
Accurate Floating Point Arithmetic
through Hardware Error-Free Transformations

Manouk V. Manoukian and George A. Constantinides

Imperial College, London
{mm3309,gac1}@ic.ac.uk

Abstract. This paper presents a hardware approach to performing ac-
curate floating point addition and multiplication using the idea of error-
free transformations. Specialized iterative algorithms are implemented
for computing arbitrarily accurate sums and dot products. The results
of a Xilinx Virtex 6 implementation are given, area and performance are
compared against standard floating point units and it is shown that the
time×area product can be improved by a factor of 4 and 6 over software
error-free addition and multiplication. Furthermore, it is illustrated that
a number of area and performance trade-offs can be made when calcu-
lating vector sums and dot products.

1 Introduction

FPGA based designs offer great flexibility to applications modeled using float-
ing point data processing. Designers can choose highly optimized IP cores or
customisable and exotic operations [1,2]. The accuracy of floating point opera-
tions has always been a major concern and is dealt with in a variety of ways,
both in software and hardware [3]. Traditionally, increased precision in hardware
floating point operations is achieved by committing to large floating point units.
However, if maximal accuracy is required in a calculation, very long fixed point
registers have to be used. These registers can be upward of 600 bits in length
for IEEE 32 bit standard floating point numbers [4,5].

This work migrates a method known in software to an FPGA context. It is
known to be possible to represent the result of an atomic floating point addi-
tion or multiplication without any error by using only two registers of standard
size [6]. The input pair is transformed into an output pair, where one output
corresponds to the traditional result and the other to the error present in the
calculation. Such error-free operations are very costly in software [6]. However,
in hardware the cost is easily reduced, as we show in this paper. Error-free ad-
dition and multiplication have been recently used in a number of projects to
develop accurate arithmetic algorithms, mainly for sums and dot products [7,8].
Distillation, one of the most popular among these algorithms, is well suited for
FPGA implementation. By using the hardware accelerated atomic operations,
as well as exploiting parallelism in the algorithm’s structure, we can create high
throughput circuits for vector sums and dot products.

A. Koch et al. (Eds.): ARC 2011, LNCS 6578, pp. 94–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Accurate Floating Point Arithmetic 95

2 Atomic Operations

2.1 Accurate Addition/Subtraction

Error-free floating point addition algorithms have been known since the mid
1960s. Two of the most well known algorithms are 2Sum which is due to Møller [9]
and Knuth [10] and Fast2Sum which was created by Kahan [11] and later for-
malised by Dekker [6] in 1971. Both algorithms produce the same results but
Fast2Sum is arguably simpler to understand. Algorithm 1 transforms the precise
unrounded sum of two floating point numbers a + b into the sum of two floating
point numbers x+y. Number x is equal to the rounded-to-nearest floating point
sum RN(a+b) and y = a+b−RN(a+b) which is the exact error in the sum due
to roundoff error and insufficient precision. Other rounding modes can be used
but only with round-to-nearest it is possible to guarantee no loss of information.

Algorithm 1. The Fast2Sum Algorithm
if |a| < |b| swap a and b
x ← RN(a + b)
z ← RN(x − a)
y ← RN(b − z)

The algorithm requires 6 FLOPs (floating point operations) in total, 3 addi-
tions/subtractions, 2 absolute values and 1 comparison [6]. The absolute values
and the comparison are used to check whether |a| ≥ |b| and swap the num-
bers if this is not the case. This branch can be especially problematic in heavily
pipelined CPUs. Furthermore, the 3 additions exhibit data dependencies and
cannot be executed in parallel. In a FPGA, however, we do not have to abide
with the limitations of standard floating point adders. It is possible to modify
a regular adder to provide both outputs x and y. Such a circuit has been cre-
ated before [12]; in that work the operation provides the error information on
demand, by stalling the pipeline and thus greatly reducing the throughput. In
this work the process has been fully incorporated into the design of the adder,
maintaining the standard adder pipeline structure.

The logic behind the circuit is straightforward, see Figure 1. When two floating
point numbers a, b with |a| ≥ |b| are added, the significand of b, sigb, has to be
aligned with siga. After the operands have been aligned, some or all of the least
significant digits of b can be outside the range of the result mantissa. These
“residual” bits that are normally discarded, constitute the error in the addition.
The error calculation, besides the isolation of residual digits, needs to account
for rounding in the result, for the possibility of subtraction as well as for overflow
and cancellation in the fraction addition.

2.2 Accurate Multiplication

Similar to addition, an error-free transformation can be achieved with floating
point multiplication as well. The aim is to transform the product of two floating

96 M.V. Manoukian and G.A. Constantinides

inputs result

error

swap
exp. diff. align +/- round normalize

residual set
over ow 2's comp. normalize

signi cand
over ow round up

Fig. 1. The error calculation flow diagram on the bottom incorporated with the stan-
dard FP adder diagram on the top

point numbers a · b to a sum of two floating point numbers x + y, where x =
RN(a · b) and y = a · b − RN(a · b). The best known way to achieve this is
Dekker’s product [6]. This algorithm in software requires 17 FLOPs in total,
7 multiplications, 10 additions/subtractions and has a dependency depth of 8,
allowing for parallel execution of multiple operations.

A hardware implementation of error-free multiplication can be considerably
more cost effective. When two floating point numbers of precision1 p are mul-
tiplied, the infinitely precise result can only be 2p or 2p − 1 digits wide. The
most significant half of that is output once rounded as the significand of the
result. The second, least significant half, is normally truncated but it can be
used instead to calculate the error in the product. The error calculation circuit
has to account for potential rounding in the result as well as set the sign of
the error. Unfortunately, the error output needs to be normalised whereas the
product output does not need any normalisation. This does create the need for
a large normalisation unit and introduces a noticeable delay in the calculations
as will be discussed in the conclusions.

3 Accurate Vector Sums and Dot Products

When calculating the sum of multiple floating point numbers with p digits of
precision each, often more than p digits are needed to represent the result with
maximal accuracy. To achieve this, two major types of algorithms exist in the
literature, multiple-digit [4] and multiple-term algorithms [13].

Multiple-digit algorithms use very long accumulators and require some bit
manipulation to position the results in the right slot of the accumulator.

Multiple-term algorithms use error-free transformations to produce results
that are expressed as expansions x = xn + xn−1 + ... + x2 + x1. Each component
of the expansion has p-digits of precision and is sorted by magnitude ∀i.|xi+1| ≥
|xi|∧(|xi+1| = |xi| → xi = 0). The most important property of the multiple-term
1 Precision is the length of the floating point number’s significand including the often

suppressed MSB in radix 2.

Accurate Floating Point Arithmetic 97

result is that the terms are non-overlapping2; this means that the result will have
the smallest possible number of non-zero terms. The sign of the result is the sign
of the largest component since |xi| >

∑i−1
j=0 |xj |. Thus, crude approximation of

the result can be made from the component with the largest magnitude [7].
This work is focused on error-free transformations and more specifically on

a commonly used multiple-term algorithm often referred to as the distillation
algorithm [7,8]. Distillation is used to transform an input vector of n floating
point numbers into an output vector that holds the exact sum S =

∑n
i=1 di

expressed as a multiple-term expansion.

Algorithm 2. The Distillation Algorithm
repeat

for i ← 1 to n − 1 do
(di+1, di) ← Fast2Sum(di, di+1)

end for
until di non-overlapping with di+1

Distillation (Algorithm 2) is achieved by sweeping repeatedly through the
input data and applying the error-free addition algorithm (Fast2Sum) until the
vector is transformed into the expansion of the accurate sum. The algorithm
terminates when all the non-zero elements of the vector are non-overlapping.
The number of iterations needed for termination is not predefined and depends
not only on the input data, but also on the order the data appears. In the worst
case scenario the algorithm would take n iterations to complete. In practice
considerably fewer iterations are needed. For example, for large random test
vectors (millions of inputs) using the IEEE 754 32-bit floating point format, the
number of iterations never exceeds nineteen.

Distillation is not only useful for calculating completely accurate sums. When
used with a fixed number of iterations K, then the most significant component of
the result (the first element of the vector) is actually the same as if the sum was
computed in K-fold precision and then rounded back to working precision [8].
Therefore, distillation can be used for both accurate multi-term results as well
as accurately rounded single-term results.

The error-free adder that has been developed can be utilised to replace the
Fast2Sum algorithm to accelerate the accumulation (Figure 2). Further accelera-
tion of the accumulation can be accomplished by unrolling the loop and skewing
the iterations. In Figure 3 three iterations have been unrolled, and so three dif-
ferent adders can be used in a pipelined fashion. If the number of elements to be
added is much larger than the number of adders, then the iterations are executed
in parallel. Another benefit of using multiple accurate adders is minimization of
the memory traffic, since it is no longer necessary to temporarily store the re-
sults of the intermediate calculations. It is likely that the number of iterations
needed is not a multiple of the available adders. This means that more iterations
2 Two floating point values x and y are non-overlapping if the least significant nonzero

bit of x is more significant than the most significant nonzero bit of y, or vice-versa.

98 M.V. Manoukian and G.A. Constantinides

+ + ... + +

d1 d2 d3 dn-1 dn

d1 d2 d3 dn-1 dn

Fig. 2. Single distillation iteration, using
a single error-free adder

+ + +

d1 d2 d3 d5

d1 d2 d4 d5

+

d4

d3

+ + ++

+ + ++

Fig. 3. Three unrolled distillation itera-
tion, using separate adders

might be executed than is necessary. Fortunately extra iterations do not corrupt
the result and since iterations are executed in parallel there is no performance
disadvantage.

Computing dot products does not pose a difficult task. Consider the dot
product

∑n
i=0 ai · bi. Dekker’s product (error-free multiplication) can be used

to transform the products ai · bi to the sums x2i +x2i+1. Then only the accurate
sum

∑2n
i=0 xi needs to be calculated. This can be achieved by using an error-

free multiplier to convert the input products into sums and then simply apply
distillation.

4 Results

For this work the FloPoCo framework [2] was used to develop all of the accu-
rate operations mentioned. Although the VHDL generated is not parametric, we
can generate operations of arbitrary size. The most important operation imple-
mented is the error-free adder. If the error output is ignored then the accurate
adders generated are indistinguishable from a standardised adder of the same
size, both in terms of results, pipeline depth and latency. This means that the
developed unit can replace the 6 FLOPs of the Fast2Sum algorithm with effec-
tively one standard addition at only somewhat increased area cost. In Table 1
a 32 bit adder implemented on a Xilinx Virtex 6 FPGA is compared with a
error-free adder. The error-free adder has the same latency - it was possible to
maintain the same critical path - and requires a 47% larger area for the error
calculation circuit. Therefore, the sixfold decrease in FLOPs and the 1.47 in-
crease in area means an improvement in the time×area product by a factor of

6
1.47 ≈ 4, compared to software libraries. An adder with double the precision, 47
bits (56 bit in total) instead of 23 bits, is also compared (1). The longer adder
does offer increased accuracy but by no means is it error free. The error-free
adder can give more accurate results faster and uses significantly less area.

The multiplication comparison metrics in Table 2 show significantly different
results. When comparing a standard 32-bit multiplier with the error-free im-
plementation, a large increase in area and latency is apparent. Both of these
are due to the fact that we need to use a normalisation unit for the residual.

Accurate Floating Point Arithmetic 99

Table 1. Adder Comparisson on the Virtex 6 FPGA

Adder Type Number of Slices Increase Latency Increase
32-bit 177 slices – 20ns –
32-bit error-free 260 slices 47% 20ns 0%
56-bit 392 slices 121% 33ns 65%

The normalisation unit requires a large number of slices and has a long pipeline
that increases the overall latency. On the other hand there is no need for a nor-
malisation unit in the standard design, because the multiplication of numbers
will need at most one bit of alignment. The doubling of the area shown in Table 2
refers only to the number of slices used; note that all the multipliers in the table
also use the same number (4) of DSP blocks. Software libraries require 17 FLOPs
for a single error-free multiplication, our implementation therefore outperforms
software alternatives in time×area product by a factor of 1

2.02 × 17
1.4 ≈ 6.

In a flexible FPGA environment it is possible to have multipliers with standard
inputs that produce wider and more accurate results. For example if we opt for
a 47-bit precision for the output the result is infinitely precise without any cost
in area and with smaller latency. The absolute accuracy is possible because in
every floating point multiplier the infinitely precise result is at most 2p bits wide
and is calculated anyway. The seemingly strange reduction in latency is actually
expected since an accurate result does not require any rounding circuitry.

Table 2. Multiplier Comparisson on the Virtex 6 FPGA

Multiplier Type Number of Slices Increase Latency Increase
32-bits in 32-bits out 60 slices – 20ns –
32-bit error-free 121 slices 102% 28ns 40%
32-bits in 56-bits out 61 slices 2% 11ns -45%

The accurate summation and dot product algorithms are not only accelerated
by the aforementioned atomic operations but can also be accelerated by using mul-
tiple adders to exploit the parallelism between consecutive iterations. The area
consumed increases linearly with the number of adders utilised. The performance
increase however, is not linear and is slightly dampened because the design’s max-
imum frequency drops as the FPGA becomes more saturated. Besides the number
of adders, another parameter that can be adjusted is the adder width. If the input
precision is kept constant, increasing the adder precision will reduce the number
of iterations needed to converge to the precise result, but will also make the adder
slower. We used random test cases with 32 bit floating point numbers uniformly
distributed in the entire floating point range and studied how the accumulator be-
haves. Figure 4 illustrates that increasing the adders’ precision over the original
24 bits, reduces the iterations needed for the algorithm to complete.

If both the number of adders as well as the adders’ precision are varied,
then the design space for the accurate accumulator is illustrated in Figure 5.

100 M.V. Manoukian and G.A. Constantinides

Fig. 4. Effect of the adder precision on the number of iteration required to terminate
with a fixed specified accuracy level, independent of adder width

Fig. 5. The design space of a 32 bit accurate accumulator, considering alternative
conditions of adder width and iteration count to achieve the same accuracy

The vertical axis illustrates the time increase in the accumulation for every
extra addend. The horizontal axis illustrates the area resource and reflects the
increasing number of adders from left to right. It is clear that for high throughput
applications we will have to sacrifice area to accommodate more adders in the
design. However, if we use wider adders it is possible to achieve the same level of
performance with a smaller footprint. The benefit of using wider adders is also
noticeable but not as prominent in small area designs. By using a wider adder we
can more than double the throughput with a reasonably small area investment.
Near the performance×area sweet spot the adder width does not play a vital
role; the level of performance is dictated mainly by the total area committed to
the design.

Accurate Floating Point Arithmetic 101

5 Conclusion

In this work circuits were developed that can replace software based error-free
addition and multiplication. The need for such circuits is apparent to researchers
working on error-free transformation and they have expressed their wish for
hardware support for their applications [8].

Our error-free adder implementation can be used to accelerate algorithms that
already use the software versions and can outperform them in time×area product
by a factor of 4×. Our implementation is also a viable method for executing ac-
curate addition in general.Results are produced faster, less area is consumed and
greater accuracy is achieved compared to adders that are wider than the inputs.
On the other hand, although the error-free multiplier implementation can sur-
pass its software counterpart by a factor of 6× as we have shown, it is not useful
as a general purpose accurate multiplier. If accurate multiplication is the main
design goal then customised standard multipliers offer a better design choice.

Finally, we have shown how the accurate atomic operations can be combined
to calculate precise multi-term or accurately rounded single-term sums and dot
products. These algorithms are well suited for FPGA implementation because of
their inherent parallelism, and we have illustrated the performance-area trade-
offs that can be achieved by varying both the number of floating point units
utilised, as well as units’ word length.

References

1. VFLOAT, http://www.ece.neu.edu/groups/rpl/projects/floatingpoint/
2. Flopoco project, http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
3. Muller, J., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Vincent, L., Melquiond,

G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic.
Springer, Heidelberg (2010)

4. Kulisch, U.W.: Circuitry for generating scalar products and sums of floating-point
numbers with maximum accuracy. United States Patent 4622650 (1986)

5. Kulisch, U.W.: Advanced Arithmetic for the Digital Computer: Design of Arithmetic
Units. Springer, New York (2002)

6. Dekker, T.J.: A floating-point technique for extending the available precision.
Numerische Mathematik 18, 224–242 (1971); 10.1007/BF01397083

7. Shewchuk, J.R.: Adaptive precision fp arithmetic and fast robust geometric predi-
cates. Discrete and Computational Geometry 18 (1996)

8. Rump, S.M.: Error-free transformations and ill-conditioned problems. In: Interna-
tional Workshop on Verified Computations and Related Topics (2009)

9. Møller, O.: Quasi double-precision in floating point addition. BIT Numerical Math-
ematics 5, 37–50 (1965); 10.1007/BF01975722

10. Knuth, D.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2.
Addison Wesley, Reading (1969)

11. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun.
ACM 8(1), 40 (1965)

12. Dieter, W.R., Kaveti, A., Dietz, H.G.: Low-cost microarchitectural support for
improved floating-point accuracy. IEEE Comput. Archit. Lett. 6 (2007)

13. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26(6), 1955–1988 (2005)

http://www.ece.neu.edu/groups/rpl/projects/floatingpoint/
http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/

	Accurate Floating Point Arithmetic through Hardware Error-Free Transformations
	Introduction
	Atomic Operations
	Accurate Addition/Subtraction
	Accurate Multiplication

	Accurate Vector Sums and Dot Products
	Results
	Conclusion
	References

