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Abstract
In conjunction with the High-Performance Microprocessor Project at The University of Michigan, a Pow-

erPC-compatible floating point unit (FPU) has been implemented. This paper presents the FPU, which is imple-
mented in Hewlett Packard’s HP14B (u&, 3M, 3.3V CMOS process. In order to achieve high performance, the

FPU has a nine-stage pipeline and implements a subset of the most commonly used double-precision floating point
instructions. Unimplemented instructions will be handled in software by the compiler and the operating system. The
FPU achieves a 75 MHz clock frequency. The critical path is through a 54-bit shift unit. A full 64-bit multiplier tree
based on 4:2 compressors computes a 106-bit sum and carry within one clock cycle. The 330,000 transistors in the
FPU take up 56 mfn Power dissipation is estimated to be less than 8.5 W. This paper outlines the architecture of the
floating point unit and describes some of our design methodology. Implementation issues and detailed statistics are

given.



1. System Overview

The floating point chip described in this paper is designed to be paired with a companion fixed point unit,
either on the same die or on a multi-chip module. The fixed point unit provides instruction fetch and data retrieval
capability so that the majority of the area on the floating point chip can be devoted to units specific to floating point
calculations.

To achieve a high clock frequency, the floating point unit is designed with a long pipeline (9 stages) and
includes several unique features to increase performance. The tree multiplier is composed of custom standard cell 4:2
compressors which employ transmission gate logic. The wide compressors reduce the number of logic levels needed
in the tree compared to a traditional Wallace tree design based on 3-2 adders. To further increase performance, we
studied how to reduce the number of pipeline stages and still achieve a high clock rate. Our design implements a dual-
path design for addition operations that allows the pipeline to be one stage shorter than it otherwise would have been.

The rest of this paper is divided into sections that describe the chip’s architecture, various trade-offs made

during the design, and implementation and testing issues. We then conclude and suggest some areas for future work.

2. Implementation and Engineering Considerations

2.1. Functional Specification

The FPU is designed to be PowerPC compatible with support from both the compiler and operating system,
so it implements a small subset of the PowerPC floating point instruction set. Instructions with a high dynamic usage
frequency in the SPECFP95 benchmarks were included in the implemented instruction set. The instructions that are
rarely used or that can be handled easily in software by the compiler or the operating system have been removed from

the instruction set. Table 1 summarizes the implemented FPU instructions. These instructions implement over 75%

Table 1: FPU Instruction Set Architecture

Mnemonic Description Mnemonic Description

fadd Add fabs Absolute value

fsub Subtract fmr Move register

fmul Multiply fnabs Negate absolute value
fmadd Multiply-add fneg Negate

fmsub Multiply-subtract Ifd Load

fnmadd Multiply-add negate Ifdx Load indexed
fnmsub Multiply-subtract negate stfd Store




of the instructions that occur in the SPECFP95 benchmarks, for example. Of the remaining 25%, 18% of those can

easily be emulated by other instructions.

Further details of the requirements of a PowerPC floating point architecture can be found in [2].

2.2. Pipeline Organization

The pipeline which implements the above instructions utilizes a simple, deeply pipelined architecture in
order to achieve high performance. The FPU is composed of 9 pipeline stages as shown in Figure 1. Stage 1 and stage

2 of the FPU are shared with a companion FXU described in [17]. Stage 1 increments the current program counter

Critical Path
3 Register File 10.2 ns
4 64 x 64 4:2 Tree 8.0ns
5 Add 9.6 ns
[ Normalize |
Magnitude
6 Comparator 9.3 ns
[ Mantissa Swap |
[ Shifter (mux) |
7 Shifter 12.4ns
| Add |
8 | Avdd | Shifter 11.7 ns
[ Shifter (mux) |
9 MUX 4.0ns

v To Register File
Figure 1. FPU block diagram. The heavy black lines represent pipeline latches.

(PC) and selects PC for the next instruction. Stage 2 accesses the shared L1 instruction cache.

Stages 3 through 9 compose the stages that execute floating point instructions. In stage 3, the register file is



accessed and the instruction is decoded. In addition, a simple scoreboard checks for data dependencies; if a depen-
dency is detected, the FPU stalls until the dependent instruction finishes execution.

The remainder of the pipeline is similar to the IBM 603e floating point unit in that its operation is based on
the flow of the fused multiply-add operation [19]. There are several advantages of the fused multiply-add operation
which result from the operation not doing an intermediate round between the multiply and the add. Perhaps most
obvious is that the result is more accurate because of the so-céilhéie-precisionintermediate result. This is
important in applications that do, for instance, matrix multiplication where there is a long sequence of multiplications
and additions. More subtle is the fact that performance is improved because of fewer overall rounding steps. Another
advantage of the multiply-add operation is that it reduces overall register port pressure (there is one combined instruc-
tion instead of two, i.e. one write operation instead of two), though this advantage is lessened by the fact that the mul-
tiply-add instruction requires 3 read ports instead of the traditional 2 read ports.

Stage 4 of our pipeline contains the multiplier tree and exponent adder. The 53-bit significands are multi-
plied to the point where two 106-bit partial products remain. In stage 5, these final two partial products are added to
form the result of the multiply which is also 106 bits in length. In order to calculate the sign and perform proper addi-
tions of floating point numbers, the operands to the floating point adder have to be aligned. Because this pipeline
computes floating point results in one’s complement arithmetic, stage 6 is necessary to compare the operands and
possibly swap them if the operation is a subtract. Stages 7 and 8 perform the add/subtract operation by aligning the
floating point operands through shifters, adding the aligned operands, and then normalizing the final result (how this
works is described in the next paragraph). The final stage selects the correct value to write back to the register file.

A simple specification of the floating point pipeline for addition operations would call for three stages: a
large preshift stage to align the summands, the add stage, and then a post-normalization stage. Closer inspection of
the floating point addition operation reveals that the addition cannot have both a large pre-shift alignment (greater
than 1 bit position) and a large post-shift normalization. The proof is by cases and is shown in Figure 2. Thus, by
duplicating the adder and adding two one-bit shifters (muxes) we can implement the addition portion of the pipeline
in two stages instead of three, because the small shift operations can be absorbed into the stage with the adder. As
shown in Figure 1, stages 7 and 8 compute both cases and stage 9 selects the correct result. Implementing the addition

this way only requires one additional 54-bit adder plus some muxes to do small shifts (shift of O or 1 bit for alignment



or normalization), resulting in a modest increase in transistor count and one less pipeline stage.

Case 1: Exponents equal

L.fffff
+ 1.fffff

11.fffff

In this case, no pre-normalizing
shift is necessary. The addition
results in a floating point number
which requires at most a 1-bit
right shift.

Case 2: Exponents differ by 1

L.fffff
+ 0. 1ffff

11.fffff

Here, only a 1-bit right shift is
needed to normalize the oper-
ands. If a carry propagates to the
most significant bit, a 1-bit right
shift may be necessary to normal-

Case 3: Exponents differ by > 1

1.fffff
+ 0. 001ff

10. fffff

In this case, a large aligning pre-
shift is necessary before the addi-
tion takes place. In the worst
case, a carry could propagate to
the most significant end and

ize the result. require a 1-bit right shift to nor-

malize the result.

Figure 2. Proof that IEEE 754 floating point addition does not require both a large aligning
preshift and a large normalizing post-shift. Inputs are assumed to be normalized. The
proof for subtraction is analogous.

2.3. Architectural Trade-offs

One unique feature of the architecture is that the multiplier tree is implemented as a 64-bit tree as opposed to
a 54-bit multiplier tree. The primary reason for implementing a larger tree is for future additions of SIMD instructions
similar to Intel's MMX and Sun’s VIS instructions [18]. In [20] we describe how a 64-bit multiplier can be slightly
modified by produce multiple byte- and halfword-results simultaneously, the essence of SIMD operation. This type of
addition to the architecture can increase the performance of audio, graphics, and video applications with proper
device driver support. Since increasing the multiplier tree to 64-bits does not increase the number of levels of 4:2
compressors (5 levels), the delay through the tree will be roughly the same. It does increase transistor count and area.

Another trade-off had to be made concerning floating point subtractions. Using the IEEE 754 floating point
standard, all floating point numbers are represented in a signed magnitude notation. Sign magnitude numbers are dif-
ficult to perform subtraction on, either requiring a separate subtract unit, or a conversion to a different binary repre-
sentation of the number. Since an additional 53-bit subtraction unit would increase the area of the chip, the FPU
converts all negative numbers to one’s complement notation. One’s complement requires a mantissa swap before sub-
traction. The area of the extra comparator is much smaller than an additional subtract unit.

In addition to the above trade-offs, the FPU also does not contain any forwarding paths. The majority of the



instructions in our target instruction mix (multiply-add instructions) require the full length of the pipeline to execute

so forwarding busses will not increase performance. There are several short latency instructions (absolute value and
move instructions in particular) which could benefit from short-circuiting, but we opted to leave the necessary 64-bit
busses out of the pipeline to decrease area and reduce complexity. The additional muxing logic that would be needed

in stage 4 of the pipeline for instructions dependent on these operations would also increase the clock period.

2.4. Design Methodology

Design entry for the FPU was in Verilog. Both behavioral and structural implementations were coded and
tested by comparing results to known-good results computed on an existing IEEE-754 compliant floating point unit.
For all tests, randomly chosen inputs were used. When this data was used as input to a randomized stream of instruc-
tions, the results frequently went out of bounds (either to +/- infinity) and thus we needed to inject new random (but
well-formed) values into the simulation every few tens of cycles to avoid producing too many edge cases. We are still
running millions of random test vectors through the models to catch any errors that were not caught by out focused
tests. Upon completing these tests, we will also run real application code through the FPU to pick up any remaining
errors.

Cascade’s EPOCH toolset provided thepihbcell library and automated placement and routing. (The FPU
is implemented in Hewlett Packard’s HP14B process, ai,533.3 V, 3 metal CMOS process). Mentor Graphics ICs-
tation was used to design a custom 4:2 compressor which was imported into the EPOCH framework. The EPOCH
static timing analyzer, TACTIC, was used to analyze delays through each pipeline stage. This allowed us to identify
critical paths and reduce the delays through those paths. Cascade’s Floorplanner was used to manually place some
cell blocks for a more compact layout. The Cascade tool PDABS provided power driven buffer sizing: given our tar-
get clock cycle, this tool iterated over the cell blocks, attempting to properly size buffers so that the target would be
met.

Once we are sure that the FPU functions correctly, final layout will be generated based on this “bug free”
design. Finally, DRC, ERC, and LVS checks will be run on the entire circuit.

The remainder of this section describes some of the implementation issues that we examined during this

design.



2.5. Multiplier Tree

The single-cycle 64-bit multiplier tree is similar in architecture to a traditional Wallace Tree, but is actually
implemented with five levels of 4:2 compressors. The mux-based implementation of the compressor was adapted
from [1], with each mux composed of two transmission gates and two inverters. The 4:2 compressor cell was laid out
full-custom using Mentor Graphics ICStation (see Figure 3). Each compressor consists of 48 transistors. In-cell rout-
ing was confined to layer 1 and 2 metal so that metal 3 could be used for overcell routing. Transistor sizing is based
on HSPICE simulations. A sample HPSICE run is shown in Figure 4. The critical path through the mux-based com-
pressor is three 2-input mux delays; this simulation shows the critical path to be about 750 ps, or about 250 ps per
mux. The inputs are driven by inverters (not ideal current sources) and all three outputs of the simulated compressor

are loaded by inputs of three other compressors.

Figure 3. 4:2 Compressor Layout

In addition to the 4:2 compressors, the multiplier requires an AND plane which generates the partial prod-
ucts of the multiply. A custom 4:2 compressor with ANDing function was designed to combine both functions into
one standard cell. The compressor cells were imported into EPOCH for placement and routing. The 64-bit multiplier
tree consists of 2273 compressors and 4096 AND gates, for a total of 133,680 transistors. Due to the large number on
interconnections within the multiplier tree, the majority of the area is consumed by the interconnect. The area of the

tree is 5.545 mm x 3.681 mm (20.411 AnThe multiplier tree makes up nearly 36.4% of the total chip area. The



tree is estimated to dissipate 5.6 W and have a worse case delay of 7 ns. The multiplier tree layout can be seen at the

top of the chip layout in Figure 5.

Note that the bit of each multiplicand fans out to 54 inputs in the tree. The capacitance on each net is there-

fore very large and a multi-stage buffer tree is required to drive the large fanout.
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Figure 4. A spice simulation of the 4:2 compressor. The bold dashed curve shows the output responst
of the sum output sO stimulated by a fall in the input i4 shown as the thin solid curve. The delay is

about 750 ps.

2.6. Clocking and Timing

The FPU is clocked by a single-phase, 50% duty-cycle clock. All storage in the pipeline is based on positive
edge triggered flip-flops. To prevent race conditions, short paths through pipeline stages have been delayed by the
addition of buffers between the flip-flops. This effectively eliminates the short paths and thus reduces the possibility
of race conditions occurring.

Initially, we had hoped for a fast clock rate (200 to 250 MHz), but shortly into the design, we noticed that
our cell library components did not meet speed requirements. There are basically two critical paths that determine the
clock frequency of the FPU. First is the path through the register file. This path goes through some decode logic, the

register file, and then a mux. The delay through this path is 10.2 ns. The register file contributes 8.5 ns of that delay.



The other critical path is through the large pre-shift stage (7). This path goes through a small 11-bit adder and then
through a 54-bit shifter. The delay through this logic is 12.4 ns. This sets the clock rate at 75 MHz (13 ns period)
which is substantially below our target clock rate. We are currently redesigning the large pre-shift stage of the FPU to
balance this delay with the others in the pipeline; we anticipate that the pipeline will run close to 100 MHz after this

enhancement. Figure 1 summarizes the critical path delays through each stage of the FPU.

2.6.1. Design for Test and Testing Environment

The most important test element of the FPU is the full scan chain. All registers (excluding the register file)
are connected to a scan chain. Using this scan chain, known inputs to all the stages can be scanned into the pipeline
registers and after one clock tick, test results can be scanned back out of the FPU.

The packaged FPU will be testing using Hewlett Packard test equipment. The HP 82000 IC tester is capable

of providing 240 signals at 200 MHz. An HP 80000 pulse generator will supply our clock signal.

2.7. Chip Statistics

Figure 5 shows the final layout of the FPU. The chip’s critical statistics are shown in Table 2.

Table 2: Chip Statistics

Category Value Category Value
Die size 7.5 mm x 9.0 mm Core density 5980 transistors 7 mm
Core area 56 mfn Clock rate 75 MHz
Power Dissipation 8.3 W Number of pins 244
Number of Transistors 334,903 \oltage supply 3.3V
3. Summary

This paper presented a 330,000 transistor floating point unit which implements a subset of the PowerPC
floating point ISA. In designing the unit, we made use of transmission-gate logic and wide compressors in the multi-
plier tree, and showed how to implement the addition portion of the pipeline in two stages instead of the normal 3.

While the part did not meet our speed goals, the layout area and power dissipation were satisfactory.

3.1. Future Work

Our primary items for work in the near future are to finish testing and increase the operating frequency of the

part. A new cell library has just become available with faster cells. If those are not fast enough, we will revert to cus-
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tom cell designs to increase the speed.

In addition to increasing the clock rate, there are additional instructions and components that were left out of
this initial project that will be added back in. For instance, single precision operations and integer conversions can be
added to the current pipeline with little modification. The FPU currently implements one rounding mode (round
towards zero), the IEEE specification calls for 4 rounding modes. Finally, exception handling for NaNs, underflow

and overflow needs to be added.
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Figure 5. The floating point chip layout.
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