similar order of magnitude of the extremal values) as in binary, in radix
2%, we need around log, (k) fewer bits for representing the exponent. These
saved bits can, however, be used for the significands. Hence, for a similar
total number of bits (sign, exponent, and significand) for the representation
of floating-point numbers, a fair comparison between radices 2, 4, and 16
is obtained by taking a value of w, larger by one unit for radix 4, and two
units for radix 16, so that we compare number systems with similar dynamic
ranges, and the same value of w, + we.

Table 2.2 gives some values of MRRE and ARRE for various formats.
From that table, one can infer that radix 2 with implicit bit convention is the
best choice from the point of view of the relative representation error. Since
radix-2 floating-point arithmetic is also the easiest to implement using digital
logic, this explains why it is predominant on current systems.

2.5.2 A case for radix 10

Representation error, however, is not the only issue to consider. A strong
argument in favor of radix 10 is that we humans are working, reading, and
writing in that radix. The following section will show how to implement the
best possible conversions between radices 2 and 10, but such conversions
may sometimes entail errors that, in some applications, are unacceptable. A
typical example is banking. An interest rate is written on a contract in dec-
imal, and the computer at the bank is legally mandated to conduct interest
computations using the exact decimal value of this rate, not a binary approx-
imation to it.

As another example, when some European countries abandoned their
local currencies in favor of the euro, the conversion rate was defined by law
as a decimal number (e.g., 1 euro = 6.55957 French francs), and the way this
conversion had to be implemented was also defined by law. Using any other
conversion value, such as 6.559569835662841796875, the binary32 number
nearest to the legal value, was simply illegal.

2.5. Note on the Choice of the Radix 31
Format MRRE ARRE
=2, w, = 64
b s 5.421010862 x 10720 | 1.955216373 x 1020
first bit stored
=2, w, = 64
b ° 2.710505431 x 10720 | 9.776081860 x 102!
first bit hidden
B=4,ws =65 5.421010862 x 10720 | 1.466412280 x 1020
B =8, w, =65 1.084202172 x 10719 | 2.281085767 x 1020
B =8,w, =66 5.421010862 x 10720 | 1.140542884 x 1020
B=16,ws =66 || 1.084202172 x 10~19 | 1.833015349 x 10~2°

Table 2.2: ARRE and MRRE of various formats of comparable dynamic range. The
cases 3 = 2,4, and 16 can be directly compared. In the case 3 = 8, one cannot get
the same dynamic range exactly.

Colishaw [90] gives other examples and also shows how pervasive
decimal computing is in business applications.

As the current technology is fundamentally binary, radix 10 will
intrinsically be less efficient than radix 2, and indeed even hardware imple-
mentations of decimal floating-point are much slower than their binary coun-
terparts (see Table 3.26, page 108 for an example).

However, this is at least partially compensated by other specificities of
the financial application domain. In particular, in accounting applications,
the floating point in most of the additions and subtractions is actually fixed.
Indeed, one adds cents to cents. The good news is that this common case of
addition is much easier to implement than the general case:

o first, the significands need not be shifted as in the general case [90] (see
Chapters 8 and 9);

e second, such fixed-point additions and subtractions will be exact
(entailing no rounding error).

Rounding does occur in financial applications; for instance, when
applying a sales tax or an interest rate. However, from an accounting point of
view, it is best managed in such a way that one eventually adds only numbers
which have already been rounded to the nearest cent.

The reader should have in mind these peculiarities when reading about
decimal formats and operations in this book. Most of the intricacies of the
decimal part of the IEEE 754-2008 floating-point standard are directly moti-
vated by the needs of accounting applications.

32 Chapter 2. Definitions and Basic Notions

2.6 Tools for Manipulating Floating-Point Errors

2.6.1 The ulp function

In numerical analysis, errors are very often expressed in terms of relative
errors. And yet, when we want to express the errors of “nearly atomic” func-
tions (arithmetic operations, elementary functions, small polynomials, sums,
and dots products, etc.), it is more adequate (and frequently more accurate!)
to express errors in terms of what we would intuitively define as the “weight
of the last bit of the significand.” Let us define that notion more precisely. The
term ulp (acronym for unit in the last place) was coined by William Kahan in
1960. The original definition was as follows [209]:

ulp(x) is the gap between the two floating-point numbers nearest
to x, even if x is one of them.

When z is a floating-point number (except, possibly, when x is a power of the
radix; see below), we would like ulp(x) to be equal to the quantum of z. And
yet, it is frequently useful to define that function for other numbers too.

Several slightly different definitions of ulp(z) appear in the litera-
ture [148, 168, 270, 191, 320, 209]. They all coincide as soon as x is not
extremely close to a power of the radix. They have properties that differ to
a small degree. A good knowledge of these properties may be important, for
instance, for anyone who wants to prove sure yet tight bounds on the errors
of atomic computations. For instance, we frequently hear or read that cor-
rectly rounding to nearest is equivalent to having an error less than 0.5 ulp.
This might be true, depending on the radix, on what we define as an ulp
(especially near the powers of the radix), and depending on whether we con-
sider function ulp to be taken at the real value being approximated, or at the
floating-point value that approximates it.

Consider first the following definition of the ulp function, due to John
Harrison [168, 171].

Definition 3 (Harrison). ulp(z) is the distance between the closest straddling
floating-point numbers a and b (i.e., those with a < x < band a # b), assum-
ing that the exponent range is not upper-bounded.

Figure 2.5 shows the values of Harrison’s ulp near 1. One can easily find
that, in radix (floating-point arithmetic, if x is a floating-point number then
Harrison’s ulp of x and the quantum of = have the same value, except if z is an
integer power of 3. Goldberg [148] gives another definition of function ulp.

Definition 4 (Goldberg). If the FP number dy.didadsdy . . . dp—1 3 is used to rep-
resent x, it is in error by
Xz

units in the last place.

2.6. Tools for Manipulating Floating-Point Errors 33

ulp =277 ulp = 2P+

Figure 2.5: The values of ulp(x) near 1, assuming a binary floating-point system
with precision p, according to Harrison'’s definition.

— 9P
ulp =2 ulp = 277*!

Figure 2.6: The values of ulp(z) near 1, assuming a binary floating-point system
with precision p, according to Definition 5 (Goldberg’s definition extended to the
reals). Notice that this definition and Harrison’s definition only differ when x is a
power of the radix.

This definition does not define ulp as a function of z, since the value
depends on which floating-point number approximates x. However, it clearly
defines a function ulp(X), for a floating-point number X € [3¢,3°!), as
B¢~P+1 (or, more precisely, as pmax(e.emin)=P+1 if we want to handle the sub-
normal numbers properly). Hence, a natural generalization to real numbers
is the following, which is equivalent to the one given by Cornea, Golliver,
and Markstein!® [86, 270].

Definition 5 (Goldberg’s definition, extended to reals). If z € [3¢, 3T!), then
ulp(x) — ﬁmax(e,emin)—p—‘rl‘

When z is a floating-point number, this definition coincides with
the quantum of x. Figure 2.6 shows the values of ulp near 1 according to
Definition 5.

Let us now examine some properties of these definitions (see [292] for
comments and some proofs). In the following, « is a real number and X is a
radix-3, precision-p, floating-point number, HarrisonUlp(z) is ulp(z) accord-
ing to Harrison’s definition, and GenGoldbergUlp(z) is ulp(x) according to

15They gave it in radix 2, but generalization to radix 3 is straightforward.

34 Chapter 2. Definitions and Basic Notions

Goldberg’s definition extended to the reals. We assume that |z| is less than
the largest representable number, Q = (3 — g17P) . gémax,

Property 2. In radix 2,
1 .
| X —z| < 5 HarrisonUlp(z) = X = RN(z).

It is important to notice that Property 2 is not true in radices greater than
or equal to 3. Figure 2.7 gives a counterexample in radix 3.

X=1"=1-37 14372

v 1t =1437rH

Figure 2.7: This example shows that Property 2 is not true in radix 3. Here, x satisfies
l<z<1+33Pand X =1 = 1— 377 (if v is a floating-point number, v~
denotes its predecessor, namely, the largest floating-point number less than v, and vt
denotes its successor). We have HarrisonUlp(z) = 3P, and |z — X| < 3771 /2,
so that |z — X| < § HarrisonUlp(z). However, X # RN(x).

If, instead of considering ulps of the “exact” value z, we consider ulps
of the floating-point value X, we have a property that is very similar to Prop-

erty 2, with the interesting difference that now it holds for any value of the
radix.

Property 3. For any value of the radix (3,
1
| X —z| < 5 HarrisonUlp(X) = X = RN(x).

Now, still with Harrison’s definition, we might be interested in knowing
if the converse property holds; that is, if having X = RN(z) implies that X is
within § HarrisonUlp(z) or 1 HarrisonUlp(X). For the first case, we have the
following.

2.6. Tools for Manipulating Floating-Point Errors 35
Property 4. For any radix,
1
X =RN(z)=|X —z| < iHarrisonUlp(m).

On the other hand, there is no similar property for the second case:
X = RN(z) does not imply | X —z| < 1 HarrisonUlp(X). For example, assume
radix 2. Any number z strictly between 1 4+ 277! and 1 + 277 will round to
1, but it will be at a distance from 1 larger than 1 HarrisonUlp(1) = 2771

Concerning Goldberg’s definition extended to the reals, we have very
similar properties.

Property 5. In radix 2,
1
|1 X —z| < 3 GenGoldbergUlp(z) = X = RN(z).

Property 5 is not true in higher radices: The example of Figure 2.7,
designed as a counterexample to Property 2, is also a counterexample to
Property 5.

Also, Property 5 does not hold if we replace GenGoldbergUlp(z) by
GenGoldbergUlp(X). Indeed, |X — z| < 3 GenGoldbergUlp(X) does not
imply X = RN(x) (it suffices to consider z very slightly above 1~ =1 — 577,
the floating-point predecessor of 1: z will be within 3 GenGoldbergUlp(1)
from 1, and yet RN(z) = 17). In a way, this kind of counterexample is the
only one; see Property 6.

Property 6. For any radix, if X is not an integer power of (3,
1
|1 X —z| < 3 GenGoldbergUlp(X) = X = RN(z).

We also have the following.
Property 7. For any radix,
1
X =RN(z) = |X —z| < 3 GenGoldbergUlp(z).
Property 8. For any radix,
1
X =RN(z) = |X —z| < 5 GenGoldbergUlp(X).
After having considered properties linked to the round-to-nearest mode,
we can try to consider properties linked to the directed rounding modes
(i.e., rounding toward £oo and rounding toward zero). One can show the

following properties (still assuming |z| is less than the largest representable
number).

36 Chapter 2. Definitions and Basic Notions

Property 9. For any value of the radix 3,
X € {RD(z),RU(z)} = |X — z| < HarrisonUlp(x).

Note that the converse is not true. There are values X and « for which
| X — 2| < HarrisonUlp(z), and X is not in {RD(xz), RU(z)}. It suffices to con-
sider the case x slightly above 1 and X equal to 1~ = 1 — 377, the floating-
point predecessor of 1.

Property 10. For any value of the radix (3,
|X — 2| < HarrisonUlp(X) = X € {RD(z), RU(z)}.

But the converse is not true: X € {RD(x),RU(z)} does not imply
| X — x| < HarrisonUlp(X).

Property 11.
X € {RD(z),RU(2)} = | X — z| < GenGoldbergUlp(x).

The converse is not true: | X — z| < GenGoldbergUlp(z) does not imply
X € {RD(z),RU(z)}. It suffices to consider X = 1~ = 1 — 77, the floating-
point predecessor of 1, and z slightly above 1.

Property 12.
X € {RD(z),RU(x)} = | X — z| < GenGoldbergUlp(X).

Again, the converse is not true: | X — z| < GenGoldbergUlp(X') does not
imply X € {RD(z),RU(z)}.

After this examination of the properties of these two definitions of the
ulp function, which one is to be chosen? A good definition of function ulp:

e should (of course) agree with the “intuitive” notion when z is not in an
“ambiguous area” (i.e., x is not very near a power of the radix);

e should be useful: after all, for a binary format with precision p, defining
ulp(1) as 277 (i.e, 1 — 17) or 277! (ie., 1T — 1) are equally legitimate
from a theoretical point of view. What matters is which choice is helpful
(i.e., which choice will preserve in “ambiguous areas” properties that
are true when we are far enough from them).

From that point of view, it is still not very easy to decide between Defi-
nitions 3 and 5. Both preserve interesting properties, yet also set some traps
(e.g., the fact that X = RN(z) does not imply |X — z| < HarrisonUlp(X),
or the fact that |[X — 2| < GenGoldbergUlp(z) does not imply X €
{RD(z),RU(x)}). These traps sometimes make the task of proving proper-
ties of arithmetic algorithms a difficult job when some operand can be very
near a power of the radix.

In the remainder of this book, ulp(z) will be GenGoldbergUlp(z). That is,
we will follow Definition 5, not because it is the best (as we have seen, it is
difficult to tell which one is the best), but because it is the most used.

2.6. Tools for Manipulating Floating-Point Errors 37

2.6.2 Errors in ulps and relative errors

It is important to be able to establish links between errors expressed in ulps,
and relative errors. Inequalities 2.3 and 2.5 exhibit such links when X is a
normal floating-point number and z is a real number of the same sign.

Converting from errors in ulps to relative errors

First, let us convert from errors in ulps to relative errors. Assume that
|z — X| = aulp(x). Assuming no underflow, we easily get

z—X

' < ax pgPth (2.3)

Converting from relative errors to errors in ulps

Now, let us convert from relative errors to errors in ulps. A relative error

S E . 24)
x
implies an error in ulps bounded by
& — X| < e, ulp(a). (2.5)

Hence, one can easily switch from an error in ulps to a relative error,
and conversely. This is convenient, since for the correctly rounded arithmetic
operations and functions, we have an error in ulps, whereas it is generally
much easier to deal with relative errors for performing error calculations.

2.6.3 An example: iterated products

A typical example is iterated multiplications. Assume that we compute the
product of the floating-point numbers z, x3, ..., =, in binary, precision-p,
rounded to nearest floating-point arithmetic. That is, we perform

P «— x
fori =2tondo
P — RN(P x z;)
end for
return P

Each multiplication is correctly rounded, leading to an error less than or equal
to 0.5 ulp. And yet, reasoning in terms of ulps will lead to calculations that are

38 Chapter 2. Definitions and Basic Notions

bound on | X — z|

} 1 T T xT
1
3 1 2 4

Figure 2.8: Conversion from ulps to relative errors. Assume we know that an oper-
ation is correctly rounded: the computed result X is within 0.5 ulp from the exact
result x. This implies that |x — X| is below the bold (noncontinuous) curve. Con-
verted in terms of relative errors, this information becomes X = x(1 + €), with
le| <277, ie., |x — X| is below the dashed curve. This last property is less accurate.

much too complex. Whereas, if we assume that no underflows occur, a simple
reasoning with relative errors shows that the final value of P satisfies

P:$1$2:133...{L‘n X K,

where
n—1

(1-27)"'<K<(1+277)"",

which means that the relative error of the result is upper-bounded by
(14+277)"" -1,

which is close to (n — 1) x 277 as long as n < 2P.

And yet, one must keep in mind that each time we switch from one form
of error to the other one, we lose some information. For instance, a correctly
rounded to nearest operation returns a result X within 0.5 ulp from the exact
value z. This implies a relative error bounded by 277. Figure 2.8 shows, in
the interval [—1/2, 8], the bound on distance between = and X one can infer
from the information in terms of ulps and the information in terms of rela-
tive errors. We immediately see that we have lost some information in the
conversion.

When converting from relative errors to errors in ulps, some information
is lost too. This is illustrated by Figure 2.9.

2.6. Tools for Manipulating Floating-Point Errors 39

bound on | X — z|

— | |
1
3 1 2 4

Figure 2.9: Conversion from relative errors to ulps. Assume we have a bound on the
relative error between an exact value x and a floating-point approximation X (dashed
curve). From it, we can infer an error in ulps that implies that X is below the bold
curve. This last property is less accurate.

2.6.4 Unit roundoff

A useful notion, closely related to the notion of ulp, is the notion of unit round-
off, also sometimes called machine epsilon:

Definition 6 (Unit roundoff). The unit roundoff u of a radix-{3, precision-p,
floating-point system is defined as

1 1 .
—ulp(1) = =p'"? inround-to-nearest mode,
ulp(1) = P indirected rounding modes.

That notion is widespread in the analysis of numerical algorithms. See
for instance the excellent book by Higham [182]. For any arithmetic operation
T € {+, —, x,+}, for any rounding mode o € {RN,RD, RU, RZ}, and for all
floating-point numbers «a, b such that a7'b does not underflow or overflow, we
have

o(aTb) = (aTh)(1+ €1) = (aTh)/(1 + €2),

with |e1], |e2] < u. This property eases the computation of error bounds [182,
266]. See Section 2.2.3, and Chapter 6.

40 Chapter 2. Definitions and Basic Notions

2.7 Note on Radix Conversion

2.7.1 Conditions on the formats

When the radix of the floating-point system is 2,'® conversions from and to
radix 10 must be provided, since humans read and write numbers in deci-
mal. Early works on radix conversion were done by Goldberg [149] and by
Matula [272]. Accurate algorithms for input and output radix conversion can
be found in the literature [62, 72, 73, 349, 386], and are now implemented in
most compilers. It is important to understand that radix conversion is not a
fully innocuous operation.

e Some numbers that have a finite radix-10 representation do not have
a finite binary one. A simple example is 0.1;p = 1/10, whose binary
representation is

0.0001100110011001100110011001100110011001100110011001100110 - - - .

e Although all numbers with a finite radix-2 representation also have a
finite decimal representation,!” the number of digits of that decimal rep-
resentation might sometimes be too large to be convenient. Consider for
instance the following floating-point binary number:

0.111111111111111111111119 x 27126 = 2~126 _ 9149

That number is a single-precision number of the IEEE 754-1985 stan-
dard (see Chapter 3), or a binary32 number of IEEE 754-2008. Its exact
decimal representation

1.1754942106924410754870294448492873488270524287458933338571
74530571588870475618904265502351336181163787841796875 x 1038

is too large to be convenient for all applications. This is the worst case
in single precision. If the two extremal exponents e, and epax of the
binary format satisfy emin & —emax (Which holds for all usual formats)
and if p; is its precision, then the largest width of a decimal significand
we can obtain by exact conversion is'®

—€min + P2 + L(emin + 1) log(2) — log;, (1 — 2*”2)J digits.

16 A very similar study can be done when it is a power of 2.

17 A necessary and sufficient condition for all numbers representable in radix 3 with a finite
number of digits to be representable in radix v with a finite number of digits is that 5 should
divide an integer power of .

8That formula is valid for all possible values of p2 and emin (provided emin ~ —emax). And
yet, for all usual formats, it can be simplified: a simple continued fraction argument (see Sec-
tion 16.1, page 521) shows that for p» > 16 and emin > —28000, it is equal to

—€Emin +p2 + I_(emin + 1) IOgIO(Q)J -

2.7. Note on Radix Conversion 41

For instance, for the various basic binary formats of the new IEEE
754-2008 standard (see Table 3.13, page 81), this gives 112 digits for
binary32, 767 digits for binary64, and 11563 digits for binary128.

Hence, during radix conversions, numbers must be rounded. We assume
here that we want to minimize the corresponding rounding errors (i.e., to
round numbers to the nearest value in the target format whenever possible).

Other methods should be used when directed rounding modes are at
stake, since an experienced user will choose these rounding modes to get
sure lower or upper bounds on a numerical value. Therefore, it would be
clumsy to carefully design a numerical program so that the finally obtained
binary value is a certain lower bound on the exact result, and then to have
that binary value rounded up during the radix conversion.

A question that naturally arises is: for a given binary format, which dec-
imal format is preferable if the user does not specify something?

Assuming an internal binary format of precision ps, the first idea that
springs to mind would be to have an input/output decimal format whose
precision would be the integer that is nearest to

log(2)
P210g(10)

This would for instance give a decimal precision equal to 16 for the double-
precision binary format (p = 53).

And yet, this is not the best idea, for the following reason. It is common
practice to write a floating-point value in a file, and to read it later, or (equiva-
lently) to re-enter on the keyboard the result of a previous computation. One
would like this operation (let us call it a “write-read cycle”) to be error-free:
when converting a binary floating-point number z to the external decimal
format, and back-converting the obtained result to binary, one would like to
find z again, without any error. Of course, this is always possible by perform-
ing an “exact” conversion to decimal, using for the decimal representation of
x a large number of digits, but we are going to see that an exact conversion
is not required. Furthermore, there is an important psychological point: as
pointed out by Steele and White [386], if a system prints too many decimal
digits, the excess digits will seem to reflect more information than the number
actually contains.

Matula [272] shows the following result.

Theorem 1 (Base conversion). Assume we convert a radix-{3, precision-p floating-
point number to the nearest number in a radix-v, precision-q format, and then
convert back the obtained value to the nearest number in the initial radix-(,
precision-p format. If there are no positive integers i and j such that 3' = ~7, then
a necessary and sufficient condition for this operation to be the identity (provided no
underflow/overflow occurs) is

It > P

42 Chapter 2. Definitions and Basic Notions

Let us explain Matula’s result in the case of a write-read cycle (that is, the
values 3 and « of Theorem 1 are 2 and 10, respectively). Let ps be the preci-
sion of the “internal” binary format and p;o be the precision of the “external”
radix-10 format. We will assume in the following that the conversions will be
correctly rounded, in round-to-nearest mode. Hence, our problem is to find
conditions on pj to make sure that a write-read cycle is error-free.

Figure 2.10 shows that if p;¢ is not large enough, then after a write-read
cycle we may end up with a binary number slightly different from the initial
one.

binary floating-point numbers

NN

T ‘ ‘ ‘

Vs

decimal floating-point numbers

Figure 2.10: In this example, the binary number by will be converted to the decimal
number d, and d will be converted to the binary number by.

In the neighborhood of the binary floating-point number = to be con-
verted, let us call e the distance between two consecutive binary numbers
(that is, e = ulp(z)), and €19 the distance between two consecutive decimal
floating-point numbers of the “external” format.

e When z is converted to a decimal floating-point number 2/, since we
assume round-to-nearest mode, this implies that | — 2’| is less than or
equal to €10/2.

e When 2/ is back-converted to a binary floating-point number z”, this
implies that |2/ — 2”| is less than or equal to €3 /2.

To always have z” = x therefore requires that

€10 < €2. (2.6)

2.7. Note on Radix Conversion 43

Now, let us see what this constraint means in terms of po and pg.
Consider numbers that are between two consecutive powers of 10, say, 10"
and 10" (see Figure 2.11). In that domain,

_ r—p1o+1
€10 = 10 p1o s

also, that domain contains at most four consecutive powers of 2, say, 29, 20+l
2972, and 29%3, so that the binary ulp e varies from 29772 to 297724, There-
fore, condition (2.6) becomes

107 - 107P1otl < 94 . 97 P2, (2.7)

24 2q+1 2q+2 2q+3

\ \ \ \
| |
10" 107+t
ulp is 29772

ulp is 24P

Figure 2.11: Various possible values of the (binary) ulp function between two con-
secutive powers of 10. One can easily show that between two consecutive powers of
10 there are at most four consecutive powers of 2.

Now, since 29 is larger than 10" (yet, it can be quite close to 10"), condi-
tion (2.7) will be satisfied if

2Pz < 10Pr0—L, (2.8)

Notice that this condition is equivalent to 272 < 10P10~1, since 2Pz = 10P10~!
is impossible.

Therefore, the most convenient choice for pig is the smallest integer for
which (2.8) holds, namely,

p1o = 1+ [palog;(2)]. (2.9)

Table 2.3 gives such values p;¢ for various frequently used values of p».

2.7.2 Conversion algorithms
Output conversion: from radix 2 to radix 10

The results given in the previous section correspond to worst cases. For many
binary floating-point numbers z, the number of radix-10 digits that should be

44 Chapter 2. Definitions and Basic Notions

Do || 245364113
pwo || 91721 36

Table 2.3: For various values of the precision p, of the internal binary format, minimal
values of the external decimal precision piq such that a write-read cycle is error-free,
when the conversions are correctly rounded to nearest.

used to guarantee error-free write-read cycles will be less than what is given
in Table 2.3. Consider for instance the number

x = 5033165 x 272 = 0.300000011920928955078125.

It is exactly representable in the single-precision format of the IEEE 754-1985
standard (p = 24). Hence, we know from the study of the previous sec-
tion and from Table 2.3 that if we convert z to the 9-digit decimal number
2™ = 0.300000012, and convert back that decimal number to single-precision
binary arithmetic, we will find = again. And yet, once converted to single-
precision arithmetic, the 1-digit decimal number z? = 0.3 also gives .
Hence, in that particular case, an error-free write-read cycle is possible with
precision pjp = 1. One could object that z(!) is as legitimate as 2(*) to “rep-
resent” z, but there is an important psychological aspect here, that should
not be neglected. Someone entering 0.3 on a keyboard (hence, getting = after
conversion) will not like to see it displayed as 0.300000012.

This leads to a strategy suggested by Steele and White [385, 386]: when
the output format is not specified, use for each binary floating-point number
x the smallest number of radix-10 significand digits that allows for an error-
free write-read cycle. Steele and White designed an algorithm for that. Their
algorithm was later improved by Burger and Dybvig [62] , and by Gay [145].
Gay’s code is available for anyone to use, and is very robust.’ In the follow-
ing, we present Burger and Dybvig’s version of the algorithm.

We assume that the internal floating-point system is binary?® and of
precision p. If z is a binary floating-point number, we denote z~ and z™
its floating-point predecessor and successor, respectively. In the following,
we assume that the internal binary number to be converted is positive.
The algorithm uses exact rational arithmetic (Burger and Dybvig also
give a more complex yet more efficient algorithm that only uses high-
precision integer arithmetic and an efficient scale-factor estimator; see [62] for
details). The basic principle of Algorithm 2.2 for converting the binary num-
ber z = X x 2¢7PT! i quite simple:

e we scale z until it is between 1/10 and 1, i.e., until it can be written
0.d1dodsdy - - - in decimal;

YAs we are writing this book, it can be obtained at http://www.netlib.org/fp/ (file
dtoa.c).
DThe algorithm works for other radices. See [62] for details.

2.7. Note on Radix Conversion 45

e the first digit d; is obtained by multiplying the scaled value by 10 and
taking the integer part. The fractional part is used to compute the sub-
sequent digits in a similar fashion.

Algorithm 2.2 Conversion from radix 2 to radix 10 [62]. The input value is a
precision-p binary floating-point number z, and the output value is a decimal
number V = 0.dids - - - d,, x 10%, where n is the smallest integer such that 1)
(7 +12)/2 <V < (x + x1)/2, ie., the floating-point number nearest to V/
is z, regardless of how the input rounding algorithm breaks ties (z~ is the
floating-point predecessor of z, and z™* is its floating-point successor); and
2) |V —z| < 10k "/2,i.e., V is correctly rounded in the precision-n output
decimal format. Here {t} denotes the fractional part of .
l— (27 +x)/2
ue— (z+azt)/2
find the smallest k such that u < 10*
W e z/10%1
dy — W]
n«—1
while 0.dydads - - - dy, x 10% < and (0.d1dads3 -~ dy + 157) x 10F > u do
n«—n+1
dp — [10 x W]
W — {10 x W}
end while
if 0.dydods - - dyp x 10F > Cand (0.dydads - - - dy + 10=) % 10¥ > u then
return 0.d;dads - - - d,, x 10F
else if 0.dydads - - - dy, x 10F < £and (0.dydads - - - dp + 147) % 10F < u then
return (0.didads - - - dp, + 13) x 10
else
return the value closest to = among 0.didads---d, X 10 and
(0.d1d2d3 ceedy + 10%) x 10%
end if

Input conversion: from radix 10 to radix 2

The input conversion problem is very different from the previous one, pri-
marily because the input decimal numbers may not have a predefined,
bounded size. The number of input digits that need to be examined to
decide which is the binary floating-point number nearest to the input dec-
imal number may be arbitrarily large. Consider the following example.
Assume that the internal format is the IEEE 754-1985 single-precision format
(also called binary32 format in IEEE 754-2008, see Chapter 3), and that the

46 Chapter 2. Definitions and Basic Notions

rounding mode is round to nearest even. If the input number is

1.000000059604644775390625000000000000000000000000000000000000
— 1_}_2—247

then the conversion algorithm should return 1, whereas if the input number
is

1.000000059604644775390625000000000000000000000000000000000001
= 142741079,

the conversion algorithm should return the floating-point successor of 1,
namely 1 + 272,

The first efficient and accurate input conversion algorithms were
introduced by Rump [349] and Clinger [72, 73]. Later on, Gay suggested
improvements [145]. As for output conversion, Gay’s code is available for
anyone to use, and is very robust.?! Let us describe Gay’s version of Clinger’s
algorithm.

We assume that the floating-point number system being used is a binary
system of precision p. When converting an input decimal number z to binary,
the best result we can provide is a correctly rounded result: in that case, the
obtained value v is o(x), where o is the chosen rounding mode. Notice that
what the IEEE 754-1985 standard for floating-point arithmetic requires is not
that strong.?? Here, we assume that we want to correctly round to nearest
(similar work can be done with the other rounding modes).

The input value d is an n-digit decimal number:

d = 10k X [do.dldg s d”—l]lo
n—1
= Zdilokii.
1=0

We want to return a precision-p binary floating-point number b = RN(d),
where RN stands for “round to nearest even” (i.e., we return the floating-
point number nearest to d, and if there are two such numbers, we return the
one whose integral significand is an even number. See Section 3.1.3, page 61,
for explanations). For simplicity, we assume that d > 0, and that no under-
flow or overflow will occur, that is:

26min < g < 2max (2 — 217P)

2IAs we are writing this book, it can be obtained at http://www.netlib.org/fp/ (file
dtoa.c).

2In round-to-nearest modes, it requires that the error introduced by the conversion should
be at most 0.97 ulps (see what this notation means in Section 2.6.1). The major reason for
this somewhat weak requirement is that the conversion algorithms presented here were not
known at the time the standard was designed.

2.7. Note on Radix Conversion 47

bm=b—2¢P h=2° bt = b+ 207t

2¢° = RN(d) means that d
lies in this area

Figure 2.12: Illustration of the conditions (2.10) in the case b = 2°.

where ein and enax are the extremal exponents of the binary floating-point
format. Our problem consists in finding an exponent e and a significand
bo.b1ba - - - by—1, with by # 0, such that the number

b = 2°x [bo.blbg s bp71]2
p—1
= > b2
=0
satisfies

{ if b = 2¢ exactly then —2¢7P~1 <d—p<2¢P (2.10)

otherwise |b—d| <2°7P and |b—d| =2°7P = b,—1 = 0.
Figure 2.12 helps us to understand these conditions in the case b = 2°.

First, notice that some cases (in practice, those that occur most often!) are
very easily handled. Denote

B d
- 10k—n+1°

D
that is, D is the integer whose decimal representation is
dodidy - - dp_1.

1. If 10" < 27 and 10/*~"+1 < 27, then the integers D and 10/*~"+!| are
exactly representable in the binary floating-point system. In that case, it
suffices to compute D exactly as®

(- (((do x 10+ d1) x 104+ d2) x 10+ d3)--+) x 10 + dpp—1,

2 Another solution consists in using a precomputed table of powers of 10 in the binary
format.

48

Chapter 2. Definitions and Basic Notions

and to compute K = 10*="+1l by iterative multiplications. We then get
b by performing one floating-point multiplication or division:

) RN(DxK) ifk—n+12>0
| RN(D/K) otherwise.

. Even if the above conditions are not satisfied, if there exists an integer

4,1 < j < k, such that the integers 10¥~7 and 10"/ [dy.d1dz - - - dp—1]y,
are less than or equal to 27 — 1, then 107 and 10"*7 [dy.dydy - - - dp—1]4g
are exactly representable and easily computed, and their floating-point
product is b.

Now, if we are not in these “easy cases,” we build a series of “guesses”

b(l)7 AN AN

and stop at the first guess b(™) such that 5(™) = b. Let us now show how these
guesses are built, and how we can check if bl) = b,

1. The first guess is built using standard floating-point arithmetic in the

target format.>* One can find b(!) such that
‘d - b(l)‘ < .o Pt

where c is a small constant and ¢, is an integer. Let us give a possible
solution to do that. We assume dy # 0. Let j be the smallest integer such
that 10/ > 2P. Define

D* = dody - dminfn—1,j} - Qmin{n—1,j}+1 " dn—1
n—1

_ Z dmlomin{n—l,j}—m.

m=0

Also define .
D = |D*| =dodi - dinfn—1,j}-

If we compute in standard floating-point arithmetic an approximation
to D using the sequence of operations

(- .- ((do x 10 +d1) x 10 + dz) .-) x 10 +dmin{n—1,j}v

then all operations except possibly the last multiplication and addi-
tion are performed exactly. A simple analysis shows that the computed
result, say D, satisfies

D=D(1+¢),

241f a wider internal format is available, one can use it and possibly save one step.

2.7. Note on Radix Conversion 49

with |e1| < 277! 4 2727 This gives
D=D*(1+e)(l+e),

where |ea| < 1077 < 277.25 Now, we want to get a binary floating-point
approximation to
d= D* x 10k7min{n71,j}.

To approximate K* = 10F~min{n=1J} several solutions are possible. We
can assume that the best floating-point approximations to the powers of
10 are precomputed and stored in a table. An alternative solution [145]
is to compute K* on the fly (assuming we have stored the first powers
of 10, and powers of the form 102", to save time and accuracy). For sim-
plicity, let us assume here that we get from a table the best floating-point
approximation to K*, i.e., that we get a binary floating-point number K
that satisfies
K =K*(1+e3),

where |e3| < 27P. We finally compute
b)) = RN(KD) = KD(1 + &),
with |e4| < 27P. Therefore, we get
b = dx (14 e)(1+e)(1+e3)(1+eq)
= dx(1+e),

with
lef <5:277+10-27 41027 4+ 5.27% 4 2752,

which gives |¢| < 5.0000006 x 277 as soon as p > 24.

From this we deduce

16 — d| < 5.0000006 x 2¢ P+,

2. Once we have an approximation ') of exponent ¢;, as said above, for
b\9) to be equal to b, it is necessary that

|d — b < 2877, (2.11)

Furthermore, if bU) = 2% exactly, it is also necessary that

d—b) > —%zeﬂ'—fﬂ. (2.12)

P A straightforward analysis of the error induced by the truncation of the digit chain D*
would give |e2| < 107 min{n—1,7} ‘hyut when j > (n — 1), D* = D and there is no truncation
error at all.

50

Chapter 2. Definitions and Basic Notions

We will focus on condition (2.11) and show how Gay handles it. Define
M = max {1,277} x max {1,107}
Condition (2.11) is equivalent to
2M(d — b)) < M x 2497, (2.13)
but since 2Md, 2M b7, and M x 2%~ are integers, condition (2.13) can
easily be checked using multiple-precision integer arithmetic.
If .
|2M (d — b)) < M x 2657,
then bU) is equal to RN(d).
If '
|2M (d — bY9))| = M x 267P,
then RN(d) is bY) if the integral significand of b\9) is even (i.e., if the last

bit of the significand of (/) is a zero), and the floating-point number
adjacent to bU) in the direction of d otherwise.

If
|2M (d — b)) > M x 2657,

we must find a closer floating-point approximation, b¥+1), to d.

. bU*D) can be built as follows. Define

00— (d=9)

2¢; —p+1
That value will be computed as the ratio of the multiple-precision inte-
gers used in the previous test, as

27 M x 2P

We have d = b\9) +5()2¢~P+1: this means that §U) is the number of units
in the last place (ulps, see Section 2.6.1) that should be added to V) to
get d. In most cases, b will be obtained by adding to b, in floating-
point arithmetic, a floating-point approximation to that correcting term
). Hence, once floating-point approximations to M (d — b)) and
M x 24P+ are computed (from the integers computed for checking
b7)), we compute §; as the quotient of these approximations, and we
compute

pUHD = RN (V) 4 §;2¢ 7P+,
Some care is necessary to avoid loops (if bU+!) = bl9)), see [145] for
details on how to handle these cases. Gay [145] shows that the number
of steps needed to have b(™) = b is at most 3. In most cases, b is b(})

or b, Indeed, the only cases for which m = 3 are those for which
|b(2) _ b’ _ 2e—p+1‘

2.8. The Fused Multiply-Add (FMA) Instruction 51

2.8 The Fused Multiply-Add (FMA) Instruction

The FMA instruction was introduced in 1990 on the IBM RS/6000 processor
to facilitate correctly rounded software division and to make some calcula-
tions (especially dot products and polynomial evaluations) faster and more
accurate.

Definition 7 (FMA instruction). Assume that the rounding mode is o, and that a,
b, and c are floating-point numbers. FMA(a, b, c) is o(a - b+ ¢).

Some algorithms facilitated by the availability of that instruction are pre-
sented in Chapter 5. A brief discussion on current implementations is given
in Section 3.5.2, page 104.

The new IEEE 754-2008 standard for floating-point arithmetic specifies
the FMA instruction.

2.9 Interval Arithmetic

Interval arithmetic [284, 285, 300, 216, 165, 286, 352], in its simplest form, is a
means for computing guaranteed enclosures of real-valued expressions. This
arithmetic manipulates connected closed subsets of the real numbers and its
operations are defined in such a way that they satisfy the inclusion property.
Given two intervals U and V' and a mathematical operation on real numbers
o€ {+,—, x,+,- -}, the interval result U ¢ V shall satisfy

YueU YveV, uovelUoV.

If the expressions u and v are enclosed in the intervals [u, %] and [v, 7],
then the following properties can be deduced from the monotonicity proper-
ties of the arithmetic operations on real numbers:

—u € [-u,—u]

Vu € [yu,va ifu>0

uw ! € [@Yul if both bounds have the same sign (2.14)
ut+v € [u+vU+7]

uxXv € [min(u X v, Xv,uX0,uX0),

These properties show that guaranteed enclosures can be obtained easily, by
computing on interval bounds.

Note that, while the bounds computed by naive interval arithmetic are
guaranteed, they are not necessarily tight. Consider an expression = enclosed
in the interval [0, 1]. By interval arithmetic, the expression z — x is known to
be contained in [0,1] — [0,1] = [0 — 1,1 — 0] = [-1, 1], which is much wider
than the tightest enclosure « — z € [0, 0]. This explains why the development
of algorithms computing tight interval enclosures is an active research field.

52 Chapter 2. Definitions and Basic Notions

2.9.1 Intervals with floating-point bounds

Formulas (2.14) depend on the arithmetic on real numbers. However, it is pos-
sible to design formulas that use floating-point numbers, and still satisfy the
inclusion property. Indeed, directed rounding modes in floating-point arith-
metic provide an efficient implementation of interval arithmetic. For instance,

[w,@ = [RD(vau),RUNWT)| ifu>0
[, 1] + [v,] := [RD(u+v),RU(T+)]
[u,u] — [v,9] = [RD(u—72),RU(T - v)]

Thanks to the properties of RD and RU (see Section 2.2), if the input
intervals have finite bounds, the interval result is guaranteed to contain the
exact, mathematical value, even if the operations on the bounds are inexact.

Moreover, the lower bound can be replaced by —oc in order to represent
an interval unbounded on the negative numbers. Similarly, +oo can be used
for the upper bound.?® Then, thanks to the properties of the IEEE 754 arith-
metic with respect to infinite values, the inclusion property is still valid on
the final result even when overflows to infinities occur during intermediate
computations. Notice that the operations co — co can never happen in these
formulas, as long as the inputs are valid.

Floating-point arithmetic also makes it possible to handle the empty set.
For instance, it can be represented by the pair [NaN, NaN], which will prop-
erly propagate when given to the preceding formulas.

For multiplication, the situation is slightly more complicated. Consider
the product of the intervals [0, 7] and [10, +oc]. (The +oo bound may have
been obtained by overflow, if the real bound happens to be too large to be
representable by a finite floating-point number.) Assume that, as in the case
with real bounds, the lower bound is computed by taking the minimum of
the four products RD(0 x 10) = 0, RD(7 x 10) = 70, RD(0 x co) = NaN,
and RD(7 x c0) = 400. A NaN datum is obtained for a product whose result
would be zero if there had been no overflow. Therefore, when the underly-
ing floating-point arithmetic is compliant to IEEE 754, some special care is
needed to prevent propagating incorrect bounds [179].

2.9.2 Optimized rounding

On some floating-point environments, performing computations with vari-
ous rounding modes can be much costlier than performing all the floating-
point computations with the same rounding mode. In that case, relying on
the symmetry property of the rounding modes can be of help. Indeed, the

 An interval with floating-point bounds [z, +c0] contains all of the real numbers greater
than or equal to z. In the basic interval model, intervals are just sets of reals; infinite bounds
are not part of them.

2.9. Interval Arithmetic 53

identity Vo RD(—z) = — RU(x) makes it possible to use one single rounding
direction for most of the arithmetic operations.

For instance, let us assume that interval operations should only use RU.
Addition and subtraction can be rewritten as

[u,u] + [v,T

L

[-RU((—w) — v), RU(u +)]
[~ RU(D — u), RU(u — v)]

|

=
\

|
=

isl)
|

)

The computation of the upper bound is left unchanged, but the lower
bound now requires some (cheap) sign flipping. In order to avoid these extra
operations, we can store the lower bound with its sign bit already flipped. Let
us denote X ™ an interval stored using this convention; addition and subtrac-
tion then become

[, a]* +
[@7 ﬂ}* -

Notice that, if intervals are now considered as length-2 floating-point
vectors, interval addition is just a vector addition with rounding toward
+oo. Interval subtraction is also a vector addition, but the components of
the second interval have to be exchanged first. Similar optimizations can be
applied to other arithmetic operations; they lead to efficient implementations
of floating-point interval arithmetic on SIMD architectures [237, 154].

Some floating-point environments may also have issues with subnor-
mal results (see Section 2.1). The hardware may not support them directly;
gradual underflow is then handled either by microcode or by software trap,
which may incur some slowdowns. Abrupt underflow alleviates this issue at
the expense of some properties mandated by IEEE 754. As long as this abrupt
underflow is not implemented by a flush to zero,?” the inclusion property is
still satisfied. Therefore, even though abrupt underflow may cause the enclo-
sures to be a bit wider, they are still guaranteed.

* = [RU(u+v),RU(T+)]*
* == [RU(u+7),RU®T+ v)]*

=
isi)
|

)

=
=)
|

)

“That is, a positive subnormal result is rounded to the smallest positive normal floating-
point when rounding toward +oo, and to zero when rounding toward —oo.

Chapter 3

Floating-Point Formats and
Environment

UR MAIN FOCUS IN THIS CHAPTER is the IEEE! 754-1985 Standard for
Floating-Point Arithmetic [10], and its recent revision [187]. A paper
written in 1981 by Kahan, Why Do We Need a Floating-Point Standard? [202],
depicts the rather messy situation of floating-point arithmetic before the
1980s. Anybody who estimates that the current standards are too constrain-
ing and that circuit and system manufacturers could build much more effi-
cient machines without them should read that paper and think about it. Even
if there were at that time a few reasonably good environments, the various
systems available then were so different that writing portable yet reasonably
efficient numerical software was extremely difficult.

The IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985) was released in 1985, but the first meetings of the
working group started more than eight years before [207]. William Kahan, a
professor at the University of California at Berkeley, played a leading role in
the development of the standard. We encourage the reader to look at Kahan'’s
Lecture Notes on the Status of IEEE-754 [205].

IEEE 754-1985 drastically changed the world of numerical computing.
Two years later, another standard, the IEEE 854-1987 Standard for “Radix-
Independent” (in fact, radix 2 or 10) Floating-Point Arithmetic was released.
It generalized to radix 10 the main ideas of IEEE 754-1985. IEEE 754-1985 is
also known as IEC 60559:1989 (or IEC 559), Binary floating-point arithmetic for
microprocessor systems [188].

Some languages, such as Java and ECMAScript, are based on IEEE 754-
1985. The ISO C99 standard (released in 1999) for the C language has optional
support for IEEE 754-1985 in its normative annex F. Details will be given in
Chapter 7.

'[EEE is an acronym for the Institute of Electrical and Electronics Engineers. For more
details, see http://www.ieee.org/web/aboutus/home/index.html.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_3, 55
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

56 Chapter 3. Floating-Point Formats and Environment

IEEE 754-1985 had been under revision since 2000. The working group
recommended a draft to the IEEE Microprocessor Standards Committee in
September 2006. After some tuning of the draft, the new standard was
adopted in June 2008. In the following, it will be called IEEE 754-2008. In
the literature, IEEE 754-1985 and its new revision are frequently called IEEE
754 and IEEE 754-R, respectively.

The description of the IEEE standards given in this chapter is not
exhaustive: the standards are big documents that contain many details. Any-
one who wants to implement a floating-point arithmetic function compliant
to IEEE 754-2008 must carefully read that standard.

3.1 The IEEE 754-1985 Standard

3.1.1 Formats specified by IEEE 754-1985

The IEEE 754-1985 standard specifies binary floating-point arithmetic only: in
this section, the radix 3 will always be equal to 2.

As explained in Chapter 2, in radix 2, the first, leftmost bit of the signifi-
cand of a finite, nonzero floating-point number is always a “1” if it is a normal
number, and a “0” if it is a subnormal number. Hence, provided we have a
special encoding that tells us if a number is normal or subnormal, there is
no need to store the first bit of its significand. This hidden bit convention is
required for most formats specified by the IEEE 754-1985 standard, and what
is actually stored is the trailing significand, also called fraction, namely the least
p — 1 significant bits of the significand.

The standard defines two basic formats: single precision and double preci-
sion. The availability of single precision is mandatory. To each basic format is
associated an extended format. Table 3.1 gives the main parameters of the for-
mats specified by the IEEE 754-1985 standard. The major motivation for the
extended formats is that, when implementing some function, they could be
used to carry out intermediate computations in order to return a final result
in the associated basic formats:

e the wider precision makes it possible to get a result that will almost
always be significantly more accurate than that obtained with the basic
formats only;

e and the wider range will drastically limit the occurrences of “apparent
under/overflow” (that is, cases where there is an underflow or over-
flow in an intermediate result, whereas the final value would have been
in the range of the basic format).

The standard recommends an extended format for the widest basic for-
mat supported only. Hence, in practice, the single-extended precision is not

3.1. The IEEE 754-1985 Standard 57

implemented: when double precision is available, it fulfills all the purposes
of a single-extended format.

] Format H Hidden bit? \ P \ €min \ €max ‘
Single precision yes 24 —126 127
Double precision yes 53 —1022 1023
Single-extended optional >32 | <-1022 | > 1023
Double-extended optional > 64 | < —-16382 | > 16383
Double-extended (IA32) no 64 —16382 16383

Table 3.1: Main parameters of the formats specified by the IEEE 754-1985 stan-
dard [10] (©IEEE, 1985, with permission). The single-extended format is not
implemented in practice. The last line describes the double-extended format intro-
duced by Intel in the 387 FPU, and available in subsequent IA32 compatible proces-
sors by Intel, Cyrix, AMD and others.

Table 3.2 gives the widths of the various fields (whole representation,
significand, exponent) of these formats. The ordering of bits in the encodings
is as follows. The most significant bit is the sign (0 for positive values, 1 for
negative ones), followed by the exponent (represented as explained below),
followed by the significand (with the hidden bit convention for the single-
and double-precision formats: what is actually stored is the trailing signifi-
cand). This ordering allows one to compare floating-point numbers as if they
were sign-magnitude integers.

word . o exponent
Format size | SigN | exponent significand bias b
Single 39 1 8 23 127
precision
Er(::gieon 64 1 11 52 1023
Double-
extended 80 1 15 64 16383
(1A32)

Table 3.2: Sizes of the various fields in the formats specified by the IEEE 754-1985
standard, and values of the exponent bias. Note that for the single- and double-
precision formats, the size of the significand field is equal to p — 1, where p is the
precision. This is due to the hidden bit convention.

The exponents are represented using a bias. Assume the exponent is
stored with Wg bits, and regard these bits as the binary representation of

58 Chapter 3. Floating-Point Formats and Environment

an unsigned integer N.. Unless N, = 0 (which corresponds to subnormal
numbers and the two signed zeros, see below), the (real) exponent of the
floating-point representation is N, — b, where b = 2W=~! — 1 is the bias. The
value of that bias b is given in Table 3.2. N, is called the biased exponent. This
means (see Tables 3.1 and 3.2) that all actual exponents from emi, t0 emax are
represented by N, between 1 and 2We _ 9 = 1111---1105. With W bits, one
could represent integers from 0 to 2% — 1 = 1111 - 1115. The two extremal
values 0 and 2# — 1, not needed for representing normal numbers, are used
as follows.

e The extremal value 0 is reserved for subnormal numbers and +0 (the
motivation for subnormal numbers and signed zeros was discussed in
Section 2.1, pages 15 and 19 respectively). The bit encoding for a zero
is the appropriate sign (0 for +-0 and 1 for —0), followed by a string of
zeros in the exponent field as well as in the significand field.

e The extremal value 2WE — 1 is reserved for infinities and NaNs:2

— The bit encoding for infinities is the appropriate sign, followed by
N, =2We _1 (i.e., a string of ones) in the exponent field, followed
by a string of zeros in the significand field.

— The bit encoding for NaNs is an arbitrary sign, followed by 2= —1
(i.e., a string of ones) in the exponent field, followed by any bit
string different from 000 - - - 00 in the significand field. Hence, there
are several possible encodings for NaNs. This allows the imple-
menter to distinguish between quiet and signaling NaNs (see Sec-
tion 3.1.6 for an explanation of the difference between these two
kinds of NaNs) and to put possible diagnosis information in the
significand field. In IEEE 754-2008, that information is called the
payload of the NaN.

That choice of using biased representations for the exponents makes it possi-
ble to represent positive as well as negative exponents. Other solutions would
have been possible, e.g., to represent exponents using two’s complement or
sign-magnitude representations [224, 126], but this would have made com-
parison of floating-point numbers slightly harder. Also, it has a nice property
that is useful for implementers: One obtains the floating-point successor of a
floating-point number by considering its binary representation as the binary
representation of an integer, and adding one to that integer (see Section 8.2.1,
page 241). From another point of view, positive floating-point numbers
(including 40 and +o00) are ordered like their binary representation, the latter
considered as an integer.

Table 3.3 gives examples of the binary encoding of various floating-point
values in single precision. Let us now detail two examples.

2NaN means Not a Number. See Section 2.3 page 25 and Section 3.1.5.

3.1. The IEEE 754-1985 Standard 59

Datum H Sign Biased exponent Trailing significand ‘
—0[[1 00000000 00000000000000000000000
+0[[0 00000000 00000000000000000000000
—oo [[1 11111111 00000000000000000000000
+oo [0 11111111 00000000000000000000000

NaN || 0 11111111 nonzero string
y 5[0 10000001 01000000000000000000000 |

Table 3.3: Binary encoding of various floating-point data in single precision.

Example 1 (Binary encoding of a normal number). Consider the single-precision
number x whose binary encoding is

sign exponent trailing significand

0| 01101011} 01010101010101010101010

e the bit sign of x is a zero, which indicates that x > 0;

o the biased exponent is neither 00000000 nor 11111111, which indicates that x
is a normal number. It is 01101011, = 1071y, hence, since the bias in single
precision is 127, the real exponent of x is 107 — 127 = —20;

e by placing the hidden bit (which is a 1, since x is not subnormal) at the left of
the trailing significand, we get the significand of x:

5592405

1.01010101010101010101010, = 1194304°

e hence, x is equal to

5592405 920 _ 5592405
4194304 4398046511104

0.000001271565679417108185589313507080078125.

Example 2 (Binary encoding of a subnormal number). Consider the single-
precision number x whose binary encoding is

sign exponent trailing significand

1| 00000000| 01100000000000000000000

e the bit sign of x is a one, which indicates that x < 0;

60 Chapter 3. Floating-Point Formats and Environment

o the biased exponent is 00000000, which indicates that x is a subnormal
number. It is not a zero, since the significand field is not a string of zeros.
Hence, the real exponent of x is emin = —126;

e by placing the hidden bit (which is a 0, since x is subnormal) at the left of the
trailing significand, we get the significand of x:

3
0.01100000000000000000000, = 3

e hence, x is equal to

3 3
_2 o126 _ _
8 % 680564733841876926926749214863536422912

—4.408103815583578154882762014583421291819995837895
328205657818898544064722955226898193359375 x 10739,

Trailing

Biased exponent N, | significand Value represented

tity. . .ty 1
111---1 #000---0 NaN
111---1 000---0 (—1)* x o0
000---0 000---0 (—1)* x0
000---0 #000---0 (—1)® x 0.t1ta ... tp—q x 26min
0< N, <2"Wr -1 any (=1)° x Ltyty.. . tp—q x 2070

Table 3.4: How to interpret the binary encoding (sign s, biased exponent, trailing
significand) of an IEEE 754-1985 floating-point number [10]. In single precision,
émin = —126, W = 8, and b = 127, and in double precision, epyin = —1022,
Wg =11, and b = 1023.

Table 3.4 sums up the way floating-point data are encoded in the IEEE
754-1985 standard, and Table 3.5 presents some extremal values (smallest
subnormal, smallest normal, largest finite) in the various formats of the stan-

dard.

3.1.2 Little-endian, big-endian

The IEEE 754-1985 standard specifies how floating-point data are encoded,
but only as a sequence of bits. How such a sequence of bits is ordered in the
memory depends on the platform. In general, the bits are grouped into bytes,

3.1. The IEEE 754-1985 Standard 61

Smallest subnormal | Smallest normal Largest finite
Format 9€min+1-p 9€min 2emax (2 — Ql—p)
single 9—126-23 9—126 (2 —2723) x 2127
precision ~ 1.401 x 1074 ~ 1.175 x 10738 ~ 3.403 x 1038
double 271022752 271022 (2 _ 2752) X 21023
precision ~4.941 x 107320 | ~2.225 x 107308 ~ 1.798 x 10308
IA32 double 9—16382—63 9—16382 (2 — 2763 x 216383
extended ~3.645 x 1074951 | ~3.362 x 10792 |~ 1.190 x 10932

Table 3.5: Extremal values in the IEEE 754-1985 standard.

and these bytes are ordered according to what is called the endianness® of the
platform.

For instance, the double-precision number that is closest to
—7.0868766365730135 x 1072%% is encoded by the sequence of bytes
112233445566 7788 in memory (from the lowest address to the highest
one) on x86 and Linux/IA-64 platforms (they are said to be little-endian)
and by 8877665544 332211 on most PowerPC platforms (they are said to
be big-endian). Some architectures, such as IA-64, ARM, and PowerPC are
bi-endian, i.e., they may be either little-endian or big-endian depending on
their configuration.

There exists an exception: some ARM-based platforms. ARM processors
have traditionally used the floating-point accelerator (FPA) architecture, where
the double-precision numbers are decomposed into two 32-bit words in the
big-endian order and stored according to the endianness of the machine,
i.e., little-endian in general, which means that the above number is encoded
by the sequence 5566 7788112233 44. ARM has recently introduced a new
architecture for floating-point arithmetic: vector floating-point (VFP), where
the words are stored in the processor’s native byte order.

3.1.3 Rounding modes specified by IEEE 754-1985

The IEEE 754-1985 standard defines four rounding modes. Basically, they
are the same as those described in Chapter 2, Section 2.2, page 20: round
toward —oco (RD), round toward +oo (RU), round toward zero (RZ), and
round to nearest (RN). And yet, for the round-to-nearest mode, two special
rules are worth mentioning: the way numbers larger than the largest finite
floating-point number are handled, and the way numbers exactly halfway

3According to Wikipedia [432], endianness is the convention that two parties that wish to
exchange information will use to send and receive this information when they need to cut the
information down to pieces. The term big-endian comes from Jonathan Swift’s book Gulliver’s
Travels.

62 Chapter 3. Floating-Point Formats and Environment

between two consecutive floating-point numbers are rounded. More
precisely, in round-to-nearest mode:

e a number of absolute value larger than or equal to 2m=x(2 — 277) will
be rounded to infinity (with the appropriate sign). This of course is
not what one would infer from a naive understanding of the words
round to nearest, but the advantage is clear: when the result of an arith-
metic operation is a normal number (including the largest one, 2 =
2¢max (2 — 217P)), we know that the relative error induced by that opera-
tion is small. If huge numbers were rounded to the floating-point value
that is really closest to them (namely, +(2), we would have no bound
on the relative error induced by an arithmetic operation whose result is
+Q;

e other numbers will be rounded to the nearest floating-point number of
the format under consideration. In case of a tie (that is, when the exact
result is exactly halfway between two consecutive floating-point num-
bers), the floating-point value whose last significand bit is a zero will be
returned. Because of this, that rounding mode is frequently called round
to nearest even.

The three directed rounding modes (toward +oo, toward —oo, and
toward 0) behave as described in Section 2.2.

The special rule for round to nearest in case of a tie has several
advantages:

e itis rather easily implementable;
e it has no statistical bias;

e Knuth ([222], Theorem D page 237) shows that using round to nearest
even, we always have

RN(RN(RN(RN(a + b) — b) + b) — b) = RN(RN(a + b) — b),

which means that there is no “drift” when repeatedly adding and sub-
tracting the same value.

3.1.4 Operations specified by IEEE 754-1985
Arithmetic operations and square root

The IEEE 754-1985 standard requires that addition, subtraction, multipli-
cation, and division of operands of the same format be provided, for all
supported formats, with correct rounding (with the four rounding modes
presented above). It is also recommended that these operations be provided
(still with correct rounding) for operands of different formats (in such a

3.1. The IEEE 754-1985 Standard 63

case, the destination format must be at least as wide as the wider operand’s
format). Notice that when the sum or difference of two numbers is exactly
zero, then the returned result is zero, with a “+” sign in the round-to-nearest,
round-toward-zero, and round-toward +oco modes, and with a “—" in the
round-toward —oo mode, except for + x and = — (—z) with = being +0, in
which case the result has the same sign as x.

The standard also requires a correctly rounded square root in all sup-
ported formats. The result is defined and has a positive sign for all input
values greater than or equal to zero, with the exception4 that v/—0 = —0.

Remainders

Remainders must also be provided. There are several different definitions
of remainders [42]; here is the one chosen for the standard. If x is a finite
floating-point number and y is a finite, nonzero floating-point number, then
the remainder » = x REM y is defined as

1. r = & — y x n, where n is the integer nearest to the exact value z/y;

2. if z/y is an odd multiple of 1/2 (i.e., there are two integers nearest to
x/y), then n is even;

3. if r = 0, its sign is that of x.

A consequence of this definition is that remainders are always exactly rep-
resentable, which implies that the returned result does not depend on the
rounding mode.

Conversions to and from integer formats

It must be possible to convert between all supported integer formats and
all supported floating-point formats. Conversion from floating-point formats
to integers must be correctly rounded, and must follow the active rounding
mode.

Conversions to and from decimal strings

Conversions to and from decimal strings are used very often; for instance,
for reading numbers from a file, writing them in a file, or displaying them on
screen. We have discussed some issues linked with conversions in Section 2.7.
Note that at the time the IEEE 754-1985 standard was released, some of the

“This rule (that may help to implement complex functions [204]) may seem strange, but the
most important point is that any sequence of exact computations on real numbers will give
the correct result, even when 1/—0 is involved. Also let us recall that —0 is regarded as a null
value, not as a negative number.

64 Chapter 3. Floating-Point Formats and Environment

algorithms presented in Section 2.7 were not known.’ This explains why the
requirements of the standard might appear somehow below what one could
now expect.

The requirements of the standard are:

e conversions must be provided between decimal strings in at least one
format and binary floating-point numbers in all basic floating-point for-
mats, for numbers of the form

+ Mo x 10FFw

with F1g > 0. On input, trailing zeros are appended to or stripped from
Mo up to the limits specified in Table 3.6 in order to minimize E;;

e conversions must be correctly rounded for operands in the ranges spec-
ified in Table 3.7;

e when the operands are not in the ranges specified in Table 3.7:

— in round-to-nearest mode, the conversion error cannot exceed
0.97 ulp of the target format;

— in the directed rounding modes, the “direction” of the rounding
must be followed (e.g., for round-toward —oco mode, the deliv-
ered result must be less than or equal to the initial value), and the
rounding error cannot exceed 1.47 ulp of the target format;

e conversions must be monotonic (if x < y before conversion, then z < y
after conversion);

e when rounding to nearest, as long as the decimal strings have at least
9 digits for single precision and 17 digits for double precision, conver-
sion from binary to decimal and back to binary must produce the initial
value exactly. This allows one to store intermediate results in files, and
to read them later on, without losing any information, as explained in
Chapter 2, Section 2.7.

Comparisons

It must be possible to compare two floating-point numbers, in all formats
specified by the IEEE 754-1985 standard, even if their formats differ. This can
be done either by means of a condition code identifying one of the four fol-
lowing conditions: less than, equal, greater than, and unordered; or as a Boolean

*We should mention that, at that time, Rump had already suggested algorithms for cor-
rectly rounded conversion [349].

3.1. The IEEE 754-1985 Standard

Decimal to binary | Binary to decimal
M 1%,)max E %?max M 1((2),)max E %?max
Single precision 109 — 1 99 | 10° -1 53
Double precision || 1017 —1 999 | 10'" -1 340

65

Table 3.6: The thresholds for conversion from and to a decimal string, as specified by
the IEEE 754-1985 standard [10] (©IEEE, 1985, with permission).

Decimal to binary | Binary to decimal
1 1 2 2
M 1(0,)max E %0?corr M 1(o?max E Eo?corr
Single precision 109 — 1 13 10°-1 13
Double precision || 107 —1 27 | 1017 —1 27

Table 3.7: Correctly rounded decimal conversion range, as specified by the IEEE
754-1985 standard [10] (©IEEE, 1985, with permission).

response to a predicate that gives the desired comparison. The unordered con-
dition arises when at least one of its operands is a NaN: a NaN compares
unordered with everything including itself. A consequence of this is that the
test

TF#x
returns true when x is a NaN. As pointed out by Kahan [205], this provides a
way of checking if a floating-point datum is a NaN in languages that lack an

instruction for doing that (assuming the test is not optimized out). The other
tests involving a NaN will return false. Hence, the test

r<y
is not always equivalent to the test
not(z > y).

If at least one of the two operands is a NaN, the first test will return false
whereas the second one will return true.

Also, the test +0 = —0 must return true.

Users and especially compiler designers should be aware of these
subtleties.

When implementations provide predicates, it is requested that the first
six predicates of Table 3.8 (namely, =, #, >, <, >, <) be provided, and it is
recommended that the seventh one (namely, unordered) be provided.

66 Chapter 3. Floating-Point Formats and Environment

Relations

Predicates gi}e:;:r :EZ; equal | unordered u::;?il;ig)
= false false true | false no

true true false | true no

> true false false | false yes

> true false true | false yes

< false true false | false yes

< false true true false yes
unordered || false false false | true no

Table 3.8: Comparison predicates and the four relations [10] (©IEEE, 1985, with
permission,).

3.1.5 Exceptions specified by IEEE 754-1985

The five exceptions listed in Section 2.3 (invalid, division by zero, overflow,
underflow, inexact) must be signaled when detected. This can be done by
taking a trap (see below) or by setting a status flag. The default mode is not to
use traps.

For each type of exception, a status flag must be provided: that status flag
is set each time the corresponding exception occurs and no corresponding
trap occurs. The status flags are “sticky,” so that the user does not need to
check them immediately, but after some sequence of operations, such as at the
end of a function. A system that is compliant with the standard must provide
the user with ways of resetting, testing, and altering the flags individually.
The standard also recommends (yet does not request) that the user should be
able to save and restore all the flags simultaneously.

Traps

The IEEE 754-1985 standard allows the user to choose what should be done
when one of the five exceptions occurs by specifying a trap handler for that
exception. He can choose to disable, save, or restore an existing trap.

e When a trap is disabled, the corresponding exception is handled
according to the default mode.

e When an exception is signaled and the corresponding trap handler is
enabled, the trap handler is activated. In some cases (see below), a result
is delivered to the trap handler.

Now, we discuss the various cases that lead to an exception in the IEEE
standard.

3.1. The IEEE 754-1985 Standard 67

Invalid operation

The invalid operation exception is signaled:
e when one of the operands is a signaling NaN;

e when performing one of the following additions/subtractions: (—oo) —
(=00), (00) = (+00), (=00) + (+00), (+00) + (—00);

e when performing multiplications of the form (+0) x (£00);

e when performing divisions of the form (+0)/(£0) or (£00)/(£o0);
e when computing remainder(z, y), where y = £0 or z = +o0;

e when computing \/z with z < 0;

e when converting a floating-point number to an integer or a decimal
format when there is no satisfactory way of representing it in the target
format. This can happen in case of overflow, or for converting infinity
or NaN if the target format does not have representations for such data;

e when performing comparisons of unordered operands using predicates
that are listed as invalid if unordered in Table 3.8.

If the exception occurs without a trap, the returned result will be a quiet NaN.

Division by zero

When computing x /vy, if = is a nonzero finite number and y is zero, the divi-
sion by zero exception is signaled. If no trap occurs, the result is infinity, with
the correct sign.

Overflow

Let us call an intermediate result what would have been the rounded result
if the exponent range were unbounded. The overflow exception is signaled
when the absolute value of the intermediate result is strictly larger than the
largest finite number,

Q= (2—2'7P) x 20max,

or, equivalently, when the exponent of the intermediate result is strictly larger
than epax.

When there is an overflow and no trap occurs, the returned result
depends on the rounding mode:

o it will be +00 with the round-to-nearest mode, with the sign of the
intermediate result;

68 Chapter 3. Floating-Point Formats and Environment

o it will be £ with the round-toward-zero mode, with the sign of the
intermediate result;

e it will be +(2 for a positive intermediate result and —oo for a negative
one with the round-toward —oo mode;

o it will be —(2 for a negative intermediate result and +oo for a positive
one with the round-toward +o0o mode.

For instance, in round-to-nearest mode, there is an overflow when the
absolute value of the exact result of an operation is larger than or equal to

(2—27P) x 20max = Q4 %ulp(ﬂ).

Let us now present what is done if a trap occurs.
If m is the width of the exponent field of the destination format, define

K =287

For instance, K equals 2192 in single-precision, 2!%3¢ in double-precision, and
224576 in TA32 double-extended precision formats. In case of a trapped over-
flow, the result that must be delivered to the trap handler is what we would
obtain by first dividing the exact result by K, and then rounding it according
to the active rounding mode.

For instance, this mechanism allows us to evaluate an expression of the
form /22 + y? + 22 using the straightforward algorithm, without worrying
much about possible overflows. If an overflow occurs, the trap handler will
be able to perform scaled arithmetic.

The value suggested for that number K may seem strange. As pointed
out by the standard [10], that scaling factor is chosen so that we obtain values
around the middle of the exponent range, to limit the risk of having further
exceptions.

Underflow

When a nonzero result of absolute value less than 2¢mi» is obtained (i.e., it
is in the subnormal range), a significant loss of accuracy may occur. And
yet, sometimes, such a result is exact (this is a frequent case: see Theorem 3,
page 124). To warn the user when an inaccurate very small result is com-
puted, the standard defines two events: tininess (a nonzero result of absolute
value less than 2°mi» is obtained), and loss of accuracy.

Concerning the detection of tininess, there is some ambiguity in the stan-
dard® (see the Note on underflow, in Section 2.1, page 18):

°And unfortunately, this ambiguity remains in the revised standard, see Section 3.4.10.

3.1. The IEEE 754-1985 Standard 69

e tininess can be signaled either before rounding, that is, when the absolute
value of the exact result is nonzero and strictly less than 2¢mi»;

e or it can be signaled after rounding, that is, when the absolute value of
the nonzero result rounded as if the exponent range were unbounded
is strictly less than 2¢min,

Also, loss of accuracy may be detected either when the result differs from
what would have been obtained were exponent range unbounded, or when
it differs from what would have been obtained were exponent range and pre-
cision unbounded.

If an underflow trap is not implemented or is not enabled (which is the
default), the result is always correctly rounded and underflow is signaled
only when both tininess and loss of accuracy have been detected.

When a trap has been implemented and is enabled, underflow is sig-
naled when tininess is detected.

Very much like the overflow case, in case of a trapped underflow, the
result that must be delivered to the trap handler is what we would obtain by
first multiplying the exact result by K, and then rounding it according to the
active rounding mode, where K is the same scaling factor

23><2m_2

as for overflow.

Inexact

If the result of an operation (after rounding) is not exact, or if it overflows
without an overflow trap, then the inexact exception is signaled. The correctly
rounded or overflowed result is returned (to the destination or to the trap
handler, depending on whether an inexact trap in enabled or not).

3.1.6 Special values
NaN: Not a Number
The standard defines two types of NaNs:

o signaling NaNs (sNaNs) do not appear, in default mode, as the result
of arithmetic operations. They signal the invalid operation exception
whenever they appear as operands. For instance, they can be used for
uninitialized variables;

o quiet NaNs (qNaNs) propagate through almost all operations without
signaling exceptions. They can be used for debugging and diagnostic
purposes. As stated above, a quiet NaN is returned whenever an invalid
operation exception occurs with the corresponding trap disabled.

70 Chapter 3. Floating-Point Formats and Environment

For example, qNaNx8 = gNaN, and when the trap for invalid opera-
tions has not been enabled, sNaN+5 = qNaN and /-2 = qNaN.

Arithmetic of infinities and zeros

The arithmetic of infinities and zeros follows the intuitive rules. For instance,
—1/(=0) = +00, —=5/(400) = —0, /400 = 400 (the only somewhat counter
intuitive property is v/—0 = —0). This very frequently allows one to get sen-
sible results even when an underflow or an overflow has occurred. And yet,
one should be cautious. Consider for instance, in round-to-nearest mode, the

computation of
x

V1t 22

for VQ < 2 < Q, where Q is the largest finite floating-point number. The
computation of 22 will return an infinite result; hence, the computed value of
V1 + 22 will be +o0. Since z is finite, by dividing it by an infinite value we
will get +0. Therefore, the computed value of f(x), for x large enough, will
be +0, whereas the exact value of f(x) is extremely close to 1.

fz) =

3.2 The IEEE 854-1987 Standard

The IEEE 854-1987 standard [11] covers “radix-independent” floating-point
arithmetic. This does not mean that all possible radices are considered: actu-
ally, that standard only focuses on radices 2 and 10. We will just present it
briefly (it is now superseded by IEEE 754-2008 [187]).

Unlike IEEE 754-1985, the IEEE 854-1987 standard does not fully spec-
ify formats or internal encodings. It merely expresses constraints between
the parameters (3, emin, €max, and p of the various precisions provided by an
implementation. It also says that for each available precision we must have
two infinities, at least one signaling NaN and at least one quiet NaN (as in
the IEEE 754-1985 standard). In the remainder of this section, 3 is equal to
2 or 10. The same radix must be used for all available precisions: an arith-
metic system is either binary or decimal, but it cannot mix up the two kinds
of representations.

3.2.1 Constraints internal to a format

A balance must be found between the precision p and the value of the
extremal exponents emin and emax. If p is too large compared to |emin| and
emax, then underflows or overflows may occur too often. Also, there must
be some balance between e;, and enax: to avoid underflows or overflows
when computing reciprocals of normalized floating-point numbers as much
as possible, one might want eyin & —emax. Since underflow (more precisely,
gradual underflow, with subnormal numbers available) is less harmful than

3.2. The IEEE 854-1987 Standard 71

overflow, it is preferable to have ey, very slightly above’ —epax. Here are
the constraints specified by the IEEE 854-1987 standard.

o We must have

€max — €min

p

> 5,

and it is recommended that

e We must have gP~! > 10°.

o peémaxtemintl ghould be the smallest power of 3 greater than or equal to 4
(which is a very complicated way of saying that ey, should be 1 — epax
in radix 2 and —epax in radix 10).

For instance, the single-precision format of IEEE 754-1985 satisfies these

requirements: with 3 = 2, p = 24, ep,in = —126, and epax = 127, we have
Cmax 7 Cmin - _ q54... > 10
p
Bp—l — 223 > 105;
/Belrlax+5min+1 — 22 = 4.

3.2.2 Various formats and the constraints between them

The narrowest supported format is called single-precision. When a second,
wider basic format is supported, it is called double-precision. The required con-
straints between their respective parameters emins, €maxs, Ps ANd €mind, €maxds
pq are:

o (Pd > 105%;
® Cmaxd = 8€maxs + 7;
® Cming < 8€mins-

Extended precisions are also possible. For obvious reasons, the only
extended precision that is recommended is the one associated to the widest
supported basic precision. If eyin, €max, and p are the extremal exponents and
precision of that widest basic precision, the parameters emine, Emaxe, and pe of
the corresponding extended precision must satisfy:

"We will see in the following pages that the revised standard IEEE 754-2008 will require
€min = 1 — emax for all formats.

72 Chapter 3. Floating-Point Formats and Environment

® Chaxe = S€max + 7,
® enine < 8€min;

o if 3=2,
Pe = D+ DOgQ (emax - eminﬂ 5 (31)

e forall 3, p. > 1.2p.

It is also recommended that

log [31og(8) (emax + 1)]
log(3) '

The purpose of constraint (3.1) was to facilitate the support of conversion to
and from decimal strings for the basic formats, using algorithms that were
available at that time. The purpose of (3.2) was to make accurate implemen-
tation, in the basic formats, of the power function z¥ simpler. Again, the
rationale behind the existence of the extended formats is to allow for effi-
cient implementations of various functions of basic format variables without
having to worry too much about roundoff error propagation and possible
over/underflow in the intermediate calculations.

Pe>14+p+ (3.2)

3.2.3 Conversions between floating-point numbers and decimal
strings

Very much as in IEEE 754-1985, conversions must be provided between dec-
imal strings (in at least one format) and floating-point numbers in all sup-
ported basic precisions. As for IEEE 754-1985, these constraints might seem
somewhat below what one could now expect: at the time the standard was
released, some of the best conversion algorithms that can now be found in
the literature were not published yet.

Consider decimal strings with values of the form =M x 105, with 0 <
M < 10P — 1. When several representations are possible, the one with the
smallest IV is used in Tables 3.9 and 3.10. Conversions must be provided in
the range specified in Table 3.9, and correctly rounded in the range specified
in Table 3.10. The value e,,, in these tables is

em =max{D + (p — 1 — emin) 10g,0(B), (emax + 1) log1o(5) +1 — D}.

When conversion is not correctly rounded (i.e., outside the range given
in Table 3.10) and 8 = 2, the error in the converted result must be less
than 0.97 ulp of the target format in the round-to-nearest mode, and less than
1.47 ulp in the directed rounding modes. The direction of the directed round-
ing modes must be satisfied (e.g., when the active rounding mode is RD, the
obtained result must be less than or equal to the exact result). These bounds
of 0.97 and 1.47 ulps come from the best conversion algorithms that were
available at that time [81].

3.2. The IEEE 854-1987 Standard 73

1] Max D Max N

[p logm 2+ 1~| 10{10g10(em)J+1 -1
10 P 10llos10(em)+1 _ 1

Table 3.9: Floating-point from/to decimal string conversion ranges in the IEEE 854-
1987 standard [11] (©IEEE, 1987, with permission).

I} Max D Max N
[plogip2+ 1] [pe logs(2)]
10 P 10Ulos10(em)|+1 _ 1

Table 3.10: Correctly rounded conversion ranges in the IEEE 854-1987 standard [11]
(©IEEE, 1987, with permission). Variable p. denotes the smallest permissible value
as extended support for precision p.

3.24 Rounding

The IEEE 854-1987 standard requires that the arithmetic operations and the
square root be correctly rounded. Exactly as for IEEE 754-1985, four rounding
modes are specified: rounding toward —oo, toward +oo, toward 0, and to
nearest. Round to nearest must be the default mode, with the following two
characteristics:

e when rounding =z, if the two floating-point numbers nearest to x are
equally near, the one whose least significant digit is even is delivered
(this is the round-to-nearest-even mode, as in IEEE 754-1985, but general-
ized for other radices);

o if the exact result has an absolute value larger than or equal to
Bemax (3 — L317P) | then an infinite result (with the correct sign) is
returned. Notice that when § = 2, this is what was already required
in IEEE 754-1985 (see Section 3.1.5, page 67).

3.2.5 Operations

The arithmetic operations, the remainder operation, and the square root
(including the v/—0 = —0 requirement) are defined very much as in IEEE
754-1985.

74 Chapter 3. Floating-Point Formats and Environment

3.2.6 Comparisons

The comparisons are defined very much as in IEEE 754-1985. Especially,
every NaN compares “unordered” with everything including itself: the test
“x # x” must return true if x is a NaN.

3.2.7 Exceptions

The IEEE 754-1985 way of handling exceptions was also chosen for IEEE
854-1987. The only modifications come from the facts that two possible
radices are considered and the formats are not fully specified. For instance,
when a trap occurs in the case of an overflow or underflow, the scaling factor
K used for scaling the result returned to the trap handler becomes 3¢, where
o~ % (émax — €min) , and « should be a multiple of 12.

3.3 The Need for a Revision

The IEEE 754-1985 standard was a huge improvement. It soon became imple-
mented on most platforms of commercial significance. And yet, 15 years after
its release, there was a clear need for a revision.

e Some features that had become common practice needed to be stan-
dardized: e.g., the “quadruple-precision” (i.e., 128-bit wide, binary) for-
mat, the fused multiply-add operator.

e Since 1985, new algorithms were published that allowed one to eas-
ily perform computations that were previously thought too complex.
Typical examples are the radix conversion algorithms presented in Sec-
tion 2.7: now, for an internal binary format, it is possible to have much
stronger requirements on the accuracy of the conversions that must be
done when reading or printing decimal strings. Another example is
the availability of reasonably fast libraries for some correctly rounded
elementary functions: the revised standard can now deal with tran-
scendental functions and recommend that some should be correctly
rounded.

e There were some ambiguities in IEEE 754-1985. For instance, when eval-
uating expressions, when a larger internal format is available in hard-
ware, it was unclear in which format the implicit intermediate variables
should be represented.

e As pointed out by David Hough, the various implementations of IEEE
754-1985 did not allow one to code the most arcane aspects of the stan-
dard in a portable way.

3.3. The Need for a Revision 75

3.3.1 A typical problem: “double rounding”

The processor being used may offer an internal precision that is wider than
the precision of the variables of a program (a typical example is the double-
extended format available on Intel platforms, when the variables of the pro-
gram are single-precision or double-precision floating-point numbers). This
may sometimes have strange side effects, as we will see in this section.

Consider the C program (Program 3.1).

#include <stdio.h>

int main(void)

{
double a = 1848874847.0;
double b = 19954562207.0;
double c;
c=axb;
printf("c = %20.19e\n", c);
return 0;

}

Program 3.1: A C program that might induce a double rounding.

Tables 3.11 and 3.12 give some results returned by this program, depend-
ing on the processor and the compilation options. In order to really test the
arithmetic of the machine, it is important that the compiler does not optimize
the multiplication by performing it at compile time (one controls even less
what occurs at compile time); by default, GCC does not do such an optimiza-
tion. Notice that the double-precision number closest to the exact product is
3.6893488147419111424e+19.

Switches on the Outout

GCC command line p
no switch (default) ¢ =3.6893488147419103232e+19
-mfpmath=387 ¢ = 3.6893488147419103232e+19
-march=pentium4 -mfpmath=sse | ¢ = 3.6893488147419111424e+19

Table 3.11: Results returned by Program 3.1 on a Linux/Debian Etch 32-bit Intel
platform, with GNU Compiler Collection (GCC) 4.1.2 20061115, depending on the
compilation options. Notice that on the 32-bit platform, the default is to use the 387
registers.

76 Chapter 3. Floating-Point Formats and Environment

Switches on the Output

GCC command line
no switch (default) c =3.6893488147419111424e+19
-mfpmath=387 ¢ = 3.6893488147419103232e+19
-march=pentium4 -mfpmath=sse | ¢ = 3.6893488147419111424e+19

Table 3.12: Results returned by Program 3.1 on a Linux/Debian Etch 64-bit Intel
platform, with GCC 4.1.2 20061115, depending on the compilation options. Notice
that on the 64-bit platform, the default is to use the SSE registers.

What happened? The exact value of a*b is 36893488147419107329, whose
binary representation is

64 bits

100 10000000000 01
53 bits

On the processor used, with the -mfpmath=387 switch, the product is first
rounded to the precision of the registers (namely, double-extended precision),
which gives (in binary)

64 bits

100 10000000000 x4
53 bits

Then, that intermediate value is rounded to the double-precision desti-
nation format, which gives (using the round-to-nearest-even rounding mode)

100 x 213
53 bits
= 368934881474191032321,

whereas the product a*b correctly rounded to the nearest double-precision
number is

10001 x 213
53 bits
= 368934881474191114244,.

The -march=pentium4 -mfpmath=sse compilation switches force the product
to be stored in the 64-bit Streaming SIMD Extension (SSE) registers. In that
case, it is directly rounded to double precision, so that we get the expected
result.

3.3. The Need for a Revision 77

The problem we have faced here is called “double rounding.” In this
example, it appears during a multiplication, but it may also appear during
another arithmetic operation. Another example (still with double-precision
input values) is the addition of

9223372036854775808.0 = 203

and
1024.25.

Such examples are not so rare that they can be neglected. Assuming
double-precision variables and a double-extended internal format, if the cho-
sen compilation switches do not prevent the problem from occurring, the
double rounding problem occurs when the binary expansion of the exact
result of some operation is of the form

53 bits 11 bits at least one 1 somewhere

2% x 1.azzzx - 220 10000000000 0 TXTTTTTTTTTTTLTTTTTLLL - - -

or

53 bits 11 bits at least one 0 somewhere

2% x 1laxzxzr - xxl 01111111111 1 T2202T2TTTTTXTTTTTTLLL - - .

Assuming equal probabilities of occurrence for the zeros and ones in the
binary expansion of the result of an arithmetic operation,8 the probability of
a double rounding is 2712 = 1/4096, which means that without care with
the compilation options, double roundings will occur in any computation of
significant size.

We must emphasize that this might be a problem with some very spe-
cific algorithms only (such as those presented in Chapter 4), but with most
calculations, it will be unnoticed.

3.3.2 Various ambiguities

In [280], Monniaux gives some very convincing examples of consequences of
“ambiguities.” The examples shown here were obtained on a Pentium pro-
cessor, under Linux in 32 bits, with GCC 4.0.1.

Consider Program 3.2.

What happened? Although in double-precision arithmetic, in round-
to-nearest (i.e., the default) mode, the multiplication v * v should have
returned +oo, the implicit variable representing that product was actually
stored in a double-extended precision register of the processor. And since
the product v * v is much below the overflow threshold in double-extended

8Which is not very realistic but suffices to get a rough estimate of the frequency of
occurrences of double roundings.

78 Chapter 3. Floating-Point Formats and Environment

#include <stdio.h>
int main(void)

{
double v = 1E308;
double x = (v *x v) / v;
printf("%g\n",x);
return 0;

}

Program 3.2: This example is due to David Monniaux [280]. Compiled with GCC
under Linux/x86, we get 1e+308, whereas if all computations had been performed in
double-precision arithmetic, we should have obtained +oc.

precision, the stored value was not +o0o, but the double-extended number
closest to the exact product. The result +oc can be obtained with recent GCC
versions and the - ffloat-store option, which forces the intermediate results
to be spilt to memory,’ in double precision.

It is important to notice that, in this case, the obtained result is very
accurate, which is not that surprising: in most cases, using a larger inter-
nal precision for intermediate calculations leads to better calculations. What
matters then is not to forbid that, but to allow programmers to decide if
they want all intermediate calculations to be performed in the format of the
operands (which enhances portability and provability and is necessary for
safely using most of the small algorithms given in Chapter 4), or if they
prefer these intermediate calculations to be performed in a wider format
(typically, the largest format available in hardware, which in general impr-
oves the accuracy of the results). A tradeoff is to be found between portabil-
ity, accuracy, and (frequently) speed. Choosing which among these criteria is
the most important should be the programmer’s task, not the compiler’s.

The following example is even more interesting. Consider Program 3.3.

Compiled with GCC under Linux without optimization, we get inf;
compiled with optimization (option “-O”), we get 1e+308. Now, let us see
what happens if we just insert a statement to print y just after its computa-
tion (see Program 3.4).

Compiled with GCC under Linux with optimization (option “-O”), we
now get inf (whereas we got 1e+308 without the printf call). That state-
ment forced y to be spilt to memory (hence, to be represented in the double-
precision format), instead of staying in a double-extended precision register.
This example shows that even a statement that does not involve a numeric compu-
tation in the program (here, a call to the printf function) can change the final result.
This sometimes makes portable and provable numerical programs very diffi-
cult to design. Chapter 7 deals with these issues.

“However this is not guaranteed by the GCC documentation, and the effect of the
-ffloat-store option may still depend on the GCC version.

3.4. The New IEEE 754-2008 Standard 79

#include <stdio.h>

static inline double f(double x)

{
return x / 1E308;
}
double square(double x)
{
double y = x * x;
return y;
}
int main(void)
{
printf("%sg\n", f(square(1lE308)));
return 0;
}

Program 3.3: This example is due to David Monniaux [280]. Compiled with GCC
under Linux without optimization, we get inf, compiled with optimization (option
“-0”), we get 1e+308.

3.4 The New IEEE 754-2008 Standard

The IEEE 754-1985 standard has been revised from 2000 to 2006, and the
revised standard was adopted in June 2008. Some of the various goals of the
working group were as follows (see http://grouper.ieee.org/groups/754/
revision.html):

e merging the 854-1987 standard into the 754-1985 standard;

e reducing the implementation choices;

e resolving some ambiguities in the 754-1985 standard (especially con-
cerning expression evaluation and exception handling). The revised
standard allows languages and users to focus on portability and repro-

ducibility, or on performance;

e standardizing the fused multiply-add (FMA) operation, and

including quadruple precision.

Also, the working group had to cope with a very strong constraint: the
revised standard would rather not invalidate hardware that conformed to
the old IEEE 754-1985 standard.

80 Chapter 3. Floating-Point Formats and Environment

#include <stdio.h>

static inline double f(double x)
{

return x / 1E308;
}

double square(double x)
{
double y = x * x;
printf("%g\n",y);
return y;

}

int main(void)

{
printf("%sg\n", f(square(lE308)));
return 0;

}

Program 3.4: This example is due to David Monniaux [280]. Compiled with GCC
under Linux with optimization (option “-O”), we get inf.

3.4.1 Formats specified by the revised standard

The revised standard requires that the radix 3 should be 2 or 10, and that ey,
should be 1 — e« for all formats. It defines two kinds of formats:

e interchange formats, whose encodings are fully specified as bit strings,
and that allow data interchange between different platforms, provided
that endianness problems (see Section 3.1.2) are resolved,’ and

e extended and extendable precision formats,'! whose encodings are not
specified, but may match those of interchange formats.

The standard requires that conversions between any two supported for-
mats be implemented. Moreover, a format is said to be an arithmetic format if
all the mandatory operations defined by the standard are supported by the
format.

Among the interchange formats, the standard defines five basic formats,
which must also be arithmetic formats: the three binary formats on 32, 64,
and 128 bits, and the two decimal formats on 64 and 128 bits. A conforming
implementation must implement at least one of them.

!%This is not much more difficult than with the integers, though. Alternatively character
strings can be used.

The revised standard [187] makes a distinction between an extended format, which extends
a basic format with a wider precision and range, and is language defined or implementation
defined, and an extendable precision format, whose precision and range are defined under pro-
gram control.

3.4. The New IEEE 754-2008 Standard 81

Name || binary16 | binary32 | binary64 | binary128
(basic) (basic) (basic)

D 11 24 53 113
€max +15 +127 +1023 +16383
€min —14 —126 —1022 —16382

Table 3.13: Main parameters of the binary interchange formats of size up to 128 bits
specified by the 754-2008 standard [187].

Name || decimal32 | decimal64 | decimall28
(basic) (basic)

D 7 16 34
Emax +96 +384 +6144
€min -95 —383 —6143

Table 3.14: Main parameters of the decimal interchange formats of size up to 128 bits
specified by the 754-2008 standard [187].

The main parameters of the interchange formats of size up to 128 bits are
given in Tables 3.13 and 3.14.

3.4.2 Binary interchange format encodings

The binary interchange formats are very much like the formats of the IEEE
754-1985 standard. The floating-point numbers are encoded using a 1-bit sign,
a Wg-bit exponent field, and a (p—1)-bit field for the trailing significand. This
is illustrated in Figure 3.1.

MSB LSB
S E T
1 bit
Wk bits p — 1 bits

Figure 3.1: Binary interchange floating-point formats [187] (©IEEE, 2008, with
permission).

Define F as the integer whose binary representation consists of the bits
of the exponent field, 7" as the integer whose representation consists of the
bits of the trailing significand field, and S as the sign bit. The binary encoding
(S, E,T), similar to that of IEEE 754-1985 (summarized in Table 3.4), should

82

Chapter 3. Floating-Point Formats and Environment

be interpreted as follows [187]:

if £ = 2Wr — 1and T # 0, then a NaN, either quiet (qQNaN) or sig-
naling (sNaN), is represented. As in IEEE 754-1985, a quiet NaN is the
default result of an invalid operation, and a signaling NaN will signal
the invalid operation exception whenever it appears as an operand;

if ©=2"F —1land T = 0, then (—1)° x (+00) is represented;

ifl < E < 2We — 2, then the (normal) floating-point number being
represented is
(—1)¥ x 257 x (1 + 1T -2'77),

where the bias b = emax = 2"F71 — 1 is equal to 15, 127, 1023,
and 16383 in the binary16, binary32, binary64, and binary128 formats,
respectively;

if £ =0and T # 0, then the (subnormal) number being represented is

(—1)% x 20min % (04T - 2177);

if £ = 0and T = 0, then the number being represented is the signed
zero (—1)% x (+0).

The sizes of the various fields are given in Table 3.15.

’ format H binary16 ‘ binary32 ‘ binary64 ‘ binary128 ‘
storage width 16 32 64 128
p — 1, trailing
significand width 10 23 52 112
WE, exponent field width 5 8 11 15
b, bias 15 127 1023 16383

Table 3.15: Width (in bits) of the various fields in the encodings of the binary inter-
change formats of size up to 128 bits [187].

The binary32 and binary64 formats correspond to the single- and

double-precision formats of the IEEE 754-1985 standard: the encodings are
exactly the same.

3.4.3 Decimal interchange format encodings

The

decimal format encodings are more complex than the binary ones, for

several reasons.

Two encoding systems are specified, called the decimal and binary encod-
ings: the members of the revision committee could not agree on a single

3.4. The New IEEE 754-2008 Standard 83

encoding system. The reason for that is that the binary encoding makes
a software implementation of decimal arithmetic easier, whereas the dec-
imal encoding is more suited for a hardware implementation. And yet,
despite this problem, one must understand that the set of representable
floating-point numbers is the same for both encoding systems, so that
this additional complexity will be transparent for most users. Also, a
conforming implementation must provide conversions between these
two encoding systems ([187, §5.5.2]).

e Contrary to the binary interchange formats, the sign, exponent, and
(trailing) significand fields are not fully separated: to preserve as much
accuracy as possible, some information on the significand is partly
encoded in what used to be the exponent field and is hence called the
combination field.

e In the decimal formats, the representations (M, e) are not normalized,
so that a decimal floating-point number may have multiple valid rep-
resentations. The set of the various representations of a same number is
called a cohort. As a consequence, we will have to explain which expo-
nent is preferred for the result of an arithmetic operation.

e Even if the representation itself (that is, values of the sign, exponent,
and significand) of a number x (or an infinite, or a NaN) and the type
of encoding (binary or decimal) are chosen, a same number (or infinite,
or NaN) can still be encoded by different bit strings. One of them will
be said to be canonical.

Roughly speaking, the difference between the decimal and binary
encodings originates from a choice in the encoding of the significand. The
integral significand is a non-negative integer less than or equal to 107 — 1.
One can encode it either in binary (which gives the binary encoding) or in
decimal (which gives the decimal encoding).

Concerning the decimal encoding, in the early days of computer arith-
metic, people would use the binary coded decimal (BCD) encoding, where
each decimal digit was encoded by four bits. That encoding was quite waste-
ful, since among the 16 possible values representable on four bits, only 10
were actually used. And yet, since 2!° = 1024 is very close to 103 (and
larger), one can design a much denser encoding by encoding three consec-
utive decimal digits by a 10-bit declet[68]. Many possible ways of performing
that encoding are possible. The one chosen by the standard committee for the
decimal encoding of decimal numbers is given in Tables 3.19 (declet to dec-
imal) and 3.20 (decimal to declet). It was designed to facilitate conversions:
all these tables have a straightforward hardware implementation and can be
implemented in three gate levels [123]. Note that Table 3.19 has 1024 possi-
ble inputs and 1000 possible outputs (hence, there is some redundancy), and

84 Chapter 3. Floating-Point Formats and Environment

Table 3.20 has 1000 possible inputs and outputs. This implies that there are 24
“noncanonical” bit patterns,'? which are accepted in input values but cannot
result from an arithmetic operation. An encoding that contains a noncanoni-
cal bit pattern is called noncanonical.

Let us explain more precisely why there is no clear separation between
an exponent field and a significand field (as is the case in the binary formats).
Consider as an example the decimal64 format (see Table 3.14). In that format,
emax = 384 and epin = —383; therefore, there are 768 possible values of the
exponent. Storing all these values in binary in an exponent field would
require 10 bits. Since we can store 1024 possible values in a 10-bit field, that
would be wasteful. This explains why it was decided to put all the infor-
mation about the exponent plus some other information in a “combination
field,” where will be stored:

e “classification” information: Does the datum represent a finite number,
or oo, or a NaN?

e the exponent (if the datum represents a finite number);

o the leading part of the significand (if the datum represents a finite num-
ber); more precisely, the leading decimal digit (if the decimal encoding is
used) or 3 to 4 leading bits (if the binary encoding is used). The remain-
ing significand bits/digits are stored in the trailing significand field.

MSB LSB
S e T
1 bit
w + 5 bits t = J x 10 bits

Figure 3.2: Decimal interchange floating-point formats [187] ((©QIEEE, 2008, with
permission).

The widths of the various fields are given in Table 3.16. It is important
to notice that in this table the bias b is related to the quantum exponent (see
Section 2.1), which means that if e is the exponent of z, if ¢ = e — p + 1 is its
quantum exponent, then the biased exponent FE is

E=q+b=e—p+1+0.

The floating-point format illustrated in Figure 3.2, with a 1-bit sign, a
(w + 5)-bit combination field, and a t = (J x 10)-bit trailing significand field
must be interpreted as follows [187]:

12Those of the form 01z11z111z, 10z11z111z, or 11z11x111z.

3.4. The New IEEE 754-2008 Standard 85
decimal32 | decimal64 | decimall28
storage width 32 64 128
t = 10J, trailing significand width 20 50 110
w + 5, combination field width 11 13 17
b=FE—(e—p+1),bias 101 398 6176

Table 3.16: Width (in bits) of the various fields in the encodings of the decimal inter-
change formats of size up to 128 bits [187].

o if the five most significant bits of G’ (numbered from the left, G to G4)
are all ones, then the datum being represented is a NaN. Moreover, if G5
is 1, then it is an sNalN, otherwise it is a gNaN. In a canonical encoding
of a NaN, the bits Gg to G,1 4 are all zeros;

o if the five most significant bits of G are 11110, then the value being rep-
resented is (—1) x (+00). Moreover, the canonical encodings of infinity
have bits G5 to G,+4 as well as trailing significand 7" equal to 0;

e if the four most significant bits of G, i.e., G to G'3, are not all ones, then
the value being represented is a finite number, equal to

(-1)° x 105t x C. (3.3)

Here, the value £ — b is the quantum exponent (see Section 2.1), where
b, the exponent bias, is equal to 101, 398, and 6176 for the decimal32,
decimal64, and decimal128 formats, respectively. £ and C' are obtained
as follows.

1. If the decimal encoding is used for the significand, then the least
significant w bits of the biased exponent E are made up of the bits
G5 to Gy44 of G, whereas the most significant two bits of £ and
the most significant two digits of C are obtained as follows:

— if the five most significant bits GoG1G2G3G4 of G are of the
form 110xx or 1110x, then the leading significand digit C is
8 + G4 (which equals 8 or 9), and the leading biased exponent
bits are G2G'3;

— if the five most significant bits of G are of the form Oxxxx or
10xxx, then the leading significand digit Cy is 4G2 + 2G5 + G4
(which is between 0 and 7), and the leading biased exponent
bits are GoG1.

The p — 1 = 3J decimal digits C1, ..., C,—1 of C are encoded by T,
which contains J declets encoded in densely packed decimal (see
Tables 3.19 and 3.20). Note that if the five most significant bits of G
are 00000, 01000, or 10000, and T = 0, then the significand is 0 and
the represented number is (—1) x (+0).

86 Chapter 3. Floating-Point Formats and Environment

Table 3.17 summarizes these rules.
2. If the binary encoding is used for the significand, then

- if GpGy is 00, 01, or 10, then E is made up of the bits G to
Guw+1, and the binary encoding of the significand C'is obtained
by prefixing the last 3 bits of G (i.e., Gy12Gw+3Gw+4) to T;

- if GoG1is 11 and G2G3is 00, 01 or 10, then E is made up of the
bits G to G+3, and the binary encoding of the significand C
is obtained by prefixing 100G 44 to 7.

Remember that the maximum value of the integral significand is
1P — 1 = 103/+1 — 1. If the value of C computed as above is
larger than that maximum value, then the value used for C' will
be zero [187], and the encoding will not be canonical. Table 3.18
summarizes these rules.

A decimal software implementation of IEEE 754-2008, based on the
binary encoding of the significand, is presented in [85, 87]. Interesting
information on decimal arithmetic can be found in [90]. A decimal floating-

point multiplier that uses the decimal encoding of the significand is presented
in [129].

Example 3 (Finding the encoding of a decimal number assuming decimal
encoding of the significands). Consider the number

x = 3.141592653589793 x 10° = 3141592653589793 x 10717,

This number is exactly representable in the decimal64 format. Let us find its encod-
ing, assuming decimal encoding of the significands.

e First, the sign bit is 0;

e since the quantum exponent is —15, the biased exponent will be 383 (see
Table 3.16), whose 10-bit binary representation is 0101111111. One should
remember that the exponent is not directly stored in an exponent field, but
combined with the most significant digit of the significand in a combination
tield G. Since the leading significand digit is 3, we are in the case

if the five most significant bits of G are of the form Oxxxx or 10xxx, then
the leading significand digit Cy is 4G2 + 2G5 + G4 (which is between 0
and 7), and the leading biased exponent bits are GoG.

Hence,

- Gy and G are the leading biased exponent bits, namely 0 and 1;

- G, G, and G4 are the binary encoding of the first significand digit 3,
ie,Gy=0,and G3 = G4 = 1; and

— the bits G5 to G2 are the least significant bits of the biased exponent,
namely 01111111.

87

3.4. The New IEEE 754-2008 Standard

"6T°¢ 9[qeL uisn > S () 10§

atomm. .. Niofuﬂiog.SHH Wwo1j Paonpap mimbmtmDHimD ym N AN
[ewoap 1-017 ... 1707 10
=45 2)TH ("D + £DT + TOF) X - P+ . 9565150501 X (1) - zTTIT()
Areurq
‘61°¢ 9[qeL Sutsn ;> [() 10§
6+L017 ... eHOT L THOT P L01 7 woxy paonpap eTEnTHenTH ey tpm - ZOTTT
[ewop =001y ... 1707 10
=05 201D (TD +8) X 4 T L 95enEntn0T X (1) e ZTOTT
Areurq
(00+) x o(1-) Aue T zTTTOTTILT
NEeNS Aue T TTTTTIIITL
NeNDb Aue T TTTOTITTL
pajuasardar Sureq winyeg I 15

Table 3.17: Decimal encoding of a decimal floating-point number (IEEE 754-

2008).

Chapter 3. Floating-Point Formats and Environment

88

BN 550 534 M
(0+) X g(1—) 9stmaayio ‘T — g01 > -LO0LL - - LLAL7+™900T It ot
Areurq 10
Hlﬁoﬁrﬁ...ﬁrHOrH < TTTTOTT
T=r0Ly...T707h+m —
L TLOLTTTO00T X g gt | .wUm@NUS x (1) ©
(0+) X o(T—) 9SIMIAYIO ‘T — 40T > FOLF - - - LLOpFTMne+nnz+mg o oL
Areurq 10
Hlﬁoﬁrﬁ...ﬂrﬁ_urﬁ c s XTXTT()
ﬂ\ﬁoﬁrm...ﬂrﬁorﬁwglz EFNOT+Nn 14 01 X o(1—
9, 9, 9, q— I+ en1n0n) WA v 10
Areurq . ZTTQQ
(00+) x ¢(1-) Aue T TxTTOTTTT
NENS Aue T xXTTITTTT
NeNDb Aue T xxTOTITTT
paruasardax ureq wmyeq I 15

Table 3.18: Binary encoding of a decimal floating-point number (IEEE 754-

2008).

3.4. The New IEEE 754-2008 Standard

bbrbsbsbs || do di do
Oxxxx 4bg 4+ 2b1 + b | 4bg + 2bs + by | 4b7 + 2bg + by
100xx 4bg + 2b1 + by | 4bg + 2by + by 8 + by
101xx 4bg + 2b1 + bo 8 + by 4b3 + 2by + bg
110xx 8 + by 4bs + 2by + b5 | 4bg + 2b1 + by
11100 8 + by 8 + bs 4bg + 2b1 + by
11101 8 + b 4bg + 2b1 + b5 8 + by
11110 4bg + 2b1 + by 8 + bs 8 + by
11111 8 + b 8+ b5 8 + by

89

Table 3.19: Decoding the declet bob1bs - - - by of a densely packed decimal en-
coding to three decimal digits dodyda [187] (©QIEEE, 2008, with permission).

dd dl d || bo by by | b3 bybs | b | by bs by
000 |[dyd3dd|did?ds| 0 |did3ds
001 ||dyd3dd|dididi| 1| 00d3
010 ||dyd3dd|did3di| 1| 01d3
011 ||dyd3d3| 10d3 | 1| 11d3
100 ||didddd|dididi| 1] 10d;
101 ||[did?dd| 0143 | 1| 1143
110 | did3dd| 00d3 | 1| 11d;
111 00d3 | 11d3 | 1| 11d3

Table 3.20: Encoding the three consecutive decimal digits dod;ds, each of them
being represented in binary by four bits (e.g., dy is written in binary dydjd3d3),
into a 10-bit declet bbby - - - by of a densely packed decimal encoding [187]
(©IEEE, 2008, with permission).

90 Chapter 3. Floating-Point Formats and Environment

o Nouw, the trailing significand field T' is made up of the five declets of the densely
packed decimal encoding of the trailing significand 141592653589793:

the 3-digit chain 141 is encoded by the declet 0011000001, according to
Table 3.20;

592 is encoded by the declet 1010111010;
653 is encoded by the declet 1101010011;
589 is encoded by the declet 1011001111;
793 is encoded by the declet 1110111011.

o Therefore, the encoding of x is

0 0101101111117 ...
—~ —
sign combination field

00110000011010111010110101001110110011111110111011 .
trailing significand field

Example 4 (Finding an encoding of a decimal number assuming binary
encoding of the significands). Consider the number

x = 3.141592653589793 x 10" = 3141592653589793 x 10~ 2.

(It is the same number as in Example 3, but now we consider binary encoding,
in the decimal64 format.) The sign bit will be zero. Since 3141592653589793 is a
16-digit integer that does not end with a 0, the quantum exponent can only be —15;
therefore, the biased exponent E will be 398 — 15 = 383, whose binary representation
is 101111111. The binary representation of the integral significand of x is

1011001010010100001100001010001001010110110100100001 .
t = 50 bits (trailing significand)

The length of that bit string is 52, which is less than t 4+ 4 = 54, hence we are not in
the case

if GoG1 is 11 and GG is 00, 01 or 10, then E is made up of the bits
G to Gyy3, and the binary encoding of the significand C'is obtained by
prefixing 100G 44 to T,

which means that we are in the case

if GoG1 is 00, 01, or 10, then E is made up of the bits G to Gy+1, and
the binary encoding of the significand C'is obtained by prefixing the last
3 bits of G (i.e., Gy12Guw4+3Gw+a) to T

3.4. The New IEEE 754-2008 Standard 91

Therefore, G0G1 e Gg = 0101111111, G10G11G12 = 010 and
T =11001010010100001100001010001001010110110100100001.

Example 5 (Finding the value of a decimal floating-point number from its
encoding, assuming decimal encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1 11101101101 01101001101111000011 .
sign combination field G trailing significand field T

o Since the bit sign is 1, we have z < 0;

e since the four most significant bits of G are not all ones, x is not an infinity or
a NaN;

o by looking at the four most significant bits of G, we deduce that we are in the
case

if the five most significant bits GoG1G2G3G4 of G are of the form 110xx
or 1110x, then the leading significand digit Cy is 8 + G4 (which equals 8
or 9), and the leading biased exponent bits are G2G3.

Therefore, the leading significand bit Cy is 8 + G4 = 9, and the leading biased
exponent bits are 10. The least significant bits of the exponent are 101101;
therefore, the biased exponent is 10101101y = 17319. Hence, the (unbiased)
quantum exponent of x is 173 — 101 = 72;

e the trailing significand field T is made up of two declets, 0110100110 and
1111000011. According to Table 3.19,

— the first declet encodes the 3-digit chain 326;

— the second declet encodes 743.

o Therefore, x is equal to

—9326743 x 10" = —9.326743 x 1078.

Example 6 (Finding the value of a decimal floating-point number from its
encoding, assuming binary encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1 11101101101 01101001101111000011 .
sign combination field G trailing significand field T

(It is the same bit string as in Example 5, but now we consider binary encoding.)

e Since the bit sign is 1, we have x < 0;

92 Chapter 3. Floating-Point Formats and Environment

e since the four most significant bits of G are not all ones, x is not an infinity or
a NaN;

e since GoG1 = 11 and G2G3 = 10, we are in the case

if GoG1 is 11 and G2G3 is 00, 01, or 10, then E is made up of the
bits Go to Gyy3, and the binary encoding of the significand C' is
obtained by prefixing 100G 44 to T

Therefore, the biased exponent E is 101101102 = 182y, which means that the
quantum exponent of x is 182 — 101 = 71, and the integral significand of x is

1001011010011011110000119 = 98702751¢.

o Therefore, x is equal to

—9870275 x 107! = —9.870275 x 107".

3.44 Larger formats

The IEEE 754-2008 standard also specifies larger interchange formats for
widths that are multiples of 32 bits of at least 128 bits. Their parameters
are given in Table 3.21, and examples are given in Tables 3.22 and 3.23. This
allows one to define “big” (yet, fixed) precisions. A format is fully defined
from its radix (2 or 10) and size: the various parameters (precision, emin, €max,
bias, etc.) are derived from them, using the formulas given in Table 3.21.
Hence, binary1024 or decimal512 will mean the same thing on all platforms.

3.4.5 Extended and extendable precisions

Beyond the interchange formats, the IEEE 754-2008 standard partially speci-
ties the parameters of possible extended precision and extendable precision for-
mats. These formats are optional, and their binary encoding is not specified.

e An extended precision format extends a basic format with a wider pre-
cision and range, and is either language defined or implementation
defined. The constraints on these wider precisions and ranges are given
by Table 3.24. The basic idea behind these formats is that they should
be used to carry out intermediate computations, in order to return a
final result in the associated basic formats. The wider precision makes
it possible to get a result that will generally be more accurate than that
obtained with the basic formats only, and the wider range will drasti-
cally limit the cases of “apparent under/overflow” (that is, cases where
there is an underflow or overflow in an intermediate result, whereas the
final value would have been representable).

3.4. The New IEEE 754-2008 Standard 93

Parameter || Binaryk format Decimalk format
(k is a multiple of 32)

k > 128 > 32

p k— 4logy(k)] +13 | 9 x £ —2

t p—1 (p—1)x10/3

w k—t—1 k—t—6

€max vl 1 3 x 2wl

€min 1 — emax 1 — emax

b €max €max + P — 2

Table 3.21: Parameters of the interchange formats. |u| is u rounded to the nearest
integer, t is the trailing significand width, w is the width of the exponent field for
the binary formats, and the width of the combination field minus 5 for the decimal
formats, and b is the exponent bias [187], (©QIEEE, 2008, with permission).

] Format H P \ t \ w \ €min \ €max \ b ‘
binary256 237 | 236 | 19 | —262142 +262143 262143
binary1024 || 997 | 996 | 27 | —67108862 | +67108863 | 67108863

Table 3.22: Parameters of the binary256 and binary1024 interchange formats deduced

from Table 3.21. Variables p, t, w, €min, Emax, and b are the precision, the trailing sig-
nificant field length, the exponent field length, the minimum exponent, the maximum
exponent, and the exponent bias, respectively.

o An extendable precision format is a format whose precision and range are
defined under user or program control. The standard says that lan-
guage standards supporting extendable precision shall allow users to
specify p and epax (or, possibly, p only with constraints on epay), and
define epin = 1 — emax-

3.4.6 Attributes

The proposed revision of the standard defines attributes as parameters,
attached to a program block, that specify some of its numerical and excep-
tion semantics. The availability of rounding direction attributes is manda-
tory, whereas the availability of alternate exception-handling attributes, preferred
width attributes, value-changing optimization attributes, and reproducibility attri-
butes is recommended only. Language standards must provide for constant

94 Chapter 3. Floating-Point Formats and Environment

] Format H P \ t \ w45 \ €max \ b
decimal256 || 70 | 230 | 25 +1572864 1572932
decimal512 || 142 | 470 | 41 4103079215104 | 103079215244

Table 3.23: Parameters of the decimal256 and decimal512 interchange formats
deduced from Table 3.21. ewin (not listed in the table) equals 1 — emax. Variables
D, t, W, €min, €max, and b are the precision, the combination field length, the exponent
field length, the minimum exponent, the maximum exponent, and the exponent bias,
respectively.

Extended formats associated with:
Parameter || binary32 | binary64 | binary128 | decimal64 | decimall28

D> 32 64 128 22 40
€max = 1023 16383 65535 6144 24576
€min < —1022 —16382 —65534 —6143 —24575

Table 3.24: Extended format parameters in the IEEE 754-2008 standard [187]
(©IEEE, 2008, with permission).

specification of the attributes, and should also allow for dynamic-mode
specification of them.

Rounding direction attributes

e The directed rounding attributes correspond to the directed rounding
modes of IEEE 754-1985: the roundTowardPositive attribute corre-
sponds to the round-toward +oco mode of IEEE 754-1985, the round-
TowardNegative attribute corresponds to the round-toward —oo mode,
and the roundTowardZero attribute corresponds to the round-toward-
zero mode.

e Concerning rounding to nearest, the situation is somewhat different.
There are two rounding direction attributes to nearest, which differ in the
way of handling the case when an exact result is halfway between two
consecutive floating-point numbers:

- roundTiesToEven attribute: if the two nearest floating-point num-
bers bracketing the exact result are equally near, the one whose
least significant significand digit is even is delivered. This
corresponds to the round-to-nearest-even mode of IEEE 754-1985 (in
binary) and IEEE 854-1987. The case where these floating-point
numbers both have an odd least significant significand digit (this
can occur in precision 1 only, possibly when converting a number

3.4. The New IEEE 754-2008 Standard 95

such as 9.5 into a decimal string for instance) has been forgotten
in the standard, but for the next revision, it has been proposed!® to
deliver the one larger in magnitude;

- roundTiesToAway attribute: in the same case as above, the value
whose magnitude is larger is delivered.

For instance, in the decimal64 format (p = 16), if the exact result
of some arithmetic operation is 1.2345678901234565, then the returned
result should be 1.234567890123456 with the roundTiesToEven attribute, and
1.234567890123457 with the roundTiesToAway attribute.

The standard requires that an implementation (be it binary or decimal)
provide the roundTiesToEven and the three directed rounding attributes. A
decimal implementation must also provide the roundTiesToAway attribute
(this is not required for binary implementations).

Having roundTiesToEven as the default rounding direction attribute
is mandatory for binary implementations and recommended for decimal
implementations. Whereas roundTiesToEven has several advantages (see
[222]), roundTiesToAway is useful for some accounting calculations. This is
why it is required for radix-10 implementations only, the main use of radix 10
being financial calculations. For instance, the European Council Regulation
No. 1103/97 of 17 June 1997 on certain provisions relating to the introduc-
tion of the Euro sets out a number of rounding and conversion rules. Among
them,

If the application of the conversion rate gives a result which is exactly
half-way, the sum shall be rounded up.

Alternate exception-handling attributes

It is recommended (yet not required) that language standards define
means for programmers to possibly associate alternate exception-handling
attributes with a block. The alternate exception handlers will define lists of
exceptions (invalid operation, division by zero, overflow, underflow, inexact,
all exceptions) and specify what should be done when each of these excep-
tions is signaled. If no alternate exception-handling attribute is associated
with a block, the exceptions are treated as explained in Section 3.4.10 (default
exception handling).

Preferred width attributes

Consider an expression of the form

((a+0b) xc+(d+e)) x f,

13Gee http://speleotrove.com/misc/IEEE754-errata.html.

96 Chapter 3. Floating-Point Formats and Environment

where a, b, ¢, d, e, and f are floating-point numbers, represented in the same
radix, but possibly with different formats. Variables a, b, ¢, d, e, and f are
explicit, but during the evaluation of that expression, there will also be implicit
variables; for instance, the result 1 of the calculation of a + b, and the result
ro of the calculation of r; X ¢. When more than one format is available on
the considered system, an important question arises: In which format should
be represented these intermediate values? That point was not very clear in IEEE
754-1985. Many choices are possible for the “destination width” of an implicit
variable. For instance:

e one might prefer to always have these implicit variables in the largest
format provided in hardware. This choice will generally lead to more
accurate computations (although it is quite easy to build counterexam-
ples for which this is not the case);

e one might prefer to clearly specify a destination format. If that format is
available on all used platforms, this will increase the portability of the
program being written;

e one might require the implicit variables to be in the same format as
the operands (and, if the operands are of different formats, to be of the
widest format among the operands). This also will improve the porta-
bility of programs and will ease the use of smart algorithms such as
those presented in Chapters 4, 5, and 6.

The revised standard recommends (yet does not require) that the fol-
lowing preferred WidthNone and preferredWidthFormat attributes should be
defined by language standards.

preferredWidthNone attribute: When the user specifies a preferred Width-
None attribute for a block, the destination width of an operation is the
maximum of the operand widths.

preferred WidthFormat attributes: When the user specifies a preferred-
WidthFormat attribute for a block, the destination width is the max-
imum of the width of the preferredWidthFormat and the operand
widths.

Value-changing optimization attributes

Some optimizations (e.g., generation of FMAs, use of distributive and
associative laws) can enhance performance in terms of speed, and yet
seriously hinder the portability and reproducibility of results. Therefore, it
makes sense to let the programmer decide whether to allow them or not. The
value-changing optimization attributes are used in this case. The standard
recommends that language standards should clearly define what is called

3.4. The New IEEE 754-2008 Standard 97

the “literal meaning” of the source code of a program (that is, the order of the
operations and the destination formats of the operations). By default, the
implementations should preserve the literal meaning. Language standards
should define attributes for allowing or disallowing value-changing opti-
mizations such as:

e applying relations suchas z -y + x - 2 = = - (y + z) (distributivity), or
z+ (y + 2) = (x + y) + z (associativity);

¢ using FMAs for replacing, e.g., an expression of the form a - b + ¢ - d by
FMA(a, b, c-d);

e using larger formats for storing intermediate results.

Reproducibility attributes

The standard requires that conforming language standards should define
ways of expressing when reproducible results are required. To get repro-
ducible results, the programs must be translated into an unambiguous
sequence of reproducible operations in reproducible formats. As explained
in the standard [187], when the user requires reproducible results:

o the execution behavior must preserve what the standard calls the literal
meaning of the source code;'*

e conversions from and to external character strings must not bound the
value of the maximum precision H (see Section 3.4.9) of these strings;

e when the reproducibility of some operation is not guaranteed, the user
must be warned;

e only default exception handling is allowed.

3.4.7 Operations specified by the standard
Preferred exponent for arithmetic operations in the decimal format

Let Q(z) be the quantum exponent of a floating-point number z. Since some
numbers in the decimal format have several possible representations (the set
of their representations is a cohort), the standard specifies for each operation
which exponent is preferred for representing the result of a calculation. The
rule to be followed is:

e if the result of an operation is inexact, the cohort member of smallest
exponent is used;

“This implies that the language standards must specify what that literal meaning is: order
of operations, destination formats of operations, etc.

98 Chapter 3. Floating-Point Formats and Environment

o if the result of an operation is exact, then if the result’s cohort includes a
member with the preferred exponent (see below), that very member is
returned; otherwise, the member with the exponent closest to the pre-
ferred exponent is returned.

The preferred quantum exponents for the most common operations are:

e z+yand z —y: min(Q(z), Q(y));

o zxy:Qz)+Qy);

z/y: Qz) — Qy);

EMA(z,y, z) (ie., 2y + z using an FMA): min(Q(z) + Q(y), Q(2));
v [Q(x)/2].

scaleB and logB

For designing fast software for the elementary functions, or for efficiently
scaling variables (for instance, to write robust code for computing functions
such as /z2 + y?), it is sometimes very useful to have functions z - 3" and
|logg |||, where 3 is the radix of the floating-point system, n is an integer,
and z is a floating-point number. This is the purpose of the functions scaleB
and logB:

e scaleB(z,n) is equal to z - 87, correctly rounded®® (following the round-
ing direction attribute);

e when z is finite and nonzero, logB(x) equals [logg |||. When the output
format of logB is a floating-point format, logB(NaN) is NaN, logB(+00)
is +00, and logB(=£0) is —oo.

Operations with NaNs

We have seen in Sections 3.4.2 and 3.4.3 that in the binary interchange for-
mats, the p — 2 least significant bits of a NaN are not defined, and that in the
decimal interchange formats, the trailing significand bits of a NaN are not
defined. These bits can be used for encoding the payload of the NaN, i.e., some
information that can be transmitted through the arithmetic operation for
diagnosis purposes. To preserve that diagnosis information, it is required that
for an operation with quiet NaN inputs, other than minimum or maximum
operations, the returned result should be one of these input NaNs. Also, the
sign of a NaN is not interpreted.

In most cases, z - 3" is exactly representable so that there is no rounding at all, but requir-
ing correct rounding is the simplest way of defining what should be returned if the result is
outside the normal range.

3.4. The New IEEE 754-2008 Standard 99

Miscellaneous

The standard defines many very useful operations, see [187]. Examples are
nextUp(z) (smallest floating-point number in the format of z that is greater
than x), maxNum(z,y) (maximum of x and y), and class(z) (tells if z is a
signaling NaN, a quiet NaN, —oo, a negative normal number, a negative
subnormal number, —0, 40, a positive subnormal number, a positive normal
number, or +00), etc.

3.4.8 Comparisons

Floating-point data represented in different formats specified by the standard
must be comparable if these formats have the same radix: the standard does not
require that comparing a decimal and a binary number should be possible
without a preliminary conversion.!® Exactly as in IEEE 754-1985, four rela-
tions are possible: less than, equal, greater than, and unordered, and a compari-
son is delivered either as one of these four relations, or as a Boolean response
to some predicate that gives the desired comparison.

3.4.9 Conversions

Concerning input and output conversions (that is, conversions between an
external decimal or hexadecimal character sequence and an internal binary or
decimal format), the new standard has requirements that are much stronger
than those of IEEE 754-1985. They are described as follows.

1. Conversions between an external decimal character sequence and a
supported decimal format: Input and output conversions are correctly
rounded (according to the applicable rounding direction).

2. Conversions between an external hexadecimal character sequence and
a supported binary format: Input and output conversions are also cor-
rectly rounded (according to the applicable rounding direction), but
such conversions are optional. They have been specified to allow any
binary number to be represented exactly by a finite character sequence.

3. Conversions between an external decimal character sequence and a
supported binary format: first, for each supported binary format,
define a value p;(as the minimum number of decimal digits in the deci-
mal external character sequence that allows for an error-free write-read

16Such comparisons appear extremely rarely in programs designed by sensible beings, and
would be very tricky to implement without preliminary conversion. Also, if we really need
such a comparison, we do not lose much information by performing a preliminary conversion.
Assume that the binary and decimal numbers to be compared are x> (in format Fz) and y10 (in
format F'p). Define y2 as y19 correctly rounded to format F5. Then z2 > y10 implies z2 > yo,
and z2 < y10 implies z2 < yo.

100 Chapter 3. Floating-Point Formats and Environment

format || binary32 | binary64 | binary128
P10 9 17 36

Table 3.25: Minimum number of decimal digits in the decimal external charac-
ter sequence that allows for an error-free write-read cycle, for the various basic
binary formats of the standard. See Section 2.7 page 40 for further explanation.

cycle, as explained in Section 2.7. Table 3.25, which gives the value of
pio from the various basic binary formats of the standard, is directly
derived from Table 2.3 (page 44).

Then, define a value H so that H is preferably unbounded, and in any
case, H is larger than or equal to 3 plus the largest value of p;(for all
supported binary formats.

The conversions must be correctly rounded to and from external char-
acter sequences with any number of significant digits between 1 and
H (which implies that these conversions must always be correctly
rounded if H is unbounded).

For output conversions, if the external decimal format has more than
H significant digits, then the binary value is correctly rounded to H dec-
imal digits and trailing zeros are appended to fill the output format.
For input conversions, if the external decimal format has more than H
significant digits, then the internal binary number is obtained by first
correctly rounding the value to H significant digits (according to the
applicable rounding direction), then by correctly rounding the resulting
decimal value to the target binary format (with the applicable rounding
direction). In the directed rounding directions, these rules allow inter-
vals to be respected.

More details are given in the standard [187].

3.4.10 Default exception handling

The revised standard supports the same five exceptions listed in Sections 2.3
and 3.1.5, with minor differences for the underflow.

Invalid operation

This exception is signaled each time there is no satisfactory way of defining
the result of some operation. The default result of such an operation is a quiet
NaN, and it is recommended that its payload contain some diagnostic infor-
mation. The operations that lead to an invalid operation exception are:

e an operation on a signaling NaN (except for some conversions);

3.4. The New IEEE 754-2008 Standard 101

¢ a multiplication of the form 0 x oo or oo x 0;

e an FMA of the form FMA(0, o0, z) (i.e., 0 x oo + z) or FMA(, 0,),
unless z is a quiet NaN (in that last case, whether the invalid operation
exception is signaled is implementation defined);

e additions/subtractions of the form (—oc0) + (+00) or (+00) — (400);

e FMAs that lead to the subtraction of infinities of the same sign (e.g.,
FMA(+o0, —1, +0);

e divisions of the form 0/0 or co/o0;
e remainder(z,0), where x is not a NaN;
e remainder(co, y), where y is not a NaN;

e conversion of a floating-point number z to an integer, where x is £oo,
or a NaN, or when the result would lie outside the range of the chosen
integer format;

e comparison using unordered-signaling predicates (called in the
standard compareSignalingEqual, compareSignalingGreater, compare-
SignalingGreaterEqual, compareSignalingless, compareSignaling-
LessEqual, compareSignalingNotEqual, compareSignalingNotGreater,
compareSignalinglLessUnordered, compareSignalingNotLess, and
compareSignalingGreaterUnordered), when the operands are un-
ordered;

e logB(z) where z is NaN or oo;

e logB(0) when the output format of logB is an integer format (when it is
a floating-point format, the value to be returned is —o0).

Division by zero

The words “division by zero” are misleading, since this exception is sig-
naled whenever an exact infinite result is obtained from an operation on finite
operands. The most frequent case, of course, is the case of a division by zero,
but this can also appear, e.g., when computing the logarithm of zero or the
arctanh of 1. An important case is logB(0) when the output format of logB is
a floating-point format.

Overflow

Let us call an intermediate result what would have been the rounded result
if the exponent range were unbounded. The overflow exception is signaled
when the absolute value of the intermediate result is strictly larger than the

102 Chapter 3. Floating-Point Formats and Environment

largest finite number 2 = (8 — B=P) . @emax, When an overflow occurs, the
returned result depends on the rounding direction attribute:

e it will be £oo with the two “round-to-nearest” attributes, namely
roundTiesToEven and roundTiesToAway, with the sign of the interme-
diate result;

o it will be £ with the roundTowardZero attribute, with the sign of the
intermediate result;

e it will be +(2 for a positive intermediate result and —oo for a negative
one with the roundTowardNegative attribute;

o it will be —(2 for a negative intermediate result and +oo for a positive
one with the roundTowardPositive attribute.

Furthermore, the overflow flag is raised and the inexact exception is signaled.
It is important to understand three consequences of these rules:

e with the two “round-to-nearest” attributes, if the absolute value of the
exact result of an operation is greater than or equal to

1
1511’) = Q+ 5 ulp(Q),

gem (ﬂ -3

then an infinite result is returned, which is not what one could expect
from a naive interpretation of the words “round to nearest”;

e “overflow” is not equivalent to “infinite result returned”;

e with the roundTowardZero attribute, “overflow” is not equivalent to
“£Q is returned”: if the absolute value of the exact result of some oper-
ation is larger than or equal to), and strictly less than 3°max, then £}
is returned, and yet there is no overflow.

Underflow

The underflow exception is signaled when a nonzero result whose absolute
value is strictly less than S“»i» is computed.

e For binary formats, unfortunately, there remains some ambiguity in the
revised standard!” (the same as in IEEE 754-1985). See the Note on
underflow in Section 2.1, page 18, for more explanation. The underflow
can be signaled either before rounding, that is, when the absolute value of
the exact result is nonzero and strictly less than 2°»i», or after rounding,

7This unfortunate choice probably results from the desire to keep existing implementations
conforming to the standard.

3.4. The New IEEE 754-2008 Standard 103

that is, when the absolute value of a nonzero result computed as if the
exponent range were unbounded is strictly less than 2°»i», In rare cases,
this can make a difference, for instance, when computing

FMA (= gnin, 771, onin)

in rounding to nearest, an underflow will be signaled if this is done
before rounding, but not if it is done after rounding.

e For decimal formats, there is no ambiguity and the underflow result is
signaled before rounding, i.e., when the absolute value of the exact result
is nonzero and strictly less than 10°mi».

The result is always correctly rounded: the choice (in the binary case) of how
the underflow is detected (that is, before or after rounding) has no influence
on the delivered result.

In case of underflow, if the result is inexact, then the underflow flag
is raised and the inexact exception is signaled. If the result is exact, then
the underflow flag is not raised. This might sound strange, but this was
a clever choice of the floating-point working group: the major use of the
underflow flag is for warning that the result of some operation might not
be very accurate—in terms of relative error. Thus, raising it when the opera-
tion is exact would be a needless warning. This should not be thought of as
an extremely rare case: indeed, Theorem 3 page 124 shows that with any of the
two round-to-nearest rounding direction attributes, whenever an addition or
subtraction underflows, it is performed exactly.

Inexact

If the result of an operation differs from the exact result, then the inexact
exception is signaled. The correctly rounded result is returned.

3.4.11 Recommended transcendental functions

The revised standard recommends (yet does not require) that the following
functions should be correctly rounded: e”, e* — 1, 2%, 2* — 1, 10%, 10* — 1, In(x),
logy (), logio(x), In(1 + x), logy (14 x), log;o(1 4+), /22 + y?, 1/v/xz, 1+)",
2", /™ (n is an integer), sin(nx), cos(mx), arctan(x) /7, arctan(y/z) /, sin(x),
cos(z), tan(x), arcsin(zx), arccos(z), arctan(z), arctan(y/z), sinh(x), cosh(x),
tanh(z), sinh~!(x), cosh™(z), tanh ! (z).

See Chapter 12 for an introduction to the various issues linked with the
correct rounding of transcendental functions.

104 Chapter 3. Floating-Point Formats and Environment

3.5 Floating-Point Hardware in Current Processors

Virtually all recent computers are able to support the IEEE 754-1985 standard
efficiently through a combination of hardware and software.

3.5.1 The common hardware denominator

Current processors of desktop computers offer hardware double-precision
(or binary64) operators for floating-point addition, subtraction, and multipli-
cation and at least hardware assistance for division and square root. Peak
performance is typically between 2 and 4 double-precision floating-point
operations per clock cycle for +, —, and x, with much slower division
and square root [310]. However, most processors go beyond this common
denominator and offer larger precision and/or faster operators. The follow-
ing sections detail these extensions.

3.5.2 Fused multiply-add

The IBM Power/PowerPC, HP /Intel IA-64, and HAL /Fujitsu SPARC64 VI
instruction sets define a fused multiply-add (FMA) instruction, which performs
the operation a x b+ ¢ with only one rounding error with respect to the exact
result (see Section 2.8 page 51).18 This is actually a family of instructions that
includes useful variations such as fused multiply-subtract.

These operations are compatible with the FMA defined by IEEE 754-
2008. As far as this operator is concerned, IEEE 754-2008 standardized already
existing practice.

The processors implementing these instruction sets (the IBM POWER
family, PowerPC processors from various vendors, the HP/Intel Itanium
family for IA-64) provide hardware FMA operators, with latencies compa-
rable to classical 4+ and x operators. For illustration, the FMA latency is 4
cycles in Itanium?2, 7 cycles on Power6, and both processors are capable of
launching 2 FMA operations at each cycle.

There should soon be FMA hardware in the processors implementing
the IA-32 instruction set: they are defined in the SSE5 extensions announced
by AMD and in the AVX extensions announced by Intel.

3.5.3 Extended precision

The legacy x87 instructions of the IA-32 instruction set can operate on a
double-extended precision format with 64 bits of significand and 15 bits of

18Warning! The instructions called FMADDs and so on from SPARC64 V, which share the same
name and the same encoding with SPARC64 VI, are not real FMA instructions as they perform
two roundings. [140, page 56]

3.5. Floating-Point Hardware in Current Processors 105

exponent. The corresponding floating-point operators can be instructed to
round to single, to double, or to double-extended.

The IA-64 instruction set also defines several double-extended formats,
including one 80-bit format compatible with IA-32 and one 82-bit format
with a 64-bit significand and a 17-bit exponent. The two additional exponent
bits are designed to avoid intermediate overflows in certain computations on
80-bit operands.

As we write this book, no processors have full hardware support for the
binary128 format. Some instruction sets (SPARC, POWER) have instructions
operating on binary128 data, but on current hardware these instructions trap
to software emulation.

3.5.4 Rounding and precision control

In most processor instruction sets, including IA-32 (whose floating-point
specification was designed at the same time as the IEEE 754-1985 standard),
both the rounding precision (single, double, double-extended if available)
and the rounding direction attributes are specified via a global status/con-
trol register (called FPSR, Floating-Point Status Register on 1A-32). This global
register defines the behavior of all the floating-point instructions.

Changing the value of this control word, however, is extremely costly
on recent processors. First, it requires at least one instruction. More impor-
tantly, it has the effect of flushing the floating-point pipeline: before launching
any new floating-point instruction with the new value of the control register,
all current floating-point instructions have to terminate with the old value.
Unfortunately, some applications, such as interval arithmetic [284], need
frequent rounding direction changes. This performance issue could not be
anticipated in 1985, when processor architectures were not pipelined yet. It
also affects most processor instruction sets designed in the 1980s and 1990s.

More recent instruction sets (most notably HP /Intel IA-64 [88] and Sun
Microsystems” VIS extension to the SPARC instructions set [397]) permit
changing the rounding direction attribute on a per-instruction basis with-
out any performance penalty. Technically, the rounding direction attribute is
defined in the instruction word, not in a global control register. Unfortunately,
the rounding direction specification in the IEEE 754-1985 standard (and hence
in the language standards that were later designed to implement it) reflects
the notion of a global status word. This means in practice that per-instruction
rounding specification cannot be accessed from current high-level languages
in a standard, portable way. The new IEEE 754-2008 standard corrects this,
but it will take some time to percolate in programming languages. This issue
will be addressed in more detail in Chapter 7, Languages and Compilers.

Note that both with VIS and IA-64, it is still possible to specify that the
rounding direction is taken from a global status word.

106 Chapter 3. Floating-Point Formats and Environment

3.5.5 SIMD instructions

Most recent instruction sets also offer single instruction, multiple data (SIMD)
instructions. One such instruction applies the same operation to all the ele-
ments of a vector of data kept in a wide register (64 to 256 bits currently).

Such a wide register can be considered as a vector of 8-bit, 16-bit,
or 32-bit integers. SIMD instructions operating on such integer vectors are
often referred to as multimedia instructions, because typical applications
include image processing (where the color of one pixel may be defined by
three 8-bit integers giving the intensity of the red, green, and blue compo-
nents), and sound processing (where sound data is commonly represented
by 16-bit sound samples).

A wide register may also be considered as a vector of 16-bit, 32-bit, or
64-bit floating-point numbers (the 16-bit formats are used for graphics and
gaming, so that the binary16 format in IEEE 754-2008 actually standardized
existing practice). Examples include AltiVec for the POWER/PowerPC fam-
ily, and for the IA-32 instruction set, 3DNow! (64-bit vector), then SSE to SSE5
(128-bit vector), then AVX (256-bit vector). Each of these extensions comes
with too many new instructions to be detailed here (not only arithmetic oper-
ations but also data movement inside a vector, and complex operations such
as scalar products or sums of absolute values of differences). In addition, in
the IA-32 family, some extensions have been announced by AMD and some
by Intel, and both vendors eventually implement a common subset.

As we write this book, and as far as floating-point instructions are con-
cerned, this common subset on 64-bit IA-32 processors is the SSE2 extension.
It defines sixteen 128-bit registers (called XMMO to XMM15), each of which
can be considered either as a vector of four binary32 or as a vector of two
binary64 numbers. SSE2 instructions are fully IEEE 754-1985 compliant.

The most recently announced extensions (SSE5 on the AMD side and
AVX on the Intel side) include FMA instructions. As we write this book, no
processors implement these extensions yet.

3.5.6 Floating-point on x86 processors: SSE2 versus x87

The Intel 8087 co-processor was a remarkable achievement when it was
tirst produced. Twenty years later, however, the floating-point instructions it
defined are showing their age.

e There are only 8 floating-point registers, and their organization as a
stack leads to data movement inefficiencies.

e The risk of double rounding has been exposed in Section 3.3.1.

e The dynamic rounding precision can introduce bugs in modern soft-
ware, which is almost always made up of several components (dy-
namic libraries, plug-ins). For instance, the following bug in Mozilla’s

3.5. Floating-Point Hardware in Current Processors 107

Javascript engine was discovered in 2006: if the rounding precision was
reduced to single precision by some plug-in, then the js_dtoa function
(double-to-string conversion) could overwrite memory, making the ap-
plication behave erratically, e.g., crash. The cause was the loop exit con-
dition being always false due to an unexpected floating-point error.'

¢ Another subtle issue has not been mentioned yet. The x87 FPSR reg-
ister defines the rounding precision (the significand size) but not the
exponent size, which is always 15 bits. Even when instructed to round
to single precision, the floating-point unit (FPU) will signal overflows
or underflows only for numbers out of the double-extended precision
exponent range. True single-precision or double-precision over-
flow /underflow detection is performed only when writing the content
of a floating-point register to memory. This two-step overflow /under-
flow detection can lead to subtle software problems, just like double
rounding. It may be avoided only by writing all the results to mem-
ory, unless the compiler can prove in advance that there will be no
overflows.

The SSE2 instructions were designed more recently. They may result in
computations less accurate than with the legacy x87 instructions, as they do
not offer extended precision. However, in addition to the obvious perfor-
mance advantage, they are fully IEEE 754-1985 compliant, and they permit
better reproducibility (thanks to the static rounding precision) and portabil-
ity with other platforms. Extended precision is still possible since the legacy
x87 unit is still available. Moreover x87-only meant that one had the almost
exclusive choice between portability (the processor being configured in dou-
ble precision) and (in general) better accuracy, with the risk of breaking some
software components when changing the x87 rounding precision.

With both SSE2 and x87 available, SSE2 can be used for double-precision
computations and the x87 can be configured in extended precision in order
to have higher precision for platform-specific applications. This is the choice
made by GCC and GNU/Linux for the x86_64 architecture, as SSE2 is always
available on this architecture.

3.5.7 Decimal arithmetic

As we write this book, only high-end processors from IBM include hard-
ware decimal support. For illustration, each POWERG6 processor core includes
one decimal FPU capable of decimal128 computations, in addition to its two
binary64 FMA units and its SIMD VMX unit capable of 4 parallel binary32
operations [123]. However, decimal operations are much slower than binary
ones, with variable latencies of several tens of cycles (see Table 3.26) com-
pared to the fixed latency of 7 cycles for the binary64 FMA.

Y CVE-2006-6499 / https://bugzilla.mozilla.org/show_bug.cgi?id=358569

108 Chapter 3. Floating-Point Formats and Environment

] Cycles | decimal64 operands | decimal128 operands |

addition/subtraction 9to 17 11to 19
multiplication 19+ N 21 4+ 2N
division 82 154

Table 3.26: Execution times of decimal operations on POWERG, from [123]. N is the
number of digits in the first operand, excluding leading zeros.

3.6 Floating-Point Hardware in Recent Graphics
Processing Units

Graphics processing units (GPUs), initially highly specialized integer only
processors, have evolved in recent years towards more and more pro-
grammability and increasingly powerful arithmetic capabilities.

Binary floating-point units appeared in 2002-2003 in the GPUs of the two
main vendors, ATI (with a 24-bit format in the R300 series) and Nvidia (with
a 32-bit format in the N'V30 series). In both implementations, addition and
multiplication were incorrectly rounded: according to a study by Collange et
al. [79], instead of rounding the exact sum or product, these implementations
typically rounded a p + 2-bit result to the output precision of p bits.

Still, these units fueled interest in GPUs for general-purpose computing
(GPGPU), as the theoretical floating-point performance of a GPU is up to two
orders of magnitude that of a processor (at least in binary32). In parallel, pro-
grammability was also improved, notably to follow the evolution to version
10 of Microsoft’s DirectX application programming interface. Specific devel-
opment environments also appeared: first Nvidia’s C-based CUDA, soon fol-
lowed by the Khronos Group’s OpenCL.

Between 2007 and 2009, both ATI (now AMD) and Nvidia introduced
new GPU architectures with, among other things, improved floating-point
support. Addition and multiplication are now correctly rounded, the preci-
sions supported are binary32 and binary64, and the Nvidia GT200 architec-
ture even offers correctly rounded binary64 FMAs—which are also supported
by the OpenCL programming environment—with subnormal support and
the four IEEE 754-1985 rounding modes. As we write this book, the latest
AMD GPUs (RV770) are a bit behind, with no subnormal support, no FMA,
and round to nearest only. It is worth mentioning that GPUs also include
hardware acceleration of some elementary functions [311].

Full IEEE-754 compliance in hardware is still not there, though. Some
issues are inherited from older architectures: for instance, on the GT200,
binary32 support is less compliant than binary64, lacking subnormal sup-
port, the four rounding modes, and hardware FMA. Division and square
root are still incorrectly rounded in some cases. Flags and exceptions are not
supported.

3.7. Relations with Programming Languages 109

However, as we write this book, it is clear that the trend in GPUs is no
longer to sacrifice IEEE 754 compliance to performance. With the availability
of IEEE 754-2008, this trend toward better quality floating-point in GPUs is
expected to continue.

3.7 Relations with Programming Languages

The IEEE 754-1985 standard was targeted mainly to processor vendors and
did not focus on programming languages. In particular, it did not define
bindings (i.e., how the IEEE 754 standard is to be implemented in the lan-
guage), such as the mapping between native types of the language and
the formats of IEEE 754 and the mapping between operators/functions of
the language and the operations defined by IEEE 754. The IEEE 754-1985
standard did not even deal with what a language should specify or what a
compiler is allowed to do. This has led to many misinterpretations, with users
often thinking that the processor will do exactly what they have written in the
programming language. Chapter 7 will survey in more detail floating-point
issues in mainstream programming languages.

The IEEE 754-2008 standard clearly improves the situation, mainly in
its clauses 10 (Expression evaluation) and 11 (Reproducible floating-point results).
For instance, it deals with the double-rounding problem (observed on x87,
described in Section 3.5.6): “Language standards should disallow, or provide
warnings for, mixed-format operations that would cause implicit conversion
that might change operand values.”

3.7.1 The Language Independent Arithmetic (LIA) standard

Before these shortcomings were tackled in the revision of the IEEE 754 stan-
dard, a new series of standards, Language Independent Arithmetic, had been
developed to fill this gap. This series focuses on the properties of the arith-
metic together with the language and its implementation, and does not define
formats. It consists of three parts.

e LIA-1 (ISO/IEC 10967-1:1994) [189] defines properties of integer and
floating-point arithmetic. It does not go beyond the four arithmetic
operations (+, —, X, and /). However the floating-point system can be
rather general: the radix is any integer larger than or equal to 2 (but it
should be even), the precision is any integer larger than or equal to 2,
and the minimum and maximum exponents must satisfy some loose
bounds. A parameter iec_559 can be set to true if the arithmetic con-
forms to the IEEE 754-1985 standard (a.k.a. IEC 559).

110 Chapter 3. Floating-Point Formats and Environment

o LIA-2 (ISO/IEC 10967-2:2001) [191] adds support for elementary
floating-point functions. It still has a parameter for IEEE 754-1985 sup-
port. For instance, LIA-2 lets ties in the rounding-to-nearest mode be
implementation defined (it just requires them to be sign symmetric),
but if the parameter is true, then ties must be rounded to even.

e LIA-3 (ISO/IEC 10967-3:2006) [193] adds support for complex integer
and floating-point arithmetic, and complex elementary functions.

Each part provides examples of bindings for various programming lan-
guages (e.g., Ada, Basic, C, Common Lisp, FORTRAN, Modula-2, Pascal,
PL/I). But it is up to languages to define the bindings, such as what the ISO
C99 standard does in its LIA-1 compatibility annex.

3.7.2 Programming languages

The requirements of the IEEE 754 and LIA standards do not depend on partic-
ular languages. Languages can specify how they conform to some standard
by providing bindings, which can depend on the implementation.

For instance, it has commonly been believed that the double type
of the ISO C language must correspond everywhere to the double-
precision/binary64 binary format of the IEEE 754 standard, but this prop-
erty is implementation defined, and behaving differently is not a bug. Indeed
the destination (as defined by the IEEE 754 standard) does not necessarily
correspond to the C floating-point type associated with the value, and a C
implementation must provide a macro FLT_EVAL_METHOD, which determines
how operations and constants are evaluated. This is the reason why both im-
plementations mentioned in Section 3.5.6 are valid (assuming the value of
FLT_EVAL_METHOD is correct).

The consequences are that one can get different results on different
platforms. But even when dealing with a single platform, one can also get
unintuitive results, as shown in Goldberg’s article with the addendum Dif-
ferences Among IEEE 754 Implementations [148] or in Chapter 7. More details
will be given in this chapter. But the bottom line is that the reader should
be aware that a language will not necessarily follow standards as expected
a priori. Implementing the algorithms given in this book may require special
care in some environments (languages, compilers, platforms, and so on), at
least until the reproducibility attributes from the IEEE 754-2008 standard (see
Section 3.4.6) are supported.

3.8 Checking the Environment

Checking a floating-point environment (for instance, to make sure that some
compiler optimization option is compliant with one of the IEEE standards)

3.8. Checking the Environment 111

may be important for critical applications. Circuit manufacturers
increasingly use formal proofs to make sure that their arithmetic algo-
rithms are correct [283, 355, 356, 357, 169, 170]. Also, when the algorithms
used by some environment are known, it is possible to design test vectors
that allow one to explore every possible branching. Typical examples are
methods for making sure that every element of the table of an SRT division or
square root algorithm is checked. Checking the environment is more difficult
for the end user, who generally does not have any access to the algorithms
that have been used. When we check some environment as a “black box”
(that is, without knowing the code, or the algorithms used in the circuits)
there is no way of being absolutely sure that the environment will always
follow the standards. Just imagine a buggy multiplier that always returns the
right result but for one couple of input operands. The only way of detecting
that would be to check all possible inputs, which, in a pinch, is possible in the
binary32 format, but certainly not in the binary64 or binary128 formats. This
is not pure speculation: in single precision, the divider of the first version
of the Pentium circuit would produce a wrong quotient with probability
around 2.5 x 107! [290, 122], assuming random inputs.

Since the 1980s, various programs have been designed for determining
the basic parameters of a floating-point environment and assessing its quality.

3.8.1 MACHAR

MACHAR was a program, written in FORTRAN by W. Cody [78], whose
purpose was to determine the main parameters of a floating-point format
(radix, “machine epsilon,” etc.). This was done using algorithms similar to
the one we give in Section 4.1.1 for finding the radix 3 of the system. Now, it
is interesting for historical purposes only.

In their book on elementary functions, Cody and Waite [75] also gave
methods for estimating the quality of an elementary function library. Their
methods were based on mathematical identities such as

sin(3z) = 3sin(z) — 4sin®(z). (3.4)

These methods were useful at the time they were published. And yet,
they can no longer be used with current libraries. Recent libraries are either
correctly rounded or have a maximal error close to % ulp. Hence, they are far
more accurate than the methods that are supposed to check them.

3.8.2 Paranoia

Paranoia [215] is a program originally written in Basic by W. Kahan, and
translated to Pascal by B.A. Wichmann and to C by T. Sumner and D. Gay
in the 1980s, to check the behavior of floating-point systems. It finds the main
properties of a floating-point system (such as its precision and its exponent

112 Chapter 3. Floating-Point Formats and Environment

range), and checks if underflow is gradual, if the arithmetic operations are
properly implemented, etc. It can be obtained at http://www.netlib.org/
paranoia/. Below is an example of Paranoia’s output. The program was run
on the following environment:

e hardware: Intel 32 bits Xeon;

e operating system: Debian/Linux Etch;

e compiler: GCC 4.1.2 20061115 (as per "gcc -v");

e compilation command line: gcc -0 paranoia paranoia.c -1lm.

The produced code uses the 387 (i.e., double-extended precision) registers
(see below). Notice that no optimization switch was set (default is -00).
Using more aggressive compilation options (-01, -02, etc.) only leads to more
failures, defects, and flaws. Since Paranoia is rather verbose, we suppressed
some parts of the output.?’ We interleave comments in Paranoia’s output.

(...)

Running this program should reveal these characteristics:
Radix =1, 2, 4, 8, 10, 16, 100, 256 ...
Precision = number of significant digits carried.
U2 = Radix/Radix”Precision = One Ulp
(OneUlpnit in the Last Place) of 1.000xxx .
Ul = 1/Radix”Precision = One Ulp of numbers a little
less than 1.0 .
Adequacy of guard digits for Mult., Div. and Subt.
Whether arithmetic is chopped, correctly rounded, or
something else
for Mult., Div., Add/Subt. and Sqrt.
Whether a Sticky Bit used correctly for rounding.
UnderflowThreshold = an underflow threshold.
EO and PseudoZero tell whether underflow is abrupt,
gradual, or fuzzy.
V = an overflow threshold, roughly.
VO tells, roughly, whether Infinity 1is represented.
Comparisons are checked for consistency with subtraction
and for contamination with pseudo-zeros.
Sgrt is tested. Y~X is not tested.

(...)

The program attempts to discriminate among
FLAWs, like lack of a sticky bit,
Serious DEFECTs, like lack of a guard digit, and
FAILUREs, like 242 == 5 .

They are indicated by “(...)".

3.8. Checking the Environment 113

Failures may confound subsequent diagnoses.
(...)

BASIC version of this program (C) 1983 by Prof. W. M. Kahan;
see source comments for more history.

(...)

Program is now RUNNING tests on small integers:
-1, o, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are 0.K.

Searching for Radix and Precision.
Radix = 2.000000 .
Closest relative separation found is Ul = 1.1102230e-16 .

(...)
The number of significant digits of the Radix is 53.000000 .

Paranoia detects that the arithmetic used has radix 2, precision 53 (it is the
IEEE 754-1985 double-precision format).

Some subexpressions appear to be calculated extra
precisely with about 11 extra B-digits, i.e.
roughly 3.31133 extra significant decimals.

That feature is not tested further by this program.

Interestingly enough, Paranoia detects that subexpressions are evaluated
with 11 extra binary digits. This corresponds to the 64-bit double-extended
precision significands of the 387 registers. This message disappears when
the -march=pentium4 -mfpmath=sse switches are used on the gcc command
line as, instead, they trigger the SSE2 64-bit floating-point registers with 53-
bit significands. More information on compilation options will be given in
Chapter 7.

On the corresponding 64-bit platform (an Intel Core 2 Quad processor,
matching 64-bit versions of the system and the compiler), defaults are differ-
ent: one has to use the -mfpmath=387 switch to get the same message about
extra bits.

(...)

Subtraction appears to be normalized, as it should be.
Checking for guard digit in *, /, and -.

*, /, and - appear to have guard digits, as they should.
Checking rounding on multiply, divide and add/subtract.
* 1s neither chopped nor correctly rounded.
/ 1s neither chopped nor correctly rounded.
Addition/Subtraction neither rounds nor chops.
Sticky bit used incorrectly or not at all.

114 Chapter 3. Floating-Point Formats and Environment

FLAW: lack(s) of guard digits or failure(s) to correctly
round or chop (noted above) count as one flaw in the
final tally below.

This FLAW, certainly due to double roundings, disappears when the
-march=pentium4 -mfpmath=sse switches are used on the gcc command line
as, instead, they trigger the SSE2 64-bit floating-point registers with a 53-bit
significand.

Does Multiplication commute? Testing on 20 random pairs.
No failures found in 20 integer pairs.

Running test of square root(x).

Testing if sqrt(X x X) == X for 20 Integers X.

Test for sqrt monotonicity.

sqrt has passed a test for Monotonicity.

Testing whether sqrt is rounded or chopped.

Square root is neither chopped nor correctly rounded.

Observed errors run from -5.0000000e-01 to 5.0000000e-01 ulps.

Note that the errors, although larger than 1/2ulp (otherwise, square root
would be correctly rounded!) are so close to 1/2ulp that, when printed in
Paranoia’s output format, they cannot be differentiated from 1/2ulp. This
warning disappears when moving to the corresponding 64-bit platform (an
Intel Core 2 Quad processor, with 64-bit versions of the system and the com-
piler, but unchanged compiler switches).

Testing powers Z*i for small Integers Z and 1i.
. no discrepancies found.

Seeking Underflow thresholds UfThold and EO.

Smallest strictly positive number found is EO = 4.94066e-324 .
Since comparison denies Z = 0, evaluating (Z + Z) / Z should
be safe.

What the machine gets for (Z + Z) / Z is
2.00000000000000000e+00 .

This is 0.K., provided Over/Underflow has NOT just been
signaled.

Underflow is gradual; it incurs Absolute Error =

(roundoff in UfThold) < EO.

The Underflow threshold is 2.22507385850720188e-308, below
which calculation may suffer larger Relative error than
merely roundoff.

Since underflow occurs below the threshold

UfThold = (2.00000000000000000e+00)"(-1.02200000000000000e+03)
only underflow should afflict the expression
(2.00000000000000000e+00) ~ (-2.04400000000000000e+03) ;
actually calculating yields: 0.00000000000000000e+00 .

This computed value is 0.K.

Testing X*((X + 1) / (X - 1)) vs. exp(2) =

3.8. Checking the Environment 115

7.38905609893065218e+00 as X -> 1.

DEFECT: Calculated 7.38905609548934539e+00 for

(1 + (-1.11022302462515654e-16) ~ (-1.80143985094819840e+16);
differs from correct value by -3.44130679508225512e-09 .

This much error may spoil financial

calculations involving tiny interest rates.

Again, this DEFECT disappears when moving to the corresponding 64-bit
platform (an Intel Core 2 Quad processor, with 64-bit versions of the system
and the compiler, but unchanged compiler switches).

Testing powers Z~Q at four nearly extreme values.
... ho discrepancies found.

(...)
Searching for Overflow threshold:
This may generate an error.

Can ‘Z = -Y' overflow?
Trying it on Y = -inf .
Seems 0.K.

Overflow threshold is V 1.79769313486231571e+308 .
Overflow saturates at VO = inf .

No Overflow should be signaled for

V x 1 = 1.79769313486231571e+308

nor for V./ 1 = 1.79769313486231571e+308 .

Any overflow signal separating this * from the one
above is a DEFECT.

(...)

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if
you wish.

Do you wish to compute 1 / 07?

0.K.

Do you wish to compute 0 / 07

0.K.

(...)

The number of DEFECTs discovered = 1.
The number of FLAWs discovered = 1.

The arithmetic diagnosed may be Acceptable
despite inconvenient Defects.

3.8.3 UCBTest

UCBTest can be obtained at http://www.netlib.org/fp/ucbtest.tgz. Itisa
collection of programs whose purpose is to test certain difficult cases of the
IEEE floating-point arithmetic. Paranoia is included in UCBTest. The “diffi-
cult cases” for multiplication, division, and square root (i.e., almost hardest-
to-round cases: input values for which the result of the operation is very near

116 Chapter 3. Floating-Point Formats and Environment

a breakpoint of the rounding mode) are built using algorithms designed by
Kahan, such as those presented in [324].

3.8.4 TestFloat

J. Hauser designed a software implementation of the IEEE 754-1985 floating-
point arithmetic. The package is named SoftFloat and can be downloaded
athttp://www.jhauser.us/arithmetic/SoftFloat.html. He also designed a
program, TestFloat, aimed at testing whether a system conforms to IEEE 754-
1985. TestFloat compares results returned by the system to results returned
by SoftFloat.

3.8.5 IeeeCC754

UCBTest focuses on the precisions specified by the IEEE 754-1985 standard.
Verdonk, Cuyt and Verschaeren [418, 419] present a new tool, leeeCC754,
acronym for IEEE 754 Compliance Checker, that is precision and range indepen-
dent. It is based on a huge set of precision- and range-independent test vec-
tors. It can be downloaded at http://www.cant.ua.ac.be/old/ieeecc754.
html.

3.8.6 Miscellaneous

SRTEST is a FORTRAN program written by Kahan for checking imple-
mentation of SRT [125, 126] division algorithms. It can be accessed on
Kahan’s web page, at http://www.cs.berkeley.edu/~wkahan/srtest/.
Some useful software, written by Nelson H.F. Beebe, can be found at http://
www.math.utah.edu/~beebe/software/ieee/. MPCHECK is a program writ-
ten by Revol, Pélissier, and Zimmermann. It checks mathematical function
libraries (for correct rounding, monotonicity, symmetry, and output range). It
can be downloaded at http://www.loria.fr/~zimmerma/mpcheck/ or https:
//gforge.inria.fr/projects/mpcheck/.

Part 11

Cleverly Using Floating-Point
Arithmetic

Chapter 4

Basic Properties and Algorithms

N THIS CHAPTER, we present some short yet useful algorithms and some
I basic properties that can be derived from specifications of floating-point
arithmetic systems, such as the ones given in the various successive IEEE
standards. Thanks to these standards, we now have an accurate definition of
floating-point formats and operations. The behavior of a sequence of opera-
tions becomes at least partially! predictable (see Chapter 7 for more details
on this). We therefore can build algorithms and proofs that use these specifi-
cations.

This also allows the use of formal proofs to verify pieces of mathematical
software. For instance, Harrison uses HOL Light to formalize floating-point
arithmetic [168, 171] and check floating-point trigonometric functions [169]
for the Intel-HP IA-64 architecture. Russinoff [355] used the ACL2 prover to
check the AMD-K7 floating-point multiplication, division, and square root
instructions. Boldo, Daumas, and Théry use the Coq proof assistant to for-
malize floating-point arithmetic and prove properties of some arithmetic
algorithms [33, 256].

4.1 Testing the Computational Environment

411 Computing the radix

The various parameters (radix, significand and exponent widths, rounding
modes, etc.) of the floating-point arithmetic used in a computing system may
strongly influence the result of a numerical program. Indeed, very simple
and short programs that only use floating-point operations can find these
parameters. An amusing example of this is the C program (Listing 4.1), given
by Malcolm [146, 269], that returns the radix 3 of the floating-point system. It
works if the active rounding mode is one of the four rounding modes of IEEE

Tn some cases, for instance, intermediate calculations may be performed in a wider inter-
nal format. Some examples are given in Section 3.3.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_4, 119
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

120 Chapter 4. Basic Properties and Algorithms

754-1985 (or one of the rounding direction attributes of IEEE 754-2008 [187]).
It is important to make sure that a zealous compiler does not try to “simplify”
expressions such as (A+1.0) — A. See Chapter 7 for more information on how
languages and compilers handle floating-point arithmetic.

C listing 4.1 Malcolm’s algorithm (Algorithm 4.1, see below), written in C.

#include <stdio.h>
#include <math.h>

#pragma STDC FP_CONTRACT OFF

int main (void)
{
double A, B;

A=1.0;

while ((A + 1.0) - A == 1.0)
A x= 2.0;

B=1.0;

while ((A + B) - A != B)
B += 1.0;

printf ("Radix B = %g\n", B);

return 0;

Let us describe the corresponding algorithm more precisely. Let o be the
active rounding mode. The algorithm is

Algorithm 4.1 Computing the radix of a floating-point system.
A—1.0
B—1.0
while o(o(A+1.0) — A) = 1.0 do
A—o(2x A)
end while
while o(o(A+ B) — A) # B do
B —o(B+1.0)
end while
return B

Incidentally, this example shows that analyzing algorithms sometimes
depends on the whole specification of the arithmetic operations, and espe-
cially the fact that they are correctly rounded:

o If one assumes that the operations are exact, then one erroneously con-
cludes that the first loop never ends (or ends with an error due to an
overflow on variable A).

4.1. Testing the Computational Environment 121

e If one tries to analyze this algorithm just by assuming that o(x + y) is
(x 4+ y)(1 4 €) where |¢| is bounded by some tiny value, it is impossible
to prove anything. For instance, o(o(A + 1.0) — A) is just 1 plus some
“noise.”

And yet, assuming correctly-rounded operations, it is easy to show that
the final value of B is the radix of the floating-point system being used, as we
show now.

Proof. Define A; as the value of A after the i-th iteration of the loop:
while o(o(A +1.0) — A) = 1.0.

Let 3 be the radix of the floating-point system and p its precision. One easily
shows by induction that if 2! < P —1, then 4; equals 21 exactly. In such a case,
A; +1 < P, which implies that o(A4; 4+ 1.0) = A; + 1. Therefore, one deduces
that o(o(4; +1.0) — A;) = o((4; + 1) — A;) = 1. Hence, while 2¢ < g7 — 1, we
stay in the first loop.

Now, consider the first iteration j, such that 2/ > G”. We have Aj =
0(24;_1) = o(2 x 2771) = o(27). Since 3 > 2, we deduce

pr < Aj < ﬂpH'

This implies that the floating-point successor of A; is A; + (3. Therefore,
depending on the rounding mode, o(A; + 1.0) is either A; or A; + 3, which
implies that o(o(A4; + 1.0) — Aj) is either 0 or . In any case, this value is
different from 1.0, so we exit the first loop.

So we conclude that, at the end of the first while loop, variable A satisfies
pr <A< prtt

Now, let us consider the second while loop. We have seen that the
floating-point successor of A is A + (. Therefore, while B < (3, o(A + B)
is either A or A+ 3, which implies that o(o(A+ B) — A) is either 0 or . In any
case, this value is different from B, which implies that we stay in the loop.

Now, as soon as B = 3, o(A + B) is exactly equal to A + B; hence,
o(o(A + B) — A) = B. We therefore exit the loop when B = . O

4.1.2 Computing the precision

Algorithm 4.2, also introduced by Malcolm [269], is very similar to
Algorithm 4.1 [269]. It computes the precision p of the floating-point system
being used.

122 Chapter 4. Basic Properties and Algorithms

Algorithm 4.2 Computing the precision of a floating-point system. It requires
the knowledge of the radix of the system, and that radix can be given by
Algorithm 4.1.
Input: B (the radix of the FP system)
10
A—10
while o(o(A 4+ 1.0) — A) = 1.0 do
A«—o(BxA)
t—1+1
end while
return ¢

The proof is very similar to the proof of Algorithm 4.1, so we omit it.

Similar—yet more sophisticated—algorithms are used in inquiry pro-
grams such as Paranoia [215], which provide a means for examining your
computational environment (see Section 3.8, page 111).

4.2 Exact Operations

Although most floating-point operations involve some sort of rounding,
there are some cases when a single operation will be exact, i.e., without round-
ing error. Knowing these cases allows an experienced programmer to use
them in critical algorithms. Typical examples of such algorithms are elemen-
tary function programs [95]. Many other examples will follow throughout
this book.

What are the exact operations? The IEEE standards state that, if the
infinitely-precise result of an arithmetic operation is a floating-point number,
then this number should be returned, whatever the rounding mode. There-
fore, the exact operations are those for which one may prove that the result
belongs to the set of floating-point numbers of the considered format.

4.2.1 Exact addition

An important result, frequently used when designing or proving algorithms,
is Sterbenz’s lemma.

Lemma 2 (Sterbenz [392]). In a radix-{3 floating-point system with subnormal
numbers available, if x and y are finite floating-point numbers such that

<z < 2y,

IS

then x — y is exactly representable.

4.2. Exact Operations 123

Sterbenz’s lemma implies that, with any of the four rounding modes,
if and y satisfy the preceding conditions, then when computing x — y in
floating-point arithmetic, the obtained result is exact.

Proof. For reasons of symmetry, we can assume that x > 0,y > 0, and y <
x < 2y. Let M, and M, be the integral significand of = and y, and e, and e,
be their exponents (if and y have several floating-point representations, we
choose the ones with the smallest exponents). We have

= M, x %P+l

and
y = My X Bey—p-‘rl’

with
€min S €x S €max
€min < €y < €max
0 < M:v S ﬁp -1
0< M, <@ 1.

From y < z, we easily deduce e, < e,. Define § = e, — e,. We get
r—y= (Mxﬁd _ My) X ﬁey—’p-&-l‘

Define M = M,/3° — M,. We have
e z > yimplies M > 0;
e z < 2yimplies z — y < y, hence M 3% P! < M, 3%~ P*1; therefore,

M< M, <p"—1.

Therefore, x —y is equal to M x B¢ PH with epin < e < emax and | M| < P —1.
This shows that + — y is a floating-point number, which implies that it is
exactly computed. O

It is important to notice that, in our proof, the only thing we have shown
is that x — y is representable with an integral significand M whose absolute
value is less than or equal to 37 — 1. We have not shown (and it is not possible
to show) that it can be represented with an integral significand of absolute
value larger than or equal to 37~ !. Indeed, |x — y| can be less than 3%min. In
such a case, the availability of subnormal numbers is required for Sterbenz’s
lemma to be applicable (it suffices to consider the example given by Figure 2.1
page 18).

A slightly more general result is that if the exponent of z—y is less than or
equal to the minimum of e, and e,, then the subtraction is exactly performed.

124 Chapter 4. Basic Properties and Algorithms

Sterbenz’s lemma might seem strange to those who remember their early
lectures on numerical analysis: It is common knowledge that subtracting
numbers that are very near may lead to very inaccurate results. This kind
of numerical error is called a cancellation, or a catastrophic cancellation when
almost all digits of the result are lost. There is no contradiction: The subtrac-
tion of two floating-point numbers that are very near does not introduce any
error in itself (since it is an exact operation), yet it amplifies a pre-existing error.
Consider the following example in IEEE 754-1985 single-precision arithmetic
and round-to-nearest mode:

e A =10000 and B = 9999.5 (they are exactly representable);
e C =RN(1/10) = 13421773/134217728;

e A'=RN(A+C)=5120051/512;

e A =RN(A' - B) =307/512 = 0.599609375.

Sterbenz’s Lemma implies that A is exactly equal to A’ — B. And yet, the
computation A’ = RN(A + C) introduced some error: A’ is slightly different
from A+C'. This suffices to make A a rather bad approximation to (A+C)—B,
since (A + C') — B ~ 0.6000000015.

In this example, the subtraction A’ — B was errorless, but it somehow
amplified the error introduced by the computation of A’.

Hauser [176] gives another example of exact additions. It shows, inci-
dentally, that when a gradual underflow occurs (that is, the obtained result
is less than 3°mi» but larger than or equal to the smallest subnormal number
a = Bemin=PT1) this does not necessarily mean an inaccurate result.

Theorem 3 (Hauser). If x and y are radix-(floating-point numbers, and if the
number RN(x + y) is subnormal, then RN(z + y) = = + y exactly.

Proof. It suffices to notice that z and y (as all floating-point numbers) are

multiples of the smallest nonzero floating-point number o = [émin=PFL,
Hence, = + y is a multiple of «. If it is a subnormal number, then it is less
than 3°i». This implies that it is exactly representable. O

4.2.2 Exact multiplications and divisions

Some multiplications and divisions are exactly performed. A straightforward
example is multiplication or division by a power of the radix: As soon as there
is no overflow or underflow,? the result is exactly representable.

“Beware! We remind the reader that by “no underflow” we mean that the absolute value
of the result (before or after rounding, this depends on the definition) is not less than the
smallest normal number 3°min. When subnormal numbers are available, as requested by the
IEEE standards, it is possible to represent smaller nonzero numbers, but with a precision that
does not always suffice to represent the product exactly.

4.3. Accurate Computations of Sums of Two Numbers 125

Another example is multiplication of numbers with known zero bits at
the lower-order part of the significand. For instance, assume that = and y are
floating-point numbers whose significands have the form

L. L1X2X3 " * * Tk, 000---0
p—kz Z€YOS

ko digits

for z, and

Yo-Y1Y2y3 - - Yk, 000---0

Ky, digits ~ ” ~ky ZET0S
for y. If k; + k, < p then the product of the significands of = and y fits in
p radix-g3 digits. This implies that the product zy is exactly computed if no
overflow nor underflow occurs. This property is at the heart of Dekker’s
multiplication algorithm (see Section 4.4.2, page 135). It is also very useful
for reducing the range of inputs when evaluating elementary functions (see
Section 11.1, page 379).

4.3 Accurate Computations of Sums of Two Numbers

Let a and b be radix-{ precision-p floating-point numbers. Let s be RN(a +b),
i.e., a + b correctly rounded to the nearest precision-p floating-point num-
ber, with any choice here in case of a tie. It can easily be shown that, if
the computation of s does not overflow, then the error of the floating-point
addition of a and b, namely t = (a + b) — s, is exactly representable in radix
B with p digits. It is important to notice that this property can be false with
other rounding modes. For instance, in a radix-2 and precision-p arithmetic,
assuming rounding toward —oo, if a = 1 and b = —273?, then

s = RD(a+b)=0.111111---11
—_—

p
= 1-27P,

and
t—s=1.1111111111---11 ><2_p_1,
2p

which cannot be exactly represented with precision p (it would require preci-
sion 2p).

In the following sections, we present two algorithms for computing ¢.
They are useful for performing very accurate sums of many numbers. They
also are of interest for very careful implementation of mathematical func-
tions [95].

126 Chapter 4. Basic Properties and Algorithms

4.3.1 The Fast2Sum algorithm

The Fast2Sum algorithm was introduced by Dekker [108] in 1971, but the
three operations of this algorithm already appeared in 1965 as a part of a sum-
mation algorithm, called “Compensated sum method,” due to Kahan [201]
(Algorithm 6.6, page 192). The name “Fast-Two-Sum” seems to have been
coined by Shewchuk [377].

Theorem 4 (Fast2Sum algorithm). ([108], and Theorem C of [222], page 236).
Assume the floating-point system being used has radix < 3, subnormal numbers
available, and provides correct rounding with rounding to nearest.

Let a and b be floating-point numbers, and assume that the exponent of a is
larger than or equal to that of b (this condition might be difficult to check, but of
course, if |a| > |b|, it will be satisfied). Algorithm 4.3 computes two floating-point
numbers s and t that satisfy the following:

o s+t =a+bexactly;

o s is the floating-point number that is closest to a + b.

Algorithm 4.3 The Fast2Sum algorithm [108].

s« RN(a+b)
z — RN(s —a)
t — RN(b—2)

(We remind the reader that RN(z) means x rounded to nearest.)

Notice that if a wider internal format is available (one more digit of pre-
cision is enough), and if the computation of z is carried on using that wider
format, then the condition 5 < 3 is no longer necessary [108]. This may be
useful when working with decimal arithmetic. The Fast2Sum algorithm is
simpler when written in C, as all rounding functions are implicit, as one can
see in Listing 4.2 (yet, it requires round-to-nearest mode, which is the default
rounding mode).

In that program it is assumed that all the variables are declared to be of
the same floating-point format, say all float or all double, and the system is
set up to ensure that all the computations are done in this format. A compiler
that is compliant with the C99 standard will not attempt to simplify these
operations.

Let us now give Dekker’s proof for this algorithm.

Proof. Let ¢,, e, and ey, be the exponents of a, b, and s. Let M,, M, and
M, be their integral significands, and let p be the precision of the floating-
point format being used. We recall that the integral significands have absolute
values less than 5P — 1.

4.3. Accurate Computations of Sums of Two Numbers 127

C listing 4.2 Fast2Sum.

/* fast2Sum.c */

#include <stdio.h>
#include <stdlib.h>

void fast2Sum(double a, double b, double *s, double xt)
{

double dum;

double z;

/* Branching below may hinder performance x/

/* Suppress if we know in advance that a >= b */

if (b >a) { dum = a; a = b; b = dum; }

xS = a + b;
zZ = %5 - a;
xt = b - z;

int main(int argc, char xxargv)
{

double a;

double b;

double s;

double t;

/* The inputs are read on the command line. x/
a strtod(argv[1], NULL);
b strtod(argv[2], NULL);

fprintf(stdout, "a = %1.16g\n", a);
fprintf(stdout, "b %1.16g\n", b);

fast2Sum(a, b, &s, &t);

printf("s = %1.16g\n", s);
printf("t = %1.16g\n", t);

return(0);

128 Chapter 4. Basic Properties and Algorithms

First, let us show that s — a is exactly representable. Notice that, since
ep < eq, s can be represented with an exponent less than or equal to e, + 1.
This comes from

a+b<2(6P — 1>ﬁea—p+1 < (B - 1)ﬁ€a—p+2.

1. Ife;, = e, + 1.

Define § = e, — e,. We have

M, M,

M, = {5 + 55+1J ’

where [u] is the integer that is nearest to v (when « is an odd multiple

of 1/2, there are two integers that are nearest to u, and we choose the
one that is even).

Define y = My — M,. We easily find

F;—ESM_?;‘Fg-

Since p is an integer and 3 < 3, this gives
|l < [M| + 1.

Therefore, since |Mp| < BP — 1, either |u| < P — 1 or |u| = (P. In both
cases, since s — a = p3% Pt s —qis exactly representable.3

2. If e, < eg.
Define §; = e, — e;. We have

atb= (8% M, + M) BT,

If e; < e, then s = a — b, since a + b is a multiple of 3% P!, and s is
obtained by rounding a-+b to the nearest multiple of 3% P! < gev—p+l,
This implies that s—a = bis exactly representable. If e, > e, then define
0o = es — ep. We have

s = [0 M, + M, | g,

which implies

<5—52Mb - ;) gt <s—a< <ﬁ—52Mb + ;) e,

3When |1 < BP — 1, s — a is representable with exponent e,, but not necessarily in normal
form. This is why the availability of subnormal numbers is necessary.

4.3. Accurate Computations of Sums of Two Numbers 129

Hence,

s—al < (5710 + 5) o,
and s — a is a multiple of 3% ~P*1, which gives s — a = K3% Pt with
K| < 57IM) + 5 < 07— 1,
which implies that s — a is exactly representable.

Therefore, in all cases, z = RN(s — a) = s — a exactly.
Second, let us show that b — z is exactly representable. From e, > ey,
we deduce that a and b are both multiples of 3°~7*1. This implies that s
(obtained by rounding a +b), s — a, 2 = s — a, and b — 2, are multiples of
Be—P+1 Moreover,
|b—z| < b 4.1)

This comes from |b—z| = |a+b—s|: If |a+b—s| was larger than |b| = |a+b—al,
then a would be a better floating-point approximation to a + b than s.

From (4.1) and the fact that b — z is a multiple of 3% ~P*!, we deduce that
b — z is exactly representable, which implies t = b — z.

Now, the theorem is easily obtained. From ¢t = b — z we deduce

t=b—(s—a)=(a+b)—s.

4.3.2 The 2Sum algorithm

The Fast2Sum algorithm, presented in the previous section, requires a pre-
liminary knowledge of the orders of magnitude of the two operands (since
we must know which of them has the largest exponent).*

The following 2Sum algorithm (Algorithm 4.4), due to Knuth [222] and
Moller [279], requires 6 consecutive floating-point operations instead of 3
for Fast2Sum, but does not require a preliminary comparison of a and b.
Notice that on modern processors the penalty due to a wrong branch pre-
diction when comparing a and b costs much more than 3 additional floating-
point operations. Also, unless a wider format is available, Fast2Sum does not
work in radices greater than 3, whereas 25Sum works in any radix. This is of
interest when using a radix-10 system.

The name “TwoSum” seems to have been coined by Shewchuk [377].

*Do not forget that |a| > |b| implies that the exponent of a is larger than or equal to that of
b. Hence, it suffices to compare the two variables.

130 Chapter 4. Basic Properties and Algorithms

Algorithm 4.4 The 25um algorithm.
s« RN(a +b)
a — RN(s—b
b — RN(s —a’)
9, — RN(a —)
& «— RN(b—10')
t — RN((Sa + 5b)

Knuth shows that, if a and b are normal floating-point numbers, then for
any radix 3, provided that no underflow or overflow occurs, a +b = s + t.
Boldo et al. [32] show that in radix 2, underflow does not hinder the result
(and yet, obviously, overflow does). Formal proofs of 2Sum, Fast2Sum, and
many other useful algorithms, can be found in a Coq library.

Notice that, in a way, 2Sum is optimal in terms of number of floating-
point operations. More precisely, Kornerup, Lefevre, Louvet, and Muller, give
the following definition [226]:

Definition 8 (RN-addition algorithm without branching). We call
RN-addition algorithm without branching an algorithm

o without comparisons, or conditional expressions, or min/max instructions;

e only based on floating-point additions or subtractions in round-to-nearest
mode: At step i the algorithm computes RN(a + b) or RN(a — b), where a
and b are either one of the input values or a previously computed value.

For instance, 2Sum is an RN-addition algorithm without branching. It
requires 6 floating-point operations. Only counting the operations just gives
a rough estimate on the performance of an algorithm. Indeed, on modern
architectures, pipelined arithmetic operators and the availability of several
floating-point units (FPUs) make it possible to perform some operations in
parallel, provided they are independent. Hence, the depth of the dependency
graph of the instructions of the algorithm is an important criterion. In the case
of the 2Sum algorithm, two operations only can be performed in parallel:

5 = RN(b - 1)
and
8o = RN(a — d');

hence, we will say that the depth of the 2Sum algorithm is 5. Kornerup,
Leféevre, Louvet, and Muller, prove the following two theorems:

Theorem 5. In double-precision/binary64 floating-point — arithmetic, an
RN-addition algorithm without branching that computes the same results as
2Sum requires at least 6 arithmetic operations.

Shttp://lipforge.ens-lyon. fr/www/pff/

4.3. Accurate Computations of Sums of Two Numbers 131

Theorem 6. In double-precision/binary64 floating-point arithmetic, an
RN-addition algorithm without branching that computes the same results as
2Sum has depth at least 5.

These theorems show that, among the RN-addition algorithms without
branching, if we do not have any information on the ordering of |a| and
|b|, 2Sum is optimal both in terms of number of arithmetic operations and
in terms of depth. The proof was obtained by enumerating all possible
RN-addition algorithms without branching that use 5 additions or less, or
that have depth 4 of less. Each of these algorithms was run with a few well-
chosen floating-point entries. None of the enumerated algorithms gave the
same results as 25um for all chosen entries.

4.3.3 If we do not use rounding to nearest

The Fast2Sum and 25um algorithms rely on rounding to nearest. The example
given at the beginning of Section 4.3 shows that, if s is computed as RD(a+b)
or RU(a + b), then s — (a + b) may not be a floating-point number, hence the
algorithms would fail to return an approximate sum and the error term.

Nonetheless, in his Ph.D. dissertation [337], Priest gives a longer algo-
rithm that only requires faithful arithmetic. From two floating-point numbers
a and b, it deduces two other floating-point numbers c and d such that

ect+td=a+b and
e either c =d =0, or |d| < ulp(c).

In particular, Algorithm 4.5 works if o is any of the four rounding modes
of IEEE 754-1985, provided no underflow or overflow occurs.

Algorithm 4.5 Priest’s Sum and Roundoff error algorithm. It only requires
faithful arithmetic.
if |a| < |b| then
swap(a, b)
end if
c—ola+0b)
e «—o(c—a)

g—olc—e)
h —o(g—a)
f—o(b—h)
d—o(f—e)
if o(d+e) # f then
c—a
d—b
end if

return c,d

132 Chapter 4. Basic Properties and Algorithms

4.4 Computation of Products

In the previous section, we have seen that, under some conditions, the error
of a floating-point addition is a floating-point number that can be computed
using a few operations. The same holds for floating-point multiplication:

e If x and y are radix-3 precision-p floating-point numbers, whose expo-
nents e, and e, satisfy e, +e, > emin +p—1 (Where ey, is the minimum
exponent of the system being considered), and

e if r is o(zy), where o is one of the four rounding modes of the IEEE
754-1985 standard,

then ¢ = xy — r is a radix-/3 precision-p floating-point number.

Actually, computing ¢ is very easy if a fused multiply-add (FMA) oper-
ator is available; This will be described in Chapter 5. Without an FMA, the
best-known algorithm for computing ¢ is Dekker’s algorithm [108]. Roughly
speaking, it consists in first splitting each of the operands x and y into two
floating-point numbers, the significand of each of them being representable
with |p/2] or [p/2] digits only. The underlying idea is that (using a property
given in Section 4.2.2) the pairwise products of these values should be exactly
representable, which is not always possible if p is odd, since the product of
two [p/2]-digit numbers does not necessarily fit on p digits.®

Then these pairwise products are added.

Let us now present that algorithm with more detail. We first show how to
perform the splitting, using floating-point addition and multiplication only,
by means of an algorithm due to Veltkamp [416, 417].

4.41 Veltkamp splitting

Before examining how we can compute exact products without an FMA, we
need to see how we can “split” a precision-p radix-{3 floating-point number
x into two floating-point numbers xj, and z, such that, for a given s < p, the
significand of x}, fits in p — s digits, the significand of z fits in s digits, and
x = xp, + x¢ exactly.

This is done using Veltkamp’s algorithm (Algorithm 4.6). It uses a
floating-point constant C equal to 5° + 1.

®In radix 2, we will use the fact that a 2g -+ 1-bit number can be split into two g-bit numbers.
This explains why (see Section 4.4.2) Dekker’s algorithm work if the precision is even or if the
radix is 2.

4.4. Computation of Products 133

Algorithm 4.6 Split(x,s): Veltkamp’s algorithm.
Require: C = 3° +1

v «— RN(C - z)

d — RN(z —~)

Th < RN(’Y + 5)

xy — RN(z — x3)

Dekker [108] proves this algorithm in radix 2, with the implicit assump-
tion that no overflow or underflow occurs. Boldo [30] shows that for any
radix # and any precision p, provided that C' - does not overflow, the algo-
rithm works. More precisely:

e if C' - x does not overflow, no other operation will overflow;
e there is no underflow problem: If x, is subnormal, the result still holds.

Another property of Veltkamp’s splitting that will be important for
analyzing Dekker’s multiplication algorithm is the following: If 3 = 2, the
significand of x, actually fits in s — 1 bits.

Before giving a proof of Veltkamp’s splitting algorithm, let us give an
example.

Example 7 (Veltkamp’s splitting). Assume a radix-10 system, with precision 8.
We want to split the significands of the floating-point numbers into parts of equal
width; that is, we choose s = 4. This gives C' = 10001. Assume x = 1.2345678. We
successively find:

o C -z =12346.9125678, therefore
v=RN(C - z) = 12346.913,;
o 1 — = —12345.6784322, therefore
d = RN(x —) = —12345.678;
o v+ 0 = 1.235, therefore
z, = RN(y + §) = 1.235;
o x — zp, = —0.0004322, therefore
zy = RN(z — zp,) = —0.0004322.

Ome can easily check that 1.2345678 equals 1.235 — 0.0004322. In this example, the
last two arithmetic operations are exact; that is, x;, = v+ § and xy = x — x, (no
rounding error occurs). We will see in the proof that this is always true.

134 Chapter 4. Basic Properties and Algorithms

Now, let us give a proof of Algorithm 4.6. For simplicity, we assume
that the radix is 2, that s > 2, and that no underflow nor overflow occurs.
For a more general and very rigorous proof, see the remarkable paper by
Boldo [30].

Proof. Since all variables in the algorithm are scaled by a factor 2%, if we
multiply = by 2¥, we can assume that 1 < = < 2 without loss of generality.
Furthermore, since the behavior of the algorithm is fairly obvious if z = 1,
we assume 1 < z < 2, which gives (since z is a precision-p floating-point
number)

14277 < g <2 27PFL

We now consider the four successive operations in Algorithm 4.6.
Computation of 7. Cx = (2° + 1)z implies 2° + 1 < Cx < 2572, Therefore,

25 Pl < ulp(Cz) < 257712,

This gives
v = (2° + 1)z + €1, with |e| < 257PFL
7 is a multiple of 25~P*+1,
Computation of §. We have z — v = —2°2 — €;. From this we deduce

‘.%' _ 7‘ S 25(2 _ 2—p+1) + 25—p+1 — 25-&-1'

This implies that 6 = RN(z —) = — v + €2 = —2°z — €1 + €2, with
lea| < 2577,

Also, |z — 7| > 25(1 + 27PF1) — 257PFL > 95 which implies that J is a
multiple of 2577+,

Computation of z;,. Now, —6 = 2°2 4 € — ez and 7 = 2°z + = + € are quite
close together. As soon as s > 2, they are within a factor of 2 from each
other. So Lemma 2 (Sterbenz’s lemma) can be applied to deduce that
7 + ¢ is computed exactly. Therefore,

Th=7+0 =2+ €.

Also, zj, is a multiple of 257P*! (since z;, = v + §, and v and § are
multiples of 2°7PT!). From # < 2 and zj, = = — €2 one deduces z;, <
2 + 2577, but the only multiple of 257! between 2 and 2 + 2577 is 2, so
Th < 2.

4.4. Computation of Products 135

Computation of z,. Since z;, = = + €2 and z are very near, we can use
Lemma 2 again to show that x — xj, is computed exactly. Therefore,

Ty =X — Tp = €2.

As a consequence, |z/| = |ez| is less than or equal to 2°7P. Moreover, z,
is a multiple of 277!, since x and z;, are multiples of 2771,

Thus, we have written x as the sum of two floating-point numbers z;, and .
Moreover,

e 15, < 2 and m, is a multiple of 2577+ imply that zy, fits in p — s bits;
e 1, < 2°7P and z; is a multiple of 277! imply that z; fits in s — 1 bits.

O]

4.4.2 Dekker’s multiplication algorithm

Algorithm 4.7 was discovered by Dekker, who presented it and proved it in
radix 2, yet seemed to assume that it would work as well in higher radices.
Later on, it was analyzed by Linnainmaa [263], who found the necessary
condition in radices different from 2 (an even precision), and by Boldo [30],
who examined the difficult problem of possible overflow or underflow in the
intermediate operations, and gave a formal proof in Coq.

Here, we present the algorithm using Boldo’s notation. We assume a
floating-point arithmetic with radix /3, subnormal numbers, and precision p.
From two finite floating-point numbers = and y, the algorithm returns two
floating-point numbers r; and r; such that zy = r; + 7 exactly, under condi-
tions that will be made explicit below.

Algorithm 4.7 Dekker product.
Require: s = [p/2]

(xh, x¢) < Split(z, s)

(yn»ye) < Split(y, s)

r1 < RN(z - y)

t1 «— RN(—’I“l + RN(mh . yh))

to < RN(t; + RN(zp, - yr))

ts < RN(t2 + RN(z¢ - yn))

ro «— RN(t3 + RN(z/ - y¢))

Listing 4.3 presents the same algorithm, written in C.
Here is Boldo’s version [30] of the theorem that gives the conditions
under which Dekker’s multiplication algorithm returns a correct result.

136 Chapter 4. Basic Properties and Algorithms

C listing 4.3 Dekker product.

/* Dekker (exact) double multiplication x/

#include <stdlib.h>
#include <stdio.h>
#define SHIFT_POW 27 /* 53 / 2 for double precision. */
void dekkerMult(double a, double b, double *p, double xt);
void veltkampSplit(double x, int sp, double xx_high, double *xx_low);
int main(int argc, char x*xargv)
{

double x;

double y;

double r_1;

double r_2;

x = strtod(argv[1l], NULL);

y = strtod(argv([2], NULL);

printf("x = %1.16a\n", Xx);
printf("y = %1.16a\n", y);
dekkerMult(x, y, &r_1l, &r_2);
printf("r_1 = %1.16a\n", r_1);
printf("r_2 = %1.16a\n", r_2);
return 0;

}

void dekkerMult(double x, double y, double *r_1, double xr_2)
{

double x _high, x_low;

double y_high, y_low;

double t_1;

double t_2;

double t_3;

veltkampSplit(x, SHIFT_POW, &x_high, &x_low);

veltkampSplit(y, SHIFT_POW, &y_high, &y_low);

printf("x_high = %1.16a\n", x_high);
printf("x_low = %1.16a\n", x_low);
printf("y_high = %1.16a\n", y_high);
printf("y_low = %1.16a\n", y_low);
*r.l = x * y;

t 1 = -*%r_1 + x_high *x y_high ;

t2 = 1.1+ x_high * y_low;

t3 = t2+ x low * y high;

*r.2 = 1.3 + x_low * y_low;

}

void veltkampSplit(double x, int sp, double *x_high, double *x_low)

{
unsigned long C = (1UL << sp) + 1;

double gamma = C * Xx;

double delta = x - gamma;
*x_high = gamma + delta;
*X_low = x - xx_high;

4.4. Computation of Products 137

Theorem 7. Assume the minimal exponent emin and the precision p satisfy7 p>3
and (emin=PTL < 1. Let e, and e, be the exponents of the floating-point numbers x
and y. If B = 2 or p is even, and if there is no overflow in the splitting of x and y
or in the computation of r1 = RN(x - y) and RN(zy, - yp), then the floating-point
numbers r1 and ro returned by Algorithm 4.7 satisfy:

1. ifey + ey > emin +p — 1 then xy = 1 + 19 exactly;

2. in any case,

T e
oy — (r1 +ro)| < 5B

As pointed out by Boldo, the “7/2” in Theorem 7 could probably be
sharpened. In particular, if the radix is 2, that coefficient can be reduced to 3.

Notice that the condition “e, + e, > epin +p — 1”7 on the exponents is
a necessary and sufficient condition for the error term of the product to be
always representable (see [31]), whatever the significands of x and y might
be. Condition “3 = 2 or p is even” might seem strange at first glance, but is
easily understood by noticing that:

e 1}, - yp, is exactly representable with a 2 x |p/2|-digit significand, hence,
it is representable in precision p:

RN(zp - yn) = =1 - Yn;

e 1j,-yp and - yp, are exactly representable with a [p/2] + [p/2] = p-digit
significand;

e and yet, in many cases, z; - y, will be a 2 x [p/2]-digit number.

Therefore, if the precision p is even, then 2 x [p/2] = p, so that z; - y,
is exactly representable. And if 5 = 2, then we know (see Section 4.4.1) that,
even if p is odd, ¢ and y, actually fit on [p/2] — 1 bits, so their product fits in
p bits.

For instance, with the decimal formats specified by the new standard
IEEE 754-2008 (see Chapter 3), Algorithm 4.7 will not always work in the
decimal32 interchange format (p = 7), and yet it can be used safely in the
decimal64 (p = 16) and decimal128 (p = 34) interchange formats.

Conditions on the absence of overflow for 7y = RN(x-y) and RN(x, - yn)
might seem redundant: Since these values are very close, in general they will
overflow simultaneously. And yet, it is possible to build tricky cases where
one of these computations will overflow, and not the other one. Condition
pemin=PFl < 1 is always satisfied in practice.

"These assumptions hold on any “reasonable” floating-point system.

138 Chapter 4. Basic Properties and Algorithms

Proof. For a full proof, see [30]. Here, we give a simplified proof, assuming
radix 2, and assuming that no underflow /overflow occurs.

First, since the splittings have been performed to make sure that zjyp,
xoyn, Thye, and gy, should be exactly representable, we have

RN(zpyn) = xpyn, RN(2eyn) = oyn, RN(2py) = xpye, and RN(zeye) = 2y,

Without loss of generality, we can assume 1 < z < 2and 1 <y < 2.
From the proof of Veltkamp’s algorithm, we know that z;, < 2, y5, < 2, and
that | — x| < 2°7Pand |y — yp| < 2°7P. From

(zy — zryn) = (— z1)y + (¥ — yn)Th,

we deduce
|2y — zpyn| < 257712

Since we also have
1 —p+1
ey —m1| < 5 ulp(zy) < 2777,

we get

1 — apyp| < 27T 42572
This shows that r; and RN(zpyn) = zpys are very close, so that Sterbenz’s
lemma (Lemma 2) can be applied to their subtraction. As a consequence,

t1 = —r1 + Tpyp.

Now, xy — phyn = Thye + Teyn + Teye, SO that

[t +znyel = | —r1+ xpyn + TRyl
| —r1 +xy + (Thyn + Thye — xy)|
< | =1yl + |zelyn + yeo)l

< 9—p+1 +237p+1 < 957P+2,

Since z, is a multiple of 2P+ and y, is a multiple of 277", z},y, is
a multiple of 257272, This implies that t; + zpy, is a multiple of 257272,
This and [t; + zpye| < 257772 imply that ¢, + x5y, is exactly representable.
Therefore,
to = =11 + TpYn + ThYe.

Now, to + xpyp = (—r1 + xy) + xpye; therefore,

ta+zeyn] < | =11+ ayl + |zeye|
< 2*p+1 + 22572p.

4.5. Complex numbers 139

From s = [p/2], we deduce 2s — 2p = —p or —p + 1; therefore,
|to + @eyn| < 27PF2

This and the fact that ¢ + x4y, is a multiple of 25722 imply that t + z.yj, is
exactly representable; therefore,

t3 =to + Toyn = —7r1 + TpYn + TpYe + ToYn.

Lastly, |t3 + zeye| = | — r1 + 2y| < 27PFL, and it is a multiple of 272P*2, thus
ts + x¢ye is exactly computed. Therefore,

ro =Yy —T1.
O

Dekker’s multiplication algorithm requires 17 floating-point operations:
7 multiplications, and 10 additions/subtractions. This may seem a lot, com-
pared to the 6 floating-point additions/subtractions required by the 2Sum
algorithm (Algorithm 4.4). Yet an actual implementation of Dekker’s algo-
rithm will not be 17/6 times slower than an actual implementation of 2Sum.
Indeed, since many operations in Dekker’s algorithm are independent, they
can be performed in parallel or in pipeline if the underlying architecture sup-
ports it. In the summary given in Figure 4.1, all the operations on a same line
can be performed in parallel.

vz <— RN(Cz) vy — RN
0z <— RN(z — 7y) d, — RN

(Cy) r1 < RN(zy)

(v =)

xp — RN(vz + 62) Yn < RN(vy +dy)

z¢ — RN(z — ap) Yo — RN(y —yn) o11 < RN(zayn)

t1 = RN(=r1 +an1) aiz —RN(znye) oz — RN(zeyn) g2 — RN(zey0)
to — RN(t1 + aq2)
(

t3 — RN t2 + 0521)

TQ(*RN t3+0422)

Figure 4.1: Summary of the various floating-point operations involved in the Dekker
product of x and y. The operations on a same line can be performed in parallel.

4.5 Complex numbers

If a and b are two floating-point numbers, the pair (a,b) can be used to
represent the complex number z = a + ib. This is called the “Cartesian

140 Chapter 4. Basic Properties and Algorithms

representation” of z. Another possible representation of a complex number
is its “polar” form z = r - €'?, but the polar form is less suited for the
addition. Here we will concentrate on the Cartesian representation. Notice
that accurate conversions can be performed between the two representations
once accurate trigonometric functions and their inverses are implemented.
We refer to Chapters 11 and 12 for these issues.

Adding two floating-point complex numbers zy = ap + ibp and z; =
a1 + iby is done easily by computing the coordinate-wise sum:

(RN(CLQ + CL1), RN(bo + bl)>

Things become more complicated with multiplication (Section 4.5.2), division
(Section 4.5.3), and square root (Section 4.5.4). For instance, the C99 standard
says that the usual mathematical formulas for complex multiply, divide, and absolute
value are problematic because of their treatment of infinities and because of undue
overflow and underflow. The CX_LIMITED_RANGE pragma can be used to inform
the implementation that (where the state is “on”) the usual mathematical formulas
are acceptable.

4,5.1 Various error bounds

Two notions of relative error are often considered while performing approx-
imate computations on complex numbers. Suppose we have a floating-point
computation producing a complex number z = a + ib which is meant to

approximate a complex number z = a + ib. One sometimes requires
component-wise relative error bounds, which corresponds to bounding both
la — al b — b
and ———
lal o]

This is intrinsically linked with the Cartesian interpretation of complex num-
bers. Sometimes one wants a bound on the quantity

which is intrinsically related to the polar interpretation of complex numbers.
The latter is usually referred to as a normwise error bound, as |z| is the
Euclidean norm of the two-dimensional vector (a,b). Having a bound of
the first kind implies having a bound of the second kind, but the reverse is
incorrect, as detailed in the following lemma.

Lemma 8. Let z = a + tband 2/ = a' + b’ be two complex numbers. Suppose
that |a' — a| < €|a| and |b/ — b| < €|b], for some € > 0. Then

|2 — 2] < ¢€]z].
The converse does not hold: We may simultaneously have |z — z| < €|z| and an

la’—al

arbitrarily large quantity Al

4.5. Complex numbers 141

Proof. We have the following relations:

|2 — 2> = (' —a)®+ (b —b)?
< 62|a|2—|—62|b|2

= 2%

For the second part of the lemma, consider z = ¢ + i and 2/ = ¢ + Vit +i,
with ¢ € (0,1). Then

la" —a] 1

lal Vi

can be made arbitrarily large (when ¢ is close to 0), while

|2" — 2| t
= <Vt <1.
g o ViresVis

4.5.2 Error bound for complex multiplication

Suppose we are given two complex numbers 2y = ag + tbp and z; = a; + ib;.
We want to compute in floating-point arithmetic an approximation to their
product

2021 = (a0a1 — bobl) + i(aobl + b()al).

We first consider the “naive algorithm” which consists in computing the
quantities RN(RN(apa1) — RN(bob1)) and RN(RN(apb1) + RN(bgpay)). Error
bounds for complex multiplication based on the naive algorithm can be
found in [436, 317]. Here we show the following bound, a proof of which
can also be found in [182].

Lemma 9. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow occurs in the computation®. Let € be & ulp(1).
Let ag,a1,bo, b1 be four floating-point numbers, and define two complex numbers
20 = ag + ib() and 21 =a1 + ibl. Let

z=a+1b= RN(RN(aOal) — RN(bobl)) + iRN(RN(aobl) + RN(boal)).

Then
|2 = 2021 < V2(2+ e)elz| |21

8We remind the reader that when a subnormal number is returned, we consider that there
is an underflow.

142 Chapter 4. Basic Properties and Algorithms

Proof. We first consider the real part of z. We have

la — (apay — boby)|

la — (RN(apa1) — RN(bob1))| + | RN(apa1) — apar| + | RN(bob1) — bobs |
¢/ RN(apa1) — RN(bob1)| + | RN(apa1) — apai| + | RN(bob1) — bob1 |
elapar — bob1| + (1 4 €)| RN(apa1) — apai| + (1 + €)| RN(bob1) — bobi|
elagar — bobi| + (1 + €)elagar| + (1 + €)e|bob]|

(2 + €)e[laoar| + [bob1]]

(2 + €)e|zol|z1].

VAN VAN VAN VANRE VAR VAN

Similarly, we have |b— (apb1 +boa1)| < (2+€)e|2p||21]. As a consequence,
|z — 2z021]% < 2(2 + €)2€%|20|%| 21 %,
which provides the result. O

Notice that the error bound given above is not component-wise. A rela-
tive component-wise error bound cannot exist since complex multiplication
can be used to perform subtraction of two floating-point numbers x and y.
For instance, consider the real part of zpz1, with zp = 1+ ¢ and 2; = = + iy.

Furthermore, the error bound given in Lemma 9 is not tight. One can-
not build floating-point numbers ay, a1, by, b1 for which |z — 29z is indeed
close to v/8¢|z921|. This was discovered experimentally by Percival [330], who
gave a first proof that v/8 can in fact be replaced by v/5. Unfortunately, his
proof was flawed, and a corrected proof was published by Brent, Percival,
and Zimmermann [46]. More precisely, they showed the following.

Theorem 10. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow arises in the computation. Let € be 1 ulp(1).
Suppose that ¢ < 27°. Let ap,a1,bo,by be four floating-point numbers, and
define zo = ag + ibg and z; = ay + iby. Let

z=a+1b= RN(RN(CLQG1) - RN(bobl)) + iRN(RN(CLle) + RN(bQCLl)).

Then
|z — z021] < V/5e| 20|21

The proof is lengthy, and we refer to [46] for the details. Notice first that
both bounds (that we obtained in the proof of Lemma 9)

la — (apay — bob1)| < (2 4 €)e|zo]|21]

and
|b — (aob1 + boar)| < (2 + €)e|z0]|21]

are essentially sharp when considered independently. The proof of Brent,
Percival, and Zimmermann exploits the fact that they cannot be tight

4.5. Complex numbers 143

Assumption Bound on |a — (apa; — boby)]

ulp(bobl) < ulp(aoal) <u 6(2@0&1 — bobl) + 262(a0a1 + bobl)
1

ulp(bpb1) < u < ulp(apay) Teapay
u < ulp(bob1) < ulp(apar) Seapay
u < ulp(bobl) = ulp(aoal) e(aoa1 + bobl)

Table 4.1: The four cases of Brent, Percival, and Zimmermann.

simultaneously. By considering multiplications by 7 and —1 and by taking
complex conjugates, one can see that it is sufficient to prove that the bound
holds when ap, al,as, as > 0 and bgbl < apai.

By distinguishing the cases when

ulp(agbi + bpa1) < ulp(RN(apb1) + RN(bpa1))

and
ulp(a0b1 + boCLl) > ulp(RN(aobl) + RN(boal)),

the authors prove that
’b — (a0b1 + boal)‘ < 2e(agby + boal),

which is better than in the proof of Lemma 9 only by a factor of (1 + €/2).
Then they consider four cases (see Table 4.1) for the real part of z, by
looking at the respective values of ulp(bpb1), ulp(apa;), and

u = ulp(RN(apa;) — RN(bgb1)).

One of these cases must occur since we assumed that byb; < agaq.

Then each bound is combined independently with the previously
obtained error bound on the imaginary part.

Their analysis shows that the bound

‘Z — Zozl‘ § \/56|Z()H2’1‘

can be close to tight only in the fourth case of Table 4.1. In [46], the authors
also provide worst cases for the single precision/binary32 and double pre-
cision/binary64 formats of the IEEE 754-1985 and IEEE 754-2008 standards.
For 3 = 2,t = 24, and ¢ = 272* (single precision), the largest value of the
quantity

|z — zp21]

| 2021

144 Chapter 4. Basic Properties and Algorithms

is reached for

3 .3 2 2
=—4+i-(1-4 =-(1+11le)+i-(1+
20 =7 14(€) and z 3(€) 23(5e),

with

‘Z’;j’lzl‘ ~ ey/5 — 168e.
021
For 8 = 2,t = 53, and € = 27°3 (double precision), the worst case is reached

for
3 3 2 .2
20—1(1+46)+ZZ and 21—§(1+76)+Z§(1+6),

with

= 20al | /5 —g6e.
|2021]

On systems for which multiplication of floating-point numbers is
significantly more expensive than addition and subtraction (a typical
example is multiple-precision systems), it is worth considering Karatsuba’s
algorithm [214] for complex multiplication. It performs 3 floating-point
multiplications and 5 additions/subtractions instead of 4 multiplications and
2 additions/subtractions. Suppose we are multiplying the complex num-
bers zp = ag + ibp and z; = a; + ib;. Then Karatsuba’s algorithm is as shown
in Algorithm 4.8.

Algorithm 4.8 Karatsuba’s complex multiplication of ag + ibg and a1 + ib;
p1 — RN(RN(CLO + bo) . RN(CLl + bl))
p2 < RN(ag - a1)
p3 — RN(bo - b1)
a < RN(p2 — p3)
b — RN(RN(p1 — p2) —p3)

It is argued in [46] that the norm-wise relative error induced by Karat-
suba’s algorithm can be bounded by approximately 8¢, but this bound may
be pessimistic.

4.5.3 Complex division

Complex division is not as well understood as complex multiplication. It
seems harder to obtain tight worst-case norm-wise error bounds. Moreover,
the influence of underflows and overflows is more complicated.

We now give an error bound similar to the one of Higham [182] in the
case where no underflow/overflow occurs when performing division using
the straightforward algorithm. Then we will review some results explaining
how to handle underflows and overflows.

4.5. Complex numbers 145

Lemma 11. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow occurs in the computation. Define e = % ulp(1).
Suppose that ¢ < 273. Let ag,a1,bo, by be four floating-point numbers, and
define zo = ag + tbg and z; = a1 + iby. Let

z=a-+1ib

. RN(RN(agal) + RN(bobl)) . RN(RN(boal) — RN(aobl))
- (RN(RN(a?) + RN(B3))) TORE (RN(RN(a?) + RN(B3)))

Then
-2 < 5v2(1 + 66)6@.
21 ‘Zl|
Proof. We first consider the denominator. The quantity

||z1]> = RN(RN(a?) + RN(b}))| is less than or equal to:

| RN(RN(a?) + RN(b])) — (RN(ai) + RN(b7))|

+laf — RN(af)| + [bf — RN(b})]

¢ RN(af) + RN(b9)| + |af — RN(af)| + [bf — RN(b9)|
< e(T+e€)(a? +b3) + ead + eb? = (2 + €)e|z1)?.

IN

Similar to the proof of Lemma 9, we have

|RN(RN(GOG1) + RN(bobl)) — (a0a1 + bobl)’
|RN(RN(b0a1) — RN(aobl)) — (b0a1 — a0b1)|

(2 + €)€|zo]| 1],

<
< (24 €)elzol|21]-
Using the triangular inequality, this gives us that the quantity

RN(RN(aoal) + RN(bobl)) _ Goay + boby
RN(RN(a?) + RN(b})) a} + b3

is less than or equal to

‘ RN(RN(CL()CU) + RN(bobl)) — (a0a1 + bobl)‘
a? + b2
1 1

| RN(RN(af) + RN(b])) — (af + b])|

+|RN(RN(aga1) + RN(bob1))| RN(RN(a2) + RN(62)) (a2 + b2)

|20] (2+¢€)e 20|

< 24+¢€e— +(1+(24+€)e) ———m—-——

() |21 (())1—(2+6)6|Z1|
2(2+€)e |20

1— (24 ¢)e]z1]|

146 Chapter 4. Basic Properties and Algorithms

We can then bound the quantity

’RN <RN(RN(a0a1) + RN(bobl))> _ apal + b0b1

RN(RN(a?) + RN(b?)) a? + b3
by:
¢ RN(RN(aoal) + RN(bobl)) 4 2(2 + 6)6 @
RN(RN(a2) + RN(b2)) 1—(2+e)e]

< 1 1
_e(+(+ 1_2+6>

Since € < 1/8, we have
17
(24 ¢€)e < ge <1/2

and
(I+€e)(2+¢€)

1—(2+¢)e
Overall, this gives that:

RN(RN((IQ(Il) + RN(bobl)) agai + bob1
RN 2 2 o 2 2
RN(RN(a?) + RN(2)) E R

17
<(14¢€)(2+¢€) <1+46> < 2+ 14e.

J20]

< €(5+ 28¢)]
1

The latter also holds for the imaginary part, and overall this provides

20| |20/
z— 2| <2635+ 28¢)?

21 |21]2

which gives the result. O

Overflows and underflows may occur while performing a complex
division even if the result lies well within the limits. Consider for example
the quotient of 29 = 1 and z; = 2% in the IEEE 754-1985 double-precision
format. The denominator |z1|? is evaluated to +oo, so that the result of the
computation is 0, which is far away from the correct result 275%°. The most
famous method to work around such harmful intermediate under-
flows/overflows is due to Smith [381]. It consists in first comparing |a;| and
|b1|. After that,

e if |a;| > |b1|, one considers the formula

ag + by(byai") Z-bo — ag(byai’)
ap + b1(b1a1_1) a; + b1(bla1_1)

and

4.5. Complex numbers 147

e if |a;| < |b1|, one considers the formula

_ aga by) + by ibo(‘hbfl) —do
ap(aby’) +by ag(agby’) +by

Doing this requires 1 comparison, 3 floating-point divisions, and 3 floating-
point multiplications, instead of 2 divisions and 6 multiplications. Note that
if dividing is much more expensive than multiplying, then it is worth starting
by inverting the common denominator of both the real and imaginary parts,
and then multiplying the result by the numerators. This leads to 1 compari-
son, 2 divisions, and 5 multiplications for Smith’s algorithm, and 1 division
and 8 multiplications for the naive algorithm. In any case, Smith’s algorithm
can thus be significantly slower if (as it frequently happens) comparing and
dividing are more expensive than multiplying.

Stewart [393] improves the accuracy of Smith’s algorithm by perform-
ing a few additional comparisons. More precisely, he suggests computing
the products agbya;’ and bya;b; ' in a way that prevents harmful under-
flows and overflows during that particular step: when computing a - b - ¢, if
the result does not underflow or overflow, then it is safe to first compute the
product of the two numbers of extremal magnitudes and then multiply the
obtained result by the remaining term. However, Stewart’s variant of Smith’s
algorithm can still suffer from harmful intermediate overflows and under-
flows. For instance, suppose that 0 < b; < a; and that both are close to the
overflow limit. Then the denominator a, + b, (b;a; ') will overflow. Suppose
furthermore that ap ~ a1 and by ~ b;. Then the result of Stewart’s algorithm
will be NaN, although the result of the exact division is close to 1. Li et al.
[257, Appendix B] show how to avoid harmful underflows and overflows in
Smith’s algorithm, by scaling the variables ag, a1, by and b; beforehand. We
do not describe their method, since Priest’s algorithm, given below, achieves
the same result at a smaller cost.

Priest [338] uses a two-step scaling of the variables to prevent harmful
overflows and underflows in the naive complex division algorithm. The scal-
ings are particularly efficient because the common scaling factor s is a power
of 2 that can be quickly determined from the input operands.

ag+ibg
a1+1iby”’

Algorithm 4.9 Priest’s algorithm for computing using a scaling factor s

al — s xay

by — s x b

t« 1/(a} x a} + b} x b))
all — s xa}

b — s x b

x— (ag x af +by x b]) xt
y— (by x af —agx) xt
return x + iy

148 Chapter 4. Basic Properties and Algorithms

In Algorithm 4.9, the scaling factor s is first applied to a; and b; to allow
for a safe computation of (a scaling of) the denominator. It is applied a second
time to allow for a safe computation of the numerators. Priest proves that one
can always choose a scaling factor s that depends on the inputs (taking s close
to |a1 + iby|~3/* suffices for most values of ag + ibp), such that the following
properties hold:

e If an overflow occurs in the computation, at least one of the two com-
ponents of the exact value of

ag + ibg
ay + iby

is above the overflow threshold or within a few ULPs of it.

¢ Any underflow occurring in the first five steps of Algorithm 4.9 or in
the computations of a, x af + b, x b and b, x a{ — ay x b{ is harmless,
i.e., its contribution to the relative error

|(x +iy) — 20/ 21|
|20/ 21

is at most a few ULPs.

e Any underflow occurring in the multiplications by ¢ in the last two
steps of Algorithm 4.9 incurs at most a few ulp(\)’s to the absolute
error |(z + iy) — 20/21|, where A is the smallest positive normal floating-
point number.

The above properties imply that an error bound similar to that of
Lemma 11 holds for Priest’s algorithm. Furthermore, the restriction that no
underflow nor overflow should occur may then be replaced by the weaker
restriction that none of the components of the exact value of

ag + b
a1 + iby

should lie above the overflow threshold nor within a few ULPs of it.

In [338], Priest also provides a very efficient way of computing a scaling
parameter s that satisfies the constraints for the above properties to hold,
for the particular situation of IEEE-754 binary double precision arithmetic.
In [204], Kahan describes a similar scaling method, but it requires possibly
slow library functions to find and apply the scaling.

4.5. Complex numbers 149

4.5.4 Complex square root

The simplest algorithm for evaluating a complex square root u + iv of = + iy,
based on real square roots, consists in successively computing

0 = /a2 +y>?

u = /({+z)/2 (4.2)

v = £/l —12)/2
with sign(v) = sign(y). Ahrendt [3] shows that this algorithm is optimal in the
algebraic sense, i.e., in the number of exact operations +, —, x, +, V- However,
it suffers from a major drawback: z? + y? can overflow and underflow, even

if the exact square root is representable, leading to very poor results.
Another solution [135] is to first compute

0 if z=y=0

w= M\/”“;@W it Ja| > |y

M\/ o)yl £ VIEGIT

|z <yl

and then obtain

w+i— if w#0andx >0

U+ =/T+iy= 2w

M-H‘w if w#0andz<0Oandy >0

— —qw if w#0andz <0andy < 0.

This allows one to avoid intermediate overflows at the cost of more com-
putation including several tests, divisions, and real square roots which make
the complex square root evaluation quite slow compared to a single arith-
metic instruction. Also, estimating the final accuracy seems very difficult.

150 Chapter 4. Basic Properties and Algorithms

Kahan [204] gives a better solution that also correctly handles all special
cases (infinities, zeros, NaNs, etc.), also at the cost of much more computation
than the naive method (4.2).

Chapter 5

The Fused Multiply-Add
Instruction

HE FUSED MULTIPLY-ADD (FMA) instruction makes it possible to
evaluate ab + ¢, where a, b, and ¢ are floating-point numbers, with
one final rounding only. That is, it computes

o(ab+ o),

where o is the active rounding mode (see Section 2.2).

FMA was introduced in 1990 on the IBM RS/6000 processor [183, 281].
The instruction allows for faster and, in general, more accurate dot prod-
ucts, matrix multiplications, and polynomial evaluations. As noticed for
instance by Markstein [271], it also makes it possible to design fast algorithms
for correctly rounded division and square root, as we will see later in this
chapter. This might be the most interesting property of the FMA instruction,
and it explains why, on current chips offering such an instruction, there is no
hardwired division and/or square root operator. An FMA also simplifies the
design of an accurate range reduction algorithm for the trigonometric func-
tions [256].

After the IBM RS/6000, FMA units were implemented in many commer-
cial, general-purpose processors. Examples are the IBM PowerPC [199], the
HP PA-8000 [212, 236], and the HP/Intel Itanium [88]. An interesting survey
on FMA architectures, along with suggestions for new architectures, is pre-
sented in [339].

The FMA instruction is included in the new IEEE 754-2008 standard for
floating-point arithmetic. As a consequence, within a few years, this instruc-
tion will probably be available on most general-purpose processors.

The aim of this chapter is to show examples of calculations that are facil-
itated (and sometimes made possible) when an FMA instruction is available.
We will start with the very simple yet useful example of the evaluation of the
error of floating-point multiplication.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_5, 151
© Birkhéduser Boston, a part of Springer Science+Business Media, LLC 2010

152 Chapter 5. The Fused Multiply-Add Instruction

51 The 2MultFMA Algorithm

In Chapter 4 (Section 4.4.2, page 135), we have studied an algorithm due to
Dekker that allows one to deduce, from two floating-point numbers z; and
x2, two other floating-point numbers r; and 3 such that (under some condi-
tions)

T1+ Ty =21 2o

exactly, and
T = RN(:L’l . :L‘Q).

That is, r5 is the error of the floating-point multiplication of z1 by x2. Dekker’s
multiplication algorithm requires 17 floating-point operations. It only works
if the radix is 2 or the precision is even (see Chapter 4, Theorem 7, page 137),
and if no overflow occurs in the intermediate calculations.

If an FMA instruction is available, we can design a much simpler algo-
rithm, which only requires two consecutive operations, and works for any
radix and precision, provided the product z; - x2 does not overflow and
€z, + €z, > emin + p — 1, where e;, and e, are the exponents of x; and
x2. Although we present it for round-to-nearest mode, it works as well for
the other rounding modes. See Algorithm 5.1.

Algorithm 5.1 2MultfFMA (z1, z2).
r1 <— RN(ml : xg)
T9 < RN(CL‘l -T2 —7‘1)

it is not satisfied, the product may not be representable as the exact sum of
two floating-point numbers (r2 would be below the underflow threshold).
Consider for instance the following example, in the decimal64 format of the
IEEE 754-2008 standard (3 = 10, p = 16, emin = —383).

Notice that condition e;, + €z, > emin + p — 1 cannot be avoided: if

o x; = 3.141592653589793 x 10~19;
o 1o = 2.718281828459045 x 10~199;

e the floating-point number closest to x; - z2 is r; = 8.539734222673566 x
10—380;

e the floating-point number closest to z; - x2 — 71 is subnormal. Its value
is —0.000000000000322 x 10738 which differs from the exact value of
r1 - w3 — r1, namely —0.322151269472315 x 10739,

5.2. Computation of Residuals of Division and Square Root 153

5.2 Computation of Residuals of Division and Square
Root

As we will see, the availability of an FMA instruction simplifies the imple-
mentation of correctly rounded division and square root. The following two
theorems have been known for a long time (see for instance [29]). We prefer
here to give the recent presentation by Boldo and Daumas [31], since it fully
takes into account the possibilities of underflow. Assume a radix-3, precision-
p, floating-point system with extremal exponents e, and epax.

In these theorems, we will call a representable pair for a floating-point
number z a pair (M, e) of integersl such that x = M - ge7P+L |M| < P — 1,
and enin < e (such pairs are “floating-point representations” that are not
necessarily normal, without upper constraint on the exponents).

Theorem 12 (Exact residual for division [31]). Let x and y be floating-point num-
bers in the considered format. Let q be o(xz/y), where o is round-to-nearest, or a
directed mode (see Section 2.2). If q is neither an infinity nor a Not a Number (NaN)
datum, then

r—qy
is a floating-point number if and only if there exist two representable pairs (M, e,)
and (Mg, eq) that represent y and q such that

® ¢y +eq> emin+p—land

e gF aoraj2<|r/y|
where o = B°min =P+ is the smallest positive subnormal number.

Theorem 13 (Exact residual for square root [31]). Let x be a floating-point num-
ber in the considered format. Let o be x rounded to a nearest floating-point value. If
o is neither an infinity nor a NaN, then

T — O'2
is representable if and only if there exists a representable pair (M, , e,) that represents
o such that
2¢; 2 émin +p— L.

See [31] for the proofs of these theorems. Consider the following exam-
ple, which illustrates that if the conditions of Theorem 12 are not satisfied,
then = — ¢y is not exactly representable.

Example 8 (A case where z — ¢y is not exactly representable). Assume 3 = 2,
p = 24, and eyin = 1 —emax = —126 (single-precision format of the IEEE 754-1985

IBeware: M is not necessarily the integral significand of .

154 Chapter 5. The Fused Multiply-Add Instruction

standard, binary32 format of IEEE 754-2008). Let x and y be floating-point numbers
defined as

22 zeros

x = 27104 4 97105 — (1.10000000000000000000000)5 x 27104

and
22 zeros

y = 2721 4 274 = (1.0000000000000000000000 1)5 x 272!,

The floating-point number that is nearest to x/y is

¢=(1.01111111111111111111111)5 x 273,

22 ones

and the exact value of v — qy is

r—qy=—(1.111111111111111111111)5 x 2729,

21 ones

which is not exactly representable. The (subnormal) floating-point number obtained
by rounding x — qy to nearest even is —27128,

In the example, e, + ¢, = —104, and enin + p — 1 = —103: condition
“ey + eq > emin +p — 1”7 of Theorem 12 is not satisfied.

An important consequence of Theorem 12 is the following result, which
will make it possible to perform correctly rounded divisions using Newton—
Raphson iterations, provided that an FMA instruction is available (see Sec-
tion 5.3).

Corollary 1 (Computation of division residuals using an FMA). Assume x and
y are precision-p, radix-f3, floating-point numbers, with y # 0 and |x/y| below the
overflow threshold. If q is defined as

o z/y if it is exactly representable;

e one of the two floating-point numbers that surround x|y otherwise;*

then
r—qy

is exactly computed using one FMA instruction, with any rounding mode, provided
that

ey +eq > emin +p—1,
and (5.1)

q# aor|z/yl > g,

20r q is the largest finite floating-point number €, in the case where x/y is between that
number and the overflow threshold (the same thing applies on the negative side).

5.3. Newton-Raphson-Based Division with an FMA 155

where e, and e, are the exponents of y and q. In the frequent case 1 < = < 3
and 1 <y < (3 (straightforward separate handling of the exponents in the division
algorithm), condition 5.1 is satisfied as soon as

€min < —P,
which holds in all usual formats.
Similarly, from Theorem 13, we deduce the following result.

Corollary 2 (Computation of square root residuals using an FMA). Assume
x is a precision-p, radix-f3, positive floating-point number. If o is \/x rounded to a
nearest floating-point number then

r —o?
is exactly computed using one FMA instruction, with any rounding mode, provided
that
2e5 > emin +p — 1, (5.2)

where e, is the exponent of o. In the frequent case 1 < x < [3? (straightforward
separate handling of the exponent in the square root algorithm), condition 5.2 is
satisfied as soon as

Emin < 1- b,

which holds in all usual formats.

Corollary 2 is much weaker than Corollary 1: the “correcting term” x — o>

may not be exactly representable when o is not a floating-point number near-
est to z, even if o is one of the two floating-point numbers that surround x.
An example, in radix-2, precision-5 arithmetic is x = 111102 and o = 101.10,.

5.3 Newton-Raphson-Based Division with an FMA

Before using some of the results presented in the previous section to build
algorithms for correctly rounded division, let us recall some variants of the
Newton—-Raphson iteration for reciprocation and division.

5.3.1 Variants of the Newton—-Raphson iteration

Assume we wish to compute an approximation to b/a in a binary floating-
point arithmetic of precision p. We will first present some classical iterations,
all derived from the Newton—-Raphson root-finding iteration, that are used in
several division algorithms [271, 86, 270, 88]. Some of these iterations make
it possible to directly compute b/a, yet most algorithms first compute 1/a: A
multiplication by b followed by a possible correcting step is necessary.

156 Chapter 5. The Fused Multiply-Add Instruction

For simplicity, we assume that a and b satisfy
1<a,b<?2,

which is not a problem in binary floating-point arithmetic (they are signifi-
cands of floating-point numbers).

The Newton—-Raphson iteration is a well-known and useful technique
for finding roots of functions. It was introduced by Newton around 1669 [301]
to solve polynomial equations (without explicit use of the derivative) and
generalized by Raphson a few years later [372].

For finding roots of function f, the iteration is

Tp+1 = Tn — fI(IE)
n

(5.3)

If z is close enough to a root « of f, if f has a second derivative, and if
f'(a) # 0, then the iteration (5.3) converges quadratically to a.. By “quadratic
convergence” we mean that the distance between z,,1 and « is proportional
to the square of the distance between z,, and a. If o # 0, this implies that
the number of common digits between z,, and a roughly doubles at each
iteration. For computing 1/a, we look for the root of function f(z) = 1/z —aq,
which gives

Tnt1 = Tn(2 — azy). (5.4)

That iteration converges to 1/a for any z¢ € (0,2/a). This is easy to see
in Figure 5.1. And yet, of course, fast convergence requires a value of z(close
to1/a.

In the case of iteration (5.4), we easily get

1 1\?
Ln+1 — a = —a (l“n - a>) (5.5)

which illustrates the quadratic convergence.

Beware: for the moment, we only deal with mathematical, “exact” iter-
ations. When rounding errors are taken into account, the formulas become
more complicated. Table 5.1 gives the first values x,, in the case a = 1.5 and
o = 1.

5.3. Newton-Raphson-Based Division with an FMA 157

Tn+1

1/a |-

Tn+l = $n(2 - (ll‘n)

Figure 5.1: Iteration (5.4). We easily see that it converges to 1/a for 0 < xg < 2/a.

oo aw| v~ S
=
3

0.5

0.625

0.6640625

0.666656494140625

0.6666666665114462375640869140625
0.66666666666666666663052659425048318553308490663 76686 - - -
0.6666666666666666666666666666666666666647075094152961 - - -

Table 5.1: First values x,, given by iteration (5.4), in the case a = 1.5, xg = 1.
The quadratic convergence is displayed by the fact that the number of common digits
between x,, and the limit roughly doubles at each iteration.

Iteration (5.4) has a drawback: the three floating-point operations (two
if an FMA instruction is available) it requires are dependent, i.e., no paral-
lelism is available. This is a significant penalty, for instance, if the floating-
point operators are implemented with a pipeline of large depth. And yet, a
great advantage of that iteration is that it is “self-correcting”: small errors
(e.g., rounding errors) when computing z,, do not change the value of the
limit.

158 Chapter 5. The Fused Multiply-Add Instruction

Although the iterations would converge with zy = 1 (they converge
for 0 < z9p < 2/a, and we have assumed 1 < a < 2), in practice, we
drastically reduce their number by starting with a value z close to 1/a,
obtained either by looking up an approximation to 1/a in a table® addressed
by a few most significant bits of a, or by using a polynomial approxima-
tion of very small degree to the reciprocal function. Many papers address
the problem of cleverly designing a table that returns a convenient value xg
[322, 360, 361, 362, 394, 106, 229]—see Section 9.2.8 page 286 for a review.

Now, by defining ¢, = 1 — ax,,, one obtains the following iteration:

{ €n = 1—ax, . (5.6)

Tn+l = Tp+ Tpén

That iteration was implemented on the Intel Itanium processor [86, 270,
88]:

o it still has the “self-correcting” property;

e itis as sequential as iteration (5.4), since there is a dependency between
ZTpa1 and ey;

e however, it has a nice property; under the conditions of Corollary 1 (that
is, roughly speaking, if z,, is within one ulp from 1/a), the “residual”
en = 1 — ax, will be exactly computed with an FMA. As we will see
later on, this is a key feature that allows for correctly rounded division.

Another apparently different way of devising fast division algorithms is to
use the power series

- =l+eted+e+-- (5.7)
— €

with € = 1 — a. Using (5.7) and the factorization

l+e+eE4+E+ - =14+e)(1+HA+H(A+€5)--,
one can get a “new” fast iteration. By denoting

n
€n =€,

we get €,+1 = €2, and

1
1—¢

=1 +e)(d+ea)(l+e)(l+e) -,

3For instance, on the Intel /HP Itanium, there is an instruction, frcpa, that returns approx-
imations to reciprocals, with at least 8.886 valid bits.

5.3. Newton-Raphson-Based Division with an FMA 159

denoting z, = (1 +¢€y)(1 +€1) --- (1 + €,), we get the following iteration:

€nt+1 = €2. (58)

{ Tptl = Tp+ Tnén
As for the Newton-Raphson iteration, one can significantly accelerate the
convergence by starting from a value z close to 1/a, obtained from a table.
It suffices then to choose eg = 1 — axp. Now, it is important to notice that the
variables ¢, of (5.8) and (5.6) are the same: from ¢, = 1 — ax,,, one deduces

e = 1-2aw,+adz?
= 1—az,(2—axy)
= 1—-azpq1
= €n+l1.

Hence, from a mathematical point of view, iterations (5.6) and (5.8) are
equivalent: we have found again the same iteration through a totally different
method. However, from a computational point of view, they are quite different:

e the computations of z,41 and €,41 in (5.8) can be done in parallel,
which is a significant improvement in terms of performance on most
platforms;

e however, variable a no longer appears in (5.8). A consequence of this
is that rounding errors in the computations will make information on
the input operand disappear progressively—this iteration is not self-
correcting.

Of course, one can mix these various iterations. For instance, we may
choose to compute ¢, as 1 — az,, during the last iterations, because accuracy
becomes crucial, whereas it may be preferable to compute it as €2_; during
the first iterations, because this can be done in parallel with the computation
of z,,.

Another feature of iteration (5.8) is that one can directly compute b/a
instead of first computing 1/a and then multiplying by b, but this is not neces-
sarily efficient (see below). This is done by defining a new variable,

Yn = by,
which gives
Ynt1 = y: + Ynén 5.9)
En+tl = €,

The difficult point, however, is to get a sensible starting value yo:

160 Chapter 5. The Fused Multiply-Add Instruction

e either we start the iterations with yo = b (which corresponds to zp = 1)
and ¢y = 1 — a, and in such a case, we may need many iterations if a is
not very close to 1 (i.e., if zg is far from 1/a);

e or we try to start the iterations with the (hidden) variable zy equal to a
close approximation a* to 1/a, and ¢y = 1 —aa*. In such a case, we must
have yg = ba*.

Now, one can design another iteration by defining

n = 1—¢,
{ Knyr = 146, (510)

which leads to the well-known Goldschmidt iteration [151]

Yn+1 = Knpt1yn
Tny1 = Kupary (5.11)
Kn+l = 2- Tn.

This iteration, still mathematically equivalent to the previous ones, also
has different properties from a computational point of view. The computa-
tions of y,+1 and r,4; are independent and hence can be done in parallel,
and the computation of K, is very simple (it is done by two’s complement-
ing 7,). In case of a hardware implementation, since both multiplications that
appear in the iteration are by the same value K, 1, some optimizations—
such as a common Booth recoding [37, 126]—are possible. However, unfortu-
nately, the iteration is not self-correcting: after the first rounding error, exact
information on a is lost forever.

From (5.9) or (5.6), by defining

n = by
{ A be. (5.12)
one gets
on = b—ayn
5.13
{ Yntl = Yn+ O0nTy. ()

This last iteration is used in Intel and HP’s algorithms for the Itanium:
once a correctly rounded approximation x,, to 1/a is obtained from (5.6)—
we will see later how it can be correctly rounded—one computes a first
approximation ¥, to b/a by multiplying x,, by b. Then, this approximation
is improved by applying iteration (5.13).

5.3.2 Using the Newton-Raphson iteration for correctly rounded
division

In this section, we assume that we wish to compute o(b/a), where a and b are
floating-point numbers of the same format, and o is one of the four following

5.3. Newton-Raphson-Based Division with an FMA 161

rounding modes: round to nearest even, round toward —oo, round toward
+o00, round toward zero. We will use some of the iterations presented in the
previous section. If the radix of the floating-point system is 2, we do not have
to worry about how values halfway between two consecutive floating-point
numbers are handled in the round-to-nearest mode. This is due to the follow-
ing result.

Lemma 14 (Size of quotients in prime radices, adapted from [270]). Assume
that the radix (3 of the floating-point arithmetic is a prime number. Let ¢ = b/a,
where a and b are two floating-point numbers of precision p:

o cither q cannot be exactly represented with a finite number of radix-[3 digits;

e or q is a floating-point number of precision p (assuming unbounded exponent
range).

Proof. Assume that ¢ is representable with a finite number of radix-3 digits,
but not with p digits or less. This means that there exist integers) and e,
such that

q= Q : /Beq_p+17
where () > 7, and @ is not a multiple of 3.

Let A and B be the integral significands of a and b, and let ¢, and ¢, be
their exponents. We have

B. ﬁeb—p-H

A gert - @ geamr

Therefore, there exists an integer e, e > 0, such that
B = AQ - ¢

or
B-§° = AQ.

This and the primality of 3 imply that B is a multiple of @), which implies
B > pP. This is not possible since b is a precision-p floating-point number. [

In Lemma 14, the fact that the radix should be a prime number is neces-
sary. For instance, in radix 10 with p = 4, 2.005 and 2.000 are floating-point
numbers, and their quotient 1.0025 has a finite representation, but cannot be
represented with precision 4. A consequence of Lemma 14 is that, in radix 2,
a quotient is never exactly halfway between two consecutive floating-point
numbers. Notice that in prime radices greater than 2, Lemma 14 does not
imply that quotients exactly halfway between two consecutive floating-point
numbers do not occur.?

*When the radix is an odd number, values exactly halfway between two consecutive
floating-point numbers are represented with infinitely many digits.

162 Chapter 5. The Fused Multiply-Add Instruction

An interesting consequence of Lemma 14, since there is a finite number
of quotients of floating-point numbers, is that there exists an exclusion zone
around middles of consecutive floating-point numbers, where we cannot find
quotients. There are several, slightly different, “exclusion theorems.” This is
one of them:

Lemma 15 (Exclusion lemma [88]). Assume radix 2 and precision p, and let b be
a normal floating-point number, and a a nonzero floating-point number. If c is either
a floating-point number or the exact midpoint between two consecutive floating-point

numbers, then we have

b o _ob
—-—c P2
a a

> 2

Another one is the following.

Lemma 16 (A slightly different exclusion lemma). Assume radix 2 and preci-
sion p, and let b be a normal floating-point number, and a a nonzero floating-point
number. If c is the exact midpoint between two consecutive floating-point numbers,

then we have)
> 2P Lulp <> .
a

Let us give a simple proof for Lemma 16.

- —c
a

Proof. Let A and B be the integral significands of a and b. We have

a=A-20"Ptl

and
b=DB.2% P
Define
s_J0 iB>4
1 1 otherwise.
We have

ulp = 2¢v—€a—PF1-0
a

Also, the middle ¢ of two consecutive floating-point numbers around b/a is
of the form
c=(2C +1) - 2007 P9,
where C'is an integer, 2771 < O < 2P — 1.
Therefore,

B
_ — .9€p—€a __ . ep—eq—p—9
u c 1 2 (2C’ + 1) 2
1 b B
= = Z) . (2 9ptd _
2ulp (a) (A 2 (20—!—1))

1 b
= Z) . (B-2rtd —
= 3 ulp (a) (B 2 (2C + 1)A> .

5.3. Newton-Raphson-Based Division with an FMA 163

Since 1/A > 277, and since B - 2?7% — (2C + 1)A is a nonzero integer, we

deduce
> 2P Lulp .
a

When the processor being used has an internal precision that is signif-
icantly wider than the “target” precision, a careful implementation of itera-
tions such as (5.6) and (5.13) will allow one to obtain approximations to b/a
accurate enough so that Lemma 15 or a variant can be applied to show that,
once rounded to the target format, the obtained result will be the correctly
rounded (to the nearest) quotient. The main difficulty is when we want to
compute quotients of floating-point numbers in a precision that is the widest
available. In such a case, the following result is extremely useful.

b
- —c
a

O]

Theorem 17 (Peter Markstein [270]). Assume a precision-p binary floating-point
arithmetic, and let a and b be normal numbers. If

e q is a faithful approximation to b/a, and
e y approximates 1/a with a relative error less than 277, and

e the calculations
r=o(b—aq), ¢ =olqg+ry)

are performed using a given rounding mode o, taken among round to nearest
even, round toward zero, round toward —oo, round toward oo,

then ¢ is exactly o(b/a) (that is, b/a rounded according to the same rounding mode

0).

Markstein also shows that the last FMA raises the inexact exception if
and only if the quotient was inexact. Notice that if y approximates 1/a with
an error less than or equal to 4 ulp(1/a), (that is, if y is 1/a rounded to near-
est), then it approximates 1/a with a relative error less than 277, so that
Theorem 17 can be applied.

Proof. Let us prove Theorem 17 in the case of round-to-nearest even mode
(the other cases are quite similar). First, notice that from Theorem 12, r is
computed exactly.” Also, we will use the fact that if a is positive and is not a
subnormal number,® then

a
57 = up(a) <

= (5.14)

As 500N as €q + €4 > emin + p — 1, which will hold, in practice, if either we perform some
“prescaling” or handle the “difficult” cases separately.
6 Again, such “difficult” cases can be processed separately.

164 Chapter 5. The Fused Multiply-Add Instruction

We assume that a, b, and ¢ are not in the subnormal range; we also
assume a > 0, b > 0 (and hence ¢ > 0). Figure 5.2 illustrates the various
cases that may occur, if we wish to return b/a rounded to nearest:

e ifg—2ulp(2) <b < g+ Julp(?), wemustreturn g;

o if £ > g+ Julp (), we must return ¢ + ulp (2);
o if © < g — Lulp (%), we must return ¢ — ulp (2).

Notice that the case g =q=x %ulp (g) cannot occur from Lemma 14. The
returned value ¢’ is obtained by adding a correcting term 7y to ¢, and round-
ing the obtained result to nearest. One can easily find that to make sure that
¢ = RN(b/a):

e ifg—ulp (L) <2 <g+Julp(2),|ryl mustbe less than § ulp (2);

o if 2 > g+ lulp (%), ry must be larger than 3 ulp (2) and less than
Sulp (2);

o if 2 < g — Lulp (%), ry must be larger than —3 ulp (2) and less than
—Lulp (é)
2 al’
exclusion zones: b/a cannot be there
return ¢ — ulp(b/a)| return ¢ return ¢ + ulp(b/a)

b/a is in that domain

length ulp(b/a)

Figure 5.2: The various values that should be returned in round-to-nearest mode,
assuming q is within one ulp(b/a) from b/a.

Since y approximates 1/a with relative error less than 277, we have

1 1 1 1
- <y< —4+ —. (5.15)
a a 2Pa

5.3. Newton-Raphson-Based Division with an FMA 165

1. Ifg—2ulp(2) <t <g+iulp(). Assume 2 — g > 0 (the other case is
symmetrical). We have

b
0<b—aq<gulp<);

a
therefore, since b — ag and § ulp (2) are floating-point numbers,

r:b—aq<a_u21p(a)ulp.

- a

Using (5.14), we get

0<r< a a ! b
=T=\g Tt o)) WP)

This, along with (5.15), gives an upper bound on |ry|:

Iyl < (- -2 Lo YV (?
Y 9 ot — 9)\ G T g)P\)

from which we deduce

S\ Tt — gy) PP G) S 2P G)

Therefore, RN(q + ry) = ¢, which is what we wanted to show.

2. 1f 2 > g+ Lulp (%) (the case & < ¢ — 3 ulp (2) is symmetrical). We have

a

b b
gulp (> <b—ag<aulp <>,
2 a a

therefore, since b — ag, 2 ulp (2) and aulp (2) are floating-point num-
bers,

(“Jr“;p(a)> ulp (2) <r=b—-aq< (a—nulp(a))ulp (Z) .

Using (5.14), we get

a+ 55 b a b
—=——Julp| -) <r< — Ip(-].

This, along with (5.15), gives

() (o) e ()
21 S —ulp|-
2 a 2Pa a

166

Chapter 5. The Fused Multiply-Add Instruction

from which we deduce

L () ey e (1 22" Yaip (2) < ap (2
2upa Y 20 — 1 upa uPa'

Therefore, RN(g +ry) = g+ ulp (2), which is what we wanted to show.

O

Hence, a careful use of Theorem 17 makes it possible to get a correctly

rounded quotient b/a, once we have computed a very accurate approxima-
tion to the reciprocal 1/a. Let us therefore now focus on the computation
of reciprocals. More precisely, we wish to always get RN(1/a). The central
result, due to Peter Markstein, is the following one.

Theorem 18 (Markstein [270]). In precision-p binary floating-point arithmetic, if
y is an approximation to 1/a with an error less than 1 ulp(1/a), and the calculations

r=o(l—ay), y =o(y+ry)

are performed using round-to-nearest-even mode, then y' is exactly 1/a rounded to
nearest even, provided that the integral significand of a, namely A = a/ulp(a), is
different from 2P — 1 = 11111 --- 115.

A division algorithm can therefore be built as follows.

e First, RN(1/a) is computed. In general, it is wise to use iteration (5.8)

for the first steps because it is faster, and iteration (5.6) for the last steps
because it is more accurate (both in round-to-nearest mode). A very care-
ful error analysis must be performed to make sure that, after these itera-
tions, we get an approximation to 1/a that is within 1 ulp from 1/a. That
error analysis depends on the accuracy of the table (or approximation
of any kind, e.g., by a polynomial of small degree) that gives z, on the
precision of the input and output values, on the available internal pre-
cision, etc.). A way to perform (and to automate) that error analysis is
presented by Panhaleux [321].

Then, Theorem 18 is applied, to get RN(1/a) (except, possibly in the
case where the integral significand of a is 2 — 1 = 11111 ---115. That
case is easily handled separately [270]).

A first approximation to the quotient is computed, by multiplying the
previously obtained value RN(1/a) by b.

That approximation to the quotient is refined, in round-to-nearest
mode, using iteration (5.13). Again, a careful error analysis is required
to make sure that we get an approximation to b/a that is within ulp(b/a).

5.4. Newton-Raphson-Based Square Root with an FMA 167

e Finally, Theorem 17 is applied to get b/a correctly rounded in the
desired rounding mode.

Several variants of division algorithms (depending on the required and
internal precisions, depending on whether we wish to optimize the through-
put or to minimize the latency) are given by Markstein in his excellent
book [270].

5.4 Newton-Raphson-Based Square Root with an FMA

The Newton-Raphson iteration can also be used to evaluate square roots.
Again, the availability of an FMA instruction allows for rather easily obtained
correctly rounded results. We will not present the methods in detail here (one
can find them in [270, 86, 88]): we will focus on the most important results
only.

5.4.1 The basic iterations

From the general Newton—-Raphson iteration (5.3), one can derive two classes
of algorithms for computing the square root of a positive real number a.

2

e If we look for the positive root of function f(z) = z* — a, we get
1
Tni1 = 5 <xn n a) . (5.16)

This “Newton-Raphson” square root iteration goes back to much
before Newton’s time. Al-Khwarizmi mentions this method in his
arithmetic book [94]. Furthermore, it was already used by Heron of
Alexandria (which explains why it is frequently named “the Heron iter-
ation”), and seems to have been known by the Babylonians 2000 years
before Heron [138]. One can easily show that if 2o > 0, then x,, goes to
v/a. This iteration has a drawback: it requires a division at each step.
Also, guaranteeing correct rounding does not seem to be a simple task.

e If we look for the positive root of function f(x) = 1/x? — a, we get
Tpi1 = 2n(3 — ax?)/2. (5.17)

This iteration converges to 1/+/a, provided that zo € (0,v/3/+/a). To get
a first approximation to +/a it suffices to multiply the obtained result
by a. And yet, this does not always give a correctly rounded result:
some refinement is necessary. To obtain fast, quadratic, convergence,
the first point zp must be a close approximation to 1/1/a, read from a
table or obtained using a polynomial approximation of small degree.
Iteration (5.17) still has a division, but that division (by 2) is very
simple, especially in radix 2.

168 Chapter 5. The Fused Multiply-Add Instruction

5.4.2 Using the Newton-Raphson iteration for correctly rounded
square roots

2

From Equation (5.17), and by defining a “residual” ¢, as 1 — ax;, one gets
€ = 1—azx?
" ! (5.18)
Tptl = Tp+ 5€nTn.

To decompose these operations in terms of FMA instructions, Markstein [270]

defines new variables:
1

Tn = jﬁn
gn = aTp (5.19)
h, = %xn

From (5.18) and (5.19), one finds the following iteration:

Tn = % - gnhn
In+1 = Gn T gnTn (520)
hnt1 = hp+ hprp.

Variable h,, goes to 1/(2y/a), and variable g,, goes to /a. Iteration (5.20) is
easily implemented with an FMA instruction. Some parallelism is possible
since the computations of g,+1 and h,1 can be performed simultaneously.

Exactly as for the division iteration, a very careful error analysis is
needed, and the iterations are performed as well as a final refinement step.
Here are some results that make it possible to build refinement techniques.
See Markstein’s book [270] for more details.

Theorem 19. In any radix, the square root of a floating-point number cannot be the
exact midpoint between two consecutive floating-point numbers.

Proof. Assume that r is the exact middle of two consecutive radix-g,
precision-p floating-point numbers, and assume that it is the square-root of a
floating-point number x. Without loss of generality we can assume that r has
the form)
r=(ro.rire---rp—1)g + iﬂ*pﬂ;
ie,thatl <r < . Let R = (rorira - - - rp—1)g be the integral significand of .
We have
2rBP !t = 2R + 1;
ie.,
4237 = 2R+ 1)°.

Since r? is a floating-point number between 1 and /32, it is a multiple of 37711,
which implies that 723%"~2 is an integer. Thus, 472 3?P~2 is a multiple of 4. This
contradicts the fact that it is equal to the square of the odd number 2R+1. [

5.4. Newton-Raphson-Based Square Root with an FMA 169

Theorem 20. If the radix of the floating-point arithmetic is 2, then the square root
reciprocal of a floating-point number cannot be the exact midpoint between two con-
secutive floating-point numbers.

The proof is very similar to the proof of Theorem 19.

In non-binary radices, Theorem 20 may not hold, even if the radix is
prime. Consider for example a radix-3 arithmetic, with precision p = 6. The
number

x = 32415 = 1100003

is a floating-point number, and the reader can easily check that
1 1 1
— = - | 1111113 + =
N (T 2) |

which implies that 1/\/z is the exact midpoint between two consecutive
floating-point numbers.

Also, in radix 10 with precision 16 (which corresponds to the decimal64
format of the IEEE 754-2008 standard), the square-root reciprocal of

70.36874417766400
16 digits

is
0. 11920928955078125 ,
17 digits

which is the exact midpoint between two consecutive floating-point num-
bers.

The following Tuckerman test allows one to check if a floating-point num-
ber r is the correctly rounded-to-nearest square root of another floating-point
number a. Markstein [270] proves the following theorem in prime radices,
but it holds in any radix.

Theorem 21 (The Tuckerman test, adapted from Markstein’s presenta-
tion [270]). In radix (3, if a and r are floating-point numbers, then r is \/a rounded
to nearest if and only if

r(r—ulp(r7)) < a < r(r+ulp(r)) (5.21)
where 1~ is the floating-point predecessor of r.

Proof. We should first notice that Theorem 20 implies that \/a cannot be a
“midpoint” (i.e., a value exactly halfway between two consecutive floating-
point numbers). Therefore, we do not have to worry about tie-breaking rules.
Also, if k is an integer such that % and 3?**a do not overflow or underflow,
then (5.21) is equivalent to

(B r)((B%r) = B8 ulp(r™)) < 5%a < (B%)((6%r) + 5" ulp(r));

170 Chapter 5. The Fused Multiply-Add Instruction

which is equivalent, if we define R = Bkrand A = %a to
R(R—ulp(R7)) < A< R(R+ ulp(R)).

Since R = RN(VA) is straightforwardly equivalent to r = RN(y/a), we
deduce that without loss of generality, we can assume that 1 < r < 3. Let
us now consider two cases.

1. If r = 1. In this case (5.21) becomes 1 — 3P < a < 1 + 37P*!; that is,
since a is a floating-point number,

ac{l,1+3P} (5.22)

Since \/a cannot be a midpoint, 1 = RN(y/a) is equivalent to
1- %ﬂ"’ <Vva<1l+ %6"’“,
which is equivalent to
1—-p7P+ 36‘2” <a< 1474 iﬁ‘%“. (5.23)

The only floating-point numbers lying in the real range defined
by (5.23) are 1 and 1 + 37P*!, so that (5.23) is equivalent to (5.22).

2. If 1 <7 < B.In this case ulp(r~) = ulp(r) = 377! and (5.21) is thus
equivalent to
r(r— P <a<r(r4 3P, (5.24)

Since v/a cannot be a midpoint, r = RN(y/a) is equivalent to
r— %ﬁ_pﬂ <vVa<r+ %ﬁ_pﬂ.
By squaring all terms, this is equivalent to
P —) b <a <l 4 BT 4 1670 (525)

Now, since r is a floating-point number between 1 and 3, it is a multiple
of 3771, This implies that r(r — 37P*1) and 7(r + 37P*!) are multiples
of 3=2r+2,

An immediate consequence is that there is no multiple of 3~2P*2
between r(r — B7P*1) and r(r — B7P*!) + 13722, or between r(r +
B7PTH and r(r + B7PH) + iﬁﬂpﬁ-

This implies that there is no floating-point number between r(r — 37PT1)
and r(r— B7P*1) + 13722 orbetween r(r+BP*!) and r(r+4PH1) +
13=2p+2,

As a consequence, since a is a floating-point number, (5.25) is equivalent
to (5.24). g.e.d. O

5.5. Multiplication by an Arbitrary-Precision Constant 171

With an FMA instruction, and assuming that instructions for computing
the floating-point predecessor and successor of r are available, the Tucker-
man test is easily performed. For instance, to check whether

a < r(r+ulp(r)),
it suffices to compute
0 = RN(r x successor(r) — a)

using an FMA, and to test the sign of 4.

5.5 Multiplication by an Arbitrary-Precision Constant

Many numerical algorithms require multiplications by constants that are not
exactly representable in floating-point arithmetic. Typical examples of such
constants are 7, 1/7, In(2), e, as well as values of the form cos(kn/N) and
sin(km/N), which appear in fast Fourier transforms. A natural question that
springs to mind is: Can we, at low cost, perform these multiplications with
correct rounding?

The algorithm presented here was introduced by Brisebarre and
Muller [51].

Assume that C' is an arbitrary-precision constant. We want to design an
algorithm that always returns RN(C'z), for any input floating-point number
x of a given format. We want the algorithm to be very simple (two consecu-
tive operations only, without any test). We assume that the “target” format is
a binary floating-point format of precision p. Two possible cases are of inter-
est: in the first case, all intermediate calculations are performed in the target
format. In the second case, the intermediate calculations are performed in a
somewhat larger format. A typical example is when the target precision is the
double precision of IEEE 754-1985 (i.e., the binary64 format of IEEE 754-2008),
and the internal precision is that of the double-extended precision format.

The algorithm requires that the two following floating-point numbers be
pre-computed:

C, = RN(C),
{ C, = RN(C-Cy). (5:26)

Let us first present Algorithm 5.2.

Algorithm 5.2 Multiplication by C with a multiplication and an FMA [51].
From z, compute

{m = RN(Cpz), (5.27)

Uy = RN(C}LJZ + Ul)-

The result to be returned is us.

172 Chapter 5. The Fused Multiply-Add Instruction

Beware: we do not claim that for all values of C, this algorithm will
return RN(Cz) for all z. Indeed, it is quite simple to build counterexamples.
What we claim is that

e we have reasonably simple methods that make it possible, for a given
value of C, to check if Algorithm 5.2 will return RN(C'z) for all floating-
point numbers z;

e in practice, for most usual values of C, Algorithm 5.2 returns RN(C'z)
for all floating-point numbers .

Note that without the use of an FMA instruction, Algorithm 5.2 would
fail to always return a correctly rounded result for all but a few simple (e.g.,
powers of 2) values of C.

In this section, we will present a simple method that allows one to
check, for a given constant C' and a given format, if Algorithm 5.2 will
return RN(Cz) for all x. That method is sometimes unable to give an
answer. See [51] for a more sophisticated method that always either certi-
fies that Algorithm 5.2 always returns a correctly rounded result, or gives all
counterexamples. The method we are going to present is based on the con-
tinued fraction theory. Continued fractions are very useful in floating-point
arithmetic (for instance, to get worst cases for range reduction of trigonomet-
ric functions, see Chapter 11 and [293]). We present some basic results on that
theory in the appendix (Section 16.1, page 521).

5.5.1 Checking for a given constant C' if Algorithm 5.2 will always
work

Without loss of generality, we assume in the following that 1 < z < 2 and
1 < C < 2, that U is not exactly representable, and that C' — C}, is not a power
of 2. Define z.yt = 2/C. We will have to separate the cases © < x¢y and
x > Teyt, because the value of ulp(C - z) is not the same for these two cases.

The middle of two consecutive floating-point numbers around C - = has
the form

2A+1 .
5 if v < zeut,
and
2A4+1 .
2p7_1 lf T > Teuty

where A is an integer between 2P~! and 2?. Our problem is reduced to know-
ing if there can be such a midpoint between C - x and the value u; returned
by Algorithm 5.2. If this is not the case, then, necessarily,

uz = RN(C' -).

Hence, first, we must bound the distance between us and C - x.

5.5. Multiplication by an Arbitrary-Precision Constant 173
In this book, we will assume that the intermediate calculations are
performed in the “target” format (see [51] for the general case).
One has the following property; see [51, Property 2]:
Property 13. Define ¢; = |C — (Cp, + Cy)| .
o Ifx < xew — 27P+2 then |ug — Cz| < %ulp(uz) +n,
o Ifx > xey + 27PT2, then |ug — Cx| < %ulp(ug) +1,
where

1
5 ulp(Cgl’cut) + €1%cut,

n = ulp(Cy) + 2€;.

=
I

Property 13 tells us that us is within § ulp(us) + 1 or ulp(uz) + 1’ from
C' - z, where n and 7’ are very small. What does this mean?

e 1wy is within %ulp(uQ) from C - z. In such a case,” us = RN(C - z), which
is the desired result;

e or (see Figure 5.3), C' - x is very close (within distance 7 or 7’) from the
exact middle of two consecutive floating-point numbers. Depending on
whether x < .y or not, this means that C' - « is very close to a number
of the form (24 + 1) /2P or (2A + 1)/2P~!, which, by defining

X =2""1g,
means that 2C or C'is very close to a rational number of the form

2A+1
5

Hence, our problem is reduced to examining the best possible rational
approximations to C' or 2C, with denominator bounded by 2” — 1. This is a
typical continued fraction problem. Using Theorem 50 (in the Appendix,
Chapter 16, page 523), one can prove the following result [51].

"Unless us is a power of 2, but this case is easily handled separately.

174 Chapter 5. The Fused Multiply-Add Instruction

FP numbers

\
I
/

/
Domain where
Cx can be

us
located

If Cx is here, then o(Cx) = u;

Can Cx be here?

Figure 5.3: We know that Cz is within § ulp(uz) + 1 (or i) from the floating-point
(FP) number s, where 1 is less than 272+, If we can show that C'z cannot be at
a distance less than or equal to n (or ') from the midpoint of two consecutive FP

numbers, then uo will be the FP number that is closest to Cx [51]. (© IEEE, with
permission.

Theorem 22 (Conditions on C and p). Assume 1 < C' < 2. Let x¢y = 2/C and
Xeut = L2p71$cutJ-

. If

X =21 < Xeut
and

€1Tcut + %UIP(CN?cut) < 2p+11)%
(where €, is defined in Property 13) then Algorithm 5.2 will always return a
correctly rounded result, except possibly if X is a multiple of the denominator
of a convergent n/d of 2C' for which

P

2 1
|2Cd — n| < m (ﬁlﬂfcut + 5 UIP(Cﬁxcut)>)

5.6. Evaluation of the Error of an FMA 175

. If

X =271z > X,

and
2%Hle) 4 22~ ylp(20)) < 1,

then Algorithm 5.2 will always return a correctly rounded result, except pos-
sibly if X is a multiple of the denominator of a convergent n/d of C for which

2n—1
— ——ul .
|Cd —n| < erd+ X/ d1 ulp(Cy)

Hence, to check whether Algorithm 5.2 will always return a correctly
rounded result, it suffices to compute the first convergents of C'and 2C' (those
of denominator less than 2P).

Table 5.2 gives some results obtained using this method (“Method 2” in
the table) and two other methods, presented in [51]. Method 3 is the most
complex, but it always gives an answer (either it certifies, for a given C, that
the algorithm will always return RN(C - z), or it returns all the counterexam-
ples). From Table 5.2, one can for instance deduce the following result.

Theorem 23 (Correctly rounded multiplication by = [51]). Algorithm 5.2
always returns a correctly rounded result in the double-precision/binary64 format
with C = 27w, where j is any integer, provided no under/overflow occurs.

Hence, in this case, multiplying by 7 with correct rounding only requires
two consecutive FMAs.

If a wider internal format of precision p + g is available then it is possible
to slightly modify Algorithm 5.2 to get an algorithm that works for more
values of C. See [51], as well as http://perso.ens-1lyon.fr/jean-michel.
muller/MultConstant.html, for more details.

5.6 Evaluation of the Error of an FMA

We have previously seen that, under some conditions, the error of a floating-
point addition or multiplication can be exactly representable using one
floating-point number, and is readily computable using simple algorithms.
When dealing with the FMA instruction, two natural questions arise:

e How many floating-point numbers are necessary for representing the
error of an FMA?

e Can these numbers be easily calculated?

Boldo and Muller [35] studied that problem, in the case of radix-2 arith-
metic and assuming rounding to nearest. They showed that two floating-
point numbers always suffice for representing the error of an FMA, and

176 Chapter 5. The Fused Multiply-Add Instruction

’ c ‘ D H Method 1 Method 2 Method 3

- 8 Does not work for Does not work for AW unless X =
226 226 226

m 24 unable unable AW

T 53 AW unable AW

T 64 unable AW AW

T | 113 AW AW AW

1/m | 24 unable unable AW

1n | 53 Does not work for unable AW unless X =

6081371451248382 6081371451248382

1/7m | 64 AW AW AW

1/7 | 113 unable unable AW

In2 | 24 AW AW AW

In2 | 53 AW unable AW

In2 | 64 AW unable AW

In2 | 113 AW AW AW

ﬁ 24 unable AW AW

s | 53 AW AW AW

ﬁ 64 unable unable AW

s | 113 unable unable AW

Table 5.2: Some results obtained using the method presented here (Method 2), as well
as Methods 1 and 3 of [51]. The results given for constant C hold for all values
2FIC. “"AW" means “always works” and “unable” means “the method is unable to
conclude.” [51], © IEEE, 2008, with permission.

they gave an algorithm for computing these two numbers. That algorithm is
Algorithm 5.3, given below. It uses Algorithm 5.1 (2MultFMA), presented at
the beginning of this chapter, as well as Algorithms 4.3 (Fast25um) and 4.4
(2Sum) of Chapter 4. The total number of floating-point operations it requires
is 20.

Algorithm 5.3 ErrFma(a,z,y).
r1 < RN(az + y);
(u1,uz) < 2MultFMA (a, z);
(a1,) < 2Sum(y, ug);
(B1, B2) < 2Sum(uy, ay);
v« RN(RN(B1 — 71) + (2);
(rg,73) <« Fast2Sum(~, as);

5.7. Evaluation of Integer Powers 177
One can show that if no underflow or overflow occurs, then:
e ax +y =1 + r2 + r3 exactly;
o |ro 13| < %ulp(rl),‘
o |r3] < %ulp(rg).

Recently, Boldo wrote a formal proof in Coq of that result.?

5.7 Evaluation of Integer Powers

Now, we describe a method due to Kornerup et al. for accurately evaluating
powers to a positive integer n in binary floating-point arithmetic. We refer to
the research report [225] for the proofs of the results that we claim here.

We assume that we use a radix-2 floating-point arithmetic that follows
the IEEE 754-1985 or the IEEE 754-2008 standard, in round-to-nearest mode.
We also assume that an FMA instruction is available.” An important case is
when an internal format wider than the “target precision” is available. For
example, when the target format is double precision (or, equivalently,
binary64) and the internal format is the associated extended format, for
“reasonable” values of the power n, we will be able to guarantee correctly
rounded powers.

Algorithms Fast2Sum (Algorithm 4.3, page 126) and 2MultFMA
(Algorithm 5.1, page 152) both provide exact results for computations of the
form z + y and z - y. These exact results are represented by pairs (a, ag) of
floating-point numbers such that |a¢| < 3 ulp(ay). In the following we need
products of such pairs. However, we do not need exact products: we will
be satisfied with approximations to the products, obtained by discarding
terms of the order of the product of the two low order terms. Given
two double-precision operands (as, a¢) and (by, by), the algorithm DbIMult
(Algorithm 5.4) computes (z,y) such that

r+y = [(an + ag)(by + be)](1 4 9),

where the relative error § is given by Theorem 24. Several slightly different
versions of algorithm DbIMult are possible.

8See http://lipforge.ens-lyon.fr/www/pff/FmaErr.html.

°As a matter of fact, the availability of an FMA is not strictly mandatory. And yet, the
algorithm uses 2MultFMA products (Algorithm 5.1). If an FMA is not available, these prod-
ucts must be replaced by Dekker products (Algorithm 4.7), which are much more costly.

178 Chapter 5. The Fused Multiply-Add Instruction

Algorithm 5.4 DbIMult(ay, ag, by, be), Kornerup et al. [225].

tlh = RN(ahbh);

to = RN(apby);

tie = RN(apby —tin);
ts3 RN (agby, + t2);
ts = RN(ty+1t3);

cn = RN(t1p + ta);
ts = RN(cp — t1n);
Cy = RN(t4 - t5);

The result to be returned is (¢, ¢y).

Theorem 24 (Kornerup et al. [225]). Let € = 27P, where p > 3 is the precision of
the radix-2 floating-point system used. If |ag| < 27P|ay,| and |be| < 27P|by,|, then the
returned value (x,y) of DbIMult(ay,, as, by, be) satisfies

r+y=(ap+ap)(bp +b)(1+a), with |af <n,

where

1= Te* + 18¢> + 16€* + 66> 4 5.

Function DbIMult uses 8 floating-point operations: 2 multiplications,
4 additions/subtractions, and 2 FMAs. DblMult is at the heart of the follow-
ing powering algorithm (Algorithm 5.5).

Algorithm 5.5 IteratedProductPower(z, n), n > 1, Kornerup et al. [225].

(h;) 7: (170);
(u,v) := (z,0);

while i > 1 do
if (i mod 2) = 1 then
(h,£) := DblMult(h, ¢, u,v);

end;
(u,v) := DblMult(u, v, u, v);
i=[i/2];

end do;

(h,¢) :== DblMult(h, ¢, u,v);

The number of floating-point operations used by the IteratedProduct-
Power algorithm is between 8(1 + |logy(n)]) and 8(1 + 2 |logy(n)]). One can
show the following result.

5.7. Evaluation of Integer Powers 179

Theorem 25. The values h and ¢ returned by algorithm IteratedProductPower

satisfy
h40=a"(1+a), with |af<(14+n)""t -1,

where n = 7% + 18¢3 + 16¢* 4 6¢° + €5 is the same value as in Theorem 24.

From Theorem 25 one can deduce that if algorithm Iterated
ProductPower is implemented in double-precision/binary64 arithmetic, then
RN(h + ¢) is a faithful result (see Section 2.2) for z", as long as n < 2%9.

To guarantee a correctly rounded result in double-precision/binary64
arithmetic, we must know how close 2™ can be to the exact midpoint between
two consecutive floating-point numbers. This problem is an instance of the
Table Maker’s Dilemma, which is the main topic of Chapter 12.

For instance, in double-precision arithmetic, the hardest-to-round case
for function 2952 corresponds to

xz = (1.0101110001101001001000000010110101000110100000100001)2,

for which we have

%2 = (1.0011101110011001001111100000100010101010110100100110 1
53 bits
00000000 - - - 00000000, 1001 - - -)5 x 2423,
63;gros

For that example, 2" is extremely close to the exact middle of two consecutive
double-precision numbers. There is a run of 63 consecutive zeros after the
rounding bit. This case is the worst case for all values of n between 3 and
1035.

To get correctly rounded results in double-precision, we will need to run
algorithm IteratedProductPower in double-extended precision. In the follow-
ing RN, means round to nearest in double precision. When implemented
in double-extended precision, Algorithm 5.5 returns two double-extended
numbers h and ¢ such that

h+(=2"(1+«a), with |of<amaz,

where o4, is given by Theorem 25.

Using that bound and worst cases for the correct rounding of functions
x" that are presented in Section 12.5.2 (page 458), one can show the following
result.

Theorem 26. If algorithm Iterated ProductPower is performed in double-extended
precision, and if 3 < n < 1035, then RNy (h + ¢) = RNy(z™): hence by rounding
h + ¢ to the nearest double-precision number, we get a correctly rounded result.

Chapter 6

Enhanced Floating-Point Sums,
Dot Products, and Polynomial
Values

IN THIS CHAPTER, we focus on the computation of sums and dot products,
and on the evaluation of polynomials in IEEE 754 floating-point arith-
metic.! Such calculations arise in many fields of numerical computing. Com-
puting sums is required, e.g., in numerical integration and the computation
of means and variances. Dot products appear everywhere in numerical lin-
ear algebra. Polynomials are used to approximate many functions (see Chap-
ter 11).

Many algorithms have been introduced for each of these tasks (some of
them will be presented later on in this chapter), usually together with some
backward, forward, or running /dynamic error analysis. See for example [182,
Chapters 3, 4, 5] and [222, 354, 266].

Our goal here is not to add to these algorithms but rather to observe
how a floating-point arithmetic compliant with one of the IEEE standards
presented in Chapter 3 can be used to provide validated running error bounds
on and/or improved accuracy of the results computed by various algorithms.
The consequence is enhanced implementations that need neither extended
precision nor interval arithmetic but only the current working precision. In all
that follows, we assume that the arithmetic is correctly rounded, and, more
specifically, that it follows the IEEE 754-1985 or IEEE 754-2008 standard for
floating-point arithmetic.

Providing a validated running error bound means being able to compute
on the fly, during the calculation of a sum, a dot product, or a polynomial
value, a floating-point number that is a mathematically true error bound on
the result of that calculation, and that can be computed using only standard
floating-point operations (just like the error terms of, say, a + b). Such bounds

'Section 9.7 will survey how these tasks may be accelerated using specific hardware.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007 /978-0-8176-4705-6_6, 181
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

182 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

follow from some basic properties of IEEE 754-2008 floating-point arithmetic,
which we shall review first.

Providing improved accuracy means that we are able to return a useful
result even if the problem is ill conditioned (e.g., when computing the sum
ai +az+ -+ + ap, if | > | a;] is very small in front of > " ; |a;|). More pre-
cisely, we wish to obtain results that are approximately as accurate as if the
intermediate calculations were performed in, say, double-word or triple-
word arithmetic (see Chapter 14), without having to pay the cost (in terms of
computation time, of code size, and clarity) of such an arithmetic. To do that,
we will frequently use “compensated algorithms”: In Chapters 4 and 5, we
have studied some tricks (2Sum, Fast2Sum, Dekker product, 2MultFMA) that
allow one to retrieve the error of a floating-point addition or multiplication.?
It is therefore tempting to use these tricks to somehow compensate for the
rounding errors that occur in a calculation. The first compensated algorithm
was due to Kahan (see Section 6.3.2).

Although we will only focus here on sums, dot products, and polyno-
mials, compensated algorithms can be built for other numerical problems.
Some numerical algorithms that are simple enough (we need some kind of
“linearity”) can be transformed into compensated algorithms automatically.
This is the underlying idea behind Langlois’s CENA method [241]. Rump
and Bohm also suggested a way of automatically improving some numerical
calculations [350].

In this chapter overflows are ignored and all input values are assumed
to be exactly representable by floating-point numbers (which means that we
do not include a possible preliminary rounding in the error analyses).

6.1 Preliminaries

We collect here some notation and basic facts needed later that follow from
the definition of floating-point arithmetic given in Chapter 2. Most of these
basic facts have already been mentioned in previous chapters, but we review
them here, to make this chapter (almost) self-contained.

Recall that the smallest positive subnormal number is

o = ﬁeminfp‘i'l
that the smallest positive normal number is
/Bemin ,
and that the largest finite floating-point number is

Q= (8- 1) o,

2Under some conditions. See Chapters 4 and 5 for more details.

6.1. Preliminaries 183

Also (see Definition 6 in Chapter 2, page 39), we remind the reader that the
unit roundoff u is

1
{ 3 1P in round-to-nearest mode,
u=

BY7P in the other rounding modes.

6.1.1 Floating-point arithmetic models

Several models have been proposed in the literature to analyze numerical
algorithms that use floating-point arithmetic [186, 55, 25, 60, 182]. A widely
used property is the following. Let z and y be two floating-point numbers and
let op € {+,—, x,/}. If gemin < |zopy| < then no underflow /overflow®
occurs when computing z op y, and there exist some real numbers €; and e
such that

o(xopy) = (zopy)(l+er) (6.1a)
= (zopy)/(1+e2), le1], e2] < u. (6.1b)

See Section 2.2.3, page 23, for an explanation. Identity (6.1a) corresponds to
what is called the standard model of floating-point arithmetic (see [182, p. 40]).
Identity (6.1b) proves to be extremely useful for running error analysis and
exact error-bound derivation, as we will see below.

The identities in (6.1) assume that no underflow occurs. If we want to
take into account the possibility of underflow, we must note that:

e if underflow occurs during addition/subtraction, then the computed
result is the exact result (this is Theorem 3 in Chapter 4, page 124, see
also [176], [182, Problem 2.19]). Thus, (6.1) still holds (indeed, with
€1 = €3 = 0) for op € {+, —} in the case of underflows;

e however, if op € {x,/} and underflow may occur, then the preceding
model must be modified as follows: there exist some real numbers ¢,
€2, M1, N2 such that

o(zopy) = (zopy)(l+e)+m (6.2a)
= (zopy)/(1+e€2)+m2, (6.2b)

with
lel, le2] <u, |mi|, 2l < a, em = e = 0. (6.2¢)

From now on we will restrict our discussion to (6.1) for simplicity, thus
assuming that no underflow occurs. More general results that do take possi-
ble underflows into account using (6.2) can be found in the literature (see for
instance [266, 354]).

3See the note on underflow, Section 2.1, page 18.

184 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

6.1.2 Notation for error analysis and classical error estimates

Error analysis using the “standard model” (6.1) often makes repeated use of
factors of the form 1 + ¢; or 1/(1 + €2), with |e1], |e2| < u (see for instance the
example of iterated products, given in Section 2.6.3, page 37). A concise way
of handling such terms is through the 6,, and ,, notation defined by Higham
in [182, p. 63]:

Definition 9 (6,, and ~,,). For €; such that |e;| < u, 1 < ¢ < n, and assuming

nu <1,
n
T[4 e =146,
i=1
where
nu
10, < 0 =: Yn.
—nu

Notice that if n < 1/u, 7, & nu. Such quantities enjoy many properties,
among which (see [182, p. 67]):

n < Yol (6.3)

Let us now see the kind of error bounds that can be obtained by
combining the standard model with the above 6,, and +, notation, focus-
ing for instance on the following three classical algorithms (Algorithms 6.1
through 6.3):4

Algorithm 6.1 Algorithm RecursiveSum(a).
T aj
fori =2tondo
r«— o(r + a;)
end for
return r

Algorithm 6.1 is the straightforward algorithm for computing
ai+az+---+an.

More sophisticated algorithms will be given in Section 6.3. Similarly,
Algorithm 6.2 is the straightforward algorithm for computing

a1 -by+as-bo+---+ay-by.

*These bounds are given in [182, p. 82, p. 63, p. 95].

6.1. Preliminaries 185

Algorithm 6.2 Algorithm RecursiveDotProduct(a,b).
7« o(ay X by)
fori =2tondo
r o (r+o(a; x b))
end for
return r

Algorithm 6.3 computes p(z) = a,z"+a,—12" '+ - -+ap using Horner’s
rule. See Section 6.5 for a “compensated” Horner algorithm.

Algorithm 6.3 Algorithm Horner(p,x).
T ap
fori =n —1downto 0 do
r o (o(rx z)+ a;)
end for
return r

Let us first consider recursive summation (Algorithm 6.1). In that algo-
rithm, the first value of variable r (after the first iteration of the for loop) is

(a1 + a2)(1 4 €1),
with |e1| < u. That is, that value of r can be rewritten as
(a1 + a2)(1+6y),

where the notation 8, is introduced in Definition 9. The second value of vari-
able r (after the second iteration of the for loop) is

((a1 + ag)(l + 61) + CL3) (1 + 62) with ‘€2| <u
= (a1 + a2)(1 + b2) + az(1 + 61),

and, by a straightforward induction, the last value of r has the form
(a1 4+ a2)(1 4 0p—1) +as3(l +6p—2) + as(1 + Op—3) + -+ + an(l+ 61).

Using (6.3), we obtain the absolute forward error bound

n
RecursiveSum(a) — g a;
i=1

< Yn-1 Z |ail. (6.4)
i=1

Similarly, it follows for Algorithm 6.2 that

n
RecursiveDotProduct(a, b) — Z a; - b
i=1

<Y lai-bil, (65)
i=1

186 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

and, for Algorithm 6.3, that
[Homer(p, 2) — p(x)| < 720 3 lail - [af' (6.6)
i=0

Notice that if a fused multiply-add (FMA, see Section 2.8, page 51) instruc-
tion is available, Algorithms 6.2 and 6.3 can be rewritten so that they become
simpler, faster (the number of operations is halved) and, in general, slightly
more accurate (for polynomial evaluation, 72, is replaced by ~, so that the
error bound is roughly halved).?

An important notion in numerical analysis is that of backward error,
introduced by Wilkinson [435]. Assume we wish to compute y = f(x).
Instead of y we compute some value y (that we hope is close to y). In most
cases, g is the exact value of f at some locally unique point & (that we hope is
close to).

e The backward error of this computation is
‘l‘ - ‘%’a

e and the relative backward error is

r—X

When there might be some ambiguity, the usual absolute and relative errors,
namely

~

ly — 9
and

ly = l/1yl

are called the forward error and relative forward error, respectively.

In Equations (6.4), (6.5), and (6.6), the values 7,,—1, v, and 72, are upper
bounds on the backward relative error of the computation. These equations
show that recursive summation and dot product have a small backward error
if nu < 1, as well as Horner’s algorithm if 2nu < 1 (which holds in all
practical cases: for instance, in double-precision/binary64 arithmetic, nobody
evaluates a polynomial of degree 2°7).

SWhich, of course, does not imply that the error itself is halved.

6.1. Preliminaries 187

And yet, the forward relative errors of these algorithms can be arbitrarily
large if the condition numbers

C'summation = n (Summation)
Do
1=1
n
2-) " a; - bil
Cdot product = ;:1 (dot product)
Z Qg - bz’
=1

n .
> lail - Jaf
i=0

CHorner = — (polynomial evaluation)

n
E a; -’
i=0

are too large.

6.1.3 Properties for deriving validated running error bounds

Together with the definition of u, Equation (6.1) yields a number of properties
that will prove useful for deriving validated error bounds.

Property 14. Let x,y, z be non-negative floating-point numbers. If underflow does
not occur, then xy + z < o(o(z x y) + 2)(1 4+ u)2.

Proof. Applying (6.1b) to zy gives xy + z = o(z x y)(1 + €) + 2, |¢| < u. Since
xy + 2z, o(z X y), and z are all non-negative, we deduce that

ry+z <
< o
<
Applying (6.1b) to the sum o(x x y) + z gives further

owxy)+z = olo(xxy)+z)(1+¢€), []<u,
= ofo(z x y) +2)|1 + ¢
< ofo(z x y) +2)(1+u),

which concludes the proof. O

188 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Property 15. If the radix is even, p < —emin (these two conditions always hold in
practice), and if k is a positive integer such that ku < 1, then 1 — ku is a normal
floating-point number.

Proof. Recall that u is equal to % B17P in round-to-nearest, and to 377 in the
other rounding modes. Since p > 0 both k and u™! are positive integers.
Thus, ku < 1impliesu < 1—ku < 1. Since p < —epin and 3 > 2 is even, both
possible values for u are at least 3°»i». Consequently, g°mi» <1 — ku < 1.

Hence, there exist a real 1 and an integer e such that
1—ku= - 667;0‘#17

with P71 < pu < AP and ey < e < 0. Writing p = (u™t — k)up-etr-i,
it follows that p is a positive integer as the product of the positive integers
u ! —kand upgetr—i O

Property 16 is a direct consequence of [314, Lemma 2.3] and Property 15.

Property 16 (Rump et al. [314]). Let k be a positive integer such that ku < 1 and
let be a floating-point number such that min < |x| < Q. Then

ootz ().

6.2 Computing Validated Running Error Bounds

Equations (6.4), (6.5), and (6.6) give error bounds for three basic algorithms.
These error bounds contain expressions such as vo, >t |ai| - |z|* (for poly-
nomial evaluation) that make them difficult to check using floating-point
arithmetic only. Hence, it is interesting to design algorithms that compute a
validated error bound on the fly.

Ogita, Rump, and Oishi give a compensated algorithm for the dot prod-
uct with running error bound in [313]. Below, Algorithm 6.4 is a modification
of [182, Algorithm 5.1] which evaluates a polynomial using Horner’s rule and
provides a validated running error bound.

6.2. Computing Validated Running Error Bounds 189

Algorithm 6.4 This algorithm computes a pair (, b) of floating-point numbers
such that » = Horner(p,z) and |r — p(z)| < b, provided no underflow or

overflow occurs.
T < Qp,

s < o(lan|/2);
fori =n —1downto 1 do

r&o(XX —i—a,)
5%0(s><|a:|+|7“|)
end for

r o (o(rx) +ag);
b—o(2xo(sx |z|) +|r]);
b—uxo(b/(1-(2n—1)u));
return (7, b);

If an FMA instruction is available, then the core of Horner’s loop in
Algorithm 6.4 obviously becomes r « o(r x = + a;). This results in a faster
and slightly better algorithm.

Following the analysis of Horner’s rule given in [182, page 95], we arrive
at the result below.

Theorem 27. If no underflow or overflow occurs, then Algorithm 6.4 computes in
4n + 1 flops a pair of normal floating-point numbers (r, b) such that

n
r— g a; "
i=0

Proof. Recalling that Horner’s rule in degree n takes exactly 2n flops and
ignoring operations such as absolute value and multiplication/division by 2,
u, or n, we deduce the flop count of 4n + 1 for Algorithm 6.4.

Now, for the error bound, following [182, page 95], let r; be the value of
r after the loop of index i, so that

<b.

r; = O (O(Ti—i-l : .f) + ai)
for 0 <i < n, and r, = a,. Using (6.1a) and (6.1b), we obtain
(1—|—61‘)’r’i :ri+1m(1—|—5i)—l—ai, ‘€z|7‘5z‘ <u.

Now, for 0 < i < n, defineq; =Y ,_, apz" P and e; = r; — ¢;. We have e,, = 0
and, for 1 < i < n, using ¢; = gi+1= + a; allows one to deduce from the above
equation that

€i = Teit1 + 0iTTit1 — &

Taking absolute values, we get |¢;| < |z|ej+1]|+u(|z|[rig1|+|ri]). Using e, = 0

further leads to
n
r—>_ ar'| = |eo| < uky,
i=0

190 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

with Ey given by the following recurrence:
E,=0 and, forn>i¢>0, E;,= (Ei+1 + !Tz‘+1|)\l’\ + |ril.

Therefore, Ey = |rpa™| + 2 Z?:_ll lr;xt| 4 |rol. Since r,, = a,, and r¢g = r, this
can be rewritten as
Eo =25(|z) - |z[+ |r],

where
|an| 1 = i
S(x) = 2 + Z |Pig1|z’.
i=0

Since S is a polynomial of degree n—1 with non-negative coefficients only, we
deduce from Property 14 that S(|z|) < s (1 +u)?"~2, where s is the floating-
point number obtained at the end of Algorithm 6.4. The conclusion follows
using Property 16 with k = 2n — 1. O

Notice that the validated running error bound b computed by
Algorithm 6.4 is obtained at essentially the same cost as the running error
estimate of [182, Algorithm 5.1]. The paper by Ogita, Rump, and Oishi [313]
and Louvet’s Ph.D. dissertation [266] are good references for other examples
of validated running error bounds.

6.3 Computing Sums More Accurately

As stated in the beginning of this chapter, many numerical problems require
the computation of sums of many floating-point numbers. In [181] and later
on in [182], Higham gives a survey on summation methods. Interesting infor-
mation can also be found in [354]. Here, we will just briefly present the main
results: the reader should consult these references for more details.

We will first deal with methods that generalize the straightforward
RecursiveSum algorithm (Algorithm 6.1). After that, we will present some
methods that use the Fast2Sum and 2Sum algorithms presented in Chapter 4,
pages 126 and 130 (we remind the reader that these algorithms compute the
error of a rounded-to-nearest floating-point addition. It is therefore tempting
to use them to somehow compensate for the rounding errors).

In this section, we want to evaluate, as accurately as possible, the sum of
n floating-point numbers, 1, z3, ..., Tp.

6.3.1 Reordering the operands, and a bit more

When considering the RecursiveSum algorithm (Algorithm 6.1), conven-
tional methods for improving accuracy consist in preliminarily sorting the
input values, so that

1] < faa] < -0 <

6.3. Computing Sums More Accurately 191

(increasing order), or even sometimes
1] = [xo| = - = |z

(decreasing order). Another common strategy (yet expensive in terms of com-
parisons), called insertion summation, consists in first sorting the z;’s by
increasing order of magnitude, then computing o(x; + z2), and inserting that
result in the list 23, 74, ..., x,, so that the increasing order is kept, and so on.
We stop when there remains only one element in the list: that element is the
approximation to) ., %;.

To analyze a large class of similar algorithms, Higham defines in [182,
page 81] a general algorithm expressed as Algorithm 6.5.

Algorithm 6.5 General form for a large class of addition algorithms (Higham,
Algorithm 4.1 of [182]).
LetS = {x1,29,..., 2}
while S contains more than one element do
Remove two numbers x and y from S and add o(x + y) to S.
end while
Return the remaining element of S.

Note that since the number of elements of S decreases by one at each
iteration, this algorithm always performs n — 1 floating-point additions (the
while loop can be replaced by a for loop).

If T; is the result of the i-th addition of Algorithm 6.5, Higham shows
that the final returned result, say s = 7},_1, satisfies

n
s — E xI;
i=1

where, as in the previous sections, u is the unit roundoff defined in Chapter 2,
page 39 (Definition 6).

Hence, a good strategy is to minimize the terms |7;|. This explains some
properties:

n—1
<u) [T, 6.7)
=1

e although quite costly, insertion summation is a rather accurate method
(as pointed out by Higham, if all the z;’s have the same sign, this is the
best method among those that are modeled by Algorithm 6.5);

e When all the z;’s have the same sign, ordering the input values in
increasing order gives the smallest bound among the recursive sum-
mation methods.®

oT¢ gives the smallest bound, which does not mean that it will always give the smallest error.

192 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Also, when there is much cancellation in the computation (that is, when

n
> i
i=1

ismuchless than ;" , |z;]), Higham suggests that recursive summation with
the x; sorted by decreasing order is likely to give better results than that using
increasing ordering (an explanation of this apparently strange phenomenon
is Sterbenz’s lemma, Chapter 4, page 122: when z is very close to y, the sub-
traction « — y is performed exactly). Table 6.1 presents an example of such a
phenomenon.

6.3.2 Compensated sums

The algorithms presented in the previous section could be at least partly
analyzed just by considering that, when we perform an addition a + b and
no underflow occurs, the computed result is equal to

(a+0)(1+e),

with |¢] < u. Now, we are going to consider algorithms that cannot be so sim-
ply analyzed. They use the fact that when the arithmetic operations are cor-
rectly rounded (to the nearest), floating-point addition has specific properties
that allow for the use of tricks such as Fast2Sum (Algorithm 4.3, page 126).

In 1965 Kahan suggested the following compensated summation algo-
rithm (Algorithm 6.6) for computing the sum of n floating-point numbers.
Babuska [18] independently found the same algorithm.

Algorithm 6.6 Original version of Kahan’s summation algorithm.
S <— X1

c—0

fori =2tondo
y —o(x; —)
to(s+y)
co(o(t —s)—y)
st

end for

return s

Presented like this, Kahan’s algorithm may seem very strange. But we
note that in round-to-nearest mode the second and third lines of the for loop
constitute the Fast2Sum algorithm (Algorithm 4.3, page 126), so that Kahan'’s
algorithm can be rewritten as Algorithm 6.7.

6.3. Computing Sums More Accurately 193

Algorithm 6.7 Kahan’s summation algorithm rewritten with a Fast2Sum.
S <— X1

c—0
fori =2tondo
y —o(xi +¢)
(s, c) < Fast2Sum(s, z;)
end for
return s

Can we safely use the Fast2Sum algorithm? Notice that the conditions of
Theorem 4 (Chapter 4, page 126) are not necessarily fulfilled:”

e we are not sure that the exponent of s will always be larger than or
equal to the exponent of y;

o furthermore, Algorithm 6.6 is supposed to be used with various round-
ing modes, not only round-to-nearest.

And yet, even if we cannot be certain (since the conditions of Theorem 4
may not hold) that after the line

(s,c) « Fast2Sum(s, y),

the new value of s plus ¢ will be exactly equal to the old value of s plus y,
in practice, they will be quite close. Thus, (—c) is a good approximation to the
rounding error committed when adding y to s. The elegant idea behind Kahan's
algorithm is therefore to subtract that approximation from the next term of
the sum, in order to (at least partly) compensate for that rounding error.

Knuth and Kahan show that the final value s returned by Algorithm 6.6
satisfies

n

< (2u+ O(nu?))) ail. (6.8)

=1

n
S — E s
i=1

This explains why, in general, Algorithm 6.6 will return a very accurate
result.

And vyet, if there is much cancellation in the computation (that is, if
| >0 x| < 3o |z4]), the relative error on the sum can be very large. Priest
gives the following example [337]:

e assume binary, precision-p, rounded-to-nearest arithmetic, with n = 6,
and

"Indeed, when Kahan introduced his summation algorithm, Theorem 4 of Chapter 4 was
not known: Dekker’s paper was published in 1971. Hence, it is fair to say that the Fast2Sum
algorithm first appeared in Kahan's paper, even if it was without the conditions that must be
fulfilled for it to always return the exact error of a floating-point addition.

194 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

L] set:cl:2p+1,x2:2p+1—2,and$2:x2:~- 2136:—(217—1).

The exact sum is 2, whereas the sum returned by Algorithm 6.6 is 3.

To deal with such difficulties, Priest [336, 337] comes up with another
idea. He suggests to first sort the input numbers z; in descending order
of magnitude, then to perform the doubly compensated summation algorithm
shown in Algorithm 6.8.

Algorithm 6.8 Priest’s doubly compensated summation algorithm.
S§1 < T1

C1 < 0

fori=2tondo
Yi < o(ci—1 +)
w; < o(x; — o(y; — ¢i—1))
ti < o(yi + si—1)

v; = o(y; — o(t; — si-1))
zi < o(u; + v;)

si «—o(t; + z;)

ci « o(z; — o(s; — ;)

end for

Again, the algorithm looks much less arcane if we rewrite it with
Fast2Sums as shown in Algorithm 6.9.

Algorithm 6.9 Priest’s doubly compensated summation algorithm, rewritten

with Fast2Sumes.
S§1 < 1

Cl < 0
fori =2tondo
(yi, uz) — FastZSum(ci,l, 332)
(tz‘, Ui) — Fast2Sum(sZ~_1, yi)
zi < o(u; + v;)
(3i7 Ci) — FastZSum(ti, Zz)
end for

Priest shows the following result.

Theorem 28 (Priest [337]). In radix-(3, precision-p arithmetic, assuming round-to-
nearest mode,8 if 1] > |xo| > -+ > |xp| and n < (BP~3, then the floating-point
number s, returned by the algorithm satisfies

n n
Sn — E xI; E Tyl -
i=1 =1

8Priest proves that result in a more general context, just assuming that the arithmetic is
faithful and satisfies a few additional properties. See [337] for more details.

< 2u

6.3. Computing Sums More Accurately 195

As soon as the z;’s do not all have the same sign, this is a significantly
better bound than the one given by formula (6.8). Indeed, if n is not huge
(n < BP~3), then the relative error is bounded by 2u even for an arbitrarily
large condition number. On the other hand, due to the need for preliminarily
sorted input values, this algorithm will be significantly slower than Kahan's
algorithm: one should therefore reserve Priest’s algorithm for cases where we
need very accurate results and we know that there will be some cancellation
in the summation (i.e., |) x;| is significantly less than) _ |z;]).

In Kahan’s algorithm (Algorithm 6.7), in many practical cases, ¢ will
be very small in front of x;, so that when adding them, a large part of the
information contained in variable ¢ may be lost. Indeed, Priest’s algorithm
also compensates for the error of this addition, hence the name “doubly com-
pensated summation.”

To deal with that problem, Pichat [332] and Neumaier [299] indepen-
dently found the same idea: at step i, the rounding error,’ say e;, is still
computed due to the addition of z;. However, instead of immediately sub-
tracting e; from the next operand, the terms e;, are added together, to get a
correcting term e that will be added to s at the end of the computation. See
Algorithm 6.10.

Algorithm 6.10 Pichat and Neumaier’s summation algorithm [332, 299].
Notice, since Fast2Sum is used, that the radix of the floating-point system
must be at most 3 (which means, in practice, that this algorithm should be
used in radix 2 only).

S < X1

e—0
fori =2tondo
if |s| > |z;| then
(s,e;) <« Fast2Sum(s, z;)
else
(s,e;) <« Fast2Sum(z;, s)
end if
e — RN(e +¢;)
end for
return RN(s + e)

To avoid tests, the algorithm of Pichat and Neumaier can be rewritten
using the 25um algorithm (it also has the advantage of working in any radix).
This gives the cascaded summation algorithm of Rump, Ogita, and Oishi [354].
It always gives exactly the same result as Pichat and Neumaier’s algorithm,
but it does not need comparisons. See Algorithm 6.11.

°Tt was then possible to evaluate that error exactly: Dekker’s result was known when Pichat
published her paper.

196 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Algorithm 6.11 By rewriting Pichat and Neumaier’s summation algorithm
with a 25um, we get the cascaded summation algorithm of Rump, Ogita, and
Oishi [354].

S «— 11

e—0

fori =2tondo
(s,€;) < 2Sum(s, x;)
e — RN(e + ¢)

end for

return RN(s + e)

Rump, Ogita, and Oishi show the following result.

Theorem 29 (Rump, Ogita, and Oishi [354]). If Algorithm 6.11 is applied to
floating-point numbers x;, 1 < i < n, and if nu < 1, then, even in the presence of
underflow, the final result o returned by the algorithm satisfies

<u

n
o — E €Ty
1=1

n
D i
=1

n
+ 7 Z |i.
i=1

The same result also holds for Algorithm 6.10, since both algorithms output the very
same value.

Rump, Ogita, and Oishi generalize their method, by reusing the same
algorithm for summing the e;, in a way very similar to what Pichat suggested
in [332]. To present their K-fold algorithm, we first modify Algorithm 6.11 as
shown in Algorithm 6.12.

Algorithm 6.12 VecSum(x) [354]. Here, p and z are vectors of floating-

point numbers: x = (z1,x2,...,%,) represents the numbers to be summed.
If we compute p = Vecsum(z), then p, is the final value of variable
s in Algorithm 6.11, and p; (for 1 < ¢ < n — 1) is variable e; of
Algorithm 6.11.

p—x

fori=2tondo

(pi, pi—1) < 2Sum(p;, pi—1)
end for
return p

Then, here is Rump, Ogita, and Oishi’s K-fold summation algorithm
(Algorithm 6.13).

6.3. Computing Sums More Accurately 197

Algorithm 6.13 K-fold algorithm [354]. It takes a vector z = (x1,22,...,2y)
of floating-point numbers to be added and outputs a result whose accuracy
is given by Theorem 30.
fork=1to K —1do
x «— VecSum(x)
end for
C =2
fori =2ton—1do
c—c+x;
end for
return x,, + ¢

Rump, Ogita, and Oishi prove the following result.

Theorem 30 (Rump, Ogita, and Oishi [354]). If Algorithm 6.13 is applied to
floating-point numbers x;, 1 < i < n, and if 4nu < 1, then, even in the presence of
underflow, the final result o returned by the algorithm satisfies

U—sz ~ Z‘T’L +72n QZI‘T’L‘

Theorem 30 shows that the K-fold algorithm is almost as accurate as
a conventional summation in precision Kp followed by a final rounding to
precision p. Klein [221] suggests very similar algorithms.

Tables 6.1 and 6.2 give examples of errors obtained using some of the
summation algorithms presented in this section. They illustrate the fact that
Pichat and Neumaier’s and Priest’s algorithms give very accurate results.
Although slightly less accurate, Kahan’s compensated summation algorithm
is still of much interest, since it is very simple and fast.

Incidentally, one could wonder whether it is possible to design a very
simple summation algorithm that would always return correctly rounded
sums. Kornerup, Lefevre, Louvet, and Muller [226] have recently shown
that, under simple conditions, an RN-addition algorithm without branching (that
is, an algorithm that only uses rounded-to-nearest additions and subtrac-
tions, without any test; see Definition 8 in Chapter 4, page 130) cannot always
return the correctly rounded-to-nearest sum of 3 or more floating-point num-
bers. This shows that an “ultimately accurate” floating-point summation
algorithm cannot be very simple. And yet, if we accept tests and/or changes
of rounding modes, getting the correctly rounded sum of several floating-
point numbers is indeed possible, as we will see in Section 6.3.4 in the case
of 3 numbers. Notice that Rump, Ogita and Oishi have designed an efficient
algorithm, with tests, for the rounded-to-nearest sum of n numbers [353].

u—"_FYn 1

198 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Method Error in ulps
increasing order 18.90625
decreasing order 16.90625
compensated (Kahan) 6.90625
doubly compensated (Priest) 0.09375
Pichat and Neumaier; or Rump, Ogita, and Oishi | 0.09375

Table 6.1: Errors of the various methods for x; = RN(cos(7)), 1 < i < n, with
n = 5000 and binary32 arithmetic. Notice that all the x; are exactly representable.
The methods of Priest; Pichat and Neumaier; and Rump, Ogita, and Oishi give the
best possible result (that is, the exact sum rounded to the nearest binary32 number).
The recursive summation method with decreasing ordering is slightly better than the
same method with increasing order (which is not surprising: there is much cancel-
lation in this sum), and Kahan's compensated summation method is significantly
better than the recursive summation.

Method Error in ulps
increasing order 6.86
decreasing order 738.9
compensated (Kahan) 0.137
doubly compensated (Priest) 0.137

Pichat and Neumaier; or Rump, Ogita, and Oishi | 0.137

Table 6.2: Errors of the various methods for x; = RN(1/i), 1 < i < n, withn = 10°
and binary32 arithmetic. Notice that all the x; are exactly representable. The methods
of Kahan; Priest; Pichat and Neumaier; and Rump, Ogita, and Oishi give the best
possible result (that is, the exact sum rounded to the nearest binary32 number). The
recursive summation method with increasing ordering is much better than the same
method with decreasing order, which is not surprising since all the z;’s have the same
sign.

6.3. Computing Sums More Accurately 199

6.3.3 Implementing a “long accumulator”

Kulisch advocated augmenting the processors with a long accumulator that
would enable exact accumulation and dot product [233, 234]. So far, processor
vendors have not considered the benefits of this extension to be worth its cost.
It will be reviewed, as well as other prospective hardware improvements, in
Section 9.7, page 314.

6.3.4 On the sum of three floating-point numbers

Computing the correctly rounded sum of three numbers is sometimes use-
ful. For instance, in the CRlibm elementary function library,10 several calcu-
lations are done using a “triple-double” intermediate format (see Section 14.1,
page 494), using functions due to Lauter [244]. To return a correctly rounded
result in double-precision/binary64 arithmetic, one must convert a “triple-
double” into a binary64 number: this reduces to computing the correctly
rounded sum of three floating-point numbers.

For that purpose, Boldo and Melquiond [34] introduce a new rounding
mode, round-to-odd, o34, defined as follows:

e if 2 is a floating-point number, then o, 44(z) = ;

e otherwise, o, 44(z) is the value among RD(x) and RU(z) whose integral
significand is an odd integer.!!

This rounding mode is not implemented on current architectures, but
that could easily be done. Interestingly enough, Boldo and Melquiond show
that in radix-2 floating-point arithmetic, using only one rounded-to-odd
addition (and a few rounded-to-nearest additions/subtractions), one can eas-
ily compute

RN(a + b+ c),

where q, b, and c are floating-point numbers. Their algorithm is presented in
Figure 6.1. Boldo and Melquiond also explain how to emulate rounded-to-
odd additions (with a method that requires testing). Listing 6.1 presents a C
program that implements their method in the particular case when the input
operands are ordered.

Algorithm 6.14, introduced by Kornerup et al. [225], emulates the
rounded-to-odd addition required by Boldo and Melquiond’s algorithm dis-
played in Figure 6.1.

See http://lipforge.ens-lyon. fr/www/crlibm/.
1This means, in radix 2, that the least significant bit of the significand is a one.

200 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Error—free addition

L w
Error-free addition

Odd rounded addition

’ v = 00dq (te +) ‘

Rounded-to-nearest addition

z=RN(a+b+c) |

Figure 6.1: Boldo and Melquiond’s algorithm [34] for computing RN(a + b + ¢) in
radix-2 floating-point arithmetic. It requires an “odd-rounded” addition. The error-
free additions are performed using the 2Sum algorithm (unless we know for some
reason the ordering of the magnitude of the variables, in which case the Fast2Sum
algorithm can be used). (©) IEEE, with permission.

Algorithm 6.14 OddRoundSum(a,b): computes o, yq(a + b) in radix-2
floating-point arithmetic.

d — RD(a +)

u <« RU(a + b)

e/ — RN(d + u)

e—¢e x0.5

2 —u—e

z— 2 +d

return z

6.4. Compensated Dot Products 201

C listing 6.1 Boldo and Melquiond’s program [34] for computing the cor-
rectly rounded-to-nearest sum of three binary floating-point numbers z},
Tm, and z;, assuming |z,| > |z, > |x;]. The encoding of the double-
precision/binary64 floating-point numbers specified by the IEEE 754 stan-
dard is necessary here: it is that encoding that ensures that thdb.1++ is the
floating-point successor of thdb. 1.

double CorrectRoundedSum3(double xh,
double xm, double x1) {

double th, t1;

db_number thdb; // thdb.l is the binary
// representation of th

// Dekker’s error-free adder of two ordered
// numbers

Add12(th, tl, xm, x1);

// round to odd th if tl is not zero

if (tl !'=0.0) {

thdb.d = th;

// 1f the significand of th is odd, there is
// nothing to do

if (!'(thdb.1 & 1)) {

// choose the rounding direction

// depending on the signs of th and tl
if ((tl > 0.0) ~ (th < 0.0))

thdb. 1++;

else

thdb.1--;

th = thdb.d;

}

}

// final addition rounded to the nearest
return xh + th;

}

6.4 Compensated Dot Products

The dot product of two vectors [a;]1<i<p and [b;]1<i<p is Zlgign a; - b;. When
the condition number

n
QZ‘CLI@’
=1
n
Zai-bi
=1

is not too large, Algorithm 6.2 can be used safely. When this is not the case,
one can design a compensated dot product algorithm.

Notice that one can easily reduce the problem of computing the dot
product of two vectors of dimension n to the problem of computing the

Cdot product =

202 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

sum of 2n floating-point numbers, since the Dekker product (Algorithm 4.7,
page 135) and the 2MultFMA algorithm (Algorithm 5.1, page 152) make it
possible (under some conditions) to deduce, from two floating-point num-
bers a and b, two floating-point numbers r; and ry such that

1
ri+ro=a-b and |re| < 3 ulp(ry). (6.9)

Hence, many methods presented in Section 6.3 can readily be adapted to the
computation of dot products. And yet, by doing that, we do not use the fact
that, in Equation (6.9), 72 is very small in front of 71: the sum we have to
compute is not an arbitrary sum of 2n numbers, some are much smaller than
others, and that property can be used to design faster algorithms.

Let us now give the compensated dot product algorithm introduced
by Ogita, Rump, and Oishi [313]. See Algorithm 6.15. In that algorithm,
2Prod will denote either the 2MultFMA algorithm (if an FMA instruction
is available), or the Dekker product. Remember that to be able to use the
Dekker product we need the radix of the floating-point system to be equal
to 2 or the precision p to be even. Remember also that Equation (6.9) holds
if e, + e, > emin + p — 1, where e, and ¢, are the exponents of a and b,
respectively (see Chapter 4 for more details).

Algorithm 6.15 Algorithm CompensatedDotProduct(a,b) [313]. It computes
a1 -by+as-bo+---+ap- by
(s1,c1) < 2Prod(ay, b1)
fori =2tondo
(pi, 71'7;) — ZPI'Od((IZ', bl)
(Si, Ui) — ZSum(pl-, 51‘71)
¢i < RN(¢i—1 + RN(m; + 0))
end for
return RN(s,, + ¢5,)

Many variants of the algorithm can be designed, possibly inspired
from the variants of the compensated summation algorithm presented in
Section 6.3. Ogita, Rump, and Oishi have shown the following theorem,
which says (it suffices to compare to Equation (6.5)) that, in precision p, the
result of Algorithm 6.15 is as accurate as the value computed by the straight-
forward algorithm (Algorithm 6.2) in precision 2p and rounded back to the
working precision p.

Theorem 31 (Ogita, Rump, and Oishi [313]). If no underflow or overflow occurs,
in radix 2,

n

+7m) lai - bil.

=1

CompensatedDotProduct(a,b) — Z a; - bl <u
i=1

n
E a; - bi
=1

6.5. Compensated Polynomial Evaluation 203

6.5 Compensated Polynomial Evaluation

Recently, Graillat, Langlois, and Louvet [155, 266] introduced a new compen-
sated algorithm for polynomial evaluation. Let us present it briefly. Assume
we wish to compute

1

p(z) = anz™ + ap—12" " + -+ + ag,

where z and all the a; are floating-point numbers. In the following, 2Prod
will denote the 2MultFMA algorithm (Algorithm 5.1, page 152) if an FMA
instruction is available, and the Dekker product (Algorithm 4.7, page 135)
otherwise. Graillat, Langlois, and Louvet first define the following “error-free
transformation” (see Algorithm 6.16).

Algorithm 6.16 The Graillat-Langlois-Louvet error-free transformation [155,
266]. Input: a degree-n polynomial p(z) = a,z" + ap—12" 1 + -+ + ap.
Output: the same result ry as the conventional Horner’s evaluation of p, and
two degree-(n — 1) polynomials 7(x) and o(x), of degree-i coefficients m; and
i, such that p(z) = ro + 7(x) + o(x) exactly.
Tr — G,
fori =n — 1 downto 0 do
(pi, ™) < 2Prod(riy1,)
(Tz‘, Ui) — 2Sum(pl-, CLZ‘)
end for
return ro, (7o, 71, ..., Tn—-1), (00,01, ..,0n-1)

Define Horner(p,z) as the result returned by Horner’s rule
(Algorithm 6.3) with polynomial p and input variable z. Also, for a
polynomial ¢ = Y7, ¢;2", define

n
q(x) = Z gl
i=0

We have the following result.

Theorem 32 (Langlois, Louvet [242]). The values ry, (7o, 71,...,Tn—1), and
(00,01, ...,0n—1) returned by Algorithm 6.16 satisfy

e 1o = Horner(p, z);
o p(x) = 1o+ m(x) + o(z);
o (71 0)(|z]) < Yan B(]])-

Theorem 32 suggests to transform Algorithm 6.16 into a compensated
polynomial evaluation algorithm as shown in Algorithm 6.17.

204 Chapter 6. Enhanced F-P Sums, Dot Products, and Polynomial Values

Algorithm 6.17 The Graillat-Langlois-Louvet compensated polynomial eval-
uation algorithm [155, 266]. Input: a degree-n polynomial p(z) = a,2™ +
an—12""1 4 -+ -+ ap. Output: an approximation r to p(z). In practice, the eval-
uation of Horner(q, z) wit ¢(z) = 3", ., ¢;z' would be done in the for loop:
we wrote it as shown here for the sake of clarity.
Tn < an
fori =n — 1 downto 0 do
(pi, ﬂ'i) — 2Pr0d(ri+1, LL’)
(ri; 0i) < 25um(p;, a;)
q; < RN(?TZ' + (Ii)
end for
r < RN(ro + Horner(q, z))
return r

An immediate consequence of Theorem 32 is the following.

Theorem 33 (Langlois, Louvet [242]). The value r returned by Algorithm 6.17
satisfies
[= p(@)| < ulp(a)] + 73, p(|z))-

Note the similarity with Theorem 31. Juste like for dot products, the
above result says that as soon as p(|z|) = Y1 |ai| - |z|* is not huge in front of
Ip(z)|, Algorithm 6.17 will return a very accurate result (namely, for a work-
ing precision p, as accurate as if we had used Horner’s rule in twice that
working precision and then rounded back). If this is not the case, it is possi-
ble to define K-fold compensated polynomial evaluation algorithms by recursively
using the same method for evaluating o(z) and 7(z). See Louvet’s Ph.D. dis-
sertation [266] for details.

Chapter 7

Languages and Compilers

HE PREVIOUS CHAPTERS have given an overview of interesting properties
T and algorithms that can be built on IEEE 754-compliant floating-point
arithmetic. In this chapter, we discuss the practical issues encountered
when trying to implement such algorithms in actual computers using actual
programming languages. In particular, we discuss the relationship between
standard compliance, portability, accuracy, and performance. This chap-
ter is useful to a programmer wishing to obtain a standard-compliant
behavior from his/her program, but it is also useful for understanding how
performance may be improved by relaxing standard compliance and also
what risks may be encountered.

7.1 A Play with Many Actors

Even with a computer supporting one of the IEEE 754 standards for floating-
point arithmetic, it still requires some effort to be in control of the details
of the floating-point computations of one’s program (for instance, to ensure
portability).

Most programming languages will allow one to write an expression such
as a+b+cxd, using variables a, b, ¢, and d, of some (possibly implicit) floating-
point type. However, when the program is run, the sequence of floating-
point operations that is actually executed differs widely, depending on the
language, but also on the environment used, including:

e the compiler, and the optimization options that were passed to it;

e the processor, which may or may not have a given floating-point capa-
bility;
e the operating system, which is responsible for making the processor’s

capabilities available for user programs;

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_7, 205
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

206 Chapter 7. Languages and Compilers

o the system libraries, for the mathematical functions (when they are not
handled by the compiler).

Let us now review these elements to give a taste of what may happen.
The following sections will then detail in more depth the specifics of some
widely used programming environments.

7.1.1 Floating-point evaluation in programming languages

Consider the evaluation of a+b+c+d. Its semantics is a sequence of three
floating-point additions. The results of two of them have to be kept in tem-
porary variables or registers. This leads to several implementation choices:

Expression reordering

In which order should these operations be executed? In other terms, what is
the implicit parenthesizing used when evaluating a+b+c+d? Alternatives are,
on this example, ((a+b)+c)+d, (a+b)+(c+d), a+(b+(c+d)). A related question
is: Should addition be considered associative? Is (a+d)+(b+c) also an option?

There is a tradeoff here. On one side, it should be clear to the reader, after
reading the previous chapters, that floating-point addition is not associative.
A language should allow one to express useful algorithms such as the 2Sum
algorithm, which requires computing (a+b) -a (See Section 4.3.2, page 129).
On the other side, such situations are fairly rare and well identified. In more
general floating-point codes, rewriting freedom allows for many optimiza-
tions.

e (a+b)+(c+d) exposes more parallelism for processors able to compute
two additions in parallel.

e In general, in a pipelined processor, the fastest parenthesizing depends
on the order of availability of the four variables, which itself depends
on previous computations.

e If a and d are compile-time constants, computing the sum a+d at com-
pile time will save one addition at execution time.

e The parenthesizing may impact register allocation, etc.

Precision of intermediate computations

Many languages require the programmer to declare the variables of a given
type, say binary32 (float in C) or binary64 (double in C). However, they usu-
ally do not require the precision to be declared for each operation of the code
(assembly languages, of course, do). Deducing the precision of the operations
from the precision of the data is not straightforward. Consider, for instance,
the following situations.

7.1. A Play with Many Actors 207

e Ifa, b, c,and d are declared of binary32 type, and the hardware is able to
compute on binary64 as fast as on binary32, shouldn’t this “free” extra
accuracy be used?

e In an assignment such as r=a+b+c+d, where r is declared as binary64
and the other variables are declared as binary32, should the computa-
tions be performed using binary32 addition or binary64 addition?

e If a and d are declared binary32, and b and c are declared binary64,
what will be the precision of the operations? Note that this question
makes sense only after a parenthesizing has been chosen.

These questions are not purely academic. For most applications, it makes per-
fect sense to use binary32 as a storage format, as it requires half the space of
binary64 and holds more precision than most instruments can measure. And
it makes sense to use binary64 to carry out computations that may involve
millions of iterations.

In the new IEEE 754-2008 standard, there has been some effort to address
this problem; see Section 3.4.6, page 93. Note that similar issues arise when
one considers the active rounding mode.

Antagonistic answers

The languages C and FORTRAN, probably the two languages that are most
used in numerical computing, offer perfectly antagonistic answers to the pre-
vious questions.

e In C, an expression of successive add or multiply operators is inter-
preted with left-associativity,' i.e., a+b+c+d is syntactically equivalent
to ((a+b)+c)+d. Concerning the precision, each operation may well
be performed in an internal precision wider than the precision of the
type (we already discussed that problem in Section 3.3.1, page 75); the
expression may also be contracted (see Section 7.2.3).

e In contrast, FORTRAN fixes the precision but does not guarantee the
parenthesizing, so the expression a+b+c+d may validly be evaluated as
(a+b)+(c+d) or (a+d)+(b+c).

Each language has a rationale for these choices, and we will explore it in the
following sections.

!This requirement was introduced in C89 and kept in the current C99 standard. The orig-
inal Kernighan and Ritchie C [217] allowed regrouping, even with explicit parentheses in
expressions.

208 Chapter 7. Languages and Compilers

7.1.2 Processors, compilers, and operating systems

The compiler is in charge of translating the program into a succession of
elementary processor instructions. Modern compilers spend most of the com-
pilation time in optimization. We have seen some optimizations related to
floating-point evaluation order and precision, but there also exist optimiza-
tions that are more directly related to the processor’s available hardware.

As an example, consider a processor which offers hardware implemen-
tations of the fused multiply-add (FMA, see Section 2.8, page 51). To com-
ply with the IEEE 754-1985 standard, a compiler should not generate FMA
instructions for such processors. Additions should be implemented as (a x
1 4 b) and multiplications as (a x b 4 0). Of course, the default behavior of
most compilers will be to try to fuse additions and multiplications (that is,
to use FMA instructions), which usually improves both speed and accuracy.
If one wants portability between, for instance, a platform without FMA and
one with FMA, one has to find special directives (such as C’s FP_CONTRACT
pragma) or compiler options (such as GCC’s -mno-fused-madd with proces-
sors that support this option) that prevent fusing x and +.

There is a similar tradeoff between portability and improved accuracy
on processors which offer hardware binary80 arithmetic (see Section 3.5.3,
page 104). Here the extended accuracy, although providing more accurate re-
sults in most cases, incurs additional risks, such as subtle bugs due to double
rounding (see Section 3.3.1, page 75).

Again, much effort has been spent to address such issues in IEEE 754-
2008. There was a clear consensus on the fact that programmers who want
portability should be able to get it, while programmers who want perfor-
mance also should be able to get it. The consensus was not so clear on what
should be the default.

Finally, the operating system (kernel and libraries) is in charge of initial-
izing the state of the processor prior to the program execution. For example,
it will set the dynamic rounding precision on x87 hardware. Considering the
previous tradeoff between accuracy and portability, different systems make
different choices. For instance, the same conforming C program, compiled by
the same compiler with the same options, may yield different results on the
same hardware under OpenBSD and Linux. By default, OpenBSD chooses
to enhance portability and configures the x86 traditional floating-point unit
(FPU) to round to double precision. Linux, in contrast, favors better accuracy
and configures the FPU to round to double-extended precision by default.

To summarize, the behavior of each of these actors may influence the
others. A program may change the processor state because of an operating
system call, for instance, to request rounding toward zero. An ill effect will
often be that the mathematical library (a.k.a. libm, also a part of the operat-
ing system) no longer functions properly because it expects the processor to
round to nearest.

7.2. Floating Point in the C Language 209

7.1.3 In the hands of the programmer

So standard compliance enhances portability, but usually degrades perfor-
mance, and sometimes even accuracy. For this reason, the default behavior
of a computing system will usually be a compromise between performance,
accuracy, and portability. A notable exception is Java, which was designed
for portability from the ground up. Section 7.5 will show the difficulty of ful-
filling this ambition.

However, recent versions of Java offer means to relax portability for per-
formance under programmer control, while the C99 standard added pragmas
to improve portability in C. This illustrates the consensus that a programmer
should be given the ability to choose the behavior of the floating-point envi-
ronment.

The important message in this chapter is that the floating-point behavior
of a given program in a given computer is not arbitrary. It is usually well
documented, although unfortunately in various places (language standards,
compiler manuals, operating system specifications, web pages, and so on). It
is thus possible for the programmer to control to the last bit the behavior of
every last floating-point operation of his/her programs.

Let us now consider some mainstream programming environments in
more detail.

7.2 Floating Point in the C Language

The C language was designed to replace the assembly language for rewrit-
ing an operating system (UNIX). This explains why C is very close to the
hardware. Since it was not designed as a language for numerical computa-
tions, important issues such as reproducibility of the results in floating-point
arithmetic were not given much attention. Floating-point code could behave
very differently from one platform to another, or even from one compiler
another on the same system. As time went by, C compilers were retrofitted
with features that were common in languages like FORTRAN, and it was
only in the C99 standard that support for IEEE 754-1985 (mostly overlooked
in the 1989/1990 C standard revision) was paid some attention.

The remainder of this section describes floating-point features of the C99
standard. Programmers should be aware that C99 compliance may not be
the default for all compilers. However, there is almost always a compiler
option to enable it. On most POSIX systems, the c99 utility can be used for this
purpose.

7.2.1 Standard C99 headers and IEEE 754-1985 support

Three headers, <float.h>, <math.h>, and <fenv.h>, define the macros and
functions that are necessary for dealing with floating-point numbers in C.

210 Chapter 7. Languages and Compilers

e The <float.h> header gathers the description of the characteristics of
the floating-point environment. Indeed, the C standard requires very
little.

First, the radix for the standard floating-point types (float, double, and
long double) is implementation defined, in other words not defined
by the C standard. It can be obtained with the FLT_RADIX macro. In
most cases, it is equal to 2. But particular platforms may choose another
radix. For instance, radix 10 has been chosen by the TIGCC project for
Texas Instruments calculators? (see Section 2.5, page 29 for a discussion
on the choice of the radix). Interest in decimal floating-point arithmetic
has increased even for desktop computers. An extension to C, bringing
new decimal types, is currently being standardized [194].

Other macros (such as DBL_MAX, DBL_EPSILON...) provide information
on the range and precision of each standard floating-point type and on
how rounding is performed.

e In <math.h>, one finds, apart from the expected mathematical func-
tions (sin, cos...), most of the functions and predicates (isnan,
isunordered. ..), that were recommended by the Appendix to the IEEE
754-1985/1EC 60559 standard and that can be found nowadays in Sec-
tion 5.7.2 of the new IEEE 754-2008 standard. One also finds additional
types and macros.

e In<fenv.h>, one finds the necessary tools for manipulating the floating-
point environment (e.g., changing the rounding mode, accessing the
status flags...).

Most of the material related to the support of IEEE 754 can be found
in Annex F of the C99 standard [190]. Throughout that document, IEEE
754-1985 is referred to as IEC 60559. Recent compilers (IBM’s XL C/C++
9.0 Linux PowerPC64, Sun’s C 5.9 Linux i386, Intel’s icc 10.1 Linux IA-64,
for instance) and C libraries (since 1997, the GNU C library, a.k.a. glibc, for
instance) define the __STDC_IEC_559__ macro, which guarantees their confor-
mance to Annex F, even though, in practice, the conformance is known to be
incomplete. For instance, the glibc defines __STDC_IEC_559__ uncondition-
ally, even when extended intermediate precision is used for the double type
(see below).

7.2.2 Types

When __STDC_IEC_559__ is defined, two of the basic binary formats (single-
precision/binary32 and double-precision/binary64) are directly supported
by the float and double types, respectively.

2http ://tigcc.ticalc.org/doc/float.html#FLT_RADIX

7.2. Floating Point in the C Language 211

What 1long double means is another story. In C99, whether
__STDC_IEC_559__ is defined or not, the long double type can be
almost anything, provided that a long double has at least the precision
and the range of a double. Note that these requirements are much weaker
than those imposed on IEEE-754 extended formats (see Table 3.2, page 57, for
the IEEE 754-1985 requirements). The format of the long double type and
the associated arithmetic depend on both the processor and the operating
system. Sometimes it can also be changed by compiler options.

A program can obtain information on the arithmetic behind long
double through the macros LDBL_MANT_DIG, LDBL_MIN_EXP, and LDBL_MAX_EXP
(defined in <float.h>), which respectively provide the number of digits of
the significand of normal numbers, and the minimum and maximum possi-
ble exponents of normal numbers (the FLT_RADIX macro, already mentioned,
gives the radix). Beware: The extremal exponents given by LDBL_MIN_EXP and
LDBL_MAX_EXP do not correspond to our definition of the exponent (given in
Section 2.1, page 13). There, we assumed significands of normal numbers in
radix 3 to be between 1 and (3, whereas these macros assume significands
between 1/ and 1. Hence, having LDBL_MAX_EXP = 1024 corresponds, with
our notation, to having enax = 1023.

For illustration, here are four arithmetics that have been found among
various C implementations. The numbers in parentheses correspond to
LDBL_MANT_DIG, LDBL_MIN_EXP, and LDBL_MAX_EXP, respectively.

Double precision (53 / —1021 / 1024): This arithmetic (the same as the one
of the double type) has been found on ARM processors under Linux,
and this is the choice originally made for the ARM Developer Suite [13,
Section 3.3.2]. This choice could be surprising, as the floating-point
accelerator (FPA) architecture (ARM’s first floating-point implemen-
tation) supports extended precision [14, Section 2.9.2]. But ARM
processors originally did not have floating-point hardware, many ARM
processors still do not (thus floating-point arithmetic must be emulated
in software), and the new Vector floating-point (VFP) architecture does
not support extended precision [14, Section 2.9.1].

80-bit extended precision (64 / —16381 / 16384): This arithmetic has been
found on x86, x86_64, and IA-64 architectures, because of hardware
support.

Double-double arithmetic (106 / —968 / 1024): This arithmetic has been
found on PowerPC, under both Darwin (Mac OS X) and Linux (with
recent GCC/glibc), and comes from IBM’s AIX operating system. A
number is representable in that arithmetic if it can be written as the
sum of two double-precision/binary64 floating-point numbers, that
very roughly emulates a 106-bit precision. This is not a genuine floating-
point arithmetic, but can be regarded as an extension of a floating-point

212 Chapter 7. Languages and Compilers

arithmetic whose precision and exponent-range parameters are the
numbers given in parentheses (see Section 14.1, page 494 for informa-
tion on “double-double”—more generally, “double-word”—numbers).
This conforms to the C standard, which allows, in addition to normal-
ized floating-point numbers, other kinds of floating-point data (such as
the subnormal numbers, infinities, and NaNs of the IEEE 754 standard).
The range of numbers that can be represented is roughly the same as
the range of double-precision numbers. Therefore, this is a valid long
double type. However, some properties requiring strict floating-point
arithmetic (such as Sterbenz’s lemma: Lemma 2 in Chapter 4, page 122)
will not always be true for the long double type, and corresponding
floating-point algorithms may no longer work.

Quadruple precision (113 / —16381 / 16384): This arithmetic has been
found under HP-UX (HPPA and IA-64) and Solaris (SPARC only [396]),
and is implemented in software.’

The arithmetic does not completely define the type. Indeed the enco-
ding may depend on the platform (e.g., due to a different endianness).
Even the type size (as per the sizeof operator) can vary, for alignment rea-
sons (to provide better memory access speed). For instance, with GCC, the
default width of a long double is 12 bytes long for the x86 (32-bit)
application binary interface (ABI) and rises to 16 bytes long for the x86_64
(64-bit) ABL. However, compiler options can alter this behavior. For instance,
the -m96bit-long-double and -m128bit-long-double switches control the
storage size of long double values. But note that this has no effect on the
floating-point results: range and precision remain the same.

Infinities, NaNs, and signed zeros

Support for (signed or unsigned) infinities and signed zeros is optional. The
INFINITY macro from <math.h> represents a positive or unsigned infinity,
when available. However, a HUGE_VAL (for the double type) macro is always
available, which typically is an infinity when supported (this is required by
Annex F of the C99 standard).

Support of Not a Number (NaN, also optional) is limited to the quiet
flavor (qNaN). Signaling NaNs (sNanN) were not included in the C99 stan-
dard since its authors felt it entailed a lot of trouble for a limited usefulness,
and that qNaNs were sufficient for the closure of the floating-point arithmetic
algebraic structure.

3The SPARC architecture has instructions for quadruple precision, but in practice, current
processors generate traps to compute the results in software.

7.2. Floating Point in the C Language 213

7.2.3 Expression evaluation

Except for assignment and cast, the C99 standard states
[190, Section 5.2.4.2.2]:

the values of operations with floating operands and values subject
to the usual arithmetic conversions and of floating constants are
evaluated to a format whose range and precision may be greater
than required by the type.

While this will be a bonus in many situations, it may also break the assump-
tions founding some algorithms presented in this book. It may also lead to
the “double rounding” problem depicted in Section 3.3.1, page 75, which can
occur even with a single operation, suchasa = b + c.Splitting an expression
by using temporary variables and only one operation per statement will force
any intermediate result to be in the required precision; this workaround does
not avoid the “double rounding” problem, but one gets a faithful rounding
(see Section 2.2, page 20), which may be sufficient for some algorithms.

The C99 standard provides a macro, FLT_EVAL_METHOD, whose value
gives a clue about what is actually going on. Table 7.1 shows which inter-
mediate type (both range and precision) is used for the evaluation of an
operation of a given type.

FLT_EVAL_METHOD float double long double
0 float double long double
1 double double long double
2 long double | long double | long double

Table 7.1: FLT EVAL_METHOD macro values.

FLT_EVAL_METHOD = 2 is typically used with x87 arithmetic (when
the processor is configured to round in extended precision). Processors
with static rounding format (range and precision) will generally use
FLT_EVAL_METHOD = 0. In addition to these values, FLT_EVAL_METHOD = —1 can
be used when the evaluation method is not determined (e.g., because of some
optimizations that can change the results).

Unfortunately, FLT_EVAL_METHOD is an information macro only. There is
no standard way of changing the behavior it indicates. This does not mean
that it cannot be changed, but it may require compiler switches (Section 3.3.1,
page 75, contained some examples) or nonstandard features (e.g., operating
system calls).

Operators and functions

The +, -, *, / operators and the sqrt () and remainder() functions provide the
basic operations as expected in IEEE 754-1985. More functions and macros

214 Chapter 7. Languages and Compilers

cover conversions, comparison, and floating-point environment manipula-
tion as well as the set of functions recommended in Annex A of 754-1985.
Among others, we can highlight the fma () function (new in C99), which will
allow one to “play around” with the FMA instruction even if it is not directly
supported by the processor (none of the x86 chips does, up to year 2008)
and test the nifty algorithms presented in the FMA chapter (see Chapter 5).
However, beware: as we write this book, some software implementations of
fma() do not comply with the requirements of the C99 and IEEE 754-2008
standards. For instance, the GNU C Library (glibc), at least until the current
version 2.9, implements fma () as a multiplication followed by an addition on
x86 processors; this means that two roundings are done instead of only one,
and in particular, spurious overflow exceptions can occur (if the multiplica-
tion overflows but the mathematical result is in the range of the floating-point
format).

Contracted expressions

As stated by the C99 standard, “a floating expression may be contracted, that
is, evaluated as though it were an atomic operation, thereby omitting round-
ing errors implied by the source code and the expression evaluation method.”
This was meant to allow the use of mixed-format operations (with a single
rounding, when supported by the processor) and hardware compound oper-
ators such as FMA. For instance, the default behavior of the main compilers
(GCC, IBM’s XL C/C++ 9.0 Linux PowerPC64 compiler, Intel’s compiler icc,
Microsoft Visual C/C++ compiler) is to contract x * y + z to fma(x,y,z)
when a hardware FMA is available.

Most of the time, this is beneficial in terms of both performance and accu-
racy. However, it will break algorithms that rely on evaluation as prescribed
by the code. For instance, sqrt(a * a - b * b) may be contracted using an
FMA asif sqrt(fma(a, a, - b * b)) wereused, and if a and b are equal, the
result can be nonzero because of the broken symmetry (see example below).

The FP_CONTRACT pragma (from <math.h>) gives some control on this
issue to the programmer. When set to on, it allows contracting expressions.
When set to off, it prevents it. As contracting expressions is potentially dan-
gerous, a C implementation (compiler and associated libraries) must doc-
ument the default state and the way in which expressions are contracted.
Compilers may ignore this pragma, but in this case, they should behave as
if it were off (disabled contraction) in order to preserve the semantics of the
program. Again, your mileage may vary: At the time of writing this book,
gcc does the opposite.

Following the same example, Listing 7.1 computes the result of the
expression a >= b ? sqrt (a * a - b x b) : 0 in the particular case of
a = b. By default, contraction is disabled, but compiling this program with
-DFP_CONTRACT sets the pragma to on, thus enabling contraction. For instance,

7.2. Floating Point in the C Language 215

icc 10.1 on IA-64 gives on the inputs 1, 1.1, and 1.2:

Test of a >=b ? sqrt (a * a - b x b) : 0 with FP_CONTRACT OFF
test(l) =0

test(1.1000000000000000888)
test(1.1999999999999999556)

o
o o

Test of a>=b ? sqrt (a *xa - b x b) : 0 with FP_CONTRACT ON
test(1l) =0

test(1.1000000000000000888)
test(1.1999999999999999556)

2.9802322387695326562e-09
nan

C listing 7.1 Testing the effect of the contraction of a floating expression to
FMA.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#ifdef FP_CONTRACT

#undef FP_CONTRACT

#define FP_CONTRACT "ON"
#pragma STDC FP_CONTRACT ON
#else

#define FP_CONTRACT "OFF"
#pragma STDC FP_CONTRACT OFF
#endif

static double fct (double a, double b)
{

return a >=b ? sqrt (a *a - b *x b) : 0;

}

/* "volatile" and "+ 0.0" may be needed to avoid optimizations. =/
static void test (volatile double x)

{
printf ("test(%.20g) = %.20g\n", x, fct (x, x + 0.0));
}
int main (int argc, char xxargv)
{
int i;

printf ("Test of a >=b ? sqrt (a * a - b x b) : 0 with FP_CONTRACT "
FP_CONTRACT "\n");
for (i = 1; i < argc; i++)
test (atof (argv[il]));
return 0;

}

216 Chapter 7. Languages and Compilers

Constant expressions, initialization, and exceptions

There are some issues specific to C regarding the relationship between trans-
lation (compilation) time and execution time, on the one hand, and excep-
tions, on the other hand. As stated by the C99 standard:

the FENV_ACCESS pragma provides a means to inform the
implementation when a program might access the floating-point
environment to test floating-point status flags or run under non-
default floating-point control modes.

When the state of this pragma is off, the compiler is allowed to do some opti-
mizations that can have side effects, such as evaluating constant expressions.
Otherwise, if the state is on, constant expressions should be evaluated at
execution time (unless the compiler can deduce that a translation-time eval-
uation will not change the result, including exceptions). However, this does
not affect initialization of objects with static storage duration, necessarily using
constant expressions, which are evaluated at translation time and do not raise
exceptions.

Special values of mathematical functions

The C99 standard also specifies (in its optional Annex F) the values of the
elementary functions for particular arguments. Some of these values are
different from those recommended by the new IEEE 754-2008 standard.
Moreover, these definitions can cause some head scratching. Consider for ins-
tance, the following requirement for the power function: pow(—1, +00) = 1.
This may be a bit puzzling until one understands that any sufficiently large
binary floating-point number is an even integer: hence, “by taking the limit,”
the prescribed value of 1. Other rules do not even have such a justification:
pow(+1,z) and pow(z,£0) must return 1 for any x, even a NaN, which breaks
with the usual NaN propagation rule.

Concerning these special cases for pow, IEEE 754-2008 chose to remain
compatible with C99, but added three more functions, powr (whose special
cases are derived by considering that it is defined by ¢¥1°¢%), and pown/rootn
(which deal with integral exponents only).

7.2.4 Code transformations

Many common transformations of a code into some naively equivalent code
become impossible if one takes into account special values such as NaNs,
signed zeros, and rounding modes. For instance, the expression x + 0 is not
equivalent to the expression x if x is -® and the rounding is to nearest.

Similarly, some transformations of code involving relational operators
become impossible due to the possibility of unordered values (see page 64).
This is illustrated in Listing 7.2.

7.2. Floating Point in the C Language 217

C listing 7.2 Strangely behaving relational operators (excerpt from Annex
F of the C99 standard). These two pieces of code may seem equivalent, but
behave differently if a and b are unordered.

// calls g and raises "invalid" if a and b are unordered
if (a < b)

f();
else

g();
// calls f and raises "invalid" if a and b are unordered
if (a >= b)

g();
else

()

As sNaNs are not specified in C99, C implementations that support them
must do so with special care. For instance, the transformation of 1 * x to x is
valid in C99, but if x can be a sNaN, this transformation becomes invalid.

7.2.5 Enabling unsafe optimizations
Complex arithmetic in C99

The C99 standard defines another pragma allowing a more efficient imple-
mentation of some operations for multiplication, division, and absolute value
of complex numbers, for which the usual, straightforward formulas can give
incorrect results on infinities or spurious exceptions (overflow or underflow)
on huge or tiny inputs (see Section 4.5, page 139). The programmer can set the
CX_LIMITED_RANGE pragma to on if he or she knows that the straightforward
mathematical formulas are acceptable, in which case the compiler can choose
to use them instead of a code that would work on (almost) any input but
which is slower. The default state of this pragma is off, for safe computation.

Range reduction for trigonometric functions

For ARM processors using the ARM Developer Suite or the RealView tools,
the default trigonometric range reduction is inaccurate for very large argu-
ments. This is valid for most programs: if a floating-point number is so large
that the value of its ulp is several times the period 27, it usually makes lit-
tle sense to compute its sine accurately. Conversely, if the input to the sine is
bound by construction to reasonably small values, the default range reduc-
tion is perfectly accurate. The situation is comparable to using the previous
quick and unsafe complex operators: they are perfectly safe if the values that
may appear in the program are under control. The big difference, however, is
that here the default behavior is the unsafe one.

218 Chapter 7. Languages and Compilers

The accuracy of range reduction can be improved by the following
pragma [13, Section 5.4]:

#pragma import (__use_accurate_range_reduction)

The more accurate range reduction is slower and requires more memory (this
will be explained in Section 11.1, page 379). The ARM mainly focuses on
embedded applications such as mobile devices, which are memory-limited.

Compiler-specific optimizations

Compilers can have their own directives to provide unsafe optimizations
which may be acceptable for most common codes, e.g., assuming that no
exceptions or special values occur, that mathematically associative opera-
tions can be regarded as associative in floating-point arithmetic, and so on.
This is the case of GCC’s generic -ffast-math option (and other individual
options enabled by this one). Users should use such options with much care.
In particular, using them on a code they have not written themselves is highly
discouraged.

7.2.6 Summary: a few horror stories

As pointed out by David Goldberg [148] (in his edited reprint), all these
uncertainties make it impossible, in many cases, to figure out the exact
semantics of a floating-point C program just by reading its code. As a con-
sequence, portability is limited, and moving a program from one platform to
another may involve some rewriting. This also makes the automatic verifica-
tion of floating-point computations very challenging, as noticed by Monni-
aux [280].

The following section describes a few traps that await the innocent pro-
grammer.

Printing out a variable changes its value

Even the crudest (and most common) debugging mode of all, printing out
data, can be a trap. Consider the program given in Listing 7.3. With GCC
version 4.1.2 20061115 on a 32-bit Linux platform and the default settings,
the program will display:

9007199254740991.5 is strictly less than 9007199254740992
9007199254740992 is strictly less than 9007199254740992

While there is nothing wrong with the first line, the second is a bit more
disturbing. For the former we have used the long double type, which, on
this platform, maps to 80-bit x87 registers. These have enough room to store
all the bits of the sum. To no one’s surprise, the first test evaluates to true.

7.2. Floating Point in the C Language 219

C listing 7.3 Strange behavior caused by spilling data to memory.

long double lda = 9007199254740991.0; // 2753 - 1

double da = 9007199254740991.0; // dito
if (lda + 0.5 < 9007199254740992.0)
{
printf("%.70Lg is strictly less than %.70Lg\n",
lda + 0.5,
(long double) 9007199254740992.0);
}
if (da + 0.5 < 9007199254740992.0)
{
printf("%.70g is strictly less than %.70g\n",
da + 0.5,
9007199254740992.0) ;
}

There is also enough room to store all the bits when, to call the printf()
function, the register holding the sum is spilled out to memory (remember a
long double is 12 bytes long on this platform). The printed message reflects
what happens in the registers.

For the second line, while we are supposed to work with 64 bits, the
addition and the test for inequality are also executed in the 80-bit x87 regis-
ters. The test evaluates again to true since, at register level, we are in the exact
same situation. What changes is that, when the sum is spilled to memory, it is
rounded to its “actual” 64-bit size. Using the rounding-to-nearest mode and
applying the “even rule” to break ties leads us to the 9007199254740992 value,
which is eventually printed out. By the way, it has nothing to do (as a suspi-
cious reader might wonder) with the formats used in the printf() function.
One may be convinced by trying the following:

e on the same platform, add to the command line the flags that
require the use of 64-bit SSE registers instead of the 80-bit x87 ones
(-march=pentium4 and -mfpmath=sse);

o on the 64-bit corresponding platform, run GCC with the default settings
(which are to use the SSE registers and not the x87).

The second line never prints out since the rounding of the sum takes place,
this time, in the 64-bit registers before the comparison is executed.

A possible infinite loop in a sort function

It is difficult to implement a sorting algorithm without the basic hypothesis
that if, at some point, two elements have compared as a < b, then in the future
they will also compare as b > a. If this assumption is violated, the program-
mer of the sorting algorithm cannot be held responsible if the program goes
into an infinite loop.

220 Chapter 7. Languages and Compilers

Now let us write a function that compares two my_type structures
according to their radius.

C listing 7.4 A radius comparison function.

int compare_radius (const my_type *a, const my_type x*b)
{
double temp = a->x*a->x + a->y*a->y - b->xxb->x - b->yxb->y;
if (temp > 0)
return 1;
else if (temp < 0)
return -1;
else
return 0;

We see at least two ways things can go wrong in Listing 7.4.

e If temp is computed using an FMA, there are two different ways of com-
puting each side of the subtraction, as we have seen in Section 7.2.3.

e Some of the intermediate results in the computation of temp may be
computed to a wider precision, especially when using an x87 FPU.

In both cases, the net result is that the compare_radius function,
although written in a symmetrical way, may be compiled into asym-
metrical code: it may happen that compare_radius(a,b) returns 0 while
compare_radius(b,a) returns 1, for instance. This is more than enough to
break a sorting algorithm.

Getting to the root of such bugs is very difficult for several reasons. First,
it will happen extremely rarely. Second, as we have just seen, entering debug
mode or adding printfs is likely to make the bug vanish. Third, it takes a
deep understanding of floating-point issues to catch (and fix) such a bug. We
hope that our reader now masters this knowledge.

7.3 Floating-Point Arithmetic in the C++ Language

7.3.1 Semantics

The semantics of the C++ language is similar to that of the C language with
respect to floating-point arithmetic. The parenthesizing order is the same and,
as in C, intermediate expressions may use a bigger format since as per the C99
standard [190], section 6.3.1.8:

The values of the floating operands and the results of floating
expressions may be represented in greater precision and range
than that required by the type; the types are not changed thereby.

7.3. Floating-Point Arithmetic in the C++ Language 221

While the C++ standard does not mention the C99 language,4, there is
no fundamental reason for floating-point arithmetic to behave differently
between C99 and C++. Most of Section 7.2 should therefore apply to C++
as well.

7.3.2 Numeric limits

In addition to the macros inherited from C, the C++ standard library pro-
vides the template class std: :numeric_limits in the <limits> header file to
allow metaprogramming depending on the floating-point capabilities. For a
floating-point type T, the class std: : numeric_limits<T> provides the follow-
ing static members.

1. Format:

e int radix: the radix §, either 2 or 10 usually,
e bool is_iec559: true if Tis an IEEE-754 format and the operations
on T are compliant.®

2. Special values:

e bool has_infinity: true if T has a representation for +oo,
e bool has_quiet_NaN: true if T has a representation for a qNaN,

e bool has_signaling_NaN: true if T has a representation for an
sNaN,

e T infinity(): representation of +oo,
e T quiet_NaN():representation of a qNaN,

e T signaling_NaN(): representation of a sNaN.
3. Range:

e T min(): smallest positive normal number,
e T max():largest finite number,
e T lowest(): negated max(),

e int min_exponent: smallest integer k£ such that B! is a normal
number, e.g., —125 for binary32,

e int max_exponent: largest integer k such that 3*~! is a normal
number, e.g., 128 for binary32,

“The first version C++98, was published before the C99 standard. There was a minor
revision in 2003, but which was only a corrected version of the 1998 standard. The next C++
standard, tentatively named C++0x, will take C99 into account.

SWhen is_iec559 is true, the C++ standard mandates that infinities and NaNs are
available.

222 Chapter 7. Languages and Compilers

e int min_exponent10: smallest integer k such that 10* is a normal
number, e.g., —37 for binary32,

e int max_exponentl@: largest integer k such that 10* is a normal
number, e.g., 38 for binary32.

4. Subnormal numbers:

e float_denorm_style has_denorm: denorm_present, denorm_-
absent, or denorm_indeterminate, depending on whether
subnormal numbers are known to be supported or not,

e bool has_denorm_loss: true if inaccurate subnormal results are
detected with an “underflow” exception (Section 3.1.5) instead of
just an “inexact” exception,

e T denorm_min(): smallest positive subnormal number,

e bool tinyness_before: true if subnormal results are detected
before rounding (see Definition 1 of Chapter 2, page 18).

5. Rounding mode and error:

e T epsilon(): the subtraction 17 — 1 with 1 the successor of 1 in
the format T,

e T round_error(): biggest relative error for normalized results of
the four basic arithmetic operations, with respect to epsilon(),
hence 0.5 when rounding to nearest,

e float_round_style round_style: round_toward_zero, round_-
to_nearest, round_toward_infinity, round_toward_neg_-
infinity, or round_indeterminate, depending on whether the
rounding mode is known or not. 6

7.3.3 Overloaded functions

In C++, functions from the <cmath> header have been overloaded to take
argument types into account (float and long double). For instance, while
<math.h> provides a sinf function for computing sine on float, <cmath> pro-
vides float sin(float) inthe std namespace. In particular, it means that the
following piece of code does not have the same semantics in C and in C++
(assuming the std namespace is in scope):

float a = 1.0f;
double b = sin(a);

®round_style is a constant member. Therefore, it may well be set to the default
round_to_nearest style, even if the architecture allows us to change the rounding direction
on the fly.

7.4. FORTRAN Floating Point in a Nutshell 223

In C, the variable a will first be promoted to double. The double-precision
sine will then be called and the double-precision result will be stored in b.
In C++, the single-precision sine will be called and its single-precision result
will then be promoted to double and stored in b. Of course, the first approach
provides a more accurate result.

The C++0x standard (to be ratified in 2009) also provides utility func-
tions that replace the C99 macros for classifying or ordering floating-point
values:

namespace std {
template <class T> bool signbit(T x);
template <class T> int fpclassify(T x);
template <class T> bool isfinite(T x);
template <class T> bool isinf(T x);
template <class T> bool isnan(T x);
template <class T> bool isnormal(T x);

template <class T> bool isgreater(T x, T y);
template <class T> bool isgreaterequal(T x, T y);
template <class T> bool isless(T x, T y);
template <class T> bool islessequal(T x, T y);
template <class T> bool islessgreater(T x, T y);
template <class T> bool isunordered(T x, T y);

7.4 FORTRAN Floating Point in a Nutshell

7.4.1 Philosophy

FORTRAN was initially designed as a FORmula TRANslator, and this
explains most of its philosophy with respect to floating-point arithmetic. In
principle, a FORTRAN floating-point program describes the implementation
of a mathematical formula, written by a mathematician, an engineer, or a
physicist, and involving real numbers instead of floating-point numbers. This
is illustrated by the fact that a floating-point variable is declared with the
REAL keyword or one of its variants. Compare this with the C float key-
word which describes a machine implementation of the reals, following the C
“close-to-the-metal” philosophy. FORTRAN also draws a clear line between
integers and reals, and acknowledges them as fundamentally different math-
ematical objects.

In the compilation of a FORTRAN program, the formula provided by the
user should be respected. In the translation process, a FORTRAN compiler is
free to apply to the source code (formula) any mathematical identity that is
valid over the reals, as long as it results in a mathematically equivalent for-
mula. However, it gives little importance to the rounding errors involved in
this process. They are probably considered unavoidable, and small anyway.

224 Chapter 7. Languages and Compilers

Here is a biased excerpt of the FORTRAN standard [192] that illustrates
this.

(...) the processor may evaluate any mathematically equivalent
expression (...). Two expressions of a numeric type are mathemat-
ically equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically equiv-
alent expressions of numeric type may produce different compu-
tational results.

Again, integers and reals are distinct objects, as illustrated by the follow-
ing excerpt:

Any difference between the values of the expressions (1./3.)%3.
and 1. is a computational difference, not a mathematical differ-
ence. The difference between the values of the expressions 5/2
and 5./2. is a mathematical difference, not a computational dif-
ference.

Therefore, (1./3.)+3. may be quietly replaced by 1., but5/2 and 5./2.
are not interchangeable.

However, the standard acknowledges that a programmer may
sometimes want to impose a certain order to the evaluation of a formula.
It therefore makes a considerable exception to the above philosophy: when
parentheses are given, the compiler should respect them. Indeed, the first
sentence of the first excerpt reads in full:

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not
violated.

Then, another excerpt elaborates on this:

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alter-
native forms that may be used by the processor in the actual
evaluation of the expression. This is useful for controlling the
magnitude and accuracy of intermediate values developed dur-
ing the evaluation of an expression.

For example, an expression written
a/bx*c/d

may be computed either as

(a/b) * (¢/d), (7.1)

7.4. FORTRAN Floating Point in a Nutshell 225

or as
(axc)/(bxd). (7.2)

A FORTRAN compiler may choose the parenthesizing it deems the more
efficient. These two expressions are mathematically equivalent but do not
lead to the same succession of rounding errors, and therefore the results may
differ. For instance, if a, b, ¢, and d are all equal and strictly larger than the
square root of the largest representable finite floating-point number (2, then
choosing Equation (7.1) leads to the right result 1, whereas choosing Equa-
tion (7.2) leads to the quotient of two infinities (which gives a NaN in an arith-
metic compliant with the IEEE 754-2008 standard). During the development
of the LHC@Home project [103], such an expression, appearing identically in
two points of a program, was compiled differently and—very rarely—gave
slightly different results. This led to inconsistencies in the distributed simula-
tion, and was solved by adding explicit parentheses on the offending expres-
sion.

Here are some more illustrations of the FORTRAN philosophy, also from
the FORTRAN standard [192]. In Tables 7.2 and 7.3, X, Y, Z are of arbitrary
numeric types, A, B, C are reals or complex, and I,] are of integer type.

Expression | Allowable alternative

X+Y Y+X

X*Y Y*X

X+Y Y-X
X+Y+Z X+(Y+27)
X-Y+Z X-(Y-2)
X*A/Z X*(A/Z)

X*Y -X*Z | X*(Y-2)
A/B/C A/ (B*C)
A /50 02*A

Table 7.2: FORTRAN allowable alternatives.

The example of the last line of Table 7.2 could be turned into a similar
example by replacing the “5.0” by “4.0” and the “0.2” by “0.25”. However,
it is not possible to design a similar example by replacing the “5.0” by “3.0”
because no finite sequence “0.3333 - - - 3” is exactly equal to 1/3: FORTRAN
accepts replacements of formulas only by other formulas that are mathemat-
ically equivalent.

To summarize, FORTRAN has much more freedom when compiling
floating-point expressions than C. As a consequence, the performance of a
FORTRAN program is likely to be higher than that of the same program
written in C.

226 Chapter 7. Languages and Compilers

Expression Forbidden alternative | Why

I/2 05*I integer versus real operation
X*1/] X*T/) real versus integer division
I/J/A I/(J*A) integer versus real division
X+Y)+Z X+ +2) explicit parentheses
X*Y)-(X*Z) | X*(Y-2) explicit parentheses
X*(Y-2Z) X*Y-X*Z explicit parentheses

Table 7.3: FORTRAN forbidden alternatives.

7.4.2 1EEE 754 support in FORTRAN

Section 13 of the FORTRAN standard, Intrinsic procedures and modules,
defines a machine model of the real numbers which corresponds to normal-
ized floating-point numbers:

The model set for real z is defined by

0 or

p
r= sxbefokxb_k ’

k=1

where b and p are integers exceeding one; each fj is a non-
negative integer less than b, with f; non zero; s is +1 or —1; and
e is an integer that lies between some integer maximum e,y and
some integer minimum ey, inclusively. For z = 0, its exponent e
and digits fj, are defined to be zero. (...) the integer parameters b,
P, €min , and emax determine the set of model floating-point num-
bers. The parameters of the integer and real models are available
for each integer and real type implemented by the processor. The
parameters characterize the set of available numbers in the def-
inition of the model. The floating-point manipulation functions
(13.5.10) and numeric inquiry functions (13.5.6) provide values of
some parameters and other values related to the models.

Numeric inquiry functions are DIGITS (X), EPSILON (X), HUGE (X),
MAXEXPONENT (X), MINEXPONENT (X), PRECISION (X), RADIX (X), RANGE (X),
TINY (X). Most need no further explanation, but be aware that the signifi-
cand in the previous model is in [1/b, 1); therefore, emin and epax differ from
those of the IEEE 754 standard. Some of these functions have strange defi-
nitions in 13.5.10: EPSILON (X) is defined as Number that is almost negligible
compared to one, which is not very precise. It becomes clearer in 13.7, Speci-
fications of the standard intrinsic procedures, which defines it as b!~? with the

7.5. Java Floating Point in a Nutshell 227

notation of the model above. HUGE (X) and TINY (X) are defined, respec-
tively, as Largest number of the model and Smallest positive number of the model.
For these functions, remember that the model includes neither infinities nor
subnormals. Indeed, TINY (X) is defined later in 13.7 of the FORTRAN stan-
dard as pemin—1,

The following floating-point manipulation functions are available:

e EXPONENT (X) Exponent part of a model number;
e FRACTION (X) Fractional part of a number;

e NEAREST (X, S) Nearest different processor number in the direction
given by the sign of S;

e SPACING (X) Absolute spacing of model numbers near a given num-

ber. This under-specified definition of the ulp is clarified in 3.7 as
bmax(e—p,emin—l);

e RRSPACING (X) Reciprocal of the relative spacing of model numbers
near a given number;

e SCALE (X, I) Multiply a real by its radix to an integer power;
e SET EXPONENT (X, I) Setexponent partof a number.

All the previous information is mostly unrelated to the IEEE 754 stan-
dard. In addition, the FORTRAN standard dedicates its Section 14 to Excep-
tions and IEEE arithmetic. This section standardizes IEEE 754 support when
it is provided, but does not make it mandatory. It provides, in the intrinsic
modules IEEE EXCEPTIONS, IEEE ARITHMETIC and IEEE FEATURES, numer-
ous inquiry functions testing various parts of standard compliance. It also
defines read and write access functions to the rounding directions, as well as
read and write access functions to the underflow mode (which may be either
gradual, i.e., supporting subnormals, or abrupt, i.e.,, without subnormals).
Finally, it defines subroutines for all the functions present in the IEEE
754-1985 standard.

7.5 Java Floating Point in a Nutshell

7.5.1 Philosophy

“Write once, run anywhere (or everywhere)” is the mantra of the Java lan-
guage evangelists. Reproducibility between platforms is an explicit and
essential goal, and this holds for numeric computations as well. In practi-
cal terms, this is achieved through byte-code compilation (instead of compi-
lation to object code) and interpretation on a virtual machine rather than
direct execution on the native operating system/hardware combination.

228 Chapter 7. Languages and Compilers

In the first versions of the Java platform, this meant poor performance, but
techniques such as “Just In Time” or “Ahead Of Time” compilation were later
developed to bridge the gap with native execution speed.

The initial language design tried to ensure numerical reproducibility by
clearly defining execution semantics, while restricting floating-point capa-
bilities to a subset of formats and operators supported by most processors.
Unfortunately, this was not enough to ensure perfect reproducibility, but
enough to frustrate performance-aware programmers who could not exploit
their extended precision or FMA hardware [210]. We will see how Java later
evolved to try and give to the programmers the choice between reproducibil-
ity and performance.

In general terms, Java claims compliance with the IEEE 754-1985 stan-
dard, but only implements a subset of it. Let us now look at the details.

7.5.2 Types and classes

Java is an object-oriented language “with a twist”: the existence of primi-
tive types and the corresponding wrapper classes. One of the main reasons
behind the existence of basic types is a performance concern. Having many
small and simple variables incurs a severe access time penalty if created on
the heap as objects are.

As far as floating-point numbers are concerned, there are two basic

types:

e float: binary32 analogous, Float being the wrapper class;
e double: binary64 analogous, Double being the wrapper class.

As the Java Language Specification puts it, these types are “conceptually
associated with the 32-bit single-precision and 64-bit double-precision format
of IEEE 754 standard.”

In the virtual machine

Although the virtual machine is supposed to insulate the execution from the
peculiarities of the hardware, at some point, floating-point operations have
to be performed on the actual processor. Of course, specialized floating-point
units could be totally avoided and all instructions software emulated using
integer registers, but the speed penalty would be prohibitive.

Looking at the details of the Java Virtual Machine Specification, second
edition [262, Section 3.3.2], one may observe that the Java designers have been
forced to acknowledge the peculiarity of the x87 hardware, which can be set
to round to a 53-bit or 24-bit significand, but always with the 16-bit expo-
nent of the double-extended format. The Java Virtual Machine Specification
defines, in addition to the float and double formats, a double-extended-exponent

7.5. Java Floating Point in a Nutshell 229

format that exactly corresponds to what is obtained when one sets an x87 FPU
to rounding to 53 bits. Unfortunately, from there on, reproducibility vanishes,
as the following excerpt illustrates:

These extended-exponent value sets may, under certain circum-
stances, be used instead of the standard value sets to represent
the values of type float or double.

The first edition of the Java Virtual Machine Specification was much
cleaner, with only float and double types, and fewer “may” sentences threat-
ening reproducibility. The only problem was that it could not be implemented
efficiently on x86 hardware (or, equivalently, efficient implementations were
not strictly compliant with the specification).

Neither the first edition nor the second is fully satisfactory. To be honest,
this is not to be blamed on the Java designers, but on the x87 FPU. The fact
that it could not round to the standard double-precision format is one of the
main flaws of an otherwise brilliant design. It will be interesting to see if Java
reverts to the initial specification, now that x86-compatible processors, with
SSE2, are turning the x87 page and offering high-performance hardware with
straightforward rounding to binary32 and binary64.

In the Java language

In Java 2 SDK 1.2, a new keyword (and the corresponding behavior) was
introduced to make sure computations were realized as if binary32 and
binary64 were actually used all the way (again, at some performance cost).
See Program 7.1. Technically, this strictfp modifier is translated into a bit

// In this class, all operations in all methods are performed
// in binary32 or binary64 mode.
strictfp class ExampleFpStrictClass {

} // End class ExampleFpStrictClass

class NormalClass {
// This particular method performs all its operations in binary32
// or binary64 mode

strictfp double aFpStrictMethod(double arg)
{

} // End aFpStrictMethod
} // End class NormalClass

Program 7.1: The use of the strictfp keyword.

associated to each method, down to the virtual machine.

230 Chapter 7. Languages and Compilers

The strictfp modifier ensures that all the computations are performed
in strict binary32 or binary64 mode, which will have a performance cost
on x86 hardware without SSE2. According to the specification, what non-
strictfp allows is just an extended exponent range, “at the whim of the
implementation” [153].

However, as usual, one may expect compilation flags to relax compliance
to the Java specification. Here, the interested reader should look at the docu-
mentation not only of the compiler (the javac command or a substitute), but
also of the runtime environment (the java command or a substitute, includ-
ing just-in-time compilers). There are also Java native compilers such as JET
or GCJ, which compile Java directly to machine code (bypassing the virtual
machine layer). Some enable extended precision even for the significand.

7.5.3 Infinities, NaNs, and signed zeros

Java has the notion of signed infinities, NaNs, and signed zeros. Infinities
and NaNss are defined as constants in their respective wrapper classes (e.g.,
java.lang.Double.POSITIVE_INFINITY, java.lang.Float.NaN).

A first pitfall one must be aware of is that Double and double do not
compare the same, as Program 7.2 shows. Here is the output of this program:

NaN !'= NaN

NaN == NaN

aDouble and anotherDouble are different objects.
anotherDouble and aThirdDouble are the same object.
anotherDouble and aThirdDouble have the same value NaN == NaN

As one can see, the == operator does not behave the same for basic types and
objects.

e For basic types, if the variables hold the same value, the compari-
son evaluates to true, except for the java.lang.{Float | Double}.NaN
value, in accordance with any version of the IEEE 754 standard.

e For the object types, the == operator evaluates to true only if both ref-
erences point to the same object. To compare the values, one must use
the equals () method. But as you can see, NaN equals NaN, which is a bit
confusing.

We are confronted here with a tradeoff between respect for the IEEE
754 standard and the consistency with other Java language elements as
maps or associative arrays. If floating-point objects are used as keys,
one should be able to retrieve an element whose index is NaN.

7.5. Java Floating Point in a Nutshell 231

import java.io.x;

class ObjectValue {

public static void main(String args[])

{
double adouble = java.lang.Double.NaN;
double anotherdouble = java.lang.Double.NaN;
Double aDouble = new Double(java.lang.Double.NaN);
Double anotherDouble = new Double(java.lang.Double.NaN);
Double aThirdDouble = anotherDouble;

if (adouble != anotherdouble){
System.out.print(adouble);
System.out.print(" '= ");
System.out.println(anotherdouble);
}
if (aDouble.equals(anotherDouble)){
System.out.print(aDouble.toString());
System.out.print(" == ");
System.out.println(anotherDouble.toString());
}
if (aDouble != anotherDouble)
System.out.println("aDouble and anotherDouble are different objects.");
if (anotherDouble == aThirdDouble)
System.out.println("anotherDouble and aThirdDouble are the same object.")
if (anotherDouble.equals(aThirdDouble)){
System.out.print("anotherDouble and aThirdDouble have the same value ");
System.out.print(anotherDouble.toString());
System.out.print(" == ");
System.out.println(aThirdDouble.toString());
}
} // End main
} // End class ObjectValue

Program 7.2: Object comparison in Java.

7.5.4 Missing features

The compliance of the Java Virtual Machine [262, Section 3.8] to IEEE 754
remains partial in two main respects:

o It does not support flags or exceptions. The term exception must be taken
here with the meaning it has in the IEEE 754 standard, not with the one
it has in Java (which would more accurately translate into trap, in IEEE
754 parlance).

o All operations are performed with rounding to the nearest. As a con-
sequence, some of the algorithms described in this book cannot be
implemented. Worse, as this is a virtual machine limitation, there is
no possibility of a machine interval arithmetic data type as first class

232 Chapter 7. Languages and Compilers

citizen in the Java language. This does not mean that interval arith-
metic cannot be done at all in Java; several external packages have been
developed for that, but they are much less efficient than operations
performed using hardware directed rounding modes. This is all the
more surprising because most processors with hardware floating-point
support also support directed rounding modes.

7.5.5 Reproducibility

The strictfp keyword enables reproducibility of results computed using
basic operations. Expression evaluation is strictly defined and unambiguous,
with (among others) left-to-right evaluation, StrictFP compile-time constant
evaluation, and widening of the operations to the largest format [153].

However, tightening basic operations is not enough. Until Java 2
SDK 1.3, when a mathematical function of the java.lang.Math package was
called (sine, exponential, etc.), it was evaluated using the operating system’s
implementation, and the computed result could change from platform to
platform. Java 2 SDK 1.3 was released with the new java.lang.StrictMath
package. It tried to guarantee the same bit-for-bit result on any plat-
form, again, at the expense of performance. Nevertheless, correct round-
ing to the last bit was not ensured. Eventually, in Java 2 SDK 14, the
implementation of java.lang.Math functions became simple calls to their
java.lang.StrictMath counterparts.

This enabled numerical consistency on all platforms at last, with two ill
effects. Some users observed that the result changed for the same program
on the same platform. Users also sometimes noticed a sharp drop in execu-
tion speed of their program, and the standard Java platform no longer offers
a standard way out for users who need performance over reproducibility.
Many tricks (e.g., resorting to JNI for calls to an optimized C library) were
tried to gain access again to the speed and precision of the underlying plat-
form.

To summarize this issue, the history of Java shows the difficulty of
the “run anywhere with the same results” goal. At the time of writing
this book, there are still some inconsistencies; for example, the fact that the
default choice for elementary function evaluation is reproducibility over
performance, while the default choice for expression evaluation (without
strictfp) is performance over reproducibility.

Things will evolve favorably, however. We have already mentioned that
the generalization of SSE2 extensions will render strictfp mostly useless. In
addition, in the near future, the generalization of correctly rounded elemen-
tary functions which are recommended by IEEE 754-2008 (see Section 11.6,
page 394) could reconcile performance and reproducibility for the elementary
functions: the Java virtual machine could again trust the system’s optimized
mathematical library if it knows that it implements correct rounding. It is

7.5. Java Floating Point in a Nutshell 233

unfortunate that the java.lang.StrictMath current implementation did not
make the choice of correct rounding. It remains for Java designers to specify a
way to exploit the performance and accuracy advantage of the FMA operator
when available [9] without endangering numerical reproducibility.

7.5.6 The BigDecimal package

The Java designers seem to have been concerned by the need for reliable deci-
mal floating-point, most notably for perfectly specified accounting. They pro-
vided the necessary support under the form of the java.math.BigDecimal
package. Although this package predates the IEEE 754-2008 standard and
therefore does not exactly match the decimal floating-point specification, it
shares many concepts with it.

In particular, the java.math.MathContext class encapsulates a notion
of precision and a notion of rounding mode. For instance, the preset
MathContext.DECIMAL128 defines a format matching the IEEE 754-2008 dec-
imal128 and the “round to nearest and break ties to even” default rounding
mode. Users can define their own kind of MathContext and have, for that
purpose, a wide choice of rounding modes.

A MathContext can be used to control how operations are performed,
but also to emulate IEEE 754 features otherwise absent from the language,
such as the inexact flag. Program 7.3 illustrates this.

Current State of Java for HP

import java.math.x;

class DecimalBig {

public static void main(String args[])

{
// Create a new math context with 7 digits precision, matching
// that of MathContext.DECIMAL32 but with a different rounding
// mode.
MathContext mc = new MathContext(7, RoundingMode.UNNECESSARY);
BigDecimal a = new BigDecimal(1l.0, MathContext.DECIMAL32);
BigDecimal b = new BigDecimal(3.0, MathContext.DECIMAL32);
BigDecimal c;

// Perform the division in the requested MathContext.
// In this case, if the result is not exact, within the required
// precision, an exception will be thrown.
¢ = a.divide(b, mc);
// could have been written as
// ¢ = a.divide(b, 7, RoundingMode.UNNECESSARY)
} // End main
} // End class DecimalBig

Program 7.3: BigDecimal and MathContext.

234 Chapter 7. Languages and Compilers

This program will crash, since we do not catch the exception that would,
in IEEE 754 parlance, raise the “inexact status flag,” and will print out a mes-
sage of the following type:

Exception in thread "main" java.lang.ArithmeticException:
Rounding necessary
at java.math.BigDecimal.divide(BigDecimal.java:1346)
at java.math.BigDecimal.divide(BigDecimal.java:1413)
at DecimalBig.main(DecimalBig.java:12)

This is more awkward and dangerous than the behavior proposed in
IEEE 754-2008: in IEEE 754, an inexact computation silently raises a flag and
does not interrupt execution. Still, when used with care, this is the closest to
floating-point environment control one can find in “out-of-the-box” Java.

A completely different problem is that BigDecimal numbers are objects,
not basic types. They incur all the performance overhead associated with
objects (in addition to the performance overhead associated with software
decimal operations) and require a clumsy object-oriented method syntax
instead of the leaner usual infix operators.

7.6 Conclusion

We wish we convinced the reader that, from the floating-point perspective,
languages and systems were not “designed equal,” and that the designer of
numerical programs may save on debugging time by looking carefully at the
documentations of both the chosen language and the underlying system.

Obviously, considering the variety of choices made by different systems,
there is no perfect solution, in particular because of the performance/repr-
oducibility conflict (where reproducibility may be replaced with portability,
predictability, or numerical consistency, depending on the programmer’s con-
cerns). The perfect solution may be a system which

e is safe by default (favoring portability) so that subtle numerical bugs,
such as the infinitely looping sort, are impossible, and

e gives to the programmer the possibility of improving performance
when needed, with due disclaimers with respect to numerical pre-
dictability.

Even so, the granularity of the programmer’s control on this tradeoff is an
issue. Compilation flags or operating-system-level behavior control are typi-
cally too coarse, while adding pragmas or strictfp everywhere in the code
may be a lot of work, and may not be possible when external libraries are
used.

We have not covered all the existing languages, of course. Some of
them are well specified, and some are explicitly under-specified (C#, Perl,

7.6. Conclusion 235

Python, etc.). In the latter case, note that most recent documentations explic-
itly warn the user about floating-point arithmetic.

Finally, some languages, such as ECMAScript (ECMA-262 / ISO/IEC
16262), do not have integer arithmetic and rely on IEEE 754 floating-point
arithmetic to emulate integer arithmetic. The only difficulty is the integer
division, which is commonly implemented as a floating-point division fol-
lowed by a floor, without any justification. Developers should be aware that
some inputs can yield an incorrect result because of the rounded floating-
point division, although in most cases (in particular those encountered in
practice), one can prove that the result is correct [254].

Part 111

Implementing Floating-Point
Operators

Chapter 8

Algorithms for the Five Basic
Operations

MONG THE MANY OPERATIONS that the IEEE 754 standards specify
(see Chapter 3), we will focus here and in the next two chapters on
the five basic arithmetic operations: addition, subtraction, multiplication,
division, and square root. We will also study the fused multiply-add (FMA)
operator. We review here some of the known properties and algorithms used
to implement each of those operators. Chapter 9 and Chapter 10 will detail
some examples of actual implementations in, respectively, hardware and soft-
ware.

Throughout this chapter, the radix 3 is assumed to be either 2 or 10.
Following the IEEE 754-2008 standard [187], we shall further assume that
extremal exponents are related by enin = 1 — emax and that the formats con-
sidered are basic formats only.

8.1 Overview of Basic Operation Implementation

For the five basic operations, the IEEE 754-2008 standard requires correct
rounding: the result returned must be as if the exact, infinitely precise
result was computed, then rounded. The details of the cases that may occur,
illustrated in Figure 8.1, are as follows.

e If the result is undefined, a Not a Number (NaN) will be returned.

e Otherwise, let us consider the real number which is the infinitely pre-
cise result of the operation.

— If this real result is exactly representable as a floating-point
number, no rounding will be needed. However, there may still
be work to do: a representable result may have several possible

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007 /978-0-8176-4705-6_8, 239
© Birkhé&user Boston, a part of Springer Science+Business Media, LLC 2010

240 Chapter 8. Algorithms for the Five Basic Operations

exact result
of the operation

i

is the result a number? return NaN

no rounding needed rounding needed

is the result
a floating—point number?

Yes No
in binary in decimal
normalize result apply preferred exponent rule compute rounding

Figure 8.1: Specification of the implementation of a floating-point operation.

representations, and the implementation has to compute which
one it returns out of its intermediate representation of the result:

* In binary, there is only one valid representation, which is the
one with the smallest possible exponent;

* In decimal, several representations of the result may be valid
(they form what is called a cohort). The standard precisely
defines which member of such a cohort should be returned.
For each operation, a preferred exponent is defined as a func-
tion of the operation’s inputs (see Section 3.4.7, page 97). The
implementation has to return the member of the cohort result
whose exponent is closest to the preferred exponent;

— If the exact result is not exactly representable as a floating-point
number, it has to be rounded to a floating-point number. If that
floating-point number has several possible representations, the
returned result, both in binary and in decimal, is the one with
the smallest possible exponent.

In practice, there are two classes of operations.

e When adding, subtracting, or multiplying two floating-point numbers,
or when performing a fused multiply-add (FMA) operation, the
infinitely precise result is actually always finite and may be exactly
computed by an implementation. Therefore, the previous discussion
has a straightforward translation into an architecture or a program.!

'In many cases, there are better ways of implementing the operation.

8.2. Implementing IEEE 754-2008 Rounding 241

e When performing a division or computing a square root or an elemen-
tary function, the exact result may have an infinite number of digits;
consider, for instance, the division 1.0/3.0. In such cases, other means
are used to reduce the rounding problem to a finite computation. For
division, one may compute a finite-precision quotient, then the remain-
der allows one to decide how to round. Similarly, for the square root,
one may compute y ~ /z, then decide rounding by considering = — y?.
Some iterations also allow, when an FMA instruction is available, to
directly get a correctly rounded quotient or square root from an accu-
rate enough approximation (see Section 5.3). Correct rounding of the
elementary functions will be the subject of Chapters 11 and 12.

Section 8.2 addresses the general issue of rounding a value (the “com-
pute rounding” box of Figure 8.1). The subsequent sections will address
specifically each of the five basic operators.

8.2 Implementing IEEE 754-2008 Rounding

8.2.1 Rounding a nonzero finite value with unbounded exponent
range

Obviously every nonzero finite real number x can be written as
z=(=1)-m- 5, (8.1)

where /3 is the chosen radix, here 2 or 10, where e is an integer, and where the
real m is the (possibly infinitely precise) significand of x, such that 1 < m < (.
We will call the representation (8.1) the normalized representation of x. (Note
however that this does not mean that x is a normal number in the IEEE 754
sense since x may have no finite radix-3 expansion.) If we denote m; the digit
of weight ¢ (i.e., the i-th fractional digit) in the radix-3 expansion of m, we
have
m = m;B~" = (mo.mimg ... mp_1MpMp41...)38,
i>0

where mg € {1,...,8—1}and, fori > 1, m; € {0,1,...,8 — 1}. In addition,
an unbounded exponent range is assumed from now on, so that we do not have
to worry about overflow, underflow, or subnormals (they will be considered
in due course).

At precision p the result of rounding x is either the floating-point number

:L'p = (—1)8 . (mo.mlmQ e mpfl)g . ﬁe
obtained by truncating the significand m after p — 1 fractional digits, or

e the floating-point successor of x, when z is positive,

242 Chapter 8. Algorithms for the Five Basic Operations

o the floating-point predecessor of z,, when z is negative.

In other words, writing Succ(z) for the successor of a floating-point number
z, the rounded value of z will always be one of the two following values:

(=1)% - [y or (=1) - Suce(|zpl),

with |z,| = (mo.mima...my_1)s - B°
Note that rounding essentially reduces to rounding non-negative values,
because of the following straightforward properties of rounding operators:

RN(—z) = —RN(z), RZ(—z) = —RZ(x),
RU(—z) = — RD(x). (8.2)

Computing the successor in a binary interchange format

The reader may check that the binary interchange formats (see [187] and
Chapter 3) are built in such a way that the binary encoding of the successor of a
positive floating-point value is the successor of the binary encoding of this value, con-
sidered as a binary integer. This important property (which explains the choice
of a biased exponent over two’s complement or sign-magnitude) is true for
all positive floating-point numbers, including subnormal numbers, from 40
to the largest finite number (whose successor is +00). It also has the conse-
quence that the lexicographic order on the binary representations of positive
floating-point numbers matches the order on the numbers themselves.

This provides us with a very simple way of computing Succ(|z,|):
consider the encoding of |z,| as an integer, and increment this integer.
The possible carry propagation from the significand field to the exponent
field will take care of the possible exponent change.

Example 9. Considering the binary32 format, let w04 = (2 — 2723) - 27126, The bit
string Xa1 ... Xo of the 32-bit integer X = Z?io X,;2¢ that encodes xa4 is

0 00000001 11111111111111111111111.
N—— ~~
8 exponent bits 23 fraction bits

The successor Succ(xa4) of way is encoded by the 32-bit integer X + 1 whose bit
string is
0 00000010 00000000000000000000000 .
—_—

8 exponent bits 23 fraction bits

That new bit string encodes the number 1 - 227127 which is indeed Succ(way) =
Toy+2723.27126 = 27125 Note how the carry in the addition X + 1 has propagated
up to the exponent field.

For algorithms that use a few floating-point operations for computing
the predecessor and successor of a floating-point number, see [351].

8.2. Implementing IEEE 754-2008 Rounding 243

Choosing between |x,| and its successor Succ(|xp|)

As already detailed by Table 2.1, page 22 for radix 2, the choice between |z,,|
and Succ(|z,|) depends on the sign s, the rounding mode, the value of the
digit m, of m (called the round digit), and a binary information telling us if
there exists at least one nonzero digit among the (possibly infinitely many)
remaining digits mp41, mp42, In radix 2, this information may be defined
as the logical OR of all the bits to the right of the round bit, and is therefore
named the sticky bit. In radix 10, the situation is very similar. One still needs
a binary information, which we still call the sticky bit. It is no longer defined
as a logical OR, but as follows: its value is 0 if all the digits to the right after
my, are zero, and 1 otherwise.
Let us consider some decimal cases for illustration.

e When rounding z toward zero, the rounded number is always? x,,.

e When rounding a positive = toward +oo, the rounded number is
Succ(zp), except if © was already a representable number, i.e., when
both its round digit and sticky bit are equal to zero.

e When rounding to nearest with roundTiesToEven a positive decimal
number z, if the round digit m, belongs to {0,1,2,3,4}, then the
rounded number is z,; if m, belongs to {6, 7, 8,9}, then the rounded
number is Succ(z,). If m,, is equal to 5, then the sticky bit will decide
between Succ(x)) (if equal to 1) or a tie (if equal to 0). In case of a tie,
the ties to even rule considers the last digit (of weight 10771) of the two
candidates. The rounded result is the one whose last digit is even.

Having defined the infinitely accurate normalized representation
z = (—1)°-m-pB°with1 < m < 8 of the result allows us to manage flags
and exceptional cases as well. However, note first that for some operations,
overflow or underflow signaling may be decided by considering the inputs
only, before any computation of the results. For example, as we will see later
in this chapter, square root overflows if and only if the input is +oc0, never
underflows, and returns NaN if and only if the input is NaN or strictly nega-
tive. The possibility of such an early detection of exceptional situations will be
mentioned when appropriate.

8.2.2 Overflow

As stated in Section 3.4.10, page 101, the overflow exception is signaled when
the absolute value of the intermediate result is strictly larger than the largest
finite number 2 = (8 — 17P) - emax, Here, the intermediate result is defined

?In this discussion we assume that 4.999...9% is written 5.0°; otherwise, this sentence is
not true. This remark is academic: a computer will only deal with finite representations, which
do not raise this ambiguity.

244 Chapter 8. Algorithms for the Five Basic Operations

as the infinitely accurate result rounded to precision p with an unbounded
exponent range.

For rounding to the nearest, this translates to: an overflow is signaled
when

(e > emax)

or

<e =emax and (mo.mima...mp_1)g=pF—F"? and m, > g))

Note that in the case m,, = g, when e = epax and (mo.mimsa ... my_1)g =
B—p1~P, with roundTiesToEven, the exact result is rounded to the intermediate
result B°mext1; therefore, it signals overflow without having to consider the
sticky bit.

When rounding a positive number to 400, an overflow is signaled when

(e > emax)

or

(e =eémax and (mo.mi...mp_1)g=p0— pgl—p
and (m, >0 or sticky = 1))

This reminds us that overflow signaling is dependent on the prevailing
rounding direction. The other combinations of sign and rounding direction
are left as an exercise to the reader.

8.2.3 Underflow and subnormal results

As stated in Section 3.4.10, page 102, the underflow exception is signaled
when a nonzero result whose absolute value is strictly less than §°»i» is com-
puted. This translates to: an underflow is signaled if e < emin, Where e is the
exponent of the normalized infinitely precise significand.

In such cases, the previous rounding procedure has to be modified as
follows: m (the normalized infinitely precise significand) is shifted right by
emin — € (it will no longer be normalized), and e is set to eyi,. We thus have
rewritten x as

T = (_1)5 . ml . ﬁemin’

with
! /! / !/ !/ / /
m’ = (mg.mymy ... My, _1MyMy g)6

*We remind the reader that there remains some ambiguity in the standard, since underflow
can be detected before or after rounding. See Section 2.1, page 18, and Section 3.4.10, page 102,
for more on this. Here, we describe underflow detection before rounding.

8.2. Implementing IEEE 754-2008 Rounding 245

From this representation, we may define the round digit m;, the sticky bit
(equal to 1 if there exists a nonzero m] for some i > p, and 0 otherwise), and
the truncated value |z,| = (mg.mymy...m;,_,)p - B as previously. As the
successor function is perfectly defined on the subnormal numbers—and even
easy to compute in the binary formats—the rounded value is decided among
(=1)% - |xp| and (—1)® - Succ(]z,|) in the same way as in the normal case.

One will typically need the implementations to build the biased exponent
(that is, in binary, what is actually stored in the exponent field), equal to the
exponent plus the bias (see Table 3.4, page 60). There is one subtlety to be
aware of in binary formats: the subnormal numbers have the same exponent
as the smallest normal numbers, although their biased exponent is smaller
by 1. In general, we may define n, as the “is normal” bit, which may be
computed as the OR of the bits of the exponent field. Its value will be 0 for
subnormal numbers and 1 for normal numbers. Then the relation between
the value of the exponent e, and the biased exponent E, is the following:

e; = F, —bias+1—n, . (8.3)

This relation will allow us to write exponent-handling expressions that are
valid in both the normal and subnormal cases.

In addition, n, also defines the value of the implicit leading bit: the
actual significand of a floating-point number is obtained by prepending n,
to the significand field.

8.24 The inexact exception

This exception is signaled when the exact result y is not exactly representable
as a floating-point number (o(y) # y, y not a NaN). As the difference
between o(y) and y is condensed in the round digit and the sticky bit, the
inexact exception will be signaled unless both the round digit and the sticky
bit are equal to 0.

8.2.5 Rounding for actual operations

Actual rounding of the result of an operation involves two additional diffi-
culties.

¢ Obtaining the intermediate result in normalized form may require some
work, all the more as some of the inputs, or the result, may belong to the
subnormal range. In addition, decimal inputs may not be normalized
(see the definition of cohorts in Section 3.4.3, page 82).

e For decimal numbers, the result should not always be normalized (see
the definition of preferred exponents in Section 3.4.7, page 97).

These two problems will be addressed on a per-operation basis.

246 Chapter 8. Algorithms for the Five Basic Operations

Decimal rounding using the binary encoding

The entire discussion in Section 8.2 assumes that the digits of the infinitely
precise significand are available in the radix in which it needs to be rounded.
This is not the case for the binary encoding of the decimal formats (see
Section 3.4.3, pages 82 and seq.). In this case, one first needs to convert the
binary encoding to decimal digits, at least for the digits needed for rounding
(the round digit and the digits to its right). Such radix conversion is typically
done through the computation of a division by some 10* (with k£ > 0) with
remainder. Cornea et al. [85, 87] have provided several efficient algorithms
for this purpose, replacing the division by 10¥ with a multiplication by a pre-
computed approximation to 10~*. They also provide techniques to determine
to which precision 10~ should be precomputed.

8.3 Floating-Point Addition and Subtraction

When x or y is nonzero, the addition of z = (—1)%* - |z| and y = (—1)% - |y| is
based on the identity

sty = (0" (Jol+ (-1 |yl), 5. =5, XORs, €{0,1}. (84)

For subtraction a similar identity obviously holds since z — y = = + (—y).
Hence, in what follows we shall consider addition only.

The IEEE 754-2008 specification for |z| £ |y| is summarized in Tables 8.2
and 8.3. Combined with (8.2) and (8.4) it specifies floating-point addition
completely provided x or y is nonzero. When both = and y are zero, the stan-
dard stipulates to return +-0 or —0, depending on the operation (addition or
subtraction) and the rounding direction attribute, as shown in Table 8.1.

In Table 8.2 and Table 8.3 the sum or difference o(|z| & |y|) of the two
positive finite floating-point numbers

x| =mg - and y[=my - 3
is given by

o (]m| + \y|> = o(mw - % £my, - ﬂEy) (8.5)
The rest of this section discusses the computation of the right-hand side of
the above identity.

Note that for floating-point addition/subtraction, the only possible
exceptions are invalid operation, overflow, underflow, and inexact (see [126,
p. 425]).

In more detail, the sequence of operations traditionally used for imple-
menting (8.5) is as follows.

e First, the two exponents e, and e, are compared, and the inputs = and
y are possibly swapped to ensure that e, > €.

8.3. Floating-Point Addition and Subtraction

Table 8.1: Specification of addition/subtraction when both x and y are zero. Note that

TP, eoiglo\i i{)zf,ofo} RD(zopy)
(4+0) + (+0) +0 +0
(+0) + (—0) +0 -0
(—0) + (+0) +0 -0
(—=0) + (—0) -0 -0
(+0) — (+0) +0 -0
(+0) — (—0) +0 +0
(—0) — (+0) —0 -0
(—=0) — (—0) +0 -0

floating-point addition is commutative.

Yl
[+ [y]
+0 (sub)normal +oo NaN
+0 +0 |yl +oo gNaN
- (sub)normal || o(lz| + |yl) 400 gNaN
X
+oo +o0 +o0 +oo gNaN
NaN gNaN gNaN gNaN gNaN

Table 8.2: Specification of addition for positive floating-point data.

Yl
=l = Iyl +0 (sub)normal 4o NaN
+0 +0 —|yl —oo gNaN
(sub)normal || o(|z| — |y) —oo gNaN
u +00 +o0 +o0 gNaN gNaN
NaN gNaN gNaN gNaN gNaN

Table 8.3: Specification of subtraction for floating-point data of positive sign. Here
+0 means +0 for “all rounding direction attributes except roundTowardNegative”

(o = RD), and —O0 for o = RD; see [187, §6.3].

248

Chapter 8. Algorithms for the Five Basic Operations

e A second step is to compute m,, - 3~ (¢==¢) by shifting m, right by e, —e,

digit positions (this step is sometimes called significand alignment). The
exponent result e, is tentatively set to e,.

The result significand is computed as m,. = my + (—1)% -m,, - 3~ (¢==):
either an addition or a subtraction is performed, depending on the signs
sz and s,. Then if m,. is negative, it is negated. This (along with the signs
sz and s,) determines the sign s, of the result. At this step, we have an
exact sum (—1)%" - m,. - 5.

This sum is not necessarily normalized (in the sense of Section 8.2). It
may need to be normalized in two cases.

— There was a carry out in the significand addition (m, >). Note
that m, always remains strictly smaller than 243, so this carry is at
most 1. In this case, m, needs to be divided by (3 (i.e., shifted right
by one digit position), and e, is incremented, unless e, was equal
to emax, in which case an overflow is signaled as per Section 3.4.10,
page 101.

— There was a cancellation in the significand addition (m, < 1). In
general, if) is the number of leading zeros of m,., m,. is shifted left
by A digit positions, and e, is set to e, — A\. However, if e, — XA <
emin (the cancellation has brought the intermediate result in the
underflow range, see Section 3.4.10, page 102), then the exponent
is set to eyin and m, will be shifted left only by e, — emin.

Note that for decimals, the preferred exponent rule (mentioned in Sec-
tion 3.4.7, page 97) states that inexact results must be normalized as just
described, but not exact results. We will come back to this case.

Finally, the normalized sum (which again is always finite) is rounded
as per Section 8.2.

Let us now examine this algorithm more closely. We can make important

remarks.

1. This algorithm never requires more than a p-digit effective addition for

the significands. This is easy to see in the case of an addition: the least
significant digits of the result are those of m,, since they are added to
zeros. This is also true when y is subtracted, provided the sticky bit
computation is modified accordingly.

The alignment shift need never be by more than p + 1 digits. Indeed,
if the exponent difference is larger than p + 1, y will only be used for
computing the sticky bit, and it doesn’t matter that it is not shifted to
its proper place.

8.3. Floating-Point Addition and Subtraction 249

3. Leading-zero count and variable shifting will only be needed in case of
a cancellation, i.e., when the significands are subtracted and the expo-
nent difference is 0 or 1. But in this case, several things are simpler. The
sticky bit is equal to zero and need not be computed. More importantly,
the alignment shift is only by 0 or 1 digit.

In other words, although two large shifts are mentioned in the previous
algorithm (one for significand alignment, the other one for normaliza-
tion in case of a cancellation), they are mutually exclusive. The literature
defines these mutually exclusive cases as the close case (when the expo-
nents are close) and the far case (when their difference is larger than 1).

4. In our algorithm, the normalization step has to be performed before
rounding: indeed, rounding requires the knowledge of the position
of the round and sticky bits, or, in the terminology of Section 8.2, it
requires a normalized infinite significand. However, here again the dis-
tinction between the close and far cases makes things simpler. In
the close case, the sticky bit is zero whatever shift the normalization
entails. In the far case, normalization will entail a shift by at most one
digit. Classically, the initial sticky bit is therefore computed out of the
digits to the right of the (p+2)-nd (directly out of the lower digits of the
lesser addend). The (p+2)-nd digit is called the guard digit. It will either
become the round digit in case of a 1-digit shift, or it will be merged to
the previous sticky bit if there was no such shift. The conclusion of this
is that the bulk of the sticky bit computation can be performed in par-
allel with the significand addition.

Let us now detail specific cases of floating-point addition.

8.3.1 Decimal addition

We now come back to the preferred exponent rule (see Section 3.4.7, page 97),
which states that exact results should not be normalized. As the notion of
exactness is closely related to that of normalization (a result is exact if it has
a normalized representation that fits in p digits), the general way to check
exactness is to first normalize X, then apply the previous algorithm.

Exactness of the intermediate result is then determined combinatorially
out of the carry-out and sticky bits, and the round and guard digits.

For addition, the preferred exponent is the smaller of the input expo-
nents (in other words, e, and not e;). If the result is exact, we therefore need
to shift m, right and reduce e, to e,. Therefore, the preferred exponent rule
means two large shifts.

In case of a carry out, it may happen that the result is exact,
but the result’s cohort does not include a member with the preferred
exponent. An example is 9.999e0 + 0.0001e0 for a p = 4-digit system.

250 Chapter 8. Algorithms for the Five Basic Operations

Both input numbers have the same quantum exponent, yet the (exact) value
of the result, 10, cannot be represented with the same quantum exponent and
must be represented as 1.000e1.

In practice, the exact case is a common one in decimal applications (think
of accounting), and even hardware implementations of decimal floating-
point addition distinguish it and try to make this common case fast.

The IBM POWERS6 [123] distinguishes the following three cases (from
the simplest to the most complex).

Case 1 Exponents are equal: This is the most common case of accounting:
adding amounts of money which have the decimal point at the same
place. It is also the simplest case, as no alignment shifting is necessary.
Besides, the result is obtained directly with the preferred exponent. It
may still require a one-digit normalization shift and one-digit round-
ing in case of overflow, but again such an overflow is highly rare in
accounting applications using decimal64—it would correspond to as-
tronomical amounts of money!

Case 2 Aligning to the operand with the smaller exponent: When the expo-
nent difference is less than or equal to the number of leading zeros in
the operand with the bigger exponent, the operand with the larger
exponent can be shifted left to properly align it with the smaller
exponent value. Again, after normalization and rounding, the pre-
ferred exponent is directly obtained.

Case 3 Shifting both operands: This is the general case that we have consid-
ered above.

The interested reader will find in [123] the detail of the operations
performed in each case in the POWER6 processor. This leads to a variable
number of cycles for decimal addition—9 to 17 for decimal64.

8.3.2 Decimal addition using binary encoding

A complete algorithm for the addition of two decimal floating-point numbers
in the binary encoding is presented in [85, 87].

The main issue with the binary encoding is the implementation of the
shifts. The number M - 10t + My - 102, with e; > ey, is computed as

10° - (M1 - 1097 + My) .

Instead of a shift, the significand addition now requires a multiplication by

some 10%, with 0 < k < p, because of remark 2 on page 248. There are few

such constants, so they may be tabulated, and a multiplier or FMA will then

compute the “shifted” values [85, 87]. The full algorithm takes into account

the number of decimal digits required to write M/; and M, which is useful to

obtain the preferred exponent. This number is computed by table lookup.
For the full algorithm, the interested reader is referred to [87].

8.4. Floating-Point Multiplication 251

8.3.3 Subnormal inputs and outputs in binary addition

Here are the main modifications to the previous addition algorithm to ensure
that it handles subnormal numbers properly in the binary case. Let us define,
for the inputs x and y, the “is normal” bits n, and n,. One may compute n,
(resp. ny) as the OR of the bits of the exponent field of = (resp.).

e The implicit leading bit of the significand of x (resp. y) is now set to n,
(resp. ny).

e If F, and F, are the respective biased exponents of the inputs, we now
have e, = £, —bias+ 1 —n, and e, = F, —bias+ 1 —n,. The exponent
difference, used for the alignment shifting, is now computed as E, —
ng — Ey + ny. Of course, two subnormal inputs are already aligned.

e Asalready stated in Section 8.2.3, the normalization shift should handle
subnormal outputs: the normalization shift distance will be min(\, e, —
emin) digit positions, where A is the leading-zero count. The output is
subnormal if A > e; — €emin.

8.4 Floating-Point Multiplication

Floating-point multiplication is much simpler than addition. Given = =
(—=1)* - |z| and y = (—=1)* - |y|, the exact product z x y satisfies

zxy=(=1)"(lz| x y]), s, = s, XOR s, € {0,1}. (8.6)

The IEEE 754-2008 specification for |z| x |y| is summarized in Table 8.4.
Combined with (8.2) and (8.6), it specifies floating-point multiplication com-
pletely.

[yl
=l > I +0 (sub)normal +oo NaN
+0 +0 +0 gNaN gNaN
(sub)normal | 40 o(lz| x l[y]) 400 gNaN
o +00 gNaN +00 +oo gNaN
NaN gNaN gNaN gNaN gNaN

Table 8.4: Specification of multiplication for floating-point data of positive sign.

In Table 8.4 the product o(|z|x|y|) of the two positive finite floating-point
numbers
@l =ma- B and [yl =m, - B

252 Chapter 8. Algorithms for the Five Basic Operations

is given by
o([2] x [yl) = o(mym, - BFe). 8.7)

The rest of this section discusses the computation of the right-hand side of
(8.7).

For floating-point multiplication, the only possible exceptions are invalid
operation, overflow, underflow, and inexact (see [126, p. 438]).

8.4.1 Normal case

Let us first consider the case when both inputs are normal numbers such that
1 <my < Band 1 < m, < f (this is notably the case for binary normal
numbers). It follows that the exact product m,m, satisfies 1 < m,m,, < 3%
This shows that the significand product has either one or two nonzero digits
left to the point. Therefore, to obtain the normalized significand required to
apply the methods given in Section 8.2, the significand product m,m, may
need to be shifted right by one position. This is exactly similar to the far case
of addition, and will be handled similarly, with a guard and a round digit,
and a partial sticky bit. Since the product of two p-digit numbers is a 2p-digit
number, this partial sticky computation has to be performed on p — 1 digits.

The significand multiplication itself is a fixed-point multiplication, and
much literature has been dedicated to it; see for instance [126] and refer-
ences therein. Hardware implementations, both for binary and decimal, are
surveyed in Section 9.2.4. Chapter 10 discusses issues related to software
implementations.

In binary, the exponent is equal to the biased exponent F, minus the bias
(see Section 3.1, page 56). The exponent computation is therefore e, + e, =
E, — bias + E, — bias. One may directly compute the biased exponent of the
result (before normalization) as E, + E, — bias.

8.4.2 Handling subnormal numbers in binary multiplication

We now extend the previous algorithm to accept subnormal inputs and pro-
duce subnormal outputs when needed.

Let us define again, for the inputs = and y, the “is normal” bits n, and n,,.
One may compute n, as the OR of the bits of the exponent field E,. This bit
can be used as the implicit bit to be added to the significand, and also as the
bias correction for subnormal numbers: we now have e, = F, —bias+1—n,
and e, = E, —bias +1 —n,,.

Let us first note that if both operands are subnormal (n, = 0 and n, = 0),
the result will be zero or one of the smallest subnormals, depending on the
rounding mode. This case is therefore handled straightforwardly.

Let us now assume that only one of the operands is subnormal. The sim-
plest method is to normalize it first, which will bring us back to the normal
case. For this purpose we need to count its leading zeros. Let us call { the

8.4. Floating-Point Multiplication 253

number of leading zeros in the significand extended by n,. We have | = 0 for
a normal number and | > 1 for a subnormal number. The subnormal signifi-
cand is then shifted left by [bit positions, and its exponent becomes ep,in — [.
Obviously, this requires a larger exponent range than what the standard
format offers. In practice, the exponent data is only one bit wider.

An alternative to normalizing the subnormal input prior to a normal
computation is to normalize the product after the multiplication: indeed, the
same multiplication process which computes the product of two p-bit num-
bers will compute this product exactly if one of the inputs has [leading zeros.
The product will then have [or [+1 leading zeros, and will need to be normal-
ized by a left shift. However, the advantage of this approach is that counting
the subnormal leading zeros can be done in parallel with the multiplication.
Therefore, this alternative will be preferred in the hardware implementations
presented in the next chapter.

For clarity, we now take the view that both inputs have been normalized
with a 1-bit wider exponent range, and focus on producing subnormal out-
puts. Note that they may occur even for normal inputs. They may be handled
by the standard normalization procedure of Section 8.2. It takes an arbitrary
shift right of the significand: if e, + e, < emin, shift right by emin — (ex + €y)
before rounding.

To summarize, the cost of handling subnormal numbers is: a slightly
larger exponent range for internal exponent computations, a leading-zero
counting step, a left-shifting step of either the subnormal input or the prod-
uct, and a right-shifting step before rounding. Section 9.4.4 will show how
these additional steps may be scheduled in a hardware implementation in
order to minimize their impact on the delay.

8.4.3 Decimal specifics

For multiplication, the preferred exponent rule (see Section 3.4.7, page 97)
mentions that, for exact results, the preferred quantum exponent is Q(x) +
Q(y). We recall the relation Q(x) = e, — p + 1, see Section 3.4.

Again, exactness may be computed by first normalizing the two inputs,
then computing and normalizing the product, then observing its round digit
and sticky bit.

However, exactness may also be predicted when the sum of the numbers
of leading zeros of both multiplicands is larger than p, which will be a very
common situation.

To understand why, think again of accounting. Multiplication is used
mostly to apply a rate to an account (a tax rate, an interest rate, a currency
conversion rate, etc.). After the rate has been applied, the result is rounded to
the nearest cent before being further processed. Rounding to the nearest cent
can be performed using the quantize operation specified by the IEEE 754-2008
standard.

254 Chapter 8. Algorithms for the Five Basic Operations

Such rates are 3- to 6-digit numbers (the euro official conversion rates
with respect to the currencies it replaces were all defined as 6-digit numbers).
The product of such a rate with your bank account will be exact (when using
the 16-digit format decimal64), unless your wealth exceeds 100 cents (one
hundred million dollars), in which case your bank will be happy to spend a
few extra cycles to manage it.

In the common case when the product is exact, the quantum exponent is
set to Q(x) + Q(y) (it makes sense to have a zero quantum exponent for the
rate, so that the product is directly expressed in cents) and the product needs
no normalization. The significand to output is simply the last p digits of the
product.

Counting the leading zeros of the inputs is an expensive operation, but
it may be performed in parallel to the multiplication.

To summarize, an implementation may compute in parallel the 2p-bit
significand product and the two leading-zero counts of the inputs. If the sum
of the counts is larger than p (common case), the result is exact, and no round-
ing or shift is required (fast). Otherwise, the result needs to be normalized,
and then rounded as per Section 8.2. Note that the result may also be exact in
this case, but then the result significand is too large to be representable with
the preferred exponent. The standard requires an implementation to return
the representable number closest to the result, which is indeed the normal-
ized one.

8.5 Floating-Point Fused Multiply-Add

When computing o(ab + ¢), the product ab is a 2p-digit number, and needs
to be added to the p-digit number c. Sign handling is straightforward: what
actually matters is whether the operation will be an effective subtraction or
an effective addition.

We base the following analysis on the actual exponent of the input
numbers, denoted e,, 5, and e.. Computing ab + c requires first aligning the
product ab and, with the summand ¢, using the exponent difference

d=e.— (eq+ep).

In the following figures, the precision used is p = 5 digits.

8.5.1 Case analysis for normal inputs

If @ and b are normal numbers, one has |a| = m, - 5 and |b] = m; - 3%, and
the product |ab| has at most two digits in front of the point corresponding to
€q + €p:

jab =gt LT T T T T T1] e =g L [T 1]

8.5. Floating-Point Fused Multiply-Add 255

Anchor
d = —2

—

F]]

*

l***i*\\\\\\ll\\\\l

P d<-2p+1
P T T T[]

. LT
FFFFITITITTIITIT]

. 3p+1
FEFFI I I I P [I
3-bit D -
norm Sthky

Figure 8.2: Product-anchored FMA computation for normal inputs. The stars show
the possible position of the leading digit.

One may think of first performing a 1-digit normalization of this product
ab, but this would add to the computation a step which can be avoided, and
it only marginally reduces the number of cases to handle. Following most
implementations, we therefore chose to base the discussion of the cases on
the three input exponents only. We now provide an analysis of the alignment
cases that may occur. These cases are mutually exclusive. After any of them,
we need to perform a rounding step as per Section 8.2. This step may incre-
ment the result exponent again.

Product-anchored case

The exponent of the result is almost that of the product, and no cancellation
can occur, for d < —2, as illustrated by Figure 8.2.

In this case, the leading digit may have four positions: the two possible
positions of the leading digit of ab, one position to the left in case of effective
addition, and one position to the right in case of effective subtraction. This
defines the possible positions of the round digit. All the digits lower than the
lower possible position of the round digit may be condensed in a sticky bit.
An actual addition is only needed for the digit positions corresponding to the
digits of ab (see Figure 8.2); therefore, all the bits shifted out of this range may
be condensed into a sticky bit before addition. If d < —2p + 1, all the digits

256 Chapter 8. Algorithms for the Five Basic Operations

Anchor
'd = —1and Add
-

[*] []

%

+ * g

lﬂ*%\i [T TTTITIITI]]

=3

—— :

LTI TTTT]
+/— [|

(T T T T T ITTTTTITT]

id2p+3

+- B TTE |
T

3p+5
LI e [T T TTTT]

4-bit p
norm.

sticky

Figure 8.3: Addend-anchored FMA computation for normal inputs. The stars show
the possible position of the leading digit.

of ¢ will go to the sticky bit. This defines the largest alignment one may need
to perform in this case: if d < —2p + 1, a shift distance of 2p — 1 and a sticky
computation on all the shifted p bits will provide the required information (Is
there a nonzero digit to the right of the round bit?).

To summarize, this case needs to perform a shift of ¢ by at most 2p — 1
with a p-bit sticky computation on the lower bits of the output, a 2p-bit add-
ition with sticky output of the p — 3 lower bits, and a 3-bit normalization
(updating the sticky bit). The exponent is set tentatively to e, + €;, and the
3-bit normalization will add to it a correction in {—1,0, 1, 2}.

Addend-anchored case

The exponent of the result will be close to that of the addend (and no cancel-
lation can occur) when (d > 3 or (d > —1 and EffectiveAdd)), as illustrated
by Figure 8.3. In that case, the leading digit may be in five different positions.

8.5. Floating-Point Fused Multiply-Add 257

*] [T T T]

‘ *

HEEEEEEEEEE

d=—-1

-
[+ []
[

*
— [

HEEEEEEEEE

2p+1

HEEEEEEEEEE

leading zero counting

Figure 8.4: Cancellation in the FMA. The stars show the possible position of the
leading digit.

The whole of ab may be condensed in a sticky bit as soon as there is a gap
of at least two digits between ab and c. One gap digit is needed for the case of
an effective subtraction |c| — |ab|, when the normalized result exponent may
be one less than that of ¢ (for instance, in decimal with p = 3, 1.00 — 10~
rounded down returns 0.999). The second gap digit is the round digit for
rounding to the nearest. A sufficient condition for condensing all of ab in a
sticky bit is therefore d > p + 3 (see Figure 8.3).

To summarize, this case needs to perform a shift of ab by at most p +
3 positions, a (p + 2)-bit addition, a 2p-bit sticky computation, and a 4-bit
normalization (updating the sticky bit). The exponent is set tentatively to e,
and the 4-bit normalization will add to it a correction in {—1,0, 1,2, 3}.

Cancellation

If -1 < d < 2 and the FMA performs an effective subtraction, a cancellation
may occur. This happens for four values of the exponent difference d, versus
only three in the case of the floating-point addition, because of the uncer-
tainty on the leading digit of the product. Possible cancellation situations are
illustrated by Figure 8.4.

In that case we need a (2p + 1)-digit addition, and an expensive normal-
ization consisting of leading-zero counting and right shifting, both of size
2p+ 1.

258 Chapter 8. Algorithms for the Five Basic Operations

LTI]
- [1]

AL T T []r

d=-2p—1
LTI T T T
- 4T TT]

AL T T []r \tk/
sticky

Figure 8.5: FMA ab — ¢, where a is the smallest subnormal, ab is nevertheless in
the normal range, |c| < |ab|, and we have an effective subtraction. Again, the dot
corresponds to an exponent value of e, + ey.

Example 10. Consider in radix 2, precision p the inputs a = b = 1 — 27P and
c = —(1 — 27P*1). The FMA should return the exact result ab + ¢ = 272 In this
example e, = ey, = e, = —1,d = 1, and there is a (2p — 1)-bit cancellation.

The result exponent is equal to e, +¢e; 43 — A, where A is the leading-zero
count.

8.5.2 Handling subnormal inputs

To manage subnormal inputs, we define n,, n;, and n. as the “is normal” bits.
In binary floating-point, these bits are inserted as leading bits of the signifi-
cands, and the exponent difference that drives the aligner becomes

d =e.—(eq+ey) = E.— E, — Ep+bias — 1 — n. + ng + np. (8.8)

If both a and b are subnormal, the whole of ab will be condensed in a
sticky bit even if ¢ is subnormal. Let us therefore focus on the case when only
one of a or b is subnormal. Most of the previous discussion remains valid in
this case, with the following changes.

e The significand product may now have up to p leading zeros. Indeed, as
the situation where both inputs are subnormals is excluded, the small-
est significand product to consider is the smallest subnormal signifi-
cand, equal to 377!, multiplied by the smallest normal significand,
equal to 1. This is illustrated by Figure 8.5.

e In the product-anchored case, this requires us to extend the shift by
two more digit positions, for the cases illustrated by Figure 8.5. The
maximum shift distance is now —d = 2p + 1.

8.5. Floating-Point Fused Multiply-Add 259

e In fact, the product-anchored case is not necessarily product anchored
if one of the multiplicands is subnormal. The leading digit of the result
may now come from the addend—be it normal or subnormal. Still, this
requires neither a larger shift, nor a larger addition, than that shown
on Figure 8.2. However, the partial sticky computation from the lower
bits of the product shown on this figure is now irrelevant: one must
first determine the leading digit before knowing which digits go to the
sticky bit. This requires a leading-zero counting step on p digits. In this
respect, the product-anchored case when either a or b is subnormal now
closely resembles the cancellation case, although it requires a smaller
leading-zero counting (p digits instead of 2p + 1).

e The addend ¢ may have up to p — 1 leading zeros, which is more than
what is shown on Figure 8.3, but they need not be counted, as the expo-
nent is stuck to e, in this case.

8.5.3 Handling decimal cohorts

In decimal, the previous case analysis is valid (we have been careful to always
use the word “digit”). The main difference is the handling of cohorts, which
basically means that a decimal number may be subnormal for any exponent.
As a consequence, there may be more stars in Figures 8.2 to 8.4. In particular,
the addend-anchored case may now require up to a (p + 4)-digit leading-zero
count instead of p.

In addition, one must obey the preferred exponent rule: for inexact
results, the preferred exponent is the least possible (this corresponds to nor-
malization in the binary case, and the previous analysis applies). For exact
results, the preferred quantum exponent is min(Q(a) + Q(b), Q(c)). As for
addition and multiplication, this corresponds to avoiding any normalization
if possible.

The only available decimal FMA implementation, to our knowledge, is
a software one, part of the Intel Decimal Floating-Point Math Library [85, 87].
A hardware decimal FMA architecture is evaluated in Vazquez’s Ph.D.
dissertation [413].

Let us now conclude this section with a complete algorithmic description
of an implementation of the binary FMA.

8.5.4 Overview of a binary FMA implementation

Most early hardware FMA implementations chose to manage the three cases
evoked above (product-anchored, addend-anchored, and canceling/subnor-
mal) in a single computation path [281, 183]. In the next chapter, more recent,
multiple-path implementations [373, 238, 339] will be reviewed.

Here is a summary of the basic single-path implementation handling
subnormals. Figure 8.6 represents the data alignment in this case. It is a

260 Chapter 8. Algorithms for the Five Basic Operations

‘ 2p
@b LTITTT T[]
constant shift :
abaisea 00 00000 0 [[[[T T T Tolo]
_ p+3 | |
3p+5
c
right shift ‘
(max 3p + 4) : :
[T P P (I l)
Al w\v/
coniea LI L T T T T T TTTTTTTTTT] sticky
5 = abshitied + Cshited || | | | T T [T TTTTTTITTTTIT]
p+2 LZC (2p + 3 bits)

Scomplemented | L 1 1 [L TT [TTTITTTTITTI]

left normalization shift

Mupdate

p+1

Figure 8.6: Significand alignment for the single-path algorithm.

8.5. Floating-Point Fused Multiply-Add 261

simplified superimposition of Figures 8.2 to 8.5. The single-path approach
is in essence product anchored.

e The “is normal” bits are determined, and added as implicit bits to
the three input significands. The exponent difference d is computed as
per (8.8).

e The 2p-digit significand of ab is shifted right by p+3 digit positions (this
is a constant distance). Appending two zeros to the right, we get a first
(2p + 5)-digit number abgpifted-

e The summand shift distance d’ and the tentative exponent e]. are deter-
mined as follows:

- if d < —2p + 1 (product-anchored case with saturated shift), then
d=3p+4ande. =e, + ep;

- if —2p + 1 < d < 2 (product-anchored case or cancellation), then
d=p+3—dande] = e, + e;

- if 2 < d < p + 2 (addend-anchored case), then d’ = p + 3 — d and
e = e

- if d > p + 3 (addend-anchored case with saturated shift), then
d =0and e =e..

e The p-digit significand c is shifted right by d’ digit positions. The maxi-
mum shift distance is 3p + 4 digits, for instance, 163 bits for binary64.

e The lower p — 1 digits of the shifted ¢ are compressed into a sticky bit.
The leading 2p + 5 digits form cgpited-

e In case of effective subtraction, cgniseq is bitwise inverted.

e The product abgpifteq and the possibly inverted addend cgp;fteq are added
(with a carry in in case of an effective subtraction), leading to a (3p+4)-
digit number s. This sum may not overflow because of the gap of two
zeros in the case d = p + 3.

o If s is negative, it is complemented. Note that the sign of the result
can be predicted from the signs of the inputs and the exponents,
except when the operation is an effective subtraction and either d = 1
ord=0.

e The possibly complemented sum s now needs to be shifted left so that
its leading digit is a 1. The value of the left shift distance d” is deter-
mined as follows.

- if d < —2 (product-anchored case or cancellation), let [be the num-
ber of leading zeros counted in the 2p + 3 lower digits of s.

262 Chapter 8. Algorithms for the Five Basic Operations

x* If e, + e, — 1+ 2 > emin, the result will be normal, the left
shift distance is d” = p + 2 + [, and the exponent is set to
e =e,+e,—1+2.

x If e, +ep —1+2 < emin, the result will be a subnormal number,
the exponent is set to e]. = ey, the result significand will have
emin — (€q + €, — [+ 2) leading zeros, and the shift distance is
therefore only d” = p+ 4 — emin + €4 + €.

Note that this case covers the situation when either q or b is a sub-
normal.

- if d > 2 (addend-anchored case), then d’ = d': the left shift undoes
the initial right shift. However, after this shift, the leading one may
be one bit to the left (if effective addition) or one bit to the right
(if effective subtraction), see the middle case of Figure 8.3. The
large shift is therefore followed by a 1-bit normalization. The result
exponent is accordingly set to one of e/, € {e.,ec — 1,e. + 1}. If ¢
was a subnormal, the left normalization/exponent decrement is
prevented.

These shifts update the sticky bit and provide a normalized (p+1)-digit
significand.

e Finally, this significand is rounded to p digits as per Section 8.2, using
the rounding direction and the sticky bit. Overflow may also be handled
at this point, provided a large enough exponent range has been used in
all the exponent computations (two bits more than the exponent field
width are enough).

One nice feature of this single-path algorithm is that subnormal handling
comes almost for free.

8.6 Floating-Point Division

8.6.1 Overview and special cases
Givenz = (—1)* - |z|and y = (—1)* - |y|, we want to compute:
z/y= (=1 (lz|/ly]), sp = sy XOR s, € {0, 1}. (8.9)

The IEEE 754-2008 specification for |z|/|y| is summarized in Table 8.5
(see [187] and [198]); Combined with (8.2) and (8.9) it specifies floating-point
division completely.

We now address the computation of the quotient of |z| = m, - 3% and
ly| = my, - 3°. We obtain

2| /|y| = ma/my - BV, (8.10)

8.6. Floating-Point Division 263

||
|1/l
+0 (sub)normal +oo NaN
+0 gNaN +0 +0 gNaN
2] (sub)normal | +oo o(|z|/]y]) +0 gNaN
x
+00 +00 ~+o0 gNaN gNaN
NaN gNaN gNaN gNaN gNaN

Table 8.5: Special values for |x|/|y|.

In the following, we will assume that m, and m, are normal numbers,
written m, = (mx7g.mx71 .. .mx7p_1)g and my = (my70.my,1 - my7p_1)ﬁ, with
mzo # 0 and myo # 0. An implementation may first normalize both in-
puts (if they are subnormals or decimal numbers with leading zeros) using an
extended exponent range. After this normalization, we have m, € [1, §) and
my € [1,), therefore m,/m, € (%, B). This means that a 1-digit normaliza-
tion may be needed before rounding.

8.6.2 Computing the significand quotient
There are three main families of division algorithms.

e Digit-recurrence algorithms, such as the family of SRT algorithms
named after Sweeney, Robertson, and Tocher [344, 408], generalize
the paper-and-pencil algorithm learned at school. They produce one
digit of the result at each iteration. Each iteration performs three tasks
(just like the pencil-and-paper method): determine the next quotient
digit, multiply it by the divider, and subtract it from the current partial
remainder to obtain a partial remainder for the next iteration.

In binary, there are only two choices of quotient digits, 0 or 1; there-
fore, the iteration reduces to one subtraction, one test, and one shift.
A binary digit-recurrence algorithm can therefore be implemented on
any processor as soon as it is able to perform integer addition.

Higher radix digit-recurrence algorithms have been designed for
hardware implementation, and will be briefly reviewed in Section 9.6.
Detailed descriptions of digit-recurrence division theory and imple-
mentations can be found in the books by Ercegovac and Lang [125, 126].

One important thing about digit-recurrence algorithms is that they are
exact. Starting from fixed-point numbers X and D, they compute at iter-
ation ¢ an i-digit quotient ; and a remainder R; such that the identity
X = DQ;+ R; holds. For floating-point purposes, this means that all the
information needed for rounding the result is held in the pair (R;, Q;).
In practice, to round to precision p, one needs p iterations to compute
@p, then possibly a final addition on (), depending on a test on R,,.

264 Chapter 8. Algorithms for the Five Basic Operations

e Functional iteration algorithms generalize Newton iteration for approx-
imating the function 1/z. They make sense mostly on processors hav-
ing a hardware multiplier. The number of iterations is much less than
in digit-recurrence algorithms (O(log p) versus O(p)), but each iteration
involves multiplications and is therefore more expensive.

Functional iterations are not exact; in particular, they start with an
approximation of the inverse, and round their intermediate computa-
tions. Obtaining a correctly rounded result therefore requires some care.
The last iteration needs to provide at least twice the target precision p,
as a consequence of the exclusion lemma, see Lemma 15, Chapter 5,
page 162. In Chapter 5, it has been shown that the FMA, which indeed
internally computes on more than 2p digits, provides the required pre-
cision. However, AMD processors have used functional iteration algo-
rithms to implement division without an FMA [307]. The iteration is
implemented as a hardware algorithm that uses the full 2p-bit result of
the processor’s multiplier before rounding. To accommodate double-
extended precision (p = 64 bits) and cater to the error of the initial
approximation and the rounding errors, they use a 76 x 76-bit multi-
plier [307].

e Polynomial approximation can also be used to evaluate 1/z to the
required accuracy [430]. Note that, mathematically speaking, functional
iterations evaluate a polynomial in the initial approximation error [88].
Both approaches may be combined; see [334] and [340, §9.5]. An exam-
ple of the polynomial approach in a software context will be shown in
Chapter 10.

Note that each division method has its specific way of obtaining the cor-
rectly rounded result.

8.6.3 Managing subnormal numbers

Subnormal inputs are best managed by first normalizing with a wider expo-
nent range.

A subnormal result can be predicted from the exponent difference. As
it will have less than p significand digits, it requires less accuracy than a
standard computation. In a functional iteration, it suffices to round the high-
precision intermediate result to the proper digit position.

In a digit-recurrence implementation, the simplest way to handle round-
ing to a subnormal number is to stop the iteration after the required number
of digits has been produced, and then shift these digits right to their proper
place. In this way, the rounding logic is the same as in the normal case.

8.7. Floating-Point Square Root 265

8.6.4 The inexact exception

In general, the inexact exception is computed as a by-product of correct
rounding. Directed rounding modes, as well as round to nearest even in
the “even” case, require, respectively, exactness and half-ulp exactness detec-
tion. From another point of view, the inexact exception is straightforwardly
deduced from the sticky bit. In digit-recurrence algorithms, for instance,
exactness is deduced from a null remainder. Methods using polynomial
approximations have to compute the remainder to round, and the inexact
flag comes at no extra cost.

FMA-based functional iterations are slightly different in that they do not
explicitly compute a sticky bit. However, they may be designed in such a way
that the final FMA operation raises the inexact flag if and only if the quotient
is inexact (see Section 5.3 or [270, page 115]).

8.6.5 Decimal specifics

For the division, the preferred exponent rule (see Section 3.4.7, page 97) men-
tions that for exact results, the preferred exponent is Q(z) — Q(y).

8.7 Floating-Point Square Root

We end this chapter with the square root operation sqrt, which is often con-
sidered as the fifth basic arithmetic operation, after +, —, x, and <. Although
it has similarities with division, square root is somewhat simpler to imple-
ment conformally with the IEEE 754 standards. In particular, it is univariate
and, as we will recall, it never underflows, and overflows if and only if the
input is +oo.

8.7.1 Overview and special cases

If x is positive (sub)normal, then the correctly rounded value o(y/x) must
be returned. Otherwise, a special value must be returned conformally with
Table 8.6 (see [187] and [197]).

Operandz | +0 +oo —0 lessthanzero NaN
Resultr | +0 +oo -0 gNaN gNaN

Table 8.6: Special values for sqrt(x).

In the following, we will assume that m, is a normal number, written
My = (Mg,0.Mg1 ... My p—1)3 With mgz o # 0. An implementation may first
normalize the input (if it is a subnormal or a decimal number having some
leading zeros) using an extended exponent range.

266

Chapter 8. Algorithms for the Five Basic Operations

After this normalization, we have a number of the form m, - ¢ with

mg € [1, 3). Another normalization, by 1 digit, may be needed before taking
the square root in order to make the exponent e, even:

s My - B if e, is even,
my - 35 = z
(B-my) - B L if e, is odd.

Consequently, for ¢ € {0, 1} depending on the parity of e,, we have

Cx

Vmg - Bes = /B¢ m, - 55T,

where (e, —¢)/2 = |e,/2] is an integer. Since 3°- m,. € [1, 3?), the significand
square root satisfies

V3¢ my € [1,0).

8.7.2 Computing the significand square root

The families of algorithms most commonly used are exactly the same as for
division, and a survey of these has been given by Montuschi and Mezzalama
in [282].

¢ Digit-recurrence algorithms. Those techniques are extensively covered

in [125] and [126, Chapter 6], with hardware implementations in mind.
Here we simply note that the recurrence is typically a little more compli-
cated than for division; see, for example, the software implementation
of the restoring method that is described in Section 10.5.3, page 366.

Functional iteration algorithms. Again, those methods generalize
Newton iteration for approximating the positive real solution y = \/z
of the equation y?> — x = 0. As for division, such methods are often
used when an FMA operator is available. This has been covered in
Section 5.4.

Evaluation of polynomial approximations. As for division, these
methods consist in evaluating sufficiently accurately a “good enough”
polynomial approximation of the function /z. Such techniques have
been combined with functional iterations in [334] and [340, Section
11.2.3]. More recently, it has been shown in [196, 197] that, at least in
some software implementation contexts, using exclusively polynomials
(either univariate or bivariate) can be faster than a combination with
a few steps of functional iterations. These approaches are described
briefly in Section 10.5.3, page 369.

8.7. Floating-Point Square Root 267

8.7.3 Managing subnormal numbers

As in division, a subnormal input is best managed by first normalizing with
a wider exponent range.

Concerning output, the situation is much simpler than for division, since
a subnormal result can never be produced. This useful fact is an immediate
consequence of the following property.

Property 17. For x = m,, - 3°* a positive, finite floating-point number, the real \/x
satisfies

Va € [, fren).

Proof. The floating-point number z is positive, so Bl PTémin < p < Femax,
Since the square root function is monotonically increasing,

/B(l_p+enlill)/2 S \/‘,; < ﬁemax/2,

and the upper bound follows immediately. Using p < 1 — enin (Which is a
valid assumption for all the formats of [187]), we get further

\/E Z /Bemin.

This property also implies that

e the floating-point square root never underflows. It overflows if and
only if the input is +oo.

e The only exceptions to be considered are invalid and inexact.

8.7.4 The inexact exception

In digit-recurrence algorithms or polynomial-based approaches, exactness is
deduced from a null remainder just as in division—the remainder here is
z—r?

FMA-based functional iterations may be designed in such a way that the
final FMA operation raises the inexact flag if and only if the square root is

inexact [270, page 115].

8.7.5 Decimal specifics

For the square root, the preferred quantum exponent is |Q(x)/2].

Chapter 9

Hardware Implementation of
Floating-Point Arithmetic

HE PREVIOUS CHAPTER has shown that operations on floating-point num-
T bers are naturally expressed in terms of integer or fixed-point operations
on the significand and the exponent. For instance, to obtain the product of
two floating-point numbers, one basically multiplies the significands and
adds the exponents. However, obtaining the correct rounding of the result
may require considerable design effort and the use of nonarithmetic prim-
itives such as leading-zero counters and shifters. This chapter details the
implementation of these algorithms in hardware, using digital logic.

Describing in full detail all the possible hardware implementations of
the needed integer arithmetic primitives is beyond the scope of this book.
The interested reader will find this information in the textbooks on the subject
[224, 323, 126]. After an introduction to the context of hardware floating-point
implementation in Section 9.1, we just review these primitives in Section 9.2,
discuss their cost in terms of area and delay, and then focus on wiring them
together in the rest of the chapter.

9.1 Introduction and Context

We assume in this chapter that inputs and outputs are encoded according to
IEEE 754-2008, the IEEE Standard for Floating-Point Arithmetic.

9.1.1 Processor internal formats

Some systems, although compatible with the standard from a user point of
view, may choose to use a different data format internally to improve perfor-
mance. These choices are related to processor design issues that are out of the
scope of this book. Here are a few examples.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007 /978-0-8176-4705-6_9, 269
© Birkhéduser Boston, a part of Springer Science+Business Media, LLC 2010

270 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

e Many processors add tag bits to floating-point numbers. For instance, a
bit telling if a number is subnormal saves having to detect it by checking
that all the bits of the exponent field are zeros. This bit is set when an
operand is loaded from memory, or by the arithmetic operator if the
number is the result of a previous computation in the floating-point
unit: each operator has to determine if its result is subnormal anyway, to
round it properly. Other tags may indicate other special values such as
zero, infinities, and NaNs. Such tags are stored in the register file of the
processor along with the floating-point data, which may accordingly
not be fully compliant with the standard. For instance, if there is a tag
for zero, there is no need to set the data to the full string of zeros in this
case.

e The fused multiply-add (FMA) of the IBM POWER®6 has a short-circuit
feedback path which sends results back to the input. On this path, the
results are not fully normalized, which reduces the latency on depen-
dent operations from 7 cycles to 6. They can be normalized as part of
the first stage of the FMA.

¢ An internal data format using a redundant representation of the signif-
icands has been suggested in [134].

e Some AMD processors have a separate “denormalization unit” that for-
mats subnormal results. This unit receives data in a nonstandard format
from the other arithmetic units, which alone do not handle subnormals

properly.

9.1.2 Hardware handling of subnormal numbers

In early processors, it was common to trap to software for the handling of
subnormals. The cost could be several hundreds of cycles, which sometimes
made the performance collapse each time subnormal numbers would appear
in a computation. Conversely, most recent processors have fixed-latency
operators that handle subnormals entirely in hardware. This improvement is
partly due to very large-scale integration (VLSI): the overhead of managing
subnormal numbers is becoming negligible with respect to the total area of
a processor. In addition, several architectural improvements have also made
the delay overhead acceptable.

An intermediate situation was to have the floating-point unit (FPU) take
more cycles to process subnormal numbers than the standard case. The
solution, already mentioned above, used in some AMD processors is a
denormalizing unit that takes care of situations when the output is a sub-
normal number. The adder and multiplier produce a normalized result with a
larger exponent. If this exponent is in the normal range, it is simply truncated
to the standard exponent. Otherwise, that result is sent to the denormalizing

9.1. Introduction and Context 271

unit which, in a few cycles, will shift the significand to produce a subnor-
mal number. This can be viewed as a kind of “trap,” but one that is managed
in hardware. An alternative approach, used in some IBM processors, saves
the denormalizing unit by sending the number to be denormalized back to
the shifter of the adder. The problem is then to manage conflicts with other
operations that might be using this shifter.

The state of the art concerning subnormal handling in hardware is rev-
iewed by Schwarz, Schmookler, and Trong [371]. They show that subnormal
numbers can be managed with relatively little overhead, which explains why
most recent FPUs in processors handle subnormal numbers in hardware. This
is now even the case in graphics processing units (GPUs), the latest of which
provide binary64 standard-compatible hardware. We will present, along with
each operator, some of the techniques used. The interested reader is referred
to [371] and references therein for more details and alternatives.

9.1.3 Full-custom VLSI versus reconfigurable circuits

Most floating-point architectures are implemented as full-custom VLSI in
processors or GPUs. There has also been a lot of interest in the last decade
in floating-point acceleration using reconfigurable hardware, with field-
programmable gate arrays (FPGAs) replacing or complementing processors.
The feasibility of floating-point arithmetic on FPGA was studied long before
it became a practical possibility [378, 259, 261]. At the beginning of the
century, several libraries of floating-point operators were published almost
simultaneously (see [305, 247, 260, 345] among others). The increase of cap-
acity of FPGAs soon meant that they could provide more floating-point com-
puting power than a processor in single precision [305, 260, 345], then in
double precision [441, 120, 109, 265, 178]. FPGAs also revived interest in hard-
ware architectures for the elementary functions [119, 114, 113, 116] and other
coarser or more exotic operators [442, 49, 105, 159].

We will survey floating-point implementations for both full-custom
VLSI and FPGA. The performance metrics of these targets may be quite
different (they will be reviewed in due course), and so will be the best
implementation of a given operation.

By definition, floating-point implementation on an FPGA is application-
specific. The FPGA is programmed as an “accelerator” for a given problem,
and the arithmetic operators will be designed to match the requirements
of the problem but no more. For instance, most FPGA implementations are
parameterized by exponent and significand sizes, not being limited to those
specified by the IEEE 754 standard. In addition, FPGA floating-point opera-
tors are designed with optional subnormal support, or no support at all. If
tiny values appear often enough in an application to justify subnormal han-
dling, the application can often be fixed at a much lower hardware cost by
adding one bit to the exponent field. This issue is still controversial, and

272 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

subnormal handling is still needed for some applications, including those
which require bit-exact results with respect to a reference software.

9.1.4 Hardware decimal arithmetic

Most of the research so far has focused on binary floating-point arithmetic. It
is still an open question whether it is worth implementing decimal arithmetic
in hardware [91, 130, 90, 413, 429], or if a software approach [85, 87], possibly
with some minor hardware assistance, is more economical. This chapter cov-
ers both hardware binary and hardware decimal, but the space dedicated to
hardware decimal reflects the current predominance of binary implementa-
tions.

As exposed in detail in Section 3.4.3, the IEEE 754-2008 standard speci-
fies two encodings of decimal numbers, corresponding to the two main com-
peting implementations of decimal arithmetic at the time IEEE 754-2008 was
designed. The binary encoding allows for efficient software operations, using
the native binary integer operations of a processor. It is probable that pro-
cessor instruction sets will be enriched to offer hardware assistance to this
software approach. The decimal encoding, also known