Computer Graphics Proceedings, Annual Conference Series, 2012

() ASIARO] 2

GPU-accelerated Path Rendering

Mark J. Kilgard

Jeff Bolz

NVIDIA Corporation*

SIGGRAPH &

®

ACM SIGGRAPH News

Figure 1: GPU-accelerated scenes rendered at super-real-time rates with our system: Snail Bob Flash-based game (5ms) by permission of
Andrey Kovalishin and Maxim Yurchenko, Van Gogh SVG scene with gradients (5.26ms) by permission of Enrique Meza C, complete (shown
clipped) SIGGRAPH web page (4.8ms), and SVG scene with path clipping (1.9ms) by permission of Michael Grosberg, all rendered on a

GeForce 560M laptop.

Abstract

For thirty years, resolution-independent 2D standards (e.g.
PostScript, SVG) have depended on CPU-based algorithms for the
filling and stroking of paths. Advances in graphics hardware have
largely ignored accelerating resolution-independent 2D graphics
rendered from paths.

We introduce a two-step “Stencil, then Cover” (StC) programming
interface. Our GPU-based approach builds upon existing tech-
niques for curve rendering using the stencil buffer, but we explicitly
decouple in our programming interface the stencil step to deter-
mine a path’s filled or stroked coverage from the subsequent cover
step to rasterize conservative geometry intended to test and reset
the coverage determinations of the first step while shading color
samples within the path. Our goals are completeness, correctness,
quality, and performance—yet we go further to unify path render-
ing with OpenGL’s established 3D and shading pipeline. We have
built and productized our approach to accelerate path rendering as
an OpenGL extension.

CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems—
Stand-alone systems;

Keywords:
buffer

path rendering, vector graphics, OpenGL, stencil
Links: ©DL T PDF

1 Introduction

*e-mail: {mjk,jbolz}@nvidia.com

Copyright ACM, (2012). This is the author’s ver-
sion of the work. It is posted here by permission
of ACM for your personal use. Not for redistri-
bution. The definitive version will be published in
ACM Transactions on Graphics, http://doi.acm.org

When people surf the web, read PDF documents, interact with
smart phones or tablets, use productivity software, play casual
games, or in everyday life encounter the full variety of visual output
created digitally (advertising, books, logos, signage, etc.), they are
experiencing resolution-independent 2D graphics.

While 3D graphics dominates graphics research, we observe that
most visual interactions between humans and computers involve
2D graphics. Sometimes this type of computer graphics is called
vector graphics, but we prefer the term path rendering because the
latter term emphasizes the path as the unifying primitive for this
approach to rendering.

1.1 Terminology of Path Rendering

A path is a sequence of trajectories and contours. In this context,
a trajectory is a connected sequence of path commands. Path com-
mands include line segments, Bézier curve segments, and partial
elliptical arcs. Each path command has an associated set of nu-
meric parameters known as path coordinates. When a pair of path
coordinates defines a 2D (z, y) location, this pair is a control point.
Intuitively a trajectory corresponds to pressing a pen’s tip down on
paper, dragging it to draw on the paper, and eventually lifting the
pen.

A contour is a trajectory with the same start and end point; in other
words, a closed trajectory. These contours and trajectories may be
convex, self-intersecting, nested in other contours, or may intersect
other trajectories/contours in the path. There is generally no bound
on the number of path segments or trajectories/contours in a path.
For a rendering “primitive,” paths can be quite complex.

Paths are rendered by either filling or stroking the path. Concep-
tually, path filling corresponds to determining what points (frame-
buffer sample locations) are logically “inside” the path. Stroking
is roughly the region swept out by a fixed-width pen—centered on
the trajectory—that travels along the trajectory orthogonal to the
trajectory’s tangent direction.

1.2 History, Standards, Motivation, and Contributions

Seminal work by Warnock and Wyatt [1982] introduced a coherent
model for path rendering. Since that time, many standards and pro-
gramming interfaces have incorporated path rendering constructs

http://doi.acm.org/10.1145/2366145.2366183
http://portal.acm.org/ft_gateway.cfm?id=2366183&type=pdf

ACM SIGGRAPH 2012, Singapore, November 28—December 1, 2012

into their 2D graphics framework. Without being exhaustive, we
note

e document presentation and printing: PostScript [Adobe Sys-
tems 1985], PDF [Adobe Systems 2008a]

e font specification: PostScript fonts [Adobe Systems 1992]

o immersive web: Flash [Adobe Systems 2008b], HTML 5’s
Scalable Vector Graphics [SVG Working Group 2011a]

o 2D programming interfaces: OpenVG [Khronos Group 2008]
e productivity software: llustrator, Photoshop, Office

Despite path rendering’s 30 year heritage and broad adoption, it
has not benefited from acceleration by graphics hardware to any-
where near the extent 3D graphics has. Most path rendering today is
performed by the CPU with sequential algorithms, not particularly
different from their formulation 30 years ago. Our motivation is to
harness existing GPUs to improve the overall experience achievable
with path rendering.

We present a productized system for GPU-accelerated path render-
ing in the context of the OpenGL graphics system; see some of our
rendering results in Figure 1. Our system works on the three most-
recent architectural generations of GeForce and Quadro GPUs—
and we expect all recent GPUs can support the algorithms and pro-
gramming interface we describe.

The primary contributions delivered by our system are:

e A novel "stencil, then cover” programming interface for path
rendering, well-suited to acceleration by GPUs.

e Our programming interface’s efficient implementation within
the OpenGL graphics system to avoid CPU bottlenecks.

e Accompanying algorithms to handle tessellation-free sten-
ciled stroking of paths, standard stroking embellishments such
as dashing, clipping paths to arbitrary paths, and mixing 3D
and path rendering.

Section 2 reviews prior path rendering systems. Section 3 explains
our approach; we cite the crucial prior research that our approach
integrates in this section. Section 4 compares our quality and
performance to other implementations and highlights our system’s
novel ability to mix with 3D and GPU-shaded rendering. Section 5
discusses opportunities for future work.

1.3 New Demands on Path Rendering

Historically, applications mostly “pre-render” 2D content specified
with paths into bitmaps for glyphs and icons/images for vector art-
work, then cache and blit those rasterized results as needed. Ren-
dering directly from the path data generally proved too slow to be
viable. Early window systems based on path rendering concepts
such as Sun’s NeWS [Gosling et al. 1989] and Adobe’s Display
PostScript [Adobe Systems 1993] were arguably overly ambitious
in basing their 2D rendering model around path rendering rather
than resolution-dependent 2D bitmap rendering as did the more
successful GDI and X11-based systems that proved easier for 2D
graphics hardware to accelerate.

1.3.1 Increasing Screen Density and Resolution

Smart phones and tablets have created new platforms free from
legacy display limitations such as relatively low—by today’s avail-
able technology—display density (measured in dots-per-inch or

DPI) and the dated visual appearance established by resolution-
dependent bitmap graphics. Apple’s new iPad display has a dis-
play density of 264 DPI, greatly surpassing the 100 DPI density
norm for PC screens. These handheld devices are carried directly
on one’s person so their screen real estate is relatively fixed—so im-
provements in display appearance is likely to be through increasing
screen density rather than enlarging screen area.

Pixel resolutions for conventional monitors are increasing too.
Large 2560x1600 resolution screens are mass-produced and readily
available. Driving such high resolutions with CPU-based path ren-
dering schemes is untenable at real-time rates. Indeed the very het-
erogeneity of modern displays in terms of pixel resolution, screen
size, and their combination—pixel density—strengthens the case
for improving path rendering performance.

1.3.2 Multi-touch Interfaces

Mobile devices also rely on multi-touch screens for input so the
user is extremely aware of the latency between touch gestures and
the resulting screen update. The user is literally pointing at the
pixels they expect to see updated. Multi-touch encourages rotation
and scaling. When imagery can easily be rotated, scaled, sub-pixel
translated, and even projected, assumptions that all text and graph-
ics will be orthographically aligned to the screen’s pixel grid are
no longer a given so rendering all path content directly from paths
makes sense.

1.3.3 Immersive Web Standards

The proximate HTML 5 web standard exposes path rendering func-
tionality in a standard and pervasive way through both Scalable
Vector Graphics (SVG) and the Canvas element.

JavaScript performance has increased to the point that dynamic con-
tent can be orchestrated within a standards-based HTML 5 web
page such that the system’s path rendering performance is often
a bottleneck.

1.3.4 Power Wall

Minimizing power consumption has become a mantra for com-
puter system design across all classes of devices—whether mo-
bile devices or not. When power is at a premium, moving CPU-
and bandwidth-intensive computations such as pixel manipulation
and rasterization to more power-efficient GPU circuitry can reduce
overall power consumption while improving interactivity and min-
imizing update latency. GPU-acceleration of path rendering is pre-
cisely such an opportunity.

2 Prior Path Rendering Systems

2.1 CPU-based Path Rendering Systems Critiqued

Path rendering is historically and still typically performed by CPU-
based scan line renderers. Paths are converted into a set of edges.
These edges are transformed and sorted in Y-order. Then the edges
are intersected with each scan line, sorted in X-order, and pixels in
the path region are updated.

The scan-line rendering approach is notable for being work-
efficient and cache-friendly. No computation is expended on pixels
that are obviously outside the path and only active edges are con-
sidered when processing a given scan line. Such scan line render-
ers use a “chunker” strategy—where rather than the chunk being
a 2D tile, the chunk is a single scan line. This leads to a reason-
ably friendly access pattern for CPU caches. Additionally the scan

Computer Graphics Proceedings, Annual Conference Series, 2012

100

—e&—— NVpri6/Cairo
—&—— NVpri6/SkiaBitmap
—+— NVpri6/SkiaGanesh
—=— NVpri16/D2D
—— NVpri6/WARP

Figure 2:

Performance ratios rendering SVG content at window resolutions from 100% to 11002

A ratio of 1.0 means the

NV_path_rendering (16 samples per pixel) performance is equal to the other renderer; higher ratios indicate how many multiples faster
NV_path_rendering is than the alternative. Note the logarithmic Y axis. Scenes were selected for their variety. Benchmark configuration

is a GeForce 650 and fast Core i7 CPU.

line enter/leave counts are transient. In contrast to a window-sized
ancillary buffer such as a depth or stencil buffer, the scan line en-
ter/leave counts can live in the cache and have their storage recycled
for each processed scan line.

While work-efficient and cache-friendly as noted, this CPU-
intensive approach is quite sequential. Every path must be trans-
formed into screen space. Every path must be scan line rasterized.
Every scan line must be intersected with the active edge list. Every
sorted active edge list must be scanned left-to-right. There is not an
easy way to pipeline all these tasks or exploit massive parallelism—
such as is routine for GPU-accelerated 3D graphics. Hence this is
an approach that maps well to the CPU but cannot be obviously
accelerated in this form by the GPU.

2.2 GPU-based Path Rendering Systems

Over the years, many attempts have been made—with varying de-
grees of mixed success—to accelerate path rendering with GPUs.
We postpone discussion of prior techniques for GPU rendering of
curves with the stencil buffer to Section 3 since they are the basis
for our approach.

2.2.1 Acceleration of Path Rendering Programming Inter-
faces

Cairo [Packard and Worth 2003] is an open-source path rendering
implementation. An early attempt at GPU-acceleration called Glitz
[Nilsson and Reveman 2004] has since been abandoned. Glitz oper-
ated at the level of the XRender [Packard 2001] extension so did not
accelerate paths directly. Arguably, Glitz was a more GPU-assisted
back-end than GPU accelerated. More recently, Cairo has worked
on a first-class GPU back-end but the immediate mode nature of
the Cairo API and converting CPU-transformed paths to spans lim-
its the acceleration opportunities.

Microsoft’s Direct2D [Kerr 2009] API is layered upon Direct3D.

Direct2D operates by transforming paths on the CPU and then per-
forming a constrained trapezoidal tessellation of each path. The
result is a set of pixel-space trapezoids and additional shaded geom-
etry to compute fractional coverage for the left and right edges of
the trapezoids. These trapezoids and shaded geometry are then ras-
terized by the GPU. The resulting performance is generally better
than entirely CPU-based approaches and requires no ancillary stor-
age for multisample or stencil state; Direct2D renders directly into
an aliased framebuffer with properly antialiased results. Direct2D’s
primary disadvantage is the ultimate performance is determined not
by the GPU (doing fairly trivial rasterization) but rather by the CPU
performing the transformation and trapezoidal tessellation of each
path and Direct3D validation work.

Skia is the C++ path rendering API used by Google’s Android and
Chrome browsers. Skia has a conventional CPU-based path ren-
derer but has recently integrated a new OpenGL ES2-accelerated
back-end called Ganesh. Ganesh has experimented with two accel-
erated approaches. The first used the stencil buffer to render paths.
Because of API overheads with this approach, this first approach
was replaced with a second approach where the CPU-based raster-
izer computes a coverage mask which is loaded as a texture upon
every path draw to provide the GPU proper antialiased coverage.
This hybrid scheme is often bottlenecked by the dynamic texture
updates required for every rendered path.

The Khronos standards body worked to develop an API standard
known as OpenVG with the explicit goal of enabling hardware-
acceleration of path rendering (the VG stands for vector graph-
ics). Various companies and research groups have worked to de-
velop OpenVG hardware designs [FreeScale, Multimedia Applica-
tions Division 2010; Huang and Chae 2006; Kim et al. 2008] that,
based on available descriptions, are fairly similar to the conven-
tional CPU-based scan line rasterizer scheme, recast as a hardware
unit. Reported performance levels are quite low compared to what
we report.

ACM SIGGRAPH 2012, Singapore, November 28—December 1, 2012

2.2.2 Vector Texture Schemes

An unconventional approach to GPU-accelerating path rendering is
cleverly encoding path content into GPU memory—typically as a
texture—and then using a programmable shader essentially to de-
code the path content. Nehad and Hoppe [2008] and Qin [2009]
adopt variations on this approach. While this approach has some
interesting advantages such as being able to directly “texture map”
3D geometry with path rendered content, these approaches suffer
from the need to preprocess a static path scene into a specific tex-
ture encoding. This makes this approach unsuitable for editable or
dynamic path rendering. Additionally, many rendering approxima-
tions and authoring limitations are needed to make vector texture
schemes tractable.

2.2.3 Discussion of Deficiencies

The norm for CPU-based path rendering systems is maintaining
roughly 16 coverage samples per pixel (details vary). This creates
a challenge for GPU-based schemes because GPUs often support
1, 2, 4, or 8 samples per pixel through multisampling. This often
creates a situation where the GPU-accelerated path rendering is in-
ferior to the CPU-based path rendering quality.

When path rendering schemes are layered upon existing OpenGL
or Direct3D APIs, we have observed performance being limited by
the state change rate of the underlying 3D API. Often path render-
ing can result in many state changes per path when scenes can easily
consist of 100s or 1000s of paths. In this case, the API overhead can
substantially limit the overall performance. Our experience study-
ing prior approaches to using GPUs for path rendering indicates
these approaches are often more GPU-assisted rather than GPU-
accelerated, with this attributable to continuous CPU involvement
or substantial CPU-based preprocessing.

3 Our Approach

In contrast to other systems for accelerating path rendering with
GPUgs, our approach explicitly reveals the coverage determinations.
These determinations—for both filling and stroking—appear as
stencil buffer updates. A crucial insight underlying our approach
is never determining the boundary between the “inside” and “out-
side” of a stroke or fill. Instead, we rely on point-sampled determi-
nations of whether a particular (, y) framebuffer location is inside
or outside the stroke or fill. For antialiasing, we rely on GPU multi-
sampling to provide multiple sample coverage positions, each with
its own sub-pixel stencil value.

3.1 Stencil, then Cover

We perform path rendering in two steps. This is not unique; all
path rendering schemes involve two steps. The two steps may be
“tessellate, then render tessellation” [Kerr 2009] or “intersect with
scan line, then paint pixels” [Packard and Worth 2003] or “ray cast,
then shade” [Nehab and Hoppe 2008] but each rendering of a path
is inherently sequential in the sense that determining what pixels
are covered must precede shading and blending those pixels.

What is novel in our approach is explicitly decoupling the two steps.
We call our approach, with its two decoupled steps, “Stencil, then
Cover” (StC). Rather than a single DrawPath operation that hides
the two-step nature of path rendering within the implementation, an
OpenGL application using our extension first “stencils” the path in
the stencil buffer [Akeley and Foran 1995], then “covers” the path
to shade it.

This explicitly decoupled approach has advantages not available in
interfaces that appear to offer a one-step DrawPath command.
Our two-step approach makes arbitrary path clipping, mixing with
3D graphics, programmable blend modes, and other novel path ren-
dering usages possible.

3.2 Filling
3.2.1 Improvements to Prior Methods

Our approach to filling paths is inspired by the work of Loop and
Blinn [2005] who developed an efficient fragment shader-based ap-
proach to determining whether or not an (x, y) sample is inside or
outside a given quadratic or cubic Bézier hull. In the Loop-Blinn
formulation, inexpensive arithmetic on interpolated texture coordi-
nates provides a Boolean predicate which when true indicates the
fragment’s sample position is not inside the Bézier region.

Our approach is not the first time the stencil buffer has been uti-
lized for stenciling paths. Kokojima et al. [2006] applied the Loop-
Blinn scheme in conjunction with the stencil buffer to determine
the winding number of TrueType glyph outlines. Kokojima et al.
showed the general filled polygon algorithm of Lane et al. [1983]—
subsequently popularized for use with the stencil buffer [Neider
et al. 1993]—can naturally combine with the Loop-Blinn quadratic
discard shader to determine the samples inside an arbitrarily com-
plex TrueType outline. After stenciling each glyph into the stencil
buffer, conservative geometry based on a convex hull or bounding
box can test against the non-zero stencil values, shade those sam-
ples, and reset the stencil values back to an initial zero state.

Kokojima’s approach does not immediately extend to cubic Bézier
segments because the inside region within a cubic Bézier hull is
not necessarily convex. Rueda et al. [2008] addressed this by pro-
viding simple topological strategies to subdivide cubic Bézier hulls
using Bézier subdivision to guarantee convexity, but used an overly
expensive discard fragment shader based on Bézier normalization
rather than applying the Loop-Blinn cubic formulation.

Our approach to handling cubic Bézier segments builds on all this
work by combining cubic Bézier convex subdivision rules with the
Loop-Blinn cubic formulation. We also perform the discard shaders
at sample-rate rather than pixel-rate for improved coverage deter-
minations and antialiasing. We use interpolation at explicit sample
positions and our target GPU’s sample mask functionality to evalu-
ate multiple samples within a pixel in a single shader instance.

PostScript, SVG, and other standards support partial circular and
elliptical arcs so an additional discard shader, expressed in Cg, han-
dles these cases:

void roundCoverage (float2 st :
{

if (st.s*st.s + st.txst.t > 1) discard;
}

TEXCOORDO .CENTROID)

with the (s, t) texture coordinates assigned so (0,0) is centered at
the origin of roundness to discard samples outside the arc region
contained in a sequence of one or more polygonal hulls bounding
such arcs.

3.2.2 Baked Form of Filled Paths

In order to render a filled path, we “bake” the path into a resolution-
independent representation from which the path can be stenciled
under arbitrary projective transforms. This baking process takes
time linearly proportional to the number of path commands. The
resulting baked path data resides completely on the GPU. The re-
quired GPU storage is also linearly proportional to the number of

Computer Graphics Proceedings, Annual Conference Series, 2012

Figure 3: Filled path, with control points, with anchor geometry,
and with cubic Bézier discard hulls, and conservative cover geom-

etry.

path commands. For a static path, the baking process needs to be
done just once; the baking process must be repeated if the path’s
commands or coordinates change, but edits to the path, including
insertions and deletions of commands, require just re-baking the
path segments at or immediately adjacent to the edits.

Once baked, a filled path is reduced to five sets of primitives:

1. Polygonal anchor geometry (structured as triangle fans), ren-
dered with no shader.

2. Quadratic discard triangles, rendered with a Loop-Blinn
quadratic discard shader.

3. Cubic discard triangles (if the cubic Bézier hull is a triangle)
and quadrilaterals, rendered with a Loop-Blinn cubic discard
shader.

4. Arc discard triangles, rendered with the roundCoverage
discard shader shown above.

5. Conservative covering geometry, typically a triangle fan or
quadrilateral.

Primitive sets #1 through #4 are rendered during the stencil fill
step. Two-sided stencil testing increments non-discarded stencil
samples of front-facing primitives; back-facing primitives instead
decrement non-discarded stencil samples. Primitive set #5 is ren-
dered during the cover fill step. Primitive sets #2 through #4 have
properly assigned texture coordinates that drive each set’s respec-
tive discard shader. Figure 3 visualizes the baked anchor, discard,
and cover geometry.

This approach to path filling is theoretically sound because the
stencil rendering reduces to a winding number computation consis-
tent with a discrete formulation of Jordan’s Theorem [Fabris et al.
1997].

All the data for a baked path can be stored within a single allo-
cation of GPU memory to minimize the expense of stenciling or
covering the path. Because the baked representation is completely
resolution-independent, robust, and entirely on the GPU, the CPU
overhead to launch the stenciling and/or covering of an already
baked path object is minimal.

We implement our approach as an OpenGL extension named
NV_path_rendering [Kilgard 2012]. Performing the stencil and
cover steps within the graphics driver avoids the API and driver val-
idation overhead (see Section 4.2) that plagued other GPU-based
approaches. Figure 4 shows how our new path pipeline co-exists
with the existing pipelines in OpenGL for pixel and vertex process-
ing.

Pixel pipeline Vertex pipeline Path pipeline
Application
1 l b————————— Path specification
J J
Pixel assembly Vertex assembly Transform path
(unpack)

Vertex operations
Primitive assembly

Primitive operations

transform
feedback

il

Pixel operations

Pixel pack W

Fill/Stroke
Covering
back memory e P
Fill/Stroke
Raster operations Stencilin:
Framebuffer > Display

Figure 4: High-level data flow of OpenGL showing pixel, vertex,
and new path pipelines.

i

Application

3.3 Stroking

Our stroking approach operates similarly to our filling approach
whereby we stencil, then cover stroked paths from a baked
resolution-independent representation residing on the GPU that re-
quires minimal CPU overhead to both stencil and cover.

3.3.1 Quadratic Bézier Stroking

Analytically determining the points contained by a stroke curved
segment is not easy. The boundary of the stroked region of
a quadratic Bézier corresponds to an offset curve. While the
quadratic Bézier curve generating the offset curve is 2" order,
the offset curve for this generating segment’s boundary is 6™ or-
der [Salmon 1960]. This makes exactly determining an intersec-
tion with this boundary unfeasible, particularly within the execu-
tion context of a GPU’s fragment shader. The boundary becomes
even more vexing for partial elliptical arcs and cubic Bézier seg-
ments. The boundary for a general cubic Bézier curve is 10™ order
[Farouki and Neff 1990]!

Quadratic Bézier Segment Point Containment Hence our ap-
proach involves simply determining if a given (x, y) point is inside
or outside the stroked region of a quadratic Bézier segment. This
can be reduced to solving a 3™ order equation.

A quadratic Bézier segment ()—defined by the segment’s three
control points Cy, C1, and C's>—can converted to monomial form
Q(t) = At> + Bt + C = 0fort € [0,1]. A point P is judged
within the stroke of () when there is a parametric value s on @ such
that Q'(s) - (P — Q(s)) = 0 and the squared distance between
Q(s) and P is within the squared stroke radius. (The dot product
of a quadratic function and the derivative of a quadratic function is
3" order.) Intuitively this corresponds to finding the 1 or 3 points
Q(s) with a tangent direction orthogonal to the segment connecting
P and Q(s). Such solutions s will be local minima or maxima for
the distance between P and points on () so computing the squared
distance d = (Q(s) — P) - (Q(s) — P) for each solution s indicates
if P is within the stroke of Q(¢) for ¢ € [0, 1] when both s € [0, 1]
and d is less than or equal the square of half the path’s stroke width.
Figure 5 visualizes this procedure.

Solving the cubic equation at every rasterized sample is expensive,
but the computation can be simplified somewhat. The cubic equa-
tion can be rearranged into an easier-to-solve depressed cubic [Car-
dano 1545] of the form t* + G(z,y)t + H(x,y) = 0. While the

ACM SIGGRAPH 2012, Singapore, November 28—December 1, 2012

10 points, all inside the stroke

9 points, all outside the stroke

insufficient basis to be

=== outside [0,1] range, and beyond stroke radius in the quadratic Bezier stroke

=== outside [0,1] range, but within stroke radius
inside [0,1] range, and within stroke radius } in the quadratic Bezier stroke

inside [0,1] range, but beyond stroke radius }

Figure 5: Visualization of points within and outside the stroked
region of a quadratic Bézier segment and their basis for inclusion

P
L X

Figure 6: Examples of concave (top row) and convex (bottom row)
stroked quadratic Bézier segment hulls.

0@

coefficients G(x,y) and H (z,y) are different for every path-space
(z,y) location, the functions G and H are linear in terms of (x, y)
so a vertex shader can evaluate G(x,y) and H(z,y) at hull posi-
tions and exploit the GPU’s ability to interpolate linearly G and H
at positions within the hull.

Care is taken when an arrangement of quadratic Bézier control
points is collinear, collocated, or very nearly so. In such cases,
we demote the quadratic Bézier segment to its linear degenerate
equivalent for robustness.

Stroked Quadratic Segment Hull Construction To harness this
approach for rendering, we construct a hull around the quadratic
Bézier stroked segment. As shown in Figure 6, the hull is typi-
cally concave, consisting of seven vertices—though the hull may
be convex when the quadratic stroke’s width is wide relative to its
arc length. Ruf [2011] has addressed the problem of a tight bound-
ing representation for quadratic strokes, but his approach involves
parabolic edges with the assumption the CPU can evaluate such
edges efficiently; for our purposes, we want a triangular decompo-
sition of the hull suitable for GPU rasterization.

While solving the cubic equation—even in depressed form—is ex-
pensive, we note that stroked regions are typically small and nar-
row in screen space so this expensive process is used sparingly in
practice. Even when strokes are wide, the massively parallel nature
of the GPU makes this approach quite fast. Most important to us,

once a quadratic stroke is “baked” for rendering, it can be rendered
under an arbitrary linear transformation—including projection—
without any further CPU re-processing. The hull vertices and their
coefficients for G and H can be stored in GPU memory so that
stencil-only rendering the quadratic stroke involves simply config-
uring the appropriate buffers, the appropriate vertex and fragment
shader pair, and rendering the hull geometry of the quadratic stroke.

Higher-order-than-Quadratic Stroking Path rendering stan-
dards incorporate cubic Bézier segments and partial elliptical arcs;
these involve cubic and rational quadratic generating curves for ras-
terized offset curve regions. The direct evaluation approach applied
to generating quadratic Bézier curves is not tractable.

Instead we subdivide cubic Bézier segments and partial ellipti-
cal arcs into an approximating sequence of quadratic Bézier seg-
ments. To maintain a curved boundary appearance at all mag-
nifications, our subdivision approach maintains G* continuity at
quadratic Bézier segment boundaries. No matter how much you
zoom into the boundary of higher-order stroked segments, there is
never any sign of linear edges or even a false discontinuity in the
curvature.

Following the approach of Kim and Ahn [2009], we bound the sub-
division such that the true higher-order generating curve never es-
capes a specified percentage threshold of the stroke width of the
approximating quadratic stroke sequence. We also subdivide at
key topological features, specifically points of self-intersection and
minimum curvature.

3.3.2 Stroking Embellishments

Stroking of line segments, end caps, and joins is straightforward.
Stroked line segments are drawn as stencil-only rectangles. Poly-
gon caps (square and triangular) and joins (bevel and miter) are like-
wise drawn as stencil-only triangles. This geometry can be drawn
without any fragment shader. Round caps and joins are drawn
with the same roundCoverage stencil-only sample-rate discard
shader (Section 3.2.1) used for partial circular and elliptical arcs
for filling with the (s, t) texture coordinates assigned appropriately
to discard samples outside the circular region of the round cap or
join. The baking process for stroked paths includes generating the
rectangles and triangles for line segment and polygonal caps and
joins. Geometry for round caps and joins is generated along with
the texture coordinates to drive the round coverage discard shader.

3.3.3 Dashing

Dashing is a feature of all major path rendering standards except
Flash. Dashing complicates stroking by turning on and off the
stroking along a path based on an application-specified repeating
on-off pattern specified in units of arc length. Our stroke baking
process applies the dash pattern while gathering the geometry for
the stroked path. While complicated in its details, our dashing pro-
cess is similar to other path rendering implementations in its high-
level structure. The primary difference is curved path segments are
reduced to quadratic Bézier segments in our approach instead of
line segments. Whereas the arc length computations in conven-
tional path rendering systems typically involve recursive subdivi-
sion until the curved segment approximates a line segment, our ap-
proach can stop subdividing at quadratic Bézier segments. Unlike
higher order curves, the arc length of a quadratic Bézier segment (a

Computer Graphics Proceedings, Annual Conference Series, 2012

segment of a parabola) has a closed form analytical solution:

/01 VQaz (1) + Qy(t)2dt =

b+2 ac 2 —
111(717+2 C+2\/m)(b 4ac)+2 (b+2c)y/c(cta+b)—2by/ac

8¢c3/2

with copious common subexpressions and where a = B - B,
b =2B-C,and ¢ = C - C. Our interest in this approach is
our desire to minimize use of expensive recursive subdivision al-
gorithms while baking stroked paths, particularly during dashing.
Some numerical care must be taken to avoid negative square roots,
negative logarithms, and division by zero, but these cases occur
when quadratic segments are nearly linear.

Our dashing approach results in a resolution-independent baked
form of the dashed stroked path. Once dashed and baked, no further
CPU-based processing is necessary to render dashed paths. This
is in contrast to other implementations of dashed stroking where
dashing has a considerable CPU processing expense during ren-
dering. While our implementation must of course represent each
segment resulting from dashing, our render-time algorithm is com-
pletely oblivious to whether the original path was dashed.

3.3.4 Baked Form of Stroked Paths

Once baked, a stroked path is reduced to four sets of primitives:

1. Polygonal geometry (line segments, bevel and miter joins,
square and triangular end caps) with no shader.

2. Triangle fans corresponding to quadratic Bézier segment hulls
(curved path segments), rendered with a stroked quadratic dis-
card shader.

3. Triangle fans corresponding to round hulls (round end caps
and joins) rendered with a round coverage shader.

4. Conservative covering geometry, typically a triangle fan or
quadrilateral.

Primitive sets #1 through #3 are rendered during the stencil stroke
step. Primitive set #4 is rendered during the cover stroke step.

The REPLACE stencil operation used for stroking is order-invariant.
Therefore we select a static rendering order during the baking pro-
cess that minimizes GPU state changes during rendering.

The geometry, texture coordinates, and per-hull quadratic discard
shader coefficients are all packed into a single GPU buffer alloca-
tion. The rendering process for stenciling the baked path is very
straightforward, requiring no more than three GPU state reconfigu-
rations, one per primitive set above.

The GPU storage for the linear and quadratic path segments in a
baked stroked path is linearly proportional to the number of seg-
ments (post-dashing). For cubic Bézier segments and partial ellip-
tical arcs, the storage depends on their required level of subdivision.
Because this subdivision is tied to the stroke width, narrower stroke
widths require more storage while wider stroke widths require less
storage.

3.4 Clipping to Arbitrary Paths

All major path rendering standards support clipping a draw path to
the filled region of a clip path. Our two-step “stencil, then cover”
approach readily supports clipping to arbitrary paths. We briefly de-
scribe the process assuming an 8-bit stencil buffer, initially cleared
to zero:

cowboy clip is
union of 1,366 paths

AJ ﬁ result of clipping tiger
o to the union of all
K& o) the cowboy paths

Figure 7: Complex clipping scenario. Our approach: 8.69ms @
1000x1000x16. Cairo: 909ms @ 1000x1000. System: Core i7 +
GeForce 560M GPU.

1. Stencil the clip path into the stencil buffer with a “stencil fill”
operation.

2. Perform a “cover fill” operation to coalesce the samples
matching the fill rule so that the most-significant stencil bit
is set and all the lower bits are cleared. For example, if a sam-
ple’s stencil value is non-zero, replace the stencil value with
0x80. This step updates only the stencil buffer (disable any
color writes).

3. Stencil the draw path into the stencil buffer with a “stencil
fill” operation, but (a) modify only the bottom 7 bits of the
stencil buffer, and (b) discard any rasterized samples without
the topmost bit of the stencil buffer set.

4. Perform a shaded “cover” operation on the draw path. Update
any color sample whose stencil value’s bottom 7 bits are non-
zero and zero the bottom 7 bits of the sample’s stencil value.
Write shaded color samples during this step; due to the sten-
cil configuration, only samples within both the clip and draw
paths get shaded and updated.

5. Finally to undo the clip path’s stencil manipulation from step
1, perform a “cover” operation on the clip path to reset the
most significant stencil bit back to zero.

Many variations on this approach are possible. For example, steps
3 and 4 can be repeated for each path in a layered group of paths.
This avoids having to re-render the clip path for each and every path
in a group of paths.

Most standards allow nested clipping of paths to other paths. Clever
manipulation of the stencil bit-planes allows such nested clipping.
Standards such as SVG allow for clipping to the union of an ar-
bitrary number of paths as shown in Figure 7. Again, we can ac-
complish this by clever use of stencil bit-planes and re-coalescing
coverage from different clip paths.

3.5 Painting

What path rendering standards often call “painting” a filled or
stroked path is called shading in 3D graphics. Our goal is to al-
low the full generality of GPU-based programmable shading to be
exposed when painting paths.

ACM SIGGRAPH 2012, Singapore, November 28—December 1, 2012

Figure 8: Bump map shader applied to path rendered text, ren-
dered from to different light positions, shown in yellow.

During the cover step where a conservative bounding box or con-
vex hull is rendered to cover fully the stenciling of the path, the
application can configure arbitrary OpenGL shading. This could be
fixed-function shading, assembly-level shaders, or shaders written
in a high-level language such as Cg or GLSL.

In conventional path rendering systems, linear and radial gradients
are a common form of paint for paths. We note how straightforward
radial gradient paint can be implemented, including mipmapped fil-
tering of the lookup table accesses, with the following Cg shader:

void radialFocalGradient (float3 str : TEXCOORDO.CENTROID,
float4d c : COLOR.CENTROID,

out float4 color : COLOR,
uniform samplerlD ramp : TEXUNITO)
{
color = cxtexlD(ramp, length(str.xy) + str.z);

}

The texture coordinates needed for this shader can be generated
as a linear function of the path-space coordinate system. Painting
need not be limited to conventional types of path rendering paint.
Arbitrary fragment shader processing can be performed during the
cover step (see Figure 8).

3.6 Blending and Blend Modes

OpenGL blending is sufficient for most path rendering where the
default path compositing operation is the “over” blend mode, as-
suming pre-multiplied alpha. Color writes during our cover step
apply the currently configured OpenGL blend state. Modern GPUs
also have efficient first-class support for blending in the widely-
used sRGB device color space.

Sophisticated path rendering systems have additional blend modes
[SVG Working Group 2011b] beyond the standard Porter-Duff
compositing algebra [1984]. Digital artists are familiar with these
modes with names such as ColorDodge, HardLight, etc. However
GPU blending does not support these blend modes because they are
rare, complex, and not used by 3D graphics. While some of these
blend modes can be simulated with multiple rendering passes, many
of these modes are impossible to construct from conventional GPU
blending operations.

Our “stencil, then cover” approach makes it possible to implement
these blend modes despite their lack of direct GPU hardware sup-
port. Normally, GPUs do not reliably support reading-as-a-texture
a framebuffer currently being rendered. However a recent OpenGL
extension called NV_texture _barrier [Bolz 2009] provides a
reliable memory barrier under restrictive conditions. A fragment
shader must ensure there is a single read and write for any particu-
lar pixel done from that pixel’s fragment shader instance.

The “stencil, then cover” approach provides precisely such a “no
double blending” guarantee. So by preceding each cover operation

NN

Skia (GPU or CPU) Cairo

oM

Direct2D GPU

NV_path_rendering

£

Figure 9: Various path rendering implementations drawing a dif-
ficult cubic Bézier curve (the centurion head).

OpenVG
Reference Implementation

(whether fill or stroke) with an OpenGL glTextureBarrierNV
command and reading the pixel’s color value as a fetch to the frame-
buffer bound as a texture, reliable programmable blending with the
fragment shader is possible.

4 Discussion

4.1 Quality

Our system’s rendering quality is directly tied to how many color
and stencil samples the framebuffer maintains per pixel. This deter-
mines the quality of our antialiasing. Our GeForce GPUs support
up to 16 samples per pixel while our Quadro GPUs support 32 and
64 samples per pixel as well.

At 16 samples per pixel, our rendering quality compares quite fa-
vorably with CPU-based path renderers. Because our GPUs have
8 bits of sub-pixel precision, irregular coverage sample positions,
and our point containment determinations are numerically sound,
we are well-justified in stating our quality exceeds what can rea-
sonably be expected for CPU-based path renderers. We focus on
two aspects of path rendering quality where our implementation
has superior quality.

4.1.1 Stroking Quality

For stroking, our quadratic Bézier stroke discard shader is mathe-
matically consistent with the sweep of an orthogonal pen travers-
ing the path’s trajectory. In Figure 9 we compare our very fast
stroking result to alternatives that are generally substantially slower
on a difficult cubic Bézier stroke test case. Notice three path ren-
dering implementation get this test case quite wrong—whereas
NV_path_rendering matches the OpenVG reference imple-
mentation and Direct2D version.

4.1.2 Conflation Avoidance

Conflation is an artifact in path rendering systems that occurs when
coverage (a Boolean concept) is conflated with opacity. This gen-
erally occurs when sub-pixel coverage is converted to a fractional
value and multiplied into the alpha color component for composit-
ing. While this approach is standard practice, it can result in notice-
ably incorrect colors.

Conflation is particularly noticeable when two opaque paths exactly
seam at a shared boundary. Say path A covers 40% of the pixel and
an adjacent path B covers the other 60%. But if A is drawn first,

Computer Graphics Proceedings, Annual Conference Series, 2012

NV_path_rendering
conflation free

| S

Direct2D
conflation prevalent

Figure 10: Flash scene with
NV_path_rendering shows no conflation while Direct2D
(and Cairo, Skia, Qt, and OpenVG) shows conflation. Upper left
corner shows the background clear color; conflation is tinted by
this color in the bottom scenes. Notice the conflated blue tint on
the girl’s cheek.

shared edges.

the pixel picks up 40% of A’s color and 60% of the background
color. Now when B is drawn, the pixel gets 60% of B’s color and
40% of the combination of 40% of A’s color and 60% of the back-
ground color. The result is some fraction of the background color
has leaked into the pixel when a more accurate assessment of cov-
erage would have no background color.

Flash content is particularly prone to conflation artifacts because
path edges are typically authored for exact sharing of edges.
Adobe’s Flash player specifically works to avoid conflation arti-
facts. This is possible because Flash player has complete knowl-
edge of all the paths in a Flash shape and how those path edges
are shared. Exact sharing of edges is helpful from a content cre-
ation standpoint because a shared edge can be stored once and
used by two paths (more compact) and reduces the overall lay-
ered depth complexity of the scene by avoiding overlaps. Because
NV_path_rendering maintains distinct sub-pixel color samples,
the scene in Figure 10 renders free of conflation artifacts.

4.2 Performance

The rendering performance of NV_path_rendering scales with
GPU performance. Because the baked paths reside on the GPU
and are resolution-independent, once baked, path rendering perfor-
mance is decoupled from CPU performance. Figure 2 charts the
performance of NV_path_rendering relative to alternatives—
including GPU-accelerated alternatives such as Direct2D and
Skia’s Ganesh approach.

Our performance advantage is attributable to the overall rendering
and shading performance of our underlying GPUs. Several as-
pects are particularly noteworthy. Our underlying GPUs support
a fast stencil culling mode so hundreds of pixels can be culled in
a single clock if a coarse grain test can determine the stencil test
for all the pixels would fail. This mitigates much of what might
otherwise seem very inefficient about the “stencil, then cover” ap-
proach. Also stencil processing generally is very well optimized.
The 8-bit memory transactions during the stencil and cover steps
can often run at memory bus saturating rates. Our OpenGL driver

Pt randering and 20 maab!

\

Figure 11: Mixing 3D and path rendering in a single window.

implementation makes use of a configurable front-end processor
within the GPU—not otherwise accessible to applications—to tran-
sition quickly between the stencil step and cover step and back.
This avoids the driver performing expensive revalidations of CPU-
managed state so our rendering stays GPU-limited rather than CPU-
bottlenecked, even when presented with otherwise overwhelming
numbers of small paths.

4.3 New Functionality

Because NV_path_rendering is integrated into the OpenGL
pipeline and the coverage information is accessible through the
stencil buffer, we are able to implement unconventional algorithms
such as mixing path rendering with arbitrary 3D graphics.

Figure 11 demonstrates an example of this capability. No textures
are used in this scene. Arbitrary zooming into the tigers’ detail is
supported. Notice how the tigers properly occlude each other and
the teapot. Due to the perspective 3D view, the path rendering is
properly rendered in perspective as well.

5 Future Work

We believe our performance can be further improved. We are inves-
tigating hardware improvements to mitigate some of the memory
bandwidth expense involved in our underlying stencil-based algo-
rithms. In particular, we are seeking to reduce the GPU memory
footprint.

Web browser architecture should change to incorporate GPU-
accelerated path rendering. Today web browsers respecify paths
every time a web page with path content is re-rendered assuming re-
specifying paths is cheap relative to the expense of rendering them.
When path rendering is fully GPU-accelerated, a retained model
of rendering is more appropriate and efficient. We believe web
browsers should behave more like video games in this respect to
exploit the GPU.

Mobile devices are power constrained so off-loading path render-
ing to a graphics processor designed for efficient pixel processing
makes good sense. Mobile devices in particular prize a low-latency
experience for the user so the sooner the device can complete its
resolution-independent 2D rendering, the better the user experience
and the sooner the device can power down to a low power state.

ACM SIGGRAPH 2012, Singapore, November 28—December 1, 2012

Acknowledgements

Michael Toksvig corrected Mark’s 3D bigotry and insisted 2D ren-
dering deserved acceleration. Chris Dalton assisted building our
test bed. Tero Karras provided crucial math insights. Barthold
Lichtenbelt supported this work throughout.

References

ADOBE SYSTEMS. 1985. PostScript Language Reference Manual,
1* ed. Addison-Wesley Longman Publishing Co., Inc. 2

ADOBE SYSTEMS. 1992. Adobe Type 1 Font Format, 2™ ed.
Addison-Wesley Longman Publishing Co., Inc. 2

ADOBE SYSTEMS. 1993. Display PostScript System—Introduction:
Perspective for Software Developers. 2

ADOBE SYSTEMS. 2008. Document management—Portable doc-
ument format—Part 1: PDF 1.7. Also published as ISO 3200.
2

ADOBE SYSTEMS. 2008. SWF File Format Specification, version
10. 2

AKELEY, K., AND FORAN, J., 1995. Apparatus and method for
controlling storage of display information in a computer system.
US Patent 5,394,170. 4

BoLz, J., 2009. NV_texture barrier.
http://www.opengl.org/registry/specs/NV/texture_barrier.txt . 8

CARDANO, G. 1545. Artis magnae sive de regulis algebraicis,
liber unus. 5

FABRIS, A., SILVA, L., AND FORREST, A. 1997. An efficient fill-
ing algorithm for non-simple closed curves using the point con-
tainment paradigm. In Proceedings of X Brazilian Symposium
on Computer Graphics and Image Processing,2 -9. 5

FAROUKI, R., AND NEFF, C. 1990. Algebraic properties of plane
offset curves. Computer Aided Geometric Design 7, 101-127. 5

FREESCALE, MULTIMEDIA APPLICATIONS DIVISION. 2010.
1.MX35 accelerated 2D graphics: Optimizing 2D graphics with
OpenVG and i.MX35, application note, doc. # an3975. 3

GOSLING, J., ROSENTHAL, D. S. H., AND ARDEN, M. J. 1989.
The NeWS book: an introduction to the network/extensible win-
dow system. Springer-Verlag. 2

HUANG, R., AND CHAE, S.-I. 2006. Implementation of an
OpenVG rasterizer with configurable anti-aliasing and multi-
window scissoring. In Proceedings of the 6" IEEE Interna-
tional Conference on Computer and Information Technology,
IEEE Computer Society, CIT *06, 179. 3

KERR, K. 2009. Introducing Direct2D. MSDN Magazine (June).
3,4

KHRONOS GROUP, 2008. OpenVG specification version 1.1. 2

KILGARD, M., 2012. NV_path_rendering.
http://www.opengl.org/registry/specs/NV/path_rendering.txt . 5

KiM, Y., AND AHN, Y. 2009. Explicit error bound for quadratic
spline approximation of cubic spline. Journal of the Korean So-
ciety for Industrial and Applied Mathematics 13, 4, 257-265. 6

Kim, D., CHA, K., AND CHAE, S.-I. 2008. A high-performance
OpenVG accelerator with dual-scanline filling rendering. Con-
sumer Electronics, IEEE Transactions on 54, 3 (August), 1303
-1311. 3

KoKOJIMA, Y., SUGITA, K., SA1TO, T., AND TAKEMOTO, T.
2006. Resolution independent rendering of deformable vector
objects using graphics hardware. In ACM SIGGRAPH 2006
Sketches, SIGGRAPH ’06. 4

LANE, J. M., MAGEDSON, R., AND RARICK, M. 1983. An algo-
rithm for filling regions on graphics display devices. ACM Trans.
Graph. 2, 3 (July), 192-196. 4

Loop, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. In ACM SIG-
GRAPH 2005 Papers, SIGGRAPH °05, 1000-1009. 4

NEHAB, D., AND HoOPPE, H. 2008. Random-access rendering of
general vector graphics. In ACM SIGGRAPH Asia 2008 papers,
SIGGRAPH Asia 08, 135:1-135:10. 4

NEIDER, J., DAvis, T., AND W00, M. 1993. OpenGL Program-
ming Guide, 1* edition. See “Drawing Filled, Concave Polygons
Using the Stencil Buffer”, 398-399. 4

NILSSON, P., AND REVEMAN, D. 2004. Glitz: hardware accel-
erated image compositing using OpenGL. In Proceedings of the
FREENIX Track: 2004 USENIX Annual Technical Conference,
29-40. 3

PACKARD, K., AND WORTH, C. 2003. A realistic 2D drawing
system. A rejected SIGGRAPH 2003 paper submission®. 3, 4

PACKARD, K. 2001. Design and implementation of the X Ren-
dering Extension. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, USENIX Association,
213-224. 3

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Proceedings of the 11" annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’84, 253-259. 8

QIN, Z. 2009. Vector Graphics for Real-time Rendering. PhD
thesis. University of Waterloo. 4

RUEDA, A.J., RUIZ DE MIRAS, J., AND FEITO, F. R. 2008. GPU-
based rendering of curved polygons using simplicial coverings.
Computer Graphics 32,5 (Oct.), 581-588. 4

RUF, E. 2011. An inexpensive bounding representation for offsets
of quadratic curves. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics, HPG 11, 143-150.
6

SALMON, G. 1960. A Treatise on Conic Sections. Chelsea New
York (reprint). 5

SVG WORKING GROUP, 2011. Scalable Vector Graphics (SVG)
1.1 (2™ edition). 2

SVG WORKING GROUP, 2011. SVG compositing specification.
W3C working draft March 15, 2011. 8

WARNOCK, J., AND WYATT, D. K. 1982. A device independent
graphics imaging model for use with raster devices. In Proceed-
ings of the 9" Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH °82, 313-319. 1

http://www.opengl.org/registry/specs/NV/texture_barrier.txt
http://www.opengl.org/registry/specs/NV/path_rendering.txt

	Introduction
	Terminology of Path Rendering
	History, Standards, Motivation, and Contributions
	New Demands on Path Rendering
	Increasing Screen Density and Resolution
	Multi-touch Interfaces
	Immersive Web Standards
	Power Wall

	Prior Path Rendering Systems
	CPU-based Path Rendering Systems Critiqued
	GPU-based Path Rendering Systems
	Acceleration of Path Rendering Programming Interfaces
	Vector Texture Schemes
	Discussion of Deficiencies

	Our Approach
	Stencil, then Cover
	Filling
	Improvements to Prior Methods
	Baked Form of Filled Paths

	Stroking
	Quadratic Bézier Stroking
	Stroking Embellishments
	Dashing
	Baked Form of Stroked Paths

	Clipping to Arbitrary Paths
	Painting
	Blending and Blend Modes

	Discussion
	Quality
	Stroking Quality
	Conflation Avoidance

	Performance
	New Functionality

	Future Work
	References

