
Resistive Computation: Avoiding the Power Wall with
Low-Leakage, STT-MRAM Based Computing

Xiaochen Guo Engin İpek Tolga Soyata

University of Rochester
Rochester, NY 14627 USA

{xiguo, ipek, soyata}@ece.rochester.edu

ABSTRACT
As CMOS scales beyond the 45nm technology node, leakage
concerns are starting to limit microprocessor performance
growth. To keep dynamic power constant across process gen-
erations, traditional MOSFET scaling theory prescribes re-
ducing supply and threshold voltages in proportion to device
dimensions, a practice that induces an exponential increase
in subthreshold leakage. As a result, leakage power has be-
come comparable to dynamic power in current-generation
processes, and will soon exceed it in magnitude if voltages
are scaled down any further. Beyond this inflection point,
multicore processors will not be able to afford keeping more
than a small fraction of all cores active at any given moment.
Multicore scaling will soon hit a power wall.

This paper presents resistive computation, a new tech-
nique that aims at avoiding the power wall by migrating
most of the functionality of a modern microprocessor from
CMOS to spin-torque transfer magnetoresistive RAM (STT-
MRAM)—a CMOS-compatible, leakage-resistant, non-volatile
resistive memory technology. By implementing much of
the on-chip storage and combinational logic using leakage-
resistant, scalable RAM blocks and lookup tables, and by
carefully re-architecting the pipeline, an STT-MRAM based
implementation of an eight-core Sun Niagara-like CMT pro-
cessor reduces chip-wide power dissipation by 1.7× and leak-
age power by 2.1× at the 32nm technology node, while main-
taining 93% of the system throughput of a CMOS-based de-
sign.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories;
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Design, Performance

Keywords
Power-efficiency, STT-MRAM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

1. INTRODUCTION
Over the past two decades, the CMOS microprocessor de-

sign process has been confronted by a number of seemingly
insurmountable technological challenges (e.g., the memory
wall [4] and the wire delay problem [1]). At each turn,
new classes of systems have been architected to meet these
challenges, and microprocessor performance has continued
to scale with exponentially increasing transistor budgets.
With more than two billion transistors integrated on a sin-
gle die [27], power dissipation has become the current crit-
ical challenge facing modern chip design. On-chip power
dissipation now exhausts the maximum capability of con-
ventional cooling technologies; any further increases will re-
quire expensive and challenging solutions (e.g., liquid cool-
ing), which would significantly increase overall system cost.

Multicore architectures emerged in the early 2000s as a
means of avoiding the power wall, increasing parallelism un-
der a constant clock frequency to avoid an increase in dy-
namic power consumption. Although multicore systems did
manage to keep power dissipation at bay for the past decade,
with the impending transition to 32nm CMOS, they are
starting to experience scalability problems of their own. To
maintain constant dynamic power at a given clock rate, sup-
ply and threshold voltages must scale with feature size, but
this approach induces an exponential rise in leakage power,
which is fast approaching dynamic power in magnitude. Un-
der this poor scaling behavior, the number of active cores
on a chip will have to grow much more slowly than the total
transistor budget allows; indeed, at 11nm, over 80% of all
cores may have to be dormant at all times to fit within the
chip’s thermal envelope [16].

This paper presents resistive computation, an architec-
tural technique that aims at developing a new class of power-
efficient, scalable microprocessors based on emerging resis-
tive memory technologies. Power- and performance-critical
hardware resources such as caches, memory controllers, and
floating-point units are implemented using spin-torque trans-
fer magnetoresistive RAM (STT-MRAM)—a CMOS- com-
patible, near-zero static-power, persistent memory that has
been in development since the early 2000s [12], and is ex-
pected to replace commercially available magnetic RAMs
by 2013 [13]. The key idea is to implement most of the on-
chip storage and combinational logic using scalable, leakage-
resistant RAM arrays and lookup tables (LUTs) constructed
from STT-MRAM to lower leakage, thereby allowing many
more active cores under a fixed power budget than a pure
CMOS implementation could afford.

By adopting hardware structures amenable to fast and ef-
ficient LUT-based computing, and by carefully re-architecting
the pipeline, an STT-MRAM based implementation of an
eight-core, Sun Niagara-like CMT processor reduces leakage
and total power at 32nm by 2.1× and 1.7×, respectively,
while maintaining 93% of the system throughput of a pure
CMOS implementation.

371

2. BACKGROUND AND MOTIVATION
Simultaneously to power-related problems in CMOS, DRAM

is facing severe scalability problems due to precise charge
placement and sensing hurdles in deep-submicron processes.
In response, the industry is turning its attention to resistive
memory technologies such as phase-change memory (PCM),
memristors (RRAM), and spin-torque transfer magnetore-
sistive RAM (STT-MRAM)—memory technologies that rely
on resistivity rather than charge as the information carrier,
and thus hold the potential to scale to much smaller geome-
tries than charge memories [13]. Unlike the case of SRAM
or DRAM, resistive memories rely on non-volatile, resistive
information storage in a cell, and thus exhibit near-zero leak-
age in the data array.

2.1 STT-MRAM
STT-MRAM [13,20,31–33] is a second generation MRAM

technology that addresses many of the scaling problems of
commercially available toggle-mode magnetic RAMs. Among
all resistive memories, STT-MRAM is the closest to being
a CMOS-compatible universal memory technology as it of-
fers read speeds as fast as SRAM [39] (< 200ps in 90nm),
density comparable to DRAM (10F 2), scalable energy char-
acteristics [13], and infinite write endurance. Functional
array prototypes [14, 20, 31], CAM circuits [37], and simu-
lated FPGA chips [39] using STT-MRAM have already been
demonstrated, and the technology is under rapid commercial
development, with an expected industry-wide switch from
toggle-mode MRAM to STT-MRAM by 2013 [13]. Although
MRAM suffers from relatively high write power and write
latency compared to SRAM, its near-zero leakage power dis-
sipation, coupled with its fast read speed and scalability
makes it a promising candidate to take over as the workhorse
for on-chip storage in sub-45nm processes.

Memory Cells and Array Architecture. STT-MRAM
relies on magnetoresistance to encode information. Figure 1
depicts the fundamental building block of an MRAM cell,
the magnetic tunnel junction (MTJ). An MTJ consists of
two ferromagnetic layers and a tunnel barrier layer, often
implemented using a magnetic thin-film stack comprising
Co40Fe40B20 for the ferromagnetic layers, and MgO for the
tunnel barrier. One of the ferromagnetic layers, the pinned
layer, has a fixed magnetic spin, whereas the spin of the
electrons in the free layer can be influenced by first applying
a high-amplitude current pulse through the pinned layer to
polarize the current, and then passing this spin-polarized
current through the free layer. Depending on the direction
of the current, the spin polarity of the free layer can be made
either parallel or anti-parallel to that of the pinned layer.

MgO

Pinned
Layer

RP

(a) (b)

Free
Layer

MgO

Pinned
Layer

RAP
Free
Layer

Figure 1: Illustrative example of a magneto-tunnel junction
(MTJ) in (a) low-resistance parallel and (b) high-resistance
anti-parallel states.

Applying a small bias voltage (typically 0.1V) across the
MTJ causes a tunneling current to flow through the MgO
tunnel barrier without perturbing the magnetic polarity of
the free layer. The magnitude of the tunneling current—and
thus, the resistance of the MTJ—is determined by the po-
larity of the two ferromagnetic layers: a lower, parallel resis-
tance (RP in Figure 1-a) state is experienced when the spin
polarities agree, and a higher, antiparallel resistance state
is observed when the polarities disagree (RAP in Figure 1-
b). When the polarities of the two layers are aligned, elec-

trons with polarity anti-parallel to the two layers can travel
through the MTJ easily, while electrons with the same spin
as the two layers are scattered; in contrast, when the two
layers have anti-parallel polarities, electrons of either polar-
ity are largely scattered by one of the two layers, leading
to much lower conductivity, and thus, higher resistance [6].
These low and high resistances are used to represent differ-
ent logic values.

The most commonly used structure for an STT-MRAM
memory cell is the 1T-1MTJ cell that comprises a single
MTJ, and a single transistor that acts as an access device
(Figure 2). Transistors are built in CMOS, and the MTJ
magnetic material is grown over the source and drain re-
gions of the transistors through a few (typically two or three)
additional process steps. Similarly to SRAM and DRAM,
1T-1MTJ cells can be coupled through wordlines and bit-
lines to form memory arrays. Each cell is read by driving
the appropriate wordline to connect the relevant MTJ to
its bitline (BL) and source line (SL), applying a small bias
voltage (typically 0.1V) across the two, and by sensing the
current passing through the MTJ using a current sense am-
plifier connected to the bitline. Read speed is determined
by how fast the capacitive wordline can be charged to turn
on the access transistor, and by how fast the bitline can be
raised to the required read voltage to sample the read-out
current. The write operation, on the other hand, requires
activating the access transistor, and applying a much higher
voltage (typically Vdd) that can generate enough current to
modify the spin of the free layer.

WL

BLSL

Figure 2: Illustrative example of a 1T-1MTJ cell.

An MTJ can be written in a thermal activation mode
through the application of a long, low-amplitude current
pulse (>10ns), under a dynamic reversal regime with inter-
mediate current pulses (3-10ns), or in a precessional switch-
ing regime with a short (<3ns), high-amplitude current pulse [12].
In a 1T-1MTJ cell with a fixed-size MTJ, a tradeoff exists
between switching time (i.e., current pulse width) and cell
area. In precessional mode, the required current density
Jc(τ) to switch the state of the MTJ is inversely propor-
tional to switching time τ

Jc(τ) ∝ Jc0 +
C

τ
where Jc0 is a process-dependent intrinsic current density
parameter, and C is a constant that depends on the angle of
the magnetization vector of the free layer [12]. Hence, oper-
ating at a faster switching time increases energy-efficiency:
a 2× shorter write pulse requires a less than 2× increase
in write current, and thus, lower write energy [8, 20, 26].
Unfortunately, the highest switching speed possible with a
fixed-size MTJ is restricted by two fundamental factors: (1)
the maximum current that the cell can can support during
an RAP → RP transition cannot exceed RAP /V dd since the
cell has to deliver the necessary switching current over the
MTJ in its high-resistance state, and (2) a higher switching
current requires the access transistor to be sized larger so
that it can source the required current, which increases cell
area 1 and hurts read energy and delay due to higher gate
capacitance.

Figure 3 shows 1T-1MTJ cell switching time as a func-
tion of cell area based on Cadence-Spectre analog circuit
simulations of a single cell at the 32nm technology node,
using ITRS 2009 projections on MTJ parameters (Table 1),

1The MTJ is grown above the source and drain regions of
the access transistor and is typically much smaller than the
transistor itself; consequently, the size of the access transis-
tor determines cell area.

372

0	

1	

2	

3	

4	

5	

6	

7	

0.0	
 20.0	
 40.0	
 60.0	

Sw
it
ch
in
g	

Ti
m
e	

(n
s)
	

Cell	
 Size	
 (F2)	

Figure 3: 1T-1MTJ cell switching time as a function of cell
size based on Cadence-Spectre circuit simulations at 32nm.

and the BSIM-4 predictive technology model (PTM) of an
NMOS transistor [38]; results presented here are assumed
in the rest of this paper whenever cell sizing needs to be
optimized for write speed. As the precise value of intrinsic
current density Jc0 is not included in ITRS projections, Jc0

is conservatively assumed to be zero, which requires a 2×
increase in switching current for a 2× increase in switch-
ing speed. If feature size is given by F , then at a switching
speed of 6.7ns, a 1T-1MTJ cell occupies 10F 2 area—a 14.6×
density advantage over SRAM, which is a 146F 2 technology.
As the access transistor’s W

L
ratio is increased, its current

sourcing capability improves, which reduces switching time
to 3.1ns at a cell size of 30F 2. Increasing the size of the tran-
sistor further causes a large voltage drop across the MTJ,
which reduces the drain-source voltage of the access transis-
tor and pushes the device into deep triode, and ultimately
limits its current sourcing capability. As a result, switching
time reaches an asymptote at 2.6ns, which is accomplished
at a cell size of 65F 2.

Parameter Value

Cell Size 10F 2

Switching Current 50µA
Switching Time 6.7ns
Write Energy 0.3pJ/bit

MTJ Resistance (RLOW /RHIGH) 2.5kΩ / 6.25kΩ

Table 1: STT-MRAM parameters at 32nm based on
ITRS’09 projections.

2.2 Lookup-Table Based Computing
Field programmable gate arrays (FPGAs) adopt a ver-

satile internal organization that leverages SRAM to store
truth tables of logic functions [35]. This not only allows
a wide variety of logic functions to be flexibly represented,
but also allows FPGAs to be re-programmed almost indefi-
nitely, making them suitable for rapid product prototyping.
With technology scaling, FPGAs have gradually evolved
from four-input SRAM-based truth tables to five- and six-
input tables, named lookup tables (LUT) [7]. This evolution
is due to increasing IC integration density—when LUTs are
created with higher numbers of inputs, the area they oc-
cupy increases exponentially; however, place-and-route be-
comes significantly easier due to the increased functionality
of each LUT. The selection of LUT size is technology de-
pendent; for example, Xilinx Virtex-6 FPGAs use both five-
and six-input LUTs, which represent the optimum sizing at
the 40nm technology node [35].

This paper leverages an attractive feature of LUT-based
computing other than reconfigurability: since LUTs are con-
structed from memory, it is possible to implement them
using a leakage-resistant memory technology such as STT-
MRAM, for dramatically reduced power consumption. Like
other resistive memories, MRAM dissipates near-zero leak-
age power in the data array; consequently, power density
can be kept under check by reducing the supply voltage with
each new technology generation. (Typical MRAM read volt-
ages of 0.1V are reported in the literature [20].) Due to its
high write power, the technology is best suited to imple-

menting hardware structures that are read-only or are sel-
dom written. Previous work has explored the possibility of
leveraging MRAM to design L2 caches [30,34], but this work
is the first to consider the possibility of implementing much
of the combinational logic on the chip, as well as microar-
chitectural structures such as register files and L1 caches,
using STT-MRAM.

3. FUNDAMENTAL BUILDING BLOCKS
At a high-level, an STT-MRAM based resistive micropro-

cessor consists of storage-oriented resources such as register
files, caches, and queues; functional units and other combi-
national logic elements; and pipeline latches. Judicious par-
titioning of these hardware structures between CMOS and
STT-MRAM is critical to designing a well-balanced system
that exploits the unique area, speed, and power advantages
of each technology. Making this selection correctly requires
analyzing two broad categories of MRAM-based hardware
units: those leveraging RAM arrays (queues, register files,
caches), and those leveraging look-up tables (combinational
logic, functional units).

3.1 RAM Arrays
Large SRAM arrays are commonly organized into hier-

archical structures to optimize for area, speed, and power
tradeoffs [3]. An array comprises multiple independent banks
that can be simultaneously accessed through separate ad-
dress and data busses to improve throughput. To minimize
wordline and bitline delays and to simplify decoding com-
plexity, each bank is further divided into subbanks sharing
address and data busses; unlike the case of banks, only a
single subbank can be accessed at a time (Figure 4). A
subbank consists of multiple independent mats sharing an
address line, each of which supplies a different portion of
a requested data block on every access. Internally, each
mat comprises multiple subarrays. Memory cells within each
subarray are organized as rows×columns; a decoder selects
the cells connected to the relevant wordline, whose contents
are driven onto a set of bitlines to be muxed and sensed by
column sensing circuitry; the sensed value is routed back to
the data bus of the requesting bank through a separate reply
network. Different organizations of a fixed-size RAM array
into different numbers of banks, subbanks, mats, and sub-
arrays yield dramatically different area, speed, and power
figures [22].

Bank

Data
Bus

Address
Bus

Sub-bank

Shared Data and
Address Busses

Figure 4: Illustrative example of a RAM array organized
into a hierarchy of banks and subbanks [22].

MRAM and SRAM arrays share much of this high-level
structure with some important differences arising from the
size of a basic cell, from the loading on bitlines and word-
lines, and from the underlying sensing mechanism. In turn,
these differences result in different leakage power, access
energy, delay, and area figures. Since STT-MRAM has a
smaller cell size than SRAM (10F 2 vs 146F 2), the length of
the bitlines and wordlines within a subarray can be made
shorter, which reduces bitline and wordline capacitance and
resistance, and improves both delay and energy. In addition,
unlike the case of 6T-SRAM where each cell has two access
transistors, a 1T-1MTJ cell has a single access device whose
size is typically smaller than the SRAM access transistor;
this reduces the amount of gate capacitance on wordlines, as
well as the drain capacitance attached to bitlines, which low-
ers energy and delay. The smaller cell size of STT-MRAM
implies that subarrays can be made smaller, which shortens
the global H-tree interconnect that is responsible for a large
share of the overall power, area, and delay. Importantly,

373

unlike the case of SRAM where each cell comprises a pair of
cross-coupled inverters connected to the supply rail, STT-
MRAM does not require constant connection to Vdd within
a cell, which reduces leakage power within the data array to
virtually zero.

Handling Long-Latency Writes. Despite these advan-
tages, STT-MRAM suffers from relatively long write laten-
cies compared to SRAM (Section 2.1). Leveraging STT-
MRAM in designing frequently accessed hardware structures
requires (1) ensuring that critical reads are not delayed by
long-latency writes, and (2) long write latencies do not result
in resource conflicts that hamper pipeline throughput.

One way of accomplishing both of these goals would be
to choose a heavily multi-ported organization for frequently
written hardware structures. Unfortunately, this results in
an excessive number of ports, and as area and delay grow
with port count, hurts performance significantly. For exam-
ple, building an STT-MRAM based architectural register file
that would support two reads and one write per cycle with
fast, 30F 2 cells at 32nm, 4GHz would require two read ports
and 13 write ports, which would increase total port count
from 3 to 15. An alternative option would be to go to a
heavily multi-banked implementation without incurring the
overhead of extreme multiporting. Unfortunately, as the
number of banks are increased, so does the number of H-
tree wiring resources, which quickly overrides the leakage
and area benefits of using STT-MRAM.

Instead, this paper proposes an alternative strategy that
allows high write throughput and read-write bypassing with-
out incurring an increase in the wiring overhead. The key
idea is to allow long-latency writes to complete locally within
each sub-bank without unnecessarily occupying global H-
tree wiring resources. To make this possible, each subbank
is augmented with a subbank buffer—an array of flip-flops
(physically distributed across all mats within a subbank)
that latch in the data-in and address bits from the H-tree,
and continue driving the subarray data and address wires
throughout the duration of a write while bank-level wiring
resources are released (Figure 5). In RAM arrays with sep-
arate read and write ports, subbank buffers drive the write
port only; reads from other locations within the array can
still complete unobstructed, and it also becomes possible to
read the value being written to the array directly from the
subbank buffer.

Sub-bank

Shared Data and Address Busses

Subbank
Buffer

Figure 5: Illustrative example of subbank buffers.

Subbank buffers also make it possible to perform differen-
tial writes [18], where only bit positions that differ from their
original contents are modified on a write. For this to work,
the port attached to the subbank buffer must be designed
as a read-write port; when a write is received, the subbank
buffer (physically distributed across the mats) latches in the
new data and initiates a read for the original contents. Once
the data arrives, the original contents and the new contents
are bitwise XOR’ed to generate a mask indicating those bit
positions that need to be changed. This mask is sent to all
relevant subarrays as the enable signals for the bitline drivers
along with the actual data—in this way, it becomes possible
to perform differential writes without incurring additional
latency and energy on the global H-tree wiring. Differential
writes can reduce the number of bit flips, and thus write
energy, by significant margins, and can make STT-MRAM
based implementation of heavily written arrays practical.

3.2 Lookup Tables
Although large STT-MRAM arrays dissipate near-zero

leakage power in the subarrays, the leakage power of the pe-
ripheral circuitry can be appreciable and in fact dominant as

the array size is reduced. With smaller arrays, opportunities
to share sense amplifiers and decoding circuitry across mul-
tiple rows and multiple columns is significantly lower. One
option to combat this problem would be to utilize very large
arrays to implement lookup tables of logic functions; unfor-
tunately, both access time and the area overhead deteriorate
with larger arrays.

Rather than utilizing an STT-MRAM array to implement
a logic function, we rely on a specialized STT-MRAM based
lookup table employing differential current-mode logic (DCML).
Recent work in this area has resulted in fabricated, two-
input lookup tables [8] at 140nm, as well as a non-volatile
full-adder prototype [26]. Figure 6 depicts an example three-
input LUT. The circuit needs both complementary and pure
forms of each of its inputs, and the LUT produces comple-
mentary outputs—when multiple LUTs are cascaded in a
large circuit, there is no need to generate additional comple-
mentary outputs.

C
C

A
A

B
B

3x8
Tree

clkclk

clk

clk

Z SAZ

clk

clk

Vdd

A

B

C

B

C

A

B

C

B

C C C C C

A

B

C

A

B

C

DEC REF
DEC REF

Figure 6: Illustrative example of a three-input lookup table.

This LUT circuit, an expanded version of what is proposed
in [8], utilizes a dynamic current source by charging and
discharging the capacitor shown in Figure 6. The capacitor
is discharged during the clk phase, and sinks current through
the 3 × 8 decode tree during the clk phase. Keeper PMOS
transistors charge the two entry nodes of the sense amplifier
(SA) during the clk phase and sensing is performed during
the clk phase. These two entry nodes, named DEC and
REF, reach different voltage values during the sensing phase
(clk) since the sink paths from DEC to the capacitor vs.
from REF to the capacitor exhibit different resistances. The
reference MTJ needs to have a resistance between the low
and high resistance values; since ITRS projects RLO and
RHIGH values of 2.5kΩ and 6.25kΩ at 32nm, 4.375kΩ is
chosen for RREF .

Although the MTJ decoding circuitry is connected to Vdd
at the top and dynamically connected to GND at the bot-
tom, the voltage swing on the capacitor is much smaller than
Vdd, which dramatically reduces access energy. The output
of this current mode logic operation is fed into a sense am-
plifier, which turns the low-swing operation into a full-swing
complementary output.

In [8], it is observed that the circuit can be expanded
to higher numbers of inputs by expanding the decode tree.
However, it is important to note that expanding the tree be-
yond a certain height reduces noise margins and makes the
LUT circuit vulnerable to process variations, since it be-
comes increasingly difficult to detect the difference between
high and low MTJ states due to the additional resistance
introduced by the transistors in series. As more and more
transistors are added, their cumulative resistance can be-
come comparable to MTJ resistance, and fluctuations among
transistor resistances caused by process variations can make
sensing challenging.

3.2.1 Optimal LUT Sizing for Latency, Power, and
Area

Both the power and the performance of a resistive proces-
sor depend heavily on the LUT sizes chosen to implement
combinational logic blocks. This makes it necessary to de-
velop a detailed model to evaluate latency, area, and power
tradeoffs as a function of STT-MRAM LUT size. Figure 7
depicts read energy, leakage power, read delay, and area as
a function of the number of LUT inputs. LUTs with two to

374

six inputs (4-64 MTJs) are studied, which represent realis-
tic LUT sizes for real circuits. As a comparison, only five-
and six-input LUTs are utilized in modern FPGAs (e.g., Xil-
inx Virtex 6) as higher sizes do not justify the increase in
latency and area for the marginal gain in flexibility when
implementing logic functions. As each LUT stores only one
bit of output, multiple LUTs are accessed in parallel with
the same inputs to produce multi-bit results (e.g., a three-bit
adder that produces a four-bit output).

0	

0.5	

1	

1.5	

2	

2.5	

Re
ad

	
 E
ne

rg
y	

(f
J)
	

0	

100	

200	

300	

400	

500	

600	

Le
ak
ag
e	

(p
W
)	

0	

20	

40	

60	

80	

100	

120	

1	
 2	
 3	
 4	
 5	
 6	
 7	

D
el
ay
	
 (p

s)
	

Number	
 of	
 LUT	
 Inputs	

0	

0.2	

0.4	

0.6	

0.8	

1	

1	
 2	
 3	
 4	
 5	
 6	
 7	

A
re
a	

(u
m

2)
	

Number	
 of	
 LUT	
 Inputs	

Figure 7: Access energy, leakage power, read delay, and area
of a single LUT as a function of the number of LUT inputs
based on Cadence-Spectre circuit simulations at 32nm.

Read Energy. Access energy decreases slightly as LUT
sizes are increased. Although there are more internal nodes—
and thus, higher gate and drain capacitances–to charge with
each access on a larger LUT, the voltage swing on the footer
capacitor is lower due to the increased series resistance charg-
ing the capacitor. As a design choice, it is possible to size up
the transistors in the decode tree to trade off power against
latency and area. The overall access energy goes down from
2fJ to 1.7fJ as LUT size is increased from two to six for the
minimum-size transistors used in these simulations.

Leakage Power. Possible dominant leakage paths for the
LUT circuit are: (1) from Vdd through the PMOS keeper
transistors into the capacitor, (2) from Vdd through the
footer charge/discharge NMOS to GND, and (3) the sense
amplifier. Lower values of leakage power are observed at
higher LUT sizes due to higher resistance along leakage
paths (1) and (2), and due to the stack effect of the transis-
tors in the 3× 8 decode tree. However, similarly to the case
of read energy, sizing the decoder transistors appropriately
to trade-off speed against energy can change this balance.
As LUT size is increased from two to six inputs, leakage
power reduces from 550pW to 400pW.

Latency. Due to the increased series resistance of the de-
coder’s pull-down network with larger LUTs, the RC time
constant associated with charging the footer capacitor goes
up, and latency increases from 80 to 100ps. However, LUT
speed can be increased by sizing the decoder transistors
higher, at the expense of larger area, and a higher load ca-
pacitance for the previous stage driving the LUT. For opti-
mal results, the footer capacitor must also be sized appropri-
ately. A higher capacitance allows the circuit to work with a
lower voltage swing at the expense of increased area. Lower
capacitance values cause higher voltage swings on the ca-
pacitor, thereby slowing down the reaction time of the sense
amplifier due to the lower potential difference between the
DEC and REF nodes. A 50fF capacitor was used in these
simulations.

Area. Although larger LUTs amortize the leakage power of
the peripheral circuitry better, and offer more functionality
without incurring a large latency penalty, the area overhead

of the lookup table increases exponentially with the number
of inputs. Every new input doubles the number of transis-
tors in the branches; as LUT size is increased from two to six
inputs, the area of the LUT increases fivefold. Nevertheless,
a single LUT can replace approximately 12 CMOS standard
cells on average when implementing such complex combina-
tional logic blocks as a floating-point unit (Section 4.5) or a
memory controller’s scheduling logic (Section 4.6.4); conse-
quently, analyses shown later in the paper assume six-input
LUTs unless otherwise stated.

3.2.2 Case Study: Three-bit Adder using Static CMOS,
ROM, and STT-MRAM LUT Circuits

To study the power and performance advantages of STT-
MRAM LUT-based computing on a realistic circuit, Ta-
ble 2 compares access energy, leakage power, area, and de-
lay figures obtained on three different implementations of
a three-bit adder: (1) a conventional, static CMOS imple-
mentation, (2) a LUT-based implementation using the STT-
MRAM (DCML) LUTs described in Section 3.2, and (3)
a LUT-based implementation using conventional, CMOS-
based static ROMs. Minimum size transistors are used in all
three cases to keep the comparisons fair. Circuit simulations
are performed using Cadence AMS (Spectre) with Verilog-
based test vector generation; we use 32nm BSIM-4 predictive
technology models (PTM) [38] of NMOS and PMOS tran-
sistors, and the MTJ parameters presented in Table 1 based
on ITRS’09 projections. All results are obtained under iden-
tical input vectors, minimum transistor sizing, and a 370K
temperature. Although simulations were also performed at
16nm and 22nm nodes, results showed similar tendencies to
those presented here, and are not repeated.

STT-MRAM Static ROM-Based
Parameter LUT CMOS LUT

Delay 100ps 110ps 190ps
Access Energy 7.43fJ 11.1fJ 27.4fJ
Leakage Power 1.77nW 10.18nW 514nW

Area 2.40µm2 0.43µm2 17.9µm2

Table 2: Comparison of three-bit adder implementations
using STT-MRAM LUTs, static CMOS, and a static CMOS
ROM. Area estimates do not include wiring overhead.

Static CMOS. A three-bit CMOS ripple-carry adder is
built using one half-adder (HAX1) and two full-adder (FAX1)
circuits based on circuit topologies used in the OSU stan-
dard cell library [29]. Static CMOS offers the smallest area
among all three designs considered, since the layout is highly
regular and only 70 transistors are required instead of 348,
which is the case of the STT-MRAM LUT-based design.
Leakage is 5.8× higher than MRAM since the CMOS im-
plementation has a much higher number of leakage paths
than an STT-MRAM LUT, whose subthreshold leakage is
confined to its peripheral circuitry.

STT-MRAM LUTs. A three-input half-adder requires
four STT-MRAM LUTs, one for each output of the adder
(three sum bits plus a carry-out bit). Since the least signifi-
cant bit of the sum depends only on two bits, it can be calcu-
late using a two-input LUT. Similarly, the second bit of the
sum depends on a total of four bits, and can be implemented
using a four-input LUT. The most significant bit and the
carry-out bit each depend on six bits, and each of them re-
quires a six-input LUT. Although results presented here are
based on unoptimized, minimum-size STT-MRAM LUTs, it
is possible to slow down the two- and four-input LUTs to
save access energy by sizing their transistors. The results
presented here are conservative compared to this best-case
optimization scenario.

An STT-MRAM based three-bit adder has 1.5× lower ac-
cess energy than its static CMOS counterpart due to its
energy-efficient, low-swing, differential current-mode logic
implementation; however, these energy savings are achieved
at the expense of a 5.6× increase in area. In a three-bit
adder, a six-input STT-MRAM LUT replaces three CMOS
standard cells. Area overhead can be expected to be lower

375

when implementing more complex logic functions that re-
quire the realization of many minterms, which is when LUT-
based computation is most beneficial; for instance, a single
six-input LUT is expected to replace 12 CMOS standard
cells on average when implementing the FPU (Section 4.5)
and the memory controller scheduling logic (Section 4.6.4).

The most notable advantage of the STT-MRAM LUT over
static CMOS is the 5.8× reduction in leakage. This is due
to the significantly smaller number of leakage paths that
are possible with an STT-MRAM LUT, which exhibits sub-
threshold leakage only through its peripheral circuitry. The
speed of the STT-MRAM LUT is similar to static CMOS:
although CMOS uses higher-speed standard cells, an STT-
MRAM LUT calculates all four bits in parallel using inde-
pendent LUTs.

CMOS ROM-Based LUTs. To perform a head-on com-
parison against a LUT-based CMOS adder, we build a 64×4
static ROM circuit that can read all three bits of the sum
and the carry-out bit with a single lookup. Compared to
a 6T-SRAM based, reconfigurable LUT used in an FPGA,
a ROM-based, fixed-function LUT is more energy efficient,
since each table entry requires either a single transistor (in
the case of a logic 1) or no transistors at all (in the case
of a logic 0), rather than the six transistors required by an
SRAM cell. A 6-to-64 decoder drives one of 64 wordlines,
which activates the transistors on cells representing a logic
1. A minimum sized PMOS pull-up transistor and a skewed
inverter are employed to sense the stored logic value. Four
parallel bitlines are used for the four outputs of the adder,
amortizing dynamic energy and leakage power of the decoder
over four output bits.

The ROM-based LUT dissipates 290× higher leakage than
its STT-MRAM based counterpart. This is due to two fac-
tors: (1) transistors in the decoder circuit of the ROM rep-
resent a significant source of subthreshold leakage, whereas
the STT-MRAM LUT uses differential current-mode logic,
which connects a number of access devices in series with
each MTJ on a decode tree, without any direct connections
between the access devices and Vdd, and (2) the ROM-
based readout mechanism suffers from significant leakage
paths within the data array itself, since all unselected de-
vices represent sneak paths for active leakage during each
access. The access energy of the ROM-based LUT is 3.7×
higher than the STT-MRAM LUT, since (1) the decoder
has to be activated with every access, and (2) the bitlines
are charged to Vdd and discharged to GND using full-swing
voltages, whereas the differential current-sensing mechanism
of the STT-MRAM LUT operates with low-swing voltages.

The ROM-based LUT also runs 1.9× slower than its STT-
MRAM based counterpart due to the serialization of the
decoder access and cell readout: the input signal has to tra-
verse through the decoder to activate one of the wordlines,
which then selects the transistors along that wordline. Two
thirds of the delay is incurred in the decoder. Overall, the
ROM-based LUT delivers the worst results on all metrics
considered due to its inherently more complex and leakage-
prone design.

3.2.3 Deciding When to Use LUTs
Consider a three-bit adder which has two three-bit inputs

and four one-bit outputs. This function can be implemented
using four six-input LUTs, whereas the VLSI implementa-
tion requires only three standard cells, resulting in a stdcell

LUT
ratio of less than one. On the other hand, an unsigned multi-
plier with two three-bit inputs and a six-bit output requires
six six-input LUTs or 36 standard cells, raising the same
ratio to six. As the size and complexity of a Boolean func-
tion increases, thereby requiring more minterms after logic
minimization, this ratio can be as high as 12 [5]. This is due
not only to the increased complexity of the function better
utilizing the fixed size of the LUTs, but also to the sheer
size of the circuit allowing the boolean minimizer to amor-
tize complex functions over multiple LUTs. As this ratio
gets higher, power consumption and leakage advantage of

LUT based circuits improve dramatically. This observation
that LUT-based implementations work significantly better
for large and complex circuits is one of our guidelines for
choosing which parts of a microprocessor should be imple-
mented using LUTs vs. conventional CMOS.

4. STRUCTURE AND OPERATION OF AN
STT-MRAM BASED CMT PIPELINE

Figure 8 shows how hardware resources are partitioned
between CMOS and STT-MRAM in an example CMT sys-
tem with eight single-issue in-order cores, and eight hard-
ware thread contexts per core. Whether a resource can be
effectively implemented in STT-MRAM depends on both
its size and on the expected number of writes it incurs per
cycle. STT-MRAM offers dramatically lower leakage and
much higher density than SRAM, but suffers from long write
latency and high write energy. Large, wire-delay dominated
RAM arrays—L1 and L2 caches, TLBs, memory controller
queues, and register files—are implemented in STT-MRAM
to reduce leakage and interconnect power, and to improve
interconnect delay. Instruction and store buffers, PC reg-
isters, and pipeline latches are kept in CMOS due to their
small size and relatively high write activity. Since LUTs
are never written at runtime, they are used to implement
such complex combinational logic blocks as the front-end
thread selection, decode, and next-PC generation logic, the
floating-point unit, and the memory controller’s scheduling
logic.

An important issue that affects both power and perfor-
mance for caches, TLBs, and register files is the size of a ba-
sic STT-MRAM cell used to implement the subarrays. With
30F 2 cells, write latency can be reduced by 2.2× over 10F 2

cells (Section 2.1) at the expense of lower density, higher
read energy, and longer read latency. Lookup tables are con-
structed from dense, 10F 2 cells as they are never written at
runtime. The register file and the L1 d-cache use 30F 2 cells
with 3.1ns switching time as the 6.7ns write occupancy of a
10F 2 cell has a prohibitive impact on throughput. The L2
cache and the memory controller queues are implemented
with 10F 2 cells and are optimized for density and power
rather than write speed; similarly, TLBs and the L1 i-cache
are implemented using 10F 2 cells due to their relatively low
miss rate, and thus, low write probability.

4.1 Instruction Fetch
Each core’s front-end is quite typical, with a separate

PC register and an eight-deep instruction buffer per thread.
The i-TLB, i-cache, next-PC generation logic, and front-end
thread selection logic are shared among all eight threads.
The i-TLB and the i-cache are built using STT-MRAM ar-
rays; thread selection and next-PC generation logic are im-
plemented with STT-MRAM LUTs. Due to their small size
and high write activity, instruction buffers and PC registers
are left in CMOS.

4.1.1 Program Counter Generation
Each thread has a dedicated, CMOS-based PC register.

To compute the next sequential PC with minimum power
and area overhead, a special 6 × 7 “add one” LUT is used
rather than a general-purpose adder LUT. A 6 × 7 LUT
accepts six bits of the current PC plus a carry-in bit to
calculate the corresponding six bits of the next PC and a
carry-out bit; internally, the circuit consists of two-, three-,
four-, five-, and six-input LUTs (one of each), each of which
computes a different bit of the seven bit output in parallel.

The overall next sequential PC computation unit com-
prises five such 6 × 7 LUTs arranged in a carry-select con-
figuration (Figure 9). Carry out bits are used as the select
signals for a chain of CMOS-based multiplexers that choose
either the new or the original six bits of the PC. Hence, the
delay of the PC generation logic is four multiplexer delays,
plus a single six-input LUT delay, which comfortably fits

376

PC
Logic

Thrd
Sel
Mux

Inst
Buf
x 8

Thrd
Sel
Mux

RegFile
x 8

Front-End
Thrd Sel

Logic

• I$ Miss
• I-TLB Miss
• Inst Buf Full
• Branch

• D$ Miss
• D-TLB Miss
• Dependence
• Structure Conflict

CLK CLK CLK CLK

CLK

Crossbar
Interface

STT-MRAM LUTs
STT-MRAM Arrays

Pure CMOS

Shared
L2$

Banks x 8

Instruction
Fetch

Thread
Select

Decode Execute

Write Back

Func Unit
ALU

FPU
Decode
Logic

CLK

D$

D-TLB

I$

I-TLB

CLK

StBuf
x 8

Memory

MC0 Queue

MC0 Logic

MC1 Queue

MC1 Logic

MC2 Queue

MC2 Logic

MC3 Queue

MC3 Logic

CLK

Pre
Decode

Back-End
Thrd Sel

Logic

Figure 8: Illustrative example of a resistive CMT pipeline.

within a 250ps clock period in PTM-based circuit simula-
tions (Section 6).

LUT-64

cout

LUT-64

cout

LUT-64

cout

LUT-64

cout

LUT-64

31 26 20 14 8 2
PC

Next PC

6x7
LUT

6x7
LUT

6x7
LUT

6x7
LUT

6x7
LUT

31 26 20 14 8 2

cout cout cout cout

Figure 9: Next PC generation using five add-one LUTS in
a carry-select configuration.

4.1.2 Front-End Thread Selection
Every cycle, the front-end selects one of the available

threads to fetch in round-robin order, which promotes fair-
ness and facilitates a simple implementation. The following
conditions make a thread unselectable in the front-end: (1)
an i-cache or an i-TLB miss, (2) a full instruction buffer, or
(3) a branch or jump instruction. On an i-cache or an i-TLB
miss, the thread is marked unselectable for fetch, and is re-
set to a selectable state when the refill of the i-cache or the
i-TLB is complete. To facilitate front-end thread selection,
the ID of the last selected thread is kept in a three-bit CMOS
register, and the next thread to fetch from is determined as
the next available, ublocked thread in round-robin order.
The complete thread selection mechanism thus requires an
11-to-3 LUT, which is built from 96 six-input LUTs sharing
a data bus with tri-state buffers—six bits of the input are
sent to all LUTs, and the remaining five bits are used to
generate the enable signals for all LUTs in parallel with the
LUT access. (It is also possible to optimize for power by
serializing the decoding of the five bits with the LUT ac-
cess, and by using the enable signal to control the LUT clk
input.)

4.1.3 L1 Instruction Cache and TLB
The i-cache and and the i-TLB are both implemented in

STT-MRAM due to their large size and relatively low write
activity. Since writes are infrequent, these resources are each
organized into a single subbank to minimize the overhead of
the peripheral circuitry, and are built using 10F 2 cells that
reduce area, read energy, and read latency at the expense of
longer writes. The i-cache is designed with a dedicated read
port and a dedicated write port to ensure that the front-end
does not come to a complete stall during refills; this ensures
that threads can still fetch from the read port in the shadow
of an ongoing write. To accommodate multiple outstanding
misses from different threads, the i-cache is augmented with
an eight-entry refill queue. When a block returns from the
L2 on an i-cache miss, it starts writing to the cache immedi-

ately if the write port is available; otherwise, it is placed in
the refill queue while it waits for the write port to free up.

SRAM STT-MRAM STT-MRAM
Parameter (32KB) (32KB) (128KB)

Read Delay 397ps 238ps 474ps
Write Delay 397ps 6932ps 7036ps
Read Energy 35pJ 13pJ 50pJ
Write Energy 35pJ 90pJ 127pJ
Leakage Power 75.7mW 6.6mW 41.4mW

Area 0.31mm2 0.06mm2 0.26mm2

Table 3: Instruction cache parameters.

It is possible to leverage the 14.6× density advantage
of STT-MRAM over SRAM by either designing a similar-
capacity L1 i-cache with shorter wire delays, lower read en-
ergy, and lower area and leakage, or by designing a higher-
capacity cache with similar read latency and read energy
under a similar area budget. Table 3 presents latency, power,
and area comparisons between a 32KB, SRAM-based i-cache;
its 32KB, STT-MRAM counterpart; and a larger, 128KB
STT-MRAM configuration that fits under the same area
budget 2. Simply migrating the 32KB i-cache from SRAM
to STT-MRAM reduces area by 5.2×, leakage by 11.5×,
read energy by 2.7×, and read delay by one cycle at 4GHz.
Leveraging the density advantage to build a larger, 128KB
cache results in more modest savings in leakage (45%) due
to the higher overhead of the CMOS-based peripheral cir-
cuitry. Write energy increases by 2.6 − 3.6× over CMOS
with 32KB and 128KB STT-MRAM caches, respectively.

4.2 Predecode
After fetch, instructions go through a predecode stage

where a set of predecode bits for back-end thread selection
are extracted and written into the CMOS-based instruction
buffer. Predecode bits indicate if the instruction is a mem-
ber of the following equivalence classes: (1) a load or a store,
(2) a floating-point or integer divide, (3) a floating-point
add/sub, compare, multiply, or an integer multiply, (4) a
brach or a jump, or (5) any other ALU operations. Each
flag is generated by inspecting the six-bit opcode, which
requires a total of five six-input LUTs. The subbank ID
of the destination register is also extracted and recorded in
the instruction buffer during the predecode stage to faciliate
back-end thread selection.

4.3 Thread Select
Every cycle, the back-end thread selection unit issues an

instruction from one of the available, unblocked threads.
The goal is to derive a correct and balanced issue sched-
ule that prevents out-of-order completion; avoids structural
hazards and conflicts on L1 d-cache and register file sub-
banks; maintains fairness; and delivers high throughput.

2The experimental setup is described in Section 5.

377

4.3.1 Instruction Buffer
Each thread has a private, eight-deep instruction buffer

organized as a FIFO queue. Since buffers are small and are
written every few cycles with up to four new instructions,
they are implemented in CMOS as opposed to STT-MRAM.

4.3.2 Back-End Thread Selection Logic
Every cycle, back-end thread selection logic issues the in-

struction at the head of one of the instruction buffers to be
decoded and executed. The following events make a thread
unschedulable: (1) an L1 d-cache or d-TLB miss, (2) a struc-
tural hazard on a register file subbank, (3) a store buffer
overflow, (4) a data dependency on an ongoing long-latency
floating-point, integer multiply, or integer divide instruction,
(5) a structural hazard on the (unpipelined) floating-point
divider, and (6) the possibility of out-of-order completion.

A load’s buffer entry is not recycled at the time the load
issues; instead, the entry is retained until the load is known
to hit in the L1 d-cache or in the store buffer. In the case
of a miss, the thread is marked as unschedulable; when the
L1 d-cache refill process starts, the thread transitions to a
schedulable state, and the load is replayed from the instruc-
tion buffer. On a hit, the load’s instruction buffer entry is
recycled as soon as the load enters the writeback stage.

Long-latency floating-point instructions and integer mul-
tiplies from a single thread can be scheduled back-to-back so
long as there are no dependencies between them. In the case
of an out-of-order completion possibility—a floating-point
divide followed by any other instruction, or any floating-
point instruction other than a divide followed by an integer
instruction—, the offending thread is made unschedulable
for as many cycles as needed for the danger to disappear.

Threads can also become unschedulable due to structural
hazards on the unpipelined floating-point divider, on reg-
ister file subbank write ports, or on store buffers. As the
register file is built using 30F 2 STT-MRAM cells with 3.1ns
switching time, the register file subbank write occupancy is
13 cycles at 4GHz. Throughout the duration of an on-going
write, the subbank is unavailable for a new write (unless
it is the same register that is being overwritten), but the
read ports remain available; hence, register file reads are
not stalled by long-latency writes. If the destination sub-
bank of an instruction conflicts with an ongoing write to
the same bank, the thread becomes unschedulable until the
target subbank is available. If the head of the instruction
buffer is a store and the store buffer of the thread is full, the
thread becomes unschedulable until there is an opening in
the store buffer.

In order to avoid starvation, a least recently selected (LRS)
policy is used to pick among all schedulable threads. The
LRS policy is implemented using CMOS gates.

4.4 Decode
In the decode stage, the six-bit opcode of the instruction

is inspected to generate internal control signals for the fol-
lowing stages of the pipeline, and the architectural register
file is accessed to read the input operands. Every decoded
signal propagated to the execution stage thus requires a six-
input LUT. For a typical, five-stage MIPS pipeline [15] with
16 output control signals, 16 six-input LUTs suffice to ac-
complish this.

4.4.1 Register File
Every thread has 32 integer registers and 32 floating-point

registers, for a total of 512 registers (2kB of storage) per core.
To enable a high-performance, low-leakage, STT-MRAM
based register file that can deliver the necessary write through-
put and single-thread latency, integer and floating-point reg-
ister from all threads are aggregated in a subbanked STT-
MRAM array as shown in Figure 10. The overall register
file consists of 32 subbanks of 16 registers each, sharing a
common address bus and a 64-bit data bus. The register
file has two read ports and a write port, and the write ports
are augmented with subbank buffers to allow multiple writes
to proceed in parallel on different subbanks without adding

too much area, leakage, or latency overhead (Section 3.1).
Mapping each thread’s integer and floating-point registers
to a common subbank would significantly degrade through-
put when a single thread is running in the system, or during
periods where only a few threads are schedulable due to L1
d-cache misses. To avert this problem, each thread’s regis-
ters are are striped across consecutive subbanks to improve
throughput and to minimize the chance of a subbank write
port conflict. Double-precision floating-point operations re-
quire reading two consecutive floating-point registers start-
ing with an even-numbered register, which is accomplished
by accessing two consecutive subbanks and driving the 64-
bit data bus in parallel.

Shared Data and Address Busses

T0-R0 T0-R1 T0-R2 T0-R3

T0-R4 T0-R5 T0-R6 T0-R7

T1-R0 T1-R1 T1-R2 T1-R3

T1-R4 T1-R5 T1-R6 T1-R7

Figure 10: Illustrative example of a subbanked register file.

Table 4 lists area, read energy, and leakage power ad-
vantages that are possible by implementing the register file
in STT-MRAM. The STT-MRAM implementation reduces
leakage by 2.4× and read energy by 1.4× over CMOS; how-
ever, energy for a full 32-bit write is increased by 22.2×.
Whether the end result turns out to be a net power savings
depends on how frequently the register file is updated, and
on how effective differential writes are on a given workload.

Parameter SRAM STT-MRAM

Read Delay 137ps 122ps
Write Delay 137ps 3231ps
Read Energy 0.45pJ 0.33pJ
Write Energy 0.45pJ 10.0pJ
Leakage Power 3.71mW 1.53mW

Area 0.038mm2 0.042mm2

Table 4: Register file parameters.

4.5 Execute
After decode, instructions are sent to functional units to

complete their execution. Bitwise logical operations, inte-
ger addition and subtraction, and logical shifts are handled
by the integer ALU, whereas floating-point addition, mul-
tiplication, and division are handled by the floating-point
unit. Similar to Sun’s Niagara-1 processor [17], integer mul-
tiply and divide operations are also sent to the FPU rather
than a dedicated integer multiplier to save area and leakage
power. Although the integer ALU is responsible for 5% of
the baseline leakage power consumption, many of the opera-
tions it supports (e.g., bitwise logical operations) do not have
enough circuit complexity (i.e., minterms) to amortize the
peripheral circuitry in a LUT-based implementation. More-
over, operating an STT-MRAM based integer adder (the
power- and area-limiting unit in a typical integer ALU [28])
at single-cycle throughput requires the adder to be pipelined
in two stages, but the additional power overhead of the
pipeline flip-flops largely offsets the benefits of transition-
ing to STT-MRAM. Consequently, the integer ALU is left
in CMOS. The FPU, on the other hand, is responsible for
a large fraction of the per-core leakage power and dynamic
access energy, and is thus implemented with STT-MRAM
LUTs.

Floating-Point Unit. To compare ASIC- and LUT-based
implementations of the floating-point unit, an industrial FPU
design from Gaisler Research, the GRFPU [5], is taken as a
baseline. A VHDL implementation of the GRFPU synthe-
sizes to 100,000 gates on an ASIC design flow, and runs at
250MHz at 130nm; on a Xilinx Virtex-2 FPGA, the unit syn-
thesizes to 8,500 LUTs, and runs at 65MHz. Floating-point

378

addition, subtraction, and multiplication are fully pipelined
and execute with a three-cycle latency; floating-point divi-
sion is unpipelined and takes 16 cycles.

To estimate the required pipeline depth for an STT-MRAM
LUT-based implementation of the GRFPU to operate at
4GHz at 32nm, we use published numbers on configurable
logic block (CLB) delays on a Virtex-2 FPGA [2]. A CLB
has a LUT+MUX delay of 630ps and an interconnect delay
of 1 to 2ns based on its placement, which corresponds to a
critical path of six to ten CLB delays. For STT-MRAM, we
assume a critical path delay of eight LUTs, which represents
the average of these two extremes. Assuming a buffered
six-input STT-MRAM LUT delay of 130ps and a flip-flop
sequencing overhead (tsetup + tC→Q) of 50ps, and conserva-
tively assuming a perfectly-balanced pipeline for the base-
line GRFPU, we estimate that the STT-MRAM implemen-
tation would need to be pipelined eight times deeper than
the original to operate at 4GHz, with floating-point addi-
tion, subtraction, and multiplication latencies of 24 cycles,
and an unpipelined, 64-cycle floating-point divide latency.
When calculating leakage power, area, and access energy,
we account for the overhead of the increased number of flip-
flops due to this deeper pipeline (flip-flop power, area, and
speed are extracted from 32nm circuit simulations of the
topology used in the OSU standard cell library [29]). We
characterize and account for the impact of loading on an
STT-MRAM LUT when driving another LUT stage or a
flip-flop via Cadence-Spectre circuit simulations.

To estimate pipeline depth for the CMOS implementation
of the GRFPU running at 4GHz, we first scale the baseline
250MHz frequency linearly from 130nm to 32nm, which cor-
responds to an intrinsic frequency of 1GHz at 32nm. Thus,
conservatively ignoring the sequencing overhead, to operate
at 4GHz, the circuit needs to be pipelined 4× deeper, with
12-cycle floating-point addition, subtraction, and multipli-
cation latencies, and a 64-cycle, unpipelined floating-point
divide. Estimating power for CMOS (100,000 gates) re-
quires estimating dynamic and leakage power for an average
gate in a standard-cell library. We characterize the following
OSU standard cells using circuit simulations at 32nm, and
use their average to estimate power for the CMOS-based
GRFPU design: INVX2, NAND2X1, NAND3X1, BUFX2,
BUFX4, AOI22X1, MUX2X1, DFFPOSX1, and XNORX1.

Table 5 shows the estimated leakage, dynamic energy, and
area of the GRFPU in both pure CMOS and STT-MRAM.
The CMOS implementation uses 100, 000 gates whereas the
STT-MRAM implementation uses 8,500 LUTs. Although
each CMOS gate has lower dynamic energy than a six-input
LUT, each LUT can replace 12 logic gates on average. This
12× reduction in unit count results in an overall reduction
of the total dynamic energy. Similarly, although each LUT
has higher leakage than a CMOS gate, the cumulative leak-
age of 8,500 LUTs reduces leakage by 4× over the combined
leakage of 100, 000 gates. Area, on the other hand, is com-
parable due to the reduced unit count compensating for the
5× higher area of each LUT and the additional buffering
required to cascade the LUTs. (Note that these area es-
timates do not account for wiring overheads in either the
CMOS or the STT-MRAM implementations.) In summary,
the FPU is a good candidate to place in STT-MRAM since
its high circuit complexity produces logic functions with
many minterms that require many CMOS gates to imple-
ment, which is exactly when a LUT-based implementation
is advantageous.

Parameter CMOS FPU STT-MRAM FPU

Dynamic Energy 36pJ 26.7pJ
Leakage Power 259mW 61mW

Area 0.22mm2 0.20mm2

Table 5: FPU parameters. Area estimates do not include
wiring overhead.

4.6 Memory
In the memory stage, load and store instructions access

the STT-MRAM based L1 d-cache and d-TLB. To simplify

the scheduling of stores and to minimize the performance
impact of contention on subbank write ports, each thread
is allocated a CMOS-based, eight-deep store buffer holding
in-flight store instructions.

4.6.1 Store Buffers
One problem that comes up when scheduling stores is the

possibility of a d-cache subbank conflict at the time the
store reaches the memory stage. Since stores require address
computation before their target d-cache subbank is known,
thread selection logic cannot determine if a store will expe-
rience a port conflict in advance. To address this problem,
the memory stage of the pipeline includes a CMOS-based,
private, eight-deep store buffer per thread. So long as a
thread’s store buffer is not full, the thread selection logic can
schedule the store without knowing the destination subbank.
Stores are dispatched into and issued from store buffers in
FIFO order; store buffers also provide an associative search
port to support store-to-load forwarding, similar to Sun’s
Niagara-1 processor. We assume relaxed consistency mod-
els where special synchronization primitives (e.g., memory
fences in weak consistency, or acquire/release operations in
release consistency) are inserted into store buffers, and the
store buffer enforces the semantics of the primitives when
retiring stores and when forwarding to loads. Since the L1
d-cache supports a single write port (but multiple subbank
buffers), only a single store can issue per cycle. Store buffers,
and the L1 refill queue contend for access to this shared re-
source, and priority is determined based on a round-robin
policy.

4.6.2 L1 Data Cache and TLB
Both the L1 d-cache and the d-TLB are implemented us-

ing STT-MRAM arrays. The d-cache is equipped with two
read ports (one for snooping, and one for the core) and a
write port shared among all subbanks. At the time a load is-
sues, the corresponding thread is marked unschedulable and
recycling of the instruction buffer entry holding the load is
postponed until it is ascertained that the load will not expe-
rience a d-cache miss. Loads search the store buffer of the
corresponding thread and access the L1 d-cache in parallel,
and forward from the store buffer in the case of a hit. On
a d-cache miss, the thread is marked unschedulable, and is
transitioned back to a schedulable state once the data ar-
rives. To accommodate refills returning from the L2, the
L1 has a 16-deep, CMOS-based refill queue holding incom-
ing data blocks. Store buffers and the refill queue contend
for access to the two subbanks of the L1, and are given
access using a round-robin policy. Since the L1 is written
frequently, it is optimized for write throughput using 10F 2

cells. L1 subbank buffers perform internal differential writes
to reduce write energy.

SRAM STT-MRAM STT-MRAM
Parameter (32KB) (32KB, 30F 2) (64KB, 30F 2)

Read Delay 344ps 236ps 369ps
Write Delay 344ps 3331ps 3399ps
Read Energy 60pJ 31pJ 53pJ
Write Energy 60pJ 109pJ 131pJ
Leakage Power 78.4mW 11.0mW 31.3mW

Area 0.54mm2 0.19mm2 0.39mm2

Table 6: L1 d-cache parameters.

Table 6 compares the power, area, and latency character-
istics of two different STT-MRAM based L1 configurations
to a baseline, 32KB CMOS implementation. A capacity-
equivalent, 32KB d-cache reduces access latency from two
clock cycles to one, and cuts down the read energy by 1.9×
due to shorter interconnect lengths possible with the den-
sity advantage of STT-MRAM. Leakage power is reduced
by 7.1×, and area is reduced by 2.8×. An alternative, 64kB
configuration requires 72% of the area of the CMOS base-
line, but increases capacity by 2×; this configuration takes
two cycles to read, and delivers a 2.5× leakage reduction
over CMOS.

379

4.6.3 L2 Cache
The L2 cache is designed using 10F 2 STT-MRAM cells

to optimize for density and access energy rather than write
speed. To ensure adequate throughput, the cache is equipped
with eight banks, each of which supports four subbanks, for
a total of 32. Each L2 bank has a single read/write port
shared among all subbanks; unlike the L1 d-cache and the
register file, L2 subbanks are not equipped with differen-
tial writing circuitry to minimize leakage due to the CMOS-
based periphery.

Table 7 compares two different STT-MRAM L2 organiza-
tions to a baseline, 4MB CMOS L2. To optimize for leak-
age, the baseline CMOS L2 cache uses high-Vt transistors
in the data array, whereas the peripheral circuitry needs
to be implemented using low-Vt, high-performance transis-
tors to maintain a 4GHz cycle time. A capacity-equivalent,
4MB STT-MRAM based L2 reduces leakage by 2.0× and
read access energy by 63% compared to a CMOS baseline.
Alternatively, it is possible to increase capacity to 32MB
while maintaining lower area, but the leakage overhead of
the peripheral circuitry increases with capacity, and results
in twice as much leakage as the baseline.

SRAM STT-MRAM STT-MRAM
Parameter (4MB) (4MB) (32MB)

Read Delay 2364ps 1956ps 2760ps
Write Delay 2364ps 7752ps 8387ps
Read Energy 1268pJ 798pJ 1322pJ
Write Energy 1268pJ 952pJ 1477pJ
Leakage Power 6578mW 3343mW 12489mW

Area 82.33mm2 32.00mm2 70.45mm2

Table 7: L2 cache parameters.

4.6.4 Memory Controllers
To provide adequate memory bandwidth to eight cores,

the system is equipped with four DDR2-800 memory con-
trollers. Memory controller read and write queues are im-
plemented in STT-MRAM using 10F 2 cells. Since the con-
troller needs to make decisions only every DRAM clock cycle
(10 processor cycles in our baseline), the impact of write la-
tency on scheduling efficiency and performance is negligible.

The controller’s scheduling logic is implemented using STT-
MRAM LUTs. To estimate power, performance, and area
under CMOS- and MRAM-based implementations, we use a
methodology similar to that employed for the floating-point
unit. We use a DDR2-800 memory controller IP core de-
veloped by HiTech [11] as our baseline; on an ASIC design
flow, the controller synthesizes to 13, 700 gates and runs at
400MHz; on a Xilinx Virtex-5 FPGA, the same controller
synthesizes to 920 CLBs and runs at 333MHz. Replacing
CLB delays with STT-MRAM LUT delays, we find that an
STT-MRAM based implementation of the controller would
meet the 400MHz cycle time without further modifications.

Table 8 compares the parameters of the CMOS and STT-
MRAM based implementations. Similarly to the case of the
FPU, the controller logic benefits significantly from a LUT
based design. Leakage power is reduced by 7.2×, while the
energy of writing to the scheduling queue increases by 24.4×.

Parameter CMOS STT-MRAM

Read Delay 185ps 154ps
Write Delay 185ps 6830ps
Read Energy 7.1pJ 5.6pJ
Write Energy 7.1pJ 173pJ

MC Logic Energy 30.0pJ 1.6pJ
Leakage Power 41.4mW 5.72mW

Area 0.097mm2 0.051mm2

Table 8: Memory controller parameters. Area estimates do
not include wiring overhead.

4.7 Write Back
In the write-back stage, an instruction writes its result

back into the architectural register file through the write
port. No conflicts are possible during this stage since the
thread selection logic schedules instructions by taking reg-

ister file subbank conflicts into account. Differential writes
within the register file reduce write power during write backs.

5. EXPERIMENTAL SETUP
We use a heavily modified version of the SESC simula-

tor [25] to model a Niagara-like in-order CMT system with
eight cores, and eight hardware thread contexts per core.
Table 9 lists the microarchitectural configuration of the base-
line cores and the shared memory subsystem.

Processor Parameters
Frequency 4 GHz

Number of cores 8
Number of SMT contexts 8 per core
Front-end thread select Round Robin
Back-end thread select Least Recently Selected
Pipeline organization Single-issure, in-order
Store buffer entries 8 per thread

L1 Caches
iL1/dL1 size 32kB/32kB

iL1/dL1 block size 32B/32B
iL1/dL1 round-trip latency 2/2 cycles(uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 banks 1 / 2

iL1/dL1 MSHR entries 16/16
iL1/dL1 associativity direct mapped/2-way
Coherence protocol MESI
Consistency model Release consistency

Shared L2 Cache and Main Memory
Shared L2 cache 4MB, 64B block, 8-way
L2 MSHR entries 64

L2 round-trip latency 10 cycles (uncontended)
Write buffer 64 entries

DRAM subsystem DDR2-800 SDRAM [21]
Memory controllers 4

Table 9: Parameters of baseline.

For STT-MRAM, we experiment with two different design
points for L1 and L2 caches: (1) configurations with capac-
ity equivalent to the CMOS baseline, where STT-MRAM
enjoys the benefits of lower interconnect delays (Table 10-
Small), and (2) configurations with larger capacity that still
fit in under same area budget as the CMOS baseline, where
STT-MRAM benefits from fewer misses (Table 10-Large).
STT-MRAM memory controller queue write delay is set to
27 processor cycles. We experiment with an MRAM-based
register file with 32 subbanks and a write delay of 13 cy-
cles each, and we also evaluate the possibility of leaving the
register file in CMOS.

To derive latency, power, and area figures for STT-MRAM
arrays, we use a modified version of CACTI 6.5 [23] aug-
mented with 10F 2 and 30F 2 STT-MRAM cell models. We
use BSIM-4 predictive technology models (PTM) of NMOS
and PMOS transistors at 32nm, and perform circuit simu-
lations using Cadence AMS (Spectre) mixed signal analyses
with Verilog-based input test vectors. Only high perfor-
mance transistors were used in all circuit simulations. Tem-
perature is set to 370K in all cases, which is a meaningful
thermal design point for the proposed processor operating
at 4GHz [24].

For structures that reside in CMOS in both the baseline
and the proposed architecture (e.g., pipeline latches, store
buffers), McPAT [19] is used to estimate power, area, and
latency.

6. EVALUATION
6.1 Performance

Figure 11 compares the performance of four different MRAM-
based CMT configurations to the CMOS baseline. When
the register file is placed in STT-MRAM, and the L1 and
L2 cache capacities are made equivalent to CMOS, perfor-
mance degrades by 11%. Moving the register file to CMOS
improves performance, at which point the system achieves
93% of the baseline performance. Enlarging both L1 and L2
cache capacities under the same area budget reduces miss
rates but loses the latency advantage of the smaller caches;
this configuration outperforms CMOS by 2% on average.

380

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

BLAST	
 BSOM	
 CG	
 CHOLESKY	
 EQUAKE	
 FFT	
 KMEANS	
 LU	
 MG	
 OCEAN	
 RADIX	
 SWIM	
 WATER-­‐N	
 GEOMEAN	
 Pe
rf
or
m
an

ce
	
 N
or
m
al
iz
ed

	

to
	
 C
M
O
S	

CMOS	
 Small	
 L1&L2,	
 STT-­‐MRAM	
 RF	
 Small	
 L1&L2,	
 CMOS	
 RF	
 Large	
 L1&L2,	
 CMOS	
 RF	
 Small	
 L1,	
 Large	
 L2,	
 CMOS	
 RF	

Figure 11: Performance

0.0	

5.0	

10.0	

15.0	

20.0	

BLAST	
 BSOM	
 CG	
 CHOLESKY	
 EQUAKE	
 FFT	
 KMEANS	
 LU	
 MG	
 OCEAN	
 RADIX	
 SWIM	
 WATER-­‐N	
 AVERAGE	

To
ta
l	
 P
ow

er
	
 (W

)	

CMOS	
 Small	
 L1&L2,	
 STT-­‐MRAM	
 RF	
 Small	
 L1&L2,	
 CMOS	
 RF	
 Large	
 L1&L2,	
 CMOS	
 RF	
 Small	
 L1,	
 Large	
 L2,	
 CMOS	
 RF	

Figure 12: Total Power

Small Large
iL1/dL1 size 32kB/32kB 128kB/64kB

iL1/dL1 latency 1/1 cycles 2/2 cycles
L1s write occupancy 13 cycles 13 cycles

L2 size 4MB 32MB
L2 latency 8 cycles 12 cycles

L2 write occupancy 24 cycles 23 cycles

Table 10: STT-MRAM caches parameters

Benchmark Description Problem size

Data Mining
BLAST Protein matching 12.3k sequences
BSOM Self-organizing map 2,048 rec., 100 epochs

KMEANS K-means clustering 18k pts., 18 attributes

NAS OpenMP
MG Multigrid Solver Class A
CG Conjugate Gradient Class A

SPEC OpenMP
SWIM Shallow water model MinneSpec-Large

EQUAKE Earthquake model MinneSpec-Large

Splash-2 Kernels
CHOLESKY Cholesky factorization tk29.O

FFT Fast Fourier transform 1M points
LU Dense matrix division 512× 512to16× 16

RADIX Integer radix sort 2M integers

Splash-2 Applications
OCEAN Ocean movements 514×514 ocean

WATER-N Water-Nsquared 512 molecules

Table 11: Simulated applications and their input sizes.

Optimizing the L2 for fewer misses (by increasing capacity
under a the same area budget) while optimizing the L1s for
fast hits (by migrating to a denser, STT-MRAM cache with
same capacity) delivers similar results.

In general, performance bottlenecks are application de-
pendent. For applications like CG, FFT and WATER, the
MRAM-based register file represents the biggest performance
hurdle. These applications encounter a higher number of
subbank conflicts than others, and when the register file is
moved to CMOS, their performance improves significantly.
EQUAKE, KMEANS, MG, and RADIX are found sensi-
tive to floating-point instruction latencies as they encounter
many stalls due to dependents of long-latency floating-point
instructions in the 24-cycle, STT-MRAM based floating-
point pipeline. CG, CHOLESKY, FFT, RADIX, and SWIM
benefit most from increasing cache capacities under the same
area budget as CMOS, by leveraging the density advantage
of STT-MRAM.

6.2 Power
Figure 12 compares total power dissipation across all five

systems. STT-MRAM configurations that maintain the same
cache sizes as CMOS reduce total power by 1.7× over CMOS.
Despite their higher performance potential, configurations
which increase cache capacity under the same area budget
increase power by 1.2× over CMOS, due to the significant
amount of leakage power dissipated in the CMOS-based de-
coding and sensing circuitry in the 32MB L2 cache. Al-
though a larger L2 can reduce write power by allowing for
fewer L2 refills and writes to memory controllers’ scheduling
queues, the increased leakage power consumed by the pe-
ripheral circuitry outweighs the savings on dynamic power.

Figure 13 shows the breakdown of leakage power across
different components for all evaluated systems. Total leak-
age power is reduced by 2.1× over CMOS when cache ca-
pacities are kept the same. Systems with a large L2 cache
increase leakage power by 1.3× due to the CMOS-based pe-
riphery. The floating-point units, which consume 18% of the
total leakage power in the CMOS baseline, benefit signifi-
cantly from an STT-MRAM based implementation. STT-
MRAM based L1 caches and TLBs together reduce leakage
power by another 10%. The leakage power of the memory
controllers in STT-MRAM is negligible, whereas in CMOS
it is 1.5%.

11.40	

5.32	
 5.34	

14.92	

14.48	

0	

2	

4	

6	

8	

10	

12	

14	

CMOS	
 Small	
 L1	
 and	

L2,	
 STT-­‐MRAM	

RF	

Small	
 L1	
 and	

L2,	
 CMOS	
 RF	

Large	
 L1	
 and	

L2,	
 CMOS	
 RF	

Small	
 L1,	
 Large	

L2,	
 CMOS	
 RF	

Le
ak
ag
e	

Po

w
er
	
 (W

)	

RF	

FPU	

ALU	
 and	
 Bypass	

InstBuf	
 and	
 STQ	

FFs	
 and	
 Comb	
 Logic	

L1s	
 and	
 TLBs	

L2	

MC	

Figure 13: Leakage Power.

7. RELATED WORK
STT-MRAM has received increasing attention in recent

years at the device and circuit levels [8,12,26,32,33,37,39].
At the architecture level, Desikan et al. [9] explore using
MRAM as a DRAM replacement to improve memory band-
width and latency. Dong et al. [10] explore 3D-stacked
MRAM, and propose a model to estimate the power and area
of MRAM arrays. Sun et al. [30] present a read-preemptive
write technique which allows an SRAM-MRAM hybrid L2

381

cache to get performance improvements and power reduc-
tions. Zhou et al. [40] apply an early write termination
technique at the circuit level to reduce STT-MRAM write
energy. Wu et al. [34] propose a data migration scheme to
a hybrid cache architecture to reduce the number of writes
to resistive memories. Xu et al. [36] propose a circuit tech-
nique, which sizes transistors smaller than the worst case
size required to generate the switching current to improve
density. Most of this earlier work on MRAM considers it
as a DRAM or SRAM cache replacement in the system and
none of them discusses how to use resistive memories to build
combinational logic.

8. CONCLUSIONS
In this paper, we have presented a new technique that re-

duces leakage and dynamic power in a deep-submicron mi-
croprocessor by migrating power- and performance-critical
hardware resources from CMOS to STT-MRAM. We have
evaluated the power and performance impact of implement-
ing on-chip caches, register files, memory controllers, floating-
point units, and various combinational logic blocks using
magnetoresistive circuits, and we have explored the critical
issues that affect whether a RAM array or a combinational
logic block can be effectively implemented in MRAM. We
have observed significant gains in power-efficiency by par-
titioning on-chip hardware resources among STT-MRAM
and CMOS judiciously to exploit the unique power, area,
and speed benefits of each technology, and by carefully re-
architecting the pipeline to mitigate the performance impact
of long write latencies and high write power.

We believe this paper is part of an exciting new trend to-
ward leveraging resistive memories in effecting a significant
leap in the performance and efficiency of computer systems.

9. ACKNOWLEDGMENTS
The authors would like to thank Yanwei Song, Ravi Patel,

Sheng Li, and Todd Austin for useful feedback.

10. REFERENCES
[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock

rate vs. IPC: End of the road for conventional microprocessors.
In International Symposium on Computer Architecture,
Vancouver, Canada, June 2000.

[2] ALTERA. Stratix vs. Virtex-2 Pro FPGA performance
analysis, 2004.

[3] B. Amrutur and M. Horowitz. Speed and power scaling of
SRAMs. 2000.

[4] D. Burger, J. R. Goodman, and A. Kagi. Memory bandwidth
limitations of future microprocessors. In International
Symposium on Computer Architecture, Philedelphia, PA, May
1996.

[5] E. Catovic. GRFPU-high performance IEEE-754 floating-point
unit. http://www.gaisler.com/doc/grfpu_dasia.pdf.

[6] C. Chappert, A. Fert, and F. N. V. Dau. The emergence of
spin electronics in data storage. Nature Materials, 6:813–823,
November 2007.

[7] M. D. Ciletti. Advanced Digital Design with the Verilog HDL.
2004.

[8] D. Suzuki et al. Fabrication of a nonvolatile lookup table
circuit chip using magneto/semiconductor hybrid structure for
an immediate power up field programmable gate array. In
Symposium on VLSI Circuits, 2009.

[9] R. Desikan, C. R. Lefurgy, S. W. Keckler, and D. C. Burger.
On-chip MRAM as a high-bandwidth, low-latency replacement
for DRAM physical memories. In IBM Austin Center for
Advanced Studies Conference, 2003.

[10] X. Dong, X. Wu, G. Sun, H. Li, Y. Chen, and Y. Xie. Circuit
and mircoarchitecture evaluation of 3D stacking magnetic
RAM (MRAM) as a universal memory replacement. In Design
Automation Conference, 2008.

[11] HiTech. DDR2 memory controller IP core for FPGA and ASIC.
http://www.hitechglobal.com/IPCores/DDR2Controller.htm.

[12] Y. Huai. Spin-transfer torque MRAM (STT-MRAM) challenges
and prospects. AAPPS Bulletin, 18(6):33–40, December 2008.

[13] ITRS. International Technology Roadmap for
Semiconductors: 2009 Executive Summary.
http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[14] K. Tsuchida et al. A 64Mb MRAM with clamped-reference and
adequate-reference schemes. In Proceedings of the IEEE
International Solid-State Circuits Conference, 2010.

[15] G. Kane. MIPS RISC Architecture. 1988.

[16] U. R. Karpuzcu, B. Greskamp, and J. Torellas. The
bubblewrap many-core: Popping cores for sequential
acceleration. In International Symposium on
Microarchitecutre, 2009.

[17] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way multithreaded sparc processor. IEEE Micro,
25(2):21–29, 2005.

[18] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase-change memory as a scalable dram alternative. In
International Symposium on Computer Architecture, Austin,
TX, June 2009.

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In International Symposium on Computer
Architecture, 2009.

[20] M. Hosomi and H. Yamagishi and T. Yamamoto and K. Bessha
et al. A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-RAM. In IEDM Technical
Digest, pages 459–462, 2005.

[21] Micron. 512Mb DDR2 SDRAM Component Data Sheet:
MT47H128M4B6-25, March 2006. http://download.micron.
com/pdf/datasheets/dram/ddr2/512MbDDR2.pdf.

[22] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
Optimizing NUCA organizations and wiring alternatives for
large caches with CACTI 6.0. Chicago, IL, Dec. 2007.

[23] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
NAS parallel benchmarks. Technical report, NASA Ames
Research Center, March 1994. Tech. Rep. RNR-94-007.

[24] U. G. Nawathe, M. Hassan, K. C. Yen, A. Kumar,
A. Ramachandran, and D. Greenhill. Implementation of an
8-core, 64-thread, power-efficient sparc server on a chip. IEEE
Journal of Solid-State Circuits, 43(1):6–20, January 2008.

[25] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC
simulator, January 2005. http://sesc.sourceforge.net.

[26] S. Matsunaga et al. Fabrication of a nonvolatile full adder
based on logic-in-memory architecture using magnetic tunnel
junctions. Applied Physics Express, 1(9), 2008.

[27] S. Rusu et al. A 45nm 8-Core Enterprise Xeon Processor. In
Proceedings of the IEEE International Solid-State Circuits
Conference, pages 56–57, Feb. 2009.

[28] Sanu K. Mathew and Mark A. Anders and Brad Bloechel et al.
A 4-GHz 300-mW 64-bit integer execution ALU with dual
supply voltages in 90-nm CMOS. IEEE Journal of Solid-State
Circuits, 40(1):44–51, January 2005.

[29] J. E. Stine, I. Castellanos, M. Wood, J. Henson, and F. Love.
Freepdk: An open-source variation-aware design kit. In
International Conference on Microelectronic Systems
Education, 2007.
http://vcag.ecen.okstate.edu/projects/scells/.

[30] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel 3D
stacked MRAM cache architecture for CMPs. In
High-Performance Computer Architecture, 2009.

[31] T. Kawahara et al. 2 Mb SPRAM (spin-transfer torque RAM)
with bit-by-bit bi-directional current write and
parallelizing-direction current read. IEEE Journal of
Solid-State Circuits, 43(1):109–120, January 2008.

[32] T. Kishi and H. Yoda and T. Kai et al. Lower-current and fast
switching of a perpendicular TMR for high speed and high
density spin-transfer-torque MRAM. In IEEE International
Electron Devices Meeting, 2008.

[33] U. K. Klostermann et al. A perpendicular spin torque
switching based MRAM for the 28 nm technology node. In
IEEE International Electron Devices Meeting, 2007.

[34] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie.
Hybrid cache architecture with disparate memory technologies.
In International Symposium on Computer Architecture, 2009.

[35] Xilinx. Virtex-6 FPGA Family Overview, November 2009.
http://www.xilinx.com/support/documentation/data_sheets/
ds150.pdf.

[36] W. Xu, Y. Chen, X. Wang, and T. Zhang. Improving STT
MRAM storage density through smaller-than-worst-case
transistor sizing. In Design Automation Conference, 2009.

[37] W. Xu, T. Zhang, and Y. Chen. Spin-transfer torque
magnetoresistive content addressable memory (CAM) cell
structure design with enhanced search noise margin. In
International Symposium on Circuits and Systems, 2008.

[38] W. Zhao and Y. Cao. New generation of predictive technology
model for sub-45nm design exploration. In International
Symposium on Quality Electronic Design, 2006.
http://ptm.asu.edu/.

[39] W. Zhao, C. Chappert, and P. Mazoyer. Spin transfer torque
(STT) MRAM-based runtime reconfiguration FPGA circuit. In
ACM Transactions on Embedded Computing Systems, 2009.

[40] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction for
STT-RAM using early write termination. In International
Conference on Computer-Aided Design, 2009.

382

