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Abstract

The multiple-input multiple-output (MIMO) technique combined with an orthogonal frequency
division multiplexing (MIMO--OFDM) has been introduced as a promising approach for the ever
increasing capacity and quality of service (QoS) requirements for wireless communication
systems. An efficient radio spectrum utilization expects a flexible transceiver solution, which has
been the reason for the development of the software defined radio (SDR) technologies which in
their turn are expected to enable the creation of cognitive radios. As a result, any radio solution
could be invoked on demand on any platform.

In this thesis work, we have studied detector algorithms and programmable processor
architectures in order to find practical solutions for the future wireless systems. A programmable
receiver can reduce the energy dissipation of the receiver by changing the detection algorithm
based on the current channel realizations. To provide a realistic aspect to the implementations in
different channel realizations, we present a wide state-of-the-art detector comparison. In addition,
we present an extensive number arithmetic and word length study in order to evaluate realistic
hardware complexity and energy dissipations of the implementations. The study includes a
comprehensive design chain from the algorithm development to the actual processor design and
finally programming software for the platforms.

We evaluate single and multi-core processor implementations by comparing the achieved
results to the Long Term Evolution (LTE) performance requirements. We implement detectors on
digital signal processors (DSPs), graphics processing unit (GPU) and transport triggered
architecture (TTA). The implementation results are compared in throughput, silicon area and
energy efficiency. Finally, we discuss the advantages and disadvantages of the architectures and
the implementation effort.

Keywords: digital signal processor, graphics processing unit, list detection, MIMO,
OFDM, programmable architecture, transport triggered architecture
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Tiivistelma

Usean antennin tekniikka yhdistettynd ortogonaaliseen taajuusvaihtelumodulointiin lahetin-vas-
taanotimessa on esitetty erdand lupaavana ratkaisuna jatkuvasti kasvaviin kapasiteetti- ja palve-
lunlaatuvaatimuksiin langattomissa tietoliikennejarjestelmissa. Tehokas radiospektrin kayttd
edellyttdd joustavaa l&hetin-vastaanotinratkaisua, mik& on ollut syyné ohjelmistoradioteknologi-
oiden kehitykselle. Ohjelmistoradioiden kehityksen on puolestaan odotettu mahdollistavan kog-
nitiiviradioiden syntymisen. Tuloksena, mikd tahansa radiosovellus voitaisiin herdtta4 tarpeen
mukaan mill& tahansa ohjelmoitavalla sovellusalustalla.

Tassé vaitoskirjatydssa tutkitaan ilmaisinalgoritmeja seka ohjelmoitavia prosessoriarkkiteh-
tuureja tarkoituksena I0ytaa kaytannollisia ratkaisuja tulevaisuuden langattomiin jéarjestelmiin.
Ohjelmoitavalla vastaanottimella voidaan véhentd4 vastaanottimen energiankulutusta vaihtamal-
la ilmaisinalgoritmeja vallitsevan kanavatilan mukaan. Tydssd esitelldén laaja, viimeisint4 tutki-
musta edustava ilmaisinalgoritmivertailu, joka antaa realistisen ndkdkannan toteutuksiin erilai-
sissa kanavatiloissa. Liséksi tydssé esitellddn numeroaritmetiikka- ja sananpituustutkimus, jon-
ka tarkoituksena on arvioida toteutusten realistista kovokompleksisuutta seké energiankulutusta.
Tutkimus sisaltad kattavan suunnitteluketjun algoritmikehityksesta todelliseen prosessorisuun-
nitteluun ja lopulta algoritmin ohjelmointiin tietylle sovellusalustalle.

Vaitoskirjatydssa arvioidaan yksi- ja moniytimisié prosessoritoteutuksia vertaamalla saavu-
tettuja tuloksia Long Term Evolution -standardin suorituskykyvaatimuksiin. limaisimia toteute-
taan digitaalisilla signaaliprosessoreilla, grafiikkaprosessorilla seké siirtoliipaisuarkkitehtuuril-
la. Toteutustuloksia vertaillaan laskentatehona, pinta-alana sek& energiatehokkuutena. Lopuksi
kasitelladn arkkitehtuurien hyvid ja huonoja puolia seké suunnittelun tyolaytta.

Asiasanat: digitaalinen signaaliprosessori, grafiikkaprosessointiyksikkd, listailmaisu,
moniantennijarjestelmd, ohjelmoitava arkkitehtuuri, ortogonaalinen taajuusjako-
modulointi, siirtoliipaisuarkkitehtuuri
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Abbreviations

qQ 3

=

S ®®DO

channel noise level

channel noise variance

symbol alphabet

real-valued symbol alphabet

list of binary format candidate symbols
byte

binary format candidate symbol

set of complex n X m matrices

squared sphere radius

speed of light

LMMSE criterion

energy of received signal

Neper’s number

carrier frequency

hardware clock frequency

channel matrix

extended channel matrix

real-valued channel matrix

channel matrix for subcarrier s

identity matrix

imaginary part

list size in K-best algorithm
incomplete list size in K-best algorithm
kilo

symbol candidate list

level in the search tree

a priori information at the decoder input
a posteriori information at the decoder output
number of transmit antennas

mantissa in floating-point arithmetic

level update vector for SSFE algorithm
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Tcoh

element of level update vector
number of receive antennas
real-valued noise vector

noise vector for subcarrier s
orthogonal matrix

number of bits per symbol

number of constellation points

upper triangular matrix

extended upper triangular matrix

real part

(i,)th element of upper triangular matrix
number of subcarriers

square

maximum delay spread in channel
total latency of QR decompositions
symbol time

channel coherence time

latency of QR decomposition

PED increment

mobile speed

coefficient matrix

word length

transmitted signal vector

real-valued transmitted signal vector
transmitted signal vector for subcarrier s
last 2M-i+1 components of vector x
estimate of transmitted symbol vector
received symbol

received signal vector

real-valued received signal vector
received signal vector for subcarrier s
pseudoinverse

complex conjugate transpose (Hermitian) of the argument
transpose of the argument

absolute value of the argument
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()

max(-)
min(+)
p(")
S(x,y)
1G

2D

2G

3D

3G
3GPP
4G
ALU
AMPS
APP
ASIC
ASIP
AWGN
B3G
BF
BER
BICM
BS
CDMA
CL
CMOS
CP
CPU
CSI

Euclidean norm of vector, i.e., 2-norm
soft output of the argument
subcarrier spacing frequency

ith element of the vector x

squared (partial) Euclidean distance of vector x

expectation of the argument

correction function

maximum of the argument

minimum of the argument

probability density function

sphere with radius y centered at vector x
first generation cellular system
2-dimensional

second generation cellular system
3-dimensional

third generation cellular system

Third Generation Partnership Project
fourth generation cellular system
arithmetic logic unit

Advanced Mobile Phone Service

a posteriori probability
application-specific integrated circuit
application-specific instruction-set processor
Additive white Gaussian noise

beyond 3G

breadth-first

bit error rate

bit-interleaved coded modulation

base station

code division multiple access
computing language

complementary metal oxide semiconductor
cyclic-prefix

central processing unit

channel state information
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CUDA compute unified device architecture

D-BLAST diagonal Bell Laboratories layered space-time

DF depth-first

DL downlink

DSP digital signal processor

DVB Digital Video Broadcasting

ED Euclidean distance

EDGE enhanced data rates for GSM

FDMA frequency division multiple access

FEC forward error correction

FER frame error rate

FFT fast Fourier transform

FISR fast inverse square root

FISRC fast inverse square root constant

FLOP floating-point operation

FU function unit

Gbps giga bits per second

GCU global control unit

GFLOPS giga floating-point operations

GL graphics library

GMAC giga multiply and accumulate (operations)
GOPS giga operations per second

GPRS Generalized Packet Radio Service
GPGPU general purpose graphics processing unit
GPU graphics processing unit

GSM Global System for Mobile Communication
H-BLAST Horizontal-Bell Laboratories layered space-time
HE horizontal encoding

HSPA high speed packet access

ICN interconnection network

IFFT inverse fast Fourier transform

IMT-A International Mobile Telecommunications-Advanced
ISIT intersymbol interference

ITU International Telecommunication Union
LD lattice detector
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LDPC low-density parity-check

LLR log likelihood ratio

LMMSE linear minimum mean square error
LORD layered orthogonal lattice detector
LR lattice reduction

LS least square

LSD list sphere detector

LST layered space-time

LTE Long Term Evolution

LTE-A Long-Term Evolution Advanced
LUT look-up table

MAP maximum a posteriori probability
Mbps megabits per second

MC multi-carrier

MGS modified Gram-Schmidt

MIMO multiple-input multiple-output
ML maximum likelihood

MMSE minimum mean square error

MT mobile terminal

NAN not a number

NMT Nordic Mobile Telephony

OFDM orthogonal frequency division multiplexing
OFDMA orthogonal frequency division multiple access
OpenCL open computing language
OpenGL open graphics library

OSIC ordered successive interference cancellation
PAPR peak-to-average power ratio

PED partial Euclidean distance

QAM quadrature amplitude modulation
QoS quality of service

QRD QR decomposition

RF register file

RTL register transfer level

SBX Sandblaster Extended core

SC-FDMA single carrier frequency division multiple access



SC subcarrier

SD sphere detector

SDR software defined radio

SEE Schnorr-Euchner enumeration

SFU special function unit

SIC successive interference cancellation
SIMD single instruction multiple data

SINR signal-to-noise-plus-interference ratio

SM streaming multiprocessor

SoC system-on-chip

SOCA smart ordering and candidate adding

SOD soft-output detector

SPISP signal processing instruction set processor
SQRD sorted QR decomposition

SSFE selective spanning with fast enumeration
TCE TTA Codesign Environment

TDMA time division multiple access

TTA transport triggered architecture

UL uplink

UMTS universal mobile telecommunication system

V-BLAST Vertical-Bell Laboratories layered space-time

VE vertical encoding

VHDL VHSIC hardware description language

VLIW very long instruction word

VLSI very large scale integration

WiMAX Worldwide Interoperability for Microwave Access
WLAN wireless local area network

ZF zero-forcing
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1 Introduction

Wireless communication systems have experienced tremendous development during
the last two decades and the ever increasing quality of service (QoS) requirements is
enabling rich user experiences in wireless communication services. The radio frequency
spectrum is a scarce natural resource, which has to be exploited efficiently by the future
wireless communication systems. Advanced technologies such as a multi-antenna
transceiver and multi-carrier modulation methods improve the efficient use of spectrum.
A multiple-input multiple-output (MIMO) antenna system combined with an orthogonal
frequency division multiplexing (OFDM), often abbreviated as MIMO-OFDM, has
been found out to be a promising approach for wideband systems in terms of spectral
efficiency [1].

The plurality of wireless communication standards and high data rate require-
ments demand extremely efficient and flexible implementation of baseband receiver
architecture, as well as advanced receiver algorithms. In this thesis, several state-off-
the-art detector algorithms for MIMO-OFDM downlink (DL) are studied. Especially,
algorithms suitable for programmable architectures are considered.

Traditionally, the communication system performance is characterized by the
frame error rate (FER), which can be used to determine system performance in terms
of throughput. The transmission throughput is defined to be equal to the nominal
information transmission rate of information bits times (1 — FER). On the other hand,
the hardware sets limits to the detection rate of the information bits. The goodput is a

measure which combines both the detection reliability and hardware limitation, i.e.,
goodput = min{throughput, detection rate}. (1

The goodput provides a solid basis for a systematic complexity-performance tradeoff for

detectors in the evolving next generation cellular systems.

1.1 Development of wireless communication systems

Nordic Mobile Telephony (NMT) was introduced in the Nordic countries in the early
1980s and at the same time Advanced Mobile Phone Service (AMPS) was introduced in
North America. These systems represent the first generation (1G) of the international

mobile communication system. The first mobile devices were still bulky and mainly
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car-borne, but the mobility encouraged operators to invest in a mobile communication
business.

The development of digital technology during the 1980s, enabled the second
generation (2G) digital communication system to evolve. While the 1G supported only
voice services, the 2G introduced also data services. In addition, the digital technology
enabled an increased system capacity and a more consistent quality of service. The
1G systems divided the users only in separate frequency domains, whereas in the 2G
systems, the users can be separated in frequency, time or code domains by frequency,
time or code division multiple access (FDMA, TDMA, CDMA) methods. In Europe,
TDMA based Global System for Mobile Communication (GSM) [2, 3] became a
standard. Initially, the peak rate of the 2G system was 9.6 kbps. Later in 1990s, the 2G
was upgraded with Generalized Packet Radio Service (GPRS) and Enhanced Data Rates
for GSM (EDGE) to enable more versatile data services.

The third generation (3G) cellular system was introduced to support a wider range of
QoS requirements. For instance, voice services require low delay but only minor data
rates, while Internet browsing causes a bursty transmission requiring high peak data
rates. In the late 1990s, 3G Partnership Project (3GPP) [4] was established to enhance
the global standardization work. As a result, the Universal Mobile Telecommunication
System (UMTS) and its evolution High Speed Packet Access (HSPA) were defined.

The technologies beyond 3G (B3G) have been under study in 3GPP as well. The
3G Long-Term Evolution (LTE) is an extension to 3G standards introducing MIMO
communications with multiple antennas at both the mobile terminal (MT) and the
base station (BS). The target peak data rate for uplink (UL) is up to 50 Mbps and 100
Mbps for downlink. The most significant physical layer enhancement compared to the
earlier 3G systems is the introduction of orthogonal frequency division multiplexing
(OFDM) and orthogonal frequency division multiple access (OFDMA) for downlink
communication. The uplink instead uses a single-carrier frequency division multiple
access (SC-FDMA).

The research for the fourth generation (4G) cellular system has already begun. The
International Telecommunication Union (ITU) has set requirements for the 4G radio
access in International Mobile Telecommunications-Advanced (IMT-A). LTE-Advanced
(LTE-A) is the suggestion by 3GPP to meet the IMT-A requirements. LTE-A is aiming
up to 1 Gbps peak data rate in downlink and 500 Mbps in uplink.
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1.2 MIMO-OFDM technology

Orthogonal frequency division multiplexing has been adopted as the downlink trans-
mission scheme for the LTE, but is also used by other radio technologies such as
WiMAX [5] and Digital Video Broadcasting (DVB) [6]. OFDM is a special form of a
multi-carrier (MC) transmission because it uses a relatively large number of narrowband
subcarriers to transmit data over a wide bandwidth. The OFDM signal is built such
that the specific frequency-domain structure of each subcarrier is used in combination
with the specific choice of a subcarrier spacing equal to the per-subcarrier symbol
rate. In the OFDM system, two subcarriers do not cause any interference to each other
after demodulation if the orthogonality between subcarriers is preserved. However,
the inter-subcarrier orthogonality may be lost in a frequency-selective radio channel.
Therefore, a cyclic-prefix (CP) is typically used to make the OFDM signal robust to
radio channel frequency selectivity. In OFDM data modulation and demodulation,
inverse fast Fourier transform (IFFT) and fast Fourier transforms (FFT) algorithms can
be used. This is an important aspect for an efficient implementation.

One key drawback of OFDM is its high peak-to-average power ratio (PAPR). It
means that the power of peak signals is much greater than the average signal power,
which necessitates an expensive, very linear amplifiers with a large dynamic range. In
addition, OFDM transmission is very sensitive to synchronization errors and expects

tight specifications for local oscillators [2, 3, 7].

1.3 Software defined radio

A software defined radio (SDR) is a radio communication system, in which physical
layer components are implemented on a programmable platform. The history of the
software defined radio goes back to the 1980s when the concept was of interest for
military applications [8]. More recently, the concept has entered into the realm of
consumer electronics.

There are at least three clear reasons why the SDR concept is of interest for wireless
cellular systems. First, the current chips are very complex and their development costs
are extremely high. By favoring programmable platforms, the vendors can share the
development costs and business risks. Second, the fast evolution of technology requires
a very fast time-to-market cycle, which obviously makes programmable SDR solutions

attractive. Third, a high diversity of standards which the same device has to support
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makes the SDR attractive in terms of cost, silicon area, but also energy dissipation. A
system supporting multiple standards and assembled from several application-specific
integrated circuits (ASIC), each supporting a specific standard, would suffer from
increased leakage power compared to the programmable system platform, possibly
requiring less hardware. In energy-limited systems, an important design rule is the
consumed energy per operation, which then limits the algorithm design in terms of
operations per processed bit. In general, a maximum power dissipation in small handheld
devices is assumed to be no more than 1 W, which obviously sets strict limits both in
hardware and algorithm design.

The SDR concept has been studied intensively for wireless communication since
the mid-1990s and since then, there has been numerous startup companies, but a
clear success story still keeps waiting. In the past, performance-power-area tradeoffs
have not totally met the market demands in digital signal processor (DSP) oriented
DSP-centralized-accelerator-assisted architectures and device manufactures are enforced
to stay in DSP-controlled-ASIC-centered architectures. However, since the markets for
the programmable architectures are open, the question is not whether the SDR concepts
is breaking through to wireless cellular communication, but rather when it is going to
happen. The topic of the thesis touches the SDR concept, but the physical layer study is
limited to programmable MIMO detectors.

1.4 Signal processing architectures

In spite of the tremendous development of the programmable platforms in last years, the
first computing architectures towards programmability most probably will be a hybrid
of programmable and reconfigurable platforms, including hardware accelerators, in
order to enable a reasonable transition from hardware to software oriented systems.
The development towards hybrid platforms is also supported by the fact that the key
concepts for the most energy consuming parts in standards, e.g., turbo or low-density
parity-check (LDPC) codes, converge, thus opening the path towards configurable
hardware accelerators.

A digital signal processor is defined here as a microprocessor with a specialized
architecture for the low- and mid-speed digital signal processing. Traditionally, DSPs
include a rather versatile instruction-set, which provides programmability for several
types of applications. However, DSPs are not designed in general for the high-speed

signal processing, in which they have been replaced by ASICs or application-specific
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instruction-set processors (ASIPs). Here, we define ASIP as a platform which is
capable for a high-speed signal processing such as ASICs, but is optimized only for a
certain algorithm or for a very limited number of algorithms. Thus, we introduce a
signal processing instruction-set processor (SPISP), which is defined as a processor
architecture, including general-purpose arithmetic function units such as adders and
multipliers, but also more specific function units supporting operations such as an inverse
square root. A SPISP architecture aims at a high-speed signal processing maintaining
the programmability. SPISPs in the multi-core system do not need to be heterogeneous,
but processors can include specific instruction-set extensions, hence, providing overall a
reasonable system complexity.

Figure 1 presents a DSP-controlled-ASIC-centered architecture which is widely used
in wireless communication systems requiring real-time processing. A well designed
architecture can achieve a low energy dissipation, but suffers typically from poor
flexibility. Adding flexibility in hardware design rapidly increases the amount of
control logic and leakage power typical to the modern CMOS technologies. Thus,
the DSP-controlled-ASIC-centered architecture is not the most attractive platform

architecture for the future systems required to support multiple standards.

memory

IASIC IIASIC Il ASIC n:th ASIC

Fig. 1. A block diagram of the DSP-controlled-ASIC-centered architecture.

The DSP-centered-accelerator-assisted architecture is flexible, but DSPs in general
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suffer from high energy dissipation. Figure 2 illustrates an architecture, in which the
signal processing is done by several DSPs and assisted by accelerators. The accelerators
can be fine- or coarse-grained. Typically, a fine-grained accelerator executes a special
instruction or a task spending only a few clock cycles. Thus, a fine-grained accelerator
has to be tightly integrated into the data path of the DSP core. In this case, a fine-
grained accelerator would be an instruction-set extension. Then again, coarse-grained
accelerators are usually for tasks which require several hundreds of clock cycles and are
better to exclude from the data path of the DSP core such that the core stall time is

minimized.

accelerator accelerator memory

Fig. 2. A block diagram of the DSP-centered-accelerator-assisted architecture.

A DSP-controlled-SPISP-centered architecture could replace the DSP-controlled-
ASIC-centered architecture offering flexibility with no or a minor energy dissipation
penalty. The SPISPs are assumed to be programmable, low-complexity processors
which can be awaken on demand. Figure 3 illustrates the SPISP-centered architecture.
The DSP core can be based for example on a low-complex ARM core which is capable
of signal processing, but can be used also for high level control tasks.

In order to keep SPISP cores as effective as possible in terms of silicon area, energy
dissipation and capability to execute different algorithms, they all should have basic

arithmetic function units. However, the cores do not need to be heterogeneous in terms
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of special functions units. Thus, providing only the basic arithmetic for most of the
cores, enables an efficient instruction level parallelism with low-complexity cores and

still maintaining programmability.

DSP memory

| SPISP Il SPISP 1l SPISP n:th SPISP

Fig. 3. A block diagram of the DSP-controlled-SPISP-centered architecture.

1.5 Number arithmetic

Mobile devices are becoming more complex and several new applications require a
wider numerical dynamic range. For such applications, the floating-point arithmetic is
feasible because the fixed-point arithmetic would require a larger word length, and thus,
more silicon. The large dynamic range of the floating-point format keeps the silicon area
close to constant when the numerical dynamic range of data is increased.

The most significant motivation for using the floating-point arithmetic is in better
programmability. This results, in addition to the programming itself, also in a better
compilation of a high level language. Due to increasing complexity of the systems,
high level language tools and efficient compilers are in an important role in reducing
the development costs. Another driving force for the floating-point arithmetic has
been the rapid development of graphics processing units, in which frameworks such as
compute unified device architecture (CUDA) [9-11], open graphics library (GL) [12]

25



and open computing language (CL) [13, 14] are proposed for writing programs across
heterogeneous platforms.

The energy consumption of the traditional single precision floating-point platforms
can be reduced by using for instance IEEE 754-2008 half-precision floating-point
arithmetic. This is especially exploited in mobile GPUs where the energy consumption
is a critical design criterion. Promising video processing results are presented in [15],
where Pool ef al. show that significant energy savings with negligible quality reduction
are achieved with the 16-bit floating-point arithmetic compared to the single precision
implementation.

The fixed-point arithmetic is suitable for applications, in which the dynamic can be
easily scaled to interval (—1, 1), which implies a fractional mode [16]. In the fractional
mode, the fixed-point arithmetic can provide a very good resolution. In applications, in
which a large dynamic range is required, the fixed-point arithmetic requires a significant
number of bits. The fixed-point arithmetic is also favored in a traditional hand-made
hardware design, in which the applied tool chain does not necessarily benefit from
the floating-point arithmetic and applications are often optimized for the fixed-point

arithmetic.

1.6 Aims, outline and contributions of the thesis

The aim of this thesis in a broad sense is to present the benefits of programmable
platform for MIMO detectors. The studied detectors consist of a linear minimum mean
square error equalizer (LMMSE) and lattice detectors (LD) such as K-best sphere
detector (SD) [17, 18], selective spanning with fast enumeration detector (SSFE) [19]
and a layered orthogonal lattice detector (LORD) [20]. The study of programmable
detector implementations is motivated by the fact that the system development time can
be significantly reduced and the hardware implementations of the receiver waste energy
per decoded bit by using a single detector algorithm regardless of the channel condition.
Obviously, a hardware implementation can be reconfigurable, but in such a design the
amount of control logic rapidly starts to increase, decreasing the power efficiency of the
circuit. With a programmable platform, the energy dissipation per correctly decoded bit
can be minimized by changing the detection algorithm based on the channel realizations.
Hence, during a good channel realization, a less complex detector can provide a high
goodput, whereas in worse channels, more sophisticated and complex detectors are have

to be used in order to enable a sufficient goodput.
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Figure 4 illustrates how the available energy can be efficiently exploited by changing
detectors based on the channel realization. A platform with constant computation
resources are assumed. The simplest detectors such as LMMSE and SSFE provides a
less complex implementation achieving a higher decoding rate and goodput during
a good channel realization. Then again, the rather complex K-best detector achieves
a lower decoding rate due to limited computational resources, but is able to detect
transmitted bits in bad channel conditions. Successive interference cancellation (SIC) is
a non-linear detector relying on linear detection, and is placed between lattice detectors
and linear detectors in terms of complexity and performance in fading channels. Another
approach would be to concentrate on the lower right hand side region of the figure,
where we have a high channel quality but no need for a high goodput. In this region,
energy can be saved by selecting a low-complexity detector. The detector algorithms are

described in more detail later in the thesis.
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Fig. 4. A programmable platform can optimize the usage of available computation
energy and resources by changing the detector algorithm.

Another objective of the thesis is to provide a wider implementation aspect than
typically in the literature, including the whole design chain from an algorithm evaluation
to the hardware design and software implementation. This is enabled by the detector

performance evaluations with computer simulations in realistic channel conditions.
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To our knowledge, another, equally wide state-of-the-art detector comparison has not
been presented in the literature yet. Theoretical complexities are determined for the
algorithms in order to compare the number of operations and energy consumption. Here,
the theoretical complexities are not meant to be an absolute measure of the algorithm
complexities, but rather they are supporting a rapid prototyping development work
giving guidelines for an efficient algorithm implementation. An extensive number
arithmetic and word length study provides an energy dissipation and hardware complexity
evaluation, which are obviously important design criteria for mobile devices. Single
and multi-core processor architectures are studied for programmable MIMO detectors.
Implementations based on the digital signal processors (DSP), graphics processing unit
(GPU) and transport triggered architecture (TTA) processors are discussed.

Chapter 2 reviews the relevant background and parallel work related to MIMO sys-
tems, algorithms and architecture design and implementations. Systems and techniques
related to MIMO communication, which have motivated researches to develop more
efficient detector algorithms and processing platforms are briefly discussed. Linear
and optimal detection techniques and suboptimal detection algorithms, which provide
near-optimal performance with a reduced computational complexity are presented in
the chapter. The most significant detector implementations presented in the literature
are summarized to give an overview of earlier and parallel work. The floating-point
arithmetic study, mostly studied in the area of video processing rather than considered
for applications in wireless communication, is also reviewed.

Chapter 3 describes the MIMO-OFDM system model which is applied during
the research. The system model is based on the 3G LTE standard. The MIMO
detection problem is briefly discussed and detectors applicable for software platforms
are presented, beginning from a linear minimum mean square equalization and ending up
to more sophisticated lattice detectors. Much effort is used to define suitable simulation
parameters and comparing detection reliability and theoretical complexities of the
detectors in different channel realizations. The applied QR decomposition (QRD) is
based on the modified Gram-Schmidt orthogonalization. The implementation method of
the QRD is selected such that it is suitable for a programmable architecture.

Chapter 4 introduces and compares a fixed- and floating-point number arithmetic in
the context of MIMO detection. Word length requirements for both arithmetics are
presented and an energy-precision tradeoff estimation is summarized for a floating-point
arithmetic. A hardware implementation of the floating-point function units and their

energy dissipation are discussed. Optimal floating-point mantissa lengths are defined
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for QRD, detection and LLR blocks. Energy dissipation comparison for algorithms is
presented based on the energy models of the function units.

Chapter 5 presents the implementations and results of the detector algorithms on
three programmable platform architectures. Two different digital signal processors, a
middle-range graphics processing unit and a processor based on the transport triggered
architecture (TTA) are applied. The implementation results are summarized in silicon
complexity, energy dissipation and detection rate. In addition, the design efforts based
on the design experiences are estimated for each platform.

Chapter 6 concludes the thesis. The main results and conclusion are summarized.
Furthermore, the open questions and the future work are discussed.

The author’s contributions

This thesis is written as a monograph, but it is based on nine original publications that
have been published or accepted for publication. The author was the main contributor
for [21-27], and developed the main ideas and the results in them. The other authors
provided ideas, comments and helped on generating some of the results. In [28, 29], the
author provided ideas, guidance and simulation results to the first author.

The author has contributed to the downlink simulation software development used in
the MIMO Techniques for 3G System and Standard Evolution (MITSE) and Cooperative
MIMO Techniques for Cellular System Evolution (CoMIT) projects by adding modified
Gram-Schmidt QR decomposition and novel detector algorithms such as the LORD and
SSFE supporting fixed-point and half precision floating-point number arithmetic in
the simulation software. Dr. Markus Myllylda and Mrs. Johanna Ketonen have been
contributed to the implementation of other detector algorithms. Other parts of the
simulation software have been developed by Dr. Nenad Veselinovic and Dr. Mikko
Vehkaperid. The channel models used were produced by Dr. Esa Kunnari. All the
computer simulations are performed by the author.

The author has been responsible for the DSP implementations, which are one
of the first programmable implementations for the MIMO-OFDM detector. These
implementations provide important knowledge of the bottlenecks related to high-speed
programmable implementations. The architecture design, hardware implementation and
the programming of the TTA processors is done by the author. In TTA implementations,
the known bottlenecks are solved with a careful design such that processors provide the

data speed required in the LTE standard. The author has aimed at utilizing the TTA in
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such a way that the processor architecture includes the basic function units such that the
processor is programmable but also some special function units are applied to accelerate
the performance. Dr. Perttu Salmela and Mr. Teemu Pitki£jnen have helped the author
in the synthesis of the TTA processors. The author has guided Mr. Teemu Nylidnden in
his master’s thesis work and in the GPU implementations and contributed to the LORD
algorithm programming [28, 30]. The author has also guided Mr. Mikael Kukko in his
master’s thesis work [31]. Mr. Kukko was developing further a function for variable

floating-point precision which is applied in some of the floating-point simulations.
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2 Literature review

This chapter reviews the relevant background and parallel literature related to MIMO
systems, algorithms and architecture design and implementations. Section 2.1 briefly
discusses MIMO systems and techniques related to MIMO communication, which
have motivated researches to develop more efficient detector algorithms and processing
platforms. In Section 2.2, linear detection for MIMO systems is discussed. Section 2.3
presents the optimal detection algorithms and suboptimal algorithms, which provide
near-optimal performance with a reduced computational complexity. The focus is
particularly in tree search based fixed complexity schemes. Section 2.4 summarizes
the most significant detector implementations presented in the literature. Section
2.5 discusses the number arithmetic study in the literature, especially as related to a

floating-point arithmetic.

2.1 MIMO systems

Information theory has shown the enormous capacity of a rich-scattering wireless channel
when multipath transmission is fully exploited [32, 33]. The MIMO communication can
improve the system performance in several ways providing array gain, interference
reduction, diversity gain and spatial multiplexing gain [34]. The array gain processing at
the transmitter or receiver is called beamforming, which aims to improve the average
received signal-to-noise ratio [35]. In beamforming, multiple correlated antenna
elements focus their energy in the desired direction such that, for example, the operating
range of the communication system can be extended or the co-channel interference is
reduced. The latter can be carried out by adjusting the beam pattern such that nulls
are placed in the direction of interferences. A transceiver array gain requires channel
knowledge both in the transmitter and receiver, and the result in gain equals to the sum
of the gains of all individual antennas. Typically, the channel knowledge is available in
the receiver, whereas in the transmitter, the information is more difficult to maintain. For
more information about adaptive antennas, see [36] and references therein.

Spatial multiplexing is a method to provide a linear spectral efficiency increase in a
rich scattering MIMO channel. The transmitted information bit sequence is split in

multiple parallel streams which are transmitted simultaneously via multiple antennas at
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the same frequency band. The capacity increase in a MIMO channel is proportional to
the minimum number of transceiver antennas in a rich scattering environment [34, 37].
Forward error correction (FEC) coding, also known as channel coding, is typically
applied in spatial multiplexing schemes to guarantee a certain level of error performance.
Encoding options such as vertical encoding (VE) and horizontal encoding (HE) are
applied in MIMO systems [34].

Combining layered space-time (LST) architectures and FEC coding, creates a
powerful method to increase data rate [32, 33, 38]. The original LST architecture
[32], called as diagonal Bell Laboratories layered space-time (D-BLAST) architecture,
provides a high spectral efficiency using a diagonally-layered coding structure, in which
code blocks are distributed across diagonals in space-time. Unfortunately, the D-BLAST
suffers from a high implementation complexity, which has motivated researchers to find
less complex architecture structures. Vertical BLAST (V-BLAST) [38] is a simplified
version of the original architecture, in which no inter-substream coding is required, but
the vector encoding process is simply a demultiplex operation followed by independent
bit-to-symbol mapping of each substream.

The individual spatial layers are superimposed during the transmission and they
need to be separated at the receiver by a detector. A separation of multiplexed data
streams is possible due to spatio-temporal signatures provided by the MIMO channel. A
receiver design and particularly the detector design is challenging for sophisticated
digital communication systems. Due to noise, the detector is bound to make occasional
errors. Thus, a careful design is essential to guarantee a sufficient system reliability with

a reasonable receiver complexity and energy dissipation.

2.2 Linear detection and non-linear improvements for
MIMO systems

Equalization techniques can be broadly categorized into linear and nonlinear. The
linear detection techniques [39] are in general simple to implement, but they can suffer
from significant noise enhancement in MIMO communication systems. The linear
estimation problem can be solved by using the least squares (LS), i.e., zero-forcing (ZF)
or a minimum mean square error (MMSE) equalizer [40].

ZF aims to separate the parallel streams, and, thus, remove all the intersymbol

interference (ISI), but can lead to an enhanced noise level. MMSE equalization achieves
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a better balance between ISI mitigation and noise enhancement by minimizing the
expected mean squared error between the transmitted and the detected symbol at the
equalizer output. Due to the better balance, the MMSE equalization tends to have better
bit error rate (BER) performance than the zero-forcing equalizer.

Successive interference cancellation (SIC) is a non-linear detector based on the
linear detection techniques [41-43]. First, the algorithm chooses a signal and detects it
by using ZF or MMSE. The interference of the detected signal is cancelled, meaning that
the detected signal is multiplied with the channel matrix and the product is subtracted
from the received signals. Then, the second signal is detected and cancelled from the
remaining signals, and so on. The procedure is iterated until all the signals are detected.
In principle, every iteration procedure increases the diversity order. However, in practice,
the diversity increase for SIC based receivers is only observed in the genie model
without error propagation. Unfortunately, in SIC, an error propagation is dominated by
the first detected signal, thereby, the strongest signal should be detected first to achieve
the best possible error rate performance.

Ordered successive interference cancellation (OSIC) or V-BLAST [33, 38] improves
the performance of SIC. In OSIC, the strongest signal with the highest signal-to-noise-
plus-interference ratio (SINR) is detected first and the interference of the detected signal
is cancelled from other received signals. The procedure continues by detecting the
second strongest signal, and so on, until all the signals are detected.

The lattice reduction (LR) [44—49] techniques can improve the performance of
traditional detector methods, changing the lattice basis to be more orthogonal or shorter
by linear processing. Even though the LR methods cannot always lead to an optimal
detection, in general they can improve the performance. An often used algorithm to
determine a reduced lattice basis is the Lenstra-Lenstra-Lovasz (LLL) algorithm [49, 50].
The LR based linear detectors can achieve the same diversity order as the ML detector
in V-BLAST systems [48].

2.3 Optimal detection and suboptimal approximations

The noise enhancement problem encountered in the linear equalization can be avoided
by estimating the sequence of transmitted symbols. The MIMO detection problem can
be solved optimally in an uncoded system with a hard-output maximum likelihood
detector [51, 52]. The ML detector solves optimally the so-called closest lattice point

problem by calculating the Euclidean distances (ED) between the received signal vector
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and the points in the lattice. The lattice is formed by the channel matrix and the received
signal. The detector selects the lattice point that minimizes the Euclidean distance to the
received vector. The ML detector problem can be solved with an exhaustive search,
i.e., try all the possible symbol vectors and choose the closest point. The complexity
of ML detector grows exponentially with the number of transmit antennas M and the
modulation order.

In order to operate near channel capacity, the data sequence should be spatially
multiplexed and FEC coded. The optimal receiver would require a joint detection
and decoding for the whole data sequence, which unfortunately is not feasible for the
current signal processing technology [52]. The joint detection and decoding can be
approximated using an iterative receiver structure with a separate soft-output detector
(SOD) and decoder. Turbo decoding principles [53, 54] can be applied exchanging
information between detection and decoder. The optimal soft-output detector would be
the maximum a posteriori probability (MAP) detector [55].

The MAP detector computes the a posteriori probability (APP) of the transmitted
symbol, given the past channel outputs. Then, the decoder computes the log-likelihood
ratio (LLR) associated with the transmitted symbol and the past channel outputs. The
soft information is comprised from exchanged information between detector and decoder
in turbo iterations [56]. Unfortunately, the MAP equalizer is even more complex than
the ML equalizer, and thus, is not feasible for implementation. This has encouraged
researches to study feasible suboptimal approximations to MAP detection. In the
following, ML approaching lattice detection algorithm family [57], including sphere
detectors, are presented. As the hard output detectors may not perform well enough in
real systems compared to the MAP detector, soft-output lattice detectors have been
presented in the literature. The list sphere detector (LSD), originally introduced in [58],

stores a list of candidates instead of finding only the ML estimate.

Tree search algorithms

Lattice detectors (LDs) [59], and specially the class of sphere detectors (SD) [18, 51, 571,
have gained new attention at the same time as MIMO techniques have been included in
an increasing number of up-coming standards [5, 6, 60]. LDs are approximating the
hard-output ML or soft-output MAP detection with a reduced complexity. The expected
complexity of the sphere decoding is discussed in [61, 62]. Lattice detectors aiming at

solving the closest lattice point problem based on the tree search are specially studied in
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this thesis.

The procedure of lattice detection can be divided in preprocessing and actual
detection part. The preprocessing in general means QR decomposition [63] of the
channel matrix. With QRD, the channel matrix is formulated into an applicable form for
a tree search. There are sophisticated methods that can be included in preprocessing in
order to reduce the probability of erroneous detection or complexity such as ordering
the layers based on the signal strength or taking into account the channel noise level
[52, 64, 65].

The Pohst enumeration [18] is considered to be the original sphere algorithm with a
constant sphere radius. The disadvantage of the Pohst algorithm is the selection of the
sphere radius. Later, Viterbo and Boutros [66] proposed a modified version of the Pohst
enumeration with an adaptive sphere radius. Another modification of the two previous
algorithms is the Schnorr-Euchner enumeration (SEE) [67], in which the SEE generates
the next admissible node, i.e., the nodes are spanned in a sophisticated order reducing
the number of visited nodes in the tree.

In many lattice detectors, including the detectors presented in this thesis, the closest
lattice point search can be presented as a tree search. The tree search aims to find the
shortest path in the tree formed by the transmitted and received symbols and the MIMO
channel matrix. Depending on the algorithm, the tree solves the exact ML solution or a
suboptimal one. When we assume a real-valued signal model, the tree search is limited
to the points that lie inside a 2N-dimensional hyper-sphere S(y,/Cp), centered at y with
radius 1/Cy. After QRD of the channel matrix H, the condition can be written as [51]

ly —QRx||> < Gy 2)
1Q"y —Rx|* <y 3)
1§ — Rx||* < Co, 4)

where R € R?V*2M 5 an upper triangular matrix with positive diagonal elements and
Q € R?V*2N i an orthogonal matrix, ¥ = QTy and Cy is the squared radius of the sphere.
The values of x from (4) can be solved level by level due to the upper triangular form
of matrix R. Let x;”” = (x;,X;41,...,xo1)" denote the last 2M — i + 1 components of
the vector x. The search aiming at finding the shortest path between the root level and
the bottom level can be illustrated with a tree structure, as shown in Figure 5. The

computation starts from the last elements of the possible symbol vectors, i.e., x5 and

35



then xpp7_1, and so on. The squared partial Euclidean distance (PED) of symbol vector

x?M can be calculated as [68]

2M
d(x?") =d(x;¥) + 5 — Y Rijxl%, )
Jj=i

where d(x?M) = 0, R; ; is the (i, j)th term of R and i = 2M, ..., 1.

Root level

i=3

i=2

Fig. 5. A tree structure of a sphere detector with real signal model, 2 x 2 antenna
system and 4-QAM.

The depth-first (DF) tree search strategy considers a single tree node at a time. This
node is extended by proceeding in the search tree until the cost metric falls below a
threshold defined by the sphere radius, in which case the search returns backward and
chooses another unexplored path. The sphere detector in [57, 58] is an instance of this
approach. The depth-first strategy always finds the exact ML solution if the number of
node iterations is not bounded [69]. The depth-first search strategy is characterized by a
sequential search and a variable number of nodes in the search tree, which depend on
the channel realization and the signal-to-noise ratio (SNR). The challenge in the search
strategy is finding an appropriate value for the threshold.

The metric-first search strategy follows simultaneously the number of paths in

the search tree and extends the node which has currently the largest path metric. The
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algorithm in [70, 71] is an instance of this approach. The main disadvantage of this
strategy is the high storage requirement.

The most well-known breadth-first (BF) algorithm is the K-best algorithm [65, 72]
which is based on the M-algorithm [17, 73]. The tree search in the K-best algorithm
proceeds layer-by-layer with multiple paths defined by the constant K. At each layer, the
algorithm sorts the paths in the order of superiority. Since the breadth-first method
discards some of the paths before the final layer of the tree, the algorithms do not
guarantee the ML solution. Another modification of the M-algorithm, called smart
ordering and candidate adding (SOCA) [74], applies an ordered QR decomposition and
keeps the number of expanded and pruned nodes in the search tree flexible, whereas the
K-best algorithm is fixed.

A layered orthogonal lattice detector (LORD) [20] combines features from list
sphere detectors and lattice detectors. LORD relies on the channel orthogonalization
process, and a soft-output detector achieves performance very close to MAP in a two
transmit antenna system. However, LORD achieves a suboptimal solution when more
than two transmit antennas are used and it requires as many tree searches as there are
transmit antennas. Evolutions of LORD algorithm are presented in [75, 76], including
Turbo-LORD capable of exploit a priori information provided by iterative receive
structure and introducing enhancements such as metric recycling, LLR flipping and
criteria branching.

A selective spanning with a fast enumeration (SSFE) [19] detector is a lattice detector
exploiting the tree search strategy. The fast enumeration part of the algorithm is equal
to Schnorr-Euchner enumeration [67]. Like the other suboptimal detector algorithms,
the SSFE does not guarantee finding the MAP solution, but can reach very close
approximations by adjusting the level update vector for the current channel realization.
The algorithm supports parallel processed paths and its dataflow is deterministic and
regular, which is essential for efficient programmable architecture mapping.

In general, the detectors are characterized by their computational complexity (opera-
tions/bit), detection reliability at some SNR range and the word length requirements.
More detailed description of the algorithms and their characteristics are presented in
Chapter 3.

37



QR decomposition

A real-time matrix inversion is a key enabling operation for MIMO communication
systems. As the number of antennas in a MIMO system increases, the matrix inversion
becomes more challenging as well. Matrix inversion techniques are in general divided
into categories of direct and iterative [77] based on the method they derive inversion.
The direct techniques typically compute the solution in a finite number of operations,
whereas the iterative techniques start with an estimate and converges to a final solution.
Several iterative techniques for matrix inversion based on Jacobian method, Gauss-
Seidel’s method and Newton’s iteration exist in the literature [78]. The limitation of the
iterative techniques is their sequential nature of process, which can limit the amount of
parallelism and make high throughput, real-time implementations difficult [77].

The direct techniques are typically based on Gaussian elimination, Cholesky
and QR factorization [78, 79]. Gaussian elimination is not typically considered in
implementations due to its error sensitivity depending on the relative number of
significant digits in each matrix element. Often, the error can be minimized by pivoting,
but there are matrices that are close to singular, i.e., a matrix that is very close to not
being full rank, for which error minimizing is impossible [80]. On the other hand, the
Cholesky factorization requires symmetric matrices.

QRD approaches are attractive due to their ability to overcome symmetric restrictions,
but also because of their numerical stability [81]. QRD can be derived using Givens
rotations [82], Householder transformations [83] or Gram-Schmidt orthogonalization
[63]. All the methods have their implementation constraints, Givens rotations based
QRD [84] supporting better parallel processing than QRD based on the Householder
transformations. Typically, the QRD implementation based on the Gram-Schmidt
process is replaced with the modified Gram-Schmidt (MGS) process, which can maintain
the orthogonality of the vectors in spite of the rounding errors caused by the finite
arithmetic computing. Implementation aspects of MGS are reported in [85, 86].

Algorithms which are applying matrix operations such as QRD often require inverse
square root operations. There are several methods to do inverse square root and often
some approximation is applied to enable a low-complexity implementation. A basic
approach to do inverse square root is to use look-up tables (LUT) for obtaining an
initial value and then using iterations to achieve required precision [87, 88]. The main
difference in these methods are the size of the LUT, which in part defines the accuracy of

the initial guess. A low silicon complexity inverse square root approximation algorithm
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based on the binary representation of fixed-point numbers is proposed in [89]. Instead
of using LUTs, the algorithm approximates a function ﬁ which is highly non-linear

in subunitary domain 0 < x < 1 with less non-linear function —L_ wherec>1and

0 < u < 1. The proposed inverse square root function require\s/LoTnuly shifters, adders
and multiplexers, which leads to a low-complexity SFU implementation. However,
the initial approximation is rather inaccurate, which has to be adjusted with Newton’s
iterations to have higher precision. A software implementation of the inverse square
root relying on the binary representation of the floating-point numbers is discussed in
[90, 91]. The implementation is based on the floating-point constant called a magic
number, which is used to find the initial value for inverse square root. The initial guess is

rather accurate, but one or two Newton’s iterations can be used to improve the precision.

24 Detector implementations

Enabling practical implementations has required a great deal of algorithm study, but
also lot of hardware and software architecture design. Most of the implementations
are still based on the VLSI technology due to hard latency, complexity and energy
efficiency requirements in wireless communication standards. In general, comparing
implementation results in the literature is challenging due to variable system parameters,
different technologies and the order of reconfigurability or programmability. Most of the
implementations propose some modifications to known algorithms, proposing tradeoffs
between implementation complexity and detection reliability. Most of the represented
implementations below belong to the fixed complexity schemes.

The landmark VLSI implementations of the breadth-first K-best algorithm are
reported in [65, 72, 92]. Several modifications of the K-best algorithms are proposed,
aiming typically to reduce the complexity caused by the sorting operation or adding
parallelism to the tree search. Chen et al. [93] propose a distributed and relaxed
sorting, meaning that the architecture includes several low-complexity approximate
sorters to process survivor paths in parallel. The sorter only involves comparisons with
predetermined thresholds values. Another modification [94] selects a limited number
of child nodes among all the possible by enumerating the PED increments using a
Schnorr-Euchner enumeration technique. The reduced number of child nodes enables
one to replace the sorter with balanced comparisons. Sorter free K-best algorithms are
implemented in [95, 96]. A K-best zero-forcing [97] performs a zero-forcing process on

the last levels of the search tree and avoids thus sorting on these layers.
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A VLSI implementation of LORD algorithm based on the 802.11n WLAN require-
ments is presented in [98]. Another dynamically reconfigurable LORD implementation
achieving throughput up to Gbps is proposed in [99]. Depth-first tree search implemen-
tations modified from the Dijkstra’s greedy algorithm are presented in [100, 101] and a
depth-first sphere detector exploiting the Schnorr-Euchner enumeration is presented in
[102]. Implementations based on the SSFE algorithm, which favors both software and
hardware implementations, are presented in [19, 103, 104].

The number of programmable implementations of the lattice detection algorithms is
relatively small compared to the number of VLSI implementations. However, there has
been an increasing interest in programmable architectures due to fact that the software
defined radio and cognitive radio concepts [105] have been the leading research areas in
wireless communication during the 21st century. For example, a programmable DSP
platform based on the SB3010 platform can support communication standards such as
802.11b, WCDMA, GSM/GPRS and multimedia standards such as MP3, MPEG4 and
H.264 [106]. A more advanced LMMSE receiver based on the 3GPP LTE requirements
is implemented with the SB3500 DSP platform in [107].

One of the first lattice detector implementations on DSP, presenting the number of
required operations in the K-best algorithm was presented in [108]. At the same time,
more sophisticated K-best implementations on the transport triggered architecture were
presented in [109-111]. More recently, algorithm development has enabled feasible
lattice detectors, such as SSFE, for a programmable architecture [112, 113]. An FPGA
implementation of flex-sphere algorithm, resembling the mixture of K-best and SSFE
algorithms, is proposed in [114].

A tremendous processing power provided by graphic processing units has been
applied for MIMO detectors. Trellis-based MIMO detectors achieving LTE real-time
requirements are implemented in [115-117]. In addition, Wu et al. have been continued
GPU study by implementing a programmable turbo decoder based on the LTE system
requirements in [118].

Strength reduction techniques proposing tradeoffs between implementation complex-
ity and performance have been reported in several publications. One way to reduce
the complexity of the metric calculation is to use Manhattan norm, infinity norm or an
approximation of Euclidean norm instead of calculating the actual Euclidean norm.
[68, 101, 104]. Strength reduction methods are used in [104] by replacing most of the
multipliers with a cheaper combination of shift-add operations. Because the sorting of

partial Euclidean distances is the most complex part of SD algorithms, it has encouraged
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researchers to develop methods to avoid sorting [119, 120].

In soft output detection, log-likelihood ratios for the detected symbol candidates
are calculated. The decision reliability but also the complexity of the LLR calculation
can be reduced by using a method called LLR clipping. The LLR clipping is well
studied in the literature [58, 75, 121]. Methods for finding the optimal LLR clipping
levels are studied in [122, 123]. In the latter, it was stated that a dynamically changing,
SNR-aware LLR-clipping outperforms the fixed clipping schemes.

Sorting operation

A sorting operation for relatively large list sizes, i.e., 8—16 elements, is a computationally
complex operation and usually on the critical path of the implementation. Especially,
the sorting is an issue for software implementation with tight real-time requirements,
such as MIMO detection. Detection based on the tree search [17] very often compute
partial Euclidean distances and sorts the PED values into the list. Due to the real-time
requirements, a low latency sorter is required or the sorting latency has to be hidden
behind the concurrent computing of the new PED [110, 111].

The sorting operation increases the complexity of the K-best algorithm. The sorting
for a relatively large list, i.e., 8—16 elements, is a high latency operation when it is
executed with software. In general, real-time requirements for the detectors are tight,
which in practice requires a single cycle sorter. In other words, a special function unit
for sorting is required [110, 111]. Then again, it is possible to extend all the tree search
based schemes with Schnorr-Euchner strategy, which either reduces the necessity of
sorting by using a threshold for a candidate selection [74, 124, 125] or removes it totally
[19].

There are numerous sorting algorithms proposed in the literature. A simple but
unfortunately an inefficient bubble sorting is applied in [72] and a slight modification of
it in [126]. The bubble sort proceeds by comparing adjacent elements and swapping
them if necessary until the end of the list is reached. The procedure is started over again
until the list is in correct order. An insertion sorter is a well-known technique and used
in detection implementations [111, 127]. In the insertion sorting, the incoming element
is compared with all the elements in the list. If the element has a smaller value than the
elements in the list, it is inserted into the list. Otherwise, the element is immediately
discarded. The elements, larger than the new element, are shifted upward and the new

element is inserted to an appeared empty slot. Another sorter technique is called a
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heap sort, which has been suggested for list sphere detectors in [128, 129] and applied
in [100, 110, 130]. The heap is built such that the maximum element is always kept
in the root. If the new element has a value larger than the root, the new value can be
discarded. Otherwise, the root is replaced with the new value and the heap is swapped
into the correct order. A binary heap with two children provides the least complex

implementation of the heap sorting.

2.5 Number arithmetic

The selected number arithmetic has a great impact on the whole implementation chain.
The fixed-point arithmetic has a well-established place in application-specific integrated
circuit design. However, the evolution toward software defined radio technologies,
cognitive radios, in particular, is leading toward the need to support multiple radio
solutions with the same baseband processing implementations. This implies not only
a huge design effort, but also a shift from hardware to software design flavored tool
chains. Ideally, the implementations should be written in high-level languages without
any in-line assembly or intrinsic additions in order to enable an efficient and platform
independent mapping. On the other hand, fixed-point arithmetic has been traditionally
favored in wireless communication systems based on the assumption that low-complexity
and energy efficient implementation requires the fixed-point arithmetic.

During the last decades, a high performance hardware design has started to transform
form being area and complexity limited to being power limited. Energy-efficient
methods to design floating-point units and energy scaling in CMOS technologies are
studied in [131]. In the early 21st century, the research on the floating-point arithmetic
was vivid, especially in the area of video processing, emphasizing to reduce latency
in floating-point function units [132—-134]. However, in part, the slow standardization
process of reduced-precision floating-point number format has postponed the final
breakthrough.

In [135], floating-point applications based on human sensory data are studied. The
results show that the mantissa multiplier dominates the energy consumption with over
80% of the total consumption, whereas the rounding can consume up to 18% and the
exponent multiplication and other logic such as exception handling, etc. consumes less
than one per cent of the total power consumption. Tong et al. [135] propose a digit-serial
multiplier which allows to perform a variable bit width arithmetic and save power when
the bit width requirement is less than the one specified in the IEEE standard [136]. The
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energy and latency per operation is stated to increase linearly with the operand bit width
in digit-serial multiplier.

A significant driving force for the floating-point arithmetic has been the rapid
development of the mobile graphics processing units (GPU) [15, 137]. For mobile GPU
implementations, there is an option available to decrease the word length to support
IEEE 754-2008 half-precision floating-point arithmetic [138]. Energy consumptions and
tradeoff between energy and precision for floating-point arithmetic are studied in [15].

To achieve the noise performance of the fixed-point arithmetic and the dynamic
range of the floating-point arithmetic, a new class of floating-point formats exploiting
the arithmetics is proposed in [139]. However, an efficient use of the new class would
require a hardware support. Minimizing floating-point unit complexity and energy
consumption by reducing bit-width, but still maintain the error probability low is studied
in [140]. In addition, Tong et al. propose adaptive bit widths for function units to
support high precision requirements.

The floating-point arithmetic has a significant role in the development of efficient
automated tools and tool chains because tools are in general easier to design for the
floating-point arithmetic than the fixed-point arithmetic. Several automatic tools have
been proposed in the literature to ease the development task. An automatic tool for
hardware and software design to support number arithmetic selection and defining word
length requirements according to the software description of the algorithm is proposed
in [141]. Another tool supporting floating-point optimization by connecting software
description and hardware implementation is proposed in [142]. For a software developer,
a compiler determining the required accuracy and dynamic range for the floating-point

word is proposed in [135].
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3 Detection in MIMO-OFDM systems

The system model, simulation parameters, theoretical detector complexities and the
detection reliability of studied detectors are compared in this chapter. The detector
comparison is important for the programmable systems, in which the energy dissipation
per correctly decoded bit can be minimized by changing the detection algorithm based
on the channel realizations. Section 3.1 presents the MIMO—OFDM system model
applied in the research. A linear minimum mean square equalization in MIMO system is
discussed in Section 3.2. Maximum likelihood detection is briefly presented in Section
3.3. Soft output detection, including description of the maximum a posteriori detection
and state-of the art lattice detectors, are presented in Section 3.4. A QR decomposition
based on the modified Gram-Schmidt is discussed in Section 3.5. In Sections 3.6 and 3.7,
the numerical comparison and detection reliability of the lattice detectors are compared.

Finally, Section 3.8 concludes the chapter.

3.1 System model

The MIMO system can create multiple parallel independent data streams between the
transmit and receive antennas and can increase the transmission rate without increasing
the spectrum requirement or transmit power. The MIMO antenna system combined with
the orthogonal frequency division multiplexing has been included in many wireless
standards, such as IEEE 802.11 wireless local area network (WLAN), WiMAX, 3G LTE
and LTE-A. The multipath environment causes the MIMO channel to be frequency-
selective and OFDM can transform such a channel into a set of parallel frequency-flat
MIMO channels.

In a MIMO receiver, the detector may be linear or non-linear, i.e., a lattice detector
in this thesis. Linear detectors, such as zero-forcing (ZF) and linear minimum mean
square error (LMMSE) equalizers, can be straightforwardly applied in MIMO detection
[32]. The linear detectors are simple, but can suffer performance loss in fading channels.
The maximum likelihood detector is optimal for finding the closest lattice point [51].
However, it is often not feasible for real implementations, because its computational
complexity increases exponentially with the increasing number of transmit antennas and

modulation levels. A sphere detector [18] calculates the ML solution with a reduced
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complexity compared to the full-complexity exhaustive search ML detectors.

A MIMO-OFDM transmission architecture is assumed with M transmit and N
receive antennas, where M < N. The LTE specified [60] system model is illustrated in
Figure 6. The transmitter applies a layered space-time architecture [32] with vertical or
horizontal encoding in a 2 X 2 antenna system [143] and a mixture of them in a 4 x 4
antenna system. The encoded data bits are interleaved and modulated to symbols with a
quadrature amplitude modulation (QAM). A bit-interleaved coded modulation (BICM)
in applied. The data is sent via multiple antenna.

At the receiver, antennas receive multipath signals distorted by the noisy channel.
The cyclic prefix of an OFDM symbol is assumed to be long enough to eliminate
intersymbol interference, i.e., larger than %, where Ty, is the maximum delay spread in
channel and 7; denotes the symbol time. The received signal vector y; € CN on sth

subcarrier can be presented as
ys = Hyxg+ng, s=1,2...§, (6)

where S is the number of subcarriers, x; € C is the transmitted symbol vector and
n, € CV represents circularly symmetric white Gaussian noise with variance 6 observed
at the N receive antennas. The average transmit power of each antenna is normalized
to one, i.e. E(xx/) = I}y and E(nn”) = 6%Iy. The symbol Hy; € CN*M denotes the
channel matrix containing complex Gaussian fading coefficients with unit variance. The
entries of X, are chosen independently of each other from a QAM constellation.

A real-valued system model is often assumed when lattice detectors are applied.
Any complex-valued linear MIMO system can be extracted into a real-valued model by
separating the real and imaginary parts. The real-valued model can be presented as

yr = Hix; +ny, @)

where the real-valued channel matrix is

Re(H) —Im(H)

2N x2M
Im(H) Re(H) <R ’ ®

T

and the real-valued vectors are
T 2N
Vi = [ Re(yT) Im(yT) ] € R, 9)
T oM
x = | Re(x") Im(x") | €z, (10)

46



T 2N
n, = | Re(nT) Im(nT) | € R*™Y, (11)

where Re(+) and Im(+) denote real and imaginary parts. A real-valued system model
doubles the depth of the search tree, but on the other hand, provides a simpler Euclidean
distance calculation [69]. In addition, the closest constellation point selection can
be done in one dimension instead of selecting the constellation point from the two
dimensional grid. The real-valued symbol alphabet is now Q; = Z, and for instance
the alphabet of 16-QAM can be represented as Q. = {—3,—1,1,3}. A more practical
reason to favor a real-valued model is a better support for real-valued operations in
commercial programmable signal processing platforms.

A soft detection is applied at the receiver. The detected symbol bits are deinterleaved
and fed to the decoder. In the iterative receiver structure, a priori information from the
decoder can be used to update log-likelihood ratio (LLR) values, and thus, improve the
detector performance.

In 3G LTE standard [60, 144, 145], a radio frame period is 10 ms, which is divided
into 1 ms subframes [3]. The subframe is further divided into two slots, both of the
period of 0.5 ms. In the case of normal cyclic prefix (CP), a single slot consists of seven
OFDM symbols, where the overall symbol time is the sum of the payload symbol time
and the length of CP. A resource block is defined in time-frequency domain. In time
domain, the resource block lasts a slot period, which consists of seven OFDM symbols
with the normal CP. In frequency domain, the resource block has 12 subcarriers. For
LTE, the OFDM subcarrier spacing has been chosen to be A f = 15 kHz. The LTE
carrier can consist any number of resource blocks between 6 and 110, which corresponds
to a bandwidth from 1 MHz to 20 MHz.

The number of simultaneously transmitted subcarriers in 5 MHz bandwidth is 512
and 300 of them are actually modulated with data. LTE supports a bandwidth up to 20
MHz, in which 1,200 subcarriers are modulated with data. The channel coding is based
on the turbo code with % %% % and ‘51 code rates. Vertical Bell Laboratories layered
space-time encoding (V-BLAST) [32] is used in a 2 x 2 antenna system and horizontal
BLAST (H-BLAST) in a 4 x 4 antenna system.

3.2 Linear minimum mean square equalization

Linear detectors [146] offer a low complexity solution to the transmitted data stream

separation compared to the optimal or suboptimal approximations of the ML and MAP
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Fig. 6. Block diagram of the MIMO-OFDM transmission ([22], published by permis-
sion of IEEE).

detectors. However, they perform poorly in a highly correlated channel, and thus, they
are feasible only in channels with low correlation.

The linear minimum mean square error (LMMSE) detector minimizes the interfer-
ence and noise between the transmitted signal vector x and the estimated soft-output

vector X. The LMMSE criterion is determined as
on = min {[|x—WHy|?}, 12
LMMSE WechM{” ylI} (12)

where x € CV denotes the transmitted signal vector, y € CV is the received signal vector
and W € CV*M s the coefficient matrix of the LMMSE detector. || - ||> denotes the

Euclidean norm. The Wiener solution can be used to solve the coefficient matrix as
W= (HAH" +A,)'HA,, (13)

where H € CV*M denotes the channel matrix, in which the (i, j)th element defines
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the channel gain between the (j)th transmit antenna and the (i)th receive antenna.
A, € CM*M jg the autocorrelation matrix of the transmitted signal and A, € CVV
denotes the autocorrelation matrix of the noise. Because the thermal noise between the
receive antennas and the subcarriers is considered to be uncorrelated, the autocorrelation
matrix of the noise is A, = 262Ly, where Iy € CN*V denotes the identity matrix
dimension equal to the number of receive antennas. Because the detector is assumed not
to have information of the channel code structure, A, = Esljs. Es denotes the energy of

the received symbol. With these assumptions, the Wiener solution can be written as
-1
20?
W= <HHH + IN) H. (14)
Es
Finally, the soft output of the LMMSE detector can be written as
% = Why. (15)

The zero-forcing (ZF) separates the data streams and decodes each stream independently.

The ZF estimation can be represented as follows
%= (H'H) ' Hx = H'x, (16)

where H is again the channel matrix and the ()T denotes the pseudoinverse. When

separating the signals in the ZF, the noise component tends to amplify.

3.3 Maximum likelihood detector

The ML detector minimizes the Euclidean distance between the received signal y and
the lattice points Hx and selects the lattice point that minimizes the Euclidean distance
to the received vector y, i.e.,

% =arg min |y —Hx|]", (17)
X

||?> denotes the Euclidean norm of a vector. The

where Q is the symbol alphabet and || -
exhaustive search can be used to solve the ML detection problem. However, it becomes
computationally impractical as the number of transmit antennas increases or a higher

order modulation is used.
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34 Soft-output detection

The soft-output detector structure, divided in three building blocks, is presented in Figure
7. The channel matrix H is preprocessed as H = QR using the QR decomposition. The

preprocessing block outputs an orthogonal matrix Q and the upper triangular matrix R.

L
Q
H Soft-out; g——3 De-mapper B ——
. put
———))| Preprocessing j detector —)
— LLR
] )

d*(L)

y La

Fig. 7. The soft-output detector ([22], published by permission of IEEE).

An MMSE extension to the channel matrix and sorted QRD (SQRD) [64] are often
used methods to improve the detection reliability. In MMSE extension, the channel
noise level n = \/ﬁ . In order to obtain the optimal detection order, the SQRD
permutes the columns of the channel matrix according to the column norms. The QRD
of the extended channel matrix is presented in [64] as follows

H QlRe

H. =
QZRe

R. = : (18)

The (M + N) x M orthonormal matrix Q. is partitioned into the M x N matrix Q; and
the M x M matrix Q,.

The Euclidean distance between the received signal vector y and the possible
transmitted symbols are calculated in the soft-output detector block. The de-mapper
block maps the symbol candidate list L into a binary format.

The log-likelihood ratios are calculated in the LLR block using the list of binary
format candidate symbols B and the corresponding list of Euclidean distances d*(L).
Let b be in finite field with the elements {+1,-1}. The conditioned log-likelihood ratio of
binary candidate b, Lp(b,|y), over bits of received symbol vector is determined as

by =+1ly)

p(
Lo(baly) =1
p(baly) =0 =—1ly) (19)

=In(p(y|bn = 1)) —In(p(y|bn = —1)).

The approximation of LLRs can be calculated without logarithm and exponential
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functions by using the Jacobian logarithm and a look-up table as

In(e*! +¢“2) =max(aj,ay) +1In 1 + e lai—a|
(e -+ €2) —max(ar,az) + In ) o0
=max(ay,a) + f(|la1 — az]).

Here, f(-) is a correction function, which is approximated with a look-up table in [147].
In a max-log approximation, the complexity is reduced by removing the correction

function and using only the maximum value as
In(e™ +e™) ~ max(ay,ay). (21)

The performance loss between max-log-MAP approximation and log-MAP becomes
small when |a; — as| > 2 and the correction term f = In(1 + ¢~ |%1~%l) approaches zero.
Thus, the a posteriori probability LLRs Lp(b,) can be calculated as

- —Hx |? — —Hx |2
E(n) > max (T iy ) (ZI B

T
La(b,)).
x€Q,+1 202 xeQ,—1 202 X La(bn))

(22)

The suboptimal soft-output MIMO detectors are very often unable to generate exact
reliable information for some of the detected bits. The effect of unreliable Lp (b,) values
to the decoding performance can be reduced by modifying Ly (b,,) information. While
the sign of the Lp(b,) value can be usually determined with low probability of error,
the magnitude is often unknown. An unlimited dynamic range causes the decoder to
assume overly high reliability for bits, missing counter-hypotheses, and, thus, inducing
irreparable decision errors in the decoder. By properly limiting the dynamic range of
LLRs, the decoder can overcome the wrong information with a lower probability of
errors [121]. Sophisticated methods to determine the feasible limits for clipping utilizing
the channel state information (CSI) and the bit error probability at the decoder output
have been studied in [122, 123].

The detection reliability can be improved by applying the iterative receiver structure.
In the iterative receiver, the first LLRs are calculated as presented earlier. On the first
iteration, the soft bit LLRs from the turbo decoder are used to update the LLRs using a
priori information from the decoder [148]. Usually, one or two iterations in a highly
correlated channel provide a feasible tradeoff between the detection reliability and

increased system latency due to additional computational complexity.
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3.4.1 Maximum a posteriori detector

The optimal soft-output detector determining the a posteriori probability Lp(b,) is
the maximum a posteriori probability detector. The probability of a transmitted bit
b, = +1 is equal to the sum of all the probability combinations containing b, = +1 for
that given bit. The probability can be determined from the cost information known
about the candidates for systems containing additive white Gaussian noise (AWGN).

Then, conditional probability can be calculated as

bimtlly) = —2 ¥ 5 23)
P  lapivarer L, © T
Here, x,,+1 = {x|b, = +1} is the set of Q¥~! bit vectors x having b, = +1. The
MAP solution in logarithm domain [147] is determined by calculating the a posteriori
probability LLRs Lp using all the possible Q¥ ! bit vectors x with both conditional
probability variables p(b, = +1|y) as

p(bn = +1ly)
Lp(b,) =ln2— 22
(ba) p(by = —1ly)
—In erxn,+1 Xp( ”y HX” + 1XTLA(b ))
- 2
Exex,1 exp(~53 0 'y 5} L 0) o
—[ly—-Hx|]> 1
—La(b) 10 Y exp<%+5xm<m»
XEx,,+1
—lly —Hx|
—1In exp(i—k —X"La(by)).
x€§—1 2072 2

Here, La (b,) is a priori information at the decoder input. The number of computed bit
vectors Q¥ — 1 increases the computational complexity exponentially with the number
of transmit antennas and used constellation , which makes the MAP detector usually

unfeasible for practical MIMO systems.

3.4.2 Lattice detector

Lattice detectors and specially the class of sphere detectors (SD) have gained new
attention at the same time as MIMO techniques have been included in new standards.

The lattice detection algorithms approximate the ML solution (17) by limiting the search
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into the limited number of constellation points by some metric defined in the algorithm.
Often, the procedure of lattice detectors can be presented with a tree search, and for
instance, in the case of sphere detector algorithms, the number of visited nodes in the
search tree is limited by applying a sphere constraint Co >|| y — Hx ||?> with a squared

radius Cyp. Three lattice detectors are presented below.

K-best algorithm

The K-best LSD algorithm [149] is a breadth-first search algorithm based on the well
known M-algorithm [17, 73]. The LSD algorithm proceeds a level by level, repeating
the spanning-sorting-deleting process. The process will continue until the leaf nodes are
reached. After the final level, the K best Euclidean distances and the corresponding
symbol vectors are sorted and output as a final candidate list. The main complexity
of the K-best LSD algorithm comes from the PED calculation and sorting the K best
distances into the list.

Figure 8 illustrates the spanning-sorting-deleting process in the K-best tree search
algorithm with a list size K = 4. A real-valued signal model, a 2x2 antenna system with
a 16-QAM, is considered. The black arrows show the K best spanned paths at each
level and the gray arrows are the deleted paths, which are discarded by the sorter. Note
that from the algorithm complexity point of view, deleting nodes become even more
significant while the number of transmit antennas increases or a higher order modulation
is used. The execution of the algorithm is described in Algorithm 1.

A large list size improves the decoding performance, but leads to an increased
computational burden and memory usage. Sorting is required, when the number of
candidates exceeds the list size K. The candidate list updating requires a comparison
between a new PED and the maximum PED in the list. If the new PED is smaller than
the maximum PED in the list, the new PED is included in the list. Otherwise, the list
stays untouched.

The complexity of the algorithm depends mostly on the number of transmit antennas,
the list size and the modulation order. The algorithm maintains a list of the K best symbol
candidates and the corresponding multidimensional constellation symbol identifiers.
For example, in 64-QAM with a real-valued signal model, v/64 = 8 QAM symbols
can be represented with S, = log, (8) = 3 bits, 000 representing the first QAM symbol
and 111 representing the last QAM symbol. By setting the squared sphere radius to

infinity, Cp = oo, a fixed number of nodes is processed in each step of the algorithm. The
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Fig. 8. A search tree of the K-best LSD algorithm.

Algorithm 1. K-best algorithm.

Preprocessing:
QR decomposition of the channel matrix H.
Inputs: R,y = Qlly, K
Algorithm:
1. Start with empty candidate set from the root layer.
2. Denote the partial candidate set by xﬁl.
2.1 Calculate PEDs (d(x)) for all admissible
candidate child nodes (x;).
2.2 Sort the partial candidates according to their PEDs and store
the K lowest PEDs.
3. If the last level is calculated, i.e., candidates are leaf nodes),
stop the algorithm and give the candidates and their EDs as

outputs. Otherwise, continue to step 2 with the stored partial candidates.

algorithm is serial between the PED calculation and sorting, which prevents executing

levels in fully parallel.
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Selective spanning with fast enumeration

Selective spanning with a fast enumeration algorithm has many architecturally favorable
features such as a completely deterministic and regular dataflow [19]. The algorithm is
characterized by the level update vector m = [my,...,my] in a complex-valued system
and m = [my,...,mpy| in a real-valued system. The level update vector defines the
number of spanned child nodes per father node on each level of the search tree. The
spanned nodes are never deleted during the tree search. The number of nodes in the

final candidate list in a real-valued system can be determined using the vector m, i.e.,
i
m = [4444] would lead to a full search and the length of 256 candidates in the final

list. The vector m = [1224] would lead to a simpler implementation of the algorithm,

mj. For example, in a real-valued 2 x 2 antenna with a 16-QAM system, the vector

with only 16 candidates in the final list. The tree search for a real-valued 2 x 2 antenna

system with a level update vector m = [1224] is illustrated in Figure 9.

Root

Level 4

Level 3

Level 2

Level 1

Fig. 9. SSFE tree search with m = [1224].

In the SSFE algorithm, the number of spanned nodes are defined locally on each

level. This is different, for instance, from the conventional K-best algorithm, in which
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the spanning-sorting-deleting process is globally based on K. In the SSFE algorithm, the
expensive sorting-deleting process is avoided by using a symbol selection based on the
slicer operation applying the Schnorr-Euchner enumeration. We consider a real-valued
model instead of the original complex valued model presented in [19]. In the real-valued
model, the closest constellation point selection can be done in a single dimension instead
of selecting the constellation point from the two dimensional grid. The slicer unit selects

a set of closest constellation points x; such that the PED increment is minimized at each

level, e.g.,
2
) M
lui(x)|I* = |[Yi= Y rijxj—rixi| (25)
j=i+
—_———
by (xi+1)

Minimizing ||u;(x;)||* is equivalent to the minimization of
2
2
= ||Bis1 (Xi41) /1ii =) - (26)
—_————

€

I/t,'(Xl‘)
Tii

The formula above is essential for the slicer unit which selects the closest constellation
points based on €. Figure 10 illustrates the function of slicer operation. The grey
nodes present constellation points on the horizontal axis, whereas the white circle is the
received symbol. If m vector requires for instance two constellation points to be sliced,
the slice A1 is picked first and then the slice /\;. The SSFE algorithm is described step
by step in Algorithm 2

Layered orthogonal lattice detector

The layered orthogonal lattice detector algorithm recently proposed in [20] achieves ML
performance in the case of hard output demodulation in a 2 x 2 antenna system [150]
and optimally computes bit LLRs when max-log soft output information is generated.
However, in generalized N > 2 and M > N antenna systems, the detection is sub-optimal
due to error propagation in intermediate layers in the search tree.

The LORD algorithm executes as many tree searches for the permuted antenna

orders as there are transmit antennas. Thus, the detection also requires as many QR
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Fig. 10. The principle of slicer operation in a 16-QAM real-valued system model.

Algorithm 2. SSFE algorithm.

Preprocessing:

QR decomposition of the channel matrix H.

Inputs: R,y = Qly, m

Algorithm:

1. Start with an empty candidate set from the root layer.

2. A level update vector defines the number of spanned child nodes for father node(s).
2.1 Calculate € (26).
2.2 Slicer operation defines candidate symbols based on the €.
2.3 Calculate PEDs (d(xY)) for all admissible
candidate child nodes (x;).

3. If the last level is calculated, i.e., candidates are leaf nodes),

stop the algorithm and give the candidates and their EDs as

outputs. Otherwise, continue to step 2 with the stored partial candidates.

decompositions for the permuted channel matrix as a preprocessing. The algorithm does
a full search on the first two levels of the tree and uses a similar slicer operation as
the SSFE algorithm for the rest of the levels. The full search for the first two levels
increases the computational complexity when a high order modulation is applied. Figure
11 illustrates the tree search in a 2 x 2 antenna system with a 16-QAM. The original
LORD algorithm does not have any sorting-delete process for the visited nodes. The
process of the LORD algorithm is described in Algorithm 3.

There are methods to overcome the disadvantages of the algorithm in the generalized
N > 2 antenna system. Tomasoni et al. [75] propose methods such as metric recycling,

LLR flipping and criteria branching to improve the performance. The metric recycling is

57



Algorithm 3. LORD algorithm.

1: Preprocessing:

QR decomposition of the channel matrix H.

Inputs: R,y = Qly,m

Algorithm:

1. Start with an empty candidate set from the root layer.

2. Compute a full search for the first two levels of the search tree.

3. Define a child node for each father node using slicing operation.
3.1 Calculate PEDs (d(xY)) for each candidate child node (x;).

4. If the last level is calculated, i.e., candidates are leaf nodes,

R e A AR

—_
=4

stop the tree search and give the candidates and their EDs as

—_
—_

: outputs. Otherwise, continue to step 3 with the stored candidates.

H
»

Compute the tree search for permuted columns of channel matrix.

—_
(95}

: The number of tree searches with permuted column order is the same as the number
of transmit antennas.

14: If the all tree searches are executed, stop the algorithm.

the most effective way to improve the detection reliability of the algorithm gaining in
general an improvement of several decibels in signal-to-noise ratio. After computing
Euclidean distances and the corresponding symbol vectors for each channel matrix
order, the probability of finding the transmitted vector can be raised by changing vectors
based on the Euclidean distances. Extra metric calculation is not required, but the
technique necessitates extra memory accesses and comparisons. It is mentioned in
the simulation figures when the metric recycling is exploited. The LLR flipping and
criteria branching [75] are not considered due to their modest performance-complexity
benefit. A modification called a K-best-LORD [76] includes a sorter to discard some of
the visited paths, and thus reduces the detector complexity. However, the sorter is an
unfavorable addition into the algorithm from the implementation point of view due to its
additional hardware complexity.

The overall complexity of the algorithm depends significantly on the used modulation
method. If P describes the number of constellation points in a real-valued modulation,
the used modulation can be presented as P>-QAM. Thus, there are P> nodes calculated
after the second level of the tree. When applying 16-QAM, the computational complexity
is still somewhat practical, but using 64-QAM the computational complexity rapidly
increases. In the case of 64-QAM, the list of 64 PEDs has to be stored and updated on
further levels and managing such a long list is very expensive.
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Fig. 11. LORD tree search in a 2 x 2 antenna system with a 16-QAM.

3.5 QR-decomposition

A MIMO receiver requires a relatively low throughput QRD for small size matrices.
Thus, high throughput implementations based on the systolic array processors [151]
or decomposition level pipelining supported by Givens rotations are not necessarily
required. Instead, a QRD based on the real-valued modified Gram-Schmidt [63] is
applied in this thesis. The MGS algorithm can be implemented with general purpose
FUs and SFUs, which can be easily exploited in other applications as well.

The modified Gram-Schmidt process is applied due to its better stability over the
classical Gram-Schmidt process. The classical process becomes numerically unstable
because of the finite-precision arithmetic in computing hardware. The difference between
GS and MGS can be seen in Algorithms 4 and 5 in line 8. There, the MGS applies an
updated column vector v of the channel matrix during vector r; ; computing. The lines
4 and 5 show that a division by square root is required as the element are divided by
matrix diagonals. The expensive division can be replaced with the multiplication of

inverse square root. A low-complexity inverse square root operation is discussed below.
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Algorithm 4. Classical Gram-Schmidt.

1: V=H

2:

3: for i=1:2N do

4 1= |vianil?

50 Qo = Vian,i/Tii

6:

7. for j=i+1:2N do

8: rj= qlT;ZN_V,- *hyoy j

& Vian,j = Vian,j —Tij*dian,i

—_
4

11:  end for
12:

13: end for
Algorithm 5. Modified Gram-Schmidt.

1: V=H

for i=1:2N do
ri;= ||V1:2N,i||2

Qo = Vi2an,i/Tii

for j=i+1:2N do

.o—al .
Tij = dion,i * V12N, j

R AN Al

V12N,j = Vi2N,j —Tij*don

—
4

end for

—_
—_

12:
13: end for

3.5.1 Inverse Square Root

A straightforward implementation of Gram-Schmidt algorithm would require square
root and division operations, which are complex operations to implement on hardware.
The multiplication is a simpler operation on hardware than the division, and thus, the
division is substituted with the multiplication of an inverse value. For this reason, an

inverse square root is required. Thus, two complex operations, division and square root,
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can be replaced with an inverse square root. Even though the inverse square root is also
a demanding operation, low-complexity approximations of the inverse square root can
be applied in real hardware implementations. In addition, v/x can be derived by simply
multiplying % with x.

An efficient software implementation for computing the inverse square root is
discussed in [90, 91]. The implementation is based on the binary representation of the
floating-point number. The original 32-bit function for a fast inverse square root (FISR)
is presented in Algorithm 6. Lines 4 and 6 are simple type conversions but line 5, which
computes the initial value for the inverse square root, hides a lot of math. Lines 7 and 8
are Newton’s iterations improving the initial guess.

The fast inverse square root constant (FISRC) 0x5f3759df is originally called a
magic number. The background of the original FISRC is tried to solve in [90] by a
mathematical approach which is aiming at minimizing the maximum relative error for
the initial value of the inverse square root. However, in [91] the optimal FISRC is shown
to depend on the applied norm and assumed dynamic range. Hence, a constant, the
same as the original FISRC cannot be found mathematically, but computer simulations
are required in order to find the optimal FISRC for particular norms and subsets of
numbers. Basically, computer simulations are applied to find the FISRC that minimizes

the maximum relative error of an initial guess for the inverse square root operation.

Algorithm 6. Fast inverse square root.
1: float InvSqrt(float x){

2

3 float halfnumber = 0.5 * x;

4 int i = *(int*)&x; { get bits from floating-point number }

5 i = 0x5f3759df - (i»1); {initial guess for inverse square root}

6:  x=*(float*)&i; {convert integer type back to floating-point type}
7. x=x*(1.5 - halfnumber * x * x);  {1st Newton’s iteration}

8:  x=x%(.5- halfnumber * x * x);  {2nd Newton’s iteration }

9

10: return x;

1.}

The same heuristic principles can be applied to find FISRC for arbitrary floating-
point word lengths. The constant 0x5991 is determined by the author for a half-
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precision floating-point using first the mathematical approach and then improving the
approximation by heuristic techniques, i.e., computer simulations. Table 1 summarizes
the statistical relative errors after the initial guess and after the first and the second
Newton’s iterations. The relative errors have been determined by comparing results
between computer simulations and hardware function unit implementation of the inverse
square root. The function unit supports truncation with one guard bit. Applying
rounding-to-nearest value with 1-3 guard bits does not have a significant impact on the
results.

The initial guess attains the reported error rates in the half precision floating-
point range, i.e., x € [6.1035 x 107'°,65504]. However, the applicable range for
the value to be inverse square rooted is roughly limited to the subset of numbers,
x € [6.1035 x 10719, 12000]. When the integer part of the value approaches 13 x 103,
the required precision in the Newton’s iterations increases beyond the precision in half
precision floating-point due to inverse operation. Thus, the Newton’s iterations cannot

improve the initial guess.

Table 1. Relative error for a half-precision floating-point inverse square root imple-
mentation.

Initial guess 0.09-5.7%
1st Newton'’s iteration 0-0.5%
2nd Newton’s iteration 0-0.05%

The accuracy of the initial guess changes between 0.09 to 5.7 per cent depending on
the value to be square rooted. The first Newton’s iteration improves the approximation
very close to the absolute value attainable with the half precision. Thus, for many
applications, a single Newton’s iteration provides the required accuracy. However,
the approximation can be still improved with the second iteration such that the error
becomes around 0-0.05% from the absolute value. The inverse square root method is
applied later on the QRD implementation in Chapter 5.
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3.6 Numerical comparison

Detector complexities can be estimated with the number of executed operations.
Multiplications, additions (subtractions) and comparisons are the dominating operations
in the detector implementations. Generalized equations for calculating complexities
for QR decomposition, detector algorithms and LLR calculation are summarized in
Tables 2-5. Here, L denotes the list size, m. is the element of level update vector in
the SSFE algorithm and Q denotes the number of bits per symbol. The level of the
search tree is denoted with /. The symbol Kj. defines the incomplete list size occurring
often at the first levels of the K-best algorithm. Two equations for the LORD algorithm
complexity are presented. The first one is for a 2 x 2 antenna system and the second is
for a generalized system having more than two transmit antennas.

Table 2. The number of multiplications in detection blocks.

QRD (MGS) 2M3 +2M?

K-best 2VQ+VOKY M (1+1)

SSFE L+ me + LML) + X M meL(1)

LORD (2 x 2) M2VQ+8Q+4Q(2M —2))

LORD (general) MP2VQ+3Q+4Q(2M —2) + Y21 2Q(1—2)]

11€{4,6,8...}
LMMSE (HHH + %IN) am?
Matrix inversion (MGS)  3M° +2M7 + M + 15! (2 + j)

Matrix mult. M3
Matrix-vector mult. M?
LLR L

Numerical examples of detector complexities with different implementation pa-
rameters are provided in Tables 6—8. The instructions related to control or storage
are excluded because they depend on the implementation architecture. However, all
the presented detection algorithms employ rather regular data paths, which enables
a small control overhead. In all detectors, the square (SQ) operation required by the
Euclidean norm is replaced with a multiplication operation. The theoretical number
of comparisons reported for the K-best algorithm assumes a non-ordered list, which

implies the worst case scenario. The number of comparisons in the K-best algorithm
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Table 3. The number of addition operations in detection blocks.

QRD (MGS) 2M3 +-2M?

K-best VQ+VOmin(K, Kie) L% (1+1)

SSFE 2me + LML) ((1—2) + 1) + L2, 2me L(I)

LORD (2 x2) 71Q43Q(2M - 2)

LORD (general) MVQ+2Q+3002M -2)+ E71L 65 1291 -3)
+Q(2M —2)]

LMMSE (HH! + 221y)  (4M —2)M> + M
Matrix inversion (MGS) ~ 3M3 +2M2 + x Y1 2

Matrix mult. M3
Matrix-vector mult. M2—M
LLR OM +32

Table 4. The number of comparison operations in detection blocks.

K-best mkzzw (I+1)
SSFE M 1y [2me (\/(Q) — me)]
LORD (2x2) (\F 1)(4M% — 4M)
LORD (general)  Q(vQ—1)(4M? —4M)
LLR LQM

Table 5. The number of inverse square root operations in detection blocks.

QRD (MGS) M

Matrix inversion M

depends also on the applied sorting algorithm. Another way to reduce comparisons is
to use Schnorr-Euchner enumeration for the candidate selection, as discussed earlier
in the thesis and in [74, 124, 125]. The LMMSE detection is composed of filtering
(HHH + = IN), weight matrix computing which requires a matrix inversion and
multlphcatlon, and interference suppression from the received signal. Matrix inversion
is based on the modified Gram-Schmidt orthogonalization. Note that LMMSE does not
need QRD preprocessing like the presented non-linear detectors and the computational
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complexity depends solely on the number of transmit antennas.

In Table 6, a typical setup for a moderately correlated 2 x 2 antenna system with a
16-QAM is summarized. The original LORD algorithm has no varying parameters,
which keeps the computational complexity constant for certain transmit antenna and
modulation setups. In addition, the LORD algorithm provides close to MAP performance
in a 2 X 2 antenna system. In general, the SSFE algorithm provides the least complex
implementation. The complexity difference between the K-best and LORD algorithms
is not that obvious due to the sorter operation required in the K-best algorithm and the
full search at the first two levels (a real-valued system model) in the LORD algorithm.

However, there are less comparisons in the LORD algorithm than in the K-best algorithm.

Table 6. The number of executed operations in a 2 x 2 antenna system with a 16-
QAM.

Operation QRD K-best SSFE LORD LMMSE
K=8 m=[1223]

Addition 160 256 84 160 542

Subtraction - 84 54 256

Multiplication 160 260 73 400 584

Square - 84 33 128

Comparison - 3072 150 384

Inverse Square root 4 - - - 4

In Table 7, the algorithm complexities are compared by fixing the list sizes equal
in a 2 x 2 antenna system and 16-QAM. The complexity of the LORD algorithm is
not changed due to its computational complexity is defined only by the number of
antennas and the modulation order. The most significant complexity change is seen
in the K-best algorithm. In particular, the number of comparisons are increased due
to the larger list size, which obviously shows K to be a significant design parameter.
Increasing the final candidate list with four candidates has not that significant impact on
the SSFE complexity. Comparing the number of operations in Tables 6 and 7 reveals
how the globally fixed K in the K-best algorithms and the locally adaptive level update
vector (m.) in the SSFE algorithm affect the overall algorithm complexity. Obviously,

processing of a large list at each level of the tree search increases the implementation
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complexity.

Table 7. The number of executed operations in a 2 x 2 antenna system with a 16-
QAM.

Operation K-best SSFE LORD
K=16 m=[1224]

Addition 480 112 160

Subtraction 148 72 256

Multiplication 484 97 400

Square 148 44 128

Comparison 12288 112 384

Table 8 summarizes the number of operations in a 4 x 4 antenna system with a
64-QAM. The increased number of transmit antennas and a higher order modulation
have a significant impact on the complexities. The parameters K and m are defined
such that the bit error rate in the algorithms are realistic for the real systems. Thus,
each algorithm has a different final candidate list size. In a high correlated channel,
the K-best algorithm requires a list size 16, whereas the SSFE algorithm requires a
level update vector m = [11122223] which outputs a list of 48 candidates. The original
LORD algorithm outputs 64 candidates when 64-QAM is applied, which obviously
increases the number of required operations. Modified versions of the LORD algorithm
have been proposed in [75, 76], which reduces the list size for instance by adding a
sorter into the algorithm. The number of operations required by the SSFE algorithm is
modest compared to the other two algorithms. However, the bit error rate of the SSFE
algorithm is inferior to the K-best algorithm in a highly correlated channel. The error

rate of the algorithms are discussed in more detail in the next section.

3.7 Computer simulations

An LTE compliant MIMO-OFDM downlink simulator is applied to estimate the
detection performance of the detector algorithms discussed above. The bit error rates
provide valuable information on performance of different detector algorithms. Evaluating

only absolute errors of the detector is also possible, but the effect of the absolute error to
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Table 8. The number of executed operations in a 4 x 4 antenna system with a 64-
QAM.

Operation QRD K-best SSFE LORD LMMSE
K=16 m=[11122223]

Addition 1024 4352 1248 6400 1804
Subtraction - 840 426 4896

Multiplication 1024 4360 1201 11296 1840
Square - 840 237 1824

Comparison - 86016 1230 21504

Inverse square root 8 - - 8

detection performance is difficult to estimate due to the soft detection robustness.

The channel model is based on the 3GPP vehicular A (3GPP-VA) model recom-
mended by International Telecommunication Union (ITU). The applied mobile velocities
are between 15—-120 kmph. The level of correlation in the channel is adjusted by
changing a base station azimuth spread [152]. A highly correlated channel is created
with the azimuth spread 2° and moderate correlation is achieved with the azimuth
spread 5°. A 5 MHz bandwidth corresponding 512 OFDM subcarriers (300 active) is
applied. Code rates %—% are applied in the simulations. The code rate is fixed during the

simulation. The channel model and simulation parameters are summarized in Table 9.

Bit error rate performance

BER comparisons for the discussed detector algorithms are provided in Figures 12—-15.
In all figures, the K-best detector with the list size 256 is showed as a reference curve.
In Figure 12, detectors are operating in a correlated 2 x 2 MIMO channel. A coded
system with the half code rate is assumed and the mobile velocity is 120 kmph. In a
2 x 2 antenna system, the LORD achieves the best detection reliability. The K-best
detector performs well with the list size K = 8 when 16-QAM is applied. However, in a
64-QAM system, a list size K = 16 provides 0.5 dB gain compared to the detection with
K = 8. The SSFE detector with a level update vector m = [1233] loses approximately 1
dB to the LORD detection and more than 2 dB with m = [1223]. The LMMSE detector

performs badly in a correlated channel.
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Table 9. Simulation and channel model parameters.

Simulation parameters

Number of subcarriers

512 (300 active) — 2048 (1200 active)

Channel coding Turbo code

Code rate 112,34

Symbol duration 71.39 us

Symbol time T 66.7 us

Cyclic prefix (CP) duration  4.69 us

User velocity 15 km/h, 120 km/h

Bandwidth 5-20 MHz
Channel model parameters

Channel model 3GPP-VAITU,

Number of paths 6

Path delays [0 310 710 1090 1730 2510] ns
Path power [0-1-9-10-15-20] dB

Carrier frequency 2.4 GHz

Encoding VBLAST, HBLAST

BS azimuth spread 2°,5°

MS azimuth spread 35°

Figure 13 shows that the ranking of detectors is the same in a moderately correlated
channel. However, the detection reliability of the LMMSE detector is improved as the
channel condition is getting better.

In Figure 14, the detector performances in a 4 x 4 antenna system and in a correlated
channel are presented. In 16-QAM, the K-best with K = 16 performs very close to the
reference curve. Approximately, a 1 dB better channel is required by the K-best with
K = 8 and SSFE with the level update vector m = [11122223]. The LORD algorithm
and the SSFE with m = [11112223] require approximately a 2-2.5 dB better channel
compared to the reference curve. In general, the channel condition requirement in terms
of SNR is very high for a 64-QAM. In real-life, the SNR over 30 dB is usually hard to
attain except near the base station. Thus, to improve a detection performance, global
iterations between the detector and decoder are required. The effect of global iterations

on the system performance is illustrated below.
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2x2 antenna system, cPrre\ated channel
T T T T T

—— K-best, K=256
—O—K-best, K=16
—E— K-best, K=8
—— SSFE, m=[1233]
SSFE, m=[1223]
LORD
—A— LMMSE

Fig. 12. Detection performance comparison in a correlated 3GPP channel, 5 MHz
bandwidth, velocity 120 kmph.

In a 4 x 4 antenna system, the detection reliability of the K-best is very good
with K = 16 as shown in Figure 15. The detector with the list size eight requires
approximately 1 dB better signal-to-noise ratio in order to achieve the same performance
in both 16- and 64-QAM cases. Applying 16-QAM, the SSFE detector with the level
update vector m = [11122223] and the LORD algorithm perform as well as the K-best
with K = 8. However, the final candidate list sizes are 24 and 16, respectively. In the
64-QAM system, the LORD algorithm outputting a 64-element final candidate list has
similar performance compared to the K-best with K = 16. The K-best with K = 8 and
SSFE detectors require approximately 1-2 dB better signal-to-noise ratio to achieve the
same detection reliability.

Global iterations between the detector and the decoder can improve the decoding
reliability. Figure 16 illustrates the impact of iterations on the performance for the SSFE
and K-best detectors in a 4 x 4 antenna system with a 64-QAM. In general, the optimal
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2x2 antenna system, moderately correlated channel

107" ! ‘\

T
——— K-best, K=256 |
—O— K-best, K=16
—E— K-best, K=8

SSFE, m=[1223]

LORD
—e— LMMSE

16-QAM

18 20
SNR [dB]

22 24 26

Fig. 13. Detection performance comparison in a moderately correlated 3GPP chan-
nel, 5 MHz bandwidth, velocity 120 kmph.

gain in terms of decoding reliability and increased computational complexity is attained
with a single global iteration. In some cases, the second iteration is reasonable but as

illustrated in the figure, over 2 dB gain is possible to achieve with a single iteration.

Throughput versus theoretical complexity

The operation count of the algorithms alone does not provide a fair comparison of
the detectors. Thus, a throughput measure is included in the comparison. Figure 17
summarizes an overview. The vertical axis defines the throughput in Mbps, whereas
the computational complexity is on the logarithmic horizontal axis presented as a
sum of weighted value of operations (inverse square root, multiplications, additions,
comparisons). The weights are set based on the hardware complexity of the fixed-point
operations. Table 10 summarizes the weights. The presented complexities include the
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4x4 antenna system, correlated channel
T T T T

T T
——— K-best, K=256
—©— K-best, K=16
—E— K-best, K=8
SSFE, m=[11122223]
SSFE, m=[11112223]
LORD

BER

28 30 32 34 36

Fig. 14. Detection performance comparison in a correlated 3GPP channel, 5 MHz
bandwidth, velocity 120 kmph.

detection algorithm and LLR computing. The QR decomposition is excluded because it
is performed only once during the channel coherence time. Typically, it is assumed that
the preprocessing outputs can be used in the detector algorithm for several consecutive
OFDM symbols. However, it should be noted that if the channel coherence time becomes

shorter, the QRD might make up a larger part of the overall complexity.

Table 10. Theoretical weights for the fixed-point function units.

Adder 2
Multiplier 4
Comparator 1
Inverse square root 8
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4x4 antenna system, moderately correlated channel
T T

T T T
——— K-best, K=256
—O— K-best, K=16
) —H— K-best, K=8

SSFE, m=[11122223]
SSFE, m=[11112223]
LORD

; ;
22 24 26 28
SNR [dB]

Fig. 15. Detection performance comparison in a moderately correlated 3GPP chan-
nel, 5 MHz bandwidth, velocity 120 kmph.

A comparison for K-best, LORD and SSFE algorithms is presented in a correlated
channel for a 2 x 2 antenna system with a 16-QAM and a 4 x 4 antenna system with a
64-QAM. In a 2 x 2 antenna system, the throughput is measured at 15 dB and 18 dB and
in a 4 x 4 antenna system at 30 dB and 34 dB. Two different versions of the LORD
algorithm are added in the figure. The plus sign denotes the original LORD algorithm
without the metric recycling. As stated before, the LORD algorithm does not provide an
optimal performance when more than two transmit antennas are used. However, in
such systems, the LORD detection reliability can be improved with a metric recycling.
The method has a minor effect on the theoretical complexity of the system while the
detection reliability improves significantly. The metric recycling is implemented by
comparing Euclidean distances after the tree searches are completed. However, the
technique requires extra memory accesses and comparison operations, which may be
costly for some computing architectures.

In a 2 x 2 antenna system with a 16-QAM, the SSFE algorithm performs well,
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4x4 antenna system, 64-QAM, mobile velocity 120 kmph, 1/2 code rate
T T T T T T T

—E— no iteration
—B— 1 iteration
—— 2 iterations

K-best, K=16,
correlated channel

BER

SSFE, m=[11112222],
moderately correlated
channel

25 26 27 28 30 31
SNR [dB]

Fig. 16. The effect of global iterations in detection performance.

given that the theoretical complexity is roughly one third of complexity compared to
the of other detectors. In a 4 x 4 antenna system with a 64-QAM at 30 dB SNR, the
SSFE algorithm suffers from unreliable detection. Then again, while a better channel is
available, the detection reliability of the SSFE algorithm is on a par with other detectors.
The SSFE detector complexity is the lowest also in the 4 x 4 antenna system. The
theoretical detector comparison between the K-best and SSFE algorithm is in line with

the actual ASIC design comparison presented in [29]

Goodput results for the implementations

Figures 18 and 19 can be used to evaluate the achievable goodputs of the SSFE
implementations that will be presented later in Chapter 5. The SSFE detector is
simulated in correlated, moderately correlated and uncorrelated channels with parameters

compliant to the 3GPP vehicular A (3GPP-VA) specifications defined by International
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Fig. 17. Throughput versus computational complexity.

Telecommunication Union (ITU). In LTE, an adaptive transmission is part of the
standard. Thus, when spatial multiplexing is assumed, more antennas and a higher
modulation order can be utilized during a good channel realization than in a correlated
channel. The SSFE detector applies a level update vectorm =[1223]ina2x2
antenna system with a 16-QAM when the channel is correlated. Then again, the level
update vectorm =1[1 111122 2]is applied in a 4 x 4 antenna system with a 64-QAM
when the channel realization is good.

Figure 18 illustrates the achievable goodputs for 5 MHz bandwidth in a two
transmitter antenna system with a 16-QAM. Moderately correlated and correlated
channels are presented. At a high signal-to-noise ratio with 4/5 code rate, the maximum
achievable goodput is 27 Mbps. At lower SNRs, e.g., 10-20 dB, adjusting a lower code
rate enables a better goodput.

Figure 19 illustrates that a high throughput in a 4 x 4 antenna system requires a good
channel. Thus, it is assumed that spatial multiplexing with four transmit antennas and

64-QAM can only be used only in an uncorrelated or moderately correlated channel.
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SSFE detector with m = [1 2 2 3], 2x2 MIMO, 16-QAM, 5 MHz bandwidth, 120 kmph
T T T T T T T T

—E— code rate 1/2, moderately correlated channel

—HB— code rate 1/2, correlated channel

—— code rate 4/5, moderately correlated channel
code rate 4/5, correlated channel

251

20

&

Goodput [Mbps]

3

24 26 28

Fig. 18. Goodput results for a 2x2 antenna system with a 16-QAM in a correlated
and moderately correlated channel.

The required detection rate for 10 MHz bandwidth in LTE system is 204 Mbps. Over
160 Mbps goodput is achieved only in uncorrelated channel realization and very high
SNR. The half code rate is suitable in an uncorrelated channel when SNR is between
13-25. In a moderately correlated channel, only the half code rate enables reasonable

goodputs at the high end of the feasible SNR range.

3.8 Conclusions

The MIMO-OFDM system model, and particularly MIMO detectors, such as LMMSE,
K-best, SSFE and LORD were discussed in this chapter. Theoretical complexity and
the detection reliability of the detectors were compared in different MIMO channel
conditions. Fixed-point function units were assumed in the complexity model.

The simulation results show that the K-best detector performs well in correlated
channels, but the implementation complexity is high. Then again, the SSFE algorithm is

a low-complexity algorithm and performs well in moderately correlated channels, but
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SSFE detector with m=[1 111 1 2 2 2], 4x4 MIMO, 64-QAM, 10 MHz bandwidth, 15 kmph
T T
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—E— code rate 102, uncorrelated channel
—B— code rate 304, uncorrelated channel
—— code rate 405, uncorrelated channel
1401 =< - code rate 102, moderately correlated channel

Goodput [Mbps]
5
T
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Fig. 19. Goodput results for a 4x4 antenna system with a 64-QAM in an uncorre-
lated and moderately correlated channel.

the detection reliability decreases in correlated channels. The LORD algorithm performs
well in all channel conditions when a 2 X 2 antenna system is assumed, but suffers from
increased complexity when a high order modulation is used. A linear detector performs
well only in low correlated or uncorrelated channels.

An optimal receiver would adapt to changing channel conditions by changing in
addition to the code rate or modulation also the detector algorithm. The results based
on the theoretical complexities and detection reliability simulations showed that the
LMMSE and SSFE detectors are reasonable detectors during a good channel realizations,
whereas the K-best algorithm is forced to be applied in correlated channels, especially

when a high number of antennas are used.
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4 Number arithmetic

This chapter introduces and compares the fixed- and floating-point number arithmetic in
the context of MIMO detection. Word length requirements for both arithmetics are
evaluated and an energy-precision tradeoff estimation is summarized for the floating-
point arithmetic. Section 4.1 discusses the properties of number arithmetics and points
out the significance of the floating-point arithmetic to the efficient tool chain. Hardware
implementation of floating-point function units and their energy dissipation are discussed
in Section 4.2. In Section 4.3, optimal floating-point mantissa lengths are defined for
QRD, detection and LLR blocks. In Section 4.4, energy dissipation comparison for

algorithms is presented based on the theoretical function unit energy models.

4.1 Number arithmetics

Fixed-point arithmetic has been favored over floating-point number arithmetic in wireless
communication systems because a fixed-point hardware is more straightforward. This is
due to the fact fixed-point representation applies an implicit binary point to separate the
integer and fraction parts within a single word. Since the computation in the fixed-point
number representation is mostly done as an integer arithmetic, the implementation
requires only a modest pre- or post processing.

Figure 20 illustrates the 16-bit floating- and fixed-point formats. The floating-point
format includes an exponent part which increases the numerical dynamic range, but
decreases the number of significant (mantissa) bits, and thus, affects accuracy. Table 11
summarizes the dynamic range of representable values and resolution for the fractional
mode fixed-point arithmetic and floating-point arithmetic number formats. Note that the
wide dynamic range of the floating-point arithmetic comes in part at the expense of
precision. Numbers in the left column (in parenthesis) denote the sign and fraction bits in
the fixed-point number format and sign, exponent and mantissa bits in the floating-point
number format.

There are significant differences between the fixed- and floating-point programming.
In addition to in-line assembly and intrinsics to provide an efficient compilation, the
fixed-point arithmetic programmer has to scale results after each operation in order

to avoid over- or underflows. This can be avoided only if the application allows to
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mantissa (10 bits)
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fraction (15 bits)

15 0
(b)

Fig. 20. (a) IEEE 754-2008 half precision floating-point format and (b) signed 16-bit
fixed-point format.

Table 11. Dynamic ranges and resolutions for signhed number formats ([22], pub-
lished by permission of IEEE).

Dynamic range Resolution

Fixed-point

12-bit (1,11) (-1,1) 4.8828 x 104

16-bit (1,15) (—1,1) 3.0518 x 1072

32-bit (1,31) (—1,1) 4.6566 x 1010
Floating-point (normalized)

12-bit (1,4,7) [-255,255] 1.5625 x 1072

16-bit (1,5,10) [~65504,65504] 6.1035 x 1073

32-bit (1,8,23) [—3.4028 x 1038 3.4028 x 108] 1.1755 x 10738

scale input values into a fraction mode, i.e., values between (—1,1). In comparison, the
floating-point programming is easier due to a rare occasion of over- or underflow threat.
The programmer can concentrate on optimizing the algorithm while the floating-point
arithmetic handles the scaling, i.e., encode the position of the radix point.

The architecture of the floating- and fixed-point arithmetic logic units (ALU) with
addition, subtraction and multiplier operations are illustrated in Figures 21 and 22.

There are three inputs for ALU, two for operands and one for opcode which defines
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the operation to be executed. The fixed-point ALU has support for a fractional mode,
i.e., the multiplication result is shifted into a right scale inside the unit. In general, a
floating-point function unit consumes more power and silicon and have longer delays
than its fixed-point counterpart with a corresponding word length [141]. This is due to
extra logic, including multiple shifters and normalization steps with mechanisms such as
priority encoder.

The floating-point ALU is a more complex one and requires in general more pipeline
stages than a fixed-point ALU. Otherwise, the length of the critical path becomes too
long reducing at the same time the maximum achievable clock frequency. On the other
hand, the pipeline stages and register between them increase the delay of the unit. Thus,
there is a tradeoff between the number of stages and the length of the critical path.
When comparing the amount of logic in the ALUs, it is clear that more design effort and

tradeoffs have to be done with the floating-point ALU.

operand a
operand b
! !
— ADD / SUB MUL
O—>
M
U SHIFT
fractional __|x
word length
1
opcode MUX
| result

Fig. 21. Fixed-point ALU ([22], published by permission of IEEE).

4.2 Energy dissipation in function units

There has been vivid research ongoing around the floating-point arithmetic over a

decade already, especially in the area of video processing. In part, the reason for a slow
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Fig. 22. Floating-point ALU ([22], published by permission of IEEE).

breakthrough of the floating-point arithmetic in other areas of applications has been
the slow standardization process. For decades, only double and single precision data
words have been supported by standards, which are clearly meant for computing that
requires very high dynamic range and precision. In general, the early floating-point
research was concentrating on improving delay of the function unit by modifying the
FU architecture [132—134] and not until recently, also the energy consumption has been
studied [131]. Rather than considering only the energy dissipation or latency, a more
comprehensive tradeoff in energy-delay-precision-silicon-wise is required when the
floating-point arithmetic is considered for mobile devices. This is due to an extremely
tight energy budget in current mobile devices.

The processing of a floating-point mantissa clearly dominates the energy dissipation
in a floating-point function unit. In [135], the mantissa multiplier of the single precision
floating-point multiplier is reported to consume on average 81.2% of the total energy
dissipation in FU. The normalization, including rounding unit, consumes approximately
17.9% with three guard digits, whereas the exponent unit and other logic consumes
less than 0.9% of the total energy dissipation. These results show the importance of
optimizing the mantissa length.

Table 12 summarizes the averaged energy dissipations in fixed- and floating-point
multipliers and adders. A two clock cycle multiplier and a single cycle adder are
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evaluated. A truncation with one guard bit is applied as a rounding technique. The
energy dissipation in a function unit depends on the input data such that processing small
numbers, for instance, does not necessitate bit changes in most significant bits, and thus,
energy is saved. Hence, to provide a fair comparison, the same test vectors represented
with different number arithmetic and word lengths are applied in the energy dissipation
comparison. In addition, the fixed-point multiplier includes the output scaling (shift
operation), which resembles the normalization in a floating-point arithmetic. A 130 nm
low power CMOS technology is applied, which provides a modest idle and static power

consumption.

Table 12. Averaged energy dissipations in multipliers and adders.

Multiplier energy (pJ) Adder energy (pJ)
FX, 16-bit, 277 MHz 6.88 1.71
FX, 16-bit, 200 MHz 6.17 1.44
FP, 32-bit, 111 MHz, m = 23-bit 16.63 6.75
FP, 16-bit, 200 MHz m = 10-bit 5.01 3.33
FP, 12-bit, 217 MHz m = 7-bit 4.07 2.90
FP, 12-bit, 200 MHz m = 7-bit 4.01 2.66

The energy consumption of the 32-bit floating-point arithmetic is highest as expected.
On the other hand, the energy dissipation of the floating-point function unit can be
significantly lowered by reducing the number of mantissa bits to the extent in which
even less energy is consumed with a floating-point multiplier than with a fixed-point
multiplier. Then again, the floating-point adder consumes more energy compared
to the fixed-point adder due to normalization and rounding. As the results show,
the floating-point arithmetic is not necessarily as expensive as has been traditionally
assumed. It is true that the floating-point function units are in general more expensive
than the corresponding fixed-point unit, but the gains of the floating-point arithmetic can

be more significant on the system level.
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Rounding methods and denormal numbers

The IEEE 754-2008 standard [138] defines five rounding methods in order to provide
superior numerical accuracy and stability. Two of the methods round to the nearest
value: the first method rounds to the nearest value with a zero least significant bit
when the number falls midway and the second one rounds a positive number to the
nearest value above and a negative number to the nearest value below. The last three
methods are based on directed rounding. The methods are truncation, round toward
positive infinity and round toward negative infinity. The truncation provides the lowest
energy dissipation and hardware complexity, whereas the rounding towards the nearest
value is more complex to implement in hardware. In addition, the standard defines
also denormal numbers and exception handling, for example in the case of an invalid
operand or overflows.

The effect of rounding on detection reliability is illustrated in Figure 23. The round
to the nearest technique, which is the IEEE default mode, and truncation methods are
evaluated applying the QRD, SSFE detector and LLR blocks. All techniques use one
guard bit. The exponent is fixed to 5 bits, whereas the QRD has a 12-bit mantissa,
the SSFE detector has a 6-bit mantissa and the LLR have a 4-bit mantissa. The round
to the nearest technique provides a better bit error rate, but is also significantly more
complex than the truncation. In general, it is probably more cost-effective to add an
extra mantissa bit and use truncation to achieve the same BER than with round to the
nearest technique. Adding subnormal numbers do not provide gain in this application.

Table 13 presents the effect of different rounding techniques in hardware complexity
of function units. In synthesis, a low-leakage 90 nm CMOS technology is utilized. The
synthesized function units support 16-bit half precision floating-point arithmetic with
137 MHz clock frequency, i.e., 7.3 ns clock period. The first row in the table presents
the FU complexity without a rounding logic. The truncation and round toward the
nearest techniques are evaluated with 1 and 3 guard bits. In general, the results show
that the rounding complexity is more significant in the adder than in the multiplier.
The truncation increases the FU logic with 200 GEs, whereas the round to the nearest
technique increases the FU complexity with 625 GEs. With the applied technology, three
guard bits increase the complexity approximately 875 GEs. The truncation increases the
critical path 0.50 ns compared to the FU without rounding, and the round to the nearest
technique 0.54 ns, respectively. Approximately, the third of the critical path in adder FU

is caused by the normalization logic. Denormal numbers are not supported in FUs.

82



2x2 antenna system, 64-QAM, correlated channel
T T T

T
t —HB— |EEE rounding
truncation
truncation with
subnormal numbers
107"+ B
QRwl=18,e=5m
SSFEwl=12,e=
o LLRwl=10,e=5
@
10°H
10°H
I I I I I
22 23 24 26 27 28

25
SNR [dB]

Fig. 23. The effect of rounding methods on the bit error rate of the detection.

Table 13. The effect of rounding method on hardware complexity in gate equiva-
lents ([22], published by permission of IEEE).

Multiplier (GE) Adder (GE)
No rounding 1575 1875
Truncation (1-bit guard) 1600 2075
Round-to-nearest (1-bit guard) 1710 2500
Round-to-nearest (3-bit guard) 1760 2750

4.3 Word length requirements

Optimal word lengths have a significant effect on the detection reliability and energy
dissipation. In this section, the required minimum word lengths are defined for the QRD,
detector and LLR blocks. The optimal or close to optimal word lengths are searched by
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comparing reduced bit-width fixed- and floating-point words to the double precision
floating-point performance. The double precision arithmetic follows the IEEE 754
standard with rounding to the nearest technique, whereas the other floating-point word
lengths are simulated with truncation applying a single guard bit. For the QRD and
LLR blocks, a 4-bit exponent was found to be optimal in most of the cases, but some
configurations required 5 bits to provide a wide enough dynamic range. Thus, a 5-bit
exponent has been used for QRD and LLR blocks. The optimal configuration presents
the accuracy, which performs very close to the double precision reference curve.

The bit error rate of the QR decomposition with different mantissa bit-widths is
presented in Figures 24 and 25. The QRD has the highest need for precision of all
the studied algorithms. It requires a 10-bit mantissa in a 2 X 2 antenna system with a
16-QAM and up to 16-bit mantissa in a 4 x 4 antenna system with a 64-QAM. However,
it seems reasonable to sacrifice 2 bits of precision and achieve a near-optimal accuracy
in order to save in energy dissipation.

The word length requirements for the K-best algorithm in a 2 x 2 antenna system
with a 16-QAM are presented in Figure 26. The fixed-point arithmetic requires an 11-bit
word having a 3-bit integer and a 7-bit fraction to reach equivalent detection performance
compared to the double precision floating-point arithmetic. The floating-point arithmetic
requires a 10-bit word with 4-bit exponent and 5-bit mantissa.

Figure 27 shows the increased word length requirement in a 4 x 4 antenna system
with a 64-QAM. The group of 16- and 14-bit fixed-point words and 13- and 12-bit
floating-point words are very close to each other in bit error rate-wise. Thus, when the
hardware energy dissipation is taken into account, the 14-bit fixed-point and the 12-bit
floating-point words are closer to optimal.

Similar word lengths are required for the SSFE and the K-best algorithms. The
SSFE algorithm is evaluated with level update vectors m = [1223] in the 2 x 2 antenna
system and m = [11122223] in the 4 x 4 antenna system. The BER performance results
for 2 x 2 and 4 x 4 antenna systems with different word lengths are presented in Figures
28 and 29. The SSFE algorithm performs well with relatively low precision compared to
the QRD. In the 2 x 2 antenna system with a 16-QAM, the SSFE requires 5 bits in the
mantissa, while even 3 bits of the mantissa provides performance comparable to less
than 1 dB SNR attenuation. The 4 x 4 antenna system with a 64-QAM requires 7 bits
for optimal performance, but works nearly as well with 6 bits in the mantissa.

The word length study revealed that the LORD algorithm overflows or underflows

very easily due to inverse and multiplication operations at the beginning of the algorithm.
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Fig. 24. Word length requirement for the QR decomposition in a 2x2 antenna sys-
tem with a 16-QAM in a correlated channel.

The 2 x 2 antenna system applies an alternative preprocessing, in which the normal-
izations are performed after the channel orthogonalization is completed. This seems
to cause a wider dynamic range in the upper triangular matrix elements which then
demands extra integer bits in the LORD algorithm. Similar disadvantage is not observed
with a floating-point arithmetic, in which the 5-bit exponent provides enough dynamic
range. Based on the observation, a traditional QRD is a better solution for preprocessing.
The word length requirements for the 2 x 2 antenna system are presented in Figure 30.
A traditional QRD preprocessing is performed in a 4 x 4 antenna system, which keeps
the dynamic range smaller and both number arithmetics perform well with rather low
word lengths.

The BER performance results for LLR calculation with different mantissa bit widths
are presented in Figures 32 and 33. The LLR calculation performs well with very low
precision. However, too low precisions cause the BER curve not to be smooth. This is

caused by the roundoff error in the noise variance term used in the calculation, which
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Fig. 25. Word length requirement for the QR decomposition in a 4x4 antenna sys-
tem with a 64-QAM in a correlated channel.

biases the decisions in either direction. The 4-bit mantissa provides an optimal precision
for both antenna systems.

After the individual simulations, the algorithms were simulated together to find
out if putting all the components together has any cascading effects on the detection
accuracy. No performance loss was observed in the 16-QAM case, but the 64-QAM
caused approximately 0.5 dB loss in a high correlated channel. The loss can be corrected
by adding an extra mantissa bit to the QRD and detector word arithmetic. Thus, the
detectors require at least a 7-bit mantissa in all simulated cases except in a 4 X 4 antenna
system with a 64-QAM in a high correlated channel, where a 8-bit mantissa is required.
The optimal mantissa length in terms of accuracy and energy consumption for the QRD
would be a 11-bit mantissa in a 2 x 2 antenna system and a 16-bit mantissa in a 4 x 4

antenna system.
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Fig. 26. Word length requirement for the K-best algorithm in a 2x2 antenna system
with a 16-QAM in a correlated channel.

4.4 Estimated energy dissipation

Modeling system complexity or energy dissipation is sometimes helpful when new
systems are designed. The first system feasibility tests can be done using simple models
in order to find out any lethal bottlenecks in the design. Even though most of the
models are simple and provide usually only average estimates on silicon complexity or
energy dissipation, they can be used in the beginning of the rapid prototyping process to
estimate relative complexities in different designs. However, these models should not
be used as an absolute energy indicator for the algorithms. In addition, the number
arithmetic is in an important role because the function units have different weights
based on the arithmetic. This can be found out by comparing the simple fixed-point
complexity model presented in Section 3.7 to the floating-point complexity model which

is presented next.
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Fig. 27. Word length requirement for the K-best algorithm in a 4x4 antenna system
with a 64-QAM in a correlated channel.

Energy models for floating-point function units are proposed in [15]. The models
use floating-point multipliers and adders as basic building blocks and other operations
are built based on the basic blocks. The implementation of the operations is based on the
low-power, pipelined arithmetic. Truncation is assumed in the models. The energy
dissipation in a function unit is represented as signal transitions.

The dynamic energy dissipation is determined by the switching activity and switching
energy. The switching activity depends on the hardware architecture, clock frequency
and input signals, while the switching energy is defined by the supply voltage and
transistor capacitance. Thus, the dynamic energy dissipation in a specific hardware can
be estimated independently of clock frequency and process by summing the number of
signal transitions per operation. Hence, the signal transition has been used as a unit for
the estimated values of energy in equations and figures below. Because the switching
activity highly depends on input signals, the model uses the averaged number of signal
transitions per operation. The signal transitions in operations are modeled as a function
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Fig. 28. Word length requirement for the SSFE algorithm in a 2x2 antenna system
with a 16-QAM in a correlated channel.

of the floating-point mantissa. The energy dissipation of rounding is modest because the
truncation method is assumed.

The floating-point multiplication is based on the integer multiplication of mantissa,
because 98% of the energy is consumed in mantissa multiplication when rounding
is based on truncation [135]. The integer multiplier is based on the array multiplier

presented in [153]. The energy model of the floating-point multiplier is defined as
Tt (m) = 1.74m +0.38m?, 27)

where m is the length of mantissa. The addition model is composed of two shifters and
a mantissa adder. The shifters are based on the barrel shifter design. The low-power
implementation of the integer adder is presented in [154]. The energy estimation for the

adder is
Thada(m) = 13.5m. (28)
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Fig. 29. Word length requirement for the SSFE algorithm in a 4x4 antenna system
with a 64-QAM in a correlated channel.

The algorithm of inverse unit is based on the Taylor series expansion [155]. The energy

model for the inverse unit is

7-inv(m) = ]0g2( )STmul( ) + Tadd( )+ Tmul( ) (29)

4 4

The inverse square root is also based on the Taylor series expansion technique. The
energy model for the inverse square root is

Tinvsq(m) = 10g2( )4Tmul( ) + Tadd( ) + 2Tmul( ) (30)

4 4
The energy estimation for the square root can be modeled as a sum of T,y (m) and
Tinvsq(m). The division is modeled by summing the models of inverse unit T,y () and
multiplication Tp;(m). Comparison, implemented with a substraction followed by the
sign checking, is modeled as an addition T,qq(m).

The energy consumptions have been estimated for the LLR, QRD and detector

algorithms. The energy estimates assuming a half precision floating-point arithmetic are
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Fig. 30. Word length requirement for the LORD algorithm in a 2x2 antenna system
with a 16-QAM in a correlated channel.

based on the models presented in [15]. We have defined the detailed word lengths for
the algorithms before but due to fact that the thesis discusses programmable detectors,
which are assumed to be executed on a programmable platform, which often by default,
support a certain word length. The energy dissipation of the QRD has been estimated for
2 x 2 and 4 x 4 antenna systems, corresponding 4 x 4 and 8 x 8 real-valued matrices.
The QRD is assumed to be computed once in the channel coherence time.

The detector and LLR results are presented in energy estimation per correctly
detected bit. Thus, in addition to algorithm complexity, the results take into account
the detector performance in a fading channel. The energy dissipation for the detectors
and LLR algorithm has been evaluated for 2 x 2 and 4 x 4 antenna systems and 16-
and 64-QAM. The K-best algorithm applies list sizes K =8 and K = 16 in 2 x 2 and
4 x 4 antenna systems, respectively. The SSFE algorithm has been run with the level
update vectors m = [1223] and m = [11122223]. The LORD algorithm applies the
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Fig. 31. Word length requirement for the LORD algorithm in a 4x4 antenna system
with a 64-QAM in a correlated channel.

metric recycling enhancement in the 4 x 4 antenna system.

While a significant energy saving can be achieved by optimizing the mantissa bit
width, the algorithmic complexity has more impact on the energy consumption, as seen
in the different system configurations in Figures 34 and 35. The detection is the most
energy consuming algorithm in all cases. Based on the results and implementation
experience, the SSFE algorithm is the most energy efficient algorithm. The energy
dissipation is emphasized in the floating-point model because the comparison operation
is based on the substraction followed by the sign check. The LORD algorithm benefits
from the simple symbol selection, but on the other hand, the LLR energy dissipation
increases due to multiple large candidate lists. The energy dissipation of the SSFE
algorithm is on a par with the LMMSE detector. There is a clear difference in the energy
consumption as the antenna system and modulation is changed from 2 x 2 to 4 x 4. The
results are in line with the result presented in Chapter 3 for the fixed-point arithmetic.
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Fig. 32. Word length requirement for the LLR calculation in a 2x2 antenna system
with a 16-QAM in a correlated channel.

The sorting of the candidate symbols in the K-best algorithm is based on the insertion
sort algorithm [127] and the candidate list is maintained in order during the tree search,
which reduces the number of comparisons in the detection algorithm compared to the
theoretical number of comparisons presented in Table 4. The non-ordered candidate list

can increase the number of comparisons up to 3.5 fold.

4.5 Conclusions

In this chapter, we discussed the fixed- and floating-point number arithmetic in the
context of MIMO detection. The motivation for using floating-point arithmetic relates to
a better programmability and code legacy than the fixed-point arithmetic can provide.
Another significant observation is that the word length optimized floating-point arithmetic

can provide an energy-precision tradeoff which is on a par with the fixed-point arithmetic.
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Fig. 33. Word length requirement for the LLR calculation in a 4x4 antenna system
with a 64-QAM in a correlated channel.

The results show that the algorithm selection based on the energy-complexity-
performance tradeoffs is not straightforward. While the word length requirements are
harder for the LORD algorithm, the algorithm achieves better detection reliability than
the other algorithms in the 2 x 2 antenna system. Thus, the LORD algorithm gains in
algorithm complexity, but requires a higher word length, which in its turn increases
the energy consumption. Then again, the low-complexity SSFE algorithm is energy
efficient, but the detection reliability is not as good as the K-best algorithm has in the
4 x 4 antenna system. These observations reveal that it is hard to find a single optimal
detection algorithm for all cases, while better energy-complexity-performance tradeoffs
can be achieved by using more than one algorithm.

The theoretical energy models for the floating-point function unit provide an
opportunity to estimate the relative complexity differences between algorithms. More

accurate energy comparison between the number arithmetics based upon synthesized
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Fig. 34. Energy consumption estimation per correctly detected bit at 15 dB SNR
in a 2 x 2 antenna system.

hardware is presented in the next chapter.
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Fig. 35. Energy consumption estimation per correctly detected bit at 30 dB SNR
in a 4 x 4 antenna system.
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5 Programmable detector implementations

This chapter presents the implementation results of detector algorithms on three
programmable architectures. Two different digital signal processors, a middle-range
graphics processing unit and a processor based on the transport triggered architecture,
are applied. The design parameters for the implementations are defined in Chapters 3 and
4. The implementation results are summarized in silicon complexity, energy dissipation
and detection rate. In addition, the design efforts based on the design experiences are
estimated for each platform. Section 5.1 presents briefly the implementation bounds for
the future receiver implementations. Digital signal processor (DSP) implementations are
summarized in Section 5.2. In section 5.3, two detector algorithms are implemented with
a GPU. Finally, Section 5.4, represents a processor architecture for detection algorithms

based on the transport triggered architecture.

5.1 Signal processing in receiver

A rough estimate of the system feasibility can be approximated by estimating giga
operations per second (GOPS) requirement and consumed energy per executed operation
(op). A 3G mobile phone receiver is estimated to require 3540 GOPS to handle 14.4
Mbps data rate [156]. However, a baseband signal processing in a MIMO-OFDM
receiver requires a processing speed of 210-290 GOPS, which is a great challenge for
the future mobile devices. To give a perspective for GOPS requirements, a modern
digital signal processors can execute approximately 10 GOPS per core. Thus, the
future processing platforms most probably first continue to evolve toward hybrids of
programmable, reconfigurable and fixed platforms. This means to embed DSPs, SPISP,
FPGAs and ASICs in the same processing platform.

The energy dissipation is a critical design criterion for mobile devices. In a 3G
mobile phone, the platform executing receiver task can consume approximately 25
pJ/op [157]. Thus, the future mobile devices have to be based on sophisticated signal
processing architectures such that they can execute hundreds of GOPS with less than 1
W. The required energy per executed operation in such a mobile device should be around
3-5 plJ/op, which necessitates a careful design even for application-specific integrated

circuits. The development of the CMOS technology has been able to decrease the
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energy dissipation approximately 1.5-fold per technology step. Partly, this is achieved
by lowering the operating voltage. Table 14 presents the energy estimates for a 32-bit
operation in different architectures [157].

Table 14. Energy dissipation per operation for different platforms.

Hardware accelerator (90 nm CMOS) 5-10 pJ

TTA (130 nm CMOS) 24 pJ (scaled to 90 nm)
Embedded processor (90 nm CMOS) 125-500 pJ
General purpose processor (90 nm CMOS) 10-20 nd

A large number of wireless and wired communications standards exist and have
been proposed for the future. In order to reduce the complexity of devices supporting
multiple standards, a direction towards programmable platforms are considered to
be promising. Traditionally, digital signal processors have provided a cost-effective
platforms for convergence applications integrating and delivering voice, data and video
without participating in computationally intensive tasks. Thus, the computationally
heavy communication system parts have typically been implemented using application-
specific integrated circuits. However, the great diversity in standards has forced the
manufacturers to find solutions to replace the expensive design path caused by the design

of custom hardware circuits. This has opened markets for programmable platforms.

5.2 Digital signal processor

In this section, a K-best detector algorithm aimed at beyond 3G technologies is
implemented on state-of-the-art DSP technology. Texas Instruments TMS320C6455
very long instruction word (VLIW) and Optimum Semiconductor Technologies’ SB3500
multi-core devices are applied. Table 15 summarizes the main properties of these two
processors. The SB3500 platform has three identical Sandblaster Extended (SBX) cores
running at 600 MHz. The core has four hardware threads. The cores are based on
vector architecture supporting single instruction multiple data (SIMD) processing. In
addition, the platform includes an ARM core. The platform is manufactured with a 65
nm low power process technology. TMS320C6455 is a single core DSP operating at
1200 MHz clock frequency. The architecture is based on the VLIW architecture, which
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can execute eight instructions per cycle. The processor is manufactured with a 90 nm

process technology.

Table 15. SB3500 versus C6455 properties.

Processor SB3500 C6455

# of cores 3 (plus ARM9) 1

# of hardware threads/core 4

Core clock rate (MHz) 600 1200
Thread clock rate (MHz) 150

Performance per core 9.6 GMACs 9.6 GMACs

5.2.1 VLIW DSP implementation

Texas Instruments’ TMS320C6455 has been used as a benchmark for the DSP implemen-
tation of the MIMO-OFDM detector. A 2 x 2 MIMO antenna system with a 64-QAM
is assumed. The implemented detector is based on the K-best LSD algorithm with
list sizes K = 8 and K = 16. A real-valued signal model is applied which doubles the
channel matrix dimensions and the tree search depth. On the other hand, the modulation
symbol cardinality consists of symbols on a real axel, i.e., the symbol alphabet is a
square root of modulation order, Q = VP.

Results

A metric calculation and control latency per each tree search level is summarized in Table
16 when a list size K = 16 is applied in the implementation. The total latency corresponds
a decoding rate of 22.5 Mbps for metric calculation and control. However, including the
software sorter in the processing chain, the processing latency is significantly increased.
Although the list size is reduced to K = 8, a single tree search takes 8,109 clock cycles
and decreases the decoding rate down to 1.8 Mbps.

The software implementation of the sorter causes branches to the program execution,
which shows as high latency penalties and makes a real-time execution impossible.

Even though the fast core memory is applied for storing all the intermediate results,
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the latency of memory accesses stalls the program execution significantly. Due to a
loose scheduling of resources caused by the sorter, only a modest amount of resources
provided by the VLIW architecture can be actually exploited. To overcome the sorting
problem, the DSP processor would require a register based instruction set extension with

a hardware accelerator to provide a fast enough sorting.

Table 16. PED calculation and control code on DSP with a list size K = 16 ([21],
published by permission of Elsevier).

Level Number of PEDs Number of clock cycles
1st 8 63
2nd 64 130
3rd 128 214
4th 128 231
Total 328 638

Another issue with the core is the lack of possibility to parallel processing of symbol
vectors. To meet the 3G LTE symbol rate requirements, a single symbol vector must be
processed approximately in 0.23 us, that is, in 285 clock cycles assuming a 1200 MHz
clock frequency. By comparing the latency requirements and achieved DSP results, it is
seen that not even the metric computing is executed fast enough. The results show that
in addition to enable an efficient processing of single symbol vector, there needs to be a
possibility to process several symbol vectors in parallel.

The energy consumption of the DSP implementation is hard to estimate without
proper tools. However, there is an energy dissipation estimate available for the
TMS320C6455 core during a typical activity [158]. A baseline dissipation is reported to
be 1,618 mW including a leakage of 481 mW and clocking of 1,137 mW. A high clock
frequency increases the core power dissipation significantly. A high leakage power
is a known property of modern process technologies. Assuming a typical 60 percent
utilization of the CPU, the CPU consumes approximately 549 mW, which leads to the
total power dissipation of 2,167 mW. A ten percent change in the CPU load changes the

power dissipation approximately 92 mW.
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5.2.2 SB3500 Implementation

The SB3500 platform is a multi-core device the features of which include compound
instructions, single input multiple data (SIMD) vectorization units and hardware support
for multiple threads. The SB3500 platform architecture includes three Sandblaster
Extended cores each having four hardware threads. In addition, the platform includes
ARM 926EIJ-S processor aimed mainly for control tasks. A short data type is beneficial
due to a 64-bit memory data path, which means that the processor can store/load four
16-bit quantities efficiently and the vectorization architecture can be exploited.

All the hardware threads can operate simultaneously, and thus, multiple concurrent
program execution is supported. This feature provides an advantage in implementations
in which parallelism is required, such as processing subcarriers in parallel . The
multithreaded processor uses the so-called token triggered threading, which simplifies the
thread selection hardware and leads to the power savings compared to the conventional
simultaneous multithreading [159]. Flexibility in scheduling threads, SIMD vector
operations and compound instructions are claimed to provide higher performance
than conventional interleaved multithreading. All threads can simultaneously execute
instructions, but only one thread may issue an instruction on a cycle boundary [106].

Most SIMD vector instructions have four pipeline stages. Since there are four
processor cycles between instructions executed by the same thread, the latency can
be hidden into a single thread cycle. Thus, at least part of the latency caused by
conditional branches can be hidden in the pipeline, and, thus, preventing execution
stalls. Dependency check or bypass hardware is not required, because the result of
an instruction is guaranteed to be written back before the same thread issues a new

instruction.

Results

The implementation parameters for the K-best algorithm are the same as in the DSP
implementation: a real-valued 2 x 2 antenna system with a 64-QAM. The modulation
cardinality having eight symbols in a real-valued 64-QAM is beneficial for an efficient
vectorization utilization in the SB3500 processor. The 16-bit short data type is used
to store PEDs and the corresponding symbol identifier. Since a single symbol can be
represented with three bits, the tree search path, including four (2 x 2 antenna system)
symbols, can be stored in one 16-bit memory slot. A core specific local memory to store
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all the intermediate results.

The K-best algorithm is programmed in C such that each level of the tree search have
been described in a separate function. Programming the algorithm in such a way helps
the compiler to do a better scheduling. The metric calculation and control is efficiently
implemented on SB3500. However, the sorter causes similar latency issues as countered
in the DSP implementation above. The sorter breaks the efficient vectorization of the
program. Table 17 summarizes the latencies, including metric calculation control and
sorting. There are less sorter calls than calculated PEDs, because the radius d is limited
to discard the most unlikely paths in the search tree. The radius is selected so that there
is no impact on the bit error performance. The table shows that approximately a third of
the total latency is caused by the sorting. The achieved decoding rate of the platform is
only 3.4 Mbps.

Table 17. SDR latencies including software sorter with a list size K = 8 ([21], pub-
lished by permission of Elsevier).

Level Number of PEDs Number of clock cycles
1st 8 55

2nd 64 1396

3rd 64 1485

4th 64 1372

Total PED 200 4308

Sorting (114) 2016

Total 6324

5.2.3 SB3500 with instruction set extension

The SB3500 platform is assumed to be enhanced with an instruction-set extension and a
respective function unit. The SBX core hides four processor cycles into a single thread
cycle. Thus, a fairly high latency instruction-set extension sorter could be implemented
[160]. An ISE sorter with the latency of a single thread cycle could be practical to
implement without violating the data dependency principles of the SBX processor

architecture.
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Table 18 presents the latencies of the distance calculations in all four levels, the
when list size K = 16 is used. On the first level, eight PEDs are calculated in 40 cycles.
The sorting is not required, because the K is larger than the number of PEDs. The second
level calculates 64 distances in 129 cycles. During the second level, the 16 shortest
distances are sorted to the intermediate list. When proceeding toward the next levels, the
distance calculation complexity increases due to more complex symbol fetching from
the symbol list. On the third and fourth levels, 128 PEDs are calculated in 243 and 262
cycles, respectively. As the results show, the SB3500 platform schedules the metric
calculation and control efficiently and is able to exploit vectorization and hides the
latencies in the pipeline. Calculating a single PED takes approximately two clock cycles.
Thus, providing an efficient ISE replacing the software sorter improves the performance
significantly. Table 19 presents the latencies for a detector with the list size K = 8. The
compiler schedules the first two levels of the algorithm differently depending on the
list size, which can be seen as a one clock cycle difference in latency even though the

number of calculated PEDs are the same.

Table 18. PED calculation and control code on ASIP with a list size K = 16 ([21],
published by permission of Elsevier).

Level Number of PEDs Number of clock cycles
1st 8 40
2nd 64 129
3rd 128 243
4th 128 262
Total 328 674

Totally, 328 PEDs are calculated in 674 cycles. The PED calculation with a single
hardware thread, hence, reaches a performance of 2.67 Mbps. If all the 12 hardware
threads of the platform are allocated for the PED calculation, the detection decoding rate
of 32.0 Mbps will be is reached. This is a significant decoding rate increase compared to
SDR implementation with 3.4 Mbps.

Based on the information provided by the manufacturer, the SB3500 instruction-set
can be expanded [160]. The multithreaded pipeline hides a four processor cycle latency

efficiently and allows hence fairly complex extensions to be designed. To achieve the
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Table 19. PED calculation and control code on ASIP with a list size K = 8 ([21],
published by permission of Elsevier).

Level Number of PEDs Number of clock cycles
1st 8 39
2nd 64 130
3rd 64 133
4th 64 142
Total 200 444

strict real-time requirements of the implemented application, a single thread cycle sorter
executed in parallel with the PED calculation is required.

The real time requirements for the platform, which has 12 hardware threads each
running on 150 MHz clock frequency, can be roughly calculated. Twelve symbol vectors
can be processed in parallel and 25 sequential calculations are required, which means
that a single thread can spend approximately 2.85 us to calculate one symbol vector.
With 150 MHz clock frequency, this means 427 cycles per symbol vector. Comparing
the calculated and achieved results, a required symbol rate is not far from the achieved

result.

5.2.4 Discussion

There has been a significant development in digital signal processors recently, and
they are now capable of handling complex signal processing tasks. However, as the
experiments with digital signal processors show, the DSP architectures are not capable
to achieve the real-time requirements without instruction set extensions. By accelerating
DSPs with fine-grained accelerators, the platform performance can be usually improved
significantly.

A trend, which can be seen both in software and hardware design, is the use of high-
level language tools based often on C language rather than using assembly programming
or VHDL in hardware design. Naturally, the trend is caused by complex systems, which
has forced the developers to accelerate the development cycle and cut the cost. Now,
part of the development costs have been shifted into the compiler designers. An efficient
implementation based on a high level language requires a compiler designed especially
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for a particular platform. This principle is followed in SB3500 platform development, in
which the architecture and C compiler have been designed side by side.

Table 20 summarizes the results for the three implementation presented earlier. The
table presents the achieved and required latency in clock cycles for a single symbol
vector detection. The last column presents the required speed-up for the current
implementations in order to achieve the required symbol rate specified by the 3G LTE
standard.

Table 20. Implementation summary and requirements for real time performance
for a single symbol vector calculation ([21], published by permission of Elsevier).

Clock rate Achieved Required Required degree
(MHz) latency (cc) latency (cc) of parallelism
DSP 1200 8109 (K =8) 286 28.4
SDR 3 x 600 6324 (K =8) 427 14.8
SB3500 + ISE 3 % 600 674 (K = 16) 427 1.6

Since the original work, several manufacturers have introduced new DSPs aimed at
LTE, WiMAX or even 4G technologies. Ceva-XC [161] is a powerful DSP supporting
vector computing, having optional instruction sets for FFT, division and square root.
Ceva-XC family includes several DSP cores, both of them targeted to be used in mobile
devices and base stations. Tensilica has released new DSPs in ConnX BBE [162]
families, including devices for handheld and base station purposes. Like many other
state-of-the-art DSP, ConnX BBE DSPs are based on the SIMD architecture, including

instruction-set extensions for critical algorithms in baseband processing.

5.3 Graphics processing unit implementation

The graphics processing units were for a long time used only for graphics processing
due to lack of an efficient programming model. Since Nvidia introduced the compute
unified device architecture (CUDA), computing engine that can be programmed with
high level programming languages, the GPUs have evolved toward general purpose
graphics processing units (GPGPU) having an interest in larger areas of applications.

OpenCL [13] is a framework for writing programs and takes a step forward from
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CUDA. In OpenCL, the target has been in writing programs that can be executed
heterogeneously across platforms such as GPUs, CPUs and other processor architectures
without laborious modifications. The OpenGL[12], on the other hand, can be thought
as a subset of OpenCL targeted on 2D and 3D computer graphics applications. The
common goal for all these software programming models is to provide a parallel
execution of the program described with a traditional sequential programming language
such as C.

In this section, detection implementations based on the SSFE and LORD detection
algorithms on the graphics processing unit are presented. The applied GPU is the Nvidia
Quadro FX 1700, which is one of the mid-range products of the Nvidia Quadro product
family. It consists of four stream multiprocessors (SM). Each of the SMs contains
eight scalar processor (SP) cores running at 920 MHz. The maximum number of
active threads running on the Quadro FX 1700 is 3,072, 768 per stream multiprocessor.
The Quadro FX 1700 has a global memory of 512 MB of graphics double data rate 2
(GDDR2) running at 400 MHz. It has a 128-bit memory interface and a 12.8 GBps
memory bandwidth. The total amount of constant memory available is 64 kB and 16
kB of shared memory is offered per block. The maximum power consumption of the
Quadro FX 1700 is 42 W. The maximum peak rate supported by Quadro FX 1700 is
about 89 GFLOPS. For comparison, the peak rate of Intel’s 17-975 core for desktop
computers is 55.36 GFLOPS.

The massive computational capability of the GPUs is based on their high level
hardware parallelism. In general, a GPU can have several SMs that are composed
of several pipelined scalar processor cores. The SMs utilize a single instruction
multiple thread (SIMT) architecture to manage thousands of threads being processed
simultaneously. Each thread is mapped to a single SP core having own instruction
address and register state and executed then independently. The threads are gathered by
the SIMT unit to groups of parallel threads called warps. The warp size in Quadro FX
1700 is 32 threads.

A kernel is a function that is called from the CPU, but executed on the GPU.
Only a single kernel is executed at a time, but thousands of threads can be executed
simultaneously in parallel inside a single kernel function. A kernel is composed of a grid
that consists of a set of two dimensional blocks of threads. At every kernel launch, the
grid and block dimensions to be used are fed to the kernel as an input. One block can
contain up to 512 threads. The grid can consist of multiple equally sized thread blocks,

so the total number of threads is equal to the number of threads per thread block times
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the number of thread blocks. However, the number of thread blocks is more dependent
on the processed data than the number of stream multiprocessors available [11].

When a kernel function with one or more thread blocks is executed, the SIMT unit
splits the threads into warps and schedules them for execution. The threads inside a warp
start the execution simultaneously at the same program address, but are free to branch
and execute independently. The threads are assigned with unique increasing thread IDs.

GPUs can have a large amount of off-chip global memory having hundreds of cycles
access latency. In addition, GPUs have fast on-chip memory and register resources
which should be exploited prior to global memory. The latency penalties of memory
accesses can be avoided to some extent by using on-chip resources and by careful design
of global memory usage.

Before starting the execution of a kernel, the required data has to be copied from the
CPU’s system memory to the GPU’s global and constant memories. This operation is
considerably slow due to the slow PCI-express bus, which is why the data should be
kept on the GPU memory as long as possible. When peak performance is aspired on a
GPU, the use of fast memories and registers should be maximized.

Quadro FX 1700 is programmed with CUDA, which is a software programming
model to write parallel programs using C. There are CUDA extensions available to
other standard programming languages such as FORTRAN. In the CUDA programming
model, a GPU is viewed as a computing device that works as a coprocessor for the
main central processing unit (CPU). The CPU is often called as a host and the GPU as a
device. The program is divided into parallel portions and are then executed as kernel
functions.

The computation required in the SSFE and LORD detection algorithms can be
efficiently parallelized and mapped for GPU processing. The massive parallelism offered
by the GPUs makes it possible to run for instance numerous parallel independent tree
searches on a single GPU. However, the K-best algorithm, for instance, can not be
efficiently map on a GPU due to the need of sorting operations. The preprocessing for
both of the algorithms is performed in the host code. The preprocessed values are stored

in the GPU’s constant memory.

5.3.1 Mapping SSFE on GPU

A different level update vector of the SSFE algorithm is applied in the GPU implementa-
tion than in the presented simulations or in the TTA implementation of the algorithm
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presented below. The level update vector m = [1144] provides a corresponding bit error
rate as the level update vector m = [1223]. However, a different level update vector has
been chosen because of the implementation reasons. The first two levels do not require
any conditional execution and the 16 search paths can be efficiently mapped on the GPU
such that the single tree search is executed with 16 parallel threads. Thus, in order to
allocate a full warp of 32 threads, two tree searches, i.e., two symbol vector detections,
need to be executed in parallel. A kernel grid of the resource allocations is illustrated
in Figure 36. The first 16 threads are used to detect one subcarrier and the rest of the
threads inside the block detect another subcarrier. Block and thread indices are used to
select which subcarrier is to be detected.

Like in all real-time programming, also in CUDA programming, conditional
execution should be avoided due to branches. When mapping parallel processing for a
GPU, some conditional execution is required and the number of branches depend on the
parallelism design, e.g., threadID and blockID indices. In addition, the slicing operation
in the SSFE algorithm needs conditional execution. To avoid serial code execution, and
thus, inefficient algorithm execution, the conditioning needs to be performed on threads
inside a single warp.

In the SSFE implementation, the conditioning depends on the threadID and blockID.
The threadID is mainly used in slicing operations and the blockID is used to decide
which received partial symbol vector is chosen for calculations. Because some of the
conditioning depends on the blockIDs that are not located inside a single warp, part of
the code is forced to be executed in serial. This results in a decreased performance level.

To find the best configuration for resource allocation, computer simulations with
different grid and block configurations were performed with the CUDA Visual Profiler.
The results are presented in Table 21. The peak performance of 36.06 Mbps is achieved
by mapping 64 parallel subcarrier detections on the GPU. The parallel subcarrier
detections are performed with 32 thread blocks consisting of 32 threads (two parallel
tree searches) using of a total of 1,024 active threads per kernel, which is a third of the
available resources. As the number of parallel subcarrier detections increases, the needed
conditional execution increases at the same time. Using more than 32 parallel threads
inside the thread block runs out the shared memory, which decreases the achievable
decoding rate. Table 21 shows that the higher occupancy of the GPU does not necessary
guarantee the best performance. The thread block size of 64 threads increases the
occupancy level of the GPU, but the increased number of branches in the program

execution decrease the performance more than the higher occupancy level can gain.
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Fig. 36. GPU resource allocation for tree search.

Memory usage

The preprocessed values are stored in the constant memory to avoid unnecessary, high
latency memory accesses between the host and device. The registers and shared memory
are used in the computations and only the final symbol candidate list and PEDs are
written to the global memory and transferred back to the host. The focus of the study is
on the computational power of GPUs, which is why the high latency memory transfers
between host and GPU are left with less attention. The shared memory is used for
variables and intermediate results that could be shared along all the threads inside a
single block. The registers are used to store variables and intermediate results that are
only used by a single thread.

Table 22 shows the memory allocation for the different grid configurations. The
thread block size dictates how efficiently threadID and blockID variables can be
exploited in the computations. In this implementation, the conditioning necessitated by
the algorithm is performed with these variables. The threadID is mainly used for slicing

operations and the blockID is mainly used in sorting out the subcarriers to be detected.
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Table 21. SSFE detector configurations.

Grid size Decoding rate Occupancy
(threads per thread block x thread blocks) (Mbps) %
4x4 3.24 33
4x32 19.81 33
4 %128 12.22 33
16 x 16 15.35 33
16 x 32 22.98 33
16 x 64 19.42 33
32x 16 25.45 33
32x32 36.06 33
32 x 48 22.09 33
64 x 16 24.09 50
64 x 24 26.52 50
64 x 32 19.83 50

Table 22 shows that the number of dynamic instructions per parallel subcarrier
detection is the smallest with the grid configuration of 32 x 32. In this grid configuration,
no warps are serialized, and thus, the number of instructions is the smallest. In all
the other configurations, warps need to be serialized at least to some extent. The grid
configuration of 32 x 32 also allocates the maximum number of active blocks per SM
without the need of stalling any thread blocks.

Table 22. SSFE resource utilization.

Grid size Shared memory Registers Instruction
(per thread block (per thread) (per partial
in bytes) subcarrier detection)
4x32 40 11 41
16 x 32 64 15 36
32x32 32 13 24
64 x 24 48 20 29
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5.3.2 Mapping LORD on GPU

In this section, the mapping of the LORD algorithm for a 2 x 2 antenna system with a 16-
QAM is presented. As in the SSFE implementation, also in the LORD implementation,
the preprocessing is performed in the host code and the channel matrix and the received
partial symbol vectors are stored in the GPU’s constant memory space. The LORD
implementation requires as many tree searches as there are transmit antennas. Thus,
with a 2 X 2 antenna system, two tree searches per subcarrier detection are required.
Thereby, in a 16-QAM and 2 x 2 antenna system, the computational complexity is
approximately doubled compared to SSFE with the vector m = [1144].

The two tree searches are implemented in a single kernel. The subcarrier detection,
including two tree searches, can be mapped into 32 threads such that the first 16
threads perform the first tree search and the next 16 threads perform the second tree
search simultaneously. However, due to the structure of the LORD algorithm, more
conditioning is required compared to the SSFE algorithm, which bounds the number of
parallel threads in the thread block to be 16.

Table 23 presents the simulation results for the LORD algorithm. Less simulations
for the LORD algorithm were performed, since it became obvious that the increasing
conditioning deteriorates the detection rate as the thread block size or the number of

blocks is increased.

Table 23. LORD detector configurations.

Grid size Decoding rate Occupancy
(threads per thread block x thread blocks) (Mbps) %
4x8 2,62 33
4x16 3,20 33
16 x 16 10,61 33
16 x 32 17,95 33
16 x 64 13,46 33
32x32 8,60 25

The composition of the grid used in the LORD algorithm implementation is very

similar to the one presented in Figure 36. The LORD algorithm uses 32 thread blocks,
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which results in peak performance, but the thread block size is reduced to 16 threads.
This means that the LORD algorithm needs two blocks instead of one to perform a
single subcarrier detection. Only the block index is used to select which subcarrier to
detect, but the thread indices are needed to select whether the first or the second tree
search needed in a single detection is performed. Table 23 shows that the GPU resource
allocation starts to fall as the thread block size and number of blocks is increased to 32
and the CUDA Visual Profiler reveals that the massive number of branches required
allows the resource utilization of 25% only.

Comparing the GPU allocations of the SSFE and LORD algorithms in Tables 21 and
23 reveals that the SSFE algorithm allocates the GPU resources much better than the
LORD algorithm. This is due to higher conditioning as the LORD algorithms requires

more parallel search tree executions.

Memory Usage

The memory requirements of the LORD algorithm are larger than in the SSFE algorithm
due to the two search trees. The high memory requirement becomes the bottleneck of the
LORD implementation with higher modulations and with antenna configurations greater
than 2x2. The scarce register resources, in particular, are insufficient for the LORD
algorithm to be efficiently mapped on the GPU with higher antenna and constellation

configurations. The memory allocation for the LORD algorithm is presented in Table 24.

Table 24. LORD resource utilization.

Grid size Shared memory Registers Instructions
(per thread block in bytes) (per thread) (per partial subcarrier)
detection)
4x32 40 11 41
16 x 32 64 15 36
32x32 370 19 79
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Comparison

In [116], a GPU implementation of a MIMO-OFDM trellis detector achieves a peak
decoding rate of 63.05 Mbps for a complex 2 x 2 antenna system with a 16-QAM using
GeForce 9600 GT and a decoding rate up to 280.08 Mbps [117] with an extremely
powerful Tesla C1060. Table 25 summarizes the features of the GPUs.

Table 25. GPU resource comparison.

Quadro FX 1700 Geforce 9600 GT Tesla C1060
Scalar processors 32 64 240
Core clock frequency 460 MHz 650 MHz 1296 MHz
Memory clock frequency 400 MHz 900 MHz 800 MHz
Memory bandwidth 12.8 GB/s 57.6 GB/s 102 GB/s
FLOPs/s 88.32 GFLOPS/s 208 GFLOPS/s 933 GFLOPS/s

As Table 25 shows, GeForce 9600 GT has twice the number of cores compared to
Quadro FX 1700 and the core and memory clock frequencies are much higher. Table 26
presents a comparison between the implementation results in terms of kernel decoding
rate (Mbps) and execution time per symbol vector. The results roughly show how the

decoding rate scales when a more powerful platform is used.

Table 26. Comparison of the results.

SSFE, m=[1,1,4,4] LORD Trellis based [116]
Decoding rate (Mbps) 36.06 17.95 63.05
Execution time/SC 1420 — 220ns LB — 446ns 027ms — 129ns

Trellis based [117]

Decoding rate (Mbps) 280.08

: : 3.57ms __
Execution time/SC Bios = 27ns
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In [116], the implementation applies 16 threads for a single symbol vector detection
in a 2 X 2 antenna system with a 16-QAM, which is similar to SSFE implementation.
Four parallel symbol vector detections are mapped in each block in [116] leading to the
thread block size of 64. With Quadro GPU implementations, the maximum thread block
sizes were 32 and 16. As earlier presented, any block size larger than 32 with SSFE and
16 with LORD decreased the decoding rate due to the increased amount of conditioning.
The overall threads used in Quadro FX 1700 implementation is 1,024 compared to the
35,200 in [116]. Both of the implementations allocated only 33 per cents of the GPUs

resources.

Discussion on GPU

As the results show, there are limitations in mapping detection algorithms on the GPU,
which bounds the maximum resource allocation. The limitation in the number of active
thread blocks per SM originates from the data structure of the implemented detector
algorithms. In addition, even though both of the algorithms require a modest amount
of memory, the shared memory still becomes a limiting factor when parallelism is
increased.

When mapping the algorithms on the GPU, it is important to minimize the global
memory reads and writes, due to the long latency they incur. Another major limiting
factor with GPU detector implementations is the data transfers from host to device and
back, due to a slow PCI-express bus. However, since the purpose is in exploring the
computational capability of the GPU for MIMO-OFDM detection, the memory transfer
issues are left with less attention.

Another issue related to desktop GPUs is the high power consumption. The peak
power consumption of Quadro FX 1700 is reported to be approximately 42 W, whereas
Tesla C1060 consumes up to 225 W. The power consumption of the most powerful
GPUs is rather high even for a base station utilization due to fact that traditionally
GPU architectures have been designed in terms of computing power rather than an
energy dissipation. The increasing popularity of mobile devices with high resolution
displays has pushed the low-power mobile GPU development forward. The Nvidia’s
Tegra mobile GPU consumes approximately 4 W [137], which is a tenth of the power
dissipation reported for the mid-range Quadro FX 1700 GPU. The architecture of mobile
the GPU is designed in terms of efficient graphics processing and the architectures may

have limited resources for a general baseband processing. Experiments on Nvidia’s
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Tegra [163] system-on-chip (SoC) revealed that the cache on the GPU becomes a
bottleneck already in 256 x 256 and 1024 x 1024 FFT implementations [137], and thus,
the off-chip memory transactions starts to increase the latency and energy dissipation.
A few iterations of mobile GPUs’ development have created Nvidia Tegra 2 and
Tegra 3 GPUs, including dual and quad core ARM Cortex-A9 MPcore CPUs providing
an extreme processing power for smartphones and mobile tablets. Adding ARM cores
beside the GPU means that Nvidia is pushing GPUs also in baseband processing.

54 Transport triggered architecture

Transport triggered architecture [164, 165] is an architecture template, in which the
function units are triggered by data transports. This is contrary to the behavior of
conventional operation triggered architectures. In general, over ten parallel function
units (FU) in a VLIW processor causes the register file and bypass logic to dominate the
silicon area. The drawback is removed in TTA by giving the data path control to the
software which reduces the hardware complexity. It is also an efficient architecture
template to compare different arithmetic implementations due to its low control overhead
that is approximately on a par with a finite state machine controlled hardware accelerator.

The TTA processor is programmed with data transports using a single instruction
— MOVE. The number of parallel data transports is determined by the number of
busses in the interconnection network (ICN). Thus, the TTA instruction resembles
an instruction of the VLIW processor. The interconnection network and the FUs are
exposed to the programmer, which leads to an accurate control of resources. The FUs are
connected to the ICN with input and output sockets. The sockets contain multiplexers
and de-multiplexers which feed data between the ICN and FUs.

TTA allows to design a tailored processor with a chosen flexibility. On the other
hand, the processor may resemble an ASIC design with minimum flexibility or the
processor may be fully programmable. The application can be accelerated with special
function units (SFU) which can be used in the same way as conventional FUs. Due to
direct transport between the FUs or SFUs, the register utilization is low. However, the
number of register files (RF) or the RF size are not restricted and they can be used as
FUs. The program counter and the return address register, which is needed for jump or
call operations, is controlled by the global control unit (GCU). The sockets handle the
data between FU ports and ICN and are controlled by the instruction word such that data

are passed to and read from the correct bus.
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An important optimization object is the load on the busses of the interconnection
network. If the load of the processor is known beforehand, it is easy to determine the
required connection between FUs. Typically, the application program requires only a
fraction of all possible connections between FUs, which leads to power savings due to
lower capacitance loaded to the bus.

A tool set called TTA Codesign Environment (TCE) [166] is a development for the
the TTA processor design. The processor layout, including FUs, SFUs and ICN can be
designed, modified and finally generated with the processor designer (PRODE). The
tool set includes a cycle accurate simulator (PROXIM), which can be used to verify
the design and the latency. With the operation set editor (OSED), new SFUs can be
designed for PROXIM to accelerate the implementation. The SFU behavior is described
in C language. The processor programming can be done in C or TTA assembly. The tool
set provides VHDL descriptions of the FUs, but for the SFUs, a register transfer level
(RTL) description has to be written by hand. When FUs, SFUs and registers are linked
to the right VHDL descriptions, the tool generates a synthesizeable processor. The tool
generates a test bench and images of the instruction and data memories, which can be

utilized in a processor verification after the hardware synthesis.

5.4.1 Architecture

The designed processor layout is illustrated in Figure 37. The connections between
function units are handled with 19 sparsely connected buses. The black spots in
the sockets illustrate connections between FUs and buses. The architecture includes
conventional signal processing FUs and a special slicer FU to accelerate the SSFE
detector algorithm. Table 27 summarizes the number of function units in the architecture
and their complexities in gate equivalents. The results are for fixed- and floating-point
FUs with different word lengths and processor clock frequency. In addition, a processor
supporting 16-bit half precision floating-point arithmetic is designed, including an SFU

for an inverse square root operation required in QR decomposition.

Number Arithmetic

Four different processors are implemented with 32- and 12-bit floating-point arithmetic
and 16-bit fixed-point arithmetic. The 32-bit floating-point arithmetic correspond the
IEEE standard for floating-point with sign bit, 8-bit exponent and 23-bit mantissa. On
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the other hand, the 12-bit floating-point arithmetic is a non-standard format with a sign
bit, 4-bit exponent and 7-bit mantissa. The 16-bit fixed-point word has been divided into
a sign bit, 5-bit integer and 10-bit fraction part.

Table 27. FUs included in processors and gate equivalents (GE) per FU.

Function unit # of FUs 32-bit FP 12-bit FP 16-bit FX
(latency in clock cycles) (111 MHz) (200 MHz) (200 MHz)
Adder/subtracter (1 cc) 8 3370 1260 520
Slicer (1 cc) 6 600 500 600
Multiplier (2 cc) 9 4200 930 1450
Load/store unit (3/1 cc) 2 730 380 410
Register file (1 cc) 8 3000 1190 1420

Function Units

VHDL descriptions of the fixed-point function units are based on the VHDL standard
packages and types defined in the IEEE library. For half precision and non-standard
floating-point arithmetic implementations, the floating-point library package described
in [167] is used. The floating-point package supports several options that provide an
opportunity to implement FUs with different properties. For instance, the rounding can
take four forms such as round toward nearest, round toward positive infinity, round
toward negative infinity or truncation techniques. Guard bits are set between 0-3 in the
floating-point study, in which setting the guard bits in zero means that the rounding
logic is discarded. Support for denormal numbers are possible in the package, but
not applied due to hardware complexity. It is possible to enable a logic that checks
not a number (NAN) and overflow errors, but this feature is also disabled due to low
energy requirements and word lengths defined to operate on the safe side. Thus, the
implemented function units include energy and silicon efficient solutions.

Multipliers have two clock cycle latency to enable a shorter critical path and
reduce silicon area. Thus, the processor architecture achieves a higher clock frequency.
The multipliers support pipelined execution, i.e., new data can be loaded to input

ports every clock cycles. To avoid extra shifter FUs in the fixed-point processor, the
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result of fixed-point multiplication is scaled inside the FU. Table 27 shows the 32-bit
floating-point multiplier to be a rather complex one. On the other hand, the 16-bit
fixed-point multiplier has 55% larger silicon area than the 12-bit floating-point multiplier.
Throughout this thesis, area complexities are reported in gate equivalents, which is a
technology-independent measure corresponding a two-input NAND gate in CMOS
technology.

The adder FUs include both addition and subtraction operations which are executed
in a single clock cycle. The 16-bit fixed-point adder needs less gate equivalents than the
corresponding 12-bit floating-point version. In addition, the single cycle adder is on the
critical path in floating-point synthesis, and thus, limits the maximum achievable clock
frequency.

The slicer is a simple single cycle SFU. The slicing operation executes comparisons
between € and constant values defined by the the modulation order. An example was
presented in Figure 10 for 16-QAM. The comparison with constants is more efficient to
execute with hardware than software due to the fact that software execution would cause
expensive branches. The slicer unit has two inputs: the first input defines how many
symbol candidates the unit outputs and the second input is the value to be sliced, i.e., €.
In a 16-QAM with a real-valued system model, the father node can be spanned with four
child nodes, but the slicer unit is executed only if the father node is spanned with 1-3
nodes. In a real signal model, the 64-QAM has eight symbol candidates, but to reduce
algorithm and hardware complexity, the slicer unit can output the three best candidates
at the maximum. This is a justified limitation since over three child nodes per father
node in the search tree increases the final list size beyond the practical implementation.
The slicer unit can output all the three symbol candidates at the same clock cycle.

TTA itself has a very low register file utilization due to an efficient interconnection
network (bypass network). In general, using registers is more expensive than using
memory in terms of silicon area. However, the small number of input and result elements
and a strict latency requirement mainly favor the use of registers instead of memory.
The processor architecture includes eight register files with eight register slots each. In
addition, there is a Boolean (2 x 1 — bit) register file.

To support memory access, the processor architecture includes two LSUs (load/store
unit). The LSU can read and write memory. The memory can be read in three clock

cycles and write in a single clock cycle. The LSU is triggered with memory address.
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5.4.2 Results

The results are presented for four processors synthesized with a low-power 130 nm
CMOS technology. A corresponding high-throughput 130 nm technology would increase
the clock frequency 1.5-3 fold, but at the same time, power consumption would have a
relatively higher increase. Area and energy consumptions are compared for different
number arithmetics. Two efficient assembly schedules are programmed for the SSFE
algorithm. The first one is for a 2 X 2 antenna system with a 16-QAM and the second
one is for a 4 x 4 antenna system with a 64-QAM. The TTA tools are not applied in
the scheduling. On average, the multipliers and adders, which are the main FUs in
the processor, are triggered on every other clock cycle. The average utilization of the
buses in the interconnection network is 70 percent. For the processor, which is not an
application-specific, the resource utilization is efficient. To provide comparable results
in terms of area and energy consumption, the same schedule is used for different number
arithmetics.

In general, the maximum achievable clock frequency for a certain design depends on
the complexity of the logic. In this study, the complexity differences between processors
are defined by the number arithmetic and word lengths. The 32-bit floating-point
processor is the most complex one achieving only a 111 MHz clock frequency. The
12-bit floating-point processor achieves a clock frequency of 217 MHz, whereas the
16-bit fixed-point processor is synthesizable up to 277 MHz.

The bottleneck in the floating-point processors is the single cycle adder. This
observation shows that the normalization logic required in floating-point arithmetic,
lengthens the critical path and reduces the maximum achievable clock frequency. In
order to accelerate the floating-point processor, the latency of adder FU should be
extended to be two clock cycles like in multiplication operation. This would change
the program scheduling, but would have only a minor impact on the overall program
execution latency due to the efficient operation pipeline possibility provided by TTA.

To enable as extensive comparison as possible, the 12-bit floating-point and 16-bit
fixed-point processors are synthesized again with 200 MHz. The results provide a
fair comparison between arithmetics since 12-bit floating-point and 16-bit fixed-point
arithmetic have the same bit error rate performance, and thus, also the same goodput.

The TTA processor is broken up to arithmetic, interconnection network, instruction
decoder and instruction fetch parts to show how the silicon is consumed in the processors.

The results are summarized in Table 28. The results are presented in gate equivalents
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and per cents of the total processor complexity. Arithmetic and interconnection network
are the largest parts of the processors. The interconnection network takes approximately
a fourth of the silicon. The reason for this is the high parallelism in the processor
architecture. Based on the design experience, the network can be still optimized up to
5-10%. Several parallel function units in the architecture are shown as a wide instruction
word, which then again reflects in the size of the instruction decoder.

The results show that the 200 MHz 12-bit floating-point and the 16-bit fixed-point
processors have almost the equal core size. In addition, the maximum 277 MHz clock
frequency in the fixed-point processor has only a small effect on the silicon complexity.
In general, the total area of 12-bit floating-point and 16-bit fixed-point processors are

relative small, which enables feasible multi-core system possibilities.

Table 28. Processor complexities represented in GEs and per cents.

Processor (GE, %) 32-bit FP 12-bit FP 12-bit FP
(111 MHz) (200 MHz) (217 MHz)
Total 150 990 (100) 65 550 (100) 70 810 (100)
Arithmetic 69 900 (46) 22 480 (34) 24 310 (35)
Interconnection network 41 450 (28) 20 040 (30) 22 760 (32)
Instruction decoder 10 680 (7) 10 640 (16) 10 760 (15)
Instruction fetch 4990 (3) 2910 (5) 2950 (4)
Register banks 23970 (16) 9480 (15) 10 030 (14)
Processor (GE, %) 16-bit FX 16-bit FX
(200 MHz) (277 MHz)
Total 65 630 (100) 70 730 (100)
Arithmetic 21 690 (33) 24 460 (35)
Interconnection network 18 130 (28) 19 530 (27)
Instruction decoder 11 040 (17) 11 260 (16)
Instruction fetch 3350 (5) 3400 (5)
Register banks 11425 (17) 12080 (17)
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Detector Performance

Each processor is assembly programmed to execute an SSFE detector for a 2 x 2 antenna
system with a 16-QAM and a 4 x 4 antenna system with a 64-QAM. The level update
vectors m = [1223] and m = [11111222] are used. The processor executes a 2 X 2
SSFE algorithm, i.e., detects a symbol vector in 45 clock cycles. With 111 MHz clock
frequency, it corresponds a detection rate of 19.7 Mbps, with 200 MHz, 35.5 Mbps,
and with 277 MHz, 49.2 Mbps, respectively. The detection of symbol vector in a 4 x 4
antenna system takes 99 clock cycles. The 200 MHz processor achieves a detection
rate of 48.5 Mbps and 277 MHz processor 67.0 Mbps. The detection rate can be still
improved by 3.5-7 Mbps (depending on the processor clock frequency) by pipelining
the symbol vector execution.

Table 29 summarizes the number of operations during the algorithm execution. The
additions, subtractions and multiplications are dominating operations in SSFE algorithm.
Even though the number of slicing operations is not very high, a single cycle slicer is an
important accelerator in the processor. As mentioned above, register usage is low in
TTA due to an efficient bypass network. However, registers are used mainly to store
symbol candidates and their PEDs, and only the 4 x 4 antenna system application uses

some memory in addition to registers.

Table 29. The number of operations during the SSFE algorithm execution.

Operation # of OPS in # of OPSin
2 x 2 system 4 x 4 system
Addition 54 208
Subtraction 54 100
Multiplication 124 313
Slicing 22 47
Register file reads 122 367
Register file writes 85 135
Memory reads - 21
Memory writes - 27

The system requirements are based on the 3G LTE standard, which expects 5
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bps/Hz spectral efficiency for the downlink. Thus, the required detection rates vary
between 29-350 Mbps depending on the system parameters and excluding the LTE
pilot symbols. Figures 18 and 19 in Chapter 3 illustrated the achievable goodputs for
the implementations in 2 X 2 and 4 x 4 antenna systems. Table 30 summarizes the
number of cores achieving the requirements. The maximum detection rate requirement
is achieved with six or eight cores depending on the core clock frequency. However, a
very high detection rate is reached already with 2-3 cores. The maximum multi-core
complexity remains reasonably low (424-525 kgates), given that the LTE targets are
achieved and the cores are programmable.

Table 30. 3G LTE requirements for detection rate.

Bandwidth  Required detection rate Required cores Required cores
(MHz) (Mbps) (200 MHz) (277 MHz)

2 x 2 antenna system with a 16-QAM

5 29 1 1
10 58 2 1
15 87 3 2
20 116 4 2
4 x 4 antenna system with a 64-QAM
5 87 2 2
10 175 4 3
15 262 6 4
20 350 8 6

Energy Dissipation

Power and energy dissipations for processors are summarized in Table 31. For power,
cell internal and net switching power dissipations are separated. The cell internal power
is consumed when a cell input changes, but there is no change in output. The net
switching power is dissipated when charging and discharging the load capacitance at the
cell output. The global operating voltage for processors is 1.5 V.

To enable comparison between implementations, the energy dissipation analysis,
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which takes into account the execution latency and provides a literature comparison
between implementations for consumed energy per received bit is preferred. In 16-QAM
and 64-QAM systems, the symbols are represented with four and six bits, respectively.
Thus, in a 2 X 2 antenna system, eight bits, and in a 4 x 4 antenna system, 24 bits are

received per symbol vector. The energy dissipation is defined as,
E=rt, (31)

where P is power and ¢ is the latency of the algorithm execution.

As expected, the 32-bit floating-point processor has the highest energy dissipation,
18.4 nJ. Interestingly, the 200 MHz 12-bit floating-point processor consumes only 8.28
nJ, which is less than the energy dissipation of the corresponding 16-bit fixed-point
processor with 8.60 nJ.

The 16-bit fixed-point processor consumes 1-3% more power than the corresponding
12-bit floating-point processor. This observation in addition to area complexity results
shows that it is not always granted that a fixed-point implementation suits better for
embedded digital systems. It can be expected and it is usually true that, e.g., a single
precision floating-point implementation does not lend itself for embedded systems due
to high silicon area and energy consumption. However, if the analysis and comparisons
between implementations using different number systems is extended to cover also
non-standard floating-point formats, like the 12-bit format used in this study, it is
possible that implementations using such formats may overcome fixed-point solutions.

The energy dissipation of recent soft-output MIMO detector implementations on
ASIC and SDR are compared in Table 32. An overview of six SSFE implementations
and a K-best implementation are given. Due to the wide scale of implementations, the
target is to compare only the energy per received bit for implementations and platforms.
For scaled energy values, a factor 1.5 between two successive technologies is applied.

In spite of the differences in implementations, the energy dissipation estimates are in
line with expectations. The ASIC designs are usually optimized to execute a certain
algorithm, and thus, their energy dissipation per received bit is low. Comparing results
against the latest hardware implementations, the consumed energy per received bit
in a programmable TTA processor is roughly 1.5-8.0 times higher. However, adding
flexibility on ASIC design [104] swiftly increases the energy dissipation of the circuit
such that the energy consumption is no longer more than doubled in a programmable
implementation. Note that the SDR can in general reuse the hardware, which is likely to

reduces the energy difference over hardware design.
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Table 31. Processor power and energy dissipations.

Processor 32-bit FP 12-bit FP 16-bit FX 16-bit FX
(111 MHz) (200 MHz) (200 MHz) (277 MHz)

2 x 2 antenna system
Total dynamic P (mW) 47.5 36.80 38.20 n/a
Cell internal P (mW) 21.7 19.00 18.90 n/a
Net switching P (mW) 259 17.80 19.30 n/a
Total energy (nJ) 18.4 8.28 8.60 n/a
Energy (nJ/bit) 2.3 1.04 1.07 n/a

4 x 4 antenna system
Total dynamic P (mW) n/a 43.10 43.60 64.00
Cell internal P (mW) n/a 21.70 21.30 32.70
Net switching P (mW) n/a 21.40 22.30 31.20
Total energy (nd) n/a 21.33 21.58 22.81
Energy (nJ/bit) n/a 0.89 0.90 0.95

An efficient resource utilization for the SSFE algorithm execution can be achieved
with Texas Instruments TMS320C6416 digital signal processor [168]. This provides
an interesting comparison to the proposed TTA implementation. The throughput
corresponding to a level update vector m=[1 1 2 4] is selected which is the closest to the
proposed TTA implementation. Note that the DSP implementation is a complex-valued
4 x 4 antenna system with a 64-QAM. Li et al. [168] do not provide an energy dissipation
but a rough estimate can be made based on the power consumption summary provided
by [169]. The TTA implementation dissipates about 3% of the energy per received bit
compared to the DSP.

QRD implementation

A QR decomposition presented in Section 3.5 is implemented with the 16-bit half
precision floating-point processor. The processor architecture described in Section 5.4.1
is enhanced with a single inverse square root function unit based on Algorithm 6. The
silicon complexity of the processor is 72110 GEs when the processor clock frequency is
166 MHz. The FISR can be computed with a basic arithmetic with a programmable

device, given that the latency will not become a bottleneck. However, due to latency
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Table 32. Energy dissipations comparison.

[92] [104] [29] [168]
Platform ASIC ASIC ASIC DSP
Detector K-best, K =8 SSFE SSFE SSFE
Antenna config. 2x2 2x2 2x2 4x4
Modulation 16-QAM 16-QAM 16-QAM 64-QAM
Clk. freq. (MHz) 140 400 35 1000
Throughput (Mbps) 140.0 200.0 210.0 37.4
Area (kGE) 110 (180 nm) 63 (65 nm) 66 (180 nm) n/a (65nm)
Energy (nd /bit) 0.90 0.20 0.20 15.80
Scaled energy (nJ/bit) 0.27 0.20 0.06 15.80
Platform TTA TTA TTA

(12-bit FP) (16-bit FX) (16-bit FX)

Detector SSFE SSFE SSFE
Antenna config. 2x2/4x4 2x2/4x4 4x4
Modulation 16/64-QAM 16/64-QAM 64-QAM
Clk. freq. (MHz) 200 200 277
Throughput (Mbps) 35.5/48.5 35.5/48.5 67
Area (KGE) 66 (130 nm) 66 (130 nm) 71 (130 nm)
Energy (nJ /bit) 1.04/0.89 1.07/0.90 0.95
Scaled energy (nJ/bit) 0.46/0.40 0.48/0.40 0.42

requirements, a SFU for the inverse square root was implemented. The SFU uses the
determined FISRC for half precision floating-point word to compute the initial guess and
performs a single Newton’s iteration in order to improve the accuracy of the operation.
The SFU has a 5 clock cycles pipeline and requires 7,230 GEs. The size of the SFU is
considered to be very reasonable because based on the design experience a divider can
consume approximately 18 kGEs.

A QRD for a 2 x 2 antenna system has been programmed. A real valued system and
considering the channel noise in preprocessing extends the matrix dimensions to be

8 x 4. The lower 4 x 4 part of the extended channel matrix includes the channel noise
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variances on the diagonal. The processor is able to decompose the matrix in g = 88
clock cycles.
Based on the LTE standard, the OFDM signal can consist up to 2,048 subcarriers,

which channel matrices need to be decomposed within a channel coherence time

Cc

fcoh = (32)

Vm f carrier .

Here, ¢ denotes the speed of light, vy, is the mobile speed and fearier is the carrier
frequency. With fearrier = 2.4 GHz, viy = 250 kmph and ¢ = 3 x 108 % the coherence
time is 1.8 ms. The decompositions of the subcarriers takes

SX[QR

Jn
Here, fi, is the hardware clock frequency. Thus, 2048 decompositions with 166 MHz

Tor = . (33)

clock frequency takes 1.085 ms, which is well under the real-time requirement. We

assume that other processors in the system can be simultaneously used for the detection.

Discussion

The results show that a shorter bit width can be used with floating-point arithmetic than
with fixed-point arithmetic in MIMO detector implementation. This is not necessarily
always the case, but there are many applications in which this is true. The proposed
processor architecture is composed of basic arithmetical function units and is already
capable to adapt according to the channel realization by changing the executable program
code. Due to basic arithmetical function units, the architecture can be programmed to
execute several other algorithms as well. An example of a possible detector algorithm is
a layered orthogonal lattice detector [20, 75].

The LTE standard applies a 5-20 MHz channel bandwidth. The required detection
rate depends on the channel bandwidth, number of transmit antennas and used modula-
tion. In 2 X 2 and 4 x 4 antenna systems with a 16- and 64-QAM, the detection rate
requirement varies between 29 and 350 Mbps. The proposed 200 Mhz core can achieve
the requirement for 5 MHz bandwidth and the 277 MHz core for 10 MHz bandwidth in
advantageous channel conditions with a high code rate. However, for higher data rates a
single core is not enough. Six cores operating on 277 MHz clock frequency or eight
200 MHz cores are needed to achieve the highest requirements, i.e., the 4 x 4 antenna
system with a 64-QAM and 20 MHz bandwidth.
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The current bottleneck is the 130 nm technology, which limits the maximum clock
frequency between 217-277 MHz. In a modern CMOS technology, the delay of the
single gate, i.e., an inverter, is significantly smaller, which allows a logic chain to be
deeper without lowering the operational frequency of the system below required level.
When operating on the technology limit, the area complexity and energy dissipation
swiftly increases due to oversized buffers applied in order to enable a maximal operation
frequency. This is observed in both floating- and fixed-point implementations, but with
the floating-point arithmetic, the increase in a silicon area is more significant near the
technology limit. For the floating-point design, a 200 MHz clock frequency provides a
better performance compromise than the 217 MHz clock frequency, and is thus, applied
in this study. With a modern CMOS technology, higher clock frequencies up to 300-600
MHz can be likely achieved for the same processor architecture without reaching the
technology limit. Then, the decoding rate of the single core would increase up to 104
Mbps. Since the silicon area of the single core is modest, a multi-core architecture is
also an interesting possibility to accelerate the detection rate.

There are few reasons why the platform is designed to include multiple small cores
instead of having a single large core capable to LTE requirements. First, in LTE, an
adaptive transmission is part of the standard, which means that from time to time only a
fraction of the processing resources is required while some cores can be shut down in
order to save energy. The second reason is related to a simpler resource allocation and
programming. The ease of programming is emphasized, especially when assembly is
used instead of a high level language. Third, the core is composed of 37 parallel FUs or
SFUs, including register files and LSUs. At some point, adding parallelism forces to do
tradeoffs between programmability and energy consumption of the interconnection
network, which depends on the number of connections between ICN and sockets. Lastly,
some algorithms require special function units, e.g., inverse square root and division,
which are complex, but regularly needed. Therefore, the future work will concentrate on
a multi-core platform, in which part of the cores are enhanced with SFUs in order to
support more versatile group of applications.
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5.5 Design effort

DSP

Both TMS320C6455 and SB3500 are digital signal processors meant to be programmed
mainly with a high level ANSI C language. However, a function can be optimized
also by using assembly. In principle, programming with a high level language is fast
and in the best case also efficient enough for many applications. However, in practice,
fixed-point processors support numerous intrinsics, which helps compiler to accelerate
implementation, but are quite laborious to a programmer, especially at first when the
processor architecture is new to the user. In programming, the floating-point arithmetic
would reduce the design effort. In addition, instruction, data and thread levels parallelism
in the SB3500 platform increase the design work. In the best case, the compiler can
handle the levels of parallelism almost automatically, but when the application requires
an efficient resource utilization, the optimization must be done carefully by hand using
pragmas.

An important optimization for the programmer is to considerer code and data
locations. In general, modern DSP have at least three types of memories, including
a core specific fast memory, a shared memory and an external memory. In both
TMS320C6455 and SB3500, the programmer has a possibility to decide which memory
is used for certain code or data.

Often, programming DSPs with a high level language require several iterations in
order to improve the compiler-generated-schedule. Fortunately, the modern compilers
are fast and the time between iterations is usually short. Due to complex systems,
programming in high level languages in terms of development time is feasible in spite
of the less effective resource allocation. Unfortunately, the optimized code for the
discussed DSPs does not necessarily provide a straightforwardly usable code legacy for
other platforms.

GPU

A CUDA programming for GPUs is based on the C with four CUDA specified extensions
to the language. First of all, the programmer has to divide the applications into the
functions which are executed on host or on device. This division is done with function

type qualifiers. The function type qualifier defines also whether the function is callable
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from the host or from the device. The second extension, namely the variable type
qualifier, specifies the memory location of the variable on the device. The third extension
defines the four built-in variables defining the dimensions of the grid and block and
containing the block index within the grid and the thread index within the block. The
fourth extension is a directive specifying with the four built-in variables how a kernel is
executed on the device.

In general, programming GPUs with CUDA resembles programming DSPs due
to language extensions, which are not truly similar, but they are all required to guide
compilers. Since the CUDA supports floating-point programming, the code inside
the functions is perhaps easier to reuse than the fixed-point programs. Based on the
experience in GPU programming, an optimal grid and block configurations are important
such that there is enough local memory to execute the kernel without memory stalls.

Therefore, the programmer should also put effort on memory allocation design.

Transport triggered architecture

All the presented TTA implementations are programmed with assembly in order to
achieve close to optimal results for the designed processor architecture. However, there
is an open source C compiler available in the TCE. Unfortunately, the compiler that
was available during the work, was not able to schedule the C code efficiently and
the programs were assembly coded. Since then, improved releases of the C compiler
have been published. Obviously with TTA, a fixed- or floating-point processor can be
designed. TTA processors can be programmed with ANSI C, as we have done in [25].
In order to benefit from the added custom hardware in the hardware and without getting
hands dirty with inline assembly, C statements can be replaced with macros. The macro
provides access to a special operation defining input and output variables. In that sense,
programming a TTA processor with C is similar to DSP programming. Otherwise, the
TTA program requires less hand-made configurations than the DSP or CUDA programs
do.

The effort in assembly programming is much higher than programming with a high
level language and the code is not necessary portable on other platforms. However, a
careful use of assembly language often leads to more efficient schedules, which might

be necessitated in applications with strict real-time requirements.
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Fig. 37. The processor architecture.
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6 Conclusion and future work

The aim of this thesis in a broad sense was to present the benefits of a programmable
platform for MIMO detectors and study low-power processor architectures. With
a programmable platform, the energy dissipation per correctly decoded bit can be
minimized by changing the detection algorithm based on the channel realizations. Hence,
during a good channel realization, less complex detector implementation can provide a
high throughput, whereas in worse channels, more sophisticated and complex detectors
have to be used in order to enable a feasible throughput.

Another objective of the thesis was to provide a wider implementation aspect than
typically presented in the literature. This was enabled by applying a rapid prototyping
techniques for the detector performance evaluations with computer simulations in
realistic channel conditions. An extensive number arithmetic and word length study was
provided to support energy dissipation evaluation. Also theoretical complexities were
determined for the algorithms, which was used in comparison between detectors in
terms of operations and estimated energy consumption. Single and multi-core processor
architectures were studied for programmable MIMO detectors and it was noticed that due
to strict real-time requirements in the LTE standard a multi-core processor architecture
is necessitated. Implementations based on the digital signal processors (DSP), graphics
processing unit (GPU) and transport triggered architecture (TTA) processors were
proposed and evaluated.

The relevant background and parallel literature related to MIMO systems, algorithm
and architecture design and implementations were reviewed. MIMO systems and
techniques related to MIMO communication, which have motivated researches to develop
more efficient detector algorithms and processing platforms, were briefly discussed
as well. A linear detection and the optimal detection algorithms and suboptimal
algorithms, which provide near-optimal performance with a reduced computational
complexity, were presented. The most significant detector implementations presented in
the literature were summarized to give an overview of earlier and parallel work. Many
detector implementations can be criticized to be too decoding rate oriented assuming
overoptimistic channel realization or ignoring totally the goodput of the implementation.
Therefore, much effort was used to find realistic implementation parameters for certain

channel realizations in this study. It was noticed that the floating-point arithmetic was
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earlier studied in the area of video processing rather than considered in the area of
wireless communication. In addition, it was noted that MIMO detectors have been
implemented earlier with hardware, but not until recent years, an increasing number of
software implementations have been published.

The applied MIMO-OFDM system model based on the 3G LTE standard was
described. The MIMO detection problem was discussed and detectors applicable for
software platforms were presented, beginning from a linear minimum mean square
equalization and ending up to more sophisticated lattice detectors. Much effort was
used to define suitable simulation parameters and comparing detection reliability and
theoretical complexities of the detectors in different channel realizations. The theoretical
complexities were based on the observations on the hardware complexities of the
fixed-point function units. It should be noted that a comparison as wide as the one
presented in this thsesis was not carried out before for the state-of-the-art detectors in the
same simulation environment. A linear detector enabled a high goodput and low-power
detection during a good channel realization, but failed in a correlated channel. The SSFE
detector is a low-complexity lattice detector which performed well up to a moderately
correlated channel, but failed in a correlated channel. Thus, a rather complex K-best
algorithm had to be used in correlated channels. The original LORD algorithm performs
well in a 2 X 2 antenna system, but the detector complexity was increased rapidly when
more antennas were used. The preprocessing of the lattice detectors is often based on the
QR decomposition. The chapter presented a QRD based on the modified Gram-Schmidt
orthogonalization. In addition, an efficient method to do inverse square root operation
needed in the QRD was discussed.

The fixed- and floating-point number arithmetic in the context of MIMO detection
was introduced and compared. Word length requirements for both arithmetics were
presented and an energy-precision tradeoff estimation was summarized for the floating-
point arithmetic. The motivation of using a floating-point arithmetic was discussed. A
hardware implementation of floating-point function units and their energy dissipation
was discussed and compared to the corresponding fixed-point FUs. Optimal floating-
point mantissa lengths were defined for QRD, detector and LLR blocks. An energy
dissipation comparison for algorithms was presented based on the theoretical floating-
point function unit energy models. The algorithm comparison results based on the
floating-point energy models were in line with the results based on the fixed-point
function unit complexities.

The implementation results of detector algorithms on three programmable platform
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architectures were presented. Two different digital signal processors, a middle-range
graphics processing unit and a processor based on the transport triggered architecture,
were applied. The implementation results were summarized and compared in silicon
complexity, energy consumption and detection rate performance. In addition, the design
effort based on the design experiences was estimated for each platform. In general, it
was stated that the DSP processors available on the market require carefully designed
algorithms, but also instruction-set extensions beside the traditional function units in
order to fulfill the strict real-time requirements. GPUs provide a massive amount of
processing power, but exploiting the resources efficiently for low latency algorithms was
not easy. GPUs are not originally designed for power-limited systems, but in mobile
GPUs, the energy dissipation has been considered. However, the architecture is still
designed based on the video processing needs. The transport triggered architecture
provided a design freedom to optimize a programmable processor architecture. The
implemented processor architecture was able to achieve the strict real-time requirements
with reasonable hardware complexity and energy dissipation. The fact that the designed
processor architecture can be applied for versatile applications, makes it an interesting
competitor for hardware implementations due to fact that the leakage power of the
modern CMOS technologies are high.

The results in this thesis showed that with programmable architectures sophisticated
detector algorithms can be implemented with a reasonable hardware and energy
dissipation. The presented results offer a foundation for further steps toward software
defined radio. Thus, a thorough system level evaluation should be done in order to
define a partitioning between software and hardware in the transceiver. The multi-core
TTA platform was not discussed thoroughly in this thesis but light in the shed can be
found from [170]. Since there are a large number of standards that future transceiver
should support, it is claimed that a programmable platform is the only reasonable way to

support all the features.
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