
GPU Floating-Point Paranoia

Karl E. Hillesland
University of North Carolina at Chapel Hill∗

Anselmo Lastra
University of North Carolina at Chapel Hill∗

1 Introduction

Up until the late eighties, each computer vendor was left to develop
their own conventions for floating-point computation as they saw
fit. As a result, programmers needed to familiarize themselves with
the peculiarities of each system in order to write effective software
and evaluate numerical error. In 1987, a standard was established
for floating-point computation to alleviate this problem, and CPU
vendors now design to this standard [IEEE 1987].

Today there is an interest in the use of graphics processing units,
or GPUs, for non-graphics applications such as scientific com-
puting. GPUs have floating-point representations similar to, and
sometimes matching, the IEEE standard. However, we have found
that GPUs do not adhere to IEEE standards for floating-point op-
erations, nor do they give the information necessary to establish
bounds on error for these operations. Another complication is that
this behavior seems to be in a constant state of flux due to the depen-
dence on the hardware, drivers, and compilers of a rapidly changing
industry.

Our goal is to determine the error bounds on floating-point op-
eration results for quickly evolving graphics systems. We have cre-
ated a tool to measure the error for four basic floating-point opera-
tions: addition, subtraction, multiplication and division.

2 IEEE Standard Floating Point

Ideally, GPUs would follow the IEEE standard for floating-point
operations. The IEEE standard gives us a guarantee on error bounds
for certain operations, including addition, subtraction, multiplica-
tion and division. It does so by requiring that these operations fol-
low theexact roundingconvention. Under this convention, the re-
sult of an operation must be the same as a result computed exactly,
and then rounded to the nearest representable number. This means
a bound of [-0.5 , 0.5] in units of the last bit of the significand.

3 Paranoia

Paranoia [Karpinski 1985], originally written by William Kahan in
the 1980’s, explores a number of aspects of floating-point opera-
tion. We have adopted the guard bit and rounding mode tests for
subtraction, multiplication, and division. All of these operations
were found to have guard bits.

Paranoia looks for two kinds of rounding: exact rounding, and
chopping. The GPUs we tested did not follow either of these mod-
els. In order to obtain a bound on error, we turned to a more empir-
ical approach, which we describe next.

4 Measuring Floating-Point Error

To ensure we have complete bounds requires exhaustive tests of all
combinations of all floating-point numbers. Since this is fairly im-
practical, we chose a subset of floating-point numbers that we be-
lieve does a reasonable job of characterizing the entire set. This is
an approach used by others for testing correct operation of floating-
point hardware. We used a superset of significands suggested by

∗Email: [khillesl,lastra]@cs.unc.edu

Operation R300/arbfp NV30/fp30
Addition [-1.000, 0.000] [-1.000, 0.000]

Subtraction [-1.000, 1.000] [-0.750, 0.750]
Multiplication [-0.989, 0.125] [-0.782, 0.625]

Division [-2.869, 0.094] [-1.199, 1.375]

Table 1: Floating-Point Error in ULPs (Units in Last Place).Note
that the R300 has a 16 bit significand, whereas the NV30 has 23 bits. Therefore one
ULP on an R300 is equivalent to27 ULPs on an NV30. Division is implemented by a
combination of reciprical and multiply on these systems. Cg version 1.2.1. ATI driver
6.14.10.6444. NVIDIA driver 56.72.

Schryer [Schryer 1981]. By testing all combinations of these num-
bers, we include all the test cases in Paranoia, as well as cases that
push the limits of round-off error and cases where the most work
must be performed, such as extensive carry propagation. Table 1
gives results for some example systems.

5 System Considerations

Results are for specific configurations of graphics card, driver, op-
erating system, CPU, chipset, compiler version, and other factors.
The tool we developed is intended to be run each time any of these
items change.

Semantics for programming GPUs currently allow for consid-
erable leeway in how a program is implemented. Instructions can
be re-ordered. Subexpressions involving constants or “uniform” pa-
rameters may be evaluated on the CPU. Associative and distributive
properties, which do not hold for floating-point operations, may be
applied in optimization. Our tool does not take into consideration
the kinds of optimizations possible in larger program contexts.

6 Conclusion

Our goal is to give the developer a tool to characterize GPU
floating-point error in order to aid them in developing compute-
intensive applications. We use an empirical approach to establish
error bounds for addition, subtraction, multiplication and division.
Watchhttp://www.gpgpu.orgfor more information and tool avail-
ability.

References

IEEE. 1987. IEEE standard for binary floating-point arithmetic.ACM
SIGPLAN Notices 22, 2 (Feb.), 9–25.

KARPINSKI, R. 1985. Paranoia: A floating-point benchmark.Byte Maga-
zine 10, 2 (Feb.), 223–235.

SCHRYER, N. L. 1981. A test of a computer’s floating-point arithmetic
unit. Tech. Rep. Computer Science Technical Report 89, AT&T Bell
Laboratories, Feb.


