
Programming with NV path rendering:
An Annex to the SIGGRAPH paper GPU-accelerated Path Rendering

Mark J. Kilgard
NVIDIA Corporation∗

Abstract

This annex provides a practical overview of the OpenGL-based pro-
gramming interface described in our SIGGRAPH Asia 2012 paper
GPU-accelerated Path Rendering.

Keywords: NV path rendering, path rendering, vector graphics,
OpenGL, stencil buffer

1 Introduction

Our SIGGRAPH Asia paper GPU-accelerated Path Rendering
[Kilgard and Bolz 2012] describes a system for accelerating vec-
tor graphics on GPUs. NVIDIA has implemented the system
and has been shipping the functionality for its GeForce and
Quadro GPUs since the summer of 2011. We refer the reader to
that paper for the motivation and technical underpinning of the
NV path rendering [Kilgard 2012] OpenGL extension. In par-
ticular, that paper explains our “Stencil, then Cover” (StC) approach
to filling and stenciling paths.

In this annex to the forementioned paper we explain the pro-
gramming interface in more detail. The intended audience for
this annex is developers evaluating and learning to program
NV path rendering. You should be familiar with the OpenGL
[Segal and Akeley 2012] programming interface. Familiarity with
path rendering standards such as PostScript or SVG is helpful.

Figure 1 shows how our new path pipeline co-exists with the ex-
isting pipelines in OpenGL for pixel and vertex processing. Your
application can mix traditional OpenGL usage with path rendering.

2 Path Object Specification

Before an application can render paths, it must create a path ob-
ject corresponding to each path. A path object is a container for
the sequence of path commands and corresponding coordinates
for the path. Additionally, each path object maintains per-object
parameters (see Section 3) and the “baked” GPU-resident state
needed to stencil and cover the path object. Like other types of
objects in OpenGL, path objects are named by 32-bit unsigned in-
tegers. Names of path objects can be generated, tested for existence,
and deleted respectively with glGenPathsNV, glIsPathNV,
and glDeletePathsNV commands—matching the mechanism
OpenGL uses for texture, buffer, and display list objects.

2.1 Path Segment Commands

The path commands supported by NV path rendering are the
union of path commands from all major path rendering standards.
We designed NV path rendering to be a low-level interface
upon which all major path rendering standards can be hosted. Elim-
inating any semantic friction between the path commands of vari-
ous standards and our interface is important to us.

∗e-mail: mjk@nvidia.com

For example, PostScript [Adobe Systems 1985] provides three
commands (arc, arcn, and arct) for specifying circular arc
segments. While standards developed after PostScript sought to
generalize circular arc segments to an elliptical form, our inter-
face supports circular arc commands to match PostScript’s param-
eterization. So rather than require an application to convert such
PostScript circular paths into some alternate form, the circular arc
commands are handled with semantics exactly matching PostScript.
Likewise, OpenVG [Khronos Group 2008] has a four elliptical arc
segment commands, each expecting five coordinate values; whereas
SVG has a single elliptical arc segment command with five contin-
uous coordinate values and two Boolean coordinates.

For line segments, the general line segment command takes an
(x, y) control point—but horizontal and vertical line segments take
a single horizontal or vertical coordinate respectively.

For Bézier curve segments, commands exist for smooth Bézier seg-
ments, matching up with the prior command’s segment to provide
C1 continuity.

Where appropriate, we provide relative and absolute versions of all
path commands. With relative commands, path coordinates indicat-
ing a position are relative to the end point of the prior path segment.

In addition to eliminating the semantic gap between other path stan-
dards and our interface, we note that paths can be represented with
fewer path coordinates when the variety of available path com-
mands is broad. Also, editing of the sequence of path commands
and coordinates is straightforward when each standard’s path com-
mand vocabulary is supported directly. Table 1 organizes the sup-
ported path commands.

Path objects are specified in four ways:

1. Explicitly, from a sequence of path commands and their cor-
responding path coordinates.

2. From a string conforming to a standard grammar for specify-
ing a paths. Both PostScript and SVG have standard gram-
mars for paths—and we support both.

3. From a Unicode character point of an outline font. A font can
be specified with a system name (such as Helvetica or Arial),
an outline font filename, or a built-in font.

4. Derived from one or more existing path objects. The new
path may be the result of an arbitrary projective transform of
an existing path, or the linear weighting of exiting paths with
matching command sequences.

2.2 Explicit Path Specification

The command

void glPathCommandsNV(GLuint path,
GLsizei numCmds,
const GLubyte *cmds,
GLsizei numCoords,
GLenum coordType,
const void *coords);

1



Relative Number of scalar Character
Path command version coordinates alias Origin

GL MOVE TO NV X 2 M/m all
GL LINE TO NV X 2 L/l all
GL HORIZONTAL LINE NV X 1 H/h SVG
GL VERTICAL LINE NV X 1 V/v SVG
GL QUADRATIC CURVE TO NV X 4 Q/q SVG
GL CUBIC CURVE TO NV X 6 C/c all
GL SMOOTH QUADRATIC CURVE TO NV X 2 T/t SVG
GL SMOOTH CUBIC CURVE TO NV X 4 S/s SVG
GL SMALL CCW ARC TO NV X 5 - OpenVG
GL SMALL CW ARC TO NV X 5 - OpenVG
GL LARGE CCW ARC TO NV X 5 - OpenVG
GL LARGE CW ARC TO NV X 5 - OpenVG
GL ARC TO NV X 7 A/a SVG
GL CIRCULAR CCW ARC TO NV 7 5 - PostScript
GL CIRCULAR CW ARC TO NV 7 5 - PostScript
GL CIRCULAR TANGENT ARC TO NV 7 5 - PostScript
GL RECT NV 7 4 - PDF
GL DUP FIRST CUBIC CURVE TO NV 7 4 - PDF
GL DUP LAST CUBIC CURVE TO NV 7 4 - PDF
GL RESTART PATH NV 7 0 - PostScript
GL CLOSE PATH NV 7 0 - all

Table 1: Path commands supported by NV path rendering. The character alias column provides an ASCII alias for the absolute/relative
version of token. The “all” for origin means the path command is common to all path rendering standards.

Figure 1: High-level data flow of OpenGL showing pixel, vertex,
and new path pipelines.

specifies a new path object named path where numCmds indi-
cates the number of path commands, read from the array com-
mands, with which to initialize that path’s command sequence.
These path commands reference coordinates read sequentially from
the coords array. The type of the coordinates read from the
coords array is determined by the coordType parameter which
must be one of GL BYTE, GL UNSIGNED BYTE, GL SHORT,
GL UNSIGNED SHORT, or GL FLOAT. Coordinates supplied in
more compact data types allows paths to be stored more efficiently.

The numCmds elements of the cmds array must be tokens (or char-
acter aliases) from Table 1. The command sequence matches the el-
ement order of the cmds array. Each command references a number
of coordinates specified by the “Number of scalar coordinates” col-
umn of Table 1, starting with the first (zero) element of the coords
array and advancing by the coordinate count for each command.

The following code fragment creates path object 42 containing the
contours of a five-point star and heart:

static const GLubyte pathCommands[10] =
{ GL_MOVE_TO_NV, GL_LINE_TO_NV,
GL_LINE_TO_NV, GL_LINE_TO_NV,
GL_LINE_TO_NV, GL_CLOSE_PATH_NV,
’M’, ’C’, ’C’, ’Z’ }; // character aliases

static const GLshort pathCoords[12][2] =
{ {100,180}, {40,10}, {190,120}, {10,120}, {160,10},
{300,300}, {100,400}, {100,200}, {300,100},
{500,200}, {500,400}, {300,300} };

GLuint pathObj = 42;
glPathCommandsNV(pathObj, 10, pathCommands,
24, GL_SHORT, pathCoords);

The example demonstrates how tokens or character aliases can be
used interchangeably to specify a path.

2.3 Grammars for Path Specification

The command

glPathStringNV(GLuint path, GLenum format,
GLsizei length, const void *pathString);

specifies a new path object named path where format must be
either GL PATH FORMAT SVG NV or GL PATH FORMAT PS NV,
in which case the length and pathString are interpreted respec-
tively according to SVG’s grammar1 for paths or PostScript’s sub-
grammar for user paths. This code fragment is functionally identi-
cal to the prior explicit path specification example but uses an SVG
path string:

const char *svgPathString =
// star
"M100,180 L40,10 L190,120 L10,120 L160,10 z"
// heart
"M300 300 "

1The Backus-Naur Form (BNF) description of the SVG path gram-
mar is found here http://www.w3.org/TR/SVG/paths.html#
PathDataBNF

2

http://www.w3.org/TR/SVG/paths.html#PathDataBNF
http://www.w3.org/TR/SVG/paths.html#PathDataBNF


"C100 400,100 200,300 100,500 200,500 400,300 300Z";
glPathStringNV(pathObj, GL_PATH_FORMAT_SVG_NV,
(GLsizei)strlen(svgPathString), svgPathString);

Creating paths from strings has proven very convenient and avoids
having each application re-implement standard path grammar
parsers.

2.4 Specifying Paths from Glyphs of a Font

Text rendering is a first-class feature in every major path render-
ing API and standard. Requiring applications to load outlines of
glyphs is just too common, not to mention arduous and platform-
dependent, so NV path rendering provides a mechanism for
applications to create path objects from glyphs—including contigu-
ous ranges of glyphs indexed by their Unicode character point.

Two commands glPathGlyphRangeNV and
glPathGlyphsNV create a sequence of path objects given
a font and a range or sequence of Unicode character points for the
font. The font can be specified using a system font name (such
as “Arial” or “Helvetica” with a file name for a file in a standard
font file format such as TrueType, or a built-in font name (such
as “Sans,” “Serif,” or “Mono”) that is guaranteed to be available
on every NV path rendering implementation, regardless of
platform.

Once these path objects are populated, these glyph path objects can
be stenciled and covered, whether filled or stroked, just like any
other path object.

The glPathGlyphRangeNV and glPathGlyphsNV com-
mands will only create a path object for a given path name if that
path object name does not already correspond to an existing path
object. This behavior is designed to populate path object ranges
with glyph outlines consistent with the font-family property
of CSS 2.1 [CSS Working Group 2011]. An application can load a
sequence of fonts for a given range of path objects repeatedly know-
ing this will resolve to some supported set of font glyphs eventually.

The glPathGlyphRangeNV command has the following proto-
type:

void glPathGlyphRangeNV(GLuint firstPathName,
GLenum fontTarget,
GLconst void *fontName,
GLbitfield fontStyle,
GLuint firstGlyph,
GLsizei numGlyphs,
GLenum handleMissingGlyphs,
GLuint pathParameterTemplate,
GLfloat emScale);

The emScale parameter allows fonts of different formats to be
loaded with a consistent number of path units per em (a typographic
measure of glyph scale). Path coordinates and glyph metrics are
scaled to match the specified emScale. To ensure all path objects in
a range of glyphs have a consistent set of path parameters, the path-
ParameterTemplate path object names a path object from which the
new glyph path objects should copy their parameters.

This example shows how a range of path objects for sans serif fonts
for the Latin-1 character range can be populated:

// Constants
const GLint numChars = 256; // ISO/IEC 8859-1

// 8-bit range
const GLfloat emScale = 2048; // TrueType path

// units per em

// Create empty path object for use as parameter template

GLuint pathTemplate = ˜0; // Biggest path name
glPathCommandsNV(pathTemplate,
0, NULL, 0, GL_FLOAT, NULL);

glPathParameterfNV(pathTemplate,
GL_PATH_STROKE_WIDTH_NV, emScale*0.1f);

glPathParameteriNV(pathTemplate,
GL_PATH_JOIN_STYLE_NV, GL_MITER_TRUNCATE_NV);

glPathParameterfNV(pathTemplate,
GL_PATH_MITER_LIMIT_NV, 1.0);

// Create path object range for Latin-1 character codes
GLuint glyphBase = glGenPathsNV(numChars);
// Typeface names in priority order
struct {
GLenum fontTarget;
const char *name;

} font[] = {
{ GL_SYSTEM_FONT_NAME_NV, "Liberation Sans" },
{ GL_SYSTEM_FONT_NAME_NV, "Verdana" },
{ GL_SYSTEM_FONT_NAME_NV, "Arial" },
// Final standard font provides guaranteed supported
{ GL_STANDARD_FONT_NAME_NV, "Sans" }

};
const int numFonts = sizeof(font)/sizeof(font[0]);
for (int i=0; i< numFonts; i++) { // For each font
glPathGlyphRangeNV(glyphBase,
font[i].fontTarget, font[i].name, GL_BOLD_BIT_NV,
0, numChars, GL_USE_MISSING_GLYPH_NV,
pathTemplate, emScale);

}

Path objects loaded from glyphs also have associated glyph and
font metrics loaded corresponding to their character point. These
metrics and spacing information are discussed in Section 5.

2.5 Copied, Weighted, and Transformed Paths

Additional commands for specifying path objects work by generat-
ing a new path object from one or more existing path objects. The
glCopyPathNV command is the simplest and simply copies the
state of a named existing path object to another path object name.
Path parameters and glyph metrics are copied by glCopyPathNV.

The glInterpolatePathsNV command takes two (source)
path object names and a weighting factor and creates a
new (destination) path object that is the linear interpo-
lation based on the weighting factor of the two source
paths. The glWeightPathsNV command generalizes the
glInterpolatePathsNV to linear combination of a specified
number of source path objects and corresponding weighting fac-
tors. All the path objects involved in interpolating or weighting
must have identical path command sequences and contain no circu-
lar or elliptical arc segment commands. The destination path ob-
ject’s parameters are copied from the first destination path object;
glyph metrics are all set invalid (to -1).

The glTransformPathNV command take a source path object
name and generates a new named destination path object corre-
sponding to the destination path object transformed by an affine lin-
ear transform. Path commands such as horizontal or vertical lines
or circular arcs may be promoted to a more general path command
form as required to perform the transformation. Relative commands
are converted to absolute commands, transformed, and then con-
verted back to relative commands.

If the destination path object name refers to an existing path object,
that path object is replaced (implicitly deleting the old object) with
the new path object. The destination name may be one of the source
names.

Assuming the implementation performs a lazy copy of path
commands and coordinates, glCopyPathNV allows effi-

3



cient rendering of a path with different stroking parameters.
glInterpolatePathsNV can help implement Flash’s Shape
Morph functionality and OpenVG’s vgInterpolatePath
command. glTransformPathNV can help implement
SVG 1.2’s non-scaling stroke functionality and OpenVG’s
vgTransformPath.

3 Path Parameters

Every path object has state in addition to its sequence of path com-
mands and coordinates.

3.1 Settable Parameters

The glPathParameteriNV, glPathParameterfNV,
glPathParameterivNV, and glPathParameterfvNV
commands respectively set path parameters of a specified path
object given integer or float data supplied by a scalar parameter or
vector array.

Table 2 summarizes the settable parameters. Many parameters deal
with embellishments to stroking such as the stroke width, join style,
miter limit, end caps, and dash caps.

Name Type Initial value

GL PATH STROKE WIDTH NV <+ 1.0
GL PATH JOIN STYLE NV 4-valued GL MITER REVERT NV
GL PATH MITER LIMIT NV <+ 4
GL PATH INITIAL END CAP NV 4-valued GL FLAT
GL PATH TERMINAL END CAP NV 4-valued GL FLAT

GL PATH INITIAL DASH CAP NV 4-valued GL FLAT
GL PATH TERMINAL DASH CAP NV 4-valued GL FLAT
GL PATH DASH OFFSET NV < 0.0
GL PATH DASH OFFSET RESET NV 2-valued GL MOVE TO CONTINUES NV

GL PATH CLIENT LENGTH NV <+ 0.0
GL PATH FILL MODE NV 4-valued GL COUNT UP NV
GL PATH FILL MASK NV mask all 1’s
GL PATH FILL COVER MODE NV 3-valued GL CONVEX HULL NV

GL PATH STROKE COVER MODE NV 3-valued GL CONVEX HULL NV
GL PATH STROKE MASK NV mask all 1’s

Table 2: Settable path object parameters.

3.2 Dashing State

Dashing is an embellishment to stroking where a repeated pattern
of enabled stroking and gaps in stroking is applied during stroking.
The conventional glPathParameteriNV, etc. commands are
ill-suited to setting a variable number of dash offsets.

Instead parameters to control the dash pattern of a stroked path are
specified by the command

void glPathDashArrayNV(GLuint path,
GLsizei dashCount,
const GLfloat *dashArray);

where path is the name of an existing path object. A dashCount
of zero indicates the path object is not dashed; in this case, the
dashArray is not accessed. Otherwise, dashCount provides a count
of how many float values to read from the dashArray array.

3.3 Computed Parameters and Querying State

All settable path object state is able to be queried; this in-
cludes settable parameters with glGetPathParameterivNV

Figure 2: Glyph metrics.

and glGetPathParameterfvNV, the dashing array with
glGetPathDashArrayNV, the path command array with
glGetPathCommandsNV, and path coordinate array with
glGetPathCoordsNV. Additionally, computed parameters for
each path object can be queried; see Table 3.

Name Type

GL PATH COMMAND COUNT NV N
GL PATH COORD COUNT NV N
GL PATH COMPUTED LENGTH NV <+
GL PATH OBJECT BOUNDING BOX NV 4× <
GL PATH FILL BOUNDING BOX NV 4× <
GL PATH STROKE BOUNDING BOX NV 4× <

Table 3: Computed path object parameters.

3.4 Glyph and Font Metrics

Path objects created from character points from a font are tagged
with additional read-only glyph metrics. These metrics are use-
ful for text layout. Additionally, every glyph has aggregate per-font
metrics for its corresponding font. The metrics are obtained directly
from the font except for any scaling based on the emScale. The
glGetPathMetricRangeNV and glGetPathMetricsNV
queries return the glyph and per-font metrics for a range or se-
quence of path objects respectively.

As shown in Figure 2, the glyph metrics provide each glyph’s width
and height and (x, y) bearing and advance for both horizontal and
vertical layout. These metrics are expressed in path space units.

Additional per-font metrics can be queried from any glyph belong-
ing to a particular font. These metrics include a bounding box large
enough to contain any glyph in the font, the native number of font
units per em, the font-wide ascender, descender, and height dis-
tances, maximum advance for horizontal and vertical layout, un-
derline position and thickness.

Requested metrics are specified in a bitmask and returned to an
application-provided array of floats.

4 Rendering Paths via Stencil, then Cover

Once a path object is created, it can be rendered with the “stencil,
then cover” approach.

The mapping from path space to clip space and ultimately win-
dow space is determined by OpenGL’s standard modelview, pro-
jection, viewport, and depth range transforms. An OpenGL pro-
grammer familiar with OpenGL’s glMatrixMode, glRotatef,

4



glTranslatef, etc. matrix commands for transforming 3D ge-
ometry uses the same commands to manipulate the transformations
of path objects.

For example, the code below establishes an orthographic path-to-
clip-space to map the [0..500] × [0..400] region used by the star-
and-heart path:

glMatrixLoadIdentityEXT(GL_PROJECTION);
glMatrixLoadIdentityEXT(GL_MODELVIEW);
glMatrixOrthoEXT(GL_MODELVIEW, 0, 500, 0, 400, -1, 1);

This code demonstrates OpenGL’s selector-free matrix manipula-
tion commands introduced by the EXT direct state access
(DSA) extension [Kilgard 2009].

4.1 Path Rendering in Two Steps

Now we can render the filled and stroked star-and-heart path. We
assume the stencil buffer has been initially cleared to zero.

Stencil Step for Filling First we stencil the filled region
of the star-and-heart path into the stencil buffer with the
glStencilFillPathNV command:

glStencilFillPathNV(pathObj, GL_COUNT_UP_NV, 0x1F);

The winding number of each sample in the framebuffer w.r.t. the
transformed path is added (GL COUNT UP) to the stencil value cor-
responding to each rasterized same. The 0x1F mask indicates that
only the five least significant stencil bits are modified—effectively
resulting in modulo-32 addition. More typically, this mask will be
0xFF.

Instead of GL COUNT UP, we could also subtract
(GL COUNT DOWN) or invert bits (GL INVERT) by a count
equal to each sample’s winding number w.r.t. the transformed path.

Cover Step for Filling Second we conservatively cover the previ-
ously stenciled filled region of the star-and heart path. The shading,
stencil testing, and blending are fully controlled by the application’s
OpenGL context state during the cover. So we first enable stencil
testing to discard color samples with a stencil value of zero (those
not in the path as determined by the prior stencil step); for samples
that survive the stencil test, we want to reset the stencil value to
zero and shade the corresponding sample’s color value green. So:

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, 0x1F);
glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO);
glColor3f(0,1,0); // green
glCoverFillPathNV(pathObj, GL_BOUNDING_BOX_NV);

The result is a green star to the left of a green heart.

Stencil Step for Stroking Stroking proceeds similarly in two
steps; however before rendering, we configure the path object with
desirable path parameters for stroking. Specify a wider 6.5-unit
stroke and the round join style:

glPathParameteriNV(pathObj,
GL_PATH_JOIN_STYLE_NV, GL_ROUND_NV);

glPathParameterfNV(pathObj,
GL_PATH_STROKE_WIDTH_NV, 6.5);

Now we first stencil the stroked coverage for the heart-and-star path
into the stencil buffer:

glStencilStrokePathNV(pathObj, 0x1, ˜0);

Figure 3: Filled and stroked path rendering result.

This computes the point containment of every sample in the frame-
buffer w.r.t. the stroked path—and if the sample is contained in the
path’s stroke, the sample’s stencil value is set to 0x1 with a write
mask of bit-inverted zero (writing all stencil bits).

Cover Step for Stroking Second we conservatively cover the
previously stenciled stroked region of the star-and heart path. We
leave stencil as configured previously—non-zero values will in-
clude the 0x1 value written by the glStencilStrokePathNV
command, but we change the color to yellow:

glColor3f(1,1,0); // yellow
glCoverStrokePathNV(pathObj, CONVEX_HULL);

The complete rendering result is shown in Figure 3.

4.2 Accessible Samples

The fill and stroke stencil/cover commands conceptually operate
on all samples in the framebuffer. Potentially every sample in the
framebuffer could be updated by these commands. However, the set
of accessible samples be restricted the by current OpenGL context
state.

Clip planes, polygon stipple, window ownership, scissoring, stencil
testing (on write masked stencil bits during stencil fill/stroke op-
erations), depth testing, depth bounds testing, and the multisample
mask all limit, when enabled, the accessible samples.

The cover fill/stroke commands further limit the updated samples
to the bounding box or convex hull (depending on the cover mode).

4.3 Path Coordinate Generation

Paths do not have per-vertex attributes such as colors and texture co-
ordinates that are interpolated over geometric primitives as 3D ge-
ometry does. Instead varying attributes used by the fragment shader
must be generated as a linear function of the path-space coordi-
nate system. The glPathColorGenNV, glPathTexGenNV,
and glPathFogGenNV command generated color, texture coor-
dinate sets, and the fog coordinate respectively; the loosely mimic
OpenGL’s fixed-function glTexGenfvNV, etc. commands.

5



To match a common idiom in path rendering standards, the path co-
ordinate generation supports mapping a path’s path space bounding
box to a normalized [0..1]× [0..1] square.

5 Text Handling

5.1 Instanced Rendering

Efficient rendering of glyphs is very important for any path render-
ing system. In addition to the ability to create path objects from
Unicode character points of fonts and query glyph metrics for such
path objects, instanced commands for stenciling and covering se-
quences of path objects in a single OpenGL command are provided.

glStencilFillPathInstancedNV and
glCoverFillPathInstancedNV for filling
and glStencilStrokePathInstancedNV and
glCoverStrokePathInstancedNV for stroking accept
arrays of path objects where each path object instance has its own
local transformation.

This is intended for rendering spans of characters with correspond-
ing glyph path objects, but could be used for rendering any se-
quence of path objects. To facilitate text, there is a base path object
value to which each path object offset in the sequence is added. This
allows a string of ASCII characters to be provided where the base
path object value identifies the base of a range of glyphs specified
with glPathGlyphRangeNV. The array of offsets can even be
a UTF-8 or UTF-16 string to facilitate easy rendering of Unicode
text.

The instanced cover commands include a special
GL BOUNDING BOX -OF BOUNDING BOXES cover mode
where the bounding boxes of each locally transformed path
object’s cover geometry is combined (unioned) into a single
bounding box.

These instanced commands give the OpenGL implementation the
freedom to reorder the geometry sets used during the instanced
stencil step for better efficiency in the GPU.

5.2 Spacing and Kerning

Good aesthetics and legibility for horizontal spans of text gener-
ally involves appropriate spacing for the glyphs. When this spac-
ing depends on which pairs of glyphs are mutually adjacent, this is
called kerning. We provide a glGetPathSpacingNV query that
accepts a sequence of path objects (in the same way the instanced
stencil/cover commands do) and returns an array of translations cor-
responding to the kerned spacing of the glyphs.

The returned array of translations from glGetPathSpacingNV
is immediately suitable to pass as the array of translations used for
the local transformation sequence when using the instanced sten-
cil/cover commands.

While applications with complex text layout requirements might
judge this mechanism insufficiently sophisticated, because the
mechanism is simple, cross-platform, and generates kerned glyph
translations as expected by the instanced stencil/cover commands,
we anticipate this functionality will meet the basic text layout needs
of many applications.

6 Geometric Queries

NV path rendering includes a set of common geometric
queries on paths. The queries glIsPointInFillPathNV

and glIsPointInStrokePathNV provide efficient determi-
nations of whether an (x, y) point in a path’s local coordinate
system is inside or outside the fill or stroke of the path. The
query glGetPathLengthNV provides a means to obtain arc
lengths over specified command sequences for a path. The query
glPointAlongPathNV returns an (x, y) point and (dx, dy) tan-
gent a given arc length into a path’s command sequence.

These queries are intended to be compatible with queries supported
by OpenVG.

The crucial rationale for these queries is they are consistent with
our implementation’s internal computations for being inside/out-
side the path’s stroke or fill and arc length computations (such as
for dashing).

7 Antialiasing

Applications are expected to render into multisample framebuffers
to achieve acceptable antialiasing quality. Use existing APIs to al-
locate multisample framebuffer resources. NV path rendering
automatically generates multisample coverage when the frame-
buffer supports multisampling.

Applications can also use OpenGL’s accumulation buffer mecha-
nism with jittered rendering to exceed the base multisampling qual-
ity available.

8 More Resources

8.1 NVIDIA Resources

NVIDIA provides developer resources for you to get started pro-
gramming with NV path rendering.

http://developer.nvidia.com/nv-path-rendering

NVIDIA’s NV path rendering Path Rendering Software De-
velopment Kit (NVprSDK) contains eleven complete examples of
varying complexity. The most complex example is capable of ren-
dering an interesting subset of SVG.

8.2 Other Resources

The OpenGL Extension Wrangler (GLEW) [Stewart et al. ] in-
cludes support for the NV path rendering extension so GLEW
provides a hassle-free way to gain access to the extension’s
OpenGL entry points.

8.3 Driver Availability

The first NVIDIA driver to support NV path rendering is Re-
lease 275.33 (June 2011). Drivers from Release 301.42 (May
2012) have substantially better rendering performance, particu-
larly for GeForce 400 and later GPUs (so-called Fermi or Kepler
based GPUs). We are continuing to improve the performance of
NV path rendering so obtain the most recent available driver
version.

References

ADOBE SYSTEMS. 1985. PostScript Language Reference Manual,
1st ed. Addison-Wesley Longman Publishing Co., Inc. 1

CSS WORKING GROUP. 2011. Cascading Style Sheets Level 2 Re-
vision 1 (CSS 2.1) Specification, W3C Recommendation. 3

6

http://developer.nvidia.com/nv-path-rendering


KHRONOS GROUP, 2008. OpenVG specification version 1.1. 1

KILGARD, M., AND BOLZ, J. 2012. Gpu-accelerated path ren-
dering. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH Asia 2012) 31, 6 (Nov.), to appear. 1

KILGARD, M., 2009. EXT direct state access.
http://www.opengl.org/registry/specs/EXT/direct state access.
txt . 5

KILGARD, M., 2012. NV path rendering.
http://www.opengl.org/registry/specs/NV/path rendering.txt . 1

SEGAL, M., AND AKELEY, K. 2012. The OpenGL Graphics Sys-
tem: A Specification (Version 4.3 (Compstibility Profile) - August
6, 2012. 1

STEWART, N., ET AL. The OpenGL extension wrangler library.
http://glew.sourceforge.net/ . 6

7

http://www.opengl.org/registry/specs/EXT/direct_state_access.txt
http://www.opengl.org/registry/specs/EXT/direct_state_access.txt
http://www.opengl.org/registry/specs/NV/path_rendering.txt
http://glew.sourceforge.net/

	Introduction
	Path Object Specification
	Path Segment Commands
	Explicit Path Specification
	Grammars for Path Specification
	Specifying Paths from Glyphs of a Font
	Copied, Weighted, and Transformed Paths

	Path Parameters
	Settable Parameters
	Dashing State
	Computed Parameters and Querying State
	Glyph and Font Metrics

	Rendering Paths via Stencil, then Cover
	Path Rendering in Two Steps
	Accessible Samples
	Path Coordinate Generation

	Text Handling
	Instanced Rendering
	Spacing and Kerning

	Geometric Queries
	Antialiasing
	More Resources
	NVIDIA Resources
	Other Resources
	Driver Availability

	References

