
PDF Reference
sixth edition

Adobe® Portable Document Format
Version 1.7
November 2006

Adobe Systems Incorporated

© 1985–2006 Adobe® Systems Incorporated. All rights reserved.
PDF Reference, sixth edition: Adobe Portable Document Format version 1.7.
November 2006
NOTICE: All information contained herein is the property of Adobe Systems Incorporated.
Except as permitted by any such license, no part of this guide may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note
that the content in this guide is protected under copyright law even if it is not distributed with soft-
ware that includes an end user license agreement.
The content of this guide is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Sys-
tems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may
appear in the informational content contained in this guide.
Please remember that existing artwork or images that you may want to include in your project may
be protected under copyright law. The unauthorized incorporation of such material into your new
work could be a violation of the rights of the copyright owner. Please be sure to obtain any permis-
sion required from the copyright owner. Any references to company names and company logos in
sample material are for demonstration purposes only and are not intended to refer to any actual
organization.
Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Adobe Garamond, Adobe
Reader, Adobe Solutions Network, Distiller, Extreme, FrameMaker, Illustrator, InDesign, Minion,
PageMaker, Photoshop, Poetica, PostScript, and XMP are either registered trademarks or trade-
marks of Adobe Systems Incorporated in the United States and/or other countries.
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries. Apple, Mac, Macintosh, and Power Macintosh are
trademarks of Apple Computer, Inc., registered in the United States and other countries. IBM is a
registered trademark of IBM Corporation in the United States. Sun is a trademark or registered
trademark of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark of The Open Group in the United States and other countries. SVG is a trademark of the
World Wide Web Consortium; marks of the W3C are registered and held by its host institutions
MIT, INRIA and Keio. Helvetica and Times are registered trademarks of Linotype-Hell AG and/or
its subsidiaries. Arial and Times New Roman are trademarks of The Monotype Corporation regis-
tered in the U.S. Patent and Trademark Office and may be registered in certain other jurisdictions.
ITC Zapf Dingbats is a registered trademark of International Typeface Corporation. Ryumin Light
is a trademark of Morisawa & Co., Ltd. All other trademarks are the property of their respective
owners.
All instances of the name PostScript in the text are references to the PostScript language as defined
by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a
product trademark for Adobe Systems implementation of the PostScript language interpreter.
Except as otherwise stated, any mention of a “PostScript output device,” “PostScript printer,” “Post-
Script software,” or similar item refers to a product that contains PostScript technology created or
licensed by Adobe Systems Incorporated, not to one that purports to be merely compatible.
THIS PUBLICATION AND THE INFORMATION HEREIN ARE FURNISHED AS IS, ARE
FURNISHED FOR INFORMATIONAL USE ONLY, ARE SUBJECT TO CHANGE WITHOUT
NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY ADOBE SYS-
TEMS INCORPORATED. ADOBE SYSTEMS INCORPORATED ASSUMES NO RESPONSI-
BILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT MAY APPEAR IN
THE INFORMATIONAL CONTENT CONTAINED IN THIS GUIDE, MAKES NO WAR-

RANTY OF ANY KIND (EXPRESS, IMPLIED, OR STATUTORY) WITH RESPECT TO THIS
PUBLICATION, AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR PARTICULAR PURPOSES, AND NONINFRINGEMENT
OF THIRD-PARTY RIGHTS.
Adobe Systems Incorporated and its subsidiaries own a number of patents covering technology
disclosed in the PDF Reference. Nothing in the PDF Reference itself grants rights under any patent.
Nonetheless, Adobe desires to encourage implementation of the PDF computer file format on a
wide variety of devices and platforms, and for this reason offers certain royalty-free patent licenses
to PDF implementors worldwide. To review those licenses, please visit
http://www.adobe.com/go/developer_legalnotices.

http://www.adobe.com/go/developer_legalnotices

5

Contents

Preface 23

Chapter 1: Introduction 25

1.1 About This Book 25
1.2 Introduction to PDF 1.7 Features 28
1.3 Related Publications 31
1.4 Intellectual Property 32

Chapter 2: Overview 33

2.1 Imaging Model 34
2.2 Other General Properties 38
2.3 Creating PDF 43
2.4 PDF and the PostScript Language 45

Chapter 3: Syntax 47

3.1 Lexical Conventions 48
3.2 Objects 51
3.3 Filters 65
3.4 File Structure 90
3.5 Encryption 115
3.6 Document Structure 137
3.7 Content Streams and Resources 151
3.8 Common Data Structures 155
3.9 Functions 166
3.10 File Specifications 178

Chapter 4: Graphics 193

4.1 Graphics Objects 194
4.2 Coordinate Systems 199
4.3 Graphics State 210
4.4 Path Construction and Painting 224
4.5 Color Spaces 235
4.6 Patterns 289
4.7 External Objects 332
4.8 Images 334
4.9 Form XObjects 355
4.10 Optional Content 364

Contents
6

Chapter 5: Text 387

5.1 Organization and Use of Fonts 388
5.2 Text State Parameters and Operators 396
5.3 Text Objects 404
5.4 Introduction to Font Data Structures 410
5.5 Simple Fonts 412
5.6 Composite Fonts 433
5.7 Font Descriptors 455
5.8 Embedded Font Programs 465
5.9 Extraction of Text Content 469

Chapter 6: Rendering 477

6.1 CIE-Based Color to Device Color 478
6.2 Conversions among Device Color Spaces 480
6.3 Transfer Functions 484
6.4 Halftones 486
6.5 Scan Conversion Details 508

Chapter 7: Transparency 513

7.1 Overview of Transparency 514
7.2 Basic Compositing Computations 516
7.3 Transparency Groups 530
7.4 Soft Masks 545
7.5 Specifying Transparency in PDF 547
7.6 Color Space and Rendering Issues 561

Chapter 8: Interactive Features 577

8.1 Viewer Preferences 577
8.2 Document-Level Navigation 581
8.3 Page-Level Navigation 594
8.4 Annotations 604
8.5 Actions 647
8.6 Interactive Forms 671
8.7 Digital Signatures 725
8.8 Measurement Properties 744
8.9 Document Requirements 751

Chapter 9: Multimedia Features 755

9.1 Multimedia 755
9.2 Sounds 782
9.3 Movies 784
9.4 Alternate Presentations 786
9.5 3D Artwork 789

Contents
7

Chapter 10: Document Interchange 841

10.1 Procedure Sets 842
10.2 Metadata 843
10.3 File Identifiers 847
10.4 Page-Piece Dictionaries 848
10.5 Marked Content 850
10.6 Logical Structure 855
10.7 Tagged PDF 883
10.8 Accessibility Support 935
10.9 Web Capture 946
10.10 Prepress Support 962

Appendix A: Operator Summary 985

Appendix B: Operators in Type 4 Functions 989

B.1 Arithmetic Operators 989
B.2 Relational, Boolean, and Bitwise Operators 990
B.3 Conditional Operators 990
B.4 Stack Operators 990

Appendix C: Implementation Limits 991

Appendix D: Character Sets and Encodings 995

D.1 Latin Character Set and Encodings 997
D.2 PDFDocEncoding Character Set 1001
D.3 Expert Set and MacExpertEncoding 1010
D.4 Symbol Set and Encoding 1013
D.5 ZapfDingbats Set and Encoding 1016

Appendix E: PDF Name Registry 1019

Appendix F: Linearized PDF 1021

F.1 Background and Assumptions 1022
F.2 Linearized PDF Document Structure 1024
F.3 Hint Tables 1039
F.4 Access Strategies 1051

Appendix G: Example PDF Files 1057

G.1 Minimal PDF File 1057
G.2 Simple Text String Example 1060
G.3 Simple Graphics Example 1062
G.4 Page Tree Example 1065
G.5 Outline Hierarchy Example 1070
G.6 Updating Example 1074
G.7 Structured Elements That Describe Hierarchical Lists 1082

Contents
8

Appendix H: Compatibility and Implementation Notes 1095

H.1 PDF Version Numbers 1095
H.2 Feature Compatibility 1098
H.3 Implementation Notes 1099

Appendix I: Computation of Object Digests 1131

I.1 Basic Object Types 1131
I.2 Selective Computation 1133

Color Plates 1139

Bibliography 1151

Index 1159

9

Figures

2.1 Creating PDF files using the Adobe PDF printer 44
2.2 Creating PDF files using Acrobat Distiller 45
3.1 PDF components 48
3.2 Initial structure of a PDF file 91
3.3 Structure of an updated PDF file 100
3.4 Public-key encryption algorithm 130
3.5 Structure of a PDF document 138
3.6 Inheritance of attributes 149
3.7 Relationship between string types 158
3.8 Mapping with the Decode array 173
4.1 Graphics objects 197
4.2 Device space 200
4.3 User space 202
4.4 Relationships among coordinate systems 204
4.5 Effects of coordinate transformations 205
4.6 Effect of transformation order 206
4.7 Miter length 217
4.8 Cubic Bézier curve generated by the c operator 228
4.9 Cubic Bézier curves generated by the v and y operators 229
4.10 Nonzero winding number rule 233
4.11 Even-odd rule 234
4.12 Color specification 238
4.13 Color rendering 239
4.14 Component transformations in a CIE-based ABC color space 245
4.15 Component transformations in a CIE-based A color space 246
4.16 Starting a new triangle in a free-form Gouraud-shaded triangle mesh 316
4.17 Connecting triangles in a free-form Gouraud-shaded triangle mesh 317
4.18 Varying the value of the edge flag to create different shapes 318
4.19 Lattice-form triangle meshes 319
4.20 Coordinate mapping from a unit square to a four-sided Coons patch 322
4.21 Painted area and boundary of a Coons patch 323
4.22 Color values and edge flags in Coons patch meshes 325
4.23 Edge connections in a Coons patch mesh 326
4.24 Control points in a tensor-product patch 328
4.25 Typical sampled image 334
4.26 Source image coordinate system 338
4.27 Mapping the source image 338

Figures
10

5.1 Glyphs painted in 50% gray 391
5.2 Glyph outlines treated as a stroked path 392
5.3 Graphics clipped by a glyph path 393
5.4 Glyph metrics 394
5.5 Metrics for horizontal and vertical writing modes 396
5.6 Character spacing in horizontal writing 399
5.7 Word spacing in horizontal writing 399
5.8 Horizontal scaling 400
5.9 Leading 400
5.10 Text rise 403
5.11 Operation of the TJ operator in horizontal writing 408
5.12 Output from Example 424
5.13 Characteristics represented in the Flags entry of a font descriptor 459
6.1 Various halftoning effects 494
6.2 Halftone cell with a nonzero angle 500
6.3 Angled halftone cell divided into two squares 501
6.4 Halftone cell and two squares tiled across device space 501
6.5 Tiling of device space in a type 16 halftone 503
6.6 Flatness tolerance 509
6.7 Rasterization without stroke adjustment 512
8.1 Presentation timing 601
8.2 Open annotation 604
8.3 Coordinate adjustment with the NoRotate flag 610
8.4 Free text annotation with callout 625
8.5 Leader lines 628
8.6 Lines with captions appearing as part of the line 629
8.7 Line with a caption appearing as part of the offset 629
8.8 Square and circle annotations 631
8.9 QuadPoints specification 634
8.10 FDF file structure 712
9.1 Default view of artwork 802
9.2 Annotation 2 rotated 803
9.3 Shared artwork (annotations 2 &3) modified 803
9.4 Rotation around the center of orbit 807
9.5 Perspective projection of 3D artwork onto the near plane 810
9.6 Objects projected onto the near clipping plane, as seen from the position of

the camera 811
9.7 Positioning and scaling the near plane onto the annotation’s 3D view

box 811
9.8 3D annotation positioned on the page 812
9.9 Rendering of the 3D artwork using View0 (no cross section) 824
9.10 Rendering of the 3D artwork using View1 (cross section perpendicular to the

x axis) 825

Figures
11

9.11 Rendering of the 3D artwork using View2 (cross section rotated around the
y axis by -30 degrees) 826

9.12 Rendering of the 3D artwork using View3 (cross section rotated around the
z axis by 30 degrees) 827

9.13 Rendering of the 3D artwork using View4 (cross section rotated around the
y axis by -30 degrees and around the z axis by 30 degrees) 828

9.14 Rendering of the 3D artwork using View1 (all shapes visible and
opaque) 831

9.15 Rendering of the 3D artwork using View2 (the cone is hidden and the sphere
is semi-transparent) 832

9.16 3D artwork set to its default view 838
9.17 3D artwork set to CommentView1 839
9.18 3D artwork set to CommentView2 839
10.1 Simple Web Capture file structure 948
10.2 Complex Web Capture file structure 949
10.3 Page boundaries 964
10.4 Trapping example 974
G.1 Output of Example G.3 1063
G.2 Page tree for Example G.4 1065
G.3 Document outline as displayed in Example G.5 1070
G.4 Document outline as displayed in Example G.6 1072
G.5 Table of contents 1082
G.6 Association between content and marked content identifiers 1083
G.7 Hierarchy of structure elements and relationship with marked

content 1084
G.8 Index 1089
G.9 Hierarchy of structure elements and relationship with marked

content 1090
Plate 1 Additive and subtractive color (Section 4.5.3, “Device Color Spaces,” page

241)
Plate 2 Uncalibrated color (Section 4.5.4, “CIE-Based Color Spaces,” page 244)
Plate 3 Lab color space (“Lab Color Spaces,” page 250)
Plate 4 Color gamuts (“Lab Color Spaces,” page 250)
Plate 5 Rendering intents (“Rendering Intents,” page 260)
Plate 6 Duotone image (“DeviceN Color Spaces,” page 269)
Plate 7 Quadtone image (“DeviceN Color Spaces,” page 269)
Plate 8 Colored tiling pattern (“Colored Tiling Patterns,” page 295)
Plate 9 Uncolored tiling pattern (“Uncolored Tiling Patterns,” page 299)
Plate 10 Axial shading (“Type 2 (Axial) Shadings,” page 310)
Plate 11 Radial shadings depicting a cone (“Type 3 (Radial) Shadings,” page 312)
Plate 12 Radial shadings depicting a sphere (“Type 3 (Radial) Shadings,” page 313)
Plate 13 Radial shadings with extension (“Type 3 (Radial) Shadings,” page 313)
Plate 14 Radial shading effect (“Type 3 (Radial) Shadings,” page 313)

Figures
12

Plate 15 Coons patch mesh (“Type 6 Shadings (Coons Patch Meshes),” page 321)
Plate 16 Transparency groups (Section 7.1, “Overview of Transparency,” page 515)
Plate 17 Isolated and knockout groups (Sections 7.3.4, “Isolated Groups,” page 539

and 7.3.5, “Knockout Groups,” page 540)
Plate 18 RGB blend modes (Section 7.2.4, “Blend Mode,” page 520)
Plate 19 CMYK blend modes (Section 7.2.4, “Blend Mode,” page 520)
Plate 20 Blending and overprinting (“Compatibility with Opaque Overprinting,”

page 569)

13

Tables

3.1 White-space characters 50
3.2 Escape sequences in literal strings 54
3.3 Examples of literal names using the # character 57
3.4 Entries common to all stream dictionaries 62
3.5 Standard filters 67
3.6 Typical LZW encoding sequence 73
3.7 Optional parameters for LZWDecode and FlateDecode filters 74
3.8 Predictor values 76
3.9 Optional parameters for the CCITTFaxDecode filter 78
3.10 Optional parameter for the JBIG2Decode filter 82
3.11 Optional parameter for the DCTDecode filter 85
3.12 Optional parameters for Crypt filters 90
3.13 Entries in the file trailer dictionary 97
3.14 Additional entries specific to an object stream dictionary 101
3.15 Additional entries specific to a cross-reference stream dictionary 107
3.16 Entries in a cross-reference stream 109
3.17 Additional entries in a hybrid-reference file’s trailer dictionary 110
3.18 Entries common to all encryption dictionaries 116
3.19 Additional encryption dictionary entries for the standard security

handler 122
3.20 User access permissions 123
3.21 Additional encryption dictionary entries for public-key security

handlers 129
3.22 Entries common to all crypt filter dictionaries 132
3.23 Standard crypt filter names 134
3.24 Additional crypt filter dictionary entries for public-key security

handlers 134
3.25 Entries in the catalog dictionary 139
3.26 Required entries in a page tree node 143
3.27 Entries in a page object 145
3.28 Entries in the name dictionary 150
3.29 Compatibility operators 152
3.30 Entries in a resource dictionary 154
3.31 PDF data types 155
3.32 String Types 157
3.33 Entries in a name tree node dictionary 162

Tables
14

3.34 Entries in a number tree node dictionary 166
3.35 Entries common to all function dictionaries 168
3.36 Additional entries specific to a type 0 function dictionary 170
3.37 Additional entries specific to a type 2 function dictionary 173
3.38 Additional entries specific to a type 3 function dictionary 174
3.39 Operators in type 4 functions 176
3.40 Examples of file specifications 181
3.41 Entries in a file specification dictionary 182
3.42 Additional entries in an embedded file stream dictionary 185
3.43 Entries in an embedded file parameter dictionary 186
3.44 Entries in a Mac OS file information dictionary 186
3.45 Entries in a collection item dictionary 189
3.46 Entries in a collection subitem dictionary 189
4.1 Operator categories 196
4.2 Device-independent graphics state parameters 210
4.3 Device-dependent graphics state parameters 212
4.4 Line cap styles 216
4.5 Line join styles 216
4.6 Examples of line dash patterns 218
4.7 Graphics state operators 219
4.8 Entries in a graphics state parameter dictionary 220
4.9 Path construction operators 226
4.10 Path-painting operators 230
4.11 Clipping path operators 235
4.12 Color space families 237
4.13 Entries in a CalGray color space dictionary 246
4.14 Entries in a CalRGB color space dictionary 248
4.15 Entries in a Lab color space dictionary 251
4.16 Additional entries specific to an ICC profile stream dictionary 253
4.17 ICC specification versions supported by ICCBased color spaces 253
4.18 ICC profile types 254
4.19 Ranges for typical ICC color spaces 255
4.20 Rendering intents 261
4.21 Entries in a DeviceN color space attributes dictionary 272
4.22 Entries in a DeviceN process dictionary 274
4.23 Entries in a DeviceN mixing hints dictionary 274
4.24 Color operators 287
4.25 Additional entries specific to a type 1 pattern dictionary 292
4.26 Entries in a type 2 pattern dictionary 302
4.27 Shading operator 303
4.28 Entries common to all shading dictionaries 305
4.29 Additional entries specific to a type 1 shading dictionary 308
4.30 Additional entries specific to a type 2 shading dictionary 309

Tables
15

4.31 Additional entries specific to a type 3 shading dictionary 311
4.32 Additional entries specific to a type 4 shading dictionary 315
4.33 Additional entries specific to a type 5 shading dictionary 320
4.34 Additional entries specific to a type 6 shading dictionary 324
4.35 Data values in a Coons patch mesh 327
4.36 Data values in a tensor-product patch mesh 331
4.37 XObject operator 332
4.38 Additional entries specific to a PostScript XObject dictionary 333
4.39 Additional entries specific to an image dictionary 340
4.40 Default Decode arrays 345
4.41 Entries in an alternate image dictionary 347
4.42 Inline image operators 352
4.43 Entries in an inline image object 353
4.44 Additional abbreviations in an inline image object 353
4.45 Additional entries specific to a type 1 form dictionary 358
4.46 Entries common to all group attributes dictionaries 361
4.47 Entries in a reference dictionary 362
4.48 Entries in an optional content group dictionary 364
4.49 Entries in an optional content membership dictionary 366
4.50 Entries in the optional content properties dictionary 375
4.51 Entries in an optional content configuration dictionary 376
4.52 Entries in an optional content usage dictionary 380
4.53 Entries in a usage application dictionary 382
5.1 Text state parameters 397
5.2 Text state operators 398
5.3 Text rendering modes 402
5.4 Text object operators 405
5.5 Text-positioning operators 406
5.6 Text-showing operators 407
5.7 Font types 411
5.8 Entries in a Type 1 font dictionary 413
5.9 Entries in a Type 3 font dictionary 420
5.10 Type 3 font operators 423
5.11 Entries in an encoding dictionary 427
5.12 Differences between MacRomanEncoding and Mac OS Roman

encoding 431
5.13 Entries in a CIDSystemInfo dictionary 435
5.14 Entries in a CIDFont dictionary 436
5.15 Predefined CJK CMap names 442
5.16 Character collections for predefined CMaps, by PDF version 446
5.17 Additional entries in a CMap dictionary 448
5.18 Entries in a Type 0 font dictionary 452
5.19 Entries common to all font descriptors 456

Tables
16

5.20 Font flags 458
5.21 Additional font descriptor entries for CIDFonts 461
5.22 Glyph classes in CJK fonts 463
5.23 Embedded font organization for various font types 465
5.24 Additional entries in an embedded font stream dictionary 466
6.1 Predefined spot functions 489
6.2 PDF halftone types 496
6.3 Entries in a type 1 halftone dictionary 497
6.4 Additional entries specific to a type 6 halftone dictionary 499
6.5 Additional entries specific to a type 10 halftone dictionary 502
6.6 Additional entries specific to a type 16 halftone dictionary 504
6.7 Entries in a type 5 halftone dictionary 505
7.1 Variables used in the basic compositing formula 518
7.2 Standard separable blend modes 520
7.3 Standard nonseparable blend modes 524
7.4 Variables used in the source shape and opacity formulas 528
7.5 Variables used in the result shape and opacity formulas 529
7.6 Revised variables for the basic compositing formulas 532
7.7 Arguments and results of the group compositing function 534
7.8 Variables used in the group compositing formulas 536
7.9 Variables used in the page group compositing formulas 543
7.10 Entries in a soft-mask dictionary 553
7.11 Restrictions on the entries in a soft-mask image dictionary 554
7.12 Additional entry in a soft-mask image dictionary 555
7.13 Additional entries specific to a transparency group attributes

dictionary 556
7.14 Overprinting behavior in the opaque imaging model 570
7.15 Overprinting behavior in the transparent imaging model 571
8.1 Entries in a viewer preferences dictionary 578
8.2 Destination syntax 582
8.3 Entries in the outline dictionary 585
8.4 Entries in an outline item dictionary 585
8.5 Outline item flags 587
8.6 Entries in a collection dictionary 589
8.7 Entries in a collection schema dictionary 590
8.8 Entries in a collection field dictionary 591
8.9 Entries in a collection sort dictionary 592
8.10 Entries in a page label dictionary 595
8.11 Entries in a thread dictionary 596
8.12 Entries in a bead dictionary 597
8.13 Entries in a transition dictionary 599
8.14 Entries in a navigation node dictionary 602
8.15 Entries common to all annotation dictionaries 606

Tables
17

8.16 Annotation flags 608
8.17 Entries in a border style dictionary 611
8.18 Entries in a border effect dictionary 612
8.19 Entries in an appearance dictionary 614
8.20 Annotation types 615
8.21 Additional entries specific to markup annotations 618
8.22 Annotation states 620
8.23 Additional entries specific to a text annotation 621
8.24 Additional entries specific to a link annotation 622
8.25 Additional entries specific to a free text annotation 624
8.26 Additional entries specific to a line annotation 626
8.27 Line ending styles 630
8.28 Additional entries specific to a square or circle annotation 631
8.29 Additional entries specific to a polygon or polyline annotation 632
8.30 Additional entries specific to text markup annotations 634
8.31 Additional entries specific to a caret annotation 635
8.32 Additional entries specific to a rubber stamp annotation 635
8.33 Additional entries specific to an ink annotation 636
8.34 Additional entries specific to a pop-up annotation 637
8.35 Additional entries specific to a file attachment annotation 638
8.36 Additional entries specific to a sound annotation 638
8.37 Additional entries specific to a movie annotation 639
8.38 Additional entries specific to a screen annotation 640
8.39 Additional entries specific to a widget annotation 641
8.40 Entries in an appearance characteristics dictionary 642
8.41 Additional entries specific to a watermark annotation 644
8.42 Entries in a fixed print dictionary 645
8.43 Entries common to all action dictionaries 648
8.44 Entries in an annotation’s additional-actions dictionary 649
8.45 Entries in a page object’s additional-actions dictionary 650
8.46 Entries in a form field’s additional-actions dictionary 651
8.47 Entries in the document catalog’s additional-actions dictionary 651
8.48 Action types 653
8.49 Additional entries specific to a go-to action 654
8.50 Additional entries specific to a remote go-to action 655
8.51 Additional entries specific to an embedded go-to action 656
8.52 Entries specific to a target dictionary 657
8.53 Additional entries specific to a launch action 660
8.54 Entries in a Windows launch parameter dictionary 660
8.55 Additional entries specific to a thread action 661
8.56 Additional entries specific to a URI action 662
8.57 Entry in a URI dictionary 663
8.58 Additional entries specific to a sound action 664

Tables
18

8.59 Additional entries specific to a movie action 665
8.60 Additional entries specific to a hide action 666
8.61 Named actions 666
8.62 Additional entries specific to named actions 667
8.63 Additional entries specific to a set-OCG-state action 667
8.64 Additional entries specific to a rendition action 669
8.65 Additional entries specific to a transition action 670
8.66 Additional entries specific to a go-to-3D-view action 670
8.67 Entries in the interactive form dictionary 672
8.68 Signature flags 674
8.69 Entries common to all field dictionaries 675
8.70 Field flags common to all field types 676
8.71 Additional entries common to all fields containing variable text 678
8.72 XHTML elements used in rich text strings 681
8.73 Attributes of the <body> element 681
8.74 CSS2 style attributes used in rich text strings 682
8.75 Field flags specific to button fields 686
8.76 Additional entry specific to check box and radio button fields 688
8.77 Field flags specific to text fields 691
8.78 Additional entry specific to a text field 692
8.79 Field flags specific to choice fields 693
8.80 Additional entries specific to a choice field 694
8.81 Additional entries specific to a signature field 696
8.82 Entries in a signature field lock dictionary 697
8.83 Entries in a signature field seed value dictionary 697
8.84 Entries in a certificate seed value dictionary 700
8.85 Additional entries specific to a submit-form action 703
8.86 Flags for submit-form actions 704
8.87 Additional entries specific to a reset-form action 707
8.88 Flag for reset-form actions 708
8.89 Additional entries specific to an import-data action 708
8.90 Additional entries specific to a JavaScript action 709
8.91 Entry in the FDF trailer dictionary 713
8.92 Entries in the FDF catalog dictionary 714
8.93 Entries in the FDF dictionary 714
8.94 Additional entry in an embedded file stream dictionary for an encrypted

FDF file 716
8.95 Entries in the JavaScript dictionary 716
8.96 Entries in an FDF field dictionary 717
8.97 Entries in an icon fit dictionary 719
8.98 Entries in an FDF page dictionary 720
8.99 Entries in an FDF template dictionary 721
8.100 Entries in an FDF named page reference dictionary 721

Tables
19

8.101 Additional entry for annotation dictionaries in an FDF file 722
8.102 Entries in a signature dictionary 727
8.103 Entries in a signature reference dictionary 730
8.104 Entries in the DocMDP transform parameters dictionary 733
8.105 Entries in the UR transform parameters dictionary 734
8.106 Entries in the FieldMDP transform parameters dictionary 736
8.107 Entries in a permissions dictionary 741
8.108 Entries in a legal attestation dictionary 742
8.109 Entries in a viewport dictionary 745
8.110 Entries in a measure dictionary 746
8.111 Additional entries in a rectilinear measure dictionary 746
8.112 Entries in a number format dictionary 748
8.113 Entries common to all requirement dictionaries 751
8.114 Entries in a requirement handler dictionary 752
9.1 Entries common to all rendition dictionaries 759
9.2 Entries in a rendition MH/BE dictionary 760
9.3 Entries in a media criteria dictionary 760
9.4 Entries in a minimum bit depth dictionary 761
9.5 Entries in a minimum screen size dictionary 762
9.6 Additional entries in a media rendition dictionary 762
9.7 Additional entries specific to a selector rendition dictionary 763
9.8 Entries common to all media clip dictionaries 764
9.9 Additional entries in a media clip data dictionary 764
9.10 Entries in a media permissions dictionary 766
9.11 Entries in a media clip data MH/BE dictionary 767
9.12 Additional entries in a media clip section dictionary 767
9.13 Entries in a media clip section MH/BE dictionary 768
9.14 Entries in a media play parameters dictionary 769
9.15 Entries in a media play parameters MH/BE dictionary 769
9.16 Entries in a media duration dictionary 771
9.17 Entries in a media screen parameters dictionary 772
9.18 Entries in a media screen parameters MH/BE dictionary 772
9.19 Entries in a floating window parameters dictionary 774
9.20 Entries common to all media offset dictionaries 775
9.21 Additional entries in a media offset time dictionary 776
9.22 Additional entries in a media offset frame dictionary 776
9.23 Additional entries in a media offset marker dictionary 776
9.24 Entries in a timespan dictionary 776
9.25 Entries in a media players dictionary 777
9.26 Entries in a media player info dictionary 779
9.27 Entries in a software identifier dictionary 780
9.28 Monitor specifier values 782
9.29 Additional entries specific to a sound object 783

Tables
20

9.30 Entries in a movie dictionary 784
9.31 Entries in a movie activation dictionary 785
9.32 Entries in a slideshow dictionary 787
9.33 Additional entries specific to a 3D annotation 791
9.34 Entries in a 3D activation dictionary 794
9.35 Entries in a 3D stream dictionary 797
9.36 Entries in an 3D animation style dictionary 799
9.37 Animation styles 800
9.38 Entries in a 3D reference dictionary 801
9.39 Entries in a 3D view dictionary 804
9.40 Entries in a projection dictionary 808
9.41 Entries in a 3D background dictionary 812
9.42 Entries in a render mode dictionary 813
9.43 Render modes 815
9.44 Entries in a 3D lighting scheme dictionary 817
9.45 3D lighting scheme styles 817
9.46 Entries in a 3D cross section dictionary 819
9.47 Entries in a 3D node dictionary 829
9.48 Entries in an external data dictionary used to markup 3D annotations 835
10.1 Predefined procedure sets 842
10.2 Entries in the document information dictionary 844
10.3 Additional entries in a metadata stream dictionary 846
10.4 Additional entry for components having metadata 846
10.5 Entries in a page-piece dictionary 849
10.6 Entries in an application data dictionary 849
10.7 Marked-content operators 851
10.8 Entries in the mark information dictionary 856
10.9 Entries in the structure tree root 857
10.10 Entries in a structure element dictionary 858
10.11 Entries in a marked-content reference dictionary 863
10.12 Entries in an object reference dictionary 868
10.13 Additional dictionary entries for structure element access 870
10.14 Entry common to all attribute object dictionaries 873
10.15 Additional entries in an attribute object dictionary for user properties 876
10.16 Entries in a user property dictionary 876
10.17 Property list entries for artifacts 886
10.18 Derivation of font characteristics 893
10.19 Font Selector Attributes 894
10.20 Standard structure types for grouping elements 899
10.21 Block-level structure elements 901
10.22 Standard structure types for paragraphlike elements 902
10.23 Standard structure types for list elements 902
10.24 Standard structure types for table elements 903

Tables
21

10.25 Standard structure types for inline-level structure elements 905
10.26 Standard structure types for Ruby and Warichu elements (PDF 1.5) 911
10.27 Standard structure types for illustration elements 912
10.28 Standard attribute owners 914
10.29 Standard layout attributes 916
10.30 Standard layout attributes common to all standard structure types 917
10.31 Additional standard layout attributes specific to block-level structure

elements 922
10.32 Standard layout attributes specific to inline-level structure elements 926
10.33 Standard column attributes 932
10.34 Standard list attribute 933
10.35 PrintField attributes 934
10.36 Standard table attributes 935
10.37 Entries in the Web Capture information dictionary 947
10.38 Entries common to all Web Capture content sets 953
10.39 Additional entries specific to a Web Capture page set 954
10.40 Additional entries specific to a Web Capture image set 955
10.41 Entries in a source information dictionary 955
10.42 Entries in a URL alias dictionary 957
10.43 Entries in a Web Capture command dictionary 958
10.44 Web Capture command flags 958
10.45 Entries in a Web Capture command settings dictionary 960
10.46 Entries in a box color information dictionary 967
10.47 Entries in a box style dictionary 967
10.48 Additional entries specific to a printer’s mark annotation 968
10.49 Additional entries specific to a printer’s mark form dictionary 968
10.50 Entries in a separation dictionary 969
10.51 Entries in a PDF/X output intent dictionary 971
10.52 Additional entries specific to a trap network annotation 976
10.53 Additional entries specific to a trap network appearance stream 978
10.54 Entry in an OPI version dictionary 979
10.55 Entries in a version 1.3 OPI dictionary 980
10.56 Entries in a version 2.0 OPI dictionary 983
A.1 PDF content stream operators 985
C.1 Architectural limits 992
D.1 Latin-text encodings 996
F.1 Entries in the linearization parameter dictionary 1029
F.2 Standard hint tables 1033
F.3 Page offset hint table, header section 1041
F.4 Page offset hint table, per-page entry 1042
F.5 Shared object hint table, header section 1044
F.6 Shared object hint table, shared object group entry 1045
F.7 Thumbnail hint table, header section 1046

Tables
22

F.8 Thumbnail hint table, per-page entry 1047
F.9 Generic hint table 1048
F.10 Extended generic hint table 1049
F.11 Embedded file stream hint table, header section 1050
F.12 Embedded file stream hint table, per-embedded file stream group

entries 1050
G.1 Objects in minimal example 1058
G.2 Objects in simple text string example 1060
G.3 Objects in simple graphics example 1062
G.4 Object usage after adding four text annotations 1075
G.5 Object usage after deleting two text annotations 1078
G.6 Object usage after adding three text annotations 1080
H.1 Abbreviations for standard filter names 1100
H.2 Acrobat behavior with unknown filters 1101
H.3 Names of standard fonts 1109
H.4 Recommended media types 1123
I.1 Data added to object digest for basic object types 1132

23

Preface

The origins of the Portable Document Format and the Adobe® Acrobat® product
family date to early 1990. At that time, the PostScript® page description language
was rapidly becoming the worldwide standard for the production of the printed
page. PDF builds on the PostScript page description language by layering a docu-
ment structure and interactive navigation features on PostScript’s underlying im-
aging model, providing a convenient, efficient mechanism enabling documents
to be reliably viewed and printed anywhere.

The PDF specification was first published at the same time the first Acrobat prod-
ucts were introduced in 1993. Since then, updated versions of the specification
have been and continue to be available from Adobe on the World Wide Web. It
includes the precise documentation of the underlying imaging model from Post-
Script along with the PDF-specific features that are combined in version 1.7 of
the PDF standard.

Over the past eleven years, aided by the explosive growth of the Internet, PDF has
become the de facto standard for the electronic exchange of documents. Well over
500 million copies of the free Adobe Reader® software have been distributed
around the world, facilitating efficient sharing of digital content. In addition, PDF
is now the industry standard for the intermediate representation of printed mate-
rial in electronic prepress systems for conventional printing applications. As ma-
jor corporations, government agencies, and educational institutions streamline
their operations by replacing paper-based workflow with electronic exchange of
information, the impact and opportunity for the application of PDF will continue
to grow at a rapid pace.

PDF is the file format that underlies the Adobe® Intelligent Document Platform,
facilitating the process of creating, managing, securing, collecting, and exchang-
ing digital content on diverse platforms and devices. The Intelligent Document

Preface
24

Platform fulfills a set of requirements related to business process needs for the
global desktop user, including:

• Preservation of document fidelity across the enterprise, independently of the
device, platform, and software

• Merging of content from diverse sources—Web sites, word processing and
spreadsheet programs, scanned documents, photos, and graphics—into one
self-contained document while maintaining the integrity of all original source
documents

• Real-time collaborative editing of documents from multiple locations or plat-
forms

• Digital signatures to certify authenticity

• Security and permissions to allow the creator to retain control of the document
and associated rights

• Accessibility of content to those with disabilities

• Extraction and reuse of content using other file formats and applications

• Electronic forms to gather data and integrate it with business systems.

The emergence of PDF as a standard for electronic information exchange is the
result of concerted effort by many individuals in both the private and public sec-
tors. Without the dedication of Adobe employees, our industry partners, and our
customers, the widespread acceptance of PDF could not have been achieved. We
thank all of you for your continuing support and creative contributions to the
success of PDF.

Chuck Geschke and John Warnock
November 2004

25

CHAPTER 1

1Introduction

The Adobe Portable Document Format (PDF) is the native file format of the
Adobe® Acrobat® family of products. The goal of these products is to enable users
to exchange and view electronic documents easily and reliably, independently of
the environment in which they were created. PDF relies on the same imaging
model as the PostScript® page description language to describe text and graphics
in a device-independent and resolution-independent manner. To improve perfor-
mance for interactive viewing, PDF defines a more structured format than that
used by most PostScript language programs. PDF also includes objects, such as
annotations and hypertext links, that are not part of the page itself but are useful
for interactive viewing and document interchange.

1.1 About This Book

This book provides a description of the PDF file format and is intended primarily
for developers of PDF producer applications that create PDF files directly. It also
contains enough information to allow developers to write PDF consumer applica-
tions that read existing PDF files and interpret or modify their contents.

Although the PDF Reference is independent of any particular software implemen-
tation, some PDF features are best explained by describing the way they are pro-
cessed by a typical application program. In such cases, this book uses the Acrobat
family of PDF viewer applications as its model. (The prototypical viewer is the
fully capable Acrobat product, not the limited Adobe Reader® product.) Appendix
C discusses some implementation limits in the Acrobat viewer applications, even
though these limits are not part of the file format itself. Appendix H provides
compatibility and implementation notes that describe how Acrobat viewers be-
have when they encounter newer features they do not understand and specify ar-
eas in which the Acrobat products diverge from the specification presented in

IntroductionCHAPTER 1
26

this book. Implementors of PDF producer and consumer applications can use
this information as guidance.

This edition of the PDF Reference describes version 1.7 of PDF. (See implementa-
tion note 1 in Appendix H.) Throughout the book, information specific to partic-
ular versions of PDF is marked with indicators such as (PDF 1.3) or (PDF 1.4).
Features so marked may be new or substantially redefined in that version. Fea-
tures designated (PDF 1.0) have generally been superseded in later versions; un-
less otherwise stated, features identified as specific to other versions are
understood to be available in later versions as well. (PDF consumer applications
designed for a specific PDF version generally ignore newer features they do not
recognize; implementation notes in Appendix H point out exceptions.)

Note: In this edition, the term consumer is generally used to refer to PDF processing
applications; viewer is reserved for applications that implement features that inter-
act with users. This distinction is not always clear, however, since non-interactive
applications may process objects in PDF documents (such as annotations) that rep-
resent interactive features.

The rest of the book is organized as follows:

• Chapter 2, “Overview,” briefly introduces the overall architecture of PDF and
the design considerations behind it, compares it with the PostScript language,
and describes the underlying imaging model that they share.

• Chapter 3, “Syntax,” presents the syntax of PDF at the object, file, and docu-
ment level. It sets the stage for subsequent chapters, which describe how that
information is interpreted as page descriptions, interactive navigational aids,
and application-level logical structure.

• Chapter 4, “Graphics,” describes the graphics operators used to describe the
appearance of pages in a PDF document.

• Chapter 5, “Text,” discusses PDF’s special facilities for presenting text in the
form of character shapes, or glyphs, defined by fonts.

• Chapter 6, “Rendering,” considers how device-independent content descrip-
tions are matched to the characteristics of a particular output device.

• Chapter 7, “Transparency,” discusses the operation of the transparent imaging
model, introduced in PDF 1.4, in which objects can be painted with varying
degrees of opacity, allowing the previous contents of the page to show through.

About This BookSECTION 1.1
27

• Chapter 8, “Interactive Features,” describes those features of PDF that allow a
user to interact with a document on the screen by using the mouse and key-
board.

• Chapter 9, “Multimedia Features,” describes those features of PDF that support
embedding and playing multimedia content, including video, music and 3D
artwork.

• Chapter 10, “Document Interchange,” shows how PDF documents can incor-
porate higher-level information that is useful for the interchange of documents
among applications.

• Appendix A, “Operator Summary,” lists all the operators used in describing the
visual content of a PDF document.

• Appendix B, “Operators in Type 4 Functions,” summarizes the PostScript oper-
ators that can be used in PostScript calculator functions, which contain code
written in a small subset of the PostScript language.

• Appendix C, “Implementation Limits,” describes typical size and quantity
limits imposed by the Acrobat viewer applications.

• Appendix D, “Character Sets and Encodings,” lists the character sets and en-
codings that are assumed to be predefined in any PDF consumer application.

• Appendix E, “PDF Name Registry,” discusses a registry, maintained for devel-
opers by Adobe Systems, that contains private names and formats used by PDF
producers or Acrobat plug-in extensions.

• Appendix F, “Linearized PDF,” describes a special form of PDF file organiza-
tion designed to work efficiently in network environments.

• Appendix G, “Example PDF Files,” presents several examples showing the
structure of actual PDF files, ranging from one containing a minimal one-page
document to one showing how the structure of a PDF file evolves over the
course of several revisions.

• Appendix H, “Compatibility and Implementation Notes,” provides details on
the behavior of Acrobat viewer applications and describes how consumer appli-
cations should handle PDF files containing features that they do not recognize.

• Appendix I, “Computation of Object Digests,” describes in detail an algorithm
for calculating an object digest (discussed in Section 8.7, “Digital Signatures”).

IntroductionCHAPTER 1
28

A color plate section provides illustrations of some of PDF’s color-related fea-
tures. References in the text of the form “see Plate 1” refer to the contents of this
section.

The book concludes with a Bibliography and an Index.

1.2 Introduction to PDF 1.7 Features

Several features have been introduced or modified in PDF 1.7. The following is a
list of the most significant additions, along with references to the primary sec-
tions where those additions are discussed:

1.2.1 Presentation of 3D Artwork

PDF 1.7 introduces new features that increase the control the PDF viewing appli-
cation has over the appearance and behavior of 3D artwork:

• More control over the appearance of 3D artwork, without having to change the
original artwork and without the use of embedded JavaScript. Specific views of
3D artwork can specify how that artwork should be rendered, colored, lit, and
cross-sectioned. They can also specify which nodes (three-dimensional areas)
of 3D artwork should be included in a view, where those nodes should be
placed in the view, and whether they should be transparent. These features can
expose areas of geometry that would otherwise be difficult to view.

• The ability to place markup annotations on specific views of 3D artwork. This
ensures that markups applied to 3D artwork can later be shown properly with
respect to both the artwork as a whole and individual elements within the art-
work. Markup annotations applied to 3D artwork provide a means of ensuring
the artwork has not changed since the markup annotation was applied.

• Control over the user interfaces and toolbars presented on activation of 3D art-
work.

• Control over the timeframe, repetition, and style of play of keyframe anima-
tions. The styles of play are linear repetition (as in a walking character) and a
cosine-based repetition (as in an exploding-contracting image).

Introduction to PDF 1.7 FeaturesSECTION 1.2
29

1.2.2 Interactive Features

Several additions to markup annotations make them more suitable for technical
communication and review, or for use in a legal setting.

Interactive Features That Aid Technical Communication

Several additions to markup annotations aid technical communication and review:

• The addition of dimension intents for polyline and polygon markup annota-
tions. Dimension intent supports the association of user-provided dimension
information with the line segments that compose polyline and polygon markup
annotations. This feature is similar to the dimension intent introduced for line
markup annotations in PDF 1.6.

• The ability to specify units and scaling for the dimension intents of line,
polyline, and polygon markup annotations. This feature enables users to mea-
sure distances in the document, such as the width of an architectural diagram
or the diameter of a 3D cross section.

• The ability to place markup annotations on specific views of 3D artwork

• The ability to lock the contents of an annotation

Interactive Feature for Use in a Legal Setting

One addition to markup annotations is intended for use in a legal setting, espe-
cially banking. The addition of new viewer preference settings that specify print
characteristics, such as paper selection and handling, page range, copies, and
scaling. When a user prints a PDF document with those viewer preference set-
tings, the print dialog is pre-populated as specified in those settings. This capabil-
ity increases the predictability of how PDF documents are printed, which can
make PDF documents more suitable for use in a legal setting.

1.2.3 Accessibility Related Features

Additions to TaggedPDF identify the roles of more types of page content:

• The ability to identify the roles of form fields in non-interactive PDF docu-
ments. This change identifies button fields (pushbuttons, check boxes and ra-
dio buttons) and text fields (populated or unpopulated).

IntroductionCHAPTER 1
30

• The ability to provide table summaries associated with table structures. This
feature can help a visually impaired person understand the purpose and struc-
ture of a table without having to read the content in that table.

• The ability to identify background page artifacts, which can be important to
document reflowing. Background artifacts are collections of objects that do not
contribute to the meaning of the author's original content, such as a colored
rectangle behind a sidebar or a full-page background image. Such page back-
grounds may not correlate to any logical structure, but they may be useful in
reproducing the appearance of original document.

• The ability to differentiate the pagination artifacts: watermarks, headers and
footers.

1.2.4 Document Navigation Feature

Additions to document navigation specify the viewing and organizational charac-
teristics of portable collections, in which multiple file attachments are displayed
within a single window. Portable collections are used to present, sort, and search
collections of related documents, such as email archives, photo collections, and
engineering bid sets.

1.2.5 Security-Related Features

Additions to PDF introduced in 1.7 increase the control the document author can
impose upon digital signatures and over requirements PDF consumer applica-
tions must satisfy:

• Additional digital signature constraints, which are enforced at the time the sig-
nature is applied. These constraints include preferred digest methods, revoca-
tion checking of the certificate used in a signature, and flags that clarify the
interpretation of other parameters.

• Additional constraints regarding the certificate to be used when signing. These
constraints include Subject Distinguished Name (DN) dictionaries that must
be present in the certificate, KeyUsage extensions that must be present in the
signing certificate, and flags that clarify the interpretation of other parameters
that specify certificate constraints.

• The ability to specify requirement handlers that verify some requirement that
the PDF consumer applications must satisfy before processing or displaying a
PDF document. This feature provides an approach that ensures backward com-

Related PublicationsSECTION 1.3
31

patibility with PDF documents that may include JavaScript segments to verify a
requirement. Before this feature was added, JavaScript was the only way to per-
form such requirement-checking. The feature ensures that either the JavaScript
segment verifies the requirement or a named handler verifies the requirement.

1.2.6 General Features

Additions to PDF 1.7 provide more cross-platform and cross-application stability,
by providing encoding information for strings and file names:

• The clarification of string types to describe the encodings used for strings.
Throughout the entire PDF Reference, any uses of the string type are replaced
with one of the more specific string types. This clarification does not require
changes to PDF consumer applications. Instead, it provides a clearer under-
standing of the encoding supported by each PDF string entry. This understand-
ing can be especially important when comparing strings in a PDF document to
strings in an external source, such as an XML document or 3D artwork.

• The ability to specify file names using Unicode in addition to specifying file
names using the standard encoding for the platform on which the document is
being viewed. This feature reduces problems in decoding file path names that
have been encoded on a different platform or in a different language.

1.2.7 PDF Reference Changes

This release of the PDF Reference includes clarifications not related to new fea-
tures or additional capabilities:

• A description of the formulas for all blend modes.

• An explanation of the TaggedPDF representation of nested table of contents
entries or list entries.

1.3 Related Publications

PDF and the PostScript page description language share the same underlying
Adobe imaging model. A document can be converted straightforwardly between
PDF and the PostScript language; the two representations produce the same out-
put when printed. However, PostScript includes a general-purpose programming
language framework not present in PDF. The PostScript Language Reference is the
comprehensive reference for the PostScript language and its imaging model.

IntroductionCHAPTER 1
32

PDF and PostScript support several standard formats for font programs, includ-
ing Adobe Type 1, CFF (Compact Font Format), TrueType, OpenType and CID-
keyed fonts. The PDF manifestations of these fonts are documented in this book.
However, the specifications for the font files themselves are published separately,
because they are highly specialized and are of interest to a different user commu-
nity. A variety of Adobe publications are available on the subject of font formats.
The Bibliography lists these publications, as well as additional documents related
to PDF and the contents of this book.

1.4 Intellectual Property

Adobe owns copyrights in the PDF Reference. Adobe will enforce its copyrights.
One reason Adobe must retain its copyrights in the PDF Reference is to maintain
the integrity of the Portable Document Format standard and ensure that the pub-
lic can distinguish between the Portable Document Format and other interchange
formats for electronic documents. Nonetheless, Adobe desires to promote the use
of the Portable Document Format for information interchange among diverse
products and applications. Accordingly, Adobe gives permission to everyone un-
der its copyrights to copy, modify, and distribute any example code in the written
specification, to the extent necessary to implement the Portable Document For-
mat in a manner compliant with the PDF Reference.1

Adobe Systems Incorporated and its subsidiaries own a number of patents cover-
ing technology disclosed in the PDF Reference. Nothing in the PDF Reference it-
self grants rights under any patent. Nonetheless, Adobe desires to encourage
implementation of the PDF computer file format on a wide variety of devices and
platforms, and for this reason offers certain royalty-free patent licenses to PDF
implementors worldwide. To review those licenses, please visit
http://www.adobe.com/go/developer_legalnotices.

1.This example code includes, but is not limited to, the copyrighted list of data structures, opera-
tors, and PostScript language function definitions, that were referenced in PDF Reference, fifth
edition, version 1.6, Section 1.5 (Intellectual Property).

http://www.adobe.com/go/developer_legalnotices

33

CHAPTER 2

2Overview

PDF is a file format for representing documents in a manner independent of the
application software, hardware, and operating system used to create them and of
the output device on which they are to be displayed or printed. A PDF document
consists of a collection of objects that together describe the appearance of one or
more pages, possibly accompanied by additional interactive elements and higher-
level application data. A PDF file contains the objects making up a PDF docu-
ment along with associated structural information, all represented as a single self-
contained sequence of bytes.

A document’s pages (and other visual elements) can contain any combination of
text, graphics, and images. A page’s appearance is described by a PDF content
stream, which contains a sequence of graphics objects to be painted on the page.
This appearance is fully specified; all layout and formatting decisions have al-
ready been made by the application generating the content stream.

In addition to describing the static appearance of pages, a PDF document can
contain interactive elements that are possible only in an electronic representation.
PDF supports annotations of many kinds for such things as text notes, hypertext
links, markup, file attachments, sounds, and movies. A document can define its
own user interface; keyboard and mouse input can trigger actions that are speci-
fied by PDF objects. The document can contain interactive form fields to be filled
in by the user, and can export the values of these fields to or import them from
other applications.

Finally, a PDF document can contain higher-level information that is useful for
interchange of content among applications. In addition to specifying appearance,
a document’s content can include identification and logical structure information

OverviewCHAPTER 2
34

that allows it to be searched, edited, or extracted for reuse elsewhere. PDF is par-
ticularly well suited for representing a document as it moves through successive
stages of a prepress production workflow.

2.1 Imaging Model

At the heart of PDF is its ability to describe the appearance of sophisticated
graphics and typography. This ability is achieved through the use of the Adobe
imaging model, the same high-level, device-independent representation used in
the PostScript page description language.

Although application programs could theoretically describe any page as a full-
resolution pixel array, the resulting file would be bulky, device-dependent, and
impractical for high-resolution devices. A high-level imaging model enables
applications to describe the appearance of pages containing text, graphical
shapes, and sampled images in terms of abstract graphical elements rather than
directly in terms of device pixels. Such a description is economical and device-
independent, and can be used to produce high-quality output on a broad range of
printers, displays, and other output devices.

2.1.1 Page Description Languages

Among its other roles, PDF serves as a page description language, a language for
describing the graphical appearance of pages with respect to an imaging model.
An application program produces output through a two-stage process:

1. The application generates a device-independent description of the desired out-
put in the page description language.

2. A program controlling a specific output device interprets the description and
renders it on that device.

The two stages may be executed in different places and at different times. The
page description language serves as an interchange standard for the compact, de-
vice-independent transmission and storage of printable or displayable docu-
ments.

Imaging ModelSECTION 2.1
35

2.1.2 Adobe Imaging Model

The Adobe imaging model is a simple and unified view of two-dimensional
graphics borrowed from the graphic arts. In this model, “paint” is placed on a
page in selected areas:

• The painted figures can be in the form of character shapes (glyphs), geometric
shapes, lines, or sampled images such as digital representations of photographs.

• The paint may be in color or in black, white, or any shade of gray. It may also
take the form of a repeating pattern (PDF 1.2) or a smooth transition between
colors (PDF 1.3).

• Any of these elements may be clipped to appear within other shapes as they are
placed onto the page.

A page’s content stream contains operands and operators describing a sequence of
graphics objects. A PDF consumer application maintains an implicit current page
that accumulates the marks made by the painting operators. Initially, the current
page is completely blank. For each graphics object encountered in the content
stream, the application places marks on the current page, which replace or com-
bine with any previous marks they may overlay. Once the page has been com-
pletely composed, the accumulated marks are rendered on the output medium
and the current page is cleared to blank again.

PDF 1.3 and earlier versions use an opaque imaging model in which each new
graphics object painted onto a page completely obscures the previous contents of
the page at those locations (subject to the effects of certain optional parameters
that may modify this behavior; see Section 4.5.6, “Overprint Control”). No mat-
ter what color an object has—white, black, gray, or color—it is placed on the page
as if it were applied with opaque paint. PDF 1.4 introduces a transparent imaging
model in which objects painted on the page are not required to be fully opaque.
Instead, newly painted objects are composited with the previously existing con-
tents of the page, producing results that combine the colors of the object and its
backdrop according to their respective opacity characteristics. The transparent
imaging model is described in Chapter 7.

The principal graphics objects (among others) are as follows:

• A path object consists of a sequence of connected and disconnected points,
lines, and curves that together describe shapes and their positions. It is built up

OverviewCHAPTER 2
36

through the sequential application of path construction operators, each of which
appends one or more new elements. The path object is ended by a path-painting
operator, which paints the path on the page in some way. The principal path-
painting operators are S (stroke), which paints a line along the path, and f (fill),
which paints the interior of the path.

• A text object consists of one or more glyph shapes representing characters of
text. The glyph shapes for the characters are described in a separate data struc-
ture called a font. Like path objects, text objects can be stroked or filled.

• An image object is a rectangular array of sample values, each representing a
color at a particular position within the rectangle. Such objects are typically
used to represent photographs.

The painting operators require various parameters, some explicit and others im-
plicit. Implicit parameters include the current color, current line width, current
font (typeface and size), and many others. Together, these implicit parameters
make up the graphics state; there are operators for setting the value of each im-
plicit parameter in the graphics state. Painting operators use the values currently
in effect at the time they are invoked.

One additional implicit parameter in the graphics state modifies the results of
painting graphics objects. The current clipping path outlines the area of the cur-
rent page within which paint can be placed. Although painting operators may
attempt to place marks anywhere on the current page, only those marks falling
within the current clipping path affect the page; those falling outside it do not af-
fect the page. Initially, the current clipping path encompasses the entire imagea-
ble area of the page. It can temporarily be reduced to the shape defined by a path
or text object, or to the intersection of multiple such shapes. Marks placed by sub-
sequent painting operators are confined within that boundary.

2.1.3 Raster Output Devices

Much of the power of the Adobe imaging model derives from its ability to deal
with the general class of raster output devices. These encompass such technologies
as laser, dot-matrix, and ink-jet printers, digital imagesetters, and raster-scan
displays. The defining property of a raster output device is that a printed or dis-
played image consists of a rectangular array, or raster, of dots called pixels (picture
elements) that can be addressed individually. On a typical bilevel output device,
each pixel can be made either black or white. On some devices, pixels can be set to
intermediate shades of gray or to some color. The ability to set the colors of

Imaging ModelSECTION 2.1
37

individual pixels makes it possible to generate printed or displayed output that
can include text, arbitrary graphical shapes, and reproductions of sampled images.

The resolution of a raster output device measures the number of pixels per unit of
distance along the two linear dimensions. Resolution is typically—but not neces-
sarily—the same horizontally and vertically. Manufacturers’ decisions on device
technology and price/performance trade-offs create characteristic ranges of reso-
lution:

• Computer displays have relatively low resolution, typically 75 to 110 pixels per
inch.

• Dot-matrix printers generally range from 100 to 250 pixels per inch.

• Ink-jet and laser-scanned xerographic printing technologies achieve medium-
level resolutions of 300 to 1400 pixels per inch.

• Photographic technology permits high resolutions of 2400 pixels per inch or
more.

Higher resolution yields better quality and fidelity of the resulting output but is
achieved at greater cost. As the technology improves and computing costs de-
crease, products evolve to higher resolutions.

2.1.4 Scan Conversion

An abstract graphical element (such as a line, a circle, a character glyph, or a
sampled image) is rendered on a raster output device by a process known as scan
conversion. Given a mathematical description of the graphical element, this pro-
cess determines which pixels to adjust and what values to assign to those pixels to
achieve the most faithful rendition possible at the available device resolution.

The pixels on a page can be represented by a two-dimensional array of pixel
values in computer memory. For an output device whose pixels can only be black
or white, a single bit suffices to represent each pixel. For a device that can repro-
duce gray levels or colors, multiple bits per pixel are required.

Note: Although the ultimate representation of a printed or displayed page is logically
a complete array of pixels, its actual representation in computer memory need not
consist of one memory cell per pixel. Some implementations use other representa-
tions, such as display lists. The Adobe imaging model has been carefully designed
not to depend on any particular representation of raster memory.

OverviewCHAPTER 2
38

For each graphical element that is to appear on the page, the scan converter sets
the values of the corresponding pixels. When the interpretation of the page de-
scription is complete, the pixel values in memory represent the appearance of the
page. At this point, a raster output process can render this representation (make it
visible) on a printed page or display screen.

Scan-converting a graphical shape, such as a rectangle or circle, entails determin-
ing which device pixels lie inside the shape and setting their values appropriately
(for example, to black). Because the edges of a shape do not always fall precisely
on the boundaries between pixels, some policy is required for deciding how to set
the pixels along the edges. Scan-converting a glyph representing a text character
is conceptually the same as scan-converting an arbitrary graphical shape. How-
ever, character glyphs are much more sensitive to legibility requirements and
must meet more rigid objective and subjective measures of quality.

Rendering grayscale elements on a bilevel device is accomplished by a technique
known as halftoning. The array of pixels is divided into small clusters according to
some pattern (called the halftone screen). Within each cluster, some pixels are set
to black and others to white in proportion to the level of gray desired at that loca-
tion on the page. When viewed from a sufficient distance, the individual dots be-
come imperceptible and the perceived result is a shade of gray. This enables a
bilevel raster output device to reproduce shades of gray and to approximate natu-
ral images such as photographs. Some color devices use a similar technique.

2.2 Other General Properties

This section describes other notable general properties of PDF, aside from its im-
aging model.

2.2.1 Portability

PDF files are represented as sequences of 8-bit binary bytes. A PDF file is de-
signed to be portable across all platforms and operating systems. The binary rep-
resentation is intended to be generated, transported, and consumed directly,
without translation between native character sets, end-of-line representations, or
other conventions used on various platforms.

Other General PropertiesSECTION 2.2
39

Any PDF file can also be represented in a form that uses only 7-bit ASCII
(American Standard Code for Information Interchange) character codes. This is
useful for the purpose of exposition, as in this book. However, this representation
is not recommended for actual use, since it is less efficient than the normal binary
representation. Regardless of which representation is used, PDF files must be
transported and stored as binary files, not as text files. Inadvertent changes, such
as conversion between text end-of-line conventions, will damage the file and may
render it unusable.

2.2.2 Compression

To reduce file size, PDF supports a number of industry-standard compression
filters:

• JPEG and (in PDF 1.5) JPEG2000 compression of color and grayscale images

• CCITT (Group 3 or Group 4), run-length, and (in PDF 1.4) JBIG2 compression
of monochrome images

• LZW (Lempel-Ziv-Welch) and (beginning with PDF 1.2) Flate compression of
text, graphics, and images

Using JPEG compression, color and grayscale images can be compressed by a fac-
tor of 10 or more. Effective compression of monochrome images depends on the
compression filter used and the properties of the image, but reductions of 2:1 to
8:1 are common (or 20:1 to 50:1 for JBIG2 compression of an image of a page full
of text). LZW or Flate compression of the content streams describing all other
text and graphics in the document results in compression ratios of approximately
2:1. All of these compression filters produce binary data, which can be further
converted to ASCII base-85 encoding if a 7-bit ASCII representation is required.

2.2.3 Font Management

Managing fonts is a fundamental challenge in document interchange. Generally,
the receiver of a document must have the same fonts that were originally used to
create it. If a different font is substituted, its character set, glyph shapes, and met-
rics may differ from those in the original font. This substitution can produce un-
expected and unwanted results, such as lines of text extending into margins or
overlapping with graphics.

OverviewCHAPTER 2
40

PDF provides various means for dealing with font management:

• The original font programs can be embedded in the PDF file, which ensures the
most predictable and dependable results. PDF supports various font formats,
including Type 1, TrueType, OpenType, and CID-keyed fonts.

• To conserve space, a font subset can be embedded, containing just the glyph
descriptions for those characters that are actually used in the document. Also,
Type 1 fonts can be represented in a special compact format.

• PDF prescribes a set of 14 standard fonts that can be used without prior defini-
tion. These include four faces each of three Latin text typefaces (Courier,
Helvetica*, and Times*), as well as two symbolic fonts (Symbol and ITC Zapf
Dingbats®). These fonts, or suitable substitute fonts with the same metrics, are
required to be available in all PDF consumer applications.

• A PDF file can refer by name to fonts that are not embedded in the PDF file. In
this case, a PDF consumer can use those fonts if they are available in its envi-
ronment. This approach suffers from the uncertainties noted above.

• A PDF file contains a font descriptor for each font that it uses. The font descrip-
tor includes font metrics and style information, enabling an application to se-
lect or synthesize a suitable substitute font if necessary. Although the glyphs’
shapes differ from those intended, their placement is accurate.

Font management is primarily concerned with producing the correct appearance
of text—that is, the shape and placement of glyphs. However, it is sometimes nec-
essary for a PDF application to extract the meaning of the text, represented in
some standard information encoding such as Unicode. In some cases, this in-
formation can be deduced from the encoding used to represent the text in the
PDF file. Otherwise, the PDF producer application should specify the mapping
explicitly by including a special object, the ToUnicode CMap.

2.2.4 Single-Pass File Generation

Because of system limitations and efficiency considerations, it may be necessary
or desirable for an application program to generate a PDF file in a single pass. For
example, the program may have limited memory available or be unable to open
temporary files. For this reason, PDF supports single-pass generation of files.
Although some PDF objects must specify their length in bytes, a mechanism is
provided allowing the length to follow the object in the PDF file. In addition, in-

Other General PropertiesSECTION 2.2
41

formation such as the number of pages in the document can be written into the
file after all pages have been generated.

A PDF file that is generated in a single pass is generally not ordered for most effi-
cient viewing, particularly when accessing the contents of the file over a network.
When generating a PDF file that is intended to be viewed many times, it is worth-
while to perform a second pass to optimize the order in which objects occur in
the file. PDF specifies a particular file organization, Linearized PDF, which is doc-
umented in Appendix F. Other optimizations are also possible, such as detecting
duplicated sequences of graphics objects and collapsing them to a single shared
sequence that is specified only once.

2.2.5 Random Access

A PDF file should be thought of as a flattened representation of a data structure
consisting of a collection of objects that can refer to each other in any arbitrary
way. The order of the objects’ occurrence in the PDF file has no semantic signifi-
cance. In general, an application should process a PDF file by following references
from object to object, rather than by processing objects sequentially. This is par-
ticularly important for interactive document viewing or for any application in
which pages or other objects in the PDF file are accessed out of sequence.

To support such random access to individual objects, every PDF file contains a
cross-reference table that can be used to locate and directly access pages and other
important objects within the file. The cross-reference table is stored at the end of
the file, allowing applications that generate PDF files in a single pass to store it
easily and those that read PDF files to locate it easily. By using the cross-reference
table, the time needed to locate a page or other object is nearly independent of the
length of the document, allowing PDF documents containing hundreds or thou-
sands of pages to be accessed efficiently.

2.2.6 Security

PDF has two security features that can be used, separately or together, in any doc-
ument:

• The document can be encrypted so that only authorized users can access it.
There is separate authorization for the owner of the document and for all other

OverviewCHAPTER 2
42

users; the users’ access can be selectively restricted to allow only certain opera-
tions, such as viewing, printing, or editing.

• The document can be digitally signed to certify its authenticity. The signature
may take many forms, including a document digest that has been encrypted
with a public/private key, a biometric signature such as a fingerprint, and oth-
ers. Any subsequent changes to a signed PDF file invalidate the signature.

2.2.7 Incremental Update

Applications may allow users to modify PDF documents. Users should not have
to wait for the entire file—which can contain hundreds of pages or more—to be
rewritten each time modifications to the document are saved. PDF allows modifi-
cations to be appended to a file, leaving the original data intact. The addendum
appended when a file is incrementally updated contains only those objects that
were actually added or modified, and includes an update to the cross-reference
table. Incremental update allows an application to save modifications to a PDF
document in an amount of time proportional to the size of the modification rath-
er than the size of the file.

In addition, because the original contents of the document are still present in the
file, it is possible to undo saved changes by deleting one or more addenda. The
ability to recover the exact contents of an original document is critical when digi-
tal signatures have been applied and subsequently need to be verified.

2.2.8 Extensibility

PDF is designed to be extensible. Not only can new features be added, but appli-
cations based on earlier versions of PDF can behave reasonably when they en-
counter newer features that they do not understand. Appendix H describes how a
PDF consumer application should behave in such cases.

Additionally, PDF provides means for applications to store their own private in-
formation in a PDF file. This information can be recovered when the file is im-
ported by the same application, but it is ignored by other applications. Therefore,
PDF can serve as an application’s native file format while its documents can be
viewed and printed by other applications. Application-specific data can be stored
either as marked content annotating the graphics objects in a PDF content stream
or as entirely separate objects unconnected with the PDF content.

Creating PDFSECTION 2.3
43

2.3 Creating PDF

PDF files may be produced either directly by application programs or indirectly
by conversion from other file formats or imaging models. As PDF documents and
applications that process them become more prevalent, new ways of creating and
using PDF will be invented.

Many applications can generate PDF files directly, and some can import them as
well. This direct approach is preferable, since it gives the application access to the
full capabilities of PDF, including the imaging model and the interactive and doc-
ument interchange features. Alternatively, applications that do not generate PDF
directly can produce PDF output indirectly. There are two principal indirect
methods:

• The application describes its printable output by making calls to an application
programming interface (API) such as GDI in Microsoft® Windows® or Quick-
Draw in the Apple Mac OS. A software component called a printer driver inter-
cepts these calls and interprets them to generate output in PDF form.

• The application produces printable output directly in some other file format,
such as PostScript, PCL, HPGL, or DVI, which is converted to PDF by a sepa-
rate translation program.

Although these indirect strategies are often the easiest way to obtain PDF output
from an existing application, the resulting PDF files may not make the best use of
the high-level Adobe imaging model. This is because the information embodied
in the application’s API calls or in the intermediate output file often describes the
desired results at too low a level. Any higher-level information maintained by the
original application has been lost and is not available to the printer driver or
translator.

Figures 2.1 and 2.2 show how Acrobat products support these indirect
approaches. The Adobe PDF printer (Figure 2.1), available on the Windows and
Mac OS platforms, acts as a printer driver, intercepting graphics and text opera-
tions generated by a running application program through the operating system’s
API. Instead of converting these operations into printer commands and transmit-
ting them directly to a printer, the Adobe PDF printer converts them to equiva-
lent PDF operators and embeds them in a PDF file. The result is a platform-
independent file that can be viewed and printed by a PDF viewer application,
such as Acrobat, running on any supported platform—even a different platform
from the one on which the file was originally generated.

OverviewCHAPTER 2
44

FIGURE 2.1 Creating PDF files using the Adobe PDF printer

Instead of describing their printable output through API calls, some applications
produce PostScript page descriptions directly—either because of limitations in
the QuickDraw or GDI imaging models or because the applications run on plat-
forms such as DOS or UNIX®, where no system-level printer driver exists. Post-
Script files generated by such applications can be converted to PDF files using the
Acrobat Distiller® application (see Figure 2.2). Because PostScript and PDF share
the same Adobe imaging model, Distiller can preserve the exact graphical con-
tent of the PostScript file in the translation to PDF. Additionally, Distiller sup-
ports a PostScript language extension, called pdfmark, that allows the producing
application to embed instructions in the PostScript file for creating hypertext
links, logical structure, and other interactive and document interchange features
of PDF. Again, the resulting PDF file can be viewed with a viewer application,
such as Acrobat, on any supported platform.

Acrobat

Macintosh application Windows application

Adobe PDF
 printer

QuickDraw/
CoreGraphics

GDI

PDF

PDF and the PostScript LanguageSECTION 2.4
45

FIGURE 2.2 Creating PDF files using Acrobat Distiller

2.4 PDF and the PostScript Language

The PDF operators for setting the graphics state and painting graphics objects are
similar to the corresponding operators in the PostScript language. Unlike Post-
Script, however, PDF is not a full-scale programming language; it trades reduced
flexibility for improved efficiency and predictability. PDF therefore differs from
PostScript in the following significant ways:

• PDF enforces a strictly defined file structure that allows an application to ac-
cess parts of a document in arbitrary order.

• To simplify the processing of content streams, PDF does not include common
programming language features such as procedures, variables, and control con-
structs.

• PDF files contain information such as font metrics to ensure viewing fidelity.

• A PDF file may contain additional information that is not directly connected
with the imaging model, such as hypertext links for interactive viewing and
logical structure information for document interchange.

Because of these differences, a PDF file generally cannot be transmitted directly
to a PostScript output device for printing (although a few such devices do also

PostScript
page description

Acrobat

PDF

Acrobat Distiller

OverviewCHAPTER 2
46

support PDF directly). An application printing a PDF document to a PostScript
device must follow these steps:

1. Insert procedure sets containing PostScript procedure definitions to implement
the PDF operators.

2. Extract the content for each page. Each content stream is essentially the script
portion of a traditional PostScript program using very specific procedures,
such as m for moveto and l for lineto.

3. Decode compressed text, graphics, and image data as necessary. The compres-
sion filters used in PDF are compatible with those used in PostScript; they may
or may not be supported, depending on the LanguageLevel of the target output
device.

4. Insert any needed resources, such as fonts, into the PostScript file. These can
be either the original fonts or suitable substitute fonts based on the font met-
rics in the PDF file. Fonts may need to be converted to a format that the Post-
Script interpreter recognizes, such as Type 1 or Type 42.

5. Put the information in the correct order. The result is a traditional PostScript
program that fully represents the visual aspects of the document but no longer
contains PDF elements such as hypertext links, annotations, and bookmarks.

6. Transmit the PostScript program to the output device.

47

CHAPTER 3

3Syntax

This chapter covers everything about the syntax of PDF at the object, file, and
document level. It sets the stage for subsequent chapters, which describe how the
contents of a PDF file are interpreted as page descriptions, interactive
navigational aids, and application-level logical structure.

PDF syntax is best understood by thinking of it in four parts, as shown in Figure
3.1:

• Objects. A PDF document is a data structure composed from a small set of
basic types of data objects. Section 3.1, “Lexical Conventions,” describes the
character set used to write objects and other syntactic elements. Section 3.2,
“Objects,” describes the syntax and essential properties of the objects. Section
3.2.7, “Stream Objects,” provides complete details of the most complex data
type, the stream object.

• File structure. The PDF file structure determines how objects are stored in a
PDF file, how they are accessed, and how they are updated. This structure is
independent of the semantics of the objects. Section 3.4, “File Structure,” de-
scribes the file structure. Section 3.5, “Encryption,” describes a file-level mech-
anism for protecting a document’s contents from unauthorized access.

• Document structure. The PDF document structure specifies how the basic ob-
ject types are used to represent components of a PDF document: pages, fonts,
annotations, and so forth. Section 3.6, “Document Structure,” describes the
overall document structure; later chapters address the detailed semantics of the
components.

• Content streams. A PDF content stream contains a sequence of instructions de-
scribing the appearance of a page or other graphical entity. These instructions,
while also represented as objects, are conceptually distinct from the objects that

SyntaxCHAPTER 3
48

represent the document structure and are described separately. Section 3.7,
“Content Streams and Resources,” discusses PDF content streams and their as-
sociated resources.

FIGURE 3.1 PDF components

In addition, this chapter describes some data structures, built from basic objects,
that are so widely used that they can almost be considered basic object types in
their own right. These objects are covered in Sections 3.8, “Common Data
Structures”; 3.9, “Functions”; and 3.10, “File Specifications.”

PDF’s object and file syntax is also used as the basis for other file formats. These
include the Forms Data Format (FDF), described in Section 8.6.6, “Forms Data
Format,” and the Portable Job Ticket Format (PJTF), described in Adobe
Technical Note #5620, Portable Job Ticket Format.

3.1 Lexical Conventions

At the most fundamental level, a PDF file is a sequence of 8-bit bytes. These bytes
can be grouped into tokens according to the syntax rules described below. One or
more tokens are assembled to form higher-level syntactic entities, principally
objects, which are the basic data values from which a PDF document is
constructed.

PDF can be entirely represented using byte values corresponding to the visible
printable subset of the ASCII character set, plus white space characters such as
space, tab, carriage return, and line feed characters. ASCII is the American
Standard Code for Information Interchange, a widely used convention for

Objects

File
structure

Document
structure

Content
stream

Lexical ConventionsSECTION 3.1
49

encoding a specific set of 128 characters as binary numbers. However, a PDF file
is not restricted to the ASCII character set; it can contain arbitrary 8-bit bytes,
subject to the following considerations:

• The tokens that delimit objects and that describe the structure of a PDF file are
all written in the ASCII character set, as are all the reserved words and the
names used as keys in standard dictionaries.

• The data values of certain types of objects—strings and streams—can be but
need not be written entirely in ASCII. For the purpose of exposition (as in this
book), ASCII representation is preferred. However, in actual practice, data that
is naturally binary, such as sampled images, is represented directly in binary for
compactness and efficiency.

• A PDF file containing binary data must be transported and stored by means
that preserve all bytes of the file faithfully; that is, as a binary file rather than a
text file. Such a file is not portable to environments that impose reserved char-
acter codes, maximum line lengths, end-of-line conventions, or other restric-
tions.

Note: In this chapter, the term character is synonymous with byte and merely refers
to a particular 8-bit value. This usage is entirely independent of any logical meaning
that the value may have when it is treated as data in specific contexts, such as repre-
senting human-readable text or selecting a glyph from a font.

3.1.1 Character Set

The PDF character set is divided into three classes, called regular, delimiter, and
white-space characters. This classification determines the grouping of characters
into tokens, except within strings, streams, and comments; different rules apply
in those contexts.

White-space characters (see Table 3.1) separate syntactic constructs such as names
and numbers from each other. All white-space characters are equivalent, except
in comments, strings, and streams. In all other contexts, PDF treats any sequence
of consecutive white-space characters as one character.

SyntaxCHAPTER 3
50

TABLE 3.1 White-space characters

The carriage return (CR) and line feed (LF) characters, also called newline
characters, are treated as end-of-line (EOL) markers. The combination of a
carriage return followed immediately by a line feed is treated as one EOL marker.
For the most part, EOL markers are treated the same as any other white-space
characters. However, sometimes an EOL marker is required or recommended—
that is, the following token must appear at the beginning of a line.

Note: The examples in this book illustrate a recommended convention for arranging
tokens into lines. However, the examples’ use of white space for indentation is purely
for clarity of exposition and is not recommended for practical use.

The delimiter characters (,), <, >, [,], {, }, /, and % are special. They delimit
syntactic entities such as strings, arrays, names, and comments. Any of these
characters terminates the entity preceding it and is not included in the entity.

All characters except the white-space characters and delimiters are referred to as
regular characters. These characters include 8-bit binary characters that are
outside the ASCII character set. A sequence of consecutive regular characters
comprises a single token.

Note: PDF is case-sensitive; corresponding uppercase and lowercase letters are con-
sidered distinct.

DECIMAL HEXADECIMAL OCTAL NAME

0 00 000 Null (NUL)

9 09 011 Tab (HT)

10 0A 012 Line feed (LF)

12 0C 014 Form feed (FF)

13 0D 015 Carriage return (CR)

32 20 040 Space (SP)

ObjectsSECTION 3.2
51

3.1.2 Comments

Any occurrence of the percent sign character (%) outside a string or stream
introduces a comment. The comment consists of all characters between the
percent sign and the end of the line, including regular, delimiter, space, and tab
characters. PDF ignores comments, treating them as if they were single white-
space characters. That is, a comment separates the token preceding it from the
one following it; thus, the PDF fragment

abc% comment { /%) blah blah blah
123

is syntactically equivalent to just the tokens abc and 123.

Comments (other than the %PDF−n.m and %%EOF comments described in
Section 3.4, “File Structure”) have no semantics. They are not necessarily
preserved by applications that edit PDF files (see implementation note 2 in
Appendix H). In particular, there is no PDF equivalent of the PostScript
document structuring conventions (DSC).

3.2 Objects

PDF supports eight basic types of objects:

• Boolean values

• Integer and real numbers

• Strings

• Names

• Arrays

• Dictionaries

• Streams

• The null object

Objects may be labeled so that they can be referred to by other objects. A labeled
object is called an indirect object.

SyntaxCHAPTER 3
52

The following sections describe each object type, as well as how to create and
refer to indirect objects.

3.2.1 Boolean Objects

PDF provides boolean objects identified by the keywords true and false. Boolean
objects can be used as the values of array elements and dictionary entries, and can
also occur in PostScript calculator functions as the results of boolean and
relational operators and as operands to the conditional operators if and ifelse (see
Section 3.9.4, “Type 4 (PostScript Calculator) Functions”).

3.2.2 Numeric Objects

PDF provides two types of numeric objects: integer and real. Integer objects rep-
resent mathematical integers within a certain interval centered at 0. Real objects
approximate mathematical real numbers, but with limited range and precision;
they are typically represented in fixed-point form rather than floating-point
form. The range and precision of numbers are limited by the internal
representations used in the computer on which the PDF consumer application is
running; Appendix C gives these limits for typical implementations.

An integer is written as one or more decimal digits optionally preceded by a sign:

123 43445 +17 −98 0

The value is interpreted as a signed decimal integer and is converted to an integer
object. If it exceeds the implementation limit for integers, it is converted to a real
object.

A real value is written as one or more decimal digits with an optional sign and a
leading, trailing, or embedded period (decimal point):

34.5 −3.62 +123.6 4. −.002 0.0

The value is interpreted as a real number and is converted to a real object. If it
exceeds the implementation limit for real numbers, an error occurs.

Note: PDF does not support the PostScript syntax for numbers with nondecimal
radices (such as 16#FFFE) or in exponential format (such as 6.02E23).

ObjectsSECTION 3.2
53

Throughout this book, the term number refers to an object whose type may be
either integer or real. Wherever a real number is expected, an integer may be used
instead and is automatically converted to an equivalent real value. For example, it
is not necessary to write the number 1.0 in real format; the integer 1 is sufficient.

3.2.3 String Objects

A string object consists of a series of bytes—unsigned integer values in the range 0
to 255. String objects are not integer objects, but are stored in a more compact
format. The length of a string may be subject to implementation limits; see
Appendix C.

String objects can be written in two ways:

• As a sequence of literal characters enclosed in parentheses (); see “Literal
Strings,” below”

• As hexadecimal data enclosed in angle brackets < >; see “Hexadecimal Strings”
on page 56

This section describes only the basic syntax for writing a string as a sequence of
bytes. Strings can be used for many purposes and can be formatted in a variety of
ways. When a string is used for a specific purpose (to represent a date, for ex-
ample), it is useful to have a standard format for that purpose (see Section 3.8.3,
“Dates”). Such formats are merely conventions for interpreting the contents of a
string and are not separate object types. The use of a particular format is
described with the definition of the string object that uses that format.

Section 3.8.1, “String Types” describes the encoding schemes used for the
contents of string objects.

Literal Strings

A literal string is written as an arbitrary number of characters enclosed in
parentheses. Any characters may appear in a string except unbalanced
parentheses and the backslash, which must be treated specially. Balanced pairs of
parentheses within a string require no special treatment.

SyntaxCHAPTER 3
54

The following are valid literal strings:

(This is a string)
(Strings may contain newlines
and such .)
(Strings may contain balanced parentheses () and
special characters (* ! & } ̂ % and so on) .)
(The following is an empty string .)
()
(It has zero (0) length .)

Within a literal string, the backslash (\) is used as an escape character for various
purposes, such as to include newline characters, nonprinting ASCII characters,
unbalanced parentheses, or the backslash character itself in the string. The
character immediately following the backslash determines its precise
interpretation (see Table 3.2). If the character following the backslash is not one
of those shown in the table, the backslash is ignored.

TABLE 3.2 Escape sequences in literal strings

If a string is too long to be conveniently placed on a single line, it may be split
across multiple lines by using the backslash character at the end of a line to

SEQUENCE MEANING

\n Line feed (LF)

\r Carriage return (CR)

\t Horizontal tab (HT)

\b Backspace (BS)

\f Form feed (FF)

\(Left parenthesis

\) Right parenthesis

\\ Backslash

\ddd Character code ddd (octal)

ObjectsSECTION 3.2
55

indicate that the string continues on the following line. The backslash and the
end-of-line marker following it are not considered part of the string. For example:

(These \
two strings \
are the same .)
(These two strings are the same .)

If an end-of-line marker appears within a literal string without a preceding
backslash, the result is equivalent to \n (regardless of whether the end-of-line
marker was a carriage return, a line feed, or both). For example:

(This string has an end−of−line at the end of it .
)
(So does this one .\n)

The \ddd escape sequence provides a way to represent characters outside the
printable ASCII character set. For example:

(This string contains \245two octal characters\307 .)

The number ddd may consist of one, two, or three octal digits, with high-order
overflow ignored. It is required that three octal digits be used, with leading zeros
as needed, if the next character of the string is also a digit. For example, the literal

(\0053)

denotes a string containing two characters, \005 (Control-E) followed by the digit
3, whereas both

(\053)

and

(\53)

denote strings containing the single character \053, a plus sign (+).

This notation provides a way to specify characters outside the 7-bit ASCII
character set by using ASCII characters only. However, any 8-bit value may
appear in a string. In particular, when a document is encrypted (see Section 3.5,
“Encryption”), all of its strings are encrypted and often contain arbitrary 8-bit

SyntaxCHAPTER 3
56

values. Note that the backslash character is still required as an escape to specify
unbalanced parentheses or the backslash character itself.

Hexadecimal Strings

Strings may also be written in hexadecimal form, which is useful for including
arbitrary binary data in a PDF file. A hexadecimal string is written as a sequence
of hexadecimal digits (0–9 and either A–F or a–f) enclosed within angle brackets
(< and >):

< 4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space
characters (such as space, tab, carriage return, line feed, and form feed) are
ignored.

If the final digit of a hexadecimal string is missing—that is, if there is an odd
number of digits—the final digit is assumed to be 0. For example:

< 901FA3 >

is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F,
and A3, but

< 901FA >

is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F,
and A0.

3.2.4 Name Objects

A name object is an atomic symbol uniquely defined by a sequence of characters.
Uniquely defined means that any two name objects made up of the same sequence
of characters are identically the same object. Atomic means that a name has no
internal structure; although it is defined by a sequence of characters, those
characters are not considered elements of the name.

A slash character (/) introduces a name. The slash is not part of the name but is a
prefix indicating that the following sequence of characters constitutes a name.
There can be no white-space characters between the slash and the first character

ObjectsSECTION 3.2
57

in the name. The name may include any regular characters, but not delimiter or
white-space characters (see Section 3.1, “Lexical Conventions”). Uppercase and
lowercase letters are considered distinct: /A and /a are different names. The
following examples are valid literal names:

/Name1
/ASomewhatLongerName
/A;Name_With−Various***Characters?
/1 . 2
/$$
/@pattern
/. notdef

Note: The token / (a slash followed by no regular characters) is a valid name.

Beginning with PDF 1.2, any character except null (character code 0) may be
included in a name by writing its 2-digit hexadecimal code, preceded by the
number sign character (#); see implementation notes 3 and 4 in Appendix H.
This syntax is required to represent any of the delimiter or white-space characters
or the number sign character itself; it is recommended but not required for
characters whose codes are outside the range 33 (!) to 126 (~). The examples
shown in Table 3.3 are valid literal names in PDF 1.2 and later.

TABLE 3.3 Examples of literal names using the # character

The length of a name is subject to an implementation limit; see Appendix C. The
limit applies to the number of characters in the name’s internal representation.
For example, the name /A#20B has four characters (/, A, space, B), not six.

As stated above, name objects are treated as atomic symbols within a PDF file.
Ordinarily, the bytes making up the name are never treated as text to be presented
to a human user or to an application external to a PDF consumer. However,

LITERAL NAME RESULT

/Adobe#20Green Adobe Green

/PANTONE#205757#20CV PANTONE 5757 CV

/paired#28#29parentheses paired()parentheses

/The_Key_of_F#23_Minor The_Key_of_F#_Minor

/A#42 AB

SyntaxCHAPTER 3
58

occasionally the need arises to treat a name object as text, such as one that
represents a font name (see the BaseFont entry in Table 5.8 on page 413) or a
structure type (see Section 10.6.2, “Structure Types”).

In such situations, it is recommended that the sequence of bytes (after expansion
of # sequences, if any) be interpreted according to UTF-8, a variable-length byte-
encoded representation of Unicode in which the printable ASCII characters have
the same representations as in ASCII. This enables a name object to represent text
in any natural language, subject to the implementation limit on the length of a
name. (See implementation note 5 in Appendix H.)

Note: PDF does not prescribe what UTF-8 sequence to choose for representing any
given piece of externally specified text as a name object. In some cases, multiple
UTF-8 sequences could represent the same logical text. Name objects defined by dif-
ferent sequences of bytes constitute distinct name objects in PDF, even though the
UTF-8 sequences might have identical external interpretations.

In PDF, name objects always begin with the slash character (/), unlike keywords
such as true, false, and obj. This book follows a typographic convention of
writing names without the leading slash when they appear in running text and
tables. For example, Type and FullScreen denote names that would actually be
written in a PDF file (and in code examples in this book) as /Type and /FullScreen.

3.2.5 Array Objects

An array object is a one-dimensional collection of objects arranged sequentially.
Unlike arrays in many other computer languages, PDF arrays may be hetero-
geneous; that is, an array’s elements may be any combination of numbers, strings,
dictionaries, or any other objects, including other arrays. The number of
elements in an array is subject to an implementation limit; see Appendix C.

An array is written as a sequence of objects enclosed in square brackets ([and]):

[549 3.14 false (Ralph) /SomeName]

PDF directly supports only one-dimensional arrays. Arrays of higher dimension
can be constructed by using arrays as elements of arrays, nested to any depth.

ObjectsSECTION 3.2
59

3.2.6 Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known as
the dictionary’s entries. The first element of each entry is the key and the second
element is the value. The key must be a name (unlike dictionary keys in
PostScript, which may be objects of any type). The value can be any kind of
object, including another dictionary. A dictionary entry whose value is null (see
Section 3.2.8, “Null Object”) is equivalent to an absent entry. (This differs from
PostScript, where null behaves like any other object as the value of a dictionary
entry.) The number of entries in a dictionary is subject to an implementation
limit; see Appendix C.

Note: No two entries in the same dictionary should have the same key. If a key does
appear more than once, its value is undefined.

A dictionary is written as a sequence of key-value pairs enclosed in double angle
brackets (<< … >>). For example:

<< /Type /Example
 /Subtype /DictionaryExample
 /Version 0 . 01
 /IntegerItem 12
 /StringItem (a string)
 /Subdictionary << /Item1 0 . 4

 /Item2 true
 /LastItem (not !)
 /VeryLastItem (OK)
 >>

>>

Note: Do not confuse the double angle brackets with single angle brackets (< and >),
which delimit a hexadecimal string (see “Hexadecimal Strings” on page 56).

Dictionary objects are the main building blocks of a PDF document. They are
commonly used to collect and tie together the attributes of a complex object, such
as a font or a page of the document, with each entry in the dictionary specifying
the name and value of an attribute. By convention, the Type entry of such a
dictionary identifies the type of object the dictionary describes. In some cases, a
Subtype entry (sometimes abbreviated S) is used to further identify a specialized
subcategory of the general type. The value of the Type or Subtype entry is always

SyntaxCHAPTER 3
60

a name. For example, in a font dictionary, the value of the Type entry is always
Font, whereas that of the Subtype entry may be Type1, TrueType, or one of
several other values.

The value of the Type entry can almost always be inferred from context. The
operand of the Tf operator, for example, must be a font object; therefore, the Type
entry in a font dictionary serves primarily as documentation and as information
for error checking. The Type entry is not required unless so stated in its
description; however, if the entry is present, it must have the correct value. In
addition, the value of the Type entry in any dictionary, even in private data, must
be either a name defined in this book or a registered name; see Appendix E for
details.

3.2.7 Stream Objects

A stream object, like a string object, is a sequence of bytes. However, a PDF
application can read a stream incrementally, while a string must be read in its
entirety. Furthermore, a stream can be of unlimited length, whereas a string is
subject to an implementation limit. For this reason, objects with potentially large
amounts of data, such as images and page descriptions, are represented as
streams.

Note: As with strings, this section describes only the syntax for writing a stream as a
sequence of bytes. What those bytes represent is determined by the context in which
the stream is referenced.

A stream consists of a dictionary followed by zero or more bytes bracketed
between the keywords stream and endstream:

dictionary
stream
… Zero or more bytes …
endstream

All streams must be indirect objects (see Section 3.2.9, “Indirect Objects”) and
the stream dictionary must be a direct object. The keyword stream that follows
the stream dictionary should be followed by an end-of-line marker consisting of
either a carriage return and a line feed or just a line feed, and not by a carriage

ObjectsSECTION 3.2
61

return alone. The sequence of bytes that make up a stream lie between the stream
and endstream keywords; the stream dictionary specifies the exact number of
bytes. It is recommended that there be an end-of-line marker after the data and
before endstream; this marker is not included in the stream length.

Alternatively, beginning with PDF 1.2, the bytes may be contained in an external
file, in which case the stream dictionary specifies the file, and any bytes between
stream and endstream are ignored. (See implementation note 6 in Appendix H.)

Note: Without the restriction against following the keyword stream by a carriage re-
turn alone, it would be impossible to differentiate a stream that uses carriage return
as its end-of-line marker and has a line feed as its first byte of data from one that
uses a carriage return–line feed sequence to denote end-of-line.

Table 3.4 lists the entries common to all stream dictionaries; certain types of
streams may have additional dictionary entries, as indicated where those streams
are described. The optional entries regarding filters for the stream indicate
whether and how the data in the stream must be transformed (decoded) before it
is used. Filters are described further in Section 3.3, “Filters.”

Stream Extent

Every stream dictionary has a Length entry that indicates how many bytes of the
PDF file are used for the stream’s data. (If the stream has a filter, Length is the
number of bytes of encoded data.) In addition, most filters are defined so that the
data is self-limiting; that is, they use an encoding scheme in which an explicit
end-of-data (EOD) marker delimits the extent of the data. Finally, streams are
used to represent many objects from whose attributes a length can be inferred. All
of these constraints must be consistent.

For example, an image with 10 rows and 20 columns, using a single color
component and 8 bits per component, requires exactly 200 bytes of image data. If
the stream uses a filter, there must be enough bytes of encoded data in the PDF
file to produce those 200 bytes. An error occurs if Length is too small, if an
explicit EOD marker occurs too soon, or if the decoded data does not contain 200
bytes.

It is also an error if the stream contains too much data, with the exception that
there may be an extra end-of-line marker in the PDF file before the keyword
endstream.

SyntaxCHAPTER 3
62

TABLE 3.4 Entries common to all stream dictionaries

KEY TYPE VALUE

Length integer (Required) The number of bytes from the beginning of the line fol-
lowing the keyword stream to the last byte just before the keyword
endstream. (There may be an additional EOL marker, preceding
endstream, that is not included in the count and is not logically part
of the stream data.) See “Stream Extent,” above, for further discus-
sion.

Filter name or array (Optional) The name of a filter to be applied in processing the stream
data found between the keywords stream and endstream, or an array
of such names. Multiple filters should be specified in the order in
which they are to be applied.

DecodeParms dictionary or array (Optional) A parameter dictionary or an array of such dictionaries,
used by the filters specified by Filter. If there is only one filter and that
filter has parameters, DecodeParms must be set to the filter’s parame-
ter dictionary unless all the filter’s parameters have their default
values, in which case the DecodeParms entry may be omitted. If there
are multiple filters and any of the filters has parameters set to non-
default values, DecodeParms must be an array with one entry for
each filter: either the parameter dictionary for that filter, or the null
object if that filter has no parameters (or if all of its parameters have
their default values). If none of the filters have parameters, or if all
their parameters have default values, the DecodeParms entry may be
omitted. (See implementation note 7 in Appendix H.)

F file specification (Optional; PDF 1.2) The file containing the stream data. If this entry
is present, the bytes between stream and endstream are ignored, the
filters are specified by FFilter rather than Filter, and the filter parame-
ters are specified by FDecodeParms rather than DecodeParms. How-
ever, the Length entry should still specify the number of those bytes.
(Usually, there are no bytes and Length is 0.) (See implementation
note 46 in Appendix H.)

FFilter name or array (Optional; PDF 1.2) The name of a filter to be applied in processing
the data found in the stream’s external file, or an array of such names.
The same rules apply as for Filter.

FDecodeParms dictionary or array (Optional; PDF 1.2) A parameter dictionary, or an array of such dic-
tionaries, used by the filters specified by FFilter. The same rules apply
as for DecodeParms.

ObjectsSECTION 3.2
63

3.2.8 Null Object

The null object has a type and value that are unequal to those of any other object.
There is only one object of type null, denoted by the keyword null. An indirect
object reference (see Section 3.2.9, “Indirect Objects”) to a nonexistent object is
treated the same as a null object. Specifying the null object as the value of a
dictionary entry (Section 3.2.6, “Dictionary Objects”) is equivalent to omitting
the entry entirely.

3.2.9 Indirect Objects

Any object in a PDF file may be labeled as an indirect object. This gives the object
a unique object identifier by which other objects can refer to it (for example, as an
element of an array or as the value of a dictionary entry). The object identifier
consists of two parts:

• A positive integer object number. Indirect objects are often numbered sequen-
tially within a PDF file, but this is not required; object numbers may be
assigned in any arbitrary order.

• A non-negative integer generation number. In a newly created file, all indirect
objects have generation numbers of 0. Nonzero generation numbers may be in-
troduced when the file is later updated; see Sections 3.4.3, “Cross-Reference
Table,” and 3.4.5, “Incremental Updates.”

Together, the combination of an object number and a generation number
uniquely identifies an indirect object. The object retains the same object number
and generation number throughout its existence, even if its value is modified.

DL integer (Optional; PDF 1.5) A non-negative integer representing the number
of bytes in the decoded (defiltered) stream. It can be used to deter-
mine, for example, whether enough disk space is available to write a
stream to a file.

This value should be considered a hint only; for some stream filters, it
may not be possible to determine this value precisely.

KEY TYPE VALUE

SyntaxCHAPTER 3
64

The definition of an indirect object in a PDF file consists of its object number and
generation number, followed by the value of the object bracketed between the
keywords obj and endobj. For example, the definition

12 0 obj
(Brillig)

endobj

defines an indirect string object with an object number of 12, a generation
number of 0, and the value Brillig.

The object can be referred to from elsewhere in the file by an indirect reference
consisting of the object number, the generation number, and the keyword R:

12 0 R

Beginning with PDF 1.5, indirect objects may reside in object streams (see
Section 3.4.6, “Object Streams”). They are referred to in the same way; however,
their definition does not include the keywords obj and endobj.

An indirect reference to an undefined object is not an error; it is simply treated as
a reference to the null object. For example, if a file contains the indirect reference
17 0 R but does not contain the corresponding definition

17 0 obj
…

endobj

then the indirect reference is considered to refer to the null object.

Note: In the data structures that make up a PDF document, certain values are re-
quired to be specified as indirect object references. Except where this is explicitly
called out, any object (other than a stream) may be specified either directly or as an
indirect object reference; the semantics are entirely equivalent. Note in particular
that content streams, which define the visible contents of the document, may not
contain indirect references (see Section 3.7.1, “Content Streams”). Also, see imple-
mentation note 8 in Appendix H.

Example 3.1 shows the use of an indirect object to specify the length of a stream.
The value of the stream’s Length entry is an integer object that follows the stream

FiltersSECTION 3.3
65

in the file. This allows applications that generate PDF in a single pass to defer
specifying the stream’s length until after its contents have been generated.

Example 3.1

7 0 obj
<< /Length 8 0 R >> % An indirect reference to object 8

stream
BT

/F1 12 Tf
72 712 Td
(A stream with an indirect length) Tj

ET
endstream
endobj

8 0 obj
77 % The length of the preceding stream

endobj

3.3 Filters

Stream filters are introduced in Section 3.2.7, “Stream Objects.” A filter is an
optional part of the specification of a stream, indicating how the data in the
stream must be decoded before it is used. For example, if a stream has an
ASCIIHexDecode filter, an application reading the data in that stream will
transform the ASCII hexadecimal-encoded data in the stream into binary data.

An application program that produces a PDF file can encode certain information
(for example, data for sampled images) to compress it or to convert it to a port-
able ASCII representation. Then an application that reads (consumes) the PDF
file can invoke the corresponding decoding filter to convert the information back
to its original form.

The filter or filters for a stream are specified by the Filter entry in the stream’s
dictionary (or the FFilter entry if the stream is external). Filters can be cascaded
to form a pipeline that passes the stream through two or more decoding
transformations in sequence. For example, data encoded using LZW and ASCII
base-85 encoding (in that order) can be decoded using the following entry in the
stream dictionary:

/Filter [/ASCII85Decode /LZWDecode]

SyntaxCHAPTER 3
66

Some filters may take parameters to control how they operate. These optional
parameters are specified by the DecodeParms entry in the stream’s dictionary (or
the FDecodeParms entry if the stream is external).

PDF supports a standard set of filters that fall into two main categories:

• ASCII filters enable decoding of arbitrary 8-bit binary data that has been en-
coded as ASCII text. (See Section 3.1, “Lexical Conventions,” for an explanation
of why this type of encoding might be useful.) Note that ASCII filters serve no
useful purpose in a PDF file that is encrypted; see Section 3.5, “Encryption.”

• Decompression filters enable decoding of data that has been compressed. The
compressed data is always in 8-bit binary format, even if the original data is
ASCII text. (Compression is particularly valuable for large sampled images,
since it reduces storage requirements and transmission time. Some types of
compression are lossy, meaning that some data is lost during the encoding, re-
sulting in a loss of quality when the data is decompressed. Compression in
which no loss of data occurs is called lossless.)

The standard filters are summarized in Table 3.5, which also indicates whether
they accept any optional parameters. The following sections describe these filters
and their parameters (if any) in greater detail, including specifications of
encoding algorithms for some filters. (See also implementation notes 9 and 10 in
Appendix H.)

Example 3.2 shows a stream, containing the marking instructions for a page, that
was compressed using the LZW compression method and then encoded in ASCII
base-85 representation. Example 3.3 shows the same stream without any
encoding. (The stream’s contents are explained in Section 3.7.1, “Content
Streams,” and the operators used there are further described in Chapter 5.)

FiltersSECTION 3.3
67

TABLE 3.5 Standard filters

FILTER NAME PARAMETERS? DESCRIPTION

ASCIIHexDecode no Decodes data encoded in an ASCII hexadecimal representation,
reproducing the original binary data.

ASCII85Decode no Decodes data encoded in an ASCII base-85 representation, repro-
ducing the original binary data.

LZWDecode yes Decompresses data encoded using the LZW (Lempel-Ziv-Welch)
adaptive compression method, reproducing the original text or bin-
ary data.

FlateDecode yes (PDF 1.2) Decompresses data encoded using the zlib/deflate com-
pression method, reproducing the original text or binary data.

RunLengthDecode no Decompresses data encoded using a byte-oriented run-length encod-
ing algorithm, reproducing the original text or binary data (typically
monochrome image data, or any data that contains frequent long
runs of a single byte value).

CCITTFaxDecode yes Decompresses data encoded using the CCITT facsimile standard,
reproducing the original data (typically monochrome image data at 1
bit per pixel).

JBIG2Decode yes (PDF 1.4) Decompresses data encoded using the JBIG2 standard,
reproducing the original monochrome (1 bit per pixel) image data
(or an approximation of that data).

DCTDecode yes Decompresses data encoded using a DCT (discrete cosine transform)
technique based on the JPEG standard, reproducing image sample
data that approximates the original data.

JPXDecode no (PDF 1.5) Decompresses data encoded using the wavelet-based
JPEG2000 standard, reproducing the original image data.

Crypt yes (PDF 1.5) Decrypts data encrypted by a security handler, reproduc-
ing the original data as it was before encryption.

SyntaxCHAPTER 3
68

Example 3.2

1 0 obj
<< /Length 534
 /Filter [/ASCII85Decode /LZWDecode]
>>

stream
J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@
RM]WM;jjH6Gnc75idkL5]+cPZKEBPWdR>FF(kj1_R%W_d
&/jS!;iuad7h?[L−F$+]]0A3Ck*$I0KZ?;<)CJtqi65Xb
Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:lUpR;6oN[C2E4
ZNr8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]Oq)^kJZ!C2H1
'TO]Rl?Q:&'<5&iP!$Rq;BXRecDN[IJB`,)o8XJOSJ9sD
S]hQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6Bm%IY!Kb1+
":aAa'S`ViJglLb8<W9k6Yl\\0McJQkDeLWdPN?9A'jX*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?M$0QP)lKn06l1apKDC@\qJ4B!!(5m+j.7F790m(Vj8
8l8Q:_CZ(Gm1%X\N1&u!FKHMB~>
endstream
endobj

Example 3.3

1 0 obj
<< /Length 568 >>

stream
2 J
BT
/F1 12 Tf
0 Tc
0 Tw
72.5 712 TD
[(Unencoded streams can be read easily) 65 (,)] TJ
0 −14 TD
[(b) 20 (ut generally tak) 10 (e more space than \311)] TJ
T* (encoded streams .) Tj
0 −28 TD
[(Se) 25 (v) 15 (eral encoding methods are a) 20 (v) 25 (ailable in PDF) 80 (.)] TJ
0 −14 TD
(Some are used for compression and others simply) Tj
T* [(to represent binary data in an) 55 (ASCII format .)] TJ
T* (Some of the compression encoding methods are \
suitable) Tj

FiltersSECTION 3.3
69

T* (for both data and images , while others are \
suitable only) Tj
T* (for continuous−tone images .) Tj
ET
endstream
endobj

3.3.1 ASCIIHexDecode Filter

The ASCIIHexDecode filter decodes data that has been encoded in ASCII
hexadecimal form. ASCII hexadecimal encoding and ASCII base-85 encoding
(described in the next section) convert binary data, such as image data, to 7-bit
ASCII characters. In general, ASCII base-85 encoding is preferred to ASCII
hexadecimal encoding because it is more compact: it expands the data by a factor
of 4 : 5, compared with 1 : 2 for ASCII hexadecimal encoding.

The ASCIIHexDecode filter produces one byte of binary data for each pair of
ASCII hexadecimal digits (0–9 and A–F or a–f). All white-space characters (see
Section 3.1, “Lexical Conventions”) are ignored. A right angle bracket character
(>) indicates EOD. Any other characters cause an error. If the filter encounters
the EOD marker after reading an odd number of hexadecimal digits, it behaves as
if a 0 followed the last digit.

3.3.2 ASCII85Decode Filter

The ASCII85Decode filter decodes data that has been encoded in ASCII base-85
encoding and produces binary data. The following paragraphs describe the
process for encoding binary data in ASCII base-85; the ASCII85Decode filter
reverses this process.

The ASCII base-85 encoding uses the characters ! through u and the character z,
with the 2-character sequence ~> as its EOD marker. The ASCII85Decode filter
ignores all white-space characters (see Section 3.1, “Lexical Conventions”). Any
other characters, and any character sequences that represent impossible
combinations in the ASCII base-85 encoding, cause an error.

SyntaxCHAPTER 3
70

Specifically, ASCII base-85 encoding produces 5 ASCII characters for every 4
bytes of binary data. Each group of 4 binary input bytes, (b1 b2 b3 b4), is converted
to a group of 5 output bytes, (c1 c2 c3 c4 c5), using the relation

In other words, 4 bytes of binary data are interpreted as a base-256 number and
then converted to a base-85 number. The five bytes of the base-85 number are
then converted to ASCII characters by adding 33 (the ASCII code for the
character !) to each. The resulting encoded data contains only printable ASCII
characters with codes in the range 33 (!) to 117 (u). As a special case, if all five
bytes are 0, they are represented by the character with code 122 (z) instead of by
five exclamation points (! ! ! ! !).

If the length of the binary data to be encoded is not a multiple of 4 bytes, the last,
partial group of 4 is used to produce a last, partial group of 5 output characters.
Given n (1, 2, or 3) bytes of binary data, the encoder first appends 4 − n zero bytes
to make a complete group of 4. It then encodes this group in the usual way, but
without applying the special z case. Finally, it writes only the first n + 1 characters
of the resulting group of 5. These characters are immediately followed by the ~>
EOD marker.

The following conditions (which never occur in a correctly encoded byte
sequence) cause errors during decoding:

• The value represented by a group of 5 characters is greater than 232 − 1.

• A z character occurs in the middle of a group.

• A final partial group contains only one character.

b1 2563×() b2 2562×() b3 2561×() b4+ + + =

c1 854×() c2 853×() c3 852×() c4 851×() c5+ + + +

FiltersSECTION 3.3
71

3.3.3 LZWDecode and FlateDecode Filters

The LZWDecode and (in PDF 1.2) FlateDecode filters have much in common and
are discussed together in this section. They decode data that has been encoded
using the LZW or Flate data compression method, respectively:

• LZW (Lempel-Ziv-Welch) is a variable-length, adaptive compression method
that has been adopted as one of the standard compression methods in the Tag
Image File Format (TIFF) standard. Details on LZW encoding follow in the
next section.

• The Flate method is based on the public-domain zlib/deflate compression
method, which is a variable-length Lempel-Ziv adaptive compression method
cascaded with adaptive Huffman coding. It is fully defined in Internet RFCs
1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE Com-
pressed Data Format Specification (see the Bibliography).

Both of these methods compress either binary data or ASCII text but (like all
compression methods) always produce binary data, even if the original data was
text.

The LZW and Flate compression methods can discover and exploit many
patterns in the input data, whether the data is text or images. As described later,
both filters support optional transformation by a predictor function, which
improves the compression of sampled image data. Because of its cascaded
adaptive Huffman coding, Flate-encoded output is usually much more compact
than LZW-encoded output for the same input. Flate and LZW decoding speeds
are comparable, but Flate encoding is considerably slower than LZW encoding.

Usually, both Flate and LZW encodings compress their input substantially.
However, in the worst case (in which no pair of adjacent characters appears
twice), Flate encoding expands its input by no more than 11 bytes or a factor of
1.003 (whichever is larger), plus the effects of algorithm tags added by PNG
predictors. For LZW encoding, the best case (all zeros) provides a compression
approaching 1365 : 1 for long files, but the worst-case expansion is at least a factor
of 1.125, which can increase to nearly 1.5 in some implementations, plus the
effects of PNG tags as with Flate encoding.

SyntaxCHAPTER 3
72

Details of LZW Encoding

Data encoded using the LZW compression method consists of a sequence of
codes that are 9 to 12 bits long. Each code represents a single character of input
data (0–255), a clear-table marker (256), an EOD marker (257), or a table entry
representing a multiple-character sequence that has been encountered previously
in the input (258 or greater).

Initially, the code length is 9 bits and the LZW table contains only entries for the
258 fixed codes. As encoding proceeds, entries are appended to the table, asso-
ciating new codes with longer and longer sequences of input characters. The
encoder and the decoder maintain identical copies of this table.

Whenever both the encoder and the decoder independently (but synchronously)
realize that the current code length is no longer sufficient to represent the
number of entries in the table, they increase the number of bits per code by 1. The
first output code that is 10 bits long is the one following the creation of table entry
511, and similarly for 11 (1023) and 12 (2047) bits. Codes are never longer than
12 bits; therefore, entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each output
code:

1. Accumulate a sequence of one or more input characters matching a sequence
already present in the table. For maximum compression, the encoder looks for
the longest such sequence.

2. Emit the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the sequence
found in step 1 followed by the next input character.

For example, suppose the input consists of the following sequence of ASCII
character codes:

45 45 45 45 45 65 45 45 45 66

Starting with an empty table, the encoder proceeds as shown in Table 3.6.

FiltersSECTION 3.3
73

TABLE 3.6 Typical LZW encoding sequence

Codes are packed into a continuous bit stream, high-order bit first. This stream is
then divided into 8-bit bytes, high-order bit first. Thus, codes can straddle byte
boundaries arbitrarily. After the EOD marker (code value 257), any leftover bits
in the final byte are set to 0.

In the example above, all the output codes are 9 bits long; they would pack into
bytes as follows (represented in hexadecimal):

80 0B 60 50 22 0C 0C 85 01

To adapt to changing input sequences, the encoder may at any point issue a clear-
table code, which causes both the encoder and the decoder to restart with initial
tables and a 9-bit code length. By convention, the encoder begins by issuing a
clear-table code. It must issue a clear-table code when the table becomes full; it
may do so sooner.

LZWDecode and FlateDecode Parameters

The LZWDecode and FlateDecode filters accept optional parameters to control
the decoding process. Most of these parameters are related to techniques that
reduce the size of compressed sampled images (rectangular arrays of color values,
described in Section 4.8, “Images”). For example, image data typically changes
very little from sample to sample. Therefore, subtracting the values of adjacent

INPUT
SEQUENCE

OUTPUT
CODE

CODE ADDED
TO TABLE

SEQUENCE REPRESENTED
BY NEW CODE

– 256 (clear-table) – –

45 45 258 45 45

45 45 258 259 45 45 45

45 45 258 260 45 45 65

65 65 261 65 45

45 45 45 259 262 45 45 45 66

66 66 – –

– 257 (EOD) – –

SyntaxCHAPTER 3
74

samples (a process called differencing), and encoding the differences rather than
the raw sample values, can reduce the size of the output data. Furthermore, when
the image data contains several color components (red-green-blue or cyan-
magenta-yellow-black) per sample, taking the difference between the values of
corresponding components in adjacent samples, rather than between different
color components in the same sample, often reduces the output data size.

Table 3.7 shows the parameters that can optionally be specified for LZWDecode
and FlateDecode filters. Except where otherwise noted, all values supplied to the
decoding filter for any optional parameters must match those used when the data
was encoded.

TABLE 3.7 Optional parameters for LZWDecode and FlateDecode filters

KEY TYPE VALUE

Predictor integer A code that selects the predictor algorithm, if any. If the value of this entry
is 1, the filter assumes that the normal algorithm was used to encode the data,
without prediction. If the value is greater than 1, the filter assumes that the
data was differenced before being encoded, and Predictor selects the predic-
tor algorithm. For more information regarding Predictor values greater
than 1, see “LZW and Flate Predictor Functions,” below. Default value: 1.

Colors integer (Used only if Predictor is greater than 1) The number of interleaved color com-
ponents per sample. Valid values are 1 to 4 in PDF 1.2 or earlier and 1 or
greater in PDF 1.3 or later. Default value: 1.

BitsPerComponent integer (Used only if Predictor is greater than 1) The number of bits used to represent
each color component in a sample. Valid values are 1, 2, 4, 8, and (in PDF 1.5)
16. Default value: 8.

Columns integer (Used only if Predictor is greater than 1) The number of samples in each row.
Default value: 1.

EarlyChange integer (LZWDecode only) An indication of when to increase the code length. If the
value of this entry is 0, code length increases are postponed as long as pos-
sible. If the value is 1, code length increases occur one code early. This pa-
rameter is included because LZW sample code distributed by some vendors
increases the code length one code earlier than necessary. Default value: 1.

FiltersSECTION 3.3
75

LZW and Flate Predictor Functions

LZW and Flate encoding compress more compactly if their input data is highly
predictable. One way of increasing the predictability of many continuous-tone
sampled images is to replace each sample with the difference between that sample
and a predictor function applied to earlier neighboring samples. If the predictor
function works well, the postprediction data clusters toward 0.

Two groups of predictor functions are supported. The first, the TIFF group,
consists of the single function that is Predictor 2 in the TIFF standard. (In the
TIFF standard, Predictor 2 applies only to LZW compression, but here it applies
to Flate compression as well.) TIFF Predictor 2 predicts that each color
component of a sample is the same as the corresponding color component of the
sample immediately to its left.

The second supported group of predictor functions, the PNG group, consists of
the filters of the World Wide Web Consortium’s Portable Network Graphics
recommendation, documented in Internet RFC 2083, PNG (Portable Network
Graphics) Specification (see the Bibliography). The term predictors is used here
instead of filters to avoid confusion. There are five basic PNG predictor
algorithms (and a sixth that chooses the optimum predictor function separately
for each row):

None No prediction
Sub Predicts the same as the sample to the left
Up Predicts the same as the sample above
Average Predicts the average of the sample to the left and the sample above
Paeth A nonlinear function of the sample above, the sample to the left,

and the sample to the upper left

The predictor algorithm to be used, if any, is indicated by the Predictor filter
parameter (see Table 3.7), which can have any of the values listed in Table 3.8.

For LZWDecode and FlateDecode, a Predictor value greater than or equal to 10
merely indicates that a PNG predictor is in use; the specific predictor function
used is explicitly encoded in the incoming data. The value of Predictor supplied
by the decoding filter need not match the value used when the data was encoded
if they are both greater than or equal to 10.

SyntaxCHAPTER 3
76

TABLE 3.8 Predictor values

The two groups of predictor functions have some commonalities. Both make the
following assumptions:

• Data is presented in order, from the top row to the bottom row and, within a
row, from left to right.

• A row occupies a whole number of bytes, rounded up if necessary.

• Samples and their components are packed into bytes from high-order to low-
order bits.

• All color components of samples outside the image (which are necessary for
predictions near the boundaries) are 0.

The predictor function groups also differ in significant ways:

• The postprediction data for each PNG-predicted row begins with an explicit
algorithm tag; therefore, different rows can be predicted with different algo-
rithms to improve compression. TIFF Predictor 2 has no such identifier; the
same algorithm applies to all rows.

• The TIFF function group predicts each color component from the prior in-
stance of that component, taking into account the number of bits per com-
ponent and components per sample. In contrast, the PNG function group
predicts each byte of data as a function of the corresponding byte of one or

VALUE MEANING

1 No prediction (the default value)

2 TIFF Predictor 2

10 PNG prediction (on encoding, PNG None on all rows)

11 PNG prediction (on encoding, PNG Sub on all rows)

12 PNG prediction (on encoding, PNG Up on all rows)

13 PNG prediction (on encoding, PNG Average on all rows)

14 PNG prediction (on encoding, PNG Paeth on all rows)

15 PNG prediction (on encoding, PNG optimum)

FiltersSECTION 3.3
77

more previous image samples, regardless of whether there are multiple color
components in a byte or whether a single color component spans multiple
bytes. This can yield significantly better speed at the cost of somewhat worse
compression.

3.3.4 RunLengthDecode Filter

The RunLengthDecode filter decodes data that has been encoded in a simple
byte-oriented format based on run length. The encoded data is a sequence of
runs, where each run consists of a length byte followed by 1 to 128 bytes of data. If
the length byte is in the range 0 to 127, the following length + 1 (1 to 128) bytes
are copied literally during decompression. If length is in the range 129 to 255, the
following single byte is to be copied 257 − length (2 to 128) times during
decompression. A length value of 128 denotes EOD.

The compression achieved by run-length encoding depends on the input data. In
the best case (all zeros), a compression of approximately 64 : 1 is achieved for long
files. The worst case (the hexadecimal sequence 00 alternating with FF) results in
an expansion of 127 : 128.

3.3.5 CCITTFaxDecode Filter

The CCITTFaxDecode filter decodes image data that has been encoded using
either Group 3 or Group 4 CCITT facsimile (fax) encoding. CCITT encoding is
designed to achieve efficient compression of monochrome (1 bit per pixel) image
data at relatively low resolutions, and so is useful only for bitmap image data, not
for color images, grayscale images, or general data.

The CCITT encoding standard is defined by the International
Telecommunications Union (ITU), formerly known as the Comité Consultatif
International Téléphonique et Télégraphique (International Coordinating
Committee for Telephony and Telegraphy). The encoding algorithm is not
described in detail in this book but can be found in ITU Recommendations T.4
and T.6 (see the Bibliography). For historical reasons, we refer to these
documents as the CCITT standard.

SyntaxCHAPTER 3
78

CCITT encoding is bit-oriented, not byte-oriented. Therefore, in principle,
encoded or decoded data might not end at a byte boundary. This problem is dealt
with in the following ways:

• Unencoded data is treated as complete scan lines, with unused bits inserted at
the end of each scan line to fill out the last byte. This approach is compatible
with the PDF convention for sampled image data.

• Encoded data is ordinarily treated as a continuous, unbroken bit stream. The
EncodedByteAlign parameter (described in Table 3.9) can be used to cause
each encoded scan line to be filled to a byte boundary. Although this is not pre-
scribed by the CCITT standard and fax machines never do this, some software
packages find it convenient to encode data this way.

• When a filter reaches EOD, it always skips to the next byte boundary following
the encoded data.

If the CCITTFaxDecode filter encounters improperly encoded source data, an
error occurs. The filter does not perform any error correction or
resynchronization, except as noted for the DamagedRowsBeforeError parameter
in Table 3.9.

Table 3.9 lists the optional parameters that can be used to control the decoding.
Except where noted otherwise, all values supplied to the decoding filter by any of
these parameters must match those used when the data was encoded.

TABLE 3.9 Optional parameters for the CCITTFaxDecode filter

KEY TYPE VALUE

K integer A code identifying the encoding scheme used:

< 0 Pure two-dimensional encoding (Group 4)

0 Pure one-dimensional encoding (Group 3, 1-D)

> 0 Mixed one- and two-dimensional encoding (Group 3, 2-D),
in which a line encoded one-dimensionally can be followed
by at most K − 1 lines encoded two-dimensionally

The filter distinguishes among negative, zero, and positive values of
K to determine how to interpret the encoded data; however, it does
not distinguish between different positive K values. Default value: 0.

FiltersSECTION 3.3
79

EndOfLine boolean A flag indicating whether end-of-line bit patterns are required to be
present in the encoding. The CCITTFaxDecode filter always accepts
end-of-line bit patterns, but requires them only if EndOfLine is true.
Default value: false.

EncodedByteAlign boolean A flag indicating whether the filter expects extra 0 bits before each
encoded line so that the line begins on a byte boundary. If true, the
filter skips over encoded bits to begin decoding each line at a byte
boundary. If false, the filter does not expect extra bits in the encod-
ed representation. Default value: false.

Columns integer The width of the image in pixels. If the value is not a multiple of 8,
the filter adjusts the width of the unencoded image to the next mul-
tiple of 8 so that each line starts on a byte boundary. Default value:
1728.

Rows integer The height of the image in scan lines. If the value is 0 or absent, the
image’s height is not predetermined, and the encoded data must be
terminated by an end-of-block bit pattern or by the end of the fil-
ter’s data. Default value: 0.

EndOfBlock boolean A flag indicating whether the filter expects the encoded data to be
terminated by an end-of-block pattern, overriding the Rows param-
eter. If false, the filter stops when it has decoded the number of lines
indicated by Rows or when its data has been exhausted, whichever
occurs first. The end-of-block pattern is the CCITT end-of-facsim-
ile-block (EOFB) or return-to-control (RTC) appropriate for the K
parameter. Default value: true.

BlackIs1 boolean A flag indicating whether 1 bits are to be interpreted as black pixels
and 0 bits as white pixels, the reverse of the normal PDF convention
for image data. Default value: false.

DamagedRowsBeforeError integer The number of damaged rows of data to be tolerated before an error
occurs. This entry applies only if EndOfLine is true and K is non-
negative. Tolerating a damaged row means locating its end in the
encoded data by searching for an EndOfLine pattern and then sub-
stituting decoded data from the previous row if the previous row
was not damaged, or a white scan line if the previous row was also
damaged. Default value: 0.

KEY TYPE VALUE

SyntaxCHAPTER 3
80

The compression achieved using CCITT encoding depends on the data, as well as
on the value of various optional parameters. For Group 3 one-dimensional
encoding, in the best case (all zeros), each scan line compresses to 4 bytes, and the
compression factor depends on the length of a scan line. If the scan line is 300
bytes long, a compression ratio of approximately 75 : 1 is achieved. The worst case,
an image of alternating ones and zeros, produces an expansion of 2 : 9.

3.3.6 JBIG2Decode Filter

The JBIG2Decode filter (PDF 1.4) decodes monochrome (1 bit per pixel) image
data that has been encoded using JBIG2 encoding. JBIG stands for the Joint Bi-
Level Image Experts Group, a group within the International Organization for
Standardization (ISO) that developed the format. JBIG2 is the second version of a
standard originally released as JBIG1.

JBIG2 encoding, which provides for both lossy and lossless compression, is useful
only for monochrome images, not for color images, grayscale images, or general
data. The algorithms used by the encoder, and the details of the format, are not
described here. A working draft of the JBIG2 specification can be found through
the Web site for the JBIG and JPEG (Joint Photographic Experts Group)
committees at < http://www.jpeg.org >.

In general, JBIG2 provides considerably better compression than the existing
CCITT standard (discussed in Section 3.3.5). The compression it achieves
depends strongly on the nature of the image. Images of pages containing text in
any language compress particularly well, with typical compression ratios of 20:1
to 50:1 for a page full of text. The JBIG2 encoder builds a table of unique symbol
bitmaps found in the image, and other symbols found later in the image are
matched against the table. Matching symbols are replaced by an index into the
table, and symbols that fail to match are added to the table. The table itself is
compressed using other means. This method results in high compression ratios
for documents in which the same symbol is repeated often, as is typical for
images created by scanning text pages. It also results in high compression of white
space in the image, which does not need to be encoded because it contains no
symbols.

While best compression is achieved for images of text, the JBIG2 standard also
includes algorithms for compressing regions of an image that contain dithered
halftone images (for example, photographs).

http://www.jpeg.org

FiltersSECTION 3.3
81

The JBIG2 compression method can also be used for encoding multiple images
into a single JBIG2 bit stream. Typically, these images are scanned pages of a
multiple-page document. Since a single table of symbol bitmaps is used to match
symbols across multiple pages, this type of encoding can result in higher
compression ratios than if each of the pages had been individually encoded using
JBIG2.

In general, an image may be specified in PDF as either an image XObject or an
inline image (as described in Section 4.8, “Images”); however, the JBIG2Decode
filter can be applied only to image XObjects.

This filter addresses both single-page and multiple-page JBIG2 bit streams by
representing each JBIG2 page as a PDF image, as follows:

• The filter uses the embedded file organization of JBIG2. (The details of this and
the other types of file organization are provided in an annex of the ISO specifi-
cation.) The optional 2-byte combination (marker) mentioned in the specifica-
tion is not used in PDF. JBIG2 bit streams in random-access organization
should be converted to the embedded file organization. Bit streams in sequen-
tial organization need no reorganization, except for the mappings described
below.

• The JBIG2 file header, end-of-page segments, and end-of-file segment are not
used in PDF. These should be removed before the PDF objects described below
are created.

• The image XObject to which the JBIG2Decode filter is applied contains all seg-
ments that are associated with the JBIG2 page represented by that image; that
is, all segments whose segment page association field contains the page number
of the JBIG2 page represented by the image. In the image XObject, however, the
segment’s page number should always be 1; that is, when each such segment is
written to the XObject, the value of its segment page association field should be
set to 1.

• If the bit stream contains global segments (segments whose segment page asso-
ciation field contains 0), these segments must be placed in a separate PDF
stream, and the filter parameter listed in Table 3.10 should refer to that stream.
The stream can be shared by multiple image XObjects whose JBIG2 encodings
use the same global segments.

SyntaxCHAPTER 3
82

TABLE 3.10 Optional parameter for the JBIG2Decode filter

Example 3.4 shows an image that was compressed using the JBIG2 compression
method and then encoded in ASCII hexadecimal representation. Since the JBIG2
bit stream contains global segments, these segments are placed in a separate PDF
stream, as indicated by the JBIG2Globals filter parameter.

Example 3.4

5 0 obj
<< /Type /XObject

 /Subtype /Image
 /Width 52
 /Height 66
 /ColorSpace /DeviceGray
 /BitsPerComponent 1
 /Length 224
 /Filter [/ASCIIHexDecode /JBIG2Decode]
 /DecodeParms [null << /JBIG2Globals 6 0 R >>]

>>
stream
000000013000010000001300000034000000420000000000
00000040000000000002062000010000001e000000340000
004200000000000000000200100000000231db51ce51ffac >
endstream
endobj

6 0 obj
<< /Length 126

 /Filter /ASCIIHexDecode
>>

stream
0000000000010000000032000003fffdff02fefefe000000
01000000012ae225aea9a5a538b4d9999c5c8e56ef0f872
7f2b53d4e37ef795cc5506dffac >
endstream
endobj

KEY TYPE VALUE

JBIG2Globals stream A stream containing the JBIG2 global (page 0) segments. Global segments
must be placed in this stream even if only a single JBIG2 image XObject re-
fers to it.

FiltersSECTION 3.3
83

The JBIG2 bit stream for this example is as follows:

97 4A 42 32 0D 0A 1A 0A 01 00 00 00 01 00 00 00 00 00 01 00 00 00 00 32
00 00 03 FF FD FF 02 FE FE FE 00 00 00 01 00 00 00 01 2A E2 25 AE A9 A5
A5 38 B4 D9 99 9C 5C 8E 56 EF 0F 87 27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D
FF AC 00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00
00 00 00 00 00 40 00 00 00 00 00 02 06 20 00 01 00 00 00 1E 00 00 00 34
00 00 00 42 00 00 00 00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51
FF AC 00 00 00 03 31 00 01 00 00 00 00 00 00 00 04 33 01 00 00 00 00

This bit stream is made up of the following parts (in the order listed):

1. The JBIG2 file header

97 4A 42 32 0D 0A 1A 0A 01 00 00 00 01

Since the JBIG2 file header is not used in PDF, this header is not placed in the
JBIG2 stream object and is discarded.

2. The first JBIG2 segment (segment 0)—in this case, the symbol dictionary seg-
ment

00 00 00 00 00 01 00 00 00 00 32 00 00 03 FF FD FF 02 FE FE FE 00 00 00
01 00 00 00 01 2A E2 25 AE A9 A5 A5 38 B4 D9 99 9C 5C 8E 56 EF 0F 87
27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D FF AC

This is a global segment (segment page association = 0) and so is placed in the
JBIG2Globals stream.

3. The page information segment

00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00 00
00 00 00 00 40 00 00

and the immediate text region segment

00 00 00 02 06 20 00 01 00 00 00 1E 00 00 00 34 00 00 00 42 00 00 00
00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51 FF AC

These two segments constitute the contents of the JBIG2 page and are placed
in the PDF XObject representing this image.

4. The end-of-page segment

00 00 00 03 31 00 01 00 00 00 00

and the end-of-file segment

00 00 00 04 33 01 00 00 00 00

Since these segments are not used in PDF, they are discarded.

SyntaxCHAPTER 3
84

The resulting PDF image object, then, contains the page information segment
and the immediate text region segment and refers to a JBIG2Globals stream that
contains the symbol dictionary segment.

3.3.7 DCTDecode Filter

The DCTDecode filter decodes grayscale or color image data that has been
encoded in the JPEG baseline format. (JPEG stands for the Joint Photographic
Experts Group, a group within the International Organization for
Standardization that developed the format; DCT stands for discrete cosine
transform, the primary technique used in the encoding.)

JPEG encoding is a lossy compression method, designed specifically for
compression of sampled continuous-tone images and not for general data
compression. Data to be encoded using JPEG consists of a stream of image
samples, each consisting of one, two, three, or four color components. The color
component values for a particular sample must appear consecutively. Each
component value occupies an 8-bit byte.

During encoding, several parameters control the algorithm and the information
loss. The values of these parameters, which include the dimensions of the image
and the number of components per sample, are entirely under the control of the
encoder and are stored in the encoded data. DCTDecode generally obtains the
parameter values it requires directly from the encoded data. However, in one
instance, the parameter might not be present in the encoded data but must be
specified in the filter parameter dictionary; see Table 3.11.

The details of the encoding algorithm are not presented here but are in the ISO
specification and in JPEG: Still Image Data Compression Standard, by Pennebaker
and Mitchell (see the Bibliography). Briefly, the JPEG algorithm breaks an image
up into blocks that are 8 samples wide by 8 samples shigh. Each color component
in an image is treated separately. A two-dimensional DCT is performed on each
block. This operation produces 64 coefficients, which are then quantized. Each
coefficient may be quantized with a different step size. It is this quantization that
results in the loss of information in the JPEG algorithm. The quantized coef-
ficients are then compressed.

FiltersSECTION 3.3
85

TABLE 3.11 Optional parameter for the DCTDecode filter

The encoding algorithm can reduce the information loss by making the step size
in the quantization smaller at the expense of reducing the amount of compression
achieved by the algorithm. The compression achieved by the JPEG algorithm
depends on the image being compressed and the amount of loss that is
acceptable. In general, a compression of 15 : 1 can be achieved without perceptible
loss of information, and 30 : 1 compression causes little impairment of the image.

Better compression is often possible for color spaces that treat luminance and
chrominance separately than for those that do not. The RGB-to-YUV conversion
provided by the filters is one attempt to separate luminance and chrominance; it
conforms to CCIR recommendation 601-1. Other color spaces, such as the CIE
1976 L*a*b* space, may also achieve this objective. The chrominance
components can then be compressed more than the luminance by using coarser
sampling or quantization, with no degradation in quality.

KEY TYPE VALUE

ColorTransform integer A code specifying the transformation to be performed on the sample values:

0 No transformation.

1 If the image has three color components, transform RGB values to
YUV before encoding and from YUV to RGB after decoding. If the
image has four components, transform CMYK values to YUVK be-
fore encoding and from YUVK to CMYK after decoding. This option
is ignored if the image has one or two color components.

Note: The RGB and YUV used here have nothing to do with the color spaces
defined as part of the Adobe imaging model. The purpose of converting from
RGB to YUV is to separate luminance and chrominance information (see be-
low).

The default value of ColorTransform is 1 if the image has three components
and 0 otherwise. In other words, conversion between RGB and YUV is per-
formed for all three-component images unless explicitly disabled by setting
ColorTransform to 0. Additionally, the encoding algorithm inserts an Adobe-
defined marker code in the encoded data, indicating the ColorTransform val-
ue used. If present, this marker code overrides the ColorTransform value giv-
en to DCTDecode. Thus it is necessary to specify ColorTransform only when
decoding data that does not contain the Adobe-defined marker code.

SyntaxCHAPTER 3
86

The JPEG filter implementation in Acrobat products does not support features of
the JPEG standard that are irrelevant to images. In addition, certain choices have
been made regarding reserved marker codes and other optional features of the
standard. For details, see Adobe Technical Note #5116, Supporting the DCT
Filters in PostScript Level 2.

In addition to the baseline JPEG format, beginning with PDF 1.3, the DCTDecode
filter supports the progressive JPEG extension. This extension does not add any
entries to the DCTDecode parameter dictionary; the distinction between baseline
and progressive JPEG is represented in the encoded data.

Note: There is no benefit to using progressive JPEG for stream data that is embed-
ded in a PDF file. Decoding progressive JPEG is slower and consumes more memory
than baseline JPEG. The purpose of this feature is to enable a stream to refer to an
external file whose data happens to be already encoded in progressive JPEG. (See
also implementation note 11 in Appendix H.)

3.3.8 JPXDecode Filter

The JPXDecode filter (PDF 1.5) decodes data that has been encoded using the
JPEG2000 compression method, an international standard for the compression
and packaging of image data. JPEG2000 defines a wavelet-based method for
image compression that gives somewhat better size reduction than other methods
such as regular JPEG or CCITT. Although the filter can reproduce samples that
are losslessly compressed, it is recommended only for use with images and not for
general data compression.

In PDF, this filter can be applied only to image XObjects, and not to inline images
(see Section 4.8, “Images”). It is suitable both for images that have a single color
component and for those that have multiple color components. The color
components in an image may have different numbers of bits per sample. Any
value from 1 to 38 is allowed.

From a single JPEG2000 data stream, multiple versions of an image may be
decoded. These different versions form progressions along four degrees of
freedom: sampling resolution, color depth, band, and location. For example, with
a resolution progression, a thumbnail version of the image may be decoded from
the data, followed by a sequence of other versions of the image, each with
approximately four times as many samples (twice the width times twice the
height) as the previous one. The last version is the full-resolution image.

FiltersSECTION 3.3
87

Viewing and printing applications may gain performance benefits by using the
resolution progression. If the full-resolution image is densely sampled, the
application may be able to select and decode only the data making up a lower-
resolution version, thereby spending less time decoding. Fewer bytes need be
processed, a particular benefit when viewing files over the Web. The tiling
structure of the image may also provide benefits if only certain areas of an image
need to be displayed or printed.

Note: Information on these progressions is encoded in the data; no decode parame-
ters are needed to describe them. The decoder deals with any progressions it encoun-
ters to deliver the correct image data. Progressions that are of no interest may simply
have performance consequences.

The JPEG2000 specifications define two widely used formats, JP2 and JPX, for
packaging the compressed image data. JP2 is a subset of JPX. These packagings
contain all the information needed to properly interpret the image data,
including the color space, bits per component, and image dimensions. In other
words, they are complete descriptions of images (as opposed to image data that
require outside parameters for correct interpretation). The JPXDecode filter
expects to read a full JPX file structure—either internal to the PDF file or as an
external file.

To promote interoperability, the specifications define a subset of JPX called JPX
baseline (of which JP2 is also a subset). The complete details of the baseline set of
JPX features are contained in ISO/IEC 15444-2, Information Technology—JPEG
2000 Image Coding System: Extensions (see the Bibliography). See also
<http://www.jpeg.org/jpeg2000/>.

Data used in PDF image XObjects should be limited to the JPX baseline set of
features, except for enumerated color space 19 (CIEJab). In addition, enumerated
color space 12 (CMYK), which is part of JPX but not JPX baseline, is supported in
PDF.

A JPX file describes a collection of channels that are present in the image data. A
channel may have one of three types:

• An ordinary channel contains values that, when decoded, become samples for a
specified color component.

• An opacity channel provides samples that are to be interpreted as raw opacity
information.

http://www.jpeg.org/jpeg2000/

SyntaxCHAPTER 3
88

• A premultiplied opacity channel provides samples that have been multiplied
into the color samples of those channels with which it is associated.

Opacity and premultiplied opacity channels are associated with specific color
channels. There is never more than one opacity channel (of either type)
associated with a given color channel. For example, it is possible for one opacity
channel to apply to the red samples and another to apply to the green and blue
color channels of an RGB image.

Note: The method by which the opacity information is to be used is explicitly not
specified, although one possible method shows a normal blending mode.

In addition to using opacity channels for describing transparency, JPX files also
have the ability to specify chroma-key transparency. A single color is specified by
giving an array of values, one value for each color channel. Any image location
that matches this color is considered to be completely transparent.

Images in JPX files can have one of the following color spaces:

• A predefined color space, chosen from a list of enumerated color spaces. (Two of
these are actually families of spaces and parameters are included.)

• A “restricted ICC profile.” (These are the only sorts of ICC profiles that are al-
lowed in JP2 files.)

• An input ICC profile of any sort defined by ICC-1.

• A vendor-defined color space.

More than one color space may be specified for an image, with each space being
tagged with a precedence and an approximation value that indicates how well it
represents the preferred color space. In addition, the image’s color space may
serve as the foundation for a palette of colors that are selected using samples
coming from the image’s data channels: the equivalent of an Indexed color space
in PDF.

There are other features in the JPX format beyond describing a simple image.
These include provisions for describing layering and giving instructions on
composition, specifying simple animation, and including generic XML metadata
(along with JPEG2000-specific schemas for such data). It is recommended, but
not required, that relevant metadata be replicated in the image dictionary’s
Metadata stream in XMP format (see Section 10.2.2, “Metadata Streams).

FiltersSECTION 3.3
89

When using the JPXDecode filter with image XObjects, there are changes to and
constraints on some entries in the image dictionary (see Section 4.8.4, “Image
Dictionaries” for details on these entries):

• Width and Height must match the corresponding width and height values in
the JPEG2000 data.

• ColorSpace is optional since JPEG2000 data contain color space specifications.
If present, it determines how the image samples are interpreted, and the color
space specifications in the JPEG2000 data are ignored. The number of color
channels in the JPEG2000 data must match the number of components in the
color space; the PDF producer must ensure that the samples are consistent with
the color space used.

Any color space other than Pattern may be specified. If an Indexed color space
is used, it is subject to the PDF limit of 256 colors. (The analogous concept in
the JPEG2000 color specifications is a palette color space, which has a limit of
1024 colors.) If the color space does not match one of JPX’s enumerated color
spaces (for example, if it has two color components or more than four), it can
be specified as a vendor color space in the JPX data.

If ColorSpace is not present in the image dictionary, the color space informa-
tion in the JPEG2000 data is used. Consumer applications must support the
JPX baseline set of enumerated color spaces; they are also responsible for deal-
ing with the interaction between the color spaces and the bit depth of samples.

If multiple color space specifications are given in the JPEG2000 data, a render-
ing application should attempt to use the one with the highest precedence and
best approximation value. If the color space is given by an unsupported ICC
profile, the next lower color space, in terms of precedence and approximation
value, is used. If no supported color space is found, the color space used should
be DeviceGray, DeviceRGB, or DeviceCMYK, depending on the number of color
channels in the JPEG2000 data.

• SMaskInData specifies whether soft-mask information packaged with the im-
age samples should be used (see “Soft-Mask Images” on page 553); if it is, the
SMask entry is not needed. If SMaskInData is nonzero, there must be only one
opacity channel in the JPEG2000 data and it must apply to all color channels.

• Decode is ignored, except in the case where the image is treated as a mask; that
is, when ImageMask is true. In this case, the JPEG2000 data must provide a sin-
gle color channel with 1-bit samples.

SyntaxCHAPTER 3
90

3.3.9 Crypt Filter

The Crypt filter (PDF 1.5) allows the document-level security handler (see
Section 3.5, “Encryption”) to determine which algorithms should be used to
decrypt the input data. The Name parameter in the decode parameters dictionary
for this filter (see Table 3.12) specifies which of the named crypt filters in the
document (see Section 3.5.4, “Crypt Filters”) should be used.

TABLE 3.12 Optional parameters for Crypt filters

In addition, the decode parameters dictionary may include entries that are
private to the security handler. Security handlers may use information from both
the crypt filter decode parameters dictionary and the crypt filter dictionaries (see
Table 3.22) when decrypting data or providing a key to decrypt data.

Note: When adding private data to the decode parameters dictionary, security han-
dlers should name these entries in conformance with the PDF name registry (see
Appendix E, “PDF Name Registry”).

3.4 File Structure

The preceding sections describe the syntax of individual objects. This section
describes how objects are organized in a PDF file for efficient random access and
incremental update. A canonical PDF file initially consists of four elements (see
Figure 3.2):

• A one-line header identifying the version of the PDF specification to which the
file conforms

• A body containing the objects that make up the document contained in the file

KEY TYPE VALUE

Type name (Optional) If present, must be CryptFilterDecodeParms for a Crypt filter de-
code parameter dictionary.

Name name (Optional) The name of the crypt filter that is to be used to decrypt this
stream. The name must correspond to an entry in the CF entry of the encryp-
tion dictionary (see Table 3.18) or one of the standard crypt filters (see
Table 3.23).

Default value: Identity.

File StructureSECTION 3.4
91

• A cross-reference table containing information about the indirect objects in the
file

• A trailer giving the location of the cross-reference table and of certain special
objects within the body of the file

This initial structure may be modified by later updates, which append additional
elements to the end of the file; see Section 3.4.5, “Incremental Updates,” for
details.

FIGURE 3.2 Initial structure of a PDF file

As a matter of convention, the tokens in a PDF file are arranged into lines; see
Section 3.1, “Lexical Conventions.” Each line is terminated by an end-of-line
(EOL) marker, which may be a carriage return (character code 13), a line feed
(character code 10), or both. PDF files with binary data may have arbitrarily long
lines. However, to increase compatibility with other applications that process
PDF files, lines that are not part of stream object data are limited to no more than
255 characters, with one exception. Beginning with PDF 1.3, the Contents string
of a signature dictionary (see Section 8.7, “Digital Signatures”) is not subject to
the restriction on line length. See also implementation note 12 in Appendix H.

Header

Body

Cross-reference
table

Trailer

SyntaxCHAPTER 3
92

The rules described here are sufficient to produce a well-formed PDF file.
However, additional rules apply to organizing a PDF file to enable efficient
incremental access to a document’s components in a network environment. This
form of organization, called Linearized PDF, is described in Appendix F.

3.4.1 File Header

The first line of a PDF file is a header identifying the version of the PDF
specification to which the file conforms. For a file conforming to PDF 1.7, the
header should be

%PDF−1. 7

However, since any file conforming to an earlier version of PDF also conforms to
version 1.7, an application that processes PDF 1.7 can also accept files with any of
the following headers:

%PDF−1. 0
%PDF−1. 1
%PDF−1. 2
%PDF−1. 3
%PDF−1. 4
%PDF−1. 5
%PDF−1. 6

(See also implementation notes 13 and 14 in Appendix H.)

Beginning with PDF 1.4, the version in the file header can be overridden by the
Version entry in the document’s catalog dictionary (located by means of the Root
entry in the file’s trailer, as described in Section 3.4.4, “File Trailer”). This enables
a PDF producer application to update the version using an incremental update
(see Section 3.4.5, “Incremental Updates”).

Under some conditions, a consumer application may be able to process PDF files
conforming to a later version than it was designed to accept. New PDF features
are often introduced in such a way that they can safely be ignored by a consumer
that does not understand them (see Section H.1, “PDF Version Numbers”).

Note: If a PDF file contains binary data, as most do (see Section 3.1, “Lexical Con-
ventions”), it is recommended that the header line be immediately followed by a
comment line containing at least four binary characters—that is, characters whose

File StructureSECTION 3.4
93

codes are 128 or greater. This ensures proper behavior of file transfer applications
that inspect data near the beginning of a file to determine whether to treat the file’s
contents as text or as binary.

3.4.2 File Body

The body of a PDF file consists of a sequence of indirect objects representing the
contents of a document. The objects, which are of the basic types described in
Section 3.2, “Objects,” represent components of the document such as fonts,
pages, and sampled images. Beginning with PDF 1.5, the body can also contain
object streams, each of which contains a sequence of indirect objects; see Section
3.4.6, “Object Streams.”

3.4.3 Cross-Reference Table

The cross-reference table contains information that permits random access to
indirect objects within the file so that the entire file need not be read to locate any
particular object. The table contains a one-line entry for each indirect object,
specifying the location of that object within the body of the file. (Beginning with
PDF 1.5, some or all of the cross-reference information may alternatively be
contained in cross-reference streams; see Section 3.4.7, “Cross-Reference
Streams”.)

The cross-reference table is the only part of a PDF file with a fixed format, which
permits entries in the table to be accessed randomly. The table comprises one or
more cross-reference sections. Initially, the entire table consists of a single section
(or two sections if the file is linearized; see Appendix F). One additional section is
added each time the file is updated (see Section 3.4.5, “Incremental Updates”).

Each cross-reference section begins with a line containing the keyword xref.
Following this line are one or more cross-reference subsections, which may appear
in any order. The subsection structure is useful for incremental updates, since it
allows a new cross-reference section to be added to the PDF file, containing
entries only for objects that have been added or deleted. For a file that has never
been updated, the cross-reference section contains only one subsection, whose
object numbering begins at 0.

SyntaxCHAPTER 3
94

Each cross-reference subsection contains entries for a contiguous range of object
numbers. The subsection begins with a line containing two numbers separated by
a space: the object number of the first object in this subsection and the number of
entries in the subsection. For example, the line

28 5

introduces a subsection containing five objects numbered consecutively from 28
to 32.

Note: A given object number must not have an entry in more than one subsection
within a single section. However, see implementation note 15 in Appendix H.

Following this line are the cross-reference entries themselves, one per line. Each
entry is exactly 20 bytes long, including the end-of-line marker. There are two
kinds of cross-reference entries: one for objects that are in use and another for
objects that have been deleted and therefore are free. Both types of entries have
similar basic formats, distinguished by the keyword n (for an in-use entry) or f
(for a free entry). The format of an in-use entry is

nnnnnnnnnn ggggg n eol

where

nnnnnnnnnn is a 10-digit byte offset

ggggg is a 5-digit generation number

n is a literal keyword identifying this as an in-use entry

eol is a 2-character end-of-line sequence

The byte offset is a 10-digit number, padded with leading zeros if necessary,
giving the number of bytes from the beginning of the file to the beginning of the
object. It is separated from the generation number by a single space. The
generation number is a 5-digit number, also padded with leading zeros if
necessary. Following the generation number is a single space, the keyword n, and
a 2-character end-of-line sequence. If the file’s end-of-line marker is a single
character (either a carriage return or a line feed), it is preceded by a single space;
if the marker is 2 characters (both a carriage return and a line feed), it is not
preceded by a space. Thus, the overall length of the entry is always exactly 20
bytes.

File StructureSECTION 3.4
95

The cross-reference entry for a free object has essentially the same format, except
that the keyword is f instead of n and the interpretation of the first item is
different:

nnnnnnnnnn ggggg f eol

where

nnnnnnnnnn is the 10-digit object number of the next free object

ggggg is a 5-digit generation number

f is a literal keyword identifying this as a free entry

eol is a 2-character end-of-line sequence

The free entries in the cross-reference table form a linked list, with each free
entry containing the object number of the next. The first entry in the table (object
number 0) is always free and has a generation number of 65,535; it is the head of
the linked list of free objects. The last free entry (the tail of the linked list) links
back to object number 0. (In addition, the table may contain other free entries
that link back to object number 0 and have a generation number of 65,535, even
though these entries are not in the linked list itself.) See implementation note 16
in Appendix H.

Except for object number 0, all objects in the cross-reference table initially have
generation numbers of 0. When an indirect object is deleted, its cross-reference
entry is marked free and it is added to the linked list of free entries. The entry’s
generation number is incremented by 1 to indicate the generation number to be
used the next time an object with that object number is created. Thus, each time
the entry is reused, it is given a new generation number. The maximum
generation number is 65,535; when a cross-reference entry reaches this value, it is
never reused.

The cross-reference table (comprising the original cross-reference section and all
update sections) must contain one entry for each object number from 0 to the
maximum object number used in the file, even if one or more of the object
numbers in this range do not actually occur in the file. See implementation note
17 in Appendix H.

Example 3.5 shows a cross-reference section consisting of a single subsection
with six entries: four that are in use (objects number 1, 2, 4, and 5) and two that

SyntaxCHAPTER 3
96

are free (objects number 0 and 3). Object number 3 has been deleted, and the
next object created with that object number is given a generation number of 7.

Example 3.5

xref
0 6
0000000003 65535 f
0000000017 00000 n
0000000081 00000 n
0000000000 00007 f
0000000331 00000 n
0000000409 00000 n

Example 3.6 shows a cross-reference section with four subsections, containing a
total of five entries. The first subsection contains one entry, for object number 0,
which is free. The second subsection contains one entry, for object number 3,
which is in use. The third subsection contains two entries, for objects number 23
and 24, both of which are in use. Object number 23 has been reused, as can be
seen from the fact that it has a generation number of 2. The fourth subsection
contains one entry, for object number 30, which is in use.

Example 3.6

xref
0 1
0000000000 65535 f
3 1
0000025325 00000 n
23 2
0000025518 00002 n
0000025635 00000 n
30 1
0000025777 00000 n

See Section G.6, “Updating Example,” for a more extensive example of the
structure of a PDF file that has been updated several times.

3.4.4 File Trailer

The trailer of a PDF file enables an application reading the file to quickly find the
cross-reference table and certain special objects. Applications should read a PDF

File StructureSECTION 3.4
97

file from its end. The last line of the file contains only the end-of-file marker,
%%EOF. (See implementation note 18 in Appendix H.) The two preceding lines
contain the keyword startxref and the byte offset from the beginning of the file to
the beginning of the xref keyword in the last cross-reference section. The
startxref line is preceded by the trailer dictionary, consisting of the keyword
trailer followed by a series of key-value pairs enclosed in double angle brackets
(<< … >>). Thus, the trailer has the following overall structure:

trailer
<< key1 value1

 key2 value2
 …
 keyn valuen

>>
startxref
Byte_offset_of_last_cross-reference_section
%%EOF

Table 3.13 lists the contents of the trailer dictionary.

TABLE 3.13 Entries in the file trailer dictionary

KEY TYPE VALUE

Size integer (Required; must not be an indirect reference) The total number of entries in the file’s
cross-reference table, as defined by the combination of the original section and all
update sections. Equivalently, this value is 1 greater than the highest object number
used in the file.

Note: Any object in a cross-reference section whose number is greater than this value is
ignored and considered missing.

Prev integer (Present only if the file has more than one cross-reference section; must not be an indi-
rect reference) The byte offset from the beginning of the file to the beginning of the
previous cross-reference section.

Root dictionary (Required; must be an indirect reference) The catalog dictionary for the PDF docu-
ment contained in the file (see Section 3.6.1, “Document Catalog”).

Encrypt dictionary (Required if document is encrypted; PDF 1.1) The document’s encryption dictionary
(see Section 3.5, “Encryption”).

Info dictionary (Optional; must be an indirect reference) The document’s information dictionary
(see Section 10.2.1, “Document Information Dictionary”).

SyntaxCHAPTER 3
98

Note: Table 3.17 defines an additional entry, XRefStm, that appears only in the trail-
er of hybrid-reference files, described in “Compatibility with Applications That Do
Not Support PDF 1.5” on page 109.

Example 3.7 shows an example trailer for a file that has never been updated (as
indicated by the absence of a Prev entry in the trailer dictionary).

Example 3.7

trailer
<< /Size 22

 /Root 2 0 R
 /Info 1 0 R
 /ID [< 81b14aafa313db63dbd6f981e49f94f4 >

 < 81b14aafa313db63dbd6f981e49f94f4 >
]

>>
startxref
18799
%%EOF

3.4.5 Incremental Updates

The contents of a PDF file can be updated incrementally without rewriting the
entire file. Changes are appended to the end of the file, leaving its original
contents intact. The main advantage to updating a file in this way (as discussed in
Section 2.2.7, “Incremental Update”) is that small changes to a large document
can be saved quickly. There are additional advantages:

• In some cases, incremental updating is the only way to save changes to a docu-
ment. An accepted practice for minimizing the risk of data loss when saving a
document is to write it to a new file and rename the new file to replace the old
one. However, in certain contexts, such as when editing a document across an
HTTP connection or using OLE embedding (a Windows-specific technology),

ID array (Optional, but strongly recommended; PDF 1.1) An array of two byte-strings consti-
tuting a file identifier (see Section 10.3, “File Identifiers”) for the file. The two byte-
strings should be direct objects and should be unencrypted. Although this entry is
optional, its absence might prevent the file from functioning in some workflows
that depend on files being uniquely identified.

KEY TYPE VALUE

File StructureSECTION 3.4
99

it is not possible to overwrite the contents of the original file in this manner. In-
cremental updates can be used to save changes to documents in these contexts.

• Once a document has been signed (see Section 2.2.6, “Security”), all changes
made to the document must be saved using incremental updates, since altering
any existing bytes in the file invalidates existing signatures.

In an incremental update, any new or changed objects are appended to the file, a
cross-reference section is added, and a new trailer is inserted. The resulting file
has the structure shown in Figure 3.3. A complete example of an updated file is
shown in Section G.6, “Updating Example.”

The cross-reference section added when a file is updated contains entries only for
objects that have been changed, replaced, or deleted. Deleted objects are left
unchanged in the file, but are marked as deleted by means of their cross-reference
entries. The added trailer contains all the entries (perhaps modified) from the
previous trailer, as well as a Prev entry giving the location of the previous cross-
reference section (see Table 3.13 on page 97). As shown in Figure 3.3, a file that
has been updated several times contains several trailers; each trailer is terminated
by its own end-of-file (%%EOF) marker.

Because updates are appended to PDF files, a file can have several copies of an
object with the same object identifier (object number and generation number).
This can occur, for example, if a text annotation (see Section 8.4, “Annotations”)
is changed several times and the file is saved between changes. Because the text
annotation object is not deleted, it retains the same object number and generation
number as before. An updated copy of the object is included in the new update
section added to the file. The update’s cross-reference section includes a byte
offset to this new copy of the object, overriding the old byte offset contained in
the original cross-reference section. When a consumer application reads the file,
it must build its cross-reference information in such a way that the most recent
copy of each object is the one accessed in the file.

In versions of PDF earlier than 1.4, it was not possible to use an incremental
update to alter the version of PDF to which the document conforms, since the
version was specified only in the header at the beginning of the file (see Section
3.4.1, “File Header”). In PDF 1.4, it is possible for a Version entry in the
document’s catalog dictionary (see Section 3.6.1, “Document Catalog”) to
override the version specified in the header, which enables the version to be
altered using an incremental update.

SyntaxCHAPTER 3
100

FIGURE 3.3 Structure of an updated PDF file

3.4.6 Object Streams

PDF 1.5 introduces a new kind of stream, an object stream, which contains a
sequence of PDF objects. The purpose of object streams is to allow a greater
number of PDF objects to be compressed, thereby substantially reducing the size
of PDF files. The objects in the stream are referred to as compressed objects. (This

Header

Original
body

Original
cross-reference

section

Updated trailer n

Body update 1

Cross-reference
section 1

Body update n

Cross-reference
section n

Original trailer

Updated trailer 1

File StructureSECTION 3.4
101

term is used regardless of whether the stream is actually encoded with a
compression filter.)

Any PDF object can appear in an object stream, with the following exceptions:

• Stream objects

• Objects with a generation number other than zero

• A document’s encryption dictionary (see Section 3.5, “Encryption”)

• An object representing the value of the Length entry in an object stream dictio-
nary

Note: In addition, in linearized files (see Appendix F, “Linearized PDF”), the docu-
ment catalog, the linearization dictionary, and page objects may not appear in an
object stream.

Indirect references to objects inside object streams use the normal syntax: for
example, 14 0 R. Access to these objects requires a different way of storing cross-
reference information; see Section 3.4.7, “Cross-Reference Streams.” Although an
application must support PDF 1.5 to use compressed objects, the objects can be
stored in a manner that is compatible with PDF 1.4. Applications that do not
support PDF 1.5 can ignore the objects; see “Compatibility with Applications That
Do Not Support PDF 1.5” on page 109.

In addition to the standard keys for streams shown in Table 3.4, the stream
dictionary describing an object stream contains the following entries:

TABLE 3.14 Additional entries specific to an object stream dictionary

KEY TYPE DESCRIPTION

Type name (Required) The type of PDF object that this dictionary describes; must be ObjStm
for an object stream.

N integer (Required) The number of compressed objects in the stream.

First integer (Required) The byte offset (in the decoded stream) of the first compressed object.

Extends stream (Optional) A reference to an object stream, of which the current object stream is
considered an extension. Both streams are considered part of a collection of object
streams (see below). A given collection consists of a set of streams whose Extends
links form a directed acyclic graph.

SyntaxCHAPTER 3
102

The creator of a PDF file has flexibility in determining which objects, if any, to
store in object streams. For example, it can be useful to store objects having
common characteristics together, such as “fonts on page 1,” or “Comments for
draft #3.” These objects are known as a collection.

To avoid a degradation of performance, such as would occur when downloading
and decompressing a large object stream to access a single compressed object, the
number of objects in an individual object stream should be limited. (See
implementation note 19 in Appendix H.) This may require a group of object
streams to be linked as a collection, which can be done by means of the Extends
entry in the object stream dictionary.

Extends can also be used when a collection is being updated to include new
objects. Rather than redefine the original object stream, which would require
duplicating the stream data, the new objects can be stored in a new object stream.
This is particularly important when adding an update section to a document.

The stream data in an object stream consists of the following items:

• N pairs of integers, where the first integer in each pair represents the object
number of a compressed object and the second integer represents the byte off-
set of that object, relative to the first one. The offsets must be in increasing or-
der, but there is no restriction on the order of object numbers.

Note: The byte offset in the decoded stream of the first object is the value of the
First entry.

• The N objects stored consecutively. Only the object values are stored in the
stream; the obj and endobj keywords are not used. A compressed dictionary or
array may contain indirect references.

Note: It is illegal for a compressed object to consist of only an indirect reference;
for example, 3 0 R.

By contrast, dictionaries and arrays in content streams (Section 3.7.1) may not
contain indirect references. In an encrypted file, strings occurring anywhere in
an object stream must not be separately encrypted, since the entire object
stream is encrypted.

Note: The data for the first object is not required to immediately follow the last
byte offset. Future extensions may place additional information between those
two points in the stream.

File StructureSECTION 3.4
103

An object stream itself, like any stream, is an indirect object, and there must be an
entry for it in a cross-reference table or cross-reference stream (see Section 3.4.7,
“Cross-Reference Streams”), although there might not be any references to it (of
the form 243 0 R).

The generation number of an object stream and of any compressed object is
implicitly zero. If either an object stream or a compressed object is deleted and
the object number is freed, that object number can be reused only for an ordinary
(uncompressed) object other than an object stream. When new object streams
and compressed objects are created, they must always be assigned new object
numbers, not old ones taken from the free list.

Example 3.8 shows three objects (two fonts and a font descriptor) as they would
be represented in a PDF 1.4 or earlier file, along with a cross-reference table. In
Example 3.9, the same objects are stored in an object stream in a PDF 1.5 file,
along with a cross-reference stream.

Example 3.8

11 0 obj
<< /Type /Font

/Subtype /TrueType
...other entries...
/FontDescriptor 12 0 R

>>
endobj

12 0 obj

<< /Type /FontDescriptor
/Ascent 891
...other entries...
/FontFile2 22 0 R

>>
endobj

13 0 obj

<< /Type /Font
/Subtype /Type0
...other entries...
/ToUnicode 10 0 R

SyntaxCHAPTER 3
104

>>
endobj

...

xref
0 32
0000000000 65535 f
...
0000001434 00000 n % Cross-reference entry for object 11
0000001735 00000 n % Cross-reference entry for object 12
0000002155 00000 n % Cross-reference entry for object 13
...
trailer

<< /Size 32
/Root ...

>>

In Example 3.9, the cross-reference stream (see Section 3.4.7, “Cross-Reference
Streams”) contains entries for the fonts (objects 11 and 13) and the descriptor
(object 12), which are compressed objects in an object stream. The first field of
these entries is the entry type (2), the second field is the number of the object
stream (15), and the third field is the position within the sequence of objects in
the object stream (0, 1, and 2). The cross-reference stream also contains a type 1
entry for the object stream itself.

Note: For readability, the object stream has been shown unencoded. In a real PDF
1.5 file, Flate encoding would typically be used to gain the benefits of compression.

Example 3.9

15 0 obj % The object stream
<< /Type /ObjStm

/Length 1856
/N 3 % The number of objects in the stream
/First 24 % The byte offset of the first object

>>
stream

% The object numbers and offsets of the objects, relative to the first
11 0 12 547 13 665
<< /Type /Font

/Subtype /TrueType
...other keys...

File StructureSECTION 3.4
105

/FontDescriptor 12 0 R
>>

<< /Type /FontDescriptor

/Ascent 891
...other keys...
/FontFile2 22 0 R

>>
<< /Type /Font

/Subtype /Type0
...other keys...
/ToUnicode 10 0 R

>>
...
endstream
endobj

99 0 obj % The cross-reference stream

<< /Type /XRef
/Index [0 32] % This section has one subsection with 32 objects
/W [1 2 2] % Each entry has 3 fields: 1, 2 and 2 bytes in width,

% respectively
/Filter /ASCIIHexDecode % For readability in this example
/Size 32
...

>>
stream

00 0000 FFFF % “0 65535 f” in a cross-reference table
...
02 000F 0000 % The entry for object 11, the first font
02 000F 0001 % The entry for object 12, the font descriptor
02 000F 0002 % The entry for object 13, the second font
...
01 BA5E 0000 % The entry for object 15, the object stream
...

endstream
endobj

startxref

54321 % The offset of “99 0 obj”
%%EOF

SyntaxCHAPTER 3
106

3.4.7 Cross-Reference Streams

Beginning with PDF 1.5, cross-reference information may be stored in a cross-
reference stream instead of in a cross-reference table. Cross-reference streams
provide the following advantages:

• A more compact representation of cross-reference information

• The ability to access compressed objects that are stored in object streams (see
Section 3.4.6, “Object Streams”) and to allow new cross-reference entry types
to be added in the future

Cross-reference streams are stream objects (see Section 3.2.7, “Stream Objects”),
and contain a dictionary and a data stream. Each cross-reference stream contains
the information equivalent to the cross-reference table (see Section 3.4.3, “Cross-
Reference Table”) and trailer (see Section 3.4.4, “File Trailer”) for one cross-
reference section. The trailer dictionary entries are stored in the stream
dictionary, and the cross-reference table entries are stored as the stream data, as
shown in the following example:

Example 3.10

... objects ...

12 0 obj % Cross-reference stream

<< /Type /XRef % Cross-reference stream dictionary
/Size ...
/Root ...

>>
stream

... % Stream data containing cross-reference information
endstream
endobj

... more objects ...

startxref
byte_offset_of_cross-reference_stream % Points to object 12
%%EOF

Note that the value following the startxref keyword is now the offset of the cross-
reference stream rather than the xref keyword. (See implementation note 21 in
Appendix H.) For files that use cross-reference streams entirely (that is, PDF 1.5

File StructureSECTION 3.4
107

files that are not hybrid-reference files; see “Compatibility with Applications That
Do Not Support PDF 1.5” on page 109), the keywords xref and trailer are no longer
used. Therefore, with the exception of the startxref address %%EOF segment and
comments, a PDF 1.5 file is entirely a sequence of objects.

Note: The use of object streams and cross-reference streams is permitted in linear-
ized PDF, with minor modifications to the specification (see Section F.2, “Linearized
PDF Document Structure”).

Cross-Reference Stream Dictionary

Cross-reference streams contain the entries shown in Table 3.15 in addition to
the entries common to all streams (Table 3.4) and trailer dictionaries (Table 3.13).
Since some of the information in the cross-reference stream is needed by the
consumer application to construct the index that allows indirect references to be
resolved, the entries in cross-reference streams are subject to the following
restrictions:

• The value of all entries shown in Table 3.15 must be direct objects; indirect ref-
erences are not permitted. For arrays (the Index and W entries), all their ele-
ments must be direct objects as well. If the stream is encoded, the Filter and
DecodeParms entries in Table 3.4 must also be direct objects. Also, see imple-
mentation note 20 in Appendix H.

Note: Other cross-reference stream entries not listed in Table 3.15 may be indi-
rect; in fact, some (such as Root in Table 3.13) are required to be indirect.

• The cross-reference stream must not be encrypted, nor may any strings appear-
ing in the cross-reference stream dictionary. It must not have a Filter entry that
specifies a Crypt filter (see 3.3.9, “Crypt Filter”).

TABLE 3.15 Additional entries specific to a cross-reference stream dictionary

KEY TYPE DESCRIPTION

Type name (Required) The type of PDF object that this dictionary describes; must be XRef for
a cross-reference stream.

Size integer (Required) The number one greater than the highest object number used in this
section or in any section for which this is an update. It is equivalent to the Size en-
try in a trailer dictionary.

SyntaxCHAPTER 3
108

Cross-Reference Stream Data

Each entry in a cross-reference stream has one or more fields, the first of which
designates the entry’s type (see Table 3.16). In PDF 1.5, only types 0, 1, and 2 are
allowed. Any other value is interpreted as a reference to the null object, thus
permitting new entry types to be defined in the future.

The fields are written in increasing order of field number; the length of each field
is determined by the corresponding value in the W entry (see Table 3.15). Fields
requiring more than one byte are stored with the high-order byte first.

Index array (Optional) An array containing a pair of integers for each subsection in this sec-
tion. The first integer is the first object number in the subsection; the second inte-
ger is the number of entries in the subsection

The array is sorted in ascending order by object number. Subsections cannot over-
lap; an object number may have at most one entry in a section.

Default value: [0 Size].

Prev integer (Present only if the file has more than one cross-reference stream; not meaningful in
hybrid-reference files; see “Compatibility with Applications That Do Not Support
PDF 1.5” on page 109) The byte offset from the beginning of the file to the begin-
ning of the previous cross-reference stream. This entry has the same function as
the Prev entry in the trailer dictionary (Table 3.13). (See also implementation note
21 in Appendix H.)

W array (Required) An array of integers representing the size of the fields in a single cross-
reference entry. Table 3.16 describes the types of entries and their fields. For PDF
1.5, W always contains three integers; the value of each integer is the number of
bytes (in the decoded stream) of the corresponding field. For example, [1 2 1]
means that the fields are one byte, two bytes, and one byte, respectively.

A value of zero for an element in the W array indicates that the corresponding field
is not present in the stream, and the default value is used, if there is one. If the first
element is zero, the type field is not present, and it defaults to type 1.

The sum of the items is the total length of each entry; it can be used with the Index
array to determine the starting position of each subsection.

Note: Different cross-reference streams in a PDF file may use different values for W.

KEY TYPE DESCRIPTION

File StructureSECTION 3.4
109

TABLE 3.16 Entries in a cross-reference stream

Like any stream, a cross-reference stream is an indirect object. Therefore, an
entry for it must exist in either a cross-reference stream (usually itself) or in a
cross-reference table (in hybrid-reference files; see “Compatibility with
Applications That Do Not Support PDF 1.5” on page 109).

Compatibility with Applications That Do Not Support PDF 1.5

Applications that do not support PDF 1.5 cannot access objects that are
referenced by cross-reference streams. If a file uses cross-reference streams
exclusively, it cannot be opened by such applications.

However, it is possible to construct a file called a hybrid-reference file that is
readable by a PDF 1.4 consumer. Such a file contains objects referenced by
standard cross-reference tables in addition to objects in object streams that are
referenced by cross-reference streams.

TYPE FIELD DESCRIPTION

0 1 The type of this entry, which must be 0. Type 0 entries define the
linked list of free objects (corresponding to f entries in a cross-
reference table).

2 The object number of the next free object.

3 The generation number to use if this object number is used again.

1 1 The type of this entry, which must be 1. Type 1 entries define
objects that are in use but are not compressed (corresponding to n
entries in a cross-reference table).

2 The byte offset of the object, starting from the beginning of the
file.

3 The generation number of the object. Default value: 0.

2 1 The type of this entry, which must be 2. Type 2 entries define
compressed objects.

2 The object number of the object stream in which this object is
stored. (The generation number of the object stream is implicitly
0.)

3 The index of this object within the object stream.

SyntaxCHAPTER 3
110

In these files, the trailer dictionary can contain, in addition to the entry for
trailers shown in Table 3.13, an additional entry, as shown in Table 3.17. This
entry is ignored by PDF 1.4 consumers, which therefore have no access to entries
in the cross-reference stream the entry refers to.

TABLE 3.17 Additional entries in a hybrid-reference file’s trailer dictionary

The Size entry of the trailer must be large enough to include all objects, including
those defined in the cross-reference stream referenced by the XRefStm entry.
However, to allow random access, a main cross-reference section must contain
entries for all objects numbered 0 through Size - 1 (see Section 3.4.3, “Cross-
Reference Table”). Therefore, the XRefStm entry cannot be used in the trailer
dictionary of the main cross-reference section but only in an update cross-
reference section.

When a PDF 1.5 consumer opens a hybrid-reference file, objects with entries in
cross-reference streams are not hidden. When the application searches for an
object, if an entry is not found in any given standard cross-reference section, the
search proceeds to a cross-reference stream specified by the XRefStm entry before
looking in the previous cross-reference section (the Prev entry in the trailer).

Hidden objects, therefore, have two cross-reference entries. One is in the cross-
reference stream. The other is a free entry in some previous section, typically the
section referenced by the Prev entry. A PDF 1.5 consumer looks in the cross-
reference stream first, finds the object there, and ignores the free entry in the
previous section. A PDF 1.4 consumer ignores the cross-reference stream and
looks in the previous section, where it finds the free entry. The free entry must
have a next-generation number of 65535 so that the object number is never reused.

There are limitations on which objects in a hybrid-reference file can be hidden
without making the file appear invalid to PDF 1.4 and earlier consumers. In
particular, the root of the PDF file, the document catalog (see Section 3.6.1,
“Document Catalog”), must not be hidden, nor any object that is visible from the
root. Such objects can be determined by starting from the root and working
recursively:

• In any dictionary that is visible, direct objects are visible. The value of any re-
quired key-value pair is visible.

KEY TYPE VALUE

XRefStm integer (Optional) The byte offset from the beginning of the file of a cross-reference stream.

File StructureSECTION 3.4
111

• In any array that is visible, every element is visible.

• Resource dictionaries in content streams are visible. Although a resource dic-
tionary is not required, strictly speaking, the content stream to which it is at-
tached is assumed to contain references to the resources.

In general, the objects that may be hidden are optional objects specified by
indirect references. A PDF 1.5 consumer can resolve those references by
processing the cross-reference streams. In a PDF 1.4 consumer, the objects
appear to be free, and the references are treated as references to the null object.

For example, the Outlines entry in the catalog dictionary is optional. Therefore,
its value may be an indirect reference to a hidden object. A PDF 1.4 consumer
treats it as a reference to the null object, which is equivalent to having omitted the
entry entirely; a PDF 1.5 consumer recognizes it. However, if the value of the
Outlines entry is an indirect reference to a visible object, the entire outline tree
must be visible because nodes in the outline tree contain required pointers to
other nodes.

Following this logic, items that must be visible include the entire page tree, fonts,
font descriptors, and width tables. Objects that may be hidden in a hybrid-
reference file include the structure tree, the outline tree, article threads,
annotations, destinations, Web Capture information, and page labels,.

Example 3.11 shows a hybrid-reference file containing a main cross-reference
section and an update cross-reference section with an XRefStm entry that points
to a cross-reference stream (object 11), which in turn has references to an object
stream (object 2).

In this example, the catalog (object 1) contains an indirect reference (3 0 R) to the
root of the structure tree. The search for the object starts at the update cross-
reference table, which has no objects in it. The search proceeds depending on the
version of the consumer application:

• In a PDF 1.4 consumer, the search continues by following the Prev pointer to
the main cross-reference table. That table defines object 3 as a free object,
which is treated as the null object. Therefore, the entry is considered missing,
and the document has no structure tree.

• In a PDF 1.5 consumer, the search continues by following the XRefStm pointer
to the cross-reference stream (object 11). It defines object 3 as a compressed
object, stored at index 0 in the object stream (2 0 obj). Therefore, the document
has a structure tree.

SyntaxCHAPTER 3
112

Note: To make the format and contents of the cross-reference stream readable in this
example, an ASCIIHexDecode filter is specified. As explained in implementation
note 20 in Appendix H, the example would not be acceptable to Acrobat 6.0 and lat-
er viewers as written.

Example 3.11

1 0 obj % The document root, at offset 23.
<< /Type /Catalog

/StructTreeRoot 3 0 R
…

>>
endobj

12 0 obj
…
endobj
…
99 0 obj
…
endobj

xref % The main xref section, at offset 2664
0 100 % This subsection has entries for objects 0 - 99.
0000000002 65535 f % Entry for object 0
0000000023 00000 n % Entry for object 1, the root
0000000003 65535 f % Entry for object 2 (object stream), marked free in this table
0000000004 65535 f % Entry for object 3, marked free in this table
0000000005 65535 f % …
0000000006 65535 f
0000000007 65535 f
0000000008 65535 f
0000000009 65535 f
0000000010 65535 f
0000000011 65535 f
0000000000 65535 f % Entry for object 11 (xref stream), marked free in this table.
0000000045 00000 n % Entry for object 12, in use.
0000000179 00000 n % Entry for object 13, in use.
…
0000002201 00000 n % Entry for object 99, in use.
trailer

<< /Size 100
/Root 1 0 R

File StructureSECTION 3.4
113

/ID …
>>

startxref
2664 % Offset of the main xref section

%%EOF

2 0 obj % The object stream, at offset 3722

<< /Length ...
/N 8 % This stream contains 8 objects.
/First 47 % The stream-offset of the first object

>>
stream

3 0 4 50 5 72 … % The numbers and stream-offsets of the 8 objects
<< /Type /StructTreeRoot % This is object 3.

/K 4 0 R
/RoleMap 5 0 R
/ClassMap 6 0 R
/ParentTree 7 0 R
/ParentTreeNextKey 8

>>
<< /S /Workbook % This is object 4 (K value from StructTreeRoot).

/P 8 0 R
/K 9 0 R

>>
<< /Workbook /Div % This is object 5 (RoleMap).

/Worksheet /Sect
/TextBox /Figure
/Shape /Figure

>>
… % Objects 6 through 10 are defined here.

endstream
endobj

11 0 obj % The cross-reference stream, at offset 4899
<< /Type /XRef

/Index [2 10] % This stream contains entries for objects 2 through 11
/Size 100
/W [1 2 1] % The byte-widths of each field
/Filter /ASCIIHexDecode % For readability only (not supported by Acrobat 6)
…

>>
stream

01 0E8A 0 % Entry for object 2 (0x0E8A = 3722)

SyntaxCHAPTER 3
114

02 0002 00 % Entry for object 3 (in object stream 2, index 0)
02 0002 01 % Entry for object 4 (in object stream 2, index 1)
02 0002 02 % …
02 0002 03
02 0002 04
02 0002 05
02 0002 06
02 0002 07 % Entry for object 10 (in object stream 2, index 7)
01 1323 0 % Entry for object 11 (0x1323 = 4899)

endstream
endobj

xref % The update xref section, at offset 5640
0 0 % There are no entries in this section.
trailer

<< /Size 100
/Prev 2664 % Offset of previous xref section
/XRefStm 4899
/Root 1 0 R
/ID …

>>
startxref
5640
%%EOF

The example illustrates several other points:

• The object stream is unencoded and the cross-reference stream uses an ASCII
hexadecimal encoding for clarity. In practice, both streams would be Flate-en-
coded. Also, the comments shown in the cross-reference table in the above ex-
ample are for illustrative purposes; PDF comments are not legal in a cross-
reference table.

• The hidden objects, 2 through 11, are numbered consecutively. In practice,
there is no such requirement, nor is there a requirement that free items in a
cross-reference table be linked in ascending order until the end.

• The update cross-reference table contains no entries, which is not a require-
ment but is reasonable. A PDF creator that uses the hybrid-reference format
creates the main cross-reference table, the update cross-reference table, and the
cross-reference stream at the same time. Objects 12 and 13, for example, are not
compressed. They might have entries in the update table. Since objects 2 and
11, the object stream and the cross-reference stream, are not compressed, they

EncryptionSECTION 3.5
115

might also be defined in the update table. Since they are part of the hidden sec-
tion, however, it makes sense to define them in the cross-reference stream.

• The update cross-reference section must appear at the end of the file, but other-
wise, there are no ordering restrictions on any of the objects or on the main
cross-reference section. However, a file that uses both the hybrid-reference for-
mat and the linearized format has ordering requirements (see Appendix F,
“Linearized PDF”).

3.5 Encryption

A PDF document can be encrypted (PDF 1.1) to protect its contents from un-
authorized access. Encryption applies to all strings and streams in the document’s
PDF file, but not to other object types such as integers and boolean values, which
are used primarily to convey information about the document’s structure rather
than its content. Leaving these values unencrypted allows random access to the
objects within a document, whereas encrypting the strings and streams protects
the document’s substantive contents.

Note: When a PDF stream object (see Section 3.2.7, “Stream Objects”) refers to an
external file, the stream’s contents are not encrypted, since they are not part of the
PDF file itself. However, if the contents of the stream are embedded within the PDF
file (see Section 3.10.3, “Embedded File Streams”), they are encrypted like any other
stream in the file. Beginning with PDF 1.5, embedded files may be encrypted in an
otherwise unencrypted document (see Section 3.5.4, “Crypt Filters”).

Encryption-related information is stored in a document’s encryption dictionary,
which is the value of the Encrypt entry in the document’s trailer dictionary (see
Table 3.13 on page 97). The absence of this entry from the trailer dictionary
means that the document is not encrypted. The entries shown in Table 3.18 are
common to all encryption dictionaries.

The encryption dictionary’s Filter entry identifies the file’s security handler, a
software module that implements various aspects of the encryption process and
controls access to the contents of the encrypted document. PDF specifies a
standard password-based security handler that all consumer applications are
expected to support, but applications may optionally provide security handlers of
their own.

SyntaxCHAPTER 3
116

The SubFilter entry specifies the syntax of the encryption dictionary contents. It
allows interoperability between handlers; that is, a document may be decrypted
by a handler other than the preferred one (the Filter entry) if they both support
the format specified by SubFilter.

The V entry, in specifying which algorithm to use, determines the length of the
encryption key, on which the encryption (and decryption) of data in a PDF file is
based. For V values 2 and 3, the Length entry specifies the exact length of the
encryption key. In PDF 1.5, a value of 4 for V permits the security handler to use
its own encryption and decryption algorithms and to specify crypt filters to use
on specific streams (see Section 3.5.4, “Crypt Filters”).

The remaining contents of the encryption dictionary are determined by the
security handler and may vary from one handler to another. Entries for the
standard security handler are described in Section 3.5.2, “Standard Security
Handler.” Entries for public-key security handlers are described in Section 3.5.3,
“Public-Key Security Handlers.”

TABLE 3.18 Entries common to all encryption dictionaries

KEY TYPE VALUE

Filter name (Required) The name of the preferred security handler for this document. Typically, it is
the name of the security handler that was used to encrypt the document. If SubFilter is
not present, only this security handler should be used when opening the document. If it
is present, consumer applications can use any security handler that implements the for-
mat specified by SubFilter.

Standard is the name of the built-in password-based security handler. Names for other
security handlers can be registered by using the procedure described in Appendix E.

Note: The definition of this entry has been clarified since the previous version of this docu-
ment.

SubFilter name (Optional; PDF 1.3) A name that completely specifies the format and interpretation of
the contents of the encryption dictionary. It is needed to allow security handlers other
than the one specified by Filter to decrypt the document. If this entry is absent, other se-
curity handlers should not be allowed to decrypt the document.

Note: This entry was introduced in PDF 1.3 to support the use of public-key cryptography
in PDF files (see Section 3.5.3, “Public-Key Security Handlers”); however, it was not incor-
porated into the PDF Reference until the fourth edition (PDF 1.5).

EncryptionSECTION 3.5
117

V number (Optional but strongly recommended) A code specifying the algorithm to be used in en-
crypting and decrypting the document:

0 An algorithm that is undocumented and no longer supported, and whose use is
strongly discouraged.

1 Algorithm 3.1 on page 119, with an encryption key length of 40 bits; see below.

2 (PDF 1.4) Algorithm 3.1, but permitting encryption key lengths greater than 40
bits.

3 (PDF 1.4) An unpublished algorithm that permits encryption key lengths rang-
ing from 40 to 128 bits; see implementation note 22 in Appendix H.

4 (PDF 1.5) The security handler defines the use of encryption and decryption in
the document, using the rules specified by the CF, StmF, and StrF entries.

The default value if this entry is omitted is 0, but a value of 1 or greater is strongly rec-
ommended. (See implementation note 23 in Appendix H.)

Length integer (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits. The value
must be a multiple of 8, in the range 40 to 128. Default value: 40.

CF dictionary (Optional; meaningful only when the value of V is 4; PDF 1.5) A dictionary whose keys
are crypt filter names and whose values are the corresponding crypt filter dictionaries
(see Table 3.22). Every crypt filter used in the document must have an entry in this dic-
tionary, except for the standard crypt filter names (see Table 3.23).

Note: An attempt to redefine any of the standard names in Table 3.23 is ignored.

StmF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the crypt filter
that is used by default when decrypting streams. The name must be a key in the CF dic-
tionary or a standard crypt filter name specified in Table 3.23. All streams in the docu-
ment, except for cross-reference streams (see Section 3.4.7, “Cross-Reference Streams”)
or streams that have a Crypt entry in their Filter array (see Table 3.5), are decrypted by
the security handler, using this crypt filter.

Default value: Identity.

StrF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the crypt filter
that is used when decrypting all strings in the document. The name must be a key in the
CF dictionary or a standard crypt filter name specified in Table 3.23.

Default value: Identity.

KEY TYPE VALUE

SyntaxCHAPTER 3
118

Unlike strings within the body of the document, those in the encryption
dictionary must be direct objects. The contents of the encryption dictionary are
not encrypted by the usual methods (the algorithm specified by the V entry).
Security handlers are responsible for encrypting any data in the encryption
dictionary that they need to protect.

Note: Document creators have two choices if the encryption methods and syntax
provided by PDF are not sufficient for their needs: they can provide an alternate se-
curity handler or they can encrypt whole PDF documents themselves, not making
use of PDF security.

3.5.1 General Encryption Algorithm

The following algorithms are used when encrypting data in a PDF file:

• A proprietary encryption algorithm known as RC4. RC4 is a symmetric stream
cipher: the same algorithm is used for both encryption and decryption, and the
algorithm does not change the length of the data.

Note: RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Adobe
Systems has licensed this algorithm for use in its Acrobat products. Independent
software vendors may be required to license RC4 to develop software that encrypts
or decrypts PDF documents. For further information, visit the RSA Web site at
< http://www.rsasecurity.com > or send e-mail to < products@rsasecurity.com >.

• The AES (Advanced Encryption Standard) algorithm (beginning with PDF
1.6). AES is a symmetric block cipher: the same algorithm is used for both en-
cryption and decryption, and the length of the data when encrypted is rounded
up to a multiple of the block size, which is fixed in this implementation to al-

EFF name (Optional; meaningful only when the value of V is 4; PDF 1.6) The name of the crypt filter
that should be used by default when encrypting embedded file streams; it must corre-
spond to a key in the CF dictionary or a standard crypt filter name specified in
Table 3.23.

This entry is provided by the security handler. (See implementation note 24 in Appendix
H.) Applications should respect this value when encrypting embedded files, except for
embedded file streams that have their own crypt filter specifier. If this entry is not
present, and the embedded file stream does not contain a crypt filter specifier, the
stream should be encrypted using the default stream crypt filter specified by StmF.

KEY TYPE VALUE

http://www.rsasecurity.com
mailto:products@rsasecurity.com

EncryptionSECTION 3.5
119

ways be 16 bytes, as specified in FIPS 197, Advanced Encryption Standard
(AES); see the Bibliography).

Strings and streams encrypted with AES use a padding scheme that is de-
scribed in Internet RFC 2898, PKCS #5: Password-Based Cryptography Specifi-
cation Version 2.0; see the Bibliography. For an original message length of M,
the pad consists of 16 - (M mod 16) bytes whose value is also 16 - (M mod 16).
For example, a 9-byte message has a pad of 7 bytes, each with the value 0x07.
The pad can be unambiguously removed to determine the original message
length when decrypting. Note that the pad is present when M is evenly divisible
by 16; it contains 16 bytes of 0x10.

PDF’s standard encryption methods also make use of the MD5 message-digest
algorithm for key generation purposes (described in Internet RFC 1321, The
MD5 Message-Digest Algorithm; see the Bibliography).

The encryption of data in a PDF file is based on the use of an encryption key
computed by the security handler. Different security handlers compute the
encryption key using their own mechanisms. Regardless of how the key is
computed, its use in the encryption of data is always the same (see Algorithm
3.1). Because the RC4 algorithm and AES algorithms are symmetric, this same
sequence of steps can be used both to encrypt and to decrypt data.

Algorithm 3.1 Encryption of data using the RC4 or AES algorithms

1. Obtain the object number and generation number from the object identifier of the
string or stream to be encrypted (see Section 3.2.9, “Indirect Objects”). If the
string is a direct object, use the identifier of the indirect object containing it.

2. Treating the object number and generation number as binary integers, extend the
original n-byte encryption key to n + 5 bytes by appending the low-order 3 bytes
of the object number and the low-order 2 bytes of the generation number in that
order, low-order byte first. (n is 5 unless the value of V in the encryption dictio-
nary is greater than 1, in which case n is the value of Length divided by 8.)

If using the AES algorithm, extend the encryption key an additional 4 bytes by
adding the value "sAlT", which corresponds to the hexadecimal values 0x73, 0x41,
0x6C, 0x54. (This addition is done for backward compatibility and is not intended
to provide additional security.)

3. Initialize the MD5 hash function and pass the result of step 2 as input to this func-
tion.

SyntaxCHAPTER 3
120

4. Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
hash as the key for the RC4 or AES symmetric key algorithms, along with the
string or stream data to be encrypted.

If using the AES algorithm, the Cipher Block Chaining (CBC) mode, which re-
quires an initialization vector, is used. The block size parameter is set to 16 bytes,
and the initialization vector is a 16-byte random number that is stored as the first
16 bytes of the encrypted stream or string.

The output is the encrypted data to be stored in the PDF file.

Stream data is encrypted after applying all stream encoding filters and is
decrypted before applying any stream decoding filters. The number of bytes to be
encrypted or decrypted is given by the Length entry in the stream dictionary.
Decryption of strings (other than those in the encryption dictionary) is done
after escape-sequence processing and hexadecimal decoding as appropriate to the
string representation described in Section 3.2.3, “String Objects.”

3.5.2 Standard Security Handler

PDF’s standard security handler allows access permissions and up to two
passwords to be specified for a document: an owner password and a user
password. An application’s decision to encrypt a document is based on whether
the user creating the document specifies any passwords or access restrictions (for
example, in a security settings dialog box that the user can invoke before saving
the PDF file). If so, the document is encrypted, and the permissions and
information required to validate the passwords are stored in the encryption
dictionary. (An application may also create an encrypted document without any
user interaction if it has some other source of information about what passwords
and permissions to use.)

If a user attempts to open an encrypted document that has a user password, the
application should prompt for a password. Correctly supplying either password
enables the user to open the document, decrypt it, and display it on the screen. If
the document does not have a user password, no password is requested; the
application can simply open, decrypt, and display the document. Whether
additional operations are allowed on a decrypted document depends on which
password (if any) was supplied when the document was opened and on any
access restrictions that were specified when the document was created:

• Opening the document with the correct owner password (assuming it is not the
same as the user password) allows full (owner) access to the document. This

EncryptionSECTION 3.5
121

unlimited access includes the ability to change the document’s passwords and
access permissions.

• Opening the document with the correct user password (or opening a docu-
ment that does not have a user password) allows additional operations to be
performed according to the user access permissions specified in the docu-
ment’s encryption dictionary.

Access permissions are specified in the form of flags corresponding to the various
operations, and the set of operations to which they correspond depends on the
security handler’s revision number (also stored in the encryption dictionary). If
the revision number is 2 or greater, the operations to which user access can be
controlled are as follows:

• Modifying the document’s contents

• Copying or otherwise extracting text and graphics from the document, includ-
ing extraction for accessibility purposes (that is, to make the contents of the
document accessible through assistive technologies such as screen readers or
Braille output devices; see Section 10.8, “Accessibility Support”)

• Adding or modifying text annotations (see “Text Annotations” on page 621)
and interactive form fields (Section 8.6, “Interactive Forms”)

• Printing the document

If the security handler’s revision number is 3 or greater, user access to the
following operations can be controlled more selectively:

• Filling in forms (that is, filling in existing interactive form fields) and signing
the document (which amounts to filling in existing signature fields, a type of
interactive form field).

• Assembling the document: inserting, rotating, or deleting pages and creating
navigation elements such as bookmarks or thumbnail images (see Section 8.2,
“Document-Level Navigation”).

• Printing to a representation from which a faithful digital copy of the PDF con-
tent could be generated. Disallowing such printing may result in degradation of
output quality (a feature implemented as “Print As Image” in Acrobat).

In addition, revisions 3 and greater enable the extraction of text and graphics (in
support of accessibility to users with disabilities or for other purposes) to be
controlled separately.

SyntaxCHAPTER 3
122

If revision 4 is specified, the standard security handler supports crypt filters (see
Section 3.5.4, “Crypt Filters”). The support is limited to the Identity crypt filter
(see Table 3.23) and crypt filters named StdCF whose dictionaries contain a CFM
value of V2 or AESV2 and an AuthEvent value of DocOpen.

Note: Once the document has been opened and decrypted successfully, the applica-
tion has access to the entire contents of the document. There is nothing inherent in
PDF encryption that enforces the document permissions specified in the encryption
dictionary. It is up to the implementors of PDF consumer applications to respect the
intent of the document creator by restricting user access to an encrypted PDF file ac-
cording to the permissions contained in the file.

Note: PDF 1.5 introduces a set of access permissions that do not require the docu-
ment to be encrypted; see Section 8.7.3, “Permissions.”

Standard Encryption Dictionary

Table 3.19 shows the encryption dictionary entries for the standard security
handler (in addition to those in Table 3.18).

TABLE 3.19 Additional encryption dictionary entries for the standard security handler

KEY TYPE VALUE

R number (Required) A number specifying which revision of the standard security handler
should be used to interpret this dictionary:

• 2 if the document is encrypted with a V value less than 2 (see Table 3.18) and
does not have any of the access permissions set (by means of the P entry, below)
that are designated “Revision 3 or greater” in Table 3.20

• 3 if the document is encrypted with a V value of 2 or 3, or has any “Revision 3
or greater” access permissions set

• 4 if the document is encrypted with a V value of 4

O string (Required) A 32-byte string, based on both the owner and user passwords, that is
used in computing the encryption key and in determining whether a valid owner
password was entered. For more information, see “Encryption Key Algorithm” on
page 124 and “Password Algorithms” on page 126.

EncryptionSECTION 3.5
123

The values of the O and U entries in this dictionary are used to determine
whether a password entered when the document is opened is the correct owner
password, user password, or neither.

The value of the P entry is an unsigned 32-bit integer containing a set of flags
specifying which access permissions should be granted when the document is
opened with user access. Table 3.20 shows the meanings of these flags. Bit
positions within the flag word are numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position enables the corresponding access permission.
Which bits are meaningful, and in some cases how they are interpreted, depends
on the security handler’s revision number (specified in the encryption
dictionary’s R entry).

Note: PDF integer objects are represented internally in signed twos-complement
form. Since all the reserved high-order flag bits in the encryption dictionary’s P val-
ue are required to be 1, the value must be specified as a negative integer. For exam-
ple, assuming revision 2 of the security handler, the value -44 permits printing and
copying but disallows modifying the contents and annotations.

TABLE 3.20 User access permissions

U string (Required) A 32-byte string, based on the user password, that is used in determin-
ing whether to prompt the user for a password and, if so, whether a valid user or
owner password was entered. For more information, see “Password Algorithms”
on page 126.

P integer (Required) A set of flags specifying which operations are permitted when the doc-
ument is opened with user access (see Table 3.20).

EncryptMetadata boolean (Optional; meaningful only when the value of V is 4; PDF 1.5) Indicates whether
the document-level metadata stream (see Section 10.2.2, “Metadata Streams”) is
to be encrypted. Applications should respect this value.

Default value: true.

BIT POSITION MEANING

1–2 Reserved; must be 0.

3 (Revision 2) Print the document.
(Revision 3 or greater) Print the document (possibly not at the high-
est quality level, depending on whether bit 12 is also set).

KEY TYPE VALUE

SyntaxCHAPTER 3
124

Encryption Key Algorithm

As noted earlier, one function of a security handler is to generate an encryption
key for use in encrypting and decrypting the contents of a document. Given a
password string, the standard security handler computes an encryption key as
shown in Algorithm 3.2.

4 Modify the contents of the document by operations other than
those controlled by bits 6, 9, and 11.

5 (Revision 2) Copy or otherwise extract text and graphics from the
document, including extracting text and graphics (in support of ac-
cessibility to users with disabilities or for other purposes).
(Revision 3 or greater) Copy or otherwise extract text and graphics
from the document by operations other than that controlled by bit
10.

6 Add or modify text annotations, fill in interactive form fields, and,
if bit 4 is also set, create or modify interactive form fields (including
signature fields).

7–8 Reserved; must be 1.

9 (Revision 3 or greater) Fill in existing interactive form fields (includ-
ing signature fields), even if bit 6 is clear.

10 (Revision 3 or greater) Extract text and graphics (in support of ac-
cessibility to users with disabilities or for other purposes).

11 (Revision 3 or greater) Assemble the document (insert, rotate, or de-
lete pages and create bookmarks or thumbnail images), even if bit 4
is clear.

12 (Revision 3 or greater) Print the document to a representation from
which a faithful digital copy of the PDF content could be generated.
When this bit is clear (and bit 3 is set), printing is limited to a low-
level representation of the appearance, possibly of degraded quality.
(See implementation note 25 in Appendix H.)

13–32 (Revision 3 or greater) Reserved; must be 1.

BIT POSITION MEANING

EncryptionSECTION 3.5
125

Algorithm 3.2 Computing an encryption key

1. Pad or truncate the password string to exactly 32 bytes. If the password string is
more than 32 bytes long, use only its first 32 bytes; if it is less than 32 bytes long,
pad it by appending the required number of additional bytes from the beginning
of the following padding string:

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
 2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is n bytes long, append the first 32 − n bytes of the
padding string to the end of the password string. If the password string is empty
(zero-length), meaning there is no user password, substitute the entire padding
string in its place.

2. Initialize the MD5 hash function and pass the result of step 1 as input to this func-
tion.

3. Pass the value of the encryption dictionary’s O entry to the MD5 hash function.
(Algorithm 3.3 shows how the O value is computed.)

4. Treat the value of the P entry as an unsigned 4-byte integer and pass these bytes to
the MD5 hash function, low-order byte first.

5. Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.13 on page 97) to the MD5 hash
function. (See implementation note 26 in Appendix H.)

6. (Revision 4 or greater) If document metadata is not being encrypted, pass 4 bytes
with the value 0xFFFFFFFF to the MD5 hash function.

7. Finish the hash.

8. (Revision 3 or greater) Do the following 50 times: Take the output from the previ-
ous MD5 hash and pass the first n bytes of the output as input into a new MD5
hash, where n is the number of bytes of the encryption key as defined by the value
of the encryption dictionary’s Length entry.

9. Set the encryption key to the first n bytes of the output from the final MD5 hash,
where n is always 5 for revision 2 but, for revision 3 or greater, depends on the val-
ue of the encryption dictionary’s Length entry.

This algorithm, when applied to the user password string, produces the
encryption key used to encrypt or decrypt string and stream data according to
Algorithm 3.1 on page 119. Parts of this algorithm are also used in the algorithms
described below.

SyntaxCHAPTER 3
126

Password Algorithms

In addition to the encryption key, the standard security handler must provide the
contents of the encryption dictionary (Table 3.18 on page 116 and Table 3.19 on
page 122). The values of the Filter, V, Length, R, and P entries are straightforward,
but the computation of the O (owner password) and U (user password) entries
requires further explanation. Algorithms 3.3 through 3.5 show how the values of
the owner password and user password entries are computed (with separate
versions of the latter depending on the revision of the security handler).

Algorithm 3.3 Computing the encryption dictionary’s O (owner password) value

1. Pad or truncate the owner password string as described in step 1 of Algorithm 3.2.
If there is no owner password, use the user password instead. (See implementation
note 27 in Appendix H.)

2. Initialize the MD5 hash function and pass the result of step 1 as input to this function.

3. (Revision 3 or greater) Do the following 50 times: Take the output from the previ-
ous MD5 hash and pass it as input into a new MD5 hash.

4. Create an RC4 encryption key using the first n bytes of the output from the final
MD5 hash, where n is always 5 for revision 2 but, for revision 3 or greater, depends
on the value of the encryption dictionary’s Length entry.

5. Pad or truncate the user password string as described in step 1 of Algorithm 3.2.

6. Encrypt the result of step 5, using an RC4 encryption function with the encryp-
tion key obtained in step 4.

7. (Revision 3 or greater) Do the following 19 times: Take the output from the previ-
ous invocation of the RC4 function and pass it as input to a new invocation of the
function; use an encryption key generated by taking each byte of the encryption
key obtained in step 4 and performing an XOR (exclusive or) operation between
that byte and the single-byte value of the iteration counter (from 1 to 19).

8. Store the output from the final invocation of the RC4 function as the value of the
O entry in the encryption dictionary.

Algorithm 3.4 Computing the encryption dictionary’s U (user password) value (Revision 2)

1. Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.

2. Encrypt the 32-byte padding string shown in step 1 of Algorithm 3.2, using an
RC4 encryption function with the encryption key from the preceding step.

3. Store the result of step 2 as the value of the U entry in the encryption dictionary.

EncryptionSECTION 3.5
127

Algorithm 3.5 Computing the encryption dictionary’s U (user password) value (Revision 3
or greater)

1. Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.

2. Initialize the MD5 hash function and pass the 32-byte padding string shown in
step 1 of Algorithm 3.2 as input to this function.

3. Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.13 on page 97) to the hash function
and finish the hash. (See implementation note 26 in Appendix H.)

4. Encrypt the 16-byte result of the hash, using an RC4 encryption function with the
encryption key from step 1.

5. Do the following 19 times: Take the output from the previous invocation of the
RC4 function and pass it as input to a new invocation of the function; use an en-
cryption key generated by taking each byte of the original encryption key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

6. Append 16 bytes of arbitrary padding to the output from the final invocation of
the RC4 function and store the 32-byte result as the value of the U entry in the en-
cryption dictionary.

The standard security handler uses Algorithms 3.6 and 3.7 to determine whether
a supplied password string is the correct user or owner password. Note too that
Algorithm 3.6 can be used to determine whether a document’s user password is
the empty string, and therefore whether to suppress prompting for a password
when the document is opened.

Algorithm 3.6 Authenticating the user password

1. Perform all but the last step of Algorithm 3.4 (Revision 2) or Algorithm 3.5 (Revi-
sion 3 or greater) using the supplied password string.

2. If the result of step 1 is equal to the value of the encryption dictionary’s U entry
(comparing on the first 16 bytes in the case of Revision 3 or greater), the password
supplied is the correct user password. The key obtained in step 1 (that is, in the
first step of Algorithm 3.4 or 3.5) can be used to decrypt the document using Al-
gorithm 3.1 on page 119.

SyntaxCHAPTER 3
128

Algorithm 3.7 Authenticating the owner password

1. Compute an encryption key from the supplied password string, as described in
steps 1 to 4 of Algorithm 3.3.

2. (Revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using
an RC4 encryption function with the encryption key computed in step 1.

(Revision 3 or greater) Do the following 20 times: Decrypt the value of the encryp-
tion dictionary’s O entry (first iteration) or the output from the previous iteration
(all subsequent iterations), using an RC4 encryption function with a different en-
cryption key at each iteration. The key is generated by taking the original key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between each
byte of the key and the single-byte value of the iteration counter (from 19 to 0).

3. The result of step 2 purports to be the user password. Authenticate this user pass-
word using Algorithm 3.6. If it is correct, the password supplied is the correct
owner password.

3.5.3 Public-Key Security Handlers

Security handlers may use public-key encryption technology to encrypt a
document (or strings and streams within a document). When doing so, it is
possible to specify one or more lists of recipients, where each list has its own
unique access permissions. Only specified recipients can open the encrypted
document or content, unlike the standard security handler, where a password
determines access. The permissions defined for public-key security handlers are
identical to those defined for the standard security handler (see Section 3.5.2,
“Standard Security Handler”).

Public-key security handlers use the industry standard Public Key Cryptographic
Standard Number 7 (PKCS#7) binary encoding syntax to encode recipient list,
decryption key, and access permission information. The PKCS#7 specification is
in Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see
the Bibliography).

When encrypting the data, each recipient’s X.509 public key certificate (as
described in ITU-T Recommendation X.509; see the Bibliography) must be
available. When decrypting the data, the application scans the recipient list for
which the content is encrypted and attempts to find a match with a certificate that
belongs to the user. If a match is found, the user requires access to the
corresponding private key, which may require authentication, possibly using a
password. Once access is obtained, the private key is used to decrypt the
encrypted data.

EncryptionSECTION 3.5
129

Public-Key Encryption Dictionary

Encryption dictionaries for public-key security handlers contain the common
entries shown in Table 3.18, whose values are described below. In addition, they
may contain the entry shown in Table 3.21.

The Filter entry is the name of a public-key security handler. Examples of existing
security handlers that support public-key encryption are Entrust.PPKEF,
Adobe.PPKLite, and Adobe.PubSec. This handler will be the preferred handler
when encrypting the document.

Permitted values of the SubFilter entry for use with conforming public-key
security handlers are adbe.pkcs7.s3, adbe.pkcs7.s4, which are used when not
using crypt filters (see Section 3.5.4, “Crypt Filters”) and adbe.pkcs7.s5, which is
used when using crypt filters.

The CF, StmF, and StrF entries may be present when SubFilter is adbe.pkcs7.s5.

TABLE 3.21 Additional encryption dictionary entries for public-key security handlers

KEY TYPE VALUE

Recipients array (Required when SubFilter is adbe.pkcs7.s3 or adbe.pkcs7.s4; PDF 1.3) An array of
byte-strings, where each string is a PKCS#7 object listing recipients who have been
granted equal access rights to the document. The data contained in the PKCS#7 ob-
ject includes both a cryptographic key that is used to decrypt the encrypted data
and the access permissions (see Table 3.20) that apply to the recipient list. There
should be only one PKCS#7 object per unique set of access permissions; if a recipi-
ent appears in more than one list, the permissions used are those in the first match-
ing list.

Note: When SubFilter is adbe.pkcs7.s5, recipient lists are specified in the crypt filter
dictionary; see Table 3.24.

SyntaxCHAPTER 3
130

Public-Key Encryption Algorithms

Figure 3.4 illustrates how PKCS#7 objects are used when encrypting PDF files. A
PKCS#7 object is designed to encapsulate and encrypt what is referred to as the
enveloped data.

FIGURE 3.4 Public-key encryption algorithm

The enveloped data in the PKCS#7 object contains keying material that must be
used to decrypt the document (or individual strings or streams in the document,
when crypt filters are used; see Section 3.5.4, “Crypt Filters”). A key is used to
encrypt (and decrypt) the enveloped data. This key (the plaintext key in Figure
3.4) is encrypted for each recipient, using that recipient’s public key, and is stored
in the PKCS#7 object (as the encrypted key for each recipient). To decrypt the
document, that key is decrypted using the recipient’s private key, which yields a
decrypted (plaintext) key. That key, in turn, is used to decrypt the enveloped data
in the PKCS#7 object, resulting in a byte array that includes the following
information:

• A 20-byte seed that is used to create the encryption key that is used by Algo-
rithm 3.1. The seed should be a unique random number generated by the secu-
rity handler that encrypted the document.

• A 4-byte value defining the permissions, least significant byte first. See
Table 3.20 for the possible permission values.

20-byte seed Permissions*PKCS#7 Object

Enveloped data

Encrypted key

John Doe Decrypt

John Doe’s private key

Plaintext key

Decrypt

Plaintext byte array

Used to generate
encryption key as

described on page
131

Encrypted key

Jeff Smith

* Permissions not present
when PKCS#7 object is ref-
erenced from Crypt filter
decode parameter dictio-
nary

EncryptionSECTION 3.5
131

• When SubFilter is adbe.pkcs7.s3, the relevant permissions are restricted to
those specified for revision 2 of the standard security handler.

• For adbe.pkcs7.s4, revision 3 permissions apply.

• For adbe.pkcs7.s5, which supports the use of crypt filters, the permissions
are the same as adbe.pkcs7.s4 when the crypt filter is referenced from the
StmF or StrF entries of the encryption dictionary. When referenced from the
Crypt filter decode parameter dictionary of a stream object (see Table 3.12),
the 4 bytes of permissions are absent from the enveloped data.

The algorithms that may be used to encrypt the enveloped data in the PKCS#7
object are: RC4 with key lengths up to 256-bits, DES, Triple DES, RC2 with key
lengths up to 128 bits, 128-bit AES in Cipher Block Chaining (CBC) mode, 192-
bit AES in CBC mode, 256-bit AES in CBC mode. Acrobat products have used
Triple DES to encrypt the enveloped data, and support all of these listed
algorithms when decrypting the enveloped data. The PKCS#7 specification is in
Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see the
Bibliography).

The encryption key that is used by Algorithm 3.1 is calculated by means of an
SHA-1 message digest operation that digests the following data, in order:

1. The 20 bytes of seed

2. The bytes of each item in the Recipients array of PKCS#7 objects in the order
in which they appear in the array

3. 4 bytes with the value 0xFF if the key being generated is intended for use in
document-level encryption and the document metadata is being left as plain-
text

The first n/8 bytes of the resulting digest is used as the encryption key, where n is
the bit length of the RC4 key.

3.5.4 Crypt Filters

PDF 1.5 introduces crypt filters, which provide finer granularity control of
encryption within a PDF file. The use of crypt filters involves the following
structures:

• The encryption dictionary (see Table 3.18) contains entries that enumerate the
crypt filters in the document (CF) and specify which ones are used by default to

SyntaxCHAPTER 3
132

decrypt all the streams (StmF) and strings (StrF) in the document. In addition,
the value of the V entry must be 4 to use crypt filters.

• Each crypt filter specified in the CF entry of the encryption dictionary is repre-
sented by a crypt filter dictionary, whose entries are shown in Table 3.22.

• A stream filter type, the Crypt filter (see Section 3.3.9, “Crypt Filter”) can be
specified for any stream in the document to override the default filter for
streams. A standard Identity filter is provided (see Table 3.23) to allow specific
streams, such as document metadata, to be unencrypted in an otherwise en-
crypted document. The stream’s DecodeParms entry must contain a Crypt filter
decode parameters dictionary (see Table 3.12) whose Name entry specifies the
particular crypt filter to be used (if missing, Identity is used). Different streams
may specify different crypt filters; however, see implementation notes 28 and
29 in Appendix H.

Authorization to decrypt a stream must always be obtained before the stream can
be accessed. This typically occurs when the document is opened, as specified by a
value of DocOpen for the AuthEvent entry in the crypt filter dictionary. PDF
consumer applications and security handlers should treat any attempt to access a
stream for which authorization has failed as an error. AuthEvent may also be
EFOpen, which indicates the presence of an embedded file that is encrypted with
a crypt filter that may be different from the crypt filters used by default to encrypt
strings and streams in the document; see implementation note 31 in Appendix H.

By specifying a value of None for the CFM entry in the crypt filter dictionary, the
security handler can do its own decryption. This allows the handler to tightly
control key management and use any preferred symmetric-key cryptographic
algorithm.

TABLE 3.22 Entries common to all crypt filter dictionaries

KEY TYPE VALUE

Type name (Optional) If present, must be CryptFilter for a crypt filter dictionary.

EncryptionSECTION 3.5
133

CFM name (Optional) The method used, if any, by the consumer application to decrypt
data. The following values are supported:

None The application does not decrypt data but directs the input stream
to the security handler for decryption. (See implementation note
30 in Appendix H.)

V2 The application asks the security handler for the encryption key
and implicitly decrypts data with Algorithm 3.1, using the RC4 al-
gorithm.

AESV2 (PDF 1.6) The application asks the security handler for the en-
cryption key and implicitly decrypts data with Algorithm 3.1, us-
ing the AES algorithm in Cipher Block Chaining (CBC) mode
with a 16-byte block size and an initialization vector that is ran-
domly generated and placed as the first 16 bytes in the stream or
string.

When the value is V2 or AESV2, the application may ask once for this encryp-
tion key and cache the key for subsequent use for streams that use the same
crypt filter. Therefore, there must be a one-to-one relationship between a
crypt filter name and the corresponding encryption key.

Only the values listed here are supported. Applications that encounter other
values should report that the file is encrypted with an unsupported algo-
rithm.

Default value: None.

AuthEvent name (Optional) The event to be used to trigger the authorization that is required
to access encryption keys used by this filter. If authorization fails, the event
should fail. Valid values are:

• DocOpen: Authorization is required when a document is opened.

• EFOpen: Authorization is required when accessing embedded files.

Default value: DocOpen.

If this filter is used as the value of StrF or StmF in the encryption dictionary
(see Table 3.18), the application should ignore this key and behave as if the
value is DocOpen.

KEY TYPE VALUE

SyntaxCHAPTER 3
134

Security handlers can add their own private data to crypt filter dictionaries.
Names for private data entries must conform to the PDF name registry (see
Appendix E, “PDF Name Registry”).

TABLE 3.23 Standard crypt filter names

Table 3.24 lists the additional crypt filter dictionary entries used by public-key
security handlers (see Section 3.5.3, “Public-Key Security Handlers”). When
these entries are present, the value of CFM must be V2 or AESV2.

TABLE 3.24 Additional crypt filter dictionary entries for public-key security handlers

Length integer (Optional) The bit length of the encryption key. It must be a multiple of 8 in
the range of 40 to 128.

Note: Security handlers can define their own use of the Length entry but are en-
couraged to use it to define the bit length of the encryption key.

NAME DESCRIPTION

Identity Input data is passed through without any processing.

KEY TYPE VALUE

Recipients array or
string

(Required) If the crypt filter is referenced from StmF or StrF in the encryption
dictionary, this entry is an array of byte strings, where each string is a binary-
encoded PKCS#7 object listing recipients that have been granted equal access
rights to the document. The enveloped data contained in the PKCS#7 object
includes both a 20-byte seed value used to compute the encryption key (see
“Public-Key Encryption Algorithms” on page 130) followed by 4 bytes of per-
missions settings (see Table 3.20) that apply to the recipient list. There should
be only one object per unique set of access permissions. If a recipient appears
in more than one list, the permissions used are those in the first matching list.

If the crypt filter is referenced from a Crypt filter decode parameter dictio-
nary (see Table 3.12), this entry is a string that is a binary-encoded PKCS#7
object containing a list of all recipients who are permitted to access the corre-
sponding encrypted stream. The enveloped data contained in the PKCS#7
object is a 20-byte seed value used to create the encryption key that is used by
Algorithm 3.1.

KEY TYPE VALUE

EncryptionSECTION 3.5
135

Example 3.12 shows the use of crypt filters in an encrypted document containing
a plaintext document-level metadata stream. The metadata stream is left as is by
applying the Identity crypt filter. The remaining streams and strings are
decrypted using the default filters.

Example 3.12

%PDF1.5
1 0 obj % Document catalog

<< /Type /Catalog
/Pages 2 0 R
/Metadata 6 0 R

>>
endobj
2 0 obj % Page tree

<< /Type /Pages
/Kids [3 0 R]
/Count 1

>>
endobj
3 0 obj % 1s t page

<< /Type /Page
/Parent 2 0 R
/MediaBox [0 0 612 792]
/Contents 4 0 R

>>
endobj
4 0 obj % Page contents

<< /Length 35 >>
stream

*** Encrypted Page-marking operators ***
endstream

endobj

EncryptMetadata boolean (Optional; used only by crypt filters that are referenced from StmF in an encryp-
tion dictionary) Indicates whether the document-level metadata stream (see
Section 10.2.2, “Metadata Streams”) is to be encrypted. PDF consumer appli-
cations should respect this value when determining whether metadata should
be encrypted; see implementation note 32 in Appendix H.

Default value: true.

KEY TYPE VALUE

SyntaxCHAPTER 3
136

5 0 obj
<< /Title ($#*#%*$#^&##) >> % Info dictionary: encrypted text string

endobj
6 0 obj

<< /Type /Metadata
/Subtype /XML
/Length 15
/Filter [/Crypt] % Uses a crypt filter
/DecodeParms % with these parameters
<< /Type /CryptFilterDecodeParms

/Name /Identity % Indicates no encryption
>>

>>
stream

XML metadata % Unencrypted metadata
endstream

endobj
8 0 obj % Encryption dictionary

<< /Filter /MySecurityHandlerName
/V 4 % Version 4: allow crypt filters
/CF % List of crypt filters
<< /MyFilter0

<< /Type /CryptFilter
/CFM V2 >> % Uses the standard algorithm

>>
/StrF /MyFilter0 % Strings are decrypted using /MyFilter0
/StmF /MyFilter0 % Streams are decrypted using /MyFilter0

... % Private data for /MySecurityHandlerName
/MyUnsecureKey (12345678)
/EncryptMetadata false

>>
endobj
xref

....
trailer

<< /Size 8
/Root 1 0 R
/Info 5 0 R
/Encrypt 8 0 R

>>
startxref
495
%%EOF

Document StructureSECTION 3.6
137

3.6 Document Structure

A PDF document can be regarded as a hierarchy of objects contained in the
body section of a PDF file. At the root of the hierarchy is the document’s catalog
dictionary (see Section 3.6.1, “Document Catalog”). Most of the objects in the
hierarchy are dictionaries. For example, each page of the document is
represented by a page object—a dictionary that includes references to the page’s
contents and other attributes, such as its thumbnail image (Section 8.2.3,
“Thumbnail Images”) and any annotations (Section 8.4, “Annotations”)
associated with it. The individual page objects are tied together in a structure
called the page tree (described in Section 3.6.2, “Page Tree”), which in turn is
specified by an indirect reference in the document catalog. Parent, child, and
sibling relationships within the hierarchy are defined by dictionary entries whose
values are indirect references to other dictionaries. Figure 3.5 illustrates the
structure of the object hierarchy.

Note: The data structures described in this section, particularly the catalog and page
dictionaries, combine entries describing document structure with ones dealing with
the detailed semantics of documents and pages. All entries are listed here, but many
of their descriptions are deferred to subsequent chapters.

3.6.1 Document Catalog

The root of a document’s object hierarchy is the catalog dictionary, located by
means of the Root entry in the trailer of the PDF file (see Section 3.4.4, “File
Trailer”). The catalog contains references to other objects defining the
document’s contents, outline, article threads (PDF 1.1), named destinations, and
other attributes. In addition, it contains information about how the document
should be displayed on the screen, such as whether its outline and thumbnail
page images should be displayed automatically and whether some location other
than the first page should be shown when the document is opened. Table 3.25
shows the entries in the catalog dictionary.

SyntaxCHAPTER 3
138

FIGURE 3.5 Structure of a PDF document

Outline
entry

Page

Thumbnail
image

Annotations

Bead

Bead

Thread

Outline
entry

Content
stream

Thread

Named
destinations

Article
threads

Interactive
form

Outline
hierarchy

Document catalog

Page

•
•
•

•
•
•

•
•
•

•
•
•

Page
tree

• • •

• • •

• • •

• • •

Document StructureSECTION 3.6
139

TABLE 3.25 Entries in the catalog dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must
be Catalog for the catalog dictionary.

Version name (Optional; PDF 1.4) The version of the PDF specification to which the
document conforms (for example, 1.4) if later than the version specified
in the file’s header (see Section 3.4.1, “File Header”). If the header speci-
fies a later version, or if this entry is absent, the document conforms to
the version specified in the header. This entry enables a PDF producer
application to update the version using an incremental update; see Sec-
tion 3.4.5, “Incremental Updates.” (See implementation note 33 in Ap-
pendix H.)

Note: The value of this entry is a name object, not a number, and therefore
must be preceded by a slash character (/) when written in the PDF file (for
example, /1.4).

Pages dictionary (Required; must be an indirect reference) The page tree node that is the
root of the document’s page tree (see Section 3.6.2, “Page Tree”).

PageLabels number tree (Optional; PDF 1.3) A number tree (see Section 3.8.6, “Number Trees”)
defining the page labeling for the document. The keys in this tree are
page indices; the corresponding values are page label dictionaries (see
Section 8.3.1, “Page Labels”). Each page index denotes the first page in a
labeling range to which the specified page label dictionary applies. The
tree must include a value for page index 0.

Names dictionary (Optional; PDF 1.2) The document’s name dictionary (see Section 3.6.3,
“Name Dictionary”).

Dests dictionary (Optional; PDF 1.1; must be an indirect reference) A dictionary of names
and corresponding destinations (see “Named Destinations” on page
583).

ViewerPreferences dictionary (Optional; PDF 1.2) A viewer preferences dictionary (see Section 8.1,
“Viewer Preferences”) specifying the way the document is to be dis-
played on the screen. If this entry is absent, applications should use their
own current user preference settings.

SyntaxCHAPTER 3
140

PageLayout name (Optional) A name object specifying the page layout to be used when the
document is opened:

SinglePage Display one page at a time
OneColumn Display the pages in one column
TwoColumnLeft Display the pages in two columns, with odd-

numbered pages on the left
TwoColumnRight Display the pages in two columns, with odd-

numbered pages on the right
TwoPageLeft (PDF 1.5) Display the pages two at a time, with

odd-numbered pages on the left
TwoPageRight (PDF 1.5) Display the pages two at a time, with

odd-numbered pages on the right

Default value: SinglePage.

PageMode name (Optional) A name object specifying how the document should be dis-
played when opened:

UseNone Neither document outline nor thumbnail im-
ages visible

UseOutlines Document outline visible
UseThumbs Thumbnail images visible
FullScreen Full-screen mode, with no menu bar, window

controls, or any other window visible
UseOC (PDF 1.5) Optional content group panel visible
UseAttachments (PDF 1.6) Attachments panel visible

Default value: UseNone.

Outlines dictionary (Optional; must be an indirect reference) The outline dictionary that is
the root of the document’s outline hierarchy (see Section 8.2.2, “Docu-
ment Outline”).

Threads array (Optional; PDF 1.1; must be an indirect reference) An array of thread
dictionaries representing the document’s article threads (see Section
8.3.2, “Articles”).

OpenAction array or
dictionary

(Optional; PDF 1.1) A value specifying a destination to be displayed or
an action to be performed when the document is opened. The value is
either an array defining a destination (see Section 8.2.1, “Destinations”)
or an action dictionary representing an action (Section 8.5, “Actions”). If
this entry is absent, the document should be opened to the top of the
first page at the default magnification factor.

KEY TYPE VALUE

Document StructureSECTION 3.6
141

AA dictionary (Optional; PDF 1.4) An additional-actions dictionary defining the ac-
tions to be taken in response to various trigger events affecting the docu-
ment as a whole (see “Trigger Events” on page 648). (See also
implementation note 34 in Appendix H.)

URI dictionary (Optional; PDF 1.1) A URI dictionary containing document-level infor-
mation for URI (uniform resource identifier) actions (see “URI Actions”
on page 662).

AcroForm dictionary (Optional; PDF 1.2) The document’s interactive form (AcroForm) dictio-
nary (see Section 8.6.1, “Interactive Form Dictionary”).

Metadata stream (Optional; PDF 1.4; must be an indirect reference) A metadata stream
containing metadata for the document (see Section 10.2.2, “Metadata
Streams”).

StructTreeRoot dictionary (Optional; PDF 1.3) The document’s structure tree root dictionary (see
Section 10.6.1, “Structure Hierarchy”).

MarkInfo dictionary (Optional; PDF 1.4) A mark information dictionary containing informa-
tion about the document’s usage of Tagged PDF conventions (see Sec-
tion 10.6, “Logical Structure”).

Lang text string (Optional; PDF 1.4) A language identifier specifying the natural language
for all text in the document except where overridden by language speci-
fications for structure elements or marked content (see Section 10.8.1,
“Natural Language Specification”). If this entry is absent, the language is
considered unknown.

SpiderInfo dictionary (Optional; PDF 1.3) A Web Capture information dictionary containing
state information used by the Acrobat Web Capture (AcroSpider) plug-
in extension (see Section 10.9.1, “Web Capture Information Dictio-
nary”).

OutputIntents array (Optional; PDF 1.4) An array of output intent dictionaries describing the
color characteristics of output devices on which the document might be
rendered (see “Output Intents” on page 970).

PieceInfo dictionary (Optional; PDF 1.4) A page-piece dictionary associated with the docu-
ment (see Section 10.4, “Page-Piece Dictionaries”).

OCProperties dictionary (Optional; PDF 1.5; required if a document contains optional content) The
document’s optional content properties dictionary (see Section 4.10.3,
“Configuring Optional Content”).

KEY TYPE VALUE

SyntaxCHAPTER 3
142

Example 3.13 shows a sample catalog object.

Example 3.13

1 0 obj
<< /Type /Catalog

 /Pages 2 0 R
 /PageMode /UseOutlines
 /Outlines 3 0 R

>>
endobj

Perms dictionary (Optional; PDF 1.5) A permissions dictionary that specifies user access
permissions for the document. Section 8.7.3, “Permissions,” describes
this dictionary and how it is used.

Legal dictionary (Optional; PDF 1.5) A dictionary containing attestations regarding the
content of a PDF document, as it relates to the legality of digital signa-
tures (see Section 8.7.4, “Legal Content Attestations”).

Requirements array (Optional; PDF 1.7) An array of requirement dictionaries representing
requirements for the document. Section 8.9, “Document Requirements,”
describes this dictionary and how to use it.

Collection dictionary (Optional; PDF 1.7) A collection dictionary that a PDF consumer uses to
enhance the presentation of file attachments stored in the PDF docu-
ment. (see Section 8.2.4, “Collections”).

NeedsRendering boolean (Optional; PDF 1.7) A flag used to expedite the display of PDF docu-
ments containing XFA forms. It specifies whether the document must be
regenerated when the document is first opened.

If true, the viewer application treats the document as a shell and regener-
ates the content when the document is opened, regardless of any dynam-
ic forms settings that appear in the XFA stream itself. This setting is used
to expedite the display of documents whose layout varies depending on
the content of the XFA streams.

If false, the viewer application does not regenerate the content when the
document is opened. See the XML Forms Architecture (XFA) Specifica-
tion (Bibliography).

Default value: false.

KEY TYPE VALUE

Document StructureSECTION 3.6
143

3.6.2 Page Tree

The pages of a document are accessed through a structure known as the page tree,
which defines the ordering of pages in the document. The tree structure allows
PDF consumer applications, using only limited memory, to quickly open a
document containing thousands of pages. The tree contains nodes of two types—
intermediate nodes, called page tree nodes, and leaf nodes, called page objects—
whose form is described in the sections below. Applications should be prepared
to handle any form of tree structure built of such nodes. The simplest structure
would consist of a single page tree node that references all of the document’s page
objects directly. However, to optimize application performance, the Acrobat
Distiller program constructs trees of a particular form, known as balanced trees.
Further information on this form of tree can be found in Data Structures and
Algorithms, by Aho, Hopcroft, and Ullman (see the Bibliography).

Page Tree Nodes

Table 3.26 shows the required entries in a page tree node.

TABLE 3.26 Required entries in a page tree node

Note: The structure of the page tree is not necessarily related to the logical structure
of the document; that is, page tree nodes do not represent chapters, sections, and so
forth. (Other data structures are defined for that purpose; see Section 10.6, “Logical
Structure.”) Applications that consume or produce PDF files are not required to pre-
serve the existing structure of the page tree.

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be Pages for
a page tree node.

Parent dictionary (Required except in root node; must be an indirect reference) The page tree node that
is the immediate parent of this one.

Kids array (Required) An array of indirect references to the immediate children of this node.
The children may be page objects or other page tree nodes.

Count integer (Required) The number of leaf nodes (page objects) that are descendants of this
node within the page tree.

SyntaxCHAPTER 3
144

Example 3.14 illustrates the page tree for a document with three pages. See “Page
Objects,” below, for the contents of the individual page objects, and Section G.4,
“Page Tree Example,” for a more extended example showing the page tree for a
longer document.

Example 3.14

2 0 obj
<< /Type /Pages

 /Kids [4 0 R
 10 0 R
 24 0 R
]

 /Count 3
>>

endobj

4 0 obj
<< /Type /Page

 … Additional entries describing the attributes of this page …
>>

endobj

10 0 obj
<< /Type /Page

 … Additional entries describing the attributes of this page …
>>

endobj

24 0 obj
<< /Type /Page

 … Additional entries describing the attributes of this page …
>>

endobj

In addition to the entries shown in Table 3.26, a page tree node may contain
further entries defining inherited attributes for the page objects that are its
descendants (see “Inheritance of Page Attributes” on page 149).

Page Objects

The leaves of the page tree are page objects, each of which is a dictionary
specifying the attributes of a single page of the document. Table 3.27 shows the
contents of this dictionary (see also implementation note 35 in Appendix H). The

Document StructureSECTION 3.6
145

table also identifies which attributes a page may inherit from its ancestor nodes in
the page tree, as described under “Inheritance of Page Attributes” on page 149.
Attributes that are not explicitly identified in the table as inheritable cannot be
inherited.

TABLE 3.27 Entries in a page object

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Page for a page object.

Parent dictionary (Required; must be an indirect reference) The page tree node that is the im-
mediate parent of this page object.

LastModified date (Required if PieceInfo is present; optional otherwise; PDF 1.3) The date and
time (see Section 3.8.3, “Dates”) when the page’s contents were most re-
cently modified. If a page-piece dictionary (PieceInfo) is present, the
modification date is used to ascertain which of the application data dictio-
naries that it contains correspond to the current content of the page (see
Section 10.4, “Page-Piece Dictionaries”).

Resources dictionary (Required; inheritable) A dictionary containing any resources required by
the page (see Section 3.7.2, “Resource Dictionaries”). If the page requires
no resources, the value of this entry should be an empty dictionary. Omit-
ting the entry entirely indicates that the resources are to be inherited from
an ancestor node in the page tree.

MediaBox rectangle (Required; inheritable) A rectangle (see Section 3.8.4, “Rectangles”), ex-
pressed in default user space units, defining the boundaries of the physical
medium on which the page is intended to be displayed or printed (see
Section 10.10.1, “Page Boundaries”).

CropBox rectangle (Optional; inheritable) A rectangle, expressed in default user space units,
defining the visible region of default user space. When the page is dis-
played or printed, its contents are to be clipped (cropped) to this rectangle
and then imposed on the output medium in some implementation-
defined manner (see Section 10.10.1, “Page Boundaries”). Default value:
the value of MediaBox.

BleedBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the region to which the contents of the page should be clipped
when output in a production environment (see Section 10.10.1, “Page
Boundaries”). Default value: the value of CropBox.

SyntaxCHAPTER 3
146

TrimBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the intended dimensions of the finished page after trimming (see
Section 10.10.1, “Page Boundaries”). Default value: the value of CropBox.

ArtBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the extent of the page’s meaningful content (including potential
white space) as intended by the page’s creator (see Section 10.10.1, “Page
Boundaries”). Default value: the value of CropBox.

BoxColorInfo dictionary (Optional; PDF 1.4) A box color information dictionary specifying the col-
ors and other visual characteristics to be used in displaying guidelines on
the screen for the various page boundaries (see “Display of Page Bound-
aries” on page 965). If this entry is absent, the application should use its
own current default settings.

Contents stream or array (Optional) A content stream (see Section 3.7.1, “Content Streams”) de-
scribing the contents of this page. If this entry is absent, the page is empty.

The value may be either a single stream or an array of streams. If the value
is an array, the effect is as if all of the streams in the array were concatenat-
ed, in order, to form a single stream. This allows PDF producers to create
image objects and other resources as they occur, even though they inter-
rupt the content stream. The division between streams may occur only at
the boundaries between lexical tokens (see Section 3.1, “Lexical Conven-
tions”) but is unrelated to the page’s logical content or organization. Ap-
plications that consume or produce PDF files are not required to preserve
the existing structure of the Contents array. (See implementation note 36
in Appendix H.)

Rotate integer (Optional; inheritable) The number of degrees by which the page should
be rotated clockwise when displayed or printed. The value must be a mul-
tiple of 90. Default value: 0.

Group dictionary (Optional; PDF 1.4) A group attributes dictionary specifying the attributes
of the page’s page group for use in the transparent imaging model (see
Sections 7.3.6, “Page Group,” and 7.5.5, “Transparency Group XObjects”).

Thumb stream (Optional) A stream object defining the page’s thumbnail image (see Sec-
tion 8.2.3, “Thumbnail Images”).

B array (Optional; PDF 1.1; recommended if the page contains article beads) An ar-
ray of indirect references to article beads appearing on the page (see Sec-
tion 8.3.2, “Articles”; see also implementation note 37 in Appendix H).
The beads are listed in the array in natural reading order.

KEY TYPE VALUE

Document StructureSECTION 3.6
147

Dur number (Optional; PDF 1.1) The page’s display duration (also called its advance
timing): the maximum length of time, in seconds, that the page is dis-
played during presentations before the viewer application automatically
advances to the next page (see Section 8.3.3, “Presentations”). By default,
the viewer does not advance automatically.

Trans dictionary (Optional; PDF 1.1) A transition dictionary describing the transition effect
to be used when displaying the page during presentations (see Section
8.3.3, “Presentations”).

Annots array (Optional) An array of annotation dictionaries representing annotations
associated with the page (see Section 8.4, “Annotations”).

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining actions to
be performed when the page is opened or closed (see Section 8.5.2, “Trig-
ger Events”; see also implementation note 38 in Appendix H).

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the page
(see Section 10.2.2, “Metadata Streams”).

PieceInfo dictionary (Optional; PDF 1.3) A page-piece dictionary associated with the page (see
Section 10.4, “Page-Piece Dictionaries”).

StructParents integer (Required if the page contains structural content items; PDF 1.3) The inte-
ger key of the page’s entry in the structural parent tree (see “Finding Struc-
ture Elements from Content Items” on page 868).

ID byte string (Optional; PDF 1.3; indirect reference preferred) The digital identifier of
the page’s parent Web Capture content set (see Section 10.9.5, “Object At-
tributes Related to Web Capture”).

PZ number (Optional; PDF 1.3) The page’s preferred zoom (magnification) factor: the
factor by which it should be scaled to achieve the natural display magnifi-
cation (see Section 10.9.5, “Object Attributes Related to Web Capture”).

SeparationInfo dictionary (Optional; PDF 1.3) A separation dictionary containing information need-
ed to generate color separations for the page (see Section 10.10.3, “Separa-
tion Dictionaries”).

Tabs name (Optional; PDF 1.5) A name specifying the tab order to be used for anno-
tations on the page. The possible values are R (row order), C (column or-
der), and S (structure order). See Section 8.4, “Annotations,” for details.

KEY TYPE VALUE

SyntaxCHAPTER 3
148

Example 3.15 shows the definition of a page object with a thumbnail image and
two annotations. The media box specifies that the page is to be printed on letter-
size paper. In addition, the resource dictionary is specified as a direct object and
shows that the page makes use of three fonts named F3, F5, and F7.

Example 3.15

3 0 obj
<< /Type /Page

 /Parent 4 0 R
 /MediaBox [0 0 612 792]
 /Resources << /Font << /F3 7 0 R

 /F5 9 0 R
 /F7 11 0 R

 >>
 /ProcSet [/PDF]

 >>
 /Contents 12 0 R
 /Thumb 14 0 R
 /Annots [23 0 R

 24 0 R
]

>>
endobj

TemplateInstantiated
name

(Required if this page was created from a named page object; PDF 1.5) The
name of the originating page object (see Section 8.6.5, “Named Pages”).

PresSteps dictionary (Optional; PDF 1.5) A navigation node dictionary representing the first
node on the page (see “Sub-page Navigation” on page 601).

UserUnit number (Optional; PDF 1.6) A positive number giving the size of default user
space units, in multiples of 1 ⁄ 72 inch. The range of supported values is im-
plementation-dependent; see implementation note 177 in Appendix H.

Default value: 1.0 (user unit is 1 ⁄ 72 inch).

VP dictionary (Optional; PDF 1.6) An array of viewport dictionaries (see Table 8.109)
specifying rectangular regions of the page.

KEY TYPE VALUE

Document StructureSECTION 3.6
149

Inheritance of Page Attributes

Some of the page attributes shown in Table 3.27 are designated as inheritable. If
such an attribute is omitted from a page object, its value is inherited from an
ancestor node in the page tree. If the attribute is a required one, a value must be
supplied in an ancestor node. If the attribute is optional and no inherited value is
specified, the default value is used.

An attribute can thus be defined once for a whole set of pages by specifying it in
an intermediate page tree node and arranging the pages that share the attribute as
descendants of that node. For example, a document might specify the same
media box for all of its pages by including a MediaBox entry in the root node of
the page tree. If necessary, an individual page object could override this inherited
value with a MediaBox entry of its own.

Note: In a document conforming to the Linearized PDF organization (see Appen-
dix F), all page attributes must be specified explicitly as entries in the page dictio-
naries to which they apply; they may not be inherited from an ancestor node.

Figure 3.6 illustrates the inheritance of attributes. In the page tree shown, pages 1,
2, and 4 are rotated clockwise by 90 degrees, page 3 by 270 degrees, page 6 by 180
degrees, and pages 5 and 7 not at all (0 degrees).

FIGURE 3.6 Inheritance of attributes

Pages

PagesPages
/Rotate 90

Pages
/Rotate 180

PagePage Page
/Rotate 0

PagePagePages

Page
/Rotate 90

Page
/Rotate 270

Page 1 Page 2 Page 5 Page 6 Page 7

Page 4 Page 3

SyntaxCHAPTER 3
150

3.6.3 Name Dictionary

Some categories of objects in a PDF file can be referred to by name rather than by
object reference. The correspondence between names and objects is established
by the document’s name dictionary (PDF 1.2), located by means of the Names
entry in the document’s catalog (see Section 3.6.1, “Document Catalog”). Each
entry in this dictionary designates the root of a name tree (Section 3.8.5, “Name
Trees”) defining names for a particular category of objects. Table 3.28 shows the
contents of the name dictionary.

TABLE 3.28 Entries in the name dictionary

KEY TYPE VALUE

Dests name tree (Optional; PDF 1.2) A name tree mapping name strings to destinations
(see “Named Destinations” on page 583).

AP name tree (Optional; PDF 1.3) A name tree mapping name strings to annotation
appearance streams (see Section 8.4.4, “Appearance Streams”).

JavaScript name tree (Optional; PDF 1.3) A name tree mapping name strings to document-level
JavaScript actions (see “JavaScript Actions” on page 709).

Pages name tree (Optional; PDF 1.3) A name tree mapping name strings to visible pages for
use in interactive forms (see Section 8.6.5, “Named Pages”).

Templates name tree (Optional; PDF 1.3) A name tree mapping name strings to invisible (tem-
plate) pages for use in interactive forms (see Section 8.6.5, “Named Pag-
es”).

IDS name tree (Optional; PDF 1.3) A name tree mapping digital identifiers to Web Cap-
ture content sets (see Section 10.9.3, “Content Sets”).

URLS name tree (Optional; PDF 1.3) A name tree mapping uniform resource locators
(URLs) to Web Capture content sets (see Section 10.9.3, “Content Sets”).

EmbeddedFiles name tree (Optional; PDF 1.4) A name tree mapping name strings to file specifica-
tions for embedded file streams (see Section 3.10.3, “Embedded File
Streams”).

AlternatePresentations name tree (Optional; PDF 1.4) A name tree mapping name strings to alternate pre-
sentations (see Section 9.4, “Alternate Presentations”).

Renditions name tree (Optional; PDF 1.5) A name tree mapping name strings (which must have
Unicode encoding) to rendition objects (see Section 9.1.2, “Renditions”).

Content Streams and ResourcesSECTION 3.7
151

3.7 Content Streams and Resources

Content streams are the primary means for describing the appearance of pages
and other graphical elements. A content stream depends on information
contained in an associated resource dictionary; in combination, these two objects
form a self-contained entity. This section describes these objects.

3.7.1 Content Streams

A content stream is a PDF stream object whose data consists of a sequence of
instructions describing the graphical elements to be painted on a page. The
instructions are represented in the form of PDF objects, using the same object
syntax as in the rest of the PDF document. However, whereas the document as a
whole is a static, random-access data structure, the objects in the content stream
are intended to be interpreted and acted upon sequentially.

Each page of a document is represented by one or more content streams. Content
streams are also used to package sequences of instructions as self-contained
graphical elements, such as forms (see Section 4.9, “Form XObjects”), patterns
(Section 4.6, “Patterns”), certain fonts (Section 5.5.4, “Type 3 Fonts”), and
annotation appearances (Section 8.4.4, “Appearance Streams”).

A content stream, after decoding with any specified filters, is interpreted
according to the PDF syntax rules described in Section 3.1, “Lexical
Conventions.” It consists of PDF objects denoting operands and operators. The
operands needed by an operator precede it in the stream. See Example 3.3 on
page 68 for an example of a content stream.

An operand is a direct object belonging to any of the basic PDF data types except
a stream. Dictionaries are permitted as operands only by certain specific
operators. Indirect objects and object references are not permitted at all.

An operator is a PDF keyword that specifies some action to be performed, such as
painting a graphical shape on the page. An operator keyword is distinguished
from a name object by the absence of an initial slash character (/). Operators are
meaningful only inside a content stream.

Note: This postfix notation, in which an operator is preceded by its operands, is
superficially the same as in the PostScript language. However, PDF has no concept
of an operand stack as PostScript has. In PDF, all of the operands needed by an op-

SyntaxCHAPTER 3
152

erator must immediately precede that operator. Operators do not return results, and
operands cannot be left over when an operator finishes execution.

Most operators have to do with painting graphical elements on the page or with
specifying parameters that affect subsequent painting operations. The individual
operators are described in the chapters devoted to their functions:

• Chapter 4 describes operators that paint general graphics, such as filled areas,
strokes, and sampled images, and that specify device-independent graphical
parameters, such as color.

• Chapter 5 describes operators that paint text using character glyphs defined in
fonts.

• Chapter 6 describes operators that specify device-dependent rendering param-
eters.

• Chapter 10 describes the marked-content operators that associate higher-level
logical information with objects in the content stream. These operators do not
affect the rendered appearance of the content; they specify information useful
to applications that use PDF for document interchange.

Ordinarily, when an application encounters an operator in a content stream that
it does not recognize, an error occurs. (See implementation note 39 in Appendix
H.) A pair of compatibility operators, BX and EX (PDF 1.1), modify this behavior
(see Table 3.29). These operators must occur in pairs and may be nested. They
bracket a compatibility section, a portion of a content stream within which
unrecognized operators are to be ignored without error. This mechanism enables
a PDF document to use operators defined in later versions of PDF without
sacrificing compatibility with older applications. It should be used only in cases
where ignoring such newer operators is the appropriate thing to do. The BX and
EX operators are not themselves part of any graphics object (see Section 4.1,
“Graphics Objects”) or of the graphics state (Section 4.3, “Graphics State”).

TABLE 3.29 Compatibility operators

OPERANDS OPERATOR DESCRIPTION

— BX (PDF 1.1) Begin a compatibility section. Unrecognized operators (along with their
operands) are ignored without error until the balancing EX operator is encountered.

— EX (PDF 1.1) End a compatibility section begun by a balancing BX operator.

Content Streams and ResourcesSECTION 3.7
153

3.7.2 Resource Dictionaries

As stated above, the operands supplied to operators in a content stream may only
be direct objects; indirect objects and object references are not permitted. In
some cases, an operator needs to refer to a PDF object that is defined outside the
content stream, such as a font dictionary or a stream containing image data. This
can be accomplished by defining such objects as named resources and referring to
them by name from within the content stream.

Note: Named resources are meaningful only in the context of a content stream. The
scope of a resource name is local to a particular content stream and is unrelated to
externally known identifiers for objects such as fonts. References from one object to
another outside of content streams should be made by means of indirect object refer-
ences rather than named resources.

A content stream’s named resources are defined by a resource dictionary, which
enumerates the named resources needed by the operators in the content stream
and the names by which they can be referred to. For example, if a text operator
appearing within the content stream needs a certain font, the content stream’s
resource dictionary can associate the name F42 with the corresponding font
dictionary. The text operator can use this name to refer to the font.

A resource dictionary is associated with a content stream in one of the following
ways:

• For a content stream that is the value of a page’s Contents entry (or is an
element of an array that is the value of that entry), the resource dictionary is
designated by the page dictionary’s Resources entry. (Since a page’s Resources
attribute is inheritable, as described under “Inheritance of Page Attributes” on
page 149, it may actually reside in some ancestor node of the page object.)

• For other content streams, the stream dictionary’s Resources entry specifies the
resource dictionary. This applies to content streams that define form XObjects,
patterns, Type 3 fonts, and annotation appearances.

• A form XObject or a Type 3 font’s glyph description may omit the Resources
entry, in which case resources are looked up in the Resources entry of the page
on which the form or font is used. This practice is not recommended.

SyntaxCHAPTER 3
154

In the context of a given content stream, the term current resource dictionary
refers to the resource dictionary associated with the stream in one of the ways
described above.

Each key in a resource dictionary is the name of a resource type, as shown in
Table 3.30. The corresponding values are as follows:

• For resource type ProcSet, the value is an array of procedure set names

• For all other resource types, the value is a subdictionary. Each key in the sub-
dictionary is the name of a specific resource, and the corresponding value is a
PDF object associated with the name.

TABLE 3.30 Entries in a resource dictionary

Example 3.16 shows a resource dictionary containing procedure sets, fonts, and
external objects. The procedure sets are specified by an array, as described in
Section 10.1, “Procedure Sets.” The fonts are specified with a subdictionary

KEY TYPE VALUE

ExtGState dictionary (Optional) A dictionary that maps resource names to graphics state parame-
ter dictionaries (see Section 4.3.4, “Graphics State Parameter Dictionaries”).

ColorSpace dictionary (Optional) A dictionary that maps each resource name to either the name of a
device-dependent color space or an array describing a color space (see Sec-
tion 4.5, “Color Spaces”).

Pattern dictionary (Optional) A dictionary that maps resource names to pattern objects (see Sec-
tion 4.6, “Patterns”).

Shading dictionary (Optional; PDF 1.3) A dictionary that maps resource names to shading dic-
tionaries (see “Shading Dictionaries” on page 304).

XObject dictionary (Optional) A dictionary that maps resource names to external objects (see
Section 4.7, “External Objects”).

Font dictionary (Optional) A dictionary that maps resource names to font dictionaries (see
Chapter 5).

ProcSet array (Optional) An array of predefined procedure set names (see Section 10.1,
“Procedure Sets”).

Properties dictionary (Optional; PDF 1.2) A dictionary that maps resource names to property list
dictionaries for marked content (see Section 10.5.1, “Property Lists”).

Common Data StructuresSECTION 3.8
155

associating the names F5, F6, F7, and F8 with objects 6, 8, 10, and 12, respectively.
Likewise, the XObject subdictionary associates the names Im1 and Im2 with
objects 13 and 15, respectively.

Example 3.16

<< /ProcSet [/PDF /ImageB]
 /Font << /F5 6 0 R

 /F6 8 0 R
 /F7 10 0 R
 /F8 12 0 R

 >>
 /XObject << /Im1 13 0 R

 /Im2 15 0 R
 >>

>>

3.8 Common Data Structures

As mentioned at the beginning of this chapter, there are some general-purpose
data structures that are built from the basic object types described in Section 3.2,
“Objects,” and are used in many places throughout PDF. This section describes
data structures for text strings, dates, rectangles, name trees, and number trees.
The subsequent two sections describe more complex data structures for functions
and file specifications.

All of these data structures are meaningful only as part of the document hier-
archy; they cannot appear within content streams. In particular, the special
conventions for interpreting the values of string objects apply only to strings
outside content streams. An entirely different convention is used within content
streams for using strings to select sequences of glyphs to be painted on the page
(see Chapter 5). Table 3.31 summarizes the basic and higher-level data types that
are used throughout this book to describe the values of dictionary entries and
other PDF data values.

TABLE 3.31 PDF data types

TYPE DESCRIPTION SECTION PAGE

ASCII string Bytes containing ASCII characters 3.8.1 157

array Array object 3.2.5 58

SyntaxCHAPTER 3
156

boolean Boolean value 3.2.1 52

byte string A series of 8-bit bytes that represent
characters or other binary data. If such a
type represents characters, the encoding
is not identified.

3.8.1 157

date Date (ASCII string) 3.8.3 160

dictionary Dictionary object 3.2.6 59

file specification File specification (string or dictionary) 3.10 178

function Function (dictionary or stream) 3.9 166

integer Integer number 3.2.2 52

name Name object 3.2.4 56

name tree Name tree (dictionary) 3.8.5 161

null Null object 3.2.8 63

number Number (integer or real) 3.2.2 52

number tree Number tree (dictionary) 3.8.6 166

PDFDocEncoded string Bytes containing a string that has been
encoded using PDFDocEncoding

3.8.1

rectangle Rectangle (array) 3.8.4 161

stream Stream object 3.2.7 60

string Any string that is not a text string.
Beginning with PDF 1.7, this type is
further qualified as the types:
PDFDocEncoded string, ASCII string,
and byte string.

3.8.1 53

text string Bytes that represent characters encoded
using either PDFDocEncoding or UTF-
16BE with a leading byte-order marker (as
defined in “Text String Type” on page 158.)

3.8.1 158

text stream Text stream 3.8.2 160

TYPE DESCRIPTION SECTION PAGE

Common Data StructuresSECTION 3.8
157

3.8.1 String Types

PDF supports the string and text string types. Beginning with PDF 1.7, the string
type is further qualified as PDFDocEncoded string, ASCII string, or byte string.
The further qualification reflects the encoding used to represent the characters or
glyphs described by the string.

Table 3.32 summarizes the string types. These types are not true types. Rather,
they are versions of the string type that represent data encoded using specific
conventions.

TABLE 3.32 String Types

TYPE DESCRIPTION

string For PDF 1.6 and earlier, this type is used for any string that can-
not be represented as a text string. Beginning with PDF 1.7, this
type is further qualified as ASCII string, PDFDocEncoded
string, and byte string.

text string Used for human-readable characters, such as text annotations,
bookmark names, article names, and document information.
These strings are encoded using either PDFDocEncoding or
UTF-16BE with a leading byte-order marker.

This type is described in “Text String Type” on page 158.

PDFDocEncoded string (PDF 1.7) Used for characters and glyphs that are represented in
a single byte, using PDFDocEncoding. This type, which reflects
a more specific encoding than the text string type, is described
in “PDFDocEncoded String Type” on page 159.

ASCII string (PDF 1.7) Used for characters that are represented in a single
byte using ASCII encoding.

byte string (PDF 1.7) Used for binary data represented as a series of 8-bit
bytes, where each byte can be any value representable in 8 bits.
The string may represent characters or glyphs but the encoding
is not known. The bytes of the string may not represent charac-
ters. This type is used for data such as MD5 hash values, signa-
ture certificates, and Web Capture identification values.

This type is described in “Byte String Type” on page 159.

SyntaxCHAPTER 3
158

The string types described in Table 3.32 specify increasingly specific encoding
schemes, as shown in Figure 3.7.

FIGURE 3.7 Relationship between string types

Text String Type

The text string type is used for character strings that contain information
intended to be human-readable, such as text annotations, bookmark names,
article names, document information, and so forth. The term character strings is
used to describe such strings independent of the encoding with which they are
represented in a PDF document.

Note: This type is not a true type. Rather, it is a string type that represents data en-
coded using specific conventions.

The text string type is used for character strings that are encoded in either PDF-
DocEncoding or the UTF-16BE Unicode character encoding scheme. PDFDocEn-
coding can encode all of the ISO Latin 1 character set and is documented in
Appendix D. UTF-16BE can encode all Unicode characters. UTF-16BE and
Unicode character encoding are described in the Unicode Standard by the
Unicode Consortium (see the Bibliography). Note that PDFDocEncoding does
not support all Unicode characters whereas UTF-16BE does.

For text strings encoded in Unicode, the first two bytes must be 254 followed by
255. These two bytes represent the Unicode byte order marker, U+FEFF, indicating
that the string is encoded in the UTF-16BE (big-endian) encoding scheme
specified in the Unicode standard. (This mechanism precludes beginning a string

PDFDocEncoded
string type

string type

text string type

UTF-16BE encoded string with
a leading byte order marker

ASCII string type byte string type

Common Data StructuresSECTION 3.8
159

using PDFDocEncoding with the two characters thorn ydieresis, which is unlikely
to be a meaningful beginning of a word or phrase).

Note: Applications that process PDF files containing Unicode text strings should be
prepared to handle supplementary characters; that is, characters requiring more
than two bytes to represent.

An escape sequence may appear anywhere in a Unicode text string to indicate the
language in which subsequent text is written, which is useful when the language
cannot be determined from the character codes used in the text. The escape
sequence consists of the following elements, in order:

1. The Unicode value U+001B (that is, the byte sequence 0 followed by 27).

2. A 2-character ISO 639 language code—for example, en for English or ja for
Japanese. Character in this context means byte (as in ASCII character), not
Unicode character.

3. (Optional) A 2-character ISO 3166 country code—for example, US for the
United States or JP for Japan.

4. The Unicode value U+001B.

The complete list of codes defined by ISO 639 and ISO 3166 can be obtained
from the International Organization for Standardization (see the Bibliography).

PDFDocEncoded String Type

A PDFDocEncoded string is similar to a string object, but it is a character string
where characters are represented in a single byte using PDFDocEncoding. Note
that PDFDocEncoding does not support all Unicode characters whereas UTF-
16BE does.

Note: This type is not a true type. Rather, it is a string type that represents data en-
coded using a specific convention.

Byte String Type

The byte string type is used for binary data represented as a series of 8-bit bytes,
where each byte can be any value representable in 8 bits. The string may

SyntaxCHAPTER 3
160

represent characters but the encoding is not known. The bytes of the string may
not represent characters.

Note: This type is not a true type. Rather, it is a string type that represents data
whose encoding is unknown.

3.8.2 Text Streams

A text stream (PDF 1.5) is a PDF stream object (Section 3.2.7) whose unencoded
bytes meet the same requirements as a text string (“Text String Type” on page
158) with respect to encoding, byte order, and lead bytes.

3.8.3 Dates

PDF defines a standard date format, which closely follows that of the
international standard ASN.1 (Abstract Syntax Notation One), defined in ISO/
IEC 8824 (see the Bibliography). A date is an ASCII string of the form

(D : YYYYMMDDHHmmSSOHH ' mm ')

where

YYYY is the year

MM is the month

DD is the day (01–31)

HH is the hour (00–23)

mm is the minute (00–59)

SS is the second (00–59)

O is the relationship of local time to Universal Time (UT), denoted by one of
the characters +, −, or Z (see below)

HH followed by ' is the absolute value of the offset from UT in hours (00–23)

mm followed by ' is the absolute value of the offset from UT in minutes (00–59)

The apostrophe character (') after HH and mm is part of the syntax. All fields after
the year are optional. (The prefix D : , although also optional, is strongly
recommended.) The default values for MM and DD are both 01; all other

Common Data StructuresSECTION 3.8
161

numerical fields default to zero values. A plus sign (+) as the value of the O field
signifies that local time is later than UT, a minus sign (−) signifies that local time
is earlier than UT, and the letter Z signifies that local time is equal to UT. If no UT
information is specified, the relationship of the specified time to UT is considered
to be unknown. Regardless of whether the time zone is known, the rest of the date
should be specified in local time.

For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is
represented by the string

D : 199812231952 − 08 ' 00 '

3.8.4 Rectangles

Rectangles are used to describe locations on a page and bounding boxes for a
variety of objects, such as fonts. A rectangle is written as an array of four numbers
giving the coordinates of a pair of diagonally opposite corners. Typically, the
array takes the form

[llx lly urx ury]

specifying the lower-left x, lower-left y, upper-right x, and upper-right y
coordinates of the rectangle, in that order. The other two corners of the rectangle
are then assumed to have coordinates (llx, ury) and (urx, lly).

Note: Although rectangles are conventionally specified by their lower-left and upper-
right corners, it is acceptable to specify any two diagonally opposite corners. Appli-
cations that process PDF should be prepared to normalize such rectangles in situa-
tions where specific corners are required.

3.8.5 Name Trees

A name tree serves a similar purpose to a dictionary—associating keys and
values—but by different means. A name tree differs from a dictionary in the
following important ways:

• Unlike the keys in a dictionary, which are name objects, those in a name tree
are strings.

• The keys are ordered.

SyntaxCHAPTER 3
162

• The values associated with the keys may be objects of any type. Stream objects
are required to be specified by indirect object references. It is recommended,
though not required, that dictionary, array, and string objects be specified by
indirect object references, and other PDF objects (nulls, numbers, booleans,
and names) be specified as direct objects.

• The data structure can represent an arbitrarily large collection of key-value
pairs, which can be looked up efficiently without requiring the entire data
structure to be read from the PDF file. (In contrast, a dictionary is subject to an
implementation limit on the number of entries it can contain.)

A name tree is constructed of nodes, each of which is a dictionary object.
Table 3.33 shows the entries in a node dictionary. The nodes are of three kinds,
depending on the specific entries they contain. The tree always has exactly one
root node, which contains a single entry: either Kids or Names but not both. If the
root node has a Names entry, it is the only node in the tree. If it has a Kids entry,
each of the remaining nodes is either an intermediate node, containing a Limits
entry and a Kids entry, or a leaf node, containing a Limits entry and a Names
entry.

TABLE 3.33 Entries in a name tree node dictionary

The Kids entries in the root and intermediate nodes define the tree’s structure by
identifying the immediate children of each node. The Names entries in the leaf
(or root) nodes contain the tree’s keys and their associated values, arranged in
key-value pairs and sorted lexically in ascending order by key. Shorter keys

KEY TYPE VALUE

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the root
node if and only if Names is not present) An array of indirect references to the immediate
children of this node. The children may be intermediate or leaf nodes.

Names array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids
is not present) An array of the form

[key1 value1 key2 value2 … keyn valuen]

where each keyi is a string and the corresponding valuei is the object associated with that
key. The keys are sorted in lexical order, as described below.

Limits array (Intermediate and leaf nodes only; required) An array of two strings, specifying the (lexi-
cally) least and greatest keys included in the Names array of a leaf node or in the Names
arrays of any leaf nodes that are descendants of an intermediate node.

Common Data StructuresSECTION 3.8
163

appear before longer ones beginning with the same byte sequence. The encoding
of the keys is immaterial as long as it is self-consistent; keys are compared for
equality on a simple byte-by-byte basis.

The keys contained within the various nodes’ Names entries do not overlap; each
Names entry contains a single contiguous range of all the keys in the tree. In a leaf
node, the Limits entry specifies the least and greatest keys contained within the
node’s Names entry. In an intermediate node, it specifies the least and greatest
keys contained within the Names entries of any of that node’s descendants. The
value associated with a given key can thus be found by walking the tree in order,
searching for the leaf node whose Names entry contains that key.

Example 3.17 is an abbreviated outline, showing object numbers and nodes, of a
name tree that maps the names of all the chemical elements, from actinium to
zirconium, to their atomic numbers. Example 3.18 shows the representation of
this tree in a PDF file.

Example 3.17 Example of a name tree

1: Root node
2: Intermediate node: Actinium to Gold

5: Leaf node: Actinium = 25, … , Astatine = 31
25: Integer: 89
…
31: Integer: 85

…
11: Leaf node: Gadolinium = 56, … , Gold = 59

56: Integer: 64
…
59: Integer: 79

3: Intermediate node: Hafnium to Protactinium
12: Leaf node: Hafnium = 60, … , Hydrogen = 65

60: Integer: 72
…
65: Integer: 1

…
19: Leaf node: Palladium = 92, … , Protactinium = 100

92: Integer: 46
…
100:Integer: 91

4: Intermediate node: Radium to Zirconium
20: Leaf node: Radium = 101, … , Ruthenium = 107

101:Integer: 89

SyntaxCHAPTER 3
164

…
107:Integer: 85

…
24: Leaf node: Xenon = 129, … , Zirconium = 133

129:Integer: 54
…
133:Integer: 40

Example 3.18

1 0 obj
<< /Kids [2 0 R % Root node

3 0 R
4 0 R

]
>>

endobj

2 0 obj
<< /Limits [(Actinium) (Gold)] % Intermediate node

 /Kids [5 0 R
 6 0 R
 7 0 R
 8 0 R
 9 0 R
 10 0 R
 11 0 R
]

>>
endobj

3 0 obj
<< /Limits [(Hafnium) (Protactinium)] % Intermediate node

 /Kids [12 0 R
 13 0 R
 14 0 R
 15 0 R
 16 0 R
 17 0 R
 18 0 R
 19 0 R
]

>>
endobj

Common Data StructuresSECTION 3.8
165

4 0 obj
<< /Limits [(Radium) (Zirconium)] % Intermediate node

 /Kids [20 0 R
 21 0 R
 22 0 R
 23 0 R
 24 0 R
]

>>
endobj

5 0 obj
<< /Limits [(Actinium) (Astatine)] % Leaf node

 /Names [(Actinium) 25 0 R
 (Aluminum) 26 0 R
 (Americium) 27 0 R
 (Antimony) 28 0 R
 (Argon) 29 0 R
 (Arsenic) 30 0 R
 (Astatine) 31 0 R

]
>>

endobj

…

24 0 obj
<< /Limits [(Xenon) (Zirconium)] % Leaf node

 /Names [(Xenon) 129 0 R
 (Ytterbium) 130 0 R
 (Yttrium) 131 0 R
 (Zinc) 132 0 R
 (Zirconium) 133 0 R

]
>>

endobj

25 0 obj
89 % Atomic number (Actinium)

endobj

…

133 0 obj
40 % Atomic number (Zirconium)

endobj

SyntaxCHAPTER 3
166

3.8.6 Number Trees

A number tree is similar to a name tree (see Section 3.8.5, “Name Trees”), except
that its keys are integers instead of strings and are sorted in ascending numerical
order. The entries in the leaf (or root) nodes containing the key-value pairs are
named Nums instead of Names as in a name tree. Table 3.34 shows the entries in a
number tree’s node dictionaries.

TABLE 3.34 Entries in a number tree node dictionary

3.9 Functions

PDF is not a programming language, and a PDF file is not a program. However,
PDF does provide several types of function objects (PDF 1.2) that represent
parameterized classes of functions, including mathematical formulas and
sampled representations with arbitrary resolution. Functions are used in various
ways in PDF, including device-dependent rasterization information for high-
quality printing (halftone spot functions and transfer functions), color transform
functions for certain color spaces, and specification of colors as a function of
position for smooth shadings.

KEY TYPE VALUE

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the root
node if and only if Nums is not present) An array of indirect references to the immediate
children of this node. The children may be intermediate or leaf nodes.

Nums array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids
is not present) An array of the form

[key1 value1 key2 value2 … keyn valuen]

where each keyi is an integer and the corresponding valuei is the object associated with
that key. The keys are sorted in numerical order, analogously to the arrangement of keys
in a name tree as described in Section 3.8.5, “Name Trees.”

Limits array (Intermediate and leaf nodes only; required) An array of two integers, specifying the
(numerically) least and greatest keys included in the Nums array of a leaf node or in the
Nums arrays of any leaf nodes that are descendants of an intermediate node.

FunctionsSECTION 3.9
167

Functions in PDF represent static, self-contained numerical transformations. A
function to add two numbers has two input values and one output value:

Similarly, a function that computes the arithmetic and geometric mean of two
numbers could be viewed as a function of two input values and two output
values:

In general, a function can take any number (m) of input values and produce any
number (n) of output values:

In PDF functions, all the input values and all the output values are numbers, and
functions have no side effects.

Each function definition includes a domain, the set of legal values for the input.
Some types of functions also define a range, the set of legal values for the output.
Input values passed to the function are clipped to the domain, and output values
produced by the function are clipped to the range. For example, suppose the
function

is defined with a domain of [−1 1]. If the function is called with the input value 6,
that value is replaced with the nearest value in the defined domain, 1, before the
function is evaluated; the resulting output value is therefore 3. Similarly, if the
function

is defined with a range of [0 100], and if the input values −6 and 4 are passed to
the function (and are within its domain), then the output value produced by the
function, −14, is replaced with 0, the nearest value in the defined range.

A function object may be a dictionary or a stream, depending on the type of
function. The term function dictionary is used generically in this section to refer
to either a dictionary object or the dictionary portion of a stream object. A

f x0 x1,() x0 x1+=

f x0 x1,()
x0 x1+

2
----------------- x0 x1×,=

f x0 … xm 1–, ,() y0 … yn 1–, ,=

f x() x 2+=

f x0 x1,() 3 x0× x1+=

SyntaxCHAPTER 3
168

function dictionary specifies the function’s representation, the set of attributes
that parameterize that representation, and the additional data needed by that
representation. Four types of functions are available, as indicated by the
dictionary’s FunctionType entry:

• (PDF 1.2) A sampled function (type 0) uses a table of sample values to define the
function. Various techniques are used to interpolate values between the sample
values (see Section 3.9.1, “Type 0 (Sampled) Functions”).

• (PDF 1.3) An exponential interpolation function (type 2) defines a set of coef-
ficients for an exponential function (see Section 3.9.2, “Type 2 (Exponential In-
terpolation) Functions”).

• (PDF 1.3) A stitching function (type 3) is a combination of other functions, par-
titioned across a domain (see Section 3.9.3, “Type 3 (Stitching) Functions”).

• (PDF 1.3) A PostScript calculator function (type 4) uses operators from the
PostScript language to describe an arithmetic expression (see Section 3.9.4,
“Type 4 (PostScript Calculator) Functions”).

All function dictionaries share the entries listed in Table 3.35.

TABLE 3.35 Entries common to all function dictionaries

KEY TYPE VALUE

FunctionType integer (Required) The function type:

0 Sampled function
2 Exponential interpolation function
3 Stitching function
4 PostScript calculator function

Domain array (Required) An array of 2 × m numbers, where m is the number of input val-
ues. For each i from 0 to m − 1, Domain2i must be less than or equal to
Domain2i+1 , and the ith input value, xi , must lie in the interval
Domain2i ≤ xi ≤ Domain2i+1 . Input values outside the declared domain are
clipped to the nearest boundary value.

Range array (Required for type 0 and type 4 functions, optional otherwise; see below) An
array of 2 × n numbers, where n is the number of output values. For each j
from 0 to n − 1, Range2j must be less than or equal to Range2j+1 , and the jth
output value, yj , must lie in the interval Range2j ≤ yj ≤ Range2j+1 . Output
values outside the declared range are clipped to the nearest boundary value. If
this entry is absent, no clipping is done.

FunctionsSECTION 3.9
169

In addition, each type of function dictionary must include entries appropriate to
the particular function type. The number of output values can usually be inferred
from other attributes of the function; if not (as is always the case for type 0 and
type 4 functions), the Range entry is required. The dimensionality of the function
implied by the Domain and Range entries must be consistent with that implied by
other attributes of the function.

3.9.1 Type 0 (Sampled) Functions

Type 0 functions use a sequence of sample values (contained in a stream) to
provide an approximation for functions whose domains and ranges are bounded.
The samples are organized as an m-dimensional table in which each entry has n
components.

Sampled functions are highly general and offer reasonably accurate
representations of arbitrary analytic functions at low expense. For example, a
1-input sinusoidal function can be represented over the range [0 180] with an
average error of only 1 percent, using just ten samples and linear interpolation.
Two-input functions require significantly more samples but usually not a
prohibitive number if the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent functions with high
dimensionality multiplies rapidly unless the sampling resolution is very low. Also,
the process of multilinear interpolation becomes computationally intensive if the
number of inputs m is greater than 2. The multidimensional spline interpolation
is even more computationally intensive.

In addition to the entries in Table 3.35, a type 0 function dictionary includes
those shown in Table 3.36.

The Domain, Encode, and Size entries determine how the function’s input
variable values are mapped into the sample table. For example, if Size is [21 31],
the default Encode array is [0 20 0 30], which maps the entire domain into the
full set of sample table entries. Other values of Encode may be used.

SyntaxCHAPTER 3
170

To explain the relationship between Domain, Encode, Size, Decode, and Range,
we use the following notation:

For a given value of x, Interpolate calculates the y value on the line defined by the
two points (xmin , ymin) and (xmax , ymax).

TABLE 3.36 Additional entries specific to a type 0 function dictionary

When a sampled function is called, each input value xi , for 0 ≤ i < m, is clipped to
the domain:

KEY TYPE VALUE

Size array (Required) An array of m positive integers specifying the number of samples
in each input dimension of the sample table.

BitsPerSample integer (Required) The number of bits used to represent each sample. (If the function
has multiple output values, each one occupies BitsPerSample bits.) Valid
values are 1, 2, 4, 8, 12, 16, 24, and 32.

Order integer (Optional) The order of interpolation between samples. Valid values are 1 and
3, specifying linear and cubic spline interpolation, respectively. (See imple-
mentation note 40 in Appendix H.) Default value: 1.

Encode array (Optional) An array of 2 × m numbers specifying the linear mapping of input
values into the domain of the function’s sample table. Default value:
[0 (Size0 − 1) 0 (Size1 − 1) …].

Decode array (Optional) An array of 2 × n numbers specifying the linear mapping of sam-
ple values into the range appropriate for the function’s output values. Default
value: same as the value of Range.

other stream
attributes

(various) (Optional) Other attributes of the stream that provides the sample values, as
appropriate (see Table 3.4 on page 62).

y Interpolate x xmin xmax ymin ymax, , , ,)(=

ymin x xmin–)(
ymax ymin–
xmax xmin–
----------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

xi′ min max xi Domain2i,)(Domain2i 1+,)(=

FunctionsSECTION 3.9
171

That value is encoded:

That value is clipped to the size of the sample table in that dimension:

The encoded input values are real numbers, not restricted to integers.
Interpolation is used to determine output values from the nearest surrounding
values in the sample table. Each output value rj , for 0 ≤ j < n, is then decoded:

Finally, each decoded value is clipped to the range:

Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order
bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no
padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last
dimension vary slowest. For example, for a function f (a, b, c), where a, b, and c
vary from 0 to 9 in steps of 1, the sample values would appear in this order:
f (0, 0, 0), f (1, 0, 0), … , f (9, 0, 0), f (0, 1, 0), f (1, 1, 0), … , f (9, 1, 0), f (0, 2, 0),
f (1, 2, 0), … , f (9, 9, 0), f (0, 0, 1), f (1, 0, 1), and so on.

For a function with multidimensional output (more than one output value), the
values are stored in the same order as Range.

The stream data must be long enough to contain the entire sample array, as
indicated by Size, Range, and BitsPerSample; see “Stream Extent” on page 61.

Example 3.19 illustrates a sampled function with 4-bit samples in an array
containing 21 columns and 31 rows (651 values). The function takes two
arguments, x and y, in the domain [−1.0 1.0], and returns one value, z, in that
same range. The x argument is linearly transformed by the encoding to the

ei Interpolate xi′ Domain2i Domain2i 1+ Encode2i Encode2i 1+, , , ,)(=

ei′ min max ei 0,)(Sizei 1–,)(=

rj′ Interpolate rj 0 2BitsPerSample 1– Decode2j Decode2j 1+, , , ,)(=

yj min max rj′ Range2j,)(Range2j 1+,)(=

SyntaxCHAPTER 3
172

domain [0 20] and the y argument to the domain [0 30]. Using bilinear
interpolation between sample points, the function computes a value for z, which
(because BitsPerSample is 4) will be in the range [0 15], and the decoding
transforms z to a number in the range [−1.0 1.0] for the result. The sample array
is stored in a string of 326 bytes, calculated as follows (rounded up):

326 bytes = 31 rows × 21 samples / row × 4 bits / sample ÷ 8 bits / byte

The first byte contains the sample for the point (−1.0, −1.0) in the high-order 4
bits and the sample for the point (−0.9, −1.0) in the low-order 4 bits.

Example 3.19

14 0 obj
<< /FunctionType 0

 /Domain [−1.0 1.0 −1.0 1.0]
 /Size [21 31]
 /Encode [0 20 0 30]
 /BitsPerSample 4
 /Range [−1.0 1.0]
 /Decode [−1.0 1.0]
 /Length …
 /Filter …

>>
stream
… 651 sample values …
endstream
endobj

The Decode entry can be used creatively to increase the accuracy of encoded
samples corresponding to certain values in the range. For example, if the range of
the function is [−1.0 1.0] and BitsPerSample is 4, the usual value of Decode
would be [−1.0 1.0] and the sample values would be integers in the interval
[0 15] (as shown in Figure 3.8). But if these values are used, the midpoint of the
range, 0.0, is not represented exactly by any sample value, since it falls halfway
between 7 and 8. However, if the Decode array is [−1.0 +1.1429] (1.1429 being
approximately equal to 16 ÷ 14) and the sample values supplied are in the interval
[0 14], the effective range of [−1.0 1.0] is achieved, and the range value 0.0 is
represented by the sample value 7.

FunctionsSECTION 3.9
173

The Size value for an input dimension can be 1, in which case all input values in
that dimension will be mapped to the single allowed value. If Size is less than 4,
cubic spline interpolation is not possible and Order 3 will be ignored if specified.

FIGURE 3.8 Mapping with the Decode array

3.9.2 Type 2 (Exponential Interpolation) Functions

Type 2 functions (PDF 1.3) include a set of parameters that define an exponential
interpolation of one input value and n output values:

In addition to the entries in Table 3.35 on page 168, a type 2 function dictionary
includes those listed in Table 3.37. (See implementation note 41 in Appendix H.)

TABLE 3.37 Additional entries specific to a type 2 function dictionary

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be non-negative, and if N is negative, no value of x may be zero.
Typically, Domain is declared as [0.0 1.0], and N is a positive number. The Range

KEY TYPE VALUE

C0 array (Optional) An array of n numbers defining the function result when x = 0.0. Default value:
[0.0].

C1 array (Optional) An array of n numbers defining the function result when x = 1.0. Default value:
[1.0].

N number (Required) The interpolation exponent. Each input value x will return n values, given by
yj = C0j + xN × (C1j − C0j), for 0 ≤ j < n.

1

+1

-1

0
2 3 4 5 7 8 9 10 11 12 13 14 15

Samples

Ra
ng

e

/Decode [-1 1]

1

+1

-1

0
2 3 4 6 7 8 9 10 11 12 13 14 15

Samples

Ra
ng

e

/Decode [-1 1.1429]

f x() y0 … yn 1–, ,=

SyntaxCHAPTER 3
174

attribute is optional and can be used to clip the output to a specified range. Note
that when N is 1, the function performs a linear interpolation between C0 and C1;
therefore, the function can also be expressed as a sampled function (type 0).

3.9.3 Type 3 (Stitching) Functions

Type 3 functions (PDF 1.3) define a stitching of the subdomains of several 1-input
functions to produce a single new 1-input function. Since the resulting stitching
function is a 1-input function, the domain is given by a two-element array,
[Domain0 Domain1].

In addition to the entries in Table 3.35 on page 168, a type 3 function dictionary
includes those listed in Table 3.38. (See implementation note 42 in Appendix H.)

TABLE 3.38 Additional entries specific to a type 3 function dictionary

Domain must be of size 2 (that is, m = 1), and Domain0 must be strictly less than
Domain1 unless k = 1. The domain is partitioned into k subdomains, as indicated
by the dictionary’s Bounds entry, which is an array of k − 1 numbers that obey the
following relationships (with exceptions as noted below):

The Bounds array describes a series of half-open intervals, closed on the left and
open on the right (except the last, which is closed on the right as well). The value
of the Functions entry is an array of k functions. The first function applies to x
values in the first subdomain, Domain0 ≤ x < Bounds0 ; the second function
applies to x values in the second subdomain, Bounds0 ≤ x < Bounds1 ; and so on.

KEY TYPE VALUE

Functions array (Required) An array of k 1-input functions making up the stitching function. The out-
put dimensionality of all functions must be the same, and compatible with the value of
Range if Range is present.

Bounds array (Required) An array of k − 1 numbers that, in combination with Domain, define the
intervals to which each function from the Functions array applies. Bounds elements
must be in order of increasing value, and each value must be within the domain
defined by Domain.

Encode array (Required) An array of 2 × k numbers that, taken in pairs, map each subset of the do-
main defined by Domain and the Bounds array to the domain of the corresponding
function.

Domain0 Bounds0 Bounds1 … Boundsk 2– Domain1< < < < <

FunctionsSECTION 3.9
175

The last function applies to x values in the last subdomain, which includes the
upper bound: Boundsk−2 ≤ x ≤ Domain1 . The value of k may be 1, in which case
the Bounds array is empty and the single item in the Functions array applies to all
x values, Domain0 ≤ x ≤ Domain1 .

The Encode array contains 2 × k numbers. A value x from the ith subdomain is
encoded as follows:

for 0 ≤ i < k. In this equation, Bounds−1 means Domain0 , and Boundsk−1 means
Domain1 . If the last bound, Boundsk−2 , is equal to Domain1 , then x ′ is defined to
be Encode2i .

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern over different parts of the shading’s domain.
(Shading patterns are discussed in Section 4.6.3, “Shading Patterns.”) The same
effect could be achieved by creating a separate shading dictionary for each of the
functions, with adjacent domains. However, since each shading would have
similar parameters, and because the overall effect is one shading, it is more con-
venient to have a single shading with multiple function definitions.

Also, type 3 functions provide a general mechanism for inverting the domains of
1-input functions. For example, consider a function f with a Domain of [0.0 1.0]
and a stitching function g with a Domain of [0.0 1.0], a Functions array
containing f, and an Encode array of [1.0 0.0]. In effect, g (x) = f (1 − x).

3.9.4 Type 4 (PostScript Calculator) Functions

A type 4 function (PDF 1.3), also called a PostScript calculator function, is
represented as a stream containing code written in a small subset of the PostScript
language. Although any function can be sampled (in a type 0 PDF function) and
others can be described with exponential functions (type 2 in PDF), type 4
functions offer greater flexibility and potentially greater accuracy. For example, a
tint transformation function for a hexachrome (six-component) DeviceN color
space with an alternate color space of DeviceCMYK (see “DeviceN Color Spaces”
on page 268) requires a 6-in, 4-out function. If such a function were sampled with
m values for each input variable, the number of samples, 4 × m6, could be
prohibitively large. In practice, such functions are often written as short, simple
PostScript functions. (See implementation note 43 in Appendix H.)

x′ Interpolate x Boundsi 1– Boundsi
· Encode2i Encode2i 1+, , , ,)(=

SyntaxCHAPTER 3
176

Type 4 functions also make it possible to include a wide variety of halftone spot
functions without the loss of accuracy that comes from sampling, and without
adding to the list of predefined spot functions (see Section 6.4.2, “Spot
Functions”). All of the predefined spot functions can be written as type 4
functions.

The language that can be used in a type 4 function contains expressions involving
integers, real numbers, and boolean values only. There are no composite data
structures such as strings or arrays, no procedures, and no variables or names.
Table 3.39 lists the operators that can be used in this type of function. (For more
information on these operators, see Appendix B of the PostScript Language
Reference, Third Edition.) Although the semantics are those of the corresponding
PostScript operators, a PostScript interpreter is not required.

TABLE 3.39 Operators in type 4 functions

The operand syntax for type 4 functions follows PDF conventions rather than
PostScript conventions. The entire code stream defining the function is enclosed
in braces { }. Braces also delimit expressions that are executed conditionally by the
if and ifelse operators:

boolean { expression } if
boolean { expression1 } { expression2 } ifelse

This construct is purely syntactic; unlike in PostScript, no “procedure objects” are
involved.

OPERATOR TYPE OPERATORS

Arithmetic operators abs
add
atan
ceiling
cos

cvi
cvr
div
exp

floor
idiv
ln
log

mod
mul
neg
round

sin
sqrt
sub
truncate

Relational, boolean,
and bitwise operators

and
bitshift
eq

false
ge
gt

le
lt
ne

not
or

true
xor

Conditional operators if ifelse

Stack operators copy
dup

exch
index

pop
roll

FunctionsSECTION 3.9
177

A type 4 function dictionary includes the entries in Table 3.35 on page 168, as
well as other appropriate stream attributes (see Table 3.4 on page 62). Example
3.20 shows a type 4 function equivalent to the predefined spot function
DoubleDot (see Section 6.4.2, “Spot Functions”).

Example 3.20

10 0 obj
 << /FunctionType 4

 /Domain [−1.0 1.0 −1.0 1.0]
 /Range [−1.0 1.0]
 /Length 71

>>
stream

{ 360 mul sin
 2 div
 exch 360 mul sin
 2 div
 add
}

endstream
endobj

The Domain and Range entries are both required. The input variables constitute
the initial operand stack; the items remaining on the operand stack after
execution of the function are the output variables. It is an error for the number of
remaining operands to differ from the number of output variables specified by
Range or for any of them to be objects other than numbers.

Implementations of type 4 functions must provide a stack with room for at least
100 entries. No implementation is required to provide a larger stack, and it is an
error to overflow the stack.

Although any integers or real numbers that may appear in the stream fall under
the same implementation limits (defined in Appendix C) as in other contexts, the
intermediate results in type 4 function computations do not. An implementation
may use a representation that exceeds those limits. Operations on real numbers,
for example, might use single-precision or double-precision floating-point
numbers. (See implementation note 44 in Appendix H.)

SyntaxCHAPTER 3
178

Errors in Type 4 Functions

The code that reads a type 4 function (analogous to the PostScript scanner) must
detect and report syntax errors. It may also be able to detect some errors that will
occur when the function is used, although this is not always possible. Any errors
detected by the scanner are considered to be errors in the PDF file and are
handled like other errors in the file.

The code that executes a type 4 function (analogous to the PostScript interpreter)
must detect and report errors. PDF does not define a representation for the
errors; those details are provided by the application that processes the PDF file.
The following types of errors can occur (among others):

• Stack overflow

• Stack underflow

• A type error (for example, applying not to a real number)

• A range error (for example, applying sqrt to a negative number)

• An undefined result (for example, dividing by 0)

3.10 File Specifications

A PDF file can refer to the contents of another file by using a file specification
(PDF 1.1), which can take either of two forms:

• A simple file specification gives just the name of the target file in a standard for-
mat, independent of the naming conventions of any particular file system. It
can take the form of either a string or a dictionary

• A full file specification includes information related to one or more specific file
systems. It can only be represented as a dictionary.

Although the file designated by a file specification is normally external to the
PDF file referring to it, PDF 1.3 permits a copy of the external file to be
embedded within the referring PDF file, allowing its contents to be stored or
transmitted along with the PDF file. However, embedding a file does not change
the presumption that it is external to the PDF file. Consequently, to ensure that
the PDF file can be processed correctly, it may be necessary to copy its embedded
files back into a local file system.

File SpecificationsSECTION 3.10
179

3.10.1 File Specification Strings

The standard format for representing a simple file specification in string form
divides the string into component substrings separated by the slash character (/).
The slash is a generic component separator that is mapped to the appropriate
platform-specific separator when generating a platform-dependent file name.
Any of the components may be empty. If a component contains one or more
literal slashes, each must be preceded by a backslash (\), which in turn must be
preceded by another backslash to indicate that it is part of the string and not an
escape character. For example, the string

(in \ \ /out)

represents the file name

in / out

The backslashes are removed in processing the string; they are needed only to
distinguish the component values from the component separators. The
component substrings are stored as bytes and are passed to the operating system
without interpretation or conversion of any sort.

Absolute and Relative File Specifications

A simple file specification that begins with a slash is an absolute file specification.
The last component is the file name; the preceding components specify its
context. In some file specifications, the file name may be empty; for example,
URL (uniform resource locator) specifications can specify directories instead of
files. A file specification that does not begin with a slash is a relative file
specification giving the location of the file relative to that of the PDF file
containing it.

In the case of a URL-based file system, the rules of Internet RFC 1808, Relative
Uniform Resource Locators (see the Bibliography), are used to compute an
absolute URL from a relative file specification and the specification of the PDF
file. Prior to this process, the relative file specification is converted to a relative
URL by using the escape mechanism of RFC 1738, Uniform Resource Locators, to
represent any bytes that would be either unsafe according to RFC 1738 or not
representable in 7-bit U.S. ASCII. In addition, such URL-based relative file
specifications are limited to paths as defined in RFC 1808. The scheme, network

SyntaxCHAPTER 3
180

location/login, fragment identifier, query information, and parameter sections
are not allowed.

In the case of other file systems, a relative file specification is converted to an
absolute file specification by removing the file name component from the
specification of the containing PDF file and appending the relative file
specification in its place. For example, the relative file specification

ArtFiles / Figure1 . pdf

appearing in a PDF file whose specification is

/ HardDisk / PDFDocuments / AnnualReport / Summary . pdf

yields the absolute specification

/ HardDisk / PDFDocuments / AnnualReport / ArtFiles / Figure1 . pdf

The special component . . (two periods) can be used in a relative file specification
to move up a level in the file system hierarchy. When the component immediately
preceding . . is not another . . , the two cancel each other; both are eliminated from
the file specification and the process is repeated. Thus, in the example above, the
relative file specification

. . /. . / ArtFiles / Figure1 . pdf

would yield the absolute specification

/ HardDisk / ArtFiles / Figure1 . pdf

Conversion to Platform-Dependent File Names

The conversion of a file specification to a platform-dependent file name depends
on the specific file naming conventions of each platform:

• For DOS, the initial component is either a physical or logical drive identifier or
a network resource name as returned by the Microsoft Windows function
WNetGetConnection, and is followed by a colon (:). A network resource name is
constructed from the first two components; the first component is the server
name and the second is the share name (volume name). All components are
then separated by backslashes. It is possible to specify an absolute DOS path

File SpecificationsSECTION 3.10
181

without a drive by making the first component empty. (Empty components are
ignored by other platforms.)

• For Mac OS, all components are separated by colons (:).

• For UNIX, all components are separated by slashes (/). An initial slash, if
present, is preserved.

Strings used to specify a file name are interpreted in the standard encoding for
the platform on which the document is being viewed. Table 3.40 shows examples
of file specifications on the most common platforms.

TABLE 3.40 Examples of file specifications

When creating documents that are to be viewed on multiple platforms, care must
be taken to ensure file name compatibility. Only a subset of the U.S. ASCII
character set should be used in file specifications: the uppercase alphabetic
characters (A–Z), the numeric characters (0–9), and the underscore (_). The
period (.) has special meaning in DOS and Windows file names, and as the first
character in a Mac OS pathname. In file specifications, the period should be used
only to separate a base file name from a file extension.

Some file systems are case-insensitive, and names within a directory should
remain distinguishable if lowercase letters are changed to uppercase or vice
versa. On DOS and Windows 3.1 systems and on some CD-ROM file systems,
file names are limited to 8 characters plus a 3-character extension. File system
software typically converts long names to short names by retaining the first 6 or
7 characters of the file name and the first 3 characters after the last period, if any.
Since characters beyond the sixth or seventh are often converted to other values
unrelated to the original value, file names must be distinguishable from the first
6 characters.

SYSTEM SYSTEM-DEPENDENT PATHS WRITTEN FORM

DOS \ pdfdocs \ spec . pdf (no drive)
 r : \ pdfdocs \ spec . pdf
pclib / eng : \ pdfdocs \ spec . pdf

(/ / pdfdocs / spec . pdf)
(/ r / pdfdocs / spec . pdf)
 (/ pclib / eng / pdfdocs / spec . pdf)

Mac OS Mac HD : PDFDocs : spec . pdf (/Mac HD/ PDFDocs/ spec . pdf)

UNIX / user / fred / pdfdocs / spec . pdf
 pdfdocs / spec . pdf (relative)

(/ user / fred / pdfdocs / spec . pdf)
 (pdfdocs / spec . pdf)

SyntaxCHAPTER 3
182

Multiple-Byte Strings in File Specifications

In PDF 1.2 or higher, a file specification may contain multiple-byte character
codes, represented in hexadecimal form between angle brackets (< and >). Since
the slash character < 2F > is used as a component delimiter and the backslash
< 5C > is used as an escape character, any occurrence of either of these bytes in a
multiple-byte character must be preceded by the ASCII code for the backslash
character. For example, a file name containing the 2-byte character code
< 89 5C > must write it as < 89 5C 5C >. When the application encounters this
sequence of bytes in a file name, it replaces the sequence with the original 2-byte
code.

3.10.2 File Specification Dictionaries

The dictionary form of file specification provides more flexibility than the string
form, allowing different files to be specified for different file systems or
platforms, or for file systems other than the standard ones (DOS/Windows, Mac
OS, and UNIX). Table 3.41 shows the entries in a file specification dictionary.

Regardless of the platform, consumer applications should use the F and
(beginning with PDF 1.7) UF entries to specify files. The UF entry is optional, but
it is also recommended because it enables cross-platform and cross-language
compatibility.

TABLE 3.41 Entries in a file specification dictionary

KEY TYPE VALUE

Type name (Required if an EF or RF entry is present; recommended always) The type of PDF object
that this dictionary describes; must be Filespec for a file specification dictionary (see
implementation note 45 in Appendix H).

FS name (Optional) The name of the file system to be used to interpret this file specification. If
this entry is present, all other entries in the dictionary are interpreted by the desig-
nated file system. PDF defines only one standard file system name, URL (see Section
3.10.4, “URL Specifications”); an application or plug-in extension can register other
names (see Appendix E). This entry is independent of the F, UF, DOS, Mac, and Unix
entries.

File SpecificationsSECTION 3.10
183

F string (Required if the DOS, Mac, and Unix entries are all absent; amended with the UF entry
for PDF 1.7) A file specification string of the form described in Section 3.10.1, “File
Specification Strings,” or (if the file system is URL) a uniform resource locator, as de-
scribed in Section 3.10.4, “URL Specifications.”

Note: It is recommended that the UF entry be used in addition to the F entry. The UF en-
try provides cross-platform and cross-language compatibility and the F entry provides
backwards compatibility.

UF text string (Optional, but recommended if the F entry exists in the dictionary; PDF 1.7) A Unicode
text string that provides file specification of the form described in Section 3.10.1, “File
Specification Strings.” Note that this is a Unicode text string encoded using PDFDocEn-
coding or UTF-16BE with a leading byte-order marker (as defined in Section , “Text
String Type”). The F entry should always be included along with this entry for back-
wards compatibility reasons.

DOS byte string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a DOS file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

Mac byte string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a Mac OS file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

Unix byte string (Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a UNIX file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

ID array (Optional) An array of two byte strings constituting a file identifier (see Section 10.3,
“File Identifiers”) that is also included in the referenced file. The use of this entry im-
proves an application’s chances of finding the intended file and allows it to warn the
user if the file has changed since the link was made.

V boolean (Optional; PDF 1.2) A flag indicating whether the file referenced by the file specifica-
tion is volatile (changes frequently with time). If the value is true, applications should
never cache a copy of the file. For example, a movie annotation referencing a URL to
a live video camera could set this flag to true to notify the application that it should
reacquire the movie each time it is played. Default value: false.

KEY TYPE VALUE

SyntaxCHAPTER 3
184

3.10.3 Embedded File Streams

File specifications ordinarily refer to files external to the PDF file in which they
occur. When a PDF file is archived or transmitted, all external files it refers to
must accompany it to preserve the file’s integrity. Embedded file streams (PDF 1.3)
address this problem by allowing the contents of referenced files to be embedded
directly within the body of the PDF file. For example, if the file contains OPI
(Open Prepress Interface) dictionaries that refer to externally stored high-
resolution images (see Section 10.10.6, “Open Prepress Interface (OPI)”), the
image data can be incorporated into the PDF file with embedded file streams.
This makes the PDF file a self-contained unit that can be stored or transmitted as
a single entity. (The embedded files are included purely for convenience and need
not be directly processed by any PDF consumer application.)

EF dictionary (Required if RF is present; PDF 1.3; amended to include the UF key in PDF 1.7) A dictio-
nary containing a subset of the keys F, UF, DOS, Mac, and Unix, corresponding to the
entries by those names in the file specification dictionary. The value of each such key
is an embedded file stream (see Section 3.10.3, “Embedded File Streams”) containing
the corresponding file. If this entry is present, the Type entry is required and the file
specification dictionary must be indirectly referenced. (See implementation note 46
in Appendix H.)

Note: It is recommended that the F and UF entries be used in place of the DOS, Mac, or
Unix entries.

RF dictionary (Optional; PDF 1.3) A dictionary with the same structure as the EF dictionary, which
must also be present. Each key in the RF dictionary must also be present in the EF dic-
tionary. Each value is a related files array (see “Related Files Arrays” on page 186)
identifying files that are related to the corresponding file in the EF dictionary. If this
entry is present, the Type entry is required and the file specification dictionary must
be indirectly referenced.

Desc text string (Optional; PDF 1.6) Descriptive text associated with the file specification. It is used
for files in the EmbeddedFiles name tree (see Section 3.6.3, “Name Dictionary”).

CI dictionary (Optional; must be indirect reference; PDF 1.7) A collection item dictionary, which is
used to create the user interface for portable collections (see Section 3.10.5, “Collec-
tion Items).

KEY TYPE VALUE

File SpecificationsSECTION 3.10
185

An embedded file stream can be included in a PDF document in the following
ways:

• Any file specification dictionary in the document may have an EF entry that
specifies an embedded file stream. The stream data must still be associated with
a location in the file system. In particular, this method is used for file attach-
ment annotations (see “File Attachment Annotations” on page 637), which as-
sociate the embedded file with a location on a page in the document.

• Embedded file streams can be associated with the document as a whole
through the EmbeddedFiles entry (PDF 1.4) in the PDF document’s name dic-
tionary (see Section 3.6.3, “Name Dictionary”). The associated name tree maps
name strings to file specifications that refer to embedded file streams through
their EF entries. (See implementation note 45 in Appendix H.)

Note: Beginning with PDF 1.6, the Desc entry of the file specification dictionary
(see Table 3.41) can be used to provide a textual description of the embedded file,
which can be displayed in the user interface of a viewer application. Previously, it
was necessary to identify document-level embedded files by the name string pro-
vided in the name dictionary associated with an embedded file stream in much
the same way that the JavaScript name tree associates name strings with docu-
ment-level JavaScript actions (see “JavaScript Actions” on page 709).

The stream dictionary describing an embedded file contains the standard entries
for any stream, such as Length and Filter (see Table 3.4 on page 62), as well as the
additional entries shown in Table 3.42.

TABLE 3.42 Additional entries in an embedded file stream dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be EmbeddedFile for an embedded file stream.

Subtype name (Optional) The subtype of the embedded file. The value of this entry must be
a first-class name, as defined in Appendix E. Names without a registered pre-
fix must conform to the MIME media type names defined in Internet RFC
2046, Multipurpose Internet Mail Extensions (MIME), Part Two: Media Types
(see the Bibliography), with the provision that characters not allowed in
names must use the 2-character hexadecimal code format described in Sec-
tion 3.2.4, “Name Objects.”

Params dictionary (Optional) An embedded file parameter dictionary containing additional, file-
specific information (see Table 3.43).

SyntaxCHAPTER 3
186

TABLE 3.43 Entries in an embedded file parameter dictionary

For Mac OS files, the Mac entry in the embedded file parameter dictionary holds
a further subdictionary containing Mac OS–specific file information. Table 3.44
shows the contents of this subdictionary.

TABLE 3.44 Entries in a Mac OS file information dictionary

Related Files Arrays

In some circumstances, a PDF file can refer to a group of related files, such as the
set of five files that make up a DCS 1.0 color-separated image. The file
specification explicitly names only one of the files; the rest are identified by some
systematic variation of that file name (such as by altering the extension). When
such a file is to be embedded in a PDF file, the related files must be embedded as

KEY TYPE VALUE

Size integer (Optional) The size of the embedded file, in bytes.

CreationDate date (Optional) The date and time when the embedded file was created.

ModDate date (Optional) The date and time when the embedded file was last modified.

Mac dictionary (Optional) A subdictionary containing additional information specific to
Mac OS files (see Table 3.44).

CheckSum string (Optional) A 16-byte string that is the checksum of the bytes of the uncom-
pressed embedded file. The checksum is calculated by applying the standard
MD5 message-digest algorithm (described in Internet RFC 1321, The MD5
Message-Digest Algorithm; see the Bibliography) to the bytes of the embedded
file stream.

KEY TYPE VALUE

Subtype integer (Optional) The embedded file’s file type. It is encoded as an integer according to Mac
OS conventions: a 4-character ASCII text literal, converted to a 32-bit integer, with the
high-order byte first. For example, the file type 'CARO' is represented as the hexadeci-
mal integer 4341524F, which is expressed in decimal as 1128354383.

Creator integer (Optional) The embedded file’s creator signature, encoded in the same way as Subtype.

ResFork stream (Optional) The binary contents of the embedded file’s resource fork.

File SpecificationsSECTION 3.10
187

well. This is accomplished by including a related files array (PDF 1.3) as the value
of the RF entry in the file specification dictionary. The array has 2 × n elements,
which are paired in the form

[string1 stream1
 string2 stream2
 …
 stringn streamn
]

The first element of each pair is a string giving the name of one of the related files;
the second element is an embedded file stream holding the file’s contents.

In Example 3.21, objects 21, 31, and 41 are embedded file streams containing the
DOS file SUNSET . EPS, the Mac OS file Sunset . eps, and the UNIX file Sunset . eps,
respectively. The file specification dictionary’s RF entry specifies an array, object
30, identifying a set of embedded files related to the Mac OS file, forming a
DCS 1.0 set. The example shows only the first two embedded file streams in the
set; an actual PDF file would, of course, include all of them.

Example 3.21

10 0 obj % File specification dictionary
<< /Type /Filespec

 /DOS (SUNSET . EPS)
 /Mac (Sunset . eps) % Name of Mac OS file
 /Unix (Sunset . eps)
 /EF << /DOS 21 0 R

 /Mac 31 0 R % Embedded Mac OS file
 /Unix 41 0 R

 >>
 /RF << /Mac 30 0 R >> % Related files array for Mac OS file

>>
endobj

30 0 obj % Related files array for Mac OS file
[(Sunset . eps) 31 0 R % Includes file Sunset . eps itself
 (Sunset . C) 32 0 R
 (Sunset . M) 33 0 R
 (Sunset . Y) 34 0 R
 (Sunset . K) 35 0 R
]

endobj

SyntaxCHAPTER 3
188

31 0 obj % Embedded file stream for Mac OS file
<< /Type /EmbeddedFile % Sunset . eps

 /Length …
 /Filter …

>>
stream
… Data for Sunset . eps …
endstream
endobj

32 0 obj % Embedded file stream for related file
<< /Type /EmbeddedFile % Sunset . C

 /Length …
 /Filter …

>>
stream
… Data for Sunset . C …
endstream
endobj

3.10.4 URL Specifications

When the FS entry in a file specification dictionary has the value URL, the value of
the F entry in that dictionary is not a file specification string, but a uniform
resource locator (URL) of the form defined in Internet RFC 1738, Uniform
Resource Locators (see the Bibliography). Example 3.22 shows a URL
specification.

Example 3.22

<< /FS /URL
 /F (ftp : / / www . beatles . com / Movies / AbbeyRoad . mov)

>>

The URL must adhere to the character-encoding requirements specified in RFC
1738. Because 7-bit U.S. ASCII is a strict subset of PDFDocEncoding, this value
may also be considered to be in that encoding.

File SpecificationsSECTION 3.10
189

3.10.5 Collection Items

Beginning with PDF 1.7, a collection item dictionary contains the data described
by the collection schema dictionary for a particular file in a collection (see
Section 8.2.4, “Collections). Table 3.45 describes the entries in a collection item
dictionary.

TABLE 3.45 Entries in a collection item dictionary

A collection subitem dictionary provides the data corresponding to the related
fields in the collection dictionary, and it provides a means of associating a prefix
string with that data value. The prefix is ignored by the sorting algorithm.
Table 3.46 describes the entries in a collection subitem dictionary.

TABLE 3.46 Entries in a collection subitem dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
CollectionItem for a collection item dictionary.

Other
keys
chosen by
producer

text string,
date,
number or
dictionary

(Optional) Provides the data corresponding to the related fields in the collection dic-
tionary. If the entry is a dictionary, then it is a collection subitem dictionary (see
Table 3.46).

The type of each entry must match the type of data identified by the collection field
dictionary (see Table 8.8 on page 591). For example, if the corresponding collection
field has a Subtype entry of S, then the entry is a text string.

A single collection item dictionary may contain multiple entries, with one entry rep-
resenting each key (see Example 8.3 on page 593).

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
CollectionSubitem for a collection item dictionary.

D text string,
date, or
number

(Optional) The data corresponding to the related entry in the collection field dictio-
nary (see Table 8.8 on page 591). The type of data must match the data type identified
by the collection field dictionary. Default: none.

P text string (Optional) A prefix string that is concatenated with the text string presented to the
user. This entry is ignored when a PDF viewer application sorts the items in the col-
lection. Default: none.

SyntaxCHAPTER 3
190

3.10.6 Maintenance of File Specifications

The techniques described in this section can be used to maintain the integrity of
the file specifications within a PDF file during the following types of operations:

• Updating the relevant file specification when a referenced file is renamed

• Determining the complete collection of files that must be copied to a mirror
site

• When creating new links to external files, discovering existing file specifica-
tions that refer to the same files and sharing them

• Finding the file specifications associated with embedded files to be packed or
unpacked

It is not possible, in general, to find all file specification strings in a PDF file
because there is no way to determine whether a given string is a file specification
string. It is possible, however, to find all file specification dictionaries, provided
that they meet the following conditions:

• They are indirect objects.

• They contain a Type entry whose value is the name Filespec.

An application can locate all of the file specification dictionaries by traversing the
PDF file’s cross-reference table (see Section 3.4.3, “Cross-Reference Table”) and
finding all dictionaries with Type keys whose value is Filespec. For this reason, it
is highly recommended that all file specifications be expressed in dictionary form
and meet the conditions stated above. Note that any file specification dictionary
specifying embedded files (that is, one that contains an EF entry) must satisfy
these conditions (see Table 3.41 on page 182).

Note: It may not be possible to locate file specification dictionaries that are direct
objects, since they are neither self-typed nor necessarily reachable by any standard
path of object references.

Files may be embedded in a PDF file either directly, using the EF entry in a file
specification dictionary, or indirectly, using related files arrays specified in the RF
entry. If a file is embedded indirectly, its name is given by the string that precedes
the embedded file stream in the related files array. If it is embedded directly, its
name is obtained from the value of the corresponding entry in the file

File SpecificationsSECTION 3.10
191

specification dictionary. In Example 3.21 on page 187, for instance, the EF
dictionary has a DOS entry identifying object number 21 as an embedded file
stream. The name of the embedded DOS file, SUNSET . EPS, is given by the DOS
entry in the file specification dictionary.

A given external file may be referenced from more than one file specification.
Therefore, when embedding a file with a given name, it is necessary to check for
other occurrences of the same name as the value associated with the
corresponding key in other file specification dictionaries. This requires finding
all embeddable file specifications and, for each matching key, checking for both
of the following conditions:

• The string value associated with the key matches the name of the file being em-
bedded.

• A value has not already been embedded for the file specification. (If there is
already a corresponding key in the EF dictionary, a file has already been em-
bedded for that use of the file name.)

Note that there is no requirement that the files associated with a given file name
be unique. The same file name, such as readme . txt, may be associated with
different embedded files in distinct file specifications.

SyntaxCHAPTER 3
192

193

CHAPTER 4

4Graphics

The graphics operators used in PDF content streams describe the appearance of
pages that are to be reproduced on a raster output device. The facilities described
in this chapter are intended for both printer and display applications.

The graphics operators form six main groups:

• Graphics state operators manipulate the data structure called the graphics state,
the global framework within which the other graphics operators execute. The
graphics state includes the current transformation matrix (CTM), which maps
user space coordinates used within a PDF content stream into output device
coordinates. It also includes the current color, the current clipping path, and
many other parameters that are implicit operands of the painting operators.

• Path construction operators specify paths, which define shapes, line trajectories,
and regions of various sorts. They include operators for beginning a new path,
adding line segments and curves to it, and closing it.

• Path-painting operators fill a path with a color, paint a stroke along it, or use it
as a clipping boundary.

• Other painting operators paint certain self-describing graphics objects. These
include sampled images, geometrically defined shadings, and entire content
streams that in turn contain sequences of graphics operators.

• Text operators select and show character glyphs from fonts (descriptions of type-
faces for representing text characters). Because PDF treats glyphs as general
graphical shapes, many of the text operators could be grouped with the graph-
ics state or painting operators. However, the data structures and mechanisms
for dealing with glyph and font descriptions are sufficiently specialized that
Chapter 5 focuses on them.

GraphicsCHAPTER 4
194

• Marked-content operators associate higher-level logical information with ob-
jects in the content stream. This information does not affect the rendered ap-
pearance of the content (although it may determine if the content should be
presented at all; see Section 4.10, “Optional Content”); it is useful to applica-
tions that use PDF for document interchange. Marked content is described in
Section 10.5, “Marked Content.”

This chapter presents general information about device-independent graphics in
PDF: how a PDF content stream describes the abstract appearance of a page.
Rendering—the device-dependent part of graphics—is covered in Chapter 6. The
Bibliography lists a number of books that give details of these computer graphics
concepts and their implementation.

4.1 Graphics Objects

As discussed in Section 3.7.1, “Content Streams,” the data in a content stream is
interpreted as a sequence of operators and their operands, expressed as basic data
objects according to standard PDF syntax. A content stream can describe the
appearance of a page, or it can be treated as a graphical element in certain other
contexts.

The operands and operators are written sequentially using postfix notation.
Although this notation resembles the sequential execution model of the Post-
Script language, a PDF content stream is not a program to be interpreted; rather,
it is a static description of a sequence of graphics objects. There are specific rules,
described below, for writing the operands and operators that describe a graphics
object.

PDF provides five types of graphics objects:

• A path object is an arbitrary shape made up of straight lines, rectangles, and
cubic Bézier curves. A path may intersect itself and may have disconnected
sections and holes. A path object ends with one or more painting operators that
specify whether the path is stroked, filled, used as a clipping boundary, or some
combination of these operations.

• A text object consists of one or more character strings that identify sequences of
glyphs to be painted. Like a path, text can be stroked, filled, or used as a clip-
ping boundary.

Graphics ObjectsSECTION 4.1
195

• An external object (XObject) is an object defined outside the content stream
and referenced as a named resource (see Section 3.7.2, “Resource Diction-
aries”). The interpretation of an XObject depends on its type. An image XOb-
ject defines a rectangular array of color samples to be painted; a form XObject is
an entire content stream to be treated as a single graphics object. Specialized
types of form XObjects are used to import content from one PDF file into an-
other (reference XObjects) and to group graphical elements together as a unit
for various purposes (group XObjects). In particular, the latter are used to de-
fine transparency groups for use in the transparent imaging model (transparen-
cy group XObjects, discussed in detail in Chapter 7). There is also a PostScript
XObject, whose use is discouraged.

• An inline image object uses a special syntax to express the data for a small image
directly within the content stream.

• A shading object describes a geometric shape whose color is an arbitrary func-
tion of position within the shape. (A shading can also be treated as a color
when painting other graphics objects; it is not considered to be a separate
graphics object in that case.)

PDF 1.3 and earlier versions use an opaque imaging model in which each graphics
object is painted in sequence, completely obscuring any previous marks it may
overlay on the page. PDF 1.4 introduces a transparent imaging model in which ob-
jects can be less than fully opaque, allowing previously painted marks to show
through. Each object is painted on the page with a specified opacity, which may
be constant at every point within the object’s shape or may vary from point to
point. The previously existing contents of the page form a backdrop with which
the new object is composited, producing results that combine the colors of the
object and backdrop according to their respective opacity characteristics. The ob-
jects at any given point on the page can be thought of as forming a transparency
stack, where the stacking order is defined to be the order in which the objects are
specified, bottommost object first. All objects in the stack can potentially contrib-
ute to the result, depending on their colors, shapes, and opacities.

PDF’s graphics parameters are so arranged that objects are painted by default
with full opacity, reducing the behavior of the transparent imaging model to that
of the opaque model. Accordingly, the material in this chapter applies to both the
opaque and transparent models except where explicitly stated otherwise; the
transparent model is described in its full generality in Chapter 7.

GraphicsCHAPTER 4
196

Although the painting behavior described above is often attributed to individual
operators making up an object, it is always the object as a whole that is painted.
Figure 4.1 shows the ordering rules for the operations that define graphics
objects. Some operations are permitted only in certain types of graphics objects
or in the intervals between graphics objects (called the page description level in
the figure). Every content stream begins at the page description level, where
changes can be made to the graphics state, such as colors and text attributes, as
discussed in the following sections.

In the figure, arrows indicate the operators that mark the beginning or end of
each type of graphics object. Some operators are identified individually, others by
general category. Table 4.1 summarizes these categories for all PDF operators.

TABLE 4.1 Operator categories

CATEGORY OPERATORS TABLE PAGE

General graphics state w, J, j, M, d, ri, i, gs 4.7 219

Special graphics state q, Q, cm 4.7 219

Path construction m, l, c, v, y, h, re 4.9 226

Path painting S, s, f, F, f*, B, B*, b, b*, n 4.10 230

Clipping paths W, W* 4.11 235

Text objects BT, ET 5.4 405

Text state Tc, Tw, Tz, TL, Tf, Tr, Ts 5.2 398

Text positioning Td, TD, Tm, T* 5.5 406

Text showing Tj, TJ, ', " 5.6 407

Type 3 fonts d0, d1 5.10 423

Color CS, cs, SC, SCN, sc, scn, G, g, RG, rg, K, k 4.24 287

Shading patterns sh 4.27 303

Inline images BI, ID, EI 4.42 352

XObjects Do 4.37 332

Marked content MP, DP, BMC, BDC, EMC 10.7 851

Compatibility BX, EX 3.29 152

Graphics ObjectsSECTION 4.1
197

FIGURE 4.1 Graphics objects

Path object

Allowed operators:
• Path construction

Text object

Allowed operators:
• General graphics state
• Color
• Text state
• Text-showing
• Text-positioning
• Marked-content

Page description level

Allowed operators:
• General graphics state
• Special graphics state
• Color
• Text state
• Marked-content

Clipping path object

Allowed operators:
• None

Shading object

Allowed operators:
• None

In-line image object

Allowed operators:
• ID

External object

Allowed operators:
• None

(immediate)

Path-painting
operators

(immediate)

Path-painting
operators

m, re

EI BI Do

sh

BT ETW, W*

GraphicsCHAPTER 4
198

For example, the path construction operators m and re signal the beginning of a
path object. Inside the path object, additional path construction operators are
permitted, as are the clipping path operators W and W*, but not general graphics
state operators such as w or J. A path-painting operator, such as S or f, ends the
path object and returns to the page description level.

Note: A content stream whose operations violate these rules for describing graphics
objects can produce unpredictable behavior, even though it may display and print
correctly. Applications that attempt to extract graphics objects for editing or other
purposes depend on the objects’ being well formed. The rules for graphics objects are
also important for the proper interpretation of marked content (see Section 10.5,
“Marked Content”).

A graphics object also implicitly includes all graphics state parameters that affect
its behavior. For instance, a path object depends on the value of the current color
parameter at the moment the path object is defined. The effect is as if this param-
eter were specified as part of the definition of the path object. However, the oper-
ators that are invoked at the page description level to set graphics state
parameters are not considered to belong to any particular graphics object. Graph-
ics state parameters need to be specified only when they change. A graphics
object may depend on parameters that were defined much earlier.

Similarly, the individual character strings within a text object implicitly include
the graphics state parameters on which they depend. Most of these parameters
may be set inside or outside the text object. The effect is as if they were separately
specified for each text string.

The important point is that there is no semantic significance to the exact arrange-
ment of graphics state operators. An application that reads and writes a PDF con-
tent stream is not required to preserve this arrangement, but is free to change it to
any other arrangement that achieves the same values of the relevant graphics state
parameters for each graphics object. An application should not infer any higher-
level logical semantics from the arrangement of tokens constituting a graphics
object. A separate mechanism, marked content (see Section 10.5, “Marked Con-
tent”), allows such higher-level information to be explicitly associated with the
graphics objects.

Coordinate SystemsSECTION 4.2
199

4.2 Coordinate Systems

Coordinate systems define the canvas on which all painting occurs. They deter-
mine the position, orientation, and size of the text, graphics, and images that
appear on a page. This section describes each of the coordinate systems used in
PDF, how they are related, and how transformations among them are specified.

Note: The coordinate systems discussed in this section apply to two-dimensional
graphics. PDF 1.6 introduces the ability to display 3D artwork, in which objects are
described in a three-dimensional coordinate system, as described in Section 9.5.4,
“Coordinate Systems for 3D.”

4.2.1 Coordinate Spaces

Paths and positions are defined in terms of pairs of coordinates on the Cartesian
plane. A coordinate pair is a pair of real numbers x and y that locate a point hori-
zontally and vertically within a two-dimensional coordinate space. A coordinate
space is determined by the following properties with respect to the current page:

• The location of the origin

• The orientation of the x and y axes

• The lengths of the units along each axis

PDF defines several coordinate spaces in which the coordinates specifying graph-
ics objects are interpreted. The following sections describe these spaces and the
relationships among them.

Transformations among coordinate spaces are defined by transformation matri-
ces, which can specify any linear mapping of two-dimensional coordinates, in-
cluding translation, scaling, rotation, reflection, and skewing. Transformation
matrices are discussed in Sections 4.2.2, “Common Transformations,” and 4.2.3,
“Transformation Matrices.”

Device Space

The contents of a page ultimately appear on a raster output device such as a dis-
play or a printer. Such devices vary greatly in the built-in coordinate systems they
use to address pixels within their imageable areas. A particular device’s coordi-

GraphicsCHAPTER 4
200

nate system is called its device space. The origin of the device space on different
devices can fall in different places on the output page; on displays, the origin can
vary depending on the window system. Because the paper or other output me-
dium moves through different printers and imagesetters in different directions,
the axes of their device spaces may be oriented differently. For instance, vertical
(y) coordinates may increase from the top of the page to the bottom on some
devices and from bottom to top on others. Finally, different devices have different
resolutions; some even have resolutions that differ in the horizontal and vertical
directions.

If coordinates in a PDF file were specified in device space, the file would be
device-dependent and would appear differently on different devices. For exam-
ple, images specified in the typical device spaces of a 72-pixel-per-inch display
and a 600-dot-per-inch printer would differ in size by more than a factor of 8; an
8-inch line segment on the display would appear less than 1 inch long on the
printer. Figure 4.2 shows how the same graphics object, specified in device space,
can appear drastically different when rendered on different output devices.

FIGURE 4.2 Device space

User Space

To avoid the device-dependent effects of specifying objects in device space, PDF
defines a device-independent coordinate system that always bears the same rela-
tionship to the current page, regardless of the output device on which printing or
displaying occurs. This device-independent coordinate system is called user
space.

Device space for
72-dpi screen

Device space for
300-dpi printer

Coordinate SystemsSECTION 4.2
201

The user space coordinate system is initialized to a default state for each page of a
document. The CropBox entry in the page dictionary specifies the rectangle of
user space corresponding to the visible area of the intended output medium (dis-
play window or printed page). The positive x axis extends horizontally to the
right and the positive y axis vertically upward, as in standard mathematical prac-
tice (subject to alteration by the Rotate entry in the page dictionary). The length
of a unit along both the x and y axes is set by the UserUnit entry (PDF 1.6) in the
page dictionary (see Table 3.27). If that entry is not present or supported, the de-
fault value of 1 ⁄ 72 inch is used. This coordinate system is called default user space.

Note: In PostScript, the origin of default user space always corresponds to the lower-
left corner of the output medium. While this convention is common in PDF docu-
ments as well, it is not required; the page dictionary’s CropBox entry can specify any
rectangle of default user space to be made visible on the medium.

Note: The default for the size of the unit in default user space (1 ⁄ 72 inch) is approx-
imately the same as a point, a unit widely used in the printing industry. It is not ex-
actly the same, however; there is no universal definition of a point.

Conceptually, user space is an infinite plane. Only a small portion of this plane
corresponds to the imageable area of the output device: a rectangular region de-
fined by the CropBox entry in the page dictionary. The region of default user
space that is viewed or printed can be different for each page and is described in
Section 10.10.1, “Page Boundaries.”

Note: Because coordinates in user space (as in any other coordinate space) may be
specified as either integers or real numbers, the unit size in default user space does
not constrain positions to any arbitrary grid. The resolution of coordinates in user
space is not related in any way to the resolution of pixels in device space.

The transformation from user space to device space is defined by the current
transformation matrix (CTM), an element of the PDF graphics state (see Section
4.3, “Graphics State”). A PDF consumer application can adjust the CTM for the
native resolution of a particular output device, maintaining the device-
independence of the PDF page description. Figure 4.3 shows how this allows an
object specified in user space to appear the same regardless of the device on
which it is rendered.

The default user space provides a consistent, dependable starting place for PDF
page descriptions regardless of the output device used. If necessary, a PDF con-

GraphicsCHAPTER 4
202

tent stream may modify user space to be more suitable to its needs by applying
the coordinate transformation operator, cm (see Section 4.3.3, “Graphics State Op-
erators”). Thus, what may appear to be absolute coordinates in a content stream
are not absolute with respect to the current page because they are expressed in a
coordinate system that may slide around and shrink or expand. Coordinate sys-
tem transformation not only enhances device-independence but is a useful tool
in its own right. For example, a content stream originally composed to occupy an
entire page can be incorporated without change as an element of another page by
shrinking the coordinate system in which it is drawn.

FIGURE 4.3 User space

User space

Device space for
72-dpi screen

Device space for
300-dpi printer

CTM

Coordinate SystemsSECTION 4.2
203

Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate
spaces for specialized purposes:

• The coordinates of text are specified in text space. The transformation from text
space to user space is defined by a text matrix in combination with several text-
related parameters in the graphics state (see Section 5.3.1, “Text-Positioning
Operators”).

• Character glyphs in a font are defined in glyph space (see Section 5.1.3, “Glyph
Positioning and Metrics”). The transformation from glyph space to text space
is defined by the font matrix. For most types of fonts, this matrix is predefined
to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix is given explicitly in the font dictionary (see Section 5.5.4, “Type 3
Fonts”).

• All sampled images are defined in image space. The transformation from image
space to user space is predefined and cannot be changed. All images are 1 unit
wide by 1 unit high in user space, regardless of the number of samples in the
image. To be painted, an image is mapped to a region of the page by temporari-
ly altering the CTM.

Note: In PostScript, unlike PDF, the relationship between image space and user
space can be specified explicitly. The fixed transformation prescribed in PDF cor-
responds to the convention that is recommended for use in PostScript.

• A form XObject (discussed in Section 4.9, “Form XObjects”) is a self-contained
content stream that can be treated as a graphical element within another con-
tent stream. The space in which it is defined is called form space. The transfor-
mation from form space to user space is specified by a form matrix contained
in the form XObject.

• PDF 1.2 defines a type of color known as a pattern, discussed in Section 4.6,
“Patterns.” A pattern is defined either by a content stream that is invoked
repeatedly to tile an area or by a shading whose color is a function of position.
The space in which a pattern is defined is called pattern space. The transforma-
tion from pattern space to user space is specified by a pattern matrix contained
in the pattern.

• PDF 1.6 introduces embedded 3D artwork, which is described in three-dimen-
sional coordinates (see Section 9.5.4, “Coordinate Systems for 3D”) that are

GraphicsCHAPTER 4
204

projected into an annotation’s target coordinate system (see Section 9.5.1, “3D
Annotations”).

Relationships among Coordinate Spaces

Figure 4.4 shows the relationships among the coordinate spaces described above.
Each arrow in the figure represents a transformation from one coordinate space
to another. PDF allows modifications to many of these transformations.

Because PDF coordinate spaces are defined relative to one another, changes made
to one transformation can affect the appearance of objects defined in several
coordinate spaces. For example, a change in the CTM, which defines the trans-
formation from user space to device space, affects forms, text, images, and pat-
terns, since they are all upstream from user space.

4.2.2 Common Transformations

A transformation matrix specifies the relationship between two coordinate spac-
es. By modifying a transformation matrix, objects can be scaled, rotated, translat-
ed, or transformed in other ways.

FIGURE 4.4 Relationships among coordinate systems

User
space

Device
space

Form
space

Glyph
space

Text
space

Image
space

Pattern
space

Coordinate SystemsSECTION 4.2
205

A transformation matrix in PDF is specified by six numbers, usually in the form
of an array containing six elements. In its most general form, this array is denoted
[a b c d e f]; it can represent any linear transformation from one coordinate
system to another. This section lists the arrays that specify the most common
transformations; Section 4.2.3, “Transformation Matrices,” discusses more math-
ematical details of transformations, including information on specifying transfor-
mations that are combinations of those listed here:

• Translations are specified as [1 0 0 1 tx ty], where tx and ty are the distances
to translate the origin of the coordinate system in the horizontal and vertical
dimensions, respectively.

• Scaling is obtained by [sx 0 0 sy 0 0]. This scales the coordinates so that 1
unit in the horizontal and vertical dimensions of the new coordinate system is
the same size as sx and sy units, respectively, in the previous coordinate system.

• Rotations are produced by [cos θ sin θ −sin θ cos θ 0 0], which has the effect
of rotating the coordinate system axes by an angle θ counterclockwise.

• Skew is specified by [1 tan α tan β 1 0 0], which skews the x axis by an angle
α and the y axis by an angle β.

Figure 4.5 shows examples of each transformation. The directions of translation,
rotation, and skew shown in the figure correspond to positive values of the array
elements.

FIGURE 4.5 Effects of coordinate transformations

ty

tx

sy

sx

SkewingRotationScalingTranslation

q
a

b

GraphicsCHAPTER 4
206

If several transformations are combined, the order in which they are applied is
significant. For example, first scaling and then translating the x axis is not the
same as first translating and then scaling it. In general, to obtain the expected
results, transformations should be done in the following order:

1. Translate

2. Rotate

3. Scale or skew

Figure 4.6 shows the effect of the order in which transformations are applied. The
figure shows two sequences of transformations applied to a coordinate system.
After each successive transformation, an outline of the letter n is drawn.

FIGURE 4.6 Effect of transformation order

Original Step 1: Translation Step 2: Rotation Step 3: Scaling

Original Step 1: Scaling Step 2: Rotation Step 3: Translation

Coordinate SystemsSECTION 4.2
207

 The following transformations are shown in the figure:

• A translation of 10 units in the x direction and 20 units in the y direction

• A rotation of 30 degrees

• A scaling by a factor of 3 in the x direction

In the figure, the axes are shown with a dash pattern having a 2-unit dash and a
2-unit gap. In addition, the original (untransformed) axes are shown in a lighter
color for reference. Notice that the scale-rotate-translate ordering results in a
distortion of the coordinate system, leaving the x and y axes no longer perpendic-
ular; the recommended translate-rotate-scale ordering results in no distortion.

4.2.3 Transformation Matrices

This section discusses the mathematics of transformation matrices. It is not
necessary to read this section to use the transformations described previously;
the information is presented for the benefit of readers who want to gain a deeper
understanding of the theoretical basis of coordinate transformations.

To understand the mathematics of coordinate transformations in PDF, it is vital
to remember two points:

• Transformations alter coordinate systems, not graphics objects. All objects paint-
ed before a transformation is applied are unaffected by the transformation. Ob-
jects painted after the transformation is applied are interpreted in the
transformed coordinate system.

• Transformation matrices specify the transformation from the new (transformed)
coordinate system to the original (untransformed) coordinate system. All coor-
dinates used after the transformation are expressed in the transformed coordi-
nate system. PDF applies the transformation matrix to find the equivalent
coordinates in the untransformed coordinate system.

Note: Many computer graphics textbooks consider transformations of graphics ob-
jects rather than of coordinate systems. Although either approach is correct and self-
consistent, some details of the calculations differ depending on which point of view
is taken.

GraphicsCHAPTER 4
208

PDF represents coordinates in a two-dimensional space. The point (x, y) in such
a space can be expressed in vector form as [x y 1]. The constant third element of
this vector (1) is needed so that the vector can be used with 3-by-3 matrices in the
calculations described below.

The transformation between two coordinate systems is represented by a 3-by-3
transformation matrix written as follows:

Because a transformation matrix has only six elements that can be changed, it is
usually specified in PDF as the six-element array [a b c d e f].

Coordinate transformations are expressed as matrix multiplications:

Because PDF transformation matrices specify the conversion from the trans-
formed coordinate system to the original (untransformed) coordinate system, x ′
and y ′ in this equation are the coordinates in the untransformed coordinate sys-
tem, and x and y are the coordinates in the transformed system. The multiplica-
tion is carried out as follows:

If a series of transformations is carried out, the matrices representing each of the
individual transformations can be multiplied together to produce a single equiva-
lent matrix representing the composite transformation.

Matrix multiplication is not commutative—the order in which matrices are mul-
tiplied is significant. Consider a sequence of two transformations: a scaling trans-
formation applied to the user space coordinate system, followed by a conversion
from the resulting scaled user space to device space. Let MS be the matrix specify-
ing the scaling and MC the current transformation matrix, which transforms user

a b 0
c d 0
e f 1

x′ y′ 1[] x y 1[]
a b 0
c d 0
e f 1

×=

x′ a x× c y× e+ +=
y′ b x× d y× f+ +=

Coordinate SystemsSECTION 4.2
209

space to device space. Recalling that coordinates are always specified in the trans-
formed space, the correct order of transformations must first convert the scaled
coordinates to default user space and then the default user space coordinates to
device space. This can be expressed as

where

XD denotes the coordinates in device space

XU denotes the coordinates in default user space

XS denotes the coordinates in scaled user space

This shows that when a new transformation is concatenated with an existing one,
the matrix representing it must be multiplied before (premultiplied with) the
existing transformation matrix.

This result is true in general for PDF: when a sequence of transformations is car-
ried out, the matrix representing the combined transformation (M ′) is calculated
by premultiplying the matrix representing the additional transformation (MT)
with the one representing all previously existing transformations (M):

Note: When rendering graphics objects, it is sometimes necessary for an application
to perform the inverse of a transformation—that is, to find the user space coordi-
nates that correspond to a given pair of device space coordinates. Not all transfor-
mations are invertible, however. For example, if a matrix contains a, b, c, and d
elements that are all zero, all user coordinates map to the same device coordinates
and there is no unique inverse transformation. Such noninvertible transformations
are not very useful and generally arise from unintended operations, such as scaling
by 0. Use of a noninvertible matrix when painting graphics objects can result in un-
predictable behavior.

XD XU MC× XS MS×() MC× XS MS MC×()×= = =

M′ MT M×=

GraphicsCHAPTER 4
210

4.3 Graphics State

A PDF consumer application maintains an internal data structure called the
graphics state that holds current graphics control parameters. These parameters
define the global framework within which the graphics operators execute. For ex-
ample, the f (fill) operator implicitly uses the current color parameter, and the S
(stroke) operator additionally uses the current line width parameter from the
graphics state.

The graphics state is initialized at the beginning of each page with the values
specified in Tables 4.2 and 4.3. Table 4.2 lists those graphics state parameters that
are device-independent and are appropriate to specify in page descriptions. The
parameters listed in Table 4.3 control details of the rendering (scan conversion)
process and are device-dependent; a page description that is intended to be de-
vice-independent should not modify these parameters.

TABLE 4.2 Device-independent graphics state parameters

PARAMETER TYPE VALUE

CTM array The current transformation matrix, which maps positions from user
coordinates to device coordinates (see Section 4.2, “Coordinate Sys-
tems”). This matrix is modified by each application of the coordi-
nate transformation operator, cm. Initial value: a matrix that
transforms default user coordinates to device coordinates.

clipping path (internal) The current clipping path, which defines the boundary against
which all output is to be cropped (see Section 4.4.3, “Clipping Path
Operators”). Initial value: the boundary of the entire imageable
portion of the output page.

color space name or array The current color space in which color values are to be interpreted
(see Section 4.5, “Color Spaces”). There are two separate color space
parameters: one for stroking and one for all other painting opera-
tions. Initial value: DeviceGray.

color (various) The current color to be used during painting operations (see Section
4.5, “Color Spaces”). The type and interpretation of this parameter
depend on the current color space; for most color spaces, a color
value consists of one to four numbers. There are two separate color
parameters: one for stroking and one for all other painting opera-
tions. Initial value: black.

Graphics StateSECTION 4.3
211

text state (various) A set of nine graphics state parameters that pertain only to the
painting of text. These include parameters that select the font, scale
the glyphs to an appropriate size, and accomplish other effects. The
text state parameters are described in Section 5.2, “Text State
Parameters and Operators.”

line width number The thickness, in user space units, of paths to be stroked (see “Line
Width” on page 215). Initial value: 1.0.

line cap integer A code specifying the shape of the endpoints for any open path that
is stroked (see “Line Cap Style” on page 216). Initial value: 0, for
square butt caps.

line join integer A code specifying the shape of joints between connected segments
of a stroked path (see “Line Join Style” on page 216). Initial value: 0,
for mitered joins.

miter limit number The maximum length of mitered line joins for stroked paths (see
“Miter Limit” on page 217). This parameter limits the length of
“spikes” produced when line segments join at sharp angles. Initial
value: 10.0, for a miter cutoff below approximately 11.5 degrees.

dash pattern array and number A description of the dash pattern to be used when paths are stroked
(see “Line Dash Pattern” on page 217). Initial value: a solid line.

rendering intent name The rendering intent to be used when converting CIE-based colors
to device colors (see “Rendering Intents” on page 260). Initial value:
RelativeColorimetric.

stroke adjustment boolean (PDF 1.2) A flag specifying whether to compensate for possible ras-
terization effects when stroking a path with a line width that is
small relative to the pixel resolution of the output device (see Sec-
tion 6.5.4, “Automatic Stroke Adjustment”). Note that this is consid-
ered a device-independent parameter, even though the details of its
effects are device-dependent. Initial value: false.

blend mode name or array (PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Speci-
fying Blending Color Space and Blend Mode”). This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: Normal.

PARAMETER TYPE VALUE

GraphicsCHAPTER 4
212

TABLE 4.3 Device-dependent graphics state parameters

soft mask dictionary
or name

(PDF 1.4) A soft-mask dictionary (see “Soft-Mask Dictionaries” on
page 552) specifying the mask shape or mask opacity values to be
used in the transparent imaging model (see “Source Shape and
Opacity” on page 526 and “Mask Shape and Opacity” on page 550),
or the name None if no such mask is specified. This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: None.

alpha constant number (PDF 1.4) The constant shape or constant opacity value to be used
in the transparent imaging model (see “Source Shape and Opacity”
on page 526 and “Constant Shape and Opacity” on page 551). There
are two separate alpha constant parameters: one for stroking and
one for all other painting operations. This parameter is implicitly
reset to its initial value at the beginning of execution of a transpar-
ency group XObject (see Section 7.5.5, “Transparency Group
XObjects”). Initial value: 1.0.

alpha source boolean (PDF 1.4) A flag specifying whether the current soft mask and al-
pha constant parameters are to be interpreted as shape values (true)
or opacity values (false). This flag also governs the interpretation of
the SMask entry, if any, in an image dictionary (see Section 4.8.4,
“Image Dictionaries”). Initial value: false.

PARAMETER TYPE VALUE

overprint boolean (PDF 1.2) A flag specifying (on output devices that support the
overprint control feature) whether painting in one set of colorants
should cause the corresponding areas of other colorants to be
erased (false) or left unchanged (true); see Section 4.5.6, “Overprint
Control.” In PDF 1.3, there are two separate overprint parameters:
one for stroking and one for all other painting operations. Initial
value: false.

overprint mode number (PDF 1.3) A code specifying whether a color component value of 0
in a DeviceCMYK color space should erase that component (0) or
leave it unchanged (1) when overprinting (see Section 4.5.6, “Over-
print Control”). Initial value: 0.

PARAMETER TYPE VALUE

Graphics StateSECTION 4.3
213

Some graphics state parameters are set with specific PDF operators, some are set
by including a particular entry in a graphics state parameter dictionary, and some
can be specified either way. The current line width, for example, can be set either
with the w operator or (in PDF 1.3) with the LW entry in a graphics state parame-
ter dictionary, whereas the current color is set only with specific operators, and
the current halftone is set only with a graphics state parameter dictionary. It is
expected that all future graphics state parameters will be specified with new
entries in the graphics state parameter dictionary rather than with new operators.

black generation function or name (PDF 1.2) A function that calculates the level of the black color
component to use when converting RGB colors to CMYK (see Sec-
tion 6.2.3, “Conversion from DeviceRGB to DeviceCMYK”). Initial
value: installation-dependent.

undercolor removal function or name (PDF 1.2) A function that calculates the reduction in the levels of
the cyan, magenta, and yellow color components to compensate for
the amount of black added by black generation (see Section 6.2.3,
“Conversion from DeviceRGB to DeviceCMYK”). Initial value: in-
stallation-dependent.

transfer function,
array, or name

(PDF 1.2) A function that adjusts device gray or color component
levels to compensate for nonlinear response in a particular output
device (see Section 6.3, “Transfer Functions”). Initial value:
installation-dependent.

halftone dictionary,
stream, or name

(PDF 1.2) A halftone screen for gray and color rendering, specified
as a halftone dictionary or stream (see Section 6.4, “Halftones”).
Initial value: installation-dependent.

flatness number The precision with which curves are to be rendered on the output
device (see Section 6.5.1, “Flatness Tolerance”). The value of this
parameter gives the maximum error tolerance, measured in output
device pixels; smaller numbers give smoother curves at the expense
of more computation and memory use. Initial value: 1.0.

smoothness number (PDF 1.3) The precision with which color gradients are to be ren-
dered on the output device (see Section 6.5.2, “Smoothness Toler-
ance”). The value of this parameter gives the maximum error
tolerance, expressed as a fraction of the range of each color compo-
nent; smaller numbers give smoother color transitions at the
expense of more computation and memory use. Initial value:
installation-dependent.

PARAMETER TYPE VALUE

GraphicsCHAPTER 4
214

In general, the operators that set graphics state parameters simply store them un-
changed for later use by the painting operators. However, some parameters have
special properties or behavior:

• Most parameters must be of the correct type or have values that fall within a
certain range.

• Parameters that are numeric values, such as the current color, line width, and
miter limit, are forced into valid range, if necessary. However, they are not ad-
justed to reflect capabilities of the raster output device, such as resolution or
number of distinguishable colors. Painting operators perform such adjust-
ments, but the adjusted values are not stored back into the graphics state.

• Paths are internal objects that are not directly represented in PDF.

Note: As indicated in Tables 4.2 and 4.3, some of the parameters—color space, color,
and overprint—have two values, one used for stroking (of paths and text objects)
and one for all other painting operations. The two parameter values can be set inde-
pendently, allowing for operations such as combined filling and stroking of the same
path with different colors. Except where noted, a term such as current color should
be interpreted to refer to whichever color parameter applies to the operation being
performed. When necessary, the individual color parameters are distinguished ex-
plicitly as the stroking color and the nonstroking color.

4.3.1 Graphics State Stack

A well-structured PDF document typically contains many graphical elements
that are essentially independent of each other and sometimes nested to multiple
levels. The graphics state stack allows these elements to make local changes to the
graphics state without disturbing the graphics state of the surrounding environ-
ment. The stack is a LIFO (last in, first out) data structure in which the contents
of the graphics state can be saved and later restored using the following operators:

• The q operator pushes a copy of the entire graphics state onto the stack.

• The Q operator restores the entire graphics state to its former value by popping
it from the stack.

Graphics StateSECTION 4.3
215

These operators can be used to encapsulate a graphical element so that it can
modify parameters of the graphics state and later restore them to their previous
values. Occurrences of the q and Q operators must be balanced within a given
content stream (or within the sequence of streams specified in a page dictionary’s
Contents array).

4.3.2 Details of Graphics State Parameters

This section gives details of several of the device-independent graphics state pa-
rameters listed in Table 4.2.

Line Width

The line width parameter specifies the thickness of the line used to stroke a path.
It is a non-negative number expressed in user space units; stroking a path entails
painting all points whose perpendicular distance from the path in user space is
less than or equal to half the line width. The effect produced in device space
depends on the current transformation matrix (CTM) in effect at the time the
path is stroked. If the CTM specifies scaling by different factors in the horizontal
and vertical dimensions, the thickness of stroked lines in device space will vary
according to their orientation. The actual line width achieved can differ from the
requested width by as much as 2 device pixels, depending on the positions of lines
with respect to the pixel grid. Automatic stroke adjustment can be used to ensure
uniform line width; see Section 6.5.4, “Automatic Stroke Adjustment.”

A line width of 0 denotes the thinnest line that can be rendered at device resolu-
tion: 1 device pixel wide. However, some devices cannot reproduce 1-pixel lines,
and on high-resolution devices, they are nearly invisible. Since the results of ren-
dering such zero-width lines are device-dependent, their use is not recommend-
ed.

GraphicsCHAPTER 4
216

Line Cap Style

The line cap style specifies the shape to be used at the ends of open subpaths (and
dashes, if any) when they are stroked. Table 4.4 shows the possible values.

TABLE 4.4 Line cap styles

Line Join Style

The line join style specifies the shape to be used at the corners of paths that are
stroked. Table 4.5 shows the possible values. Join styles are significant only at
points where consecutive segments of a path connect at an angle; segments that
meet or intersect fortuitously receive no special treatment.

TABLE 4.5 Line join styles

STYLE APPEARANCE DESCRIPTION

0 Butt cap. The stroke is squared off at the endpoint of the path. There is no
projection beyond the end of the path.

1 Round cap. A semicircular arc with a diameter equal to the line width is
drawn around the endpoint and filled in.

2 Projecting square cap. The stroke continues beyond the endpoint of the path
for a distance equal to half the line width and is squared off.

STYLE APPEARANCE DESCRIPTION

0 Miter join. The outer edges of the strokes for the two segments are extended
until they meet at an angle, as in a picture frame. If the segments meet at too
sharp an angle (as defined by the miter limit parameter—see “Miter Limit,”
above), a bevel join is used instead.

1 Round join. An arc of a circle with a diameter equal to the line width is drawn
around the point where the two segments meet, connecting the outer edges of
the strokes for the two segments. This pieslice-shaped figure is filled in, pro-
ducing a rounded corner.

2 Bevel join. The two segments are finished with butt caps (see “Line Cap Style”
on page 216) and the resulting notch beyond the ends of the segments is filled
with a triangle.

Graphics StateSECTION 4.3
217

Note: The definition of round join was changed in PDF 1.5. In rare cases, the imple-
mentation of the previous specification could produce unexpected results.

Miter Limit

When two line segments meet at a sharp angle and mitered joins have been spec-
ified as the line join style, it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miter limit imposes a maximum on
the ratio of the miter length to the line width (see Figure 4.7). When the limit is
exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle ϕ between
the segments in user space by the following formula:

For example, a miter limit of 1.414 converts miters to bevels for ϕ less than 90
degrees, a limit of 2.0 converts them for ϕ less than 60 degrees, and a limit of 10.0
converts them for ϕ less than approximately 11.5 degrees.

FIGURE 4.7 Miter length

Line Dash Pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
It is specified by a dash array and a dash phase. The dash array’s elements are
numbers that specify the lengths of alternating dashes and gaps; the numbers
must be nonnegative and not all zero. The dash phase specifies the distance into

miterLength
lineWidth
----------------------------- 1

ϕ
2
---⎝ ⎠

⎛ ⎞sin
------------------=

Miter
length

Line width

j

GraphicsCHAPTER 4
218

the dash pattern at which to start the dash. The elements of both the dash array
and the dash phase are expressed in user space units.

Before beginning to stroke a path, the dash array is cycled through, adding up the
lengths of dashes and gaps. When the accumulated length equals the value speci-
fied by the dash phase, stroking of the path begins, and the dash array is used cy-
clically from that point onward. Table 4.6 shows examples of line dash patterns.
As can be seen from the table, an empty dash array and zero phase can be used to
restore the dash pattern to a solid line.

TABLE 4.6 Examples of line dash patterns

Dashed lines wrap around curves and corners just as solid stroked lines do. The
ends of each dash are treated with the current line cap style, and corners within
dashes are treated with the current line join style. A stroking operation takes no
measures to coordinate the dash pattern with features of the path; it simply dis-
penses dashes and gaps along the path in the pattern defined by the dash array.

When a path consisting of several subpaths is stroked, each subpath is treated in-
dependently—that is, the dash pattern is restarted and the dash phase is reapplied
to it at the beginning of each subpath.

4.3.3 Graphics State Operators

Table 4.7 shows the operators that set the values of parameters in the graphics
state. (See also the color operators listed in Table 4.24 and the text state operators
in Table 5.2 on page 398.)

DASH ARRAY
AND PHASE

APPEARANCE DESCRIPTION

[] 0 No dash; solid, unbroken lines

[3] 0 3 units on, 3 units off, …

[2] 1 1 on, 2 off, 2 on, 2 off, …

[2 1] 0 2 on, 1 off, 2 on, 1 off, …

[3 5] 6 2 off, 3 on, 5 off, 3 on, 5 off, …

[2 3] 11 1 on, 3 off, 2 on, 3 off, 2 on, …

Graphics StateSECTION 4.3
219

TABLE 4.7 Graphics state operators

4.3.4 Graphics State Parameter Dictionaries

While some parameters in the graphics state can be set with individual operators,
as shown in Table 4.7, others cannot. The latter can only be set with the generic
graphics state operator gs (PDF 1.2). The operand supplied to this operator is the

OPERANDS OPERATOR DESCRIPTION

— q Save the current graphics state on the graphics state stack (see “Graphics
State Stack” on page 214).

— Q Restore the graphics state by removing the most recently saved state from
the stack and making it the current state (see “Graphics State Stack” on
page 214).

a b c d e f cm Modify the current transformation matrix (CTM) by concatenating the
specified matrix (see Section 4.2.1, “Coordinate Spaces”). Although the
operands specify a matrix, they are written as six separate numbers, not as
an array.

lineWidth w Set the line width in the graphics state (see “Line Width” on page 215).

lineCap J Set the line cap style in the graphics state (see “Line Cap Style” on page
216).

lineJoin j Set the line join style in the graphics state (see “Line Join Style” on page
216).

miterLimit M Set the miter limit in the graphics state (see “Miter Limit” on page 217).

dashArray dashPhase d Set the line dash pattern in the graphics state (see “Line Dash Pattern” on
page 217).

intent ri (PDF 1.1) Set the color rendering intent in the graphics state (see “Render-
ing Intents” on page 260).

flatness i Set the flatness tolerance in the graphics state (see Section 6.5.1, “Flatness
Tolerance”). flatness is a number in the range 0 to 100; a value of 0 speci-
fies the output device’s default flatness tolerance.

dictName gs (PDF 1.2) Set the specified parameters in the graphics state. dictName is
the name of a graphics state parameter dictionary in the ExtGState subdic-
tionary of the current resource dictionary (see the next section).

GraphicsCHAPTER 4
220

name of a graphics state parameter dictionary whose contents specify the values of
one or more graphics state parameters. This name is looked up in the ExtGState
subdictionary of the current resource dictionary. (The name ExtGState, for
extended graphics state, is a vestige of earlier versions of PDF.)

Note: The graphics state parameter dictionary is also used by type 2 patterns, which
do not have a content stream in which the graphics state operators could be invoked
(see Section 4.6.3, “Shading Patterns”).

Each entry in the parameter dictionary specifies the value of an individual graph-
ics state parameter, as shown in Table 4.8. All entries need not be present for ev-
ery invocation of the gs operator; the supplied parameter dictionary may include
any combination of parameter entries. The results of gs are cumulative; parame-
ter values established in previous invocations persist until explicitly overridden.
Note that some parameters appear in both Tables 4.7 and 4.8; these parameters
can be set either with individual graphics state operators or with gs. It is expected
that any future extensions to the graphics state will be implemented by adding
new entries to the graphics state parameter dictionary rather than by introducing
new graphics state operators.

TABLE 4.8 Entries in a graphics state parameter dictionary

KEY TYPE DESCRIPTION

Type name (Optional) The type of PDF object that this dictionary describes; must be
ExtGState for a graphics state parameter dictionary.

LW number (Optional; PDF 1.3) The line width (see “Line Width” on page 215).

LC integer (Optional; PDF 1.3) The line cap style (see “Line Cap Style” on page 216).

LJ integer (Optional; PDF 1.3) The line join style (see “Line Join Style” on page 216).

ML number (Optional; PDF 1.3) The miter limit (see “Miter Limit” on page 217).

D array (Optional; PDF 1.3) The line dash pattern, expressed as an array of the form
[dashArray dashPhase], where dashArray is itself an array and dashPhase is an
integer (see “Line Dash Pattern” on page 217).

RI name (Optional; PDF 1.3) The name of the rendering intent (see “Rendering
Intents” on page 260).

Graphics StateSECTION 4.3
221

OP boolean (Optional) A flag specifying whether to apply overprint (see Section 4.5.6,
“Overprint Control”). In PDF 1.2 and earlier, there is a single overprint
parameter that applies to all painting operations. Beginning with PDF 1.3,
there are two separate overprint parameters: one for stroking and one for all
other painting operations. Specifying an OP entry sets both parameters un-
less there is also an op entry in the same graphics state parameter dictionary,
in which case the OP entry sets only the overprint parameter for stroking.

op boolean (Optional; PDF 1.3) A flag specifying whether to apply overprint (see Section
4.5.6, “Overprint Control”) for painting operations other than stroking. If
this entry is absent, the OP entry, if any, sets this parameter.

OPM integer (Optional; PDF 1.3) The overprint mode (see Section 4.5.6, “Overprint Con-
trol”).

Font array (Optional; PDF 1.3) An array of the form [font size], where font is an indirect
reference to a font dictionary and size is a number expressed in text space
units. These two objects correspond to the operands of the Tf operator (see
Section 5.2, “Text State Parameters and Operators”); however, the first oper-
and is an indirect object reference instead of a resource name.

BG function (Optional) The black-generation function, which maps the interval [0.0 1.0]
to the interval [0.0 1.0] (see Section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK”).

BG2 function or name (Optional; PDF 1.3) Same as BG except that the value may also be the name
Default, denoting the black-generation function that was in effect at the start
of the page. If both BG and BG2 are present in the same graphics state param-
eter dictionary, BG2 takes precedence.

UCR function (Optional) The undercolor-removal function, which maps the interval
[0.0 1.0] to the interval [−1.0 1.0] (see Section 6.2.3, “Conversion from
DeviceRGB to DeviceCMYK”).

UCR2 function or name (Optional; PDF 1.3) Same as UCR except that the value may also be the name
Default, denoting the undercolor-removal function that was in effect at the
start of the page. If both UCR and UCR2 are present in the same graphics state
parameter dictionary, UCR2 takes precedence.

KEY TYPE DESCRIPTION

GraphicsCHAPTER 4
222

TR function, array, or
name

(Optional) The transfer function, which maps the interval [0.0 1.0] to the in-
terval [0.0 1.0] (see Section 6.3, “Transfer Functions”). The value is either a
single function (which applies to all process colorants) or an array of four
functions (which apply to the process colorants individually). The name
Identity may be used to represent the identity function.

TR2 function, array, or
name

(Optional; PDF 1.3) Same as TR except that the value may also be the name
Default, denoting the transfer function that was in effect at the start of the
page. If both TR and TR2 are present in the same graphics state parameter dic-
tionary, TR2 takes precedence.

HT dictionary, stream,
or name

(Optional) The halftone dictionary or stream (see Section 6.4, “Halftones”) or
the name Default, denoting the halftone that was in effect at the start of the
page.

FL number (Optional; PDF 1.3) The flatness tolerance (see Section 6.5.1, “Flatness Toler-
ance”).

SM number (Optional; PDF 1.3) The smoothness tolerance (see Section 6.5.2, “Smooth-
ness Tolerance”).

SA boolean (Optional) A flag specifying whether to apply automatic stroke adjustment
(see Section 6.5.4, “Automatic Stroke Adjustment”).

BM name or array (Optional; PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Specifying
Blending Color Space and Blend Mode”).

SMask dictionary or name (Optional; PDF 1.4) The current soft mask, specifying the mask shape or
mask opacity values to be used in the transparent imaging model (see
“Source Shape and Opacity” on page 526 and “Mask Shape and Opacity” on
page 550).

Note: Although the current soft mask is sometimes referred to as a “soft clip,”
altering it with the gs operator completely replaces the old value with the new
one, rather than intersecting the two as is done with the current clipping path
parameter (see Section 4.4.3, “Clipping Path Operators”).

CA number (Optional; PDF 1.4) The current stroking alpha constant, specifying the con-
stant shape or constant opacity value to be used for stroking operations in the
transparent imaging model (see “Source Shape and Opacity” on page 526 and
“Constant Shape and Opacity” on page 551).

ca number (Optional; PDF 1.4) Same as CA, but for nonstroking operations.

KEY TYPE DESCRIPTION

Graphics StateSECTION 4.3
223

Example 4.1 shows two graphics state parameter dictionaries. In the first, auto-
matic stroke adjustment is turned on, and the dictionary includes a transfer func-
tion that inverts its value, f (x) = 1 − x. In the second, overprint is turned off, and
the dictionary includes a parabolic transfer function, f (x) = (2x − 1) 2, with a sam-
ple of 21 values. The domain of the transfer function, [0.0 1.0], is mapped to
[0 20], and the range of the sample values, [0 255], is mapped to the range of
the transfer function, [0.0 1.0].

Example 4.1

10 0 obj % Page object
<< /Type /Page

 /Parent 5 0 R
 /Resources 20 0 R
 /Contents 40 0 R

>>
endobj

20 0 obj % Resource dictionary for page
<< /ProcSet [/PDF /Text]

 /Font << /F1 25 0 R >>
 /ExtGState << /GS1 30 0 R

 /GS2 35 0 R
 >>

>>
endobj

30 0 obj % First graphics state parameter dictionary
<< /Type /ExtGState

 /SA true
 /TR 31 0 R

>>
endobj

AIS boolean (Optional; PDF 1.4) The alpha source flag (“alpha is shape”), specifying
whether the current soft mask and alpha constant are to be interpreted as
shape values (true) or opacity values (false).

TK boolean (Optional; PDF 1.4) The text knockout flag, which determines the behavior of
overlapping glyphs within a text object in the transparent imaging model (see
Section 5.2.7, “Text Knockout”).

KEY TYPE DESCRIPTION

GraphicsCHAPTER 4
224

31 0 obj % First transfer function
<< /FunctionType 0

 /Domain [0.0 1.0]
 /Range [0.0 1.0]
 /Size 2
 /BitsPerSample 8
 /Length 7
 /Filter /ASCIIHexDecode

>>
stream
01 00 >
endstream
endobj

35 0 obj % Second graphics state parameter dictionary
<< /Type /ExtGState

 /OP false
 /TR 36 0 R

>>
endobj

36 0 obj % Second transfer function
<< /FunctionType 0

 /Domain [0.0 1.0]
 /Range [0.0 1.0]
 /Size 21
 /BitsPerSample 8
 /Length 63
 /Filter /ASCIIHexDecode

>>
stream
FF CE A3 7C 5B 3F 28 16 0A 02 00 02 0A 16 28 3F 5B 7C A3 CE FF >
endstream
endobj

4.4 Path Construction and Painting

Paths define shapes, trajectories, and regions of all sorts. They are used to draw
lines, define the shapes of filled areas, and specify boundaries for clipping other
graphics. The graphics state includes a current clipping path that defines the clip-
ping boundary for the current page. At the beginning of each page, the clipping
path is initialized to include the entire page.

Path Construction and PaintingSECTION 4.4
225

A path is composed of straight and curved line segments, which may connect to
one another or may be disconnected. A pair of segments are said to connect only
if they are defined consecutively, with the second segment starting where the first
one ends. Thus, the order in which the segments of a path are defined is signifi-
cant. Nonconsecutive segments that meet or intersect fortuitously are not consid-
ered to connect.

A path is made up of one or more disconnected subpaths, each comprising a se-
quence of connected segments. The topology of the path is unrestricted: it may be
concave or convex, may contain multiple subpaths representing disjoint areas,
and may intersect itself in arbitrary ways. The h operator explicitly connects the
end of a subpath back to its starting point; such a subpath is said to be closed. A
subpath that has not been explicitly closed is open.

As discussed in Section 4.1, “Graphics Objects,” a path object is defined by a se-
quence of operators to construct the path, followed by one or more operators to
paint the path or to use it as a clipping boundary. PDF path operators fall into
three categories:

• Path construction operators (Section 4.4.1) define the geometry of a path. A
path is constructed by sequentially applying one or more of these operators.

• Path-painting operators (Section 4.4.2) end a path object, usually causing the
object to be painted on the current page in any of a variety of ways.

• Clipping path operators (Section 4.4.3), invoked immediately before a path-
painting operator, cause the path object also to be used for clipping of sub-
sequent graphics objects.

4.4.1 Path Construction Operators

A page description begins with an empty path and builds up its definition by in-
voking one or more path construction operators to add segments to it. The path
construction operators may be invoked in any sequence, but the first one invoked
must be m or re to begin a new subpath. The path definition concludes with the
application of a path-painting operator such as S, f, or b (see Section 4.4.2, “Path-
Painting Operators”); this operator may optionally be preceded by one of the
clipping path operators W or W* (Section 4.4.3, “Clipping Path Operators”). Note
that the path construction operators do not place any marks on the page; only the
painting operators do that. A path definition is not complete until a path-painting
operator has been applied to it.

GraphicsCHAPTER 4
226

The path currently under construction is called the current path. In PDF (unlike
PostScript), the current path is not part of the graphics state and is not saved and
restored along with the other graphics state parameters. PDF paths are strictly in-
ternal objects with no explicit representation. Once a path has been painted, it is
no longer defined; there is then no current path until a new one is begun with the
m or re operator.

The trailing endpoint of the segment most recently added to the current path is
referred to as the current point. If the current path is empty, the current point is
undefined. Most operators that add a segment to the current path start at the cur-
rent point; if the current point is undefined, an error is generated.

Table 4.9 shows the path construction operators. All operands are numbers de-
noting coordinates in user space.

TABLE 4.9 Path construction operators

OPERANDS OPERATOR DESCRIPTION

x y m Begin a new subpath by moving the current point to coordinates
(x, y), omitting any connecting line segment. If the previous path
construction operator in the current path was also m, the new m
overrides it; no vestige of the previous m operation remains in the
path.

x y l (lowercase L) Append a straight line segment from the current point to the point
(x, y). The new current point is (x, y).

x1 y1 x2 y2 x3 y3 c Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x3 , y3), using (x1 , y1) and
(x2 , y2) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x3 , y3).

x2 y2 x3 y3 v Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x3 , y3), using the current point
and (x2 , y2) as the Bézier control points (see “Cubic Bézier Curves,”
below). The new current point is (x3 , y3).

x1 y1 x3 y3 y Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x3 , y3), using (x1 , y1) and
(x3 , y3) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x3 , y3).

Path Construction and PaintingSECTION 4.4
227

Cubic Bézier Curves

Curved path segments are specified as cubic Bézier curves. Such curves are de-
fined by four points: the two endpoints (the current point P0 and the final point
P3) and two control points P1 and P2 . Given the coordinates of the four points, the
curve is generated by varying the parameter t from 0.0 to 1.0 in the following
equation:

When t = 0.0, the value of the function R (t) coincides with the current point P0 ;
when t = 1.0, R (t) coincides with the final point P3 . Intermediate values of t gen-
erate intermediate points along the curve. The curve does not, in general, pass
through the two control points P1 and P2 .

— h Close the current subpath by appending a straight line segment
from the current point to the starting point of the subpath. If the
current subpath is already closed, h does nothing.

This operator terminates the current subpath. Appending another
segment to the current path begins a new subpath, even if the new
segment begins at the endpoint reached by the h operation.

x y width height re Append a rectangle to the current path as a complete subpath, with
lower-left corner (x, y) and dimensions width and height in user
space. The operation

x y width height re

is equivalent to

x y m
(x + width) y l
(x + width) (y + height) l
x (y + height) l
h

OPERANDS OPERATOR DESCRIPTION

R t() 1 t–()3P0 3t 1 t–()2P1 3t2 1 t–()P2 t3P3+ + +=

GraphicsCHAPTER 4
228

Cubic Bézier curves have two useful properties:

• The curve can be very quickly split into smaller pieces for rapid rendering.

• The curve is contained within the convex hull of the four points defining the
curve, most easily visualized as the polygon obtained by stretching a rubber
band around the outside of the four points. This property allows rapid testing
of whether the curve lies completely outside the visible region, and hence does
not have to be rendered.

The Bibliography lists several books that describe cubic Bézier curves in more
depth.

The most general PDF operator for constructing curved path segments is the c
operator, which specifies the coordinates of points P1 , P2 , and P3 explicitly, as
shown in Figure 4.8. (The starting point, P0 , is defined implicitly by the current
point.)

FIGURE 4.8 Cubic Bézier curve generated by the c operator

x1 y1 x2 y2 x3 y3 c

P0 (current point)

P2 (x2 , y2)

P3 (x3 , y3)

P1 (x1, y1)

Path Construction and PaintingSECTION 4.4
229

Two more operators, v and y, each specify one of the two control points implic-
itly (see Figure 4.9). In both of these cases, one control point and the final point
of the curve are supplied as operands; the other control point is implied:

• For the v operator, the first control point coincides with initial point of the
curve.

• For the y operator, the second control point coincides with final point of the
curve.

FIGURE 4.9 Cubic Bézier curves generated by the v and y operators

4.4.2 Path-Painting Operators

The path-painting operators end a path object, causing it to be painted on the
current page in the manner that the operator specifies. The principal path-
painting operators are S (for stroking) and f (for filling). Variants of these opera-
tors combine stroking and filling in a single operation or apply different rules for
determining the area to be filled. Table 4.10 lists all the path-painting operators.

x2 y2 x3 y3 v

Current point

(x2 , y2)

(x3 , y3)

x1 y1 x3 y3 y

Current point

(x1 , y1)

(x3 , y3)

GraphicsCHAPTER 4
230

TABLE 4.10 Path-painting operators

OPERANDS OPERATOR DESCRIPTION

— S Stroke the path.

— s Close and stroke the path. This operator has the same effect as the sequence h S.

— f Fill the path, using the nonzero winding number rule to determine the region to fill
(see “Nonzero Winding Number Rule” on page 232). Any subpaths that are open
are implicitly closed before being filled.

— F Equivalent to f; included only for compatibility. Although PDF consumer applica-
tions must be able to accept this operator, PDF producer applications should use f
instead.

— f* Fill the path, using the even-odd rule to determine the region to fill (see “Even-Odd
Rule” on page 233).

— B Fill and then stroke the path, using the nonzero winding number rule to determine
the region to fill. This operator produces the same result as constructing two identi-
cal path objects, painting the first with f and the second with S. Note, however, that
the filling and stroking portions of the operation consult different values of several
graphics state parameters, such as the current color. See also “Special Path-Painting
Considerations” on page 569.

— B* Fill and then stroke the path, using the even-odd rule to determine the region to fill.
This operator produces the same result as B, except that the path is filled as if with
f* instead of f. See also “Special Path-Painting Considerations” on page 569.

— b Close, fill, and then stroke the path, using the nonzero winding number rule to de-
termine the region to fill. This operator has the same effect as the sequence h B. See
also “Special Path-Painting Considerations” on page 569.

— b* Close, fill, and then stroke the path, using the even-odd rule to determine the re-
gion to fill. This operator has the same effect as the sequence h B*. See also “Special
Path-Painting Considerations” on page 569.

— n End the path object without filling or stroking it. This operator is a path-painting
no-op, used primarily for the side effect of changing the current clipping path (see
Section 4.4.3, “Clipping Path Operators”).

Path Construction and PaintingSECTION 4.4
231

Stroking

The S operator paints a line along the current path. The stroked line follows each
straight or curved segment in the path, centered on the segment with sides paral-
lel to it. Each of the path’s subpaths is treated separately.

The results of the S operator depend on the current settings of various parameters
in the graphics state (see Section 4.3, “Graphics State,” for further information on
these parameters):

• The width of the stroked line is determined by the current line width parameter
(“Line Width” on page 215).

• The color or pattern of the line is determined by the current color and color
space for stroking operations.

• The line can be painted either solid or with a dash pattern, as specified by the
current line dash pattern (“Line Dash Pattern” on page 217).

• If a subpath is open, the unconnected ends are treated according to the current
line cap style, which may be butt, rounded, or square (“Line Cap Style” on page
216).

• Wherever two consecutive segments are connected, the joint between them is
treated according to the current line join style, which may be mitered, rounded,
or beveled (“Line Join Style” on page 216). Mitered joins are also subject to the
current miter limit (“Miter Limit” on page 217).

Note: Points at which unconnected segments happen to meet or intersect receive
no special treatment. In particular, using an explicit l operator to give the appear-
ance of closing a subpath, rather than using h, may result in a messy corner, be-
cause line caps are applied instead of a line join.

• The stroke adjustment parameter (PDF 1.2) specifies that coordinates and line
widths be adjusted automatically to produce strokes of uniform thickness
despite rasterization effects (Section 6.5.4, “Automatic Stroke Adjustment”).

If a subpath is degenerate (consists of a single-point closed path or of two or
more points at the same coordinates), the S operator paints it only if round line
caps have been specified, producing a filled circle centered at the single point. If
butt or projecting square line caps have been specified, S produces no output, be-
cause the orientation of the caps would be indeterminate. (This rule applies only
to zero-length subpaths of the path being stroked, and not to zero-length dashes

GraphicsCHAPTER 4
232

in a dash pattern. In the latter case, the line caps are always painted, since their
orientation is determined by the direction of the underlying path.) A single-
point open subpath (specified by a trailing m operator) produces no output.

Filling

The f operator uses the current nonstroking color to paint the entire region en-
closed by the current path. If the path consists of several disconnected subpaths, f
paints the insides of all subpaths, considered together. Any subpaths that are open
are implicitly closed before being filled.

If a subpath is degenerate (consists of a single-point closed path or of two or more
points at the same coordinates), f paints the single device pixel lying under that
point; the result is device-dependent and not generally useful. A single-point
open subpath (specified by a trailing m operator) produces no output.

For a simple path, it is intuitively clear what region lies inside. However, for a
more complex path—for example, a path that intersects itself or has one subpath
that encloses another—it is not always obvious which points lie inside the path.
The path machinery uses one of two rules for determining which points lie inside
a path: the nonzero winding number rule and the even-odd rule, both discussed in
detail below.

The nonzero winding number rule is more versatile than the even-odd rule and is
the standard rule the f operator uses. Similarly, the W operator uses this rule to
determine the inside of the current clipping path. The even-odd rule is occasion-
ally useful for special effects or for compatibility with other graphics systems; the
f* and W* operators invoke this rule.

Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a
path by conceptually drawing a ray from that point to infinity in any direction
and then examining the places where a segment of the path crosses the ray. Start-
ing with a count of 0, the rule adds 1 each time a path segment crosses the ray
from left to right and subtracts 1 each time a segment crosses from right to left.
After counting all the crossings, if the result is 0, the point is outside the path;
otherwise, it is inside.

Path Construction and PaintingSECTION 4.4
233

Note: The method just described does not specify what to do if a path segment coin-
cides with or is tangent to the chosen ray. Since the direction of the ray is arbitrary,
the rule simply chooses a ray that does not encounter such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside
and outside as one would intuitively expect. The more interesting cases are those
involving complex or self-intersecting paths like the ones shown in Figure 4.10.
For a path consisting of a five-pointed star, drawn with five connected straight
line segments intersecting each other, the rule considers the inside to be the en-
tire area enclosed by the star, including the pentagon in the center. For a path
composed of two concentric circles, the areas enclosed by both circles are consid-
ered to be inside, provided that both are drawn in the same direction. If the circles
are drawn in opposite directions, only the doughnut shape between them is in-
side, according to the rule; the doughnut hole is outside.

FIGURE 4.10 Nonzero winding number rule

Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule
determines whether a point is inside a path by drawing a ray from that point in
any direction and simply counting the number of path segments that cross the
ray, regardless of direction. If this number is odd, the point is inside; if even, the
point is outside. This yields the same results as the nonzero winding number rule
for paths with simple shapes, but produces different results for more complex
shapes.

Figure 4.11 shows the effects of applying the even-odd rule to complex paths. For
the five-pointed star, the rule considers the triangular points to be inside the path,

GraphicsCHAPTER 4
234

but not the pentagon in the center. For the two concentric circles, only the dough-
nut shape between the two circles is considered inside, regardless of the direc-
tions in which the circles are drawn.

FIGURE 4.11 Even-odd rule

4.4.3 Clipping Path Operators

The graphics state contains a current clipping path that limits the regions of the
page affected by painting operators. The closed subpaths of this path define the
area that can be painted. Marks falling inside this area are applied to the page;
those falling outside it are not. (“Filling” on page 232 discusses precisely what is
considered to be inside a path.)

Note: In the context of the transparent imaging model (PDF 1.4), the current clipping
path constrains an object’s shape (see Section 7.1, “Overview of Transparency”). The
effective shape is the intersection of the object’s intrinsic shape with the clipping path;
the source shape value is 0.0 outside this intersection. Similarly, the shape of a trans-
parency group (defined as the union of the shapes of its constituent objects) is influ-
enced both by the clipping path in effect when each of the objects is painted and by the
one in effect at the time the group’s results are painted onto its backdrop.

The initial clipping path includes the entire page. A clipping path operator (W or
W*, shown in Table 4.11) may appear after the last path construction operator
and before the path-painting operator that terminates a path object. Although the
clipping path operator appears before the painting operator, it does not alter the
clipping path at the point where it appears. Rather, it modifies the effect of the
succeeding painting operator. After the path has been painted, the clipping path
in the graphics state is set to the intersection of the current clipping path and the
newly constructed path.

Color SpacesSECTION 4.5
235

TABLE 4.11 Clipping path operators

Note: In addition to path objects, text objects can also be used for clipping; see Sec-
tion 5.2.5, “Text Rendering Mode.”

The n operator (see Table 4.10) is a no-op path-painting operator; it causes no
marks to be placed on the page, but can be used with a clipping path operator to
establish a new clipping path. That is, after a path has been constructed, the se-
quence W n intersects that path with the current clipping path to establish a new
clipping path.

There is no way to enlarge the current clipping path or to set a new clipping path
without reference to the current one. However, since the clipping path is part of
the graphics state, its effect can be localized to specific graphics objects by en-
closing the modification of the clipping path and the painting of those objects
between a pair of q and Q operators (see Section 4.3.1, “Graphics State Stack”).
Execution of the Q operator causes the clipping path to revert to the value that
was saved by the q operator before the clipping path was modified.

4.5 Color Spaces

PDF includes powerful facilities for specifying the colors of graphics objects to be
painted on the current page. The color facilities are divided into two parts:

• Color specification. A PDF file can specify abstract colors in a device-
independent way. Colors can be described in any of a variety of color systems,
or color spaces. Some color spaces are related to device color representation
(grayscale, RGB, CMYK), others to human visual perception (CIE-based). Cer-
tain special features are also modeled as color spaces: patterns, color mapping,
separations, and high-fidelity and multitone color.

OPERANDS OPERATOR DESCRIPTION

— W Modify the current clipping path by intersecting it with the current path, using the
nonzero winding number rule to determine which regions lie inside the clipping
path.

— W* Modify the current clipping path by intersecting it with the current path, using the
even-odd rule to determine which regions lie inside the clipping path.

GraphicsCHAPTER 4
236

• Color rendering. The application reproduces colors on the raster output device
by a multiple-step process that includes some combination of color conversion,
gamma correction, halftoning, and scan conversion. Some aspects of this pro-
cess use information that is specified in PDF. However, unlike the facilities for
color specification, the color-rendering facilities are device-dependent and or-
dinarily should not be included in a page description.

Figures 4.12 and 4.13 on pages 238 and 239 illustrate the division between PDF’s
(device-independent) color specification and (device-dependent) color-render-
ing facilities. This section describes the color specification features, covering
everything that most PDF documents need to specify colors. The facilities for
controlling color rendering are described in Chapter 6; a PDF document should
use these facilities only to configure or calibrate an output device or to achieve
special device-dependent effects.

4.5.1 Color Values

As described in Section 4.4.2, “Path-Painting Operators,” marks placed on the
page by operators such as f and S have a color that is determined by the current
color parameter of the graphics state. A color value consists of one or more color
components, which are usually numbers. For example, a gray level can be speci-
fied by a single number ranging from 0.0 (black) to 1.0 (white). Full color values
can be specified in any of several ways; a common method uses three numeric
values to specify red, green, and blue components.

Color values are interpreted according to the current color space, another pa-
rameter of the graphics state. A PDF content stream first selects a color space by
invoking the CS operator (for the stroking color) or the cs operator (for the non-
stroking color). It then selects color values within that color space with the SC
operator (stroking) or the sc operator (nonstroking). There are also conve-
nience operators—G, g, RG, rg, K, and k—that select both a color space and a
color value within it in a single step. Table 4.24 on page 287 lists all the color-
setting operators.

Sampled images (see Section 4.8, “Images”) specify the color values of individual
samples with respect to a color space designated by the image object itself. While
these values are independent of the current color space and color parameters in
the graphics state, all later stages of color processing treat them in exactly the
same way as color values specified with the SC or sc operator.

Color SpacesSECTION 4.5
237

4.5.2 Color Space Families

Color spaces can be classified into color space families. Spaces within a family
share the same general characteristics; they are distinguished by parameter values
supplied at the time the space is specified. The families fall into three broad cate-
gories:

• Device color spaces directly specify colors or shades of gray that the output
device is to produce. They provide a variety of color specification methods,
including grayscale, RGB (red-green-blue), and CMYK (cyan-magenta-yellow-
black), corresponding to the color space families DeviceGray, DeviceRGB, and
DeviceCMYK. Since each of these families consists of just a single color space
with no parameters, they are often loosely referred to as the DeviceGray,
DeviceRGB, and DeviceCMYK color spaces.

• CIE-based color spaces are based on an international standard for color specifi-
cation created by the Commission Internationale de l’Éclairage (International
Commission on Illumination). These spaces specify colors in a way that is in-
dependent of the characteristics of any particular output device. Color space
families in this category include CalGray, CalRGB, Lab, and ICCBased. Individu-
al color spaces within these families are specified by means of dictionaries con-
taining the parameter values needed to define the space.

• Special color spaces add features or properties to an underlying color space.
They include facilities for patterns, color mapping, separations, and high-
fidelity and multitone color. The corresponding color space families are
Pattern, Indexed, Separation, and DeviceN. Individual color spaces within
these families are specified by means of additional parameters.

Table 4.12 summarizes the color space families supported by PDF. (See imple-
mentation note 47 in Appendix H.)

TABLE 4.12 Color space families

DEVICE CIE-BASED SPECIAL

DeviceGray (PDF 1.1) CalGray (PDF 1.1) Indexed (PDF 1.1)

DeviceRGB (PDF 1.1) CalRGB (PDF 1.1) Pattern (PDF 1.2)

DeviceCMYK (PDF 1.1) Lab (PDF 1.1) Separation (PDF 1.2)

ICCBased (PDF 1.3) DeviceN (PDF 1.3)

GraphicsCHAPTER 4
238

FIGURE 4.12 Color specification

Color spaces Color values
Sources of
color values

CalRGB

Conversion
to internal

X, Y, Z
values

A, B, C

X, Y, Z

sc, SC, sh,
BI, Do (image XObject)

Alternative
color

transform
tint

Another
color space

scn, SCN, sh,
BI, Do (image XObject)

Indexed
Table

lookup
Another

color space

CIE-
based
color
spaces

Device
color
spaces

Special
color
spaces

Pattern

sc, SC, sh,
BI, Do (image XObject)

scn, SCN

Another
color space

Pattern
dictionary

CalGray
A

sc, SC, sh,
BI, Do (image XObject)

index

pattern

Separation

Lab
A, B, C

sc, SC, sh,
BI, Do (image XObject)

ICCBased
scn, SCN, sh,
BI, Do (image XObject)

DeviceCMYK
C, M, Y, K

k, K, sc, SC, sh,
BI, Do (image XObject)

Another
(4-component)

color space

DeviceGray
gray

g, G, sc, SC, sh,
BI, Do (image XObject)

Another
(1-component)

color space

Alternative
color

transformn
components

Another
color space

scn, SCN, sh,
BI, Do (image XObject)

DeviceN

DeviceRGB
rg, RG, sc, SC, sh,
BI, Do (image XObject)

R, G, B

DefaultCMYK

DefaultGray

DefaultRGB
Another

(3-component)
color space

n
components

Color SpacesSECTION 4.5
239

FIGURE 4.13 Color rendering

Conversion
from CIE-based

to device
color space

R, G, B

C, M, Y, K

gray

Device color values
(depending on

results of
conversion)

R, G, B

C, M, Y, K

Conversion
from input

device color
space to
device’s

process color
model

Transfer
functions

(per
component)

Halftones
(per

component)

Any single
device

colorant

Device’s
process

colorant(s)

UCR, BG

TR, HT HT

X, Y, Z

gray

tint

(not specified by PDF)

n
components Any n device

colorants

Component(s)
of device’s

process
color model

GraphicsCHAPTER 4
240

A color space is defined by an array object whose first element is a name object
identifying the color space family. The remaining array elements, if any, are
parameters that further characterize the color space; their number and types vary
according to the particular family. For families that do not require parameters,
the color space can be specified simply by the family name itself instead of an
array.

A color space can be specified in two principal ways:

• Within a content stream, the CS or cs operator establishes the current color
space parameter in the graphics state. The operand is always a name object,
which either identifies one of the color spaces that need no additional parame-
ters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern) or is used
as a key in the ColorSpace subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). In the latter case, the value of the dic-
tionary entry is in turn a color space array or name. A color space array is never
permitted inline within a content stream.

• Outside a content stream, certain objects, such as image XObjects, specify a
color space as an explicit parameter, often associated with the key ColorSpace.
In this case, the color space array or name is always defined directly as a PDF
object, not by an entry in the ColorSpace resource subdictionary. This conven-
tion also applies when color spaces are defined in terms of other color spaces.

The following operators set the current color space and current color parameters
in the graphics state:

• CS sets the stroking color space; cs sets the nonstroking color space.

• SC and SCN set the stroking color; sc and scn set the nonstroking color. De-
pending on the color space, these operators require one or more operands, each
specifying one component of the color value.

• G, RG, and K set the stroking color space implicitly and the stroking color as
specified by the operands; g, rg, and k do the same for the nonstroking color
space and color.

Color SpacesSECTION 4.5
241

4.5.3 Device Color Spaces

The device color spaces enable a page description to specify color values that are
directly related to their representation on an output device. Color values in these
spaces map directly (or by simple conversions) to the application of device colo-
rants, such as quantities of ink or intensities of display phosphors. This enables a
PDF document to control colors precisely for a particular device, but the results
may not be consistent from one device to another.

Output devices form colors either by adding light sources together or by subtract-
ing light from an illuminating source. Computer displays and film recorders typi-
cally add colors; printing inks typically subtract them. These two ways of forming
colors give rise to two complementary methods of color specification, called ad-
ditive and subtractive color (see Plate 1). The most widely used forms of these two
types of color specification are known as RGB and CMYK, respectively, for the
names of the primary colors on which they are based. They correspond to the fol-
lowing device color spaces:

• DeviceGray controls the intensity of achromatic light, on a scale from black to
white.

• DeviceRGB controls the intensities of red, green, and blue light, the three addi-
tive primary colors used in displays.

• DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black
inks, the four subtractive process colors used in printing.

Although the notion of explicit color spaces is a PDF 1.1 feature, the operators for
specifying colors in the device color spaces—G, g, RG, rg, K, and k—are available
in all versions of PDF. Beginning with PDF 1.2, colors specified in device color
spaces can optionally be remapped systematically into other color spaces; see
“Default Color Spaces” on page 257.

Note: In the transparent imaging model (PDF 1.4), the use of device color spaces is
subject to special treatment within a transparency group whose group color space is
CIE-based (see Sections 7.3, “Transparency Groups,” and 7.5.5, “Transparency
Group XObjects”). In particular, the device color space operators should be used
only if device color spaces have been remapped to CIE-based spaces by means of the
default color space mechanism. Otherwise, the results are implementation-
dependent and unpredictable.

GraphicsCHAPTER 4
242

DeviceGray Color Space

Black, white, and intermediate shades of gray are special cases of full color. A
grayscale value is represented by a single number in the range 0.0 to 1.0, where
0.0 corresponds to black, 1.0 to white, and intermediate values to different gray
levels. Example 4.2 shows alternative ways to select the DeviceGray color space
and a specific gray level within that space for stroking operations.

Example 4.2

/DeviceGray CS % Set DeviceGray color space
gray SC % Set gray level

gray G % Set both in one operation

The CS and SC operators select the current stroking color space and current
stroking color separately; G sets them in combination. (The cs, sc, and g opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceGray initializes the corresponding current color to 0.0.

DeviceRGB Color Space

Colors in the DeviceRGB color space are specified according to the additive RGB
(red-green-blue) color model, in which color values are defined by three compo-
nents representing the intensities of the additive primary colorants red, green,
and blue. Each component is specified by a number in the range 0.0 to 1.0, where
0.0 denotes the complete absence of a primary component and 1.0 denotes maxi-
mum intensity. If all three components have equal intensity, the perceived result
theoretically is a pure gray on the scale from black to white. If the intensities are
not all equal, the result is some color other than a pure gray.

Example 4.3 shows alternative ways to select the DeviceRGB color space and a
specific color within that space for stroking operations.

Example 4.3

/DeviceRGB CS % Set DeviceRGB color space
red green blue SC % Set color

red green blue RG % Set both in one operation

Color SpacesSECTION 4.5
243

The CS and SC operators select the current stroking color space and current
stroking color separately; RG sets them in combination. (The cs, sc, and rg opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceRGB initializes the red, green, and blue components of
the corresponding current color to 0.0.

DeviceCMYK Color Space

The DeviceCMYK color space allows colors to be specified according to the sub-
tractive CMYK (cyan-magenta-yellow-black) model typical of printers and other
paper-based output devices. In theory, each of the three standard process colorants
used in printing (cyan, magenta, and yellow) absorbs one of the additive primary
colors (red, green, and blue, respectively). Black, a fourth standard process colo-
rant, absorbs all of the additive primaries in equal amounts. The four components
in a DeviceCMYK color value represent the concentrations of these process colo-
rants. Each component is specified by a number in the range 0.0 to 1.0, where 0.0
denotes the complete absence of a process colorant (that is, absorbs none of the
corresponding additive primary) and 1.0 denotes maximum concentration (ab-
sorbs as much as possible of the additive primary). Note that the sense of these
numbers is opposite to that of RGB color components.

Example 4.4 shows alternative ways to select the DeviceCMYK color space and a
specific color within that space for stroking operations.

Example 4.4

/DeviceCMYK CS % Set DeviceCMYK color space
cyan magenta yellow black SC % Set color

cyan magenta yellow black K % Set both in one operation

The CS and SC operators select the current stroking color space and current strok-
ing color separately; K sets them in combination. (The cs, sc, and k operators per-
form the same functions for nonstroking operations.) Setting either current color
space to DeviceCMYK initializes the cyan, magenta, and yellow components of the
corresponding current color to 0.0 and the black component to 1.0.

GraphicsCHAPTER 4
244

4.5.4 CIE-Based Color Spaces

Calibrated color in PDF is defined in terms of an international standard used in
the graphic arts, television, and printing industries. CIE-based color spaces enable
a page description to specify color values in a way that is related to human visual
perception. The goal is for the same color specification to produce consistent re-
sults on different output devices, within the limitations of each device; Plate 2 il-
lustrates the kind of variation in color reproduction that can result from the use
of uncalibrated color on different devices. PDF 1.1 supports three CIE-based col-
or space families, named CalGray, CalRGB, and Lab; PDF 1.3 adds a fourth, named
ICCBased.

Note: In PDF 1.1, a color space family named CalCMYK was partially defined, with
the expectation that its definition would be completed in a future version. However,
this is no longer being considered. PDF 1.3 and later versions support calibrated
four-component color spaces by means of ICC profiles (see “ICCBased Color Spaces”
on page 252). PDF consumer applications should ignore CalCMYK color space at-
tributes and render colors specified in this family as if they had been specified using
DeviceCMYK.

The details of the CIE colorimetric system and the theory on which it is based are
beyond the scope of this book; see the Bibliography for sources of further in-
formation. The semantics of CIE-based color spaces are defined in terms of the
relationship between the space’s components and the tristimulus values X, Y, and
Z of the CIE 1931 XYZ space. The CalRGB and Lab color spaces (PDF 1.1) are
special cases of three-component CIE-based color spaces, known as CIE-based
ABC color spaces. These spaces are defined in terms of a two-stage, nonlinear
transformation of the CIE 1931 XYZ space. The formulation of such color spaces
models a simple zone theory of color vision, consisting of a nonlinear trichro-
matic first stage combined with a nonlinear opponent-color second stage. This
formulation allows colors to be digitized with minimum loss of fidelity, an impor-
tant consideration in sampled images.

Color values in a CIE-based ABC color space have three components, arbitrarily
named A, B, and C. The first stage transforms these components by first forcing
their values to a specified range, then applying decoding functions, and then mul-
tiplying the results by a 3-by-3 matrix, producing three intermediate components
arbitrarily named L, M, and N. The second stage transforms these intermediate
components in a similar fashion, producing the final X, Y, and Z components of
the CIE 1931 XYZ space (see Figure 4.14).

Color SpacesSECTION 4.5
245

FIGURE 4.14 Component transformations in a CIE-based ABC color space

Color spaces in the CIE-based families are defined by an array

[name dictionary]

where name is the name of the family and dictionary is a dictionary containing
parameters that further characterize the space. The entries in this dictionary have
specific interpretations that depend on the color space; some entries are required
and some are optional. See the sections on specific color space families, below, for
details.

Setting the current stroking or nonstroking color space to any CIE-based color
space initializes all components of the corresponding current color to 0.0 (unless
the range of valid values for a given component does not include 0.0, in which
case the nearest valid value is substituted.)

Note: The model and terminology used here—CIE-based ABC (above) and CIE-
based A (below)—are derived from the PostScript language, which supports these
color space families in their full generality. PDF supports specific useful cases of CIE-
based ABC and CIE-based A spaces; most others can be represented as ICCBased
spaces.

CalGray Color Spaces

A CalGray color space (PDF 1.1) is a special case of a single-component CIE-
based color space, known as a CIE-based A color space. This type of space is the
one-dimensional (and usually achromatic) analog of CIE-based ABC spaces.
Color values in a CIE-based A space have a single component, arbitrarily named
A. Figure 4.15 illustrates the transformations of the A component to X, Y, and Z
components of the CIE 1931 XYZ space.

Decode ABC Decode LMN

A

B

C

Matrix ABC

L

M

N

Matrix LMN

X

Y

Z

GraphicsCHAPTER 4
246

FIGURE 4.15 Component transformations in a CIE-based A color space

A CalGray color space is a CIE-based A color space with only one transformation
stage instead of two. In this type of space, A represents the gray component of a
calibrated gray space. This component must be in the range 0.0 to 1.0. The decod-
ing function (denoted by “Decode A” in Figure 4.15) is a gamma function whose
coefficient is specified by the Gamma entry in the color space dictionary (see Ta-
ble 4.13). The transformation matrix denoted by “Matrix A” in the figure is de-
rived from the dictionary’s WhitePoint entry, as described below. Since there is no
second transformation stage, “Decode LMN” and “Matrix LMN” are implicitly
taken to be identity transformations.

TABLE 4.13 Entries in a CalGray color space dictionary

KEY TYPE VALUE

WhitePoint array (Required) An array of three numbers [XW YW ZW] specifying the tri-
stimulus value, in the CIE 1931 XYZ space, of the diffuse white point; see
“CalRGB Color Spaces,” below, for further discussion. The numbers XW and
ZW must be positive, and YW must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB
Color Spaces,” below, for further discussion. All three of these numbers must
be non-negative. Default value: [0.0 0.0 0.0].

Gamma number (Optional) A number G defining the gamma for the gray (A) component. G
must be positive and is generally greater than or equal to 1. Default value: 1.

Decode A Decode LMN

A

L

M

N

Matrix A Matrix LMN

X

Y

Z

Color SpacesSECTION 4.5
247

The transformation defined by the Gamma and WhitePoint entries is

In other words, the A component is first decoded by the gamma function, and the
result is multiplied by the components of the white point to obtain the L, M, and
N components of the intermediate representation. Since there is no second stage,
the L, M, and N components are also the X, Y, and Z components of the final rep-
resentation.

The following examples illustrate interesting and useful special cases of CalGray
spaces. Example 4.5 establishes a space consisting of the Y dimension of the CIE
1931 XYZ space with the CCIR XA/11–recommended D65 white point.

Example 4.5

[/CalGray
<< /WhitePoint [0.9505 1.0000 1.0890] >>

]

Example 4.6 establishes a calibrated gray space with the CCIR XA/11–
recommended D65 white point and opto-electronic transfer function.

Example 4.6

[/CalGray
<< /WhitePoint [0.9505 1.0000 1.0890]

 /Gamma 2.222
>>

]

CalRGB Color Spaces

A CalRGB color space is a CIE-based ABC color space with only one transforma-
tion stage instead of two. In this type of space, A, B, and C represent calibrated
red, green, and blue color values. These three color components must be in the
range 0.0 to 1.0; component values falling outside that range are adjusted to the
nearest valid value without error indication. The decoding functions (denoted by
“Decode ABC” in Figure 4.14 on page 245) are gamma functions whose coeffi-

X L XW AG×= =
Y M YW AG×= =
Z N ZW AG×= =

GraphicsCHAPTER 4
248

cients are specified by the Gamma entry in the color space dictionary (see Table
4.14). The transformation matrix denoted by “Matrix ABC” in Figure 4.14 is de-
fined by the dictionary’s Matrix entry. Since there is no second transformation
stage, “Decode LMN” and “Matrix LMN” are implicitly taken to be identity trans-
formations.

TABLE 4.14 Entries in a CalRGB color space dictionary

The WhitePoint and BlackPoint entries in the color space dictionary control the
overall effect of the CIE-based gamut mapping function described in Section 6.1,
“CIE-Based Color to Device Color.” Typically, the colors specified by WhitePoint
and BlackPoint are mapped to the nearly lightest and nearly darkest achromatic
colors that the output device is capable of rendering in a way that preserves color
appearance and visual contrast.

WhitePoint is assumed to represent the diffuse achromatic highlight, not a specu-
lar highlight. Specular highlights, achromatic or otherwise, are often reproduced
lighter than the diffuse highlight. BlackPoint is assumed to represent the diffuse
achromatic shadow; its value is typically limited by the dynamic range of the in-
put device. In images produced by a photographic system, the values of
WhitePoint and BlackPoint vary with exposure, system response, and artistic in-
tent; hence, their values are image-dependent.

KEY TYPE VALUE

WhitePoint array (Required) An array of three numbers [XW YW ZW] specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see below for further discus-
sion. The numbers XW and ZW must be positive, and YW must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see below for further discussion.
All three of these numbers must be non-negative. Default value: [0.0 0.0 0.0].

Gamma array (Optional) An array of three numbers [GR GG GB] specifying the gamma for the red,
green, and blue (A, B, and C) components of the color space. Default value:
[1.0 1.0 1.0].

Matrix array (Optional) An array of nine numbers [XA YA ZA XB YB ZB XC YC ZC] specifying
the linear interpretation of the decoded A, B, and C components of the color space
with respect to the final XYZ representation. Default value: the identity matrix
[1 0 0 0 1 0 0 0 1].

Color SpacesSECTION 4.5
249

The transformation defined by the Gamma and Matrix entries in the CalRGB color
space dictionary is

In other words, the A, B, and C components are first decoded individually by the
gamma functions. The results are treated as a three-element vector and multi-
plied by Matrix (a 3-by-3 matrix) to obtain the L, M, and N components of the in-
termediate representation. Since there is no second stage, these are also the X, Y,
and Z components of the final representation.

Example 4.7 shows an example of a CalRGB color space for the CCIR XA/11–
recommended D65 white point with 1.8 gammas and Sony Trinitron phosphor
chromaticities.

Example 4.7

[/CalRGB
<< /WhitePoint [0.9505 1.0000 1.0890]

 /Gamma [1.8000 1.8000 1.8 000]
 /Matrix [0.4497 0.2446 0.0252

 0.3163 0.6720 0.1412
 0.1845 0.0833 0.9227
]

>>
]

In some cases, the parameters of a CalRGB color space may be specified in terms
of the CIE 1931 chromaticity coordinates (xR , yR), (xG , yG), (xB , yB) of the red,
green, and blue phosphors, respectively, and the chromaticity (xW , yW) of the dif-
fuse white point corresponding to some linear RGB value (R, G, B), where usually
R = G = B = 1.0. Note that standard CIE notation uses lowercase letters to specify

X L XA A
GR× XB B

GG× XC C
GB×+ += =

Y M YA A
GR× YB B

GG× YC C
GB×+ += =

Z N ZA A
GR× ZB B

GG× ZC C
GB×+ += =

GraphicsCHAPTER 4
250

chromaticity coordinates and uppercase letters to specify tristimulus values. Giv-
en this information, Matrix and WhitePoint can be found as follows:

Lab Color Spaces

A Lab color space is a CIE-based ABC color space with two transformation stages
(see Figure 4.14 on page 245). In this type of space, A, B, and C represent the L*,
a*, and b* components of a CIE 1976 L*a*b* space. The range of the first (L*)
component is always 0 to 100; the ranges of the second and third (a* and b*)
components are defined by the Range entry in the color space dictionary (see
Table 4.15).

Plate 3 illustrates the coordinates of a typical Lab color space; Plate 4 compares
the gamuts (ranges of representable colors) for L*a*b*, RGB, and CMYK spaces.

z yW xG xB–() yR× xR xB–() yG×– xR xG–() yB×)+(×=

YA
yR
R

xG xB–() yW× xW xB–() yG× xW xG–() yB×+–
z

---×=

XA YA
xR
yR
------×= ZA YA

1 xR–
yR
--------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

YB
yG
G
------–

xR xB–() yW× xW xB–() yR× xW xR–() yB×+–
z

--×=

XB YB
xG
yG
------×= ZB YB

1 xG–
yG
--------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

YC
yB
B

xR xG–() yW× xW xG–() yR× xW xR–() yG×+–
z

---×=

XC YC
xB
yB
------×= ZC YC

1 xB–
yB
-------------- 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

XW XA R× XB G× XC B×++=
YW YA R× YB G× YC B×++=
ZW ZA R× ZB G× ZC B×+ +=

Color SpacesSECTION 4.5
251

TABLE 4.15 Entries in a Lab color space dictionary

A Lab color space does not specify explicit decoding functions or matrix coef-
ficients for either stage of the transformation from L*a*b* space to XYZ space
(denoted by “Decode ABC,” “Matrix ABC,” “Decode LMN,” and “Matrix LMN” in
Figure 4.14 on page 245). Instead, these parameters have constant implicit values.
The first transformation stage is defined by the equations

The second transformation stage is given by

KEY TYPE VALUE

WhitePoint array (Required) An array of three numbers [XW YW ZW] specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see “CalRGB Color Spaces” on
page 247 for further discussion. The numbers XW and ZW must be positive, and YW
must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [XB YB ZB] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB Color Spaces” on
page 247 for further discussion. All three of these numbers must be non-negative.
Default value: [0.0 0.0 0.0].

Range array (Optional) An array of four numbers [amin amax bmin bmax] specifying the range of
valid values for the a* and b* (B and C) components of the color space—that is,

and

Component values falling outside the specified range are adjusted to the nearest valid
value without error indication. Default value: [−100 100 −100 100].

amin a* amax≤ ≤

bmin b* bmax≤ ≤

L L* 16+
116

------------------ a*
500
--------+=

M L* 16+
116

------------------=

N L* 16+
116

------------------ b*
200
--------–=

X XW g L()×=
Y YW g M()×=
Z ZW g N()×=

GraphicsCHAPTER 4
252

where the function g (x) is defined as

Example 4.8 defines the CIE 1976 L*a*b* space with the CCIR XA/11–
recommended D65 white point. The a* and b* components, although theoretical-
ly unbounded, are defined to lie in the useful range −128 to +127.

Example 4.8

[/Lab
<< /WhitePoint [0.9505 1.0000 1.0890]

 /Range [−128 127 −128 127]
>>

]

ICCBased Color Spaces

ICCBased color spaces (PDF 1.3) are based on a cross-platform color profile as
defined by the International Color Consortium (ICC). Unlike the CalGray,
CalRGB, and Lab color spaces, which are characterized by entries in the color
space dictionary, an ICCBased color space is characterized by a sequence of bytes
in a standard format. Details of the profile format can be found in the ICC speci-
fication (see the Bibliography).

An ICCBased color space is specified as an array:

[/ICCBased stream]

The stream contains the ICC profile. Besides the usual entries common to all
streams (see Table 3.4 on page 62), the profile stream has the additional entries
listed in Table 4.16.

g x() x3= if x 6
29
-----≥

g x() 108
841
-------- x 4

29
-----–⎝ ⎠

⎛ ⎞×= otherwise

Color SpacesSECTION 4.5
253

TABLE 4.16 Additional entries specific to an ICC profile stream dictionary

The ICC specification is an evolving standard. Table 4.17 shows the versions of
the ICC specification on which the ICCBased color spaces supported by PDF ver-
sions 1.3 and later are based. (Earlier versions of the ICC specification are also
supported.)

TABLE 4.17 ICC specification versions supported by ICCBased color spaces

KEY TYPE VALUE

N integer (Required) The number of color components in the color space described by the ICC
profile data. This number must match the number of components actually in the ICC
profile. As of PDF 1.4, N must be 1, 3, or 4.

Alternate array or
name

(Optional) An alternate color space to be used in case the one specified in the stream
data is not supported (for example, by applications designed for earlier versions of
PDF). The alternate space may be any valid color space (except a Pattern color space)
that has the number of components specified by N. If this entry is omitted and the ap-
plication does not understand the ICC profile data, the color space used is
DeviceGray, DeviceRGB, or DeviceCMYK, depending on whether the value of N is 1, 3,
or 4, respectively.

Note: There is no conversion of source color values, such as a tint transformation, when
using the alternate color space. Color values within the range of the ICCBased color space
might not be within the range of the alternate color space. In this case, the nearest values
within the range of the alternate space are substituted.

Range array (Optional) An array of 2 × N numbers [min0 max0 min1 max1 …] specifying the min-
imum and maximum valid values of the corresponding color components. These val-
ues must match the information in the ICC profile. Default value:
[0.0 1.0 0.0 1.0 …].

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the color space (see
Section 10.2.2, “Metadata Streams”).

PDF VERSION ICC SPECIFICATION VERSION

1.3 3.3

1.4 ICC.1:1998-09 and its addendum ICC.1A:1999-04

1.5 ICC.1:2001-12

1.6 ICC.1:2003-09

GraphicsCHAPTER 4
254

PDF producers and consumers should follow these guidelines:

• A consumer that supports a given PDF version is required to support ICC pro-
files conforming to the corresponding version (and earlier versions) of the ICC
specification, as described above. It may optionally support later ICC versions.

• For the most predictable and consistent results, a producer of a given PDF ver-
sion should embed only profiles conforming to the corresponding version of
the ICC specification.

• A PDF producer may embed profiles conforming to a later ICC version, with
the understanding that the results will vary depending on the capabilities of the
consumer. The consumer might process the profile while ignoring newer
features, or it might fail altogether to process the profile. Therefore, it is recom-
mended that the producer provide an alternate color space (Alternate entry in
the ICCBased color space dictionary) containing a profile that is appropriate for
the PDF version.

PDF supports only the profile types shown in Table 4.18; other types may be sup-
ported in the future. (In particular, note that XYZ and 16-bit L*a*b* profiles are
not supported.) Each of the indicated fields must have one of the values listed for
that field in the second column of the table. (Profiles must satisfy both the criteria
shown in the table.) The terminology is taken from the ICC specifications.

TABLE 4.18 ICC profile types

1.7 ICC.1:2004-10

HEADER FIELD REQUIRED VALUE

deviceClass icSigInputClass ('scnr')
icSigDisplayClass ('mntr')
icSigOutputClass ('prtr')
icSigColorSpaceClass ('spac')

colorSpace icSigGrayData ('GRAY')
icSigRgbData ('RGB ')
icSigCmykData ('CMYK')
icSigLabData ('Lab ')

PDF VERSION ICC SPECIFICATION VERSION

Color SpacesSECTION 4.5
255

The terminology used in PDF color spaces and ICC color profiles is similar, but
sometimes the same terms are used with different meanings. For example, the
default value for each component in an ICCBased color space is 0. The range of
each color component is a function of the color space specified by the profile and
is indicated in the ICC specification. The ranges for several ICC color spaces are
shown in Table 4.19.

TABLE 4.19 Ranges for typical ICC color spaces

Since the ICCBased color space is being used as a source color space, only the “to
CIE” profile information (AToB in ICC terminology) is used; the “from CIE”
(BToA) information is ignored when present. An ICC profile may also specify a
rendering intent, but PDF consumer applications ignore this information; the ren-
dering intent is specified in PDF by a separate parameter (see “Rendering Intents”
on page 260).

Note: The requirements stated above apply to an ICCBased color space that is used
to specify the source colors of graphics objects. When such a space is used as the
blending color space for a transparency group in the transparent imaging model
(see Sections 7.2.3, “Blending Color Space”; 7.3, “Transparency Groups”; and 7.5.5,
“Transparency Group XObjects”), it must have both “to CIE” (AToB) and “from
CIE” (BToA) information. This is because the group color space is used as both the
destination for objects being painted within the group and the source for the
group’s results. ICC profiles are also used in specifying output intents for matching
the color characteristics of a PDF document with those of a target output device or
production environment. When used in this context, they are subject to still other
constraints on the “to CIE” and “from CIE” information; see Section 10.10.4,
“Output Intents,” for details.

The representations of ICCBased color spaces are less compact than CalGray,
CalRGB, and Lab, but can represent a wider range of color spaces. In those cases
where a given color space can be expressed by more than one of the CIE-based

ICC COLOR SPACE COMPONENT RANGES

Gray [0.0 1.0]

RGB [0.0 1.0]

CMYK [0.0 1.0]

L*a*b* L*: [0 100]; a* and b*: [−128 127]

GraphicsCHAPTER 4
256

color space families, the resulting colors are expected to be rendered similarly,
regardless of the method selected for representation.

One particular color space is the so-called “standard RGB” or sRGB, defined in
the International Electrotechnical Commission (IEC) document Colour Measure-
ment and Management in Multimedia Systems and Equipment (see the Bibliogra-
phy). In PDF, the sRGB color space can be expressed precisely only as an
ICCBased space, although it can be approximated by a CalRGB space.

Example 4.9 shows an ICCBased color space for a typical three-component RGB
space. The profile’s data has been encoded in hexadecimal representation for
readability; in actual practice, a lossless decompression filter such as FlateDecode
should be used.

Example 4.9

10 0 obj % Color space
[/ICCBased 15 0 R]

endobj

15 0 obj % ICC profile stream
<< /N 3

 /Alternate /DeviceRGB
 /Length 1605
 /Filter /ASCIIHexDecode

>>
stream
00 00 02 0C 61 70 70 6C 02 00 00 00 6D 6E 74 72
52 47 42 20 58 59 5A 20 07 CB 00 02 00 16 00 0E
00 22 00 2C 61 63 73 70 41 50 50 4C 00 00 00 00
61 70 70 6C 00 00 04 01 00 00 00 00 00 00 00 02
00 00 00 00 00 00 F6 D4 00 01 00 00 00 00 D3 2B
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 09 64 65 73 63 00 00 00 F0 00 00 00 71
72 58 59 5A 00 00 01 64 00 00 00 14 67 58 59 5A
00 00 01 78 00 00 00 14 62 58 59 5A 00 00 01 8C
00 00 00 14 72 54 52 43 00 00 01 A0 00 00 00 0E
67 54 52 43 00 00 01 B0 00 00 00 0E 62 54 52 43
00 00 01 C0 00 00 00 0E 77 74 70 74 00 00 01 D0
00 00 00 14 63 70 72 74 00 00 01 E4 00 00 00 27
64 65 73 63 00 00 00 00 00 00 00 17 41 70 70 6C

Color SpacesSECTION 4.5
257

65 20 31 33 22 20 52 47 42 20 53 74 61 6E 64 61
72 64 00 00 00 00 00 00 00 00 00 00 00 17 41 70
70 6C 65 20 31 33 22 20 52 47 42 20 53 74 61 6E
64 61 72 64 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 58 59 5A 58 59 5A 20 00 00 00 00 00 00 63 0A
00 00 35 0F 00 00 03 30 58 59 5A 20 00 00 00 00
00 00 53 3D 00 00 AE 37 00 00 15 76 58 59 5A 20
00 00 00 00 00 00 40 89 00 00 1C AF 00 00 BA 82
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 58 59
58 59 5A 20 00 00 00 00 00 00 F3 1B 00 01 00 00
00 01 67 E7 74 65 78 74 00 00 00 00 20 43 6F 70
79 72 69 67 68 74 20 41 70 70 6C 65 20 43 6F 6D
70 75 74 65 72 73 20 31 39 39 34 00 >
endstream
endobj

Default Color Spaces

Colors that are specified in a device color space (DeviceGray, DeviceRGB, or
DeviceCMYK) are device-dependent. By setting default color spaces (PDF 1.1), a
PDF document can request that such colors be systematically transformed
(remapped) into device-independent CIE-based color spaces. This capability can
be useful in a variety of circumstances:

• A document originally intended for one output device is redirected to a differ-
ent device.

• A document is intended to be compatible with applications designed for earlier
versions of PDF and thus cannot specify CIE-based colors directly.

• Color corrections or rendering intents need to be applied to device colors (see
“Rendering Intents” on page 260).

A color space is selected for painting each graphics object. This is either the cur-
rent color space parameter in the graphics state or a color space given as an entry
in an image XObject, inline image, or shading dictionary. Regardless of how the
color space is specified, it may be subject to remapping as described below.

GraphicsCHAPTER 4
258

When a device color space is selected, the ColorSpace subdictionary of the cur-
rent resource dictionary (see Section 3.7.2, “Resource Dictionaries”) is checked
for the presence of an entry designating a corresponding default color space
(DefaultGray, DefaultRGB, or DefaultCMYK, corresponding to DeviceGray,
DeviceRGB, or DeviceCMYK, respectively). If such an entry is present, its value is
used as the color space for the operation currently being performed. (If the appli-
cation does not recognize this color space, no remapping occurs; the original de-
vice color space is used.)

Color values in the original device color space are passed unchanged to the
default color space, which must have the same number of components as the
original space. The default color space should be chosen to be compatible with
the original, taking into account the components’ ranges and whether the compo-
nents are additive or subtractive. If a color value lies outside the range of the de-
fault color space, it is adjusted to the nearest valid value.

Note: Any color space other than a Lab, Indexed, or Pattern color space may be used
as a default color space provided that it is compatible with the original device color
space as described above.

If the selected space is a special color space based on an underlying device color
space, the default color space is used in place of the underlying space. This applies
to the following color spaces:

• The underlying color space of a Pattern color space

• The base color space of an Indexed color space

• The alternate color space of a Separation or DeviceN color space (but only if the
alternate color space is actually selected)

See Section 4.5.5, “Special Color Spaces,” for details on these color spaces.

Note: There is no conversion of color values, such as a tint transformation, when us-
ing the default color space. Color values that are within the range of the device color
space might not be within the range of the default color space (particularly if the de-
fault is an ICCBased color space). In this case, the nearest values within the range of
the default space are used. For this reason, a Lab color space is not permitted as the
DefaultRGB color space.

Color SpacesSECTION 4.5
259

Implicit Conversion of CIE-Based Color Spaces

In workflows in which PDF documents are intended for rendering on a specific
target output device (such as a printing press with particular inks and media), it is
often useful to specify the source colors for some or all of a document’s objects in
a CIE-based color space that matches the calibration of the intended device. The
resulting document, although tailored to the specific characteristics of the target
device, remains device-independent and will produce reasonable results if re-
targeted to a different output device. However, the expectation is that if the docu-
ment is printed on the intended target device, source colors that have been
specified in a color space matching the calibration of the device will pass through
unchanged, without conversion to and from the intermediate CIE 1931 XYZ
space as depicted in Figure 4.14 on page 245.

In particular, when colors intended for a CMYK output device are specified in an
ICCBased color space using a matching CMYK printing profile, converting such
colors from four components to three and back is unnecessary and results in a
loss of fidelity in the black component. In such cases, PDF consumer applications
may provide the ability for the user to specify a particular calibration to use for
printing, proofing, or previewing. This calibration is then considered to be that of
the native color space of the intended output device (typically DeviceCMYK), and
colors expressed in a CIE-based source color space matching it can be treated as if
they were specified directly in the device’s native color space. Note that the condi-
tions under which such implicit conversion is done cannot be specified in PDF,
since nothing in PDF describes the calibration of the output device (although an
output intent dictionary, if present, may suggest such a calibration; see Section
10.10.4, “Output Intents”). The conversion is completely hidden by the applica-
tion and plays no part in the interpretation of PDF color spaces.

When this type of implicit conversion is done, all of the semantics of the device
color space should also apply, even though they do not apply to CIE-based spaces
in general. In particular:

• The nonzero overprint mode (see Section 4.5.6, “Overprint Control”) deter-
mines the interpretation of color component values in the space.

• If the space is used as the blending color space for a transparency group in the
transparent imaging model (see Sections 7.2.3, “Blending Color Space”; 7.3,
“Transparency Groups”; and 7.5.5, “Transparency Group XObjects”), compo-
nents of the space, such as Cyan, can be selected in a Separation or DeviceN col-

GraphicsCHAPTER 4
260

or space used within the group (see “Separation Color Spaces” on page 264 and
“DeviceN Color Spaces” on page 268).

• Likewise, any uses of device color spaces for objects within such a transparency
group have well-defined conversions to the group color space.

Note: A source color space can be specified directly (for example, with an ICCBased
color space) or indirectly using the default color space mechanism (for example,
DefaultCMYK; see “Default Color Spaces” on page 257). The implicit conversion of a
CIE-based color space to a device space should not depend on whether the CIE-
based space is specified directly or indirectly.

Rendering Intents

Although CIE-based color specifications are theoretically device-independent,
they are subject to practical limitations in the color reproduction capabilities of
the output device. Such limitations may sometimes require compromises to be
made among various properties of a color specification when rendering colors for
a given device. Specifying a rendering intent (PDF 1.1) allows a PDF file to set pri-
orities regarding which of these properties to preserve and which to sacrifice. For
example, the PDF file might request that colors falling within the output device’s
gamut (the range of colors it can reproduce) be rendered exactly while sacrificing
the accuracy of out-of-gamut colors, or that a scanned image such as a photo-
graph be rendered in a perceptually pleasing manner at the cost of strict colori-
metric accuracy.

Rendering intents are specified with the ri operator (see Section 4.3.3, “Graphics
State Operators”), the RI entry in a graphics state parameter dictionary (see Sec-
tion 4.3.4), and with the Intent entry in image dictionaries (Section 4.8.4, “Image
Dictionaries”). The value is a name identifying the rendering intent. Table 4.20
lists the standard rendering intents recognized in the initial release of PDF viewer
applications from Adobe Systems; Plate 5 illustrates their effects. These intents
have been deliberately chosen to correspond closely to those defined by the Inter-
national Color Consortium (ICC), an industry organization that has developed
standards for device-independent color. Note, however, that the exact set of ren-
dering intents supported may vary from one output device to another; a particu-
lar device may not support all possible intents or may support additional ones
beyond those listed in the table. If the application does not recognize the speci-
fied name, it uses the RelativeColorimetric intent by default.

Color SpacesSECTION 4.5
261

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular
“Rendering Intent and Color Conversions” on page 574, for further discussion of
the role of rendering intents in the transparent imaging model.

TABLE 4.20 Rendering intents

NAME DESCRIPTION

AbsoluteColorimetric Colors are represented solely with respect to the light source; no
correction is made for the output medium’s white point (such as
the color of unprinted paper). Thus, for example, a monitor’s
white point, which is bluish compared to that of a printer’s pa-
per, would be reproduced with a blue cast. In-gamut colors are
reproduced exactly; out-of-gamut colors are mapped to the
nearest value within the reproducible gamut. This style of repro-
duction has the advantage of providing exact color matches
from one output medium to another. It has the disadvantage of
causing colors with Y values between the medium’s white point
and 1.0 to be out of gamut. A typical use might be for logos and
solid colors that require exact reproduction across different me-
dia.

RelativeColorimetric Colors are represented with respect to the combination of the
light source and the output medium’s white point (such as the
color of unprinted paper). Thus, for example, a monitor’s white
point would be reproduced on a printer by simply leaving the
paper unmarked, ignoring color differences between the two
media. In-gamut colors are reproduced exactly; out-of-gamut
colors are mapped to the nearest value within the reproducible
gamut. This style of reproduction has the advantage of adapting
for the varying white points of different output media. It has the
disadvantage of not providing exact color matches from one me-
dium to another. A typical use might be for vector graphics.

Saturation Colors are represented in a manner that preserves or emphasizes
saturation. Reproduction of in-gamut colors may or may not be
colorimetrically accurate. A typical use might be for business
graphics, where saturation is the most important attribute of the
color.

GraphicsCHAPTER 4
262

4.5.5 Special Color Spaces

Special color spaces add features or properties to an underlying color space.
There are four special color space families: Pattern, Indexed, Separation, and
DeviceN.

Pattern Color Spaces

A Pattern color space (PDF 1.2) enables a PDF content stream to paint an area
with a pattern rather than a single color. The pattern may be either a tiling pattern
(type 1) or a shading pattern (type 2). Section 4.6, “Patterns,” discusses patterns in
detail.

Indexed Color Spaces

An Indexed color space allows a PDF content stream to use small integers as indi-
ces into a color map or color table of arbitrary colors in some other space. A PDF
consumer application treats each sample value as an index into the color table
and uses the color value it finds there. This technique can considerably reduce the
amount of data required to represent a sampled image—for example, by using
8-bit index values as samples instead of 24-bit RGB color values.

An Indexed color space is defined by a four-element array:

[/Indexed base hival lookup]

The first element is the color space family name Indexed. The remaining ele-
ments are parameters that an Indexed color space requires; their meanings are
discussed below. Setting the current stroking or nonstroking color space to an
Indexed color space initializes the corresponding current color to 0.

Perceptual Colors are represented in a manner that provides a pleasing per-
ceptual appearance. To preserve color relationships, both in-
gamut and out-of-gamut colors are generally modified from
their precise colorimetric values. A typical use might be for
scanned images.

NAME DESCRIPTION

Color SpacesSECTION 4.5
263

The base parameter is an array or name that identifies the base color space in
which the values in the color table are to be interpreted. It can be any device or
CIE-based color space or (in PDF 1.3) a Separation or DeviceN space, but not a
Pattern space or another Indexed space. For example, if the base color space is
DeviceRGB, the values in the color table are to be interpreted as red, green, and
blue components; if the base color space is a CIE-based ABC space such as a
CalRGB or Lab space, the values are to be interpreted as A, B, and C components.

Note: Attempting to use a Separation or DeviceN color space as the base for an
Indexed color space generates an error in PDF 1.2.

The hival parameter is an integer that specifies the maximum valid index value. In
other words, the color table is to be indexed by integers in the range 0 to hival.
hival can be no greater than 255, which is the integer required to index a table
with 8-bit index values.

The color table is defined by the lookup parameter, which can be either a stream
or (in PDF 1.2) a byte string. It provides the mapping between index values and
the corresponding colors in the base color space.

The color table data must be m × (hival + 1) bytes long, where m is the number of
color components in the base color space. Each byte is an unsigned integer in the
range 0 to 255 that is scaled to the range of the corresponding color component in
the base color space; that is, 0 corresponds to the minimum value in the range for
that component, and 255 corresponds to the maximum.

Note: PostScript uses a different interpretation of an Indexed color space’s color ta-
ble. In PostScript, the component value is always scaled to the range 0.0 to 1.0, re-
gardless of the range of color values in the base color space.

The color components for each entry in the table appear consecutively in the
string or stream. For example, if the base color space is DeviceRGB and the
indexed color space contains two colors, the order of bytes in the string or stream
is R0 G0 B0 R1 G1 B1 , where letters denote the color component and numeric
subscripts denote the table entry.

Example 4.10 illustrates the specification of an Indexed color space that maps
8-bit index values to three-component color values in the DeviceRGB color space.

GraphicsCHAPTER 4
264

Example 4.10

[/Indexed
/DeviceRGB
255
< 000000 FF0000 00FF00 0000FF B57342 … >

]

The example shows only the first five color values in the lookup string; in all, there
should be 256 color values and the string should be 768 bytes long. Having
established this color space, the program can now specify colors as single-compo-
nent values in the range 0 to 255. For example, a color value of 4 selects an RGB
color whose components are coded as the hexadecimal integers B5, 73, and 42.
Dividing these by 255 and scaling the results to the range 0.0 to 1.0 yields a color
with red, green, and blue components of 0.710, 0.451, and 0.259, respectively.

Although an Indexed color space is useful mainly for images, index values can
also be used with the color selection operators SC, SCN, sc, and scn. For example:

123 sc

selects the same color as does an image sample value of 123. The index value
should be an integer in the range 0 to hival. If the value is a real number, it is
rounded to the nearest integer; if it is outside the range 0 to hival, it is adjusted to
the nearest value within that range.

Separation Color Spaces

Color output devices produce full color by combining primary or process
colorants in varying amounts. On an additive color device such as a display, the
primary colorants consist of red, green, and blue phosphors; on a subtractive de-
vice such as a printer, they typically consist of cyan, magenta, yellow, and some-
times black inks. In addition, some devices can apply special colorants, often
called spot colorants, to produce effects that cannot be achieved with the standard
process colorants alone. Examples include metallic and fluorescent colors and
special textures.

When printing a page, most devices produce a single composite page on which all
process colorants (and spot colorants, if any) are combined. However, some de-
vices, such as imagesetters, produce a separate, monochromatic rendition of the
page, called a separation, for each colorant. When the separations are later com-

Color SpacesSECTION 4.5
265

bined—on a printing press, for example—and the proper inks or other colorants
are applied to them, the result is a full-color page.

A Separation color space (PDF 1.2) provides a means for specifying the use of
additional colorants or for isolating the control of individual color components of
a device color space for a subtractive device. When such a space is the current
color space, the current color is a single-component value, called a tint, that con-
trols the application of the given colorant or color components only.

Note: The term separation is often misused as a synonym for an individual device
colorant. In the context of this discussion, a printing system that produces separa-
tions generates a separate piece of physical medium (generally film) for each color-
ant. It is these pieces of physical medium that are correctly referred to as separations.
A particular colorant properly constitutes a separation only if the device is generat-
ing physical separations, one of which corresponds to the given colorant. The
Separation color space is so named for historical reasons, but it has evolved to the
broader purpose of controlling the application of individual colorants in general, re-
gardless of whether they are actually realized as physical separations.

Note also that the operation of a Separation color space itself is independent of the
characteristics of any particular output device. Depending on the device, the space
may or may not correspond to a true, physical separation or to an actual colorant.
For example, a Separation color space could be used to control the application of a
single process colorant (such as cyan) on a composite device that does not produce
physical separations, or could represent a color (such as orange) for which no specif-
ic colorant exists on the device. A Separation color space provides consistent, pre-
dictable behavior, even on devices that cannot directly generate the requested color.

A Separation color space is defined as follows:

[/Separation name alternateSpace tintTransform]

In other words, it is a four-element array whose first element is the color space
family name Separation. The remaining elements are parameters that a
Separation color space requires; their meanings are discussed below.

A color value in a Separation color space consists of a single tint component in
the range 0.0 to 1.0. The value 0.0 represents the minimum amount of colorant
that can be applied; 1.0 represents the maximum. Tints are always treated as
subtractive colors, even if the device produces output for the designated compo-
nent by an additive method. Thus, a tint value of 0.0 denotes the lightest color

GraphicsCHAPTER 4
266

that can be achieved with the given colorant, and 1.0 is the darkest. (This conven-
tion is the same as for DeviceCMYK color components but opposite to the one for
DeviceGray and DeviceRGB.) The initial value for both the stroking and non-
stroking color in the graphics state is 1.0. The SCN and scn operators respectively
set the current stroking and nonstroking color to a tint value. A sampled image
with single-component samples can also be used as a source of tint values.

The name parameter is a name object specifying the name of the colorant that
this Separation color space is intended to represent (or one of the special names
All or None; see below). Such colorant names are arbitrary, and there can be any
number of them, subject to implementation limits.

The special colorant name All refers collectively to all colorants available on an
output device, including those for the standard process colorants. When a
Separation space with this colorant name is the current color space, painting
operators apply tint values to all available colorants at once. This is useful for pur-
poses such as painting registration targets in the same place on every separation.
Such marks are typically painted as the last step in composing a page to ensure
that they are not overwritten by subsequent painting operations.

The special colorant name None never produces any visible output. Painting op-
erations in a Separation space with this colorant name have no effect on the cur-
rent page.

All devices support Separation color spaces with the colorant names All and
None, even if they do not support any others. Separation spaces with either of
these colorant names ignore the alternateSpace and tintTransform parameters (dis-
cussed below), although valid values must still be provided.

At the moment the color space is set to a Separation space, the consumer applica-
tion determines whether the device has an available colorant corresponding to
the name of the requested space. If so, the application ignores the alternateSpace
and tintTransform parameters; subsequent painting operations within the space
apply the designated colorant directly, according to the tint values supplied.

Note: The preceding paragraph applies only to subtractive output devices such as
printers and imagesetters. For an additive device such as a computer display, a
Separation color space never applies a process colorant directly; it always reverts to
the alternate color space as described below. This is because the model of applying
process colorants independently does not work as intended on an additive device; for

Color SpacesSECTION 4.5
267

instance, painting tints of the Red component on a white background produces a
result that varies from white to cyan.

Note that this exception applies only to colorants for additive devices, not to the spe-
cific names Red, Green, and Blue. In contrast, a printer might have a (subtractive)
ink named, for example, Red, which should work as a Separation color space just
the same as any other supported colorant.

If the colorant name associated with a Separation color space does not cor-
respond to a colorant available on the device, the application arranges for subse-
quent painting operations to be performed in an alternate color space. The
intended colors can be approximated by colors in a device or CIE-based color
space, which are then rendered with the usual primary or process colorants:

• The alternateSpace parameter must be an array or name object that identifies
the alternate color space, which can be any device or CIE-based color space but
not another special color space (Pattern, Indexed, Separation, or DeviceN).

• The tintTransform parameter must be a function (see Section 3.9, “Functions”).
During subsequent painting operations, an application calls this function to
transform a tint value into color component values in the alternate color space.
The function is called with the tint value and must return the corresponding
color component values. That is, the number of components and the interpre-
tation of their values depend on the alternate color space.

Note: Painting in the alternate color space may produce a good approximation of
the intended color when only opaque objects are painted. However, it does not cor-
rectly represent the interactions between an object and its backdrop when the object
is painted with transparency or when overprinting (see Section 4.5.6, “Overprint
Control”) is enabled.

Example 4.11 illustrates the specification of a Separation color space (object 5)
that is intended to produce a color named LogoGreen. If the output device has no
colorant corresponding to this color, DeviceCMYK is used as the alternate color
space, and the tint transformation function (object 12) maps tint values linearly
into shades of a CMYK color value approximating the LogoGreen color.

GraphicsCHAPTER 4
268

Example 4.11

5 0 obj % Color space
[/Separation

/LogoGreen
/DeviceCMYK
12 0 R

]
endobj

12 0 obj % Tint transformation function
<< /FunctionType 4

 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 62

>>
stream

{ dup 0.84 mul
 exch 0.00 exch dup 0.44 mul
 exch 0.21 mul
}

endstream
endobj

See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of Separation color spaces in the transparent imaging model.

DeviceN Color Spaces

DeviceN color spaces (PDF 1.3) can contain an arbitrary number of color compo-
nents. They provide greater flexibility than is possible with standard device color
spaces such as DeviceCMYK or with individual Separation color spaces. For ex-
ample, it is possible to create a DeviceN color space consisting of only the cyan,
magenta, and yellow color components, with the black component excluded.

DeviceN color spaces are used in applications such as these:

• High-fidelity color is the use of more than the standard CMYK process colo-
rants to produce an extended gamut, or range of colors. A popular example is

Color SpacesSECTION 4.5
269

the PANTONE Hexachrome system, which uses six colorants: the usual cyan,
magenta, yellow, and black, plus orange and green.

• Multitone color systems use a single-component image to specify multiple color
components. In a duotone, for example, a single-component image can be used
to specify both the black component and a spot color component. The tone
reproduction is generally different for the different components. For example,
the black component might be painted with the exact sample data from the sin-
gle-component image; the spot color component might be generated as a
nonlinear function of the image data in a manner that emphasizes the shadows.
Plate 6 shows an example that uses black and magenta color components. In
Plate 7, a single-component grayscale image is used to generate a quadtone re-
sult that uses four colorants: black and three PANTONE spot colors. See Exam-
ple 4.21 on page 282 for the code used to generate this image.

DeviceN was designed to represent color spaces containing multiple components
that correspond to colorants of some target device. As with Separation color
spaces, PDF consumer applications must be able to approximate the colorants if
they are not available on the current output device, such as a display. To accom-
plish this, the color space definition provides a tint transformation function that
can be used to convert all the components to an alternate color space.

PDF 1.6 extends the meaning of DeviceN to include color spaces that are referred
to as NChannel color spaces. Such color spaces may contain an arbitrary number
of spot and process components, which may or may not correspond to specific
device colorants (the process components must be from a single process color
space). They provide information about each component that allows applications
more flexibility in converting colors. For example, they may use their own blend-
ing algorithms for on-screen viewing and composite printing, rather than being
required to use a specified tint transformation function. These color spaces are
identified by a value of NChannel for the Subtype entry of the attributes dictio-
nary (see Table 4.21). A value of DeviceN for the Subtype entry, or no value,
means that only the previous features are supported. PDF consumer applications
that do not support PDF 1.6 treat these color spaces as normal DeviceN color
spaces and use the tint transformation function as appropriate. Producer applica-
tions using the NChannel features should follow certain guidelines, as noted
throughout this section, to achieve good backward compatibility.

DeviceN color spaces are defined in a similar way to Separation color spaces—in
fact, a Separation color space can be defined as a DeviceN color space with only
one component.

GraphicsCHAPTER 4
270

A DeviceN color space is specified as follows:

[/DeviceN names alternateSpace tintTransform]

or

[/DeviceN names alternateSpace tintTransform attributes]

It is a four- or five-element array whose first element is the color space family
name DeviceN. The remaining elements are parameters that a DeviceN color
space requires.

The names parameter is an array of name objects specifying the individual color
components. The length of the array determines the number of components in
the DeviceN color space, which is subject to an implementation limit; see Appen-
dix C.The component names must all be different from one another, except for
the name None, which can be repeated as described later in this section. (The
special name All, used by Separation color spaces, is not allowed.)

Color values are tint components in the range 0.0 to 1.0:

• For DeviceN color spaces that do not have a subtype of NChannel, 0.0 always
represents the minimum amount of colorant; 1.0 represents the maximum.
Tints are always treated as subtractive colors, even if the device produces out-
put for the designated component by an additive method. Thus, a tint value of
0.0 denotes the lightest color that can be achieved with the given colorant, and
1.0 the darkest. (This convention is the same one as for DeviceCMYK color
components but opposite to the one for DeviceGray and DeviceRGB.)

• For NChannel color spaces, values for additive process colors (such as RGB) are
specified in their natural form, where 1.0 represents maximum intensity of col-
or.

When this space is set to the current color space (using the CS or cs operators),
each component is given an initial value of 1.0. The SCN and scn operators re-
spectively set the current stroking and nonstroking color. Operand values sup-
plied to SCN or scn are interpreted as color component values in the order in
which the colors are given in the names array, as are the values in a sampled im-
age that uses a DeviceN color space.

The alternateSpace parameter is an array or name object that can be any device or
CIE-based color space but not another special color space (Pattern, Indexed,
Separation, or DeviceN). When the color space is set to a DeviceN space, if any of

Color SpacesSECTION 4.5
271

the component names in the color space do not correspond to a colorant avail-
able on the device, the PDF consumer application can perform subsequent paint-
ing operations in the alternate color space specified by this parameter.

Note: For NChannel color spaces, the components are evaluated individually; that
is, only the ones not present on the output device use the alternate color space.

The tintTransform parameter specifies a function (see Section 3.9, “Functions”)
that is used to transform the tint values into the alternate color space. It is called
with n tint values and returns m color component values, where n is the number
of components needed to specify a color in the DeviceN color space and m is the
number required by the alternate color space.

Note: Painting in the alternate color space may produce a good approximation of
the intended color when only opaque objects are painted. However, it does not cor-
rectly represent the interactions between an object and its backdrop when the object
is painted with transparency or when overprinting (see Section 4.5.6, “Overprint
Control”) is enabled.

The color component name None, which may be present only for DeviceN color
spaces that do not have the NChannel subtype, indicates that the corresponding
color component is never painted on the page, as in a Separation color space for
the None colorant. (However, see implementation note 48 in Appendix H.) When
a DeviceN color space is painting the named device colorants directly, color com-
ponents corresponding to None colorants are discarded. However, when the
DeviceN color space reverts to its alternate color space, those components are
passed to the tint transformation function, which can use them as desired.

Note: A DeviceN color space whose component colorant names are all None always
discards its output, just the same as a Separation color space for None; it never
reverts to the alternate color space. Reversion occurs only if at least one color com-
ponent (other than None) is specified and is not available on the device.

The optional attributes parameter is a dictionary (see Table 4.21) containing addi-
tional information about the components of color space that PDF consumer ap-
plications may use. PDF consumers are not required to use the alternateSpace and
tintTransform parameters, and may instead use custom blending algorithms, along
with other information provided in the attributes dictionary if present. (If the val-
ue of the Subtype entry in the attributes dictionary is NChannel, such informa-
tion must be present.) However, alternateSpace and tintTransform must always be
provided for applications that want to use them or do not support PDF 1.6.

GraphicsCHAPTER 4
272

TABLE 4.21 Entries in a DeviceN color space attributes dictionary

A value of NChannel for the Subtype entry indicates that some of the other en-
tries in this dictionary are required rather than optional. The Colorants entry
specifies a colorants dictionary that contains entries for all the spot colorants in
the color space; they are defined using individual Separation color spaces. The
Process entry specifies a process dictionary (see Table 4.22) that identifies the pro-
cess color space that is used by this color space and the names of its components.
It must be present if Subtype is NChannel and the color space has process color
components. (An NChannel color space may contain components from at most
one process color space.)

KEY TYPE VALUE

Subtype name (Optional; PDF 1.6) A name specifying the preferred treatment for the color
space. Possible values are DeviceN and NChannel. Default value: DeviceN.

Colorants dictionary (Required if Subtype is NChannel and the color space includes spot colorants; other-
wise optional) A dictionary describing the individual colorants used in the
DeviceN color space. For each entry in this dictionary, the key is a colorant name
and the value is an array defining a Separation color space for that colorant (see
“Separation Color Spaces” on page 264). The key must match the colorant name
given in that color space.

This dictionary provides information about the individual colorants that may be
useful to some applications. In particular, the alternate color space and tint trans-
formation function of a Separation color space describe the appearance of that
colorant alone, whereas those of a DeviceN color space describe only the appear-
ance of its colorants in combination.

If Subtype is NChannel, this dictionary must have entries for all spot colorants in
this color space. This dictionary may also include additional colorants not used
by this color space.

Process dictionary (Required if Subtype is NChannel and the color space includes components of a pro-
cess color space, otherwise optional; PDF 1.6) A dictionary (see Table 4.22) that de-
scribes the process color space whose components are included in this color
space.

MixingHints dictionary (Optional; PDF 1.6) A dictionary (see Table 4.23) that specifies optional attributes
of the inks to be used in blending calculations when used as an alternative to the
tint transformation function.

Color SpacesSECTION 4.5
273

For color spaces that have a value of NChannel for the Subtype entry in the at-
tributes dictionary (see Table 4.21), the following restrictions apply to process
colors:

• There can be color components from at most one process color space, which
can be any device or CIE-based color space.

• For a non-CMYK color space, the names of the process components must ap-
pear sequentially in the names array, in the normal color space order (for exam-
ple, Red, Green, and Blue). However, the names in the names array need not
match the actual color space names (for example, a Red component need not be
named Red).The mapping of names is specified in the process dictionary (see
Table 4.22 and discussion below), which is required to be present.

• Definitions for process colorants should not appear in the colorants dictionary.
Any such definition should be ignored if the colorant is also present in the pro-
cess dictionary. Any component not specified in the process dictionary is con-
sidered to be a spot colorant.

• For a CMYK color space, a subset of the components may be present, and they
may appear in any order in the names array. The reserved names Cyan,
Magenta, Yellow, and Black are always considered to be process colors, which
do not necessarily correspond to the colorants of a specific device; they are not
required to have entries in the process dictionary.

• The values associated with the process components must be stored in their nat-
ural form (that is, subtractive color values for CMYK and additive color values
for RGB), since they are interpreted directly as process values by consumers
making use of the process dictionary. (For additive color spaces, this is the re-
verse of how color values are specified for DeviceN, as described above in the
discussion of the names parameter.)

The MixingHints entry in the attributes dictionary specifies a mixing hints dictio-
nary (see Table 4.23) that provides information about the characteristics of colo-
rants that can be used in blending calculations when the actual colorants are not
available on the target device. Applications are not required to use this informa-
tion.

GraphicsCHAPTER 4
274

TABLE 4.22 Entries in a DeviceN process dictionary

TABLE 4.23 Entries in a DeviceN mixing hints dictionary

KEY TYPE VALUE

ColorSpace name or
array

(Required) A name or array identifying the process color space, which may be any
device or CIE-based color space. If an ICCBased color space is specified, it must
provide calibration information appropriate for the process color components
specified in the names array of the DeviceN color space.

Components array (Required) An array of component names that correspond, in order, to the com-
ponents of the process color space specified in ColorSpace. For example, an RGB
color space must have three names corresponding to red, green, and blue. The
names may be arbitrary (that is, not the same as the standard names for the color
space components) and must match those specified in the names array of the
DeviceN color space, even if all components are not present in the names array.

KEY TYPE VALUE

Solidities dictionary (Optional) A dictionary specifying the solidity of inks to be used in blending
calculations when used as an alternative to the tint transformation function.
For each entry, the key is a colorant name, and the value is a number between
0.0 and 1.0. This dictionary need not contain entries for all colorants used in
this color space; it may also include additional colorants not used by this color
space.

A value of 1.0 simulates an ink that completely covers the inks beneath; a value
of 0.0 simulates a transparent ink that completely reveals the inks beneath. An
entry with a key of Default specifies a value to be used by all components in the
associated DeviceN color space for which a solidity value is not explicitly pro-
vided. If Default is not present, the default value for unspecified colorants is
0.0; applications may choose to use other values.

If this entry is present, PrintingOrder must also be present.

PrintingOrder array (Required if Solidities is present) An array of colorant names, specifying the or-
der in which inks are laid down. Each component in the names array of the
DeviceN color space must appear in this array (although the order is unrelated
to the order specified in the names array). This entry may also list colorants
unused by this specific DeviceN instance.

Color SpacesSECTION 4.5
275

Each entry in the mixing hints dictionary refers to colorant names, which include
spot colorants referenced by the Colorants dictionary. Under some circumstanc-
es, they may also refer to one or more individual process components called
Cyan, Magenta, Yellow, or Black when DeviceCMYK is specified as the process col-
or space in the process dictionary. However, applications should ignore these pro-
cess component entries if they can obtain the information from an ICC profile.

Note: The mixing hints subdictionaries (as well as the colorants dictionary) may
specify colorants that are not used in any given instance of a DeviceN color space.
This allows them to be referenced from multiple DeviceN color spaces, which can
produce smaller file sizes as well as consistent color definitions across instances.

For consistency of color, PDF consumers should follow these guidelines:

• The consumer should apply either the specified tint transformation function or
invoke the same alternative blending algorithm for all DeviceN instances in the
document.

Note: When the tint transformation function is used, the burden is on the produc-
er to guarantee that the individual function definitions chosen for all DeviceN in-
stances produce similar color appearances throughout the document.

• Blending algorithms should produce a similar appearance for colors when they
are used as separation colors or as a component of a DeviceN color space.

DotGain dictionary (Optional) A dictionary specifying the dot gain of inks to be used in blending
calculations when used as an alternative to the tint transformation function.
Dot gain (or loss) represents the amount by which a printer’s halftone dots
change as the ink spreads and is absorbed by paper.

For each entry, the key is a colorant name, and the value is a function that maps
values in the range 0 to 1 to values in the range 0 to 1. The dictionary may list
colorants unused by this specific DeviceN instance and need not list all colo-
rants. An entry with a key of Default specifies a function to be used by all colo-
rants for which a dot gain function is not explicitly specified.

PDF consumer applications may ignore values in this dictionary when other
sources of dot gain information are available, such as ICC profiles associated
with the process color space or tint transformation functions associated with
individual colorants.

KEY TYPE VALUE

GraphicsCHAPTER 4
276

Example 4.12 shows a DeviceN color space consisting of three color components
named Orange, Green, and None. In this example, the DeviceN color space,
object 30, has an attributes dictionary whose Colorants entry is an indirect refer-
ence to object 45 (which might also be referenced by attributes dictionaries of
other DeviceN color spaces). tintTransform1, whose definition is not shown, maps
three color components (tints of the colorants Orange, Green, and None) to four
color components in the alternate color space, DeviceCMYK. tintTransform2 maps
a single color component (an orange tint) to four components in DeviceCMYK.
Likewise, tintTransform3 maps a green tint to DeviceCMYK, and tintTransform4
maps a tint of PANTONE 131 to DeviceCMYK.

Example 4.12

30 0 obj % Color space
[/DeviceN

[/Orange /Green /None]
/DeviceCMYK
tintTransform1
<< /Colorants 45 0 R >>

]
endobj

45 0 obj % Colorants dictionary
<< /Orange [/Separation

/Orange
/DeviceCMYK
tintTransform2

]
 /Green [/Separation

 /Green
 /DeviceCMYK
 tintTransform3

]
 /PANTONE#20131 [/Separation

/PANTONE#20131
/DeviceCMYK
tintTransform4

]
>>

endobj

Color SpacesSECTION 4.5
277

Examples 4.13 through 4.16 show the use of NChannel color spaces. Example 4.13
shows the use of calibrated CMYK process components. Example 4.14 shows the
use of Lab process components.

Example 4.13

10 0 obj % Color space
[/DeviceN

[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased CMYK_ICC profile]
/Components [/Cyan /Magenta /Yellow /Black]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]

>>
>>

]
endobj

Example 4.14

10 0 obj % Color space
[/DeviceN

[/L /a /b /Spot1 /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/Lab << /WhitePoint ... /Range ... >>]
/Components [/L /a /b]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]

>>
>>

]

GraphicsCHAPTER 4
278

Example 4.15 shows the recommended convention for dealing with situations
where a spot colorant and a process color component have the same name. Since
the names array may not have duplicate names, the process colors should be given
different names, which are mapped to process components in the Components
entry of the process dictionary. In this case, Red refers to a spot colorant;
ProcessRed, ProcessGreen, and ProcessBlue are mapped to the components of an
RGB color space.

Example 4.15

10 0 obj % Color space
[/DeviceN

[/ProcessRed /ProcessGreen /ProcessBlue /Red]
alternateSpace
tintTransform1
<< % Attributes dictionary

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased RGB_ICC profile]
/Components [/ProcessRed /ProcessGreen /ProcessBlue]

>>
/Colorants

<< /Red [/Separation /Red alternateSpace tintTransform2] >>
>>

]

Example 4.16 shows the use of a mixing hints dictionary.

Example 4.16

10 0 obj % Color space
[/DeviceN

[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<<

/Subtype /NChannel
/Process

<< /ColorSpace [/ICCBased CMYK_ICC profile]
/Components [/Cyan /Magenta /Yellow /Black]

>>
/Colorants

<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform2]

Color SpacesSECTION 4.5
279

>>
/MixingHints

<<
/Solidities

<< /Spot1 1.0
/Spot2 0.0

>>
/DotGain

<< /Spot1 function1
/Spot2 function2
/Magenta function3
/Yellow function4

>>
/PrintingOrder [/Magenta /Yellow /Spot1 /Spot2]

>>
>>
]

See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of DeviceN color spaces in the transparent imaging model.

Multitone Examples

The following examples illustrate various interesting and useful special cases of
the use of Indexed and DeviceN color spaces in combination to produce multi-
tone colors.

Examples 4.17 and 4.18 illustrate the use of DeviceN to create duotone color spac-
es. In Example 4.17, an Indexed color space maps index values in the range 0 to
255 to a duotone DeviceN space in cyan and black. In effect, the index values are
treated as if they were tints of the duotone space, which are then mapped into
tints of the two underlying colorants. Only the beginning of the lookup table
string for the Indexed color space is shown; the full table would contain 256 two-
byte entries, each specifying a tint value for cyan and black, for a total of 512
bytes. If the alternate color space of the DeviceN space is selected, the tint trans-
formation function (object 15 in the example) maps the two tint components for
cyan and black to the four components for a DeviceCMYK color space by supply-
ing zero values for the other two components. Example 4.18 shows the definition
of another duotone color space, this time using black and gold colorants (where
gold is a spot colorant) and using a CalRGB space as the alternate color space. This
could be defined in the same way as in the preceding example, with a tint trans-

GraphicsCHAPTER 4
280

formation function that converts from the two tint components to colors in the
alternate CalRGB color space.

Example 4.17

10 0 obj % Color space
[/Indexed

[/DeviceN
[/Cyan /Black]
/DeviceCMYK
15 0 R

]
255
< 6605 6806 6907 6B09 6C0A … >

]
endobj

15 0 obj % Tint transformation function
<< /FunctionType 4

 /Domain [0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 16

>>
stream

{ 0 0 3 −1 roll }
endstream
endobj

Example 4.18

30 0 obj % Color space
[/Indexed

[/DeviceN
[/Black /Gold]
[/CalRGB

<< /WhitePoint [1.0 1.0 1.0]
 /Gamma [2.2 2.2 2.2]

>>
]
35 0 R % Tint transformation function

]
255
… Lookup table …

]
endobj

Color SpacesSECTION 4.5
281

Given a formula for converting any combination of black and gold tints to cali-
brated RGB, a 2-in, 3-out type 4 (PostScript calculator) function could be used for
the tint transformation. Alternatively, a type 0 (sampled) function could be used,
but this would require a large number of sample points to represent the function
accurately; for example, sampling each input variable for 256 tint values between
0.0 and 1.0 would require 256 2 = 65,536 samples. But since the DeviceN color
space is being used as the base of an Indexed color space, there are actually only
256 possible combinations of black and gold tint values. A more compact way to
represent this information is to put the alternate color values directly into the
lookup table alongside the DeviceN color values, as in Example 4.19.

Example 4.19

10 0 obj % Color space
[/Indexed

[/DeviceN
[/Black /Gold /None /None /None]
[/CalRGB

<< /WhitePoint [1.0 1.0 1.0]
 /Gamma [2.2 2.2 2.2]

>>
]
20 0 R % Tint transformation function

]
255
… Lookup table …

]
endobj

In this example, each entry in the lookup table has five components: two for the
black and gold colorants and three more (specified as None) for the equivalent
CalRGB color components. If the black and gold colorants are available on the
output device, the None components are ignored; if black and gold are not
available, the tint transformation function is used to convert a five-component
color into a three-component equivalent in the alternate CalRGB color space.
But because, by construction, the third, fourth, and fifth components are the
CalRGB components, the tint transformation function can merely discard the
first two components and return the last three. This can be easily expressed
with a type 4 (PostScript calculator) function, as shown in Example 4.20.

GraphicsCHAPTER 4
282

Example 4.20

20 0 obj % Tint transformation function
<< /FunctionType 4

 /Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 27

>>
stream

{ 5 3 roll pop pop }
endstream
endobj

Example 4.21 uses an extension of the techniques described above to produce the
quadtone (four-component) image shown in Plate 7.

Example 4.21

5 0 obj % Image XObject
<< /Type /XObject

 /Subtype /Image
 /Width 288
 /Height 288
 /ColorSpace 10 0 R
 /BitsPerComponent 8
 /Length 105278
 /Filter /ASCII85Decode

>>
stream
… Data for grayscale image …
endstream
endobj

10 0 obj % Indexed color space for image
[/Indexed

15 0 R % Base color space
255 % Table has 256 entries
30 0 R % Lookup table

]
endobj

Color SpacesSECTION 4.5
283

15 0 obj % Base color space (DeviceN) for Indexed space
[/DeviceN

[/Black % Four colorants (black plus three spot colors)
 /PANTONE#20216#20CVC
 /PANTONE#20409#20CVC
 /PANTONE#202985#20CVC
 /None % Three components for alternate space
 /None
 /None
]
16 0 R % Alternate color space
20 0 R % Tint transformation function

]
endobj

16 0 obj % Alternate color space for DeviceN space
[/CalRGB

<< /WhitePoint [1.0 1.0 1.0] >>
]

endobj

20 0 obj % Tint transformation function for DeviceN space
<< /FunctionType 4

 /Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 44

>>
stream

{ 7 3 roll % Just discard first four values
 pop pop pop pop
}

endstream
endobj

30 0 obj % Lookup table for Indexed color space
<< /Length 1975

 /Filter [/ASCII85Decode /FlateDecode]
>>

stream
8;T1BB2"M7*!"psYBt1k\gY1T<D&tO]r*F7Hga*
… Additional data (seven components for each table entry) …
endstream
endobj

GraphicsCHAPTER 4
284

As in the preceding examples, an Indexed color space based on a DeviceN space is
used to paint the grayscale image shown on the left in the plate with four colo-
rants: black and three PANTONE spot colors. The alternate color space is a sim-
ple calibrated RGB. Thus, the DeviceN color space has seven components: the
four desired colorants plus the three components of the alternate space. The ex-
ample shows the image XObject (see Section 4.8.4, “Image Dictionaries”) repre-
senting the quadtone image, followed by the color space used to interpret the
image data. (See implementation note 49 in Appendix H.)

4.5.6 Overprint Control

The graphics state contains an overprint parameter, controlled by the OP and op
entries in a graphics state parameter dictionary. Overprint control is useful main-
ly on devices that produce true physical separations, but it is available on some
composite devices as well. Although the operation of this parameter is device-
dependent, it is described here rather than in the chapter on color rendering,
because it pertains to an aspect of painting in device color spaces that is impor-
tant to many applications.

Any painting operation marks some specific set of device colorants, depending
on the color space in which the painting takes place. In a Separation or DeviceN
color space, the colorants to be marked are specified explicitly; in a device or
CIE-based color space, they are implied by the process color model of the output
device (see Chapter 6). The overprint parameter is a boolean flag that determines
how painting operations affect colorants other than those explicitly or implicitly
specified by the current color space.

If the overprint parameter is false (the default value), painting a color in any color
space causes the corresponding areas of unspecified colorants to be erased (paint-
ed with a tint value of 0.0). The effect is that the color at any position on the page
is whatever was painted there last, which is consistent with the normal painting
behavior of the opaque imaging model.

If the overprint parameter is true and the output device supports overprinting, no
such erasing actions are performed; anything previously painted in other colo-
rants is left undisturbed. Consequently, the color at a given position on the page
may be a combined result of several painting operations in different colorants.
The effect produced by such overprinting is device-dependent and is not defined
by the PDF language.

Color SpacesSECTION 4.5
285

Note: Not all devices support overprinting. Furthermore, many PostScript printers
support it only when separations are being produced, and not for composite output.
If overprinting is not supported, the value of the overprint parameter is ignored.

An additional graphics state parameter, the overprint mode (PDF 1.3), affects the
interpretation of a tint value of 0.0 for a color component in a DeviceCMYK color
space when overprinting is enabled. This parameter is controlled by the OPM
entry in a graphics state parameter dictionary; it has an effect only when the over-
print parameter is true, as described above.

When colors are specified in a DeviceCMYK color space and the native color space
of the output device is also DeviceCMYK, each of the source color components
controls the corresponding device colorant directly. Ordinarily, each source color
component value replaces the value previously painted for the corresponding de-
vice colorant, no matter what the new value is; this is the default behavior, speci-
fied by overprint mode 0.

When the overprint mode is 1 (also called nonzero overprint mode), a tint value of
0.0 for a source color component leaves the corresponding component of the
previously painted color unchanged. The effect is equivalent to painting in a
DeviceN color space that includes only those components whose values are non-
zero. For example, if the overprint parameter is true and the overprint mode is 1,
the operation

0. 2 0. 3 0.0 1.0 k

is equivalent to

0. 2 0. 3 1.0 scn

in the color space shown in Example 4.22.

Example 4.22

10 0 obj % Color space
[/DeviceN

[/Cyan /Magenta /Black]
/DeviceCMYK
15 0 R

]
endobj

GraphicsCHAPTER 4
286

15 0 obj % Tint transformation function
<< /FunctionType 4

 /Domain [0.0 1.0 0.0 1.0 0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 /Length 13

>>
stream

{ 0 exch }
endstream
endobj

Nonzero overprint mode applies only to painting operations that use the current
color in the graphics state when the current color space is DeviceCMYK (or is im-
plicitly converted to DeviceCMYK; see “Implicit Conversion of CIE-Based Color
Spaces” on page 259). It does not apply to the painting of images or to any colors
that are the result of a computation, such as those in a shading pattern or conver-
sions from some other color space. It also does not apply if the device’s native col-
or space is not DeviceCMYK; in that case, source colors must be converted to the
device’s native color space, and all components participate in the conversion,
whatever their values. (This is shown explicitly in the alternate color space and
tint transformation function of the DeviceN color space in Example 4.22.)

See Section 7.6.3, “Overprinting and Transparency,” for further discussion of the
role of overprinting in the transparent imaging model.

4.5.7 Color Operators

Table 4.24 lists the PDF operators that control color spaces and color values. (Also
color-related is the graphics state operator ri, listed in Table 4.7 on page 219 and
discussed under “Rendering Intents” on page 260.) Color operators may appear at
the page description level or inside text objects (see Figure 4.1 on page 197).

Color SpacesSECTION 4.5
287

TABLE 4.24 Color operators

OPERANDS OPERATOR DESCRIPTION

name CS (PDF 1.1) Set the current color space to use for stroking operations. The operand
name must be a name object. If the color space is one that can be specified by a
name and no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK, and
certain cases of Pattern), the name may be specified directly. Otherwise, it must
be a name defined in the ColorSpace subdictionary of the current resource dic-
tionary (see Section 3.7.2, “Resource Dictionaries”); the associated value is an
array describing the color space (see Section 4.5.2, “Color Space Families”).

Note: The names DeviceGray, DeviceRGB, DeviceCMYK, and Pattern always iden-
tify the corresponding color spaces directly; they never refer to resources in the
ColorSpace subdictionary.

The CS operator also sets the current stroking color to its initial value, which de-
pends on the color space:

• In a DeviceGray, DeviceRGB, CalGray, or CalRGB color space, the initial color
has all components equal to 0.0.

• In a DeviceCMYK color space, the initial color is [0.0 0.0 0.0 1.0].

• In a Lab or ICCBased color space, the initial color has all components equal to
0.0 unless that falls outside the intervals specified by the space’s Range entry,
in which case the nearest valid value is substituted.

• In an Indexed color space, the initial color value is 0.

• In a Separation or DeviceN color space, the initial tint value is 1.0 for all colo-
rants.

• In a Pattern color space, the initial color is a pattern object that causes nothing
to be painted.

name cs (PDF 1.1) Same as CS but used for nonstroking operations.

c1 … c
n SC (PDF 1.1) Set the color to use for stroking operations in a device, CIE-based

(other than ICCBased), or Indexed color space. The number of operands re-
quired and their interpretation depends on the current stroking color space:

• For DeviceGray, CalGray, and Indexed color spaces, one operand is required
(n = 1).

• For DeviceRGB, CalRGB, and Lab color spaces, three operands are required
(n = 3).

• For DeviceCMYK, four operands are required (n = 4).

GraphicsCHAPTER 4
288

Invoking operators that specify colors or other color-related parameters in the
graphics state is restricted in certain circumstances. This restriction occurs when

c
1
 … c

n

c
1
 … c

n
 name

SCN
SCN

(PDF 1.2) Same as SC but also supports Pattern, Separation, DeviceN, and
ICCBased color spaces.

If the current stroking color space is a Separation, DeviceN, or ICCBased color
space, the operands c

1
 … c

n
 are numbers. The number of operands and their in-

terpretation depends on the color space.

If the current stroking color space is a Pattern color space, name is the name of
an entry in the Pattern subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). For an uncolored tiling pattern
(PatternType = 1 and PaintType = 2), c

1
… c

n
 are component values specifying a

color in the pattern’s underlying color space. For other types of patterns, these
operands must not be specified.

c
1
 … c

n
sc (PDF 1.1) Same as SC but used for nonstroking operations.

c
1
 … c

n
c

1
 … c

n
 name

scn
scn

(PDF 1.2) Same as SCN but used for nonstroking operations.

gray G Set the stroking color space to DeviceGray (or the DefaultGray color space; see
“Default Color Spaces” on page 257) and set the gray level to use for stroking op-
erations. gray is a number between 0.0 (black) and 1.0 (white).

gray g Same as G but used for nonstroking operations.

r g b RG Set the stroking color space to DeviceRGB (or the DefaultRGB color space; see
“Default Color Spaces” on page 257) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (minimum intensity) and 1.0
(maximum intensity).

r g b rg Same as RG but used for nonstroking operations.

c m y k K Set the stroking color space to DeviceCMYK (or the DefaultCMYK color space; see
“Default Color Spaces” on page 257) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (zero concentration) and 1.0
(maximum concentration). The behavior of this operator is affected by the over-
print mode (see Section 4.5.6, “Overprint Control”).

c m y k k Same as K but used for nonstroking operations.

OPERANDS OPERATOR DESCRIPTION

PatternsSECTION 4.6
289

defining graphical figures whose colors are to be specified separately each time
they are used. Specifically, the restriction applies in these circumstances:

• In any glyph description that uses the d1 operator (see Section 5.5.4, “Type 3
Fonts”)

• In the content stream of an uncolored tiling pattern (see “Uncolored Tiling Pat-
terns” on page 298)

In these circumstances, the following actions cause an error:

• Invoking any of the following operators:

CS scn K
cs G k
SC g ri
SCN RG sh
sc rg

• Invoking the gs operator with any of the following entries in the graphics state
parameter dictionary:

TR BG UCR
TR2 BG2 UCR2
HT

• Painting an image. However, painting an image mask (see “Stencil Masking” on
page 350) is permitted because it does not specify colors; instead, it designates
places where the current color is to be painted.

4.6 Patterns

When operators such as S (stroke), f (fill), and Tj (show text) paint an area of the
page with the current color, they ordinarily apply a single color that covers the
area uniformly. However, it is also possible to apply “paint” that consists of a re-
peating graphical figure or a smoothly varying color gradient instead of a simple
color. Such a repeating figure or smooth gradient is called a pattern. Patterns are
quite general, and have many uses; for example, they can be used to create various
graphical textures, such as weaves, brick walls, sunbursts, and similar geometrical
and chromatic effects. (See implementation note 50 in Appendix H.)

GraphicsCHAPTER 4
290

Patterns come in two varieties:

• Tiling patterns consist of a small graphical figure (called a pattern cell) that is
replicated at fixed horizontal and vertical intervals to fill the area to be painted.
The graphics objects to use for tiling are described by a content stream.

• Shading patterns define a gradient fill that produces a smooth transition
between colors across the area. The color to use is specified as a function of
position using any of a variety of methods.

Note: The ability to paint with patterns is a feature of PDF 1.2 (tiling patterns) and
PDF 1.3 (shading patterns). With some effort, it is possible to achieve a limited form
of tiling patterns in PDF 1.1 by defining them as character glyphs in a special font
and painting them repeatedly with the Tj operator. Another technique, defining
patterns as halftone screens, is not recommended because the effects produced are
device-dependent.

Patterns are specified in a special family of color spaces named Pattern. These
spaces use pattern objects as the equivalent of color values instead of the numeric
component values used with other spaces. A pattern object may be a dictionary
or a stream, depending on the type of pattern; the term pattern dictionary is used
generically throughout this section to refer to either a dictionary object or the
dictionary portion of a stream object. (Those pattern objects that are streams are
specifically identified as such in the descriptions of particular pattern types; un-
less otherwise stated, they are understood to be simple dictionaries instead.) This
section describes Pattern color spaces and the specification of color values within
them. See Section 4.5, “Color Spaces,” for information about color spaces and col-
or values in general and Section 7.5.6, “Patterns and Transparency,” for further
discussion of the treatment of patterns in the transparent imaging model.

4.6.1 General Properties of Patterns

A pattern dictionary contains descriptive information defining the appearance
and properties of a pattern. All pattern dictionaries contain an entry named
PatternType, whose value identifies the kind of pattern the dictionary describes:
type 1 for a tiling pattern or type 2 for a shading pattern. The remaining contents
of the dictionary depend on the pattern type and are detailed below in the sec-
tions on individual pattern types.

PatternsSECTION 4.6
291

All patterns are treated as colors; a Pattern color space is established with the CS
or cs operator just like other color spaces, and a particular pattern is installed as
the current color with the SCN or scn operator (see Table 4.24 on page 287).

A pattern’s appearance is described with respect to its own internal coordinate
system. Every pattern has a pattern matrix, a transformation matrix that maps the
pattern’s internal coordinate system to the default coordinate system of the pat-
tern’s parent content stream (the content stream in which the pattern is defined as
a resource). The concatenation of the pattern matrix with that of the parent con-
tent stream establishes the pattern coordinate space, within which all graphics ob-
jects in the pattern are interpreted.

For example, if a pattern is used on a page, the pattern appears in the Pattern sub-
dictionary of that page’s resource dictionary, and the pattern matrix maps pattern
space to the default (initial) coordinate space of the page. Changes to the page’s
transformation matrix that occur within the page’s content stream, such as rota-
tion and scaling, have no effect on the pattern; it maintains its original relation-
ship to the page no matter where on the page it is used. Similarly, if a pattern is
used within a form XObject (see Section 4.9, “Form XObjects”), the pattern ma-
trix maps pattern space to the form’s default user space (that is, the form co-
ordinate space at the time the form is painted with the Do operator). A pattern
may be used within another pattern; the inner pattern’s matrix defines its
relationship to the pattern space of the outer pattern.

Note: PostScript allows a pattern to be defined in one context but used in another.
For example, a pattern might be defined on a page (that is, its pattern matrix maps
the pattern coordinate space to the user space of the page) but be used in a form on
that page, so that its relationship to the page is independent of each individual
placement of the form. PDF does not support this feature; in PDF, all patterns are
local to the context in which they are defined.

4.6.2 Tiling Patterns

A tiling pattern consists of a small graphical figure called a pattern cell. Painting
with the pattern replicates the cell at fixed horizontal and vertical intervals to fill
an area. The effect is as if the figure were painted on the surface of a clear glass
tile, identical copies of which were then laid down in an array covering the area
and trimmed to its boundaries. This process is called tiling the area.

GraphicsCHAPTER 4
292

The pattern cell can include graphical elements such as filled areas, text, and sam-
pled images. Its shape need not be rectangular, and the spacing of tiles can differ
from the dimensions of the cell itself. When performing painting operations such
as S (stroke) or f (fill), the application paints the cell on the current page as many
times as necessary to fill an area. The order in which individual tiles (instances of
the cell) are painted is unspecified and unpredictable; it is inadvisable for the fig-
ures on adjacent tiles to overlap.

The appearance of the pattern cell is defined by a content stream containing the
painting operators needed to paint one instance of the cell. Besides the usual en-
tries common to all streams (see Table 3.4 on page 62), this stream’s dictionary
has the additional entries listed in Table 4.25.

TABLE 4.25 Additional entries specific to a type 1 pattern dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary de-
scribes; must be 1 for a tiling pattern.

PaintType integer (Required) A code that determines how the color of the pattern cell is to be
specified:

1 Colored tiling pattern. The pattern’s content stream specifies the col-
ors used to paint the pattern cell. When the content stream begins ex-
ecution, the current color is the one that was initially in effect in the
pattern’s parent content stream. (This is similar to the definition of
the pattern matrix; see Section 4.6.1, “General Properties of Pat-
terns.”)

2 Uncolored tiling pattern. The pattern’s content stream does not specify
any color information. Instead, the entire pattern cell is painted with
a separately specified color each time the pattern is used. Essentially,
the content stream describes a stencil through which the current col-
or is to be poured. The content stream must not invoke operators that
specify colors or other color-related parameters in the graphics state;
otherwise, an error occurs (see Section 4.5.7, “Color Operators”).
The content stream may paint an image mask, however, since it does
not specify any color information (see “Stencil Masking” on page
350).

PatternsSECTION 4.6
293

The pattern dictionary’s BBox, XStep, and YStep values are interpreted in the pat-
tern coordinate system, and the graphics objects in the pattern’s content stream
are defined with respect to that coordinate system. The placement of pattern cells

TilingType integer (Required) A code that controls adjustments to the spacing of tiles relative to
the device pixel grid:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a
multiple of a device pixel. To achieve this, the application may need
to distort the pattern cell slightly by making small adjustments to
XStep, YStep, and the transformation matrix. The amount of distor-
tion does not exceed 1 device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing
between pattern cells may vary by as much as 1 device pixel, both
horizontally and vertically, when the pattern is painted. This achieves
the spacing requested by XStep and YStep on average but not neces-
sarily for each individual pattern cell.

3 Constant spacing and faster tiling. Pattern cells are spaced consistently
as in tiling type 1 but with additional distortion permitted to enable a
more efficient implementation.

BBox rectangle (Required) An array of four numbers in the pattern coordinate system giving
the coordinates of the left, bottom, right, and top edges, respectively, of the
pattern cell’s bounding box. These boundaries are used to clip the pattern
cell.

XStep number (Required) The desired horizontal spacing between pattern cells, measured in
the pattern coordinate system.

YStep number (Required) The desired vertical spacing between pattern cells, measured in
the pattern coordinate system. Note that XStep and YStep may differ from the
dimensions of the pattern cell implied by the BBox entry. This allows tiling
with irregularly shaped figures. XStep and YStep may be either positive or
negative but not zero.

Resources dictionary (Required) A resource dictionary containing all of the named resources
required by the pattern’s content stream (see Section 3.7.2, “Resource Dic-
tionaries”).

Matrix array (Optional) An array of six numbers specifying the pattern matrix (see Section
4.6.1, “General Properties of Patterns”). Default value: the identity matrix
[1 0 0 1 0 0].

KEY TYPE VALUE

GraphicsCHAPTER 4
294

in the tiling is based on the location of one key pattern cell, which is then dis-
placed by multiples of XStep and YStep to replicate the pattern. The origin of the
key pattern cell coincides with the origin of the pattern coordinate system. The
phase of the tiling can be controlled by the translation components of the Matrix
entry in the pattern dictionary.

The first step in painting with a tiling pattern is to establish the pattern as the cur-
rent color in the graphics state. Subsequent painting operations tile the painted
areas with the pattern cell described by the pattern’s content stream. To obtain the
pattern cell, the application performs these steps:

1. Saves the current graphics state (as if by invoking the q operator)

2. Installs the graphics state that was in effect at the beginning of the pattern’s
parent content stream, with the current transformation matrix altered by the
pattern matrix as described in Section 4.6.1, “General Properties of Patterns”

3. Paints the graphics objects specified in the pattern’s content stream

4. Restores the saved graphics state (as if by invoking the Q operator)

Note: The pattern’s content stream should not set any of the device-dependent
parameters in the graphics state (see Table 4.3 on page 212) because it may result in
incorrect output.

Colored Tiling Patterns

A colored tiling pattern is a pattern whose color is self-contained. In the course of
painting the pattern cell, the pattern’s content stream explicitly sets the color of
each graphical element it paints. A single pattern cell can contain elements that
are painted different colors; it can also contain sampled grayscale or color images.
This type of pattern is identified by a pattern type of 1 and a paint type of 1 in the
pattern dictionary.

When the current color space is a Pattern space, a colored tiling pattern can be
selected as the current color by supplying its name as the single operand to the
SCN or scn operator. This name must be the key of an entry in the Pattern subdic-
tionary of the current resource dictionary (see Section 3.7.2, “Resource Diction-
aries”), whose value is the stream object representing the pattern. Since the

PatternsSECTION 4.6
295

pattern defines its own color information, no additional operands representing
color components are specified to SCN or scn. For example, if P1 is the name of a
pattern resource in the current resource dictionary, the following code establishes
it as the current nonstroking color:

/Pattern cs
/P1 scn

Subsequent executions of nonstroking painting operators, such as f (fill), Tj (show
text), or Do (paint external object) with an image mask, use the designated pat-
tern to tile the areas to be painted.

Example 4.23 defines a page (object 5) that paints three circles and a triangle
using a colored tiling pattern (object 15) over a yellow background. The pattern
consists of the symbols for the four suits of playing cards (spades, hearts, dia-
monds, and clubs), which are character glyphs taken from the ZapfDingbats font
(see Section D.5, “ZapfDingbats Set and Encoding”); the pattern’s content stream
specifies the color of each glyph. Plate 8 shows the results.

Example 4.23

5 0 obj % Page object
<< /Type /Page

 /Parent 2 0 R
 /Resources 10 0 R
 /Contents 30 0 R
 /CropBox [0 0 225 225]

>>
endobj

10 0 obj % Resource dictionary for page
<< /Pattern << /P1 15 0 R >>
>>

endobj

GraphicsCHAPTER 4
296

15 0 obj % Pattern definition
<< /Type /Pattern

 /PatternType 1 % Tiling pattern
 /PaintType 1 % Colored
 /TilingType 2
 /BBox [0 0 100 100]
 /XStep 100
 /YStep 100
 /Resources 16 0 R
 /Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
 /Length 183

>>
stream

BT % Begin text object
/F1 1 Tf % Set text font and size
64 0 0 64 7.1771 2.4414 Tm % Set text matrix
0 Tc % Set character spacing
0 Tw % Set word spacing
1.0 0.0 0.0 rg % Set nonstroking color to red
(\001) Tj % Show spade glyph
0.7478 −0.007 TD % Move text position
0.0 1.0 0.0 rg % Set nonstroking color to green
(\002) Tj % Show heart glyph
−0.7323 0.7813 TD % Move text position
0.0 0.0 1.0 rg % Set nonstroking color to blue
(\003) Tj % Show diamond glyph
0.6913 0.007 TD % Move text position
0.0 0.0 0.0 rg % Set nonstroking color to black
(\004) Tj % Show club glyph

ET % End text object
endstream
endobj

16 0 obj % Resource dictionary for pattern
<< /Font << /F1 20 0 R >>
>>

endobj

20 0 obj % Font for pattern
<< /Type /Font

 /Subtype /Type1
 /Encoding 21 0 R
 /BaseFont /ZapfDingbats

>>
endobj

PatternsSECTION 4.6
297

21 0 obj % Font encoding
<< /Type /Encoding

 /Differences [1 /a109 /a110 /a111 /a112]
>>

endobj

30 0 obj % Contents of page
<< /Length 1252 >>

stream
0.0 G % Set stroking color to black
1.0 1.0 0.0 rg % Set nonstroking color to yellow
25 175 175 −150 re % Construct rectangular path
f % Fill path
/Pattern cs % Set pattern color space
/P1 scn % Set pattern as nonstroking color
99.92 49.92 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 c % Construct lower-left circle
22.32 99.92 −0.08 77.52 −0.08 49.92 c
−0.08 22.32 22.32 −0.08 49.92 −0.08 c
77.52 −0.08 99.92 22.32 99.92 49.92 c
B % Fill and stroke path
224.96 49.92 m % Start new path
224.96 77.52 202.56 99.92 174.96 99.92 c % Construct lower-right circle
147.36 99.92 124.96 77.52 124.96 49.92 c
124.96 22.32 147.36 -0.08 174.96 −0.08 c
202.56 −0.08 224.96 22.32 224.96 49.92 c
B % Fill and stroke path
87.56 201.70 m % Start new path
63.66 187.90 55.46 157.32 69.26 133.40 c % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 c
161.46 128.90 169.66 159.50 155.86 183.40 c
142.06 207.30 111.46 215.50 87.56 201.70 c
B % Fill and stroke path
50 50 m % Start new path
175 50 l % Construct triangular path
112.5 158.253 l
b % Close, fill, and stroke path

endstream
endobj

GraphicsCHAPTER 4
298

Several features of Example 4.23 are noteworthy:

• The three circles and the triangle are painted with the same pattern. The pat-
tern cells align, even though the circles and triangle are not aligned with re-
spect to the pattern cell. For example, the position of the blue diamonds varies
relative to the three circles.

• The pattern cell does not completely cover the tile: it leaves the spaces between
the glyphs unpainted. When the tiling pattern is used as a color, the existing
background (the yellow rectangle) shows through these unpainted areas.

Uncolored Tiling Patterns

An uncolored tiling pattern is a pattern that has no inherent color: the color must
be specified separately whenever the pattern is used. It provides a way to tile dif-
ferent regions of the page with pattern cells having the same shape but different
colors. This type of pattern is identified by a pattern type of 1 and a paint type of
2 in the pattern dictionary. The pattern’s content stream does not explicitly speci-
fy any colors; it can paint an image mask (see “Stencil Masking” on page 350) but
no other kind of image.

A Pattern color space representing an uncolored tiling pattern requires a parame-
ter: an object identifying the underlying color space in which the actual color of
the pattern is to be specified. The underlying color space is given as the second
element of the array that defines the Pattern color space. For example, the array

[/Pattern /DeviceRGB]

defines a Pattern color space with DeviceRGB as its underlying color space.

Note: The underlying color space cannot be another Pattern color space.

Operands supplied to the SCN or scn operator in such a color space must include
a color value in the underlying color space, specified by one or more numeric
color components, as well as the name of a pattern object representing an un-
colored tiling pattern. For example, if the current resource dictionary (see Section
3.7.2, “Resource Dictionaries”) defines Cs3 as the name of a ColorSpace resource

PatternsSECTION 4.6
299

whose value is the Pattern color space shown above and P2 as a Pattern resource
denoting an uncolored tiling pattern, the code

/Cs3 cs
0.30 0.75 0.21 /P2 scn

establishes Cs3 as the current nonstroking color space and P2 as the current non-
stroking color, to be painted in the color represented by the specified components
in the DeviceRGB color space. Subsequent executions of nonstroking painting op-
erators, such as f (fill), Tj (show text), and Do (paint external object) with an im-
age mask, use the designated pattern and color to tile the areas to be painted. The
same pattern can be used repeatedly with a different color each time.

Example 4.24 is similar to Example 4.23 on page 295, except that it uses an uncol-
ored tiling pattern to paint the three circles and the triangle, each in a different
color (see Plate 9). To do so, it supplies four operands each time it invokes the scn
operator: three numbers denoting the color components in the underlying
DeviceRGB color space, along with the name of the pattern.

Example 4.24

5 0 obj % Page object
<< /Type /Page

 /Parent 2 0 R
 /Resources 10 0 R
 /Contents 30 0 R
 /CropBox [0 0 225 225]

>>
endobj

10 0 obj % Resource dictionary for page
<< /ColorSpace << /Cs12 12 0 R >>

 /Pattern << /P1 15 0 R >>
>>

endobj

12 0 obj % Color space
[/Pattern /DeviceRGB]

endobj

GraphicsCHAPTER 4
300

15 0 obj % Pattern definition
<< /Type /Pattern

 /PatternType 1 % Tiling pattern
 /PaintType 2 % Uncolored
 /TilingType 2
 /BBox [0 0 100 100]
 /XStep 100
 /YStep 100
 /Resources 16 0 R
 /Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
 /Length 127

>>
stream

BT % Begin text object
/F1 1 Tf % Set text font and size
64 0 0 64 7.1771 2.4414 Tm % Set text matrix
0 Tc % Set character spacing
0 Tw % Set word spacing
(\001) Tj % Show spade glyph
0.7478 −0.007 TD % Move text position
(\002) Tj % Show heart glyph
−0.7323 0.7813 TD % Move text position
(\003) Tj % Show diamond glyph
0.6913 0.007 TD % Move text position
(\004) Tj % Show club glyph

ET % End text object
endstream
endobj

16 0 obj % Resource dictionary for pattern
<< /Font << /F1 20 0 R >>
>>

endobj

20 0 obj % Font for pattern
<< /Type /Font

 /Subtype /Type1
 /Encoding 21 0 R
 /BaseFont /ZapfDingbats

>>
endobj

PatternsSECTION 4.6
301

21 0 obj % Font encoding
<< /Type /Encoding

 /Differences [1 /a109 /a110 /a111 /a112]
>>

endobj

30 0 obj % Contents of page
<< /Length 1316 >>

stream
0.0 G % Set stroking color to black
1.0 1.0 0.0 rg % Set nonstroking color to yellow
25 175 175 −150 re % Construct rectangular path
f % Fill path
/Cs12 cs % Set pattern color space
0.77 0.20 0.00 /P1 scn % Set nonstroking color and pattern
99.92 49.92 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 c % Construct lower-left circle
22.32 99.92 −0.08 77.52 −0.08 49.92 c
−0.08 22.32 22.32 −0.08 49.92 −0.08 c
77.52 −0.08 99.92 22.32 99.92 49.92 c
B % Fill and stroke path
0.2 0.8 0.4 /P1 scn % Change nonstroking color
224.96 49.92 m % Start new path
224.96 77.52 202.56 99.92 174.96 99.92 c % Construct lower-right circle
147.36 99.92 124.96 77.52 124.96 49.92 c
124.96 22.32 147.36 -0.08 174.96 −0.08 c
202.56 −0.08 224.96 22.32 224.96 49.92 c
B % Fill and stroke path
0.3 0.7 1.0 /P1 scn % Change nonstroking color
87.56 201.70 m % Start new path
63.66 187.90 55.46 157.30 69.26 133.40 c % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 c
161.46 128.90 169.66 159.50 155.86 183.40 c
142.06 207.30 111.46 215.50 87.56 201.70 c
B % Fill and stroke path
0.5 0.2 1.0 /P1 scn % Change nonstroking color
50 50 m % Start new path
175 50 l % Construct triangular path
112.5 158.253 l
b % Close, fill, and stroke path

endstream
endobj

GraphicsCHAPTER 4
302

4.6.3 Shading Patterns

Shading patterns (PDF 1.3) provide a smooth transition between colors across an
area to be painted, independent of the resolution of any particular output device
and without specifying the number of steps in the color transition. Patterns of
this type are described by pattern dictionaries with a pattern type of 2. Table 4.26
shows the contents of this type of dictionary.

TABLE 4.26 Entries in a type 2 pattern dictionary

The most significant entry is Shading, whose value is a shading object defining
the properties of the shading pattern’s gradient fill. This is a complex “paint” that
determines the type of color transition the shading pattern produces when paint-
ed across an area. A shading object may be a dictionary or a stream, depending
on the type of shading; the term shading dictionary is used generically throughout
this section to refer to either a dictionary object or the dictionary portion of a
stream object. (Those shading objects that are streams are specifically identified
as such in the descriptions of particular shading types; unless otherwise stated,
they are understood to be simple dictionaries instead.)

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary de-
scribes; must be 2 for a shading pattern.

Shading dictionary
or stream

(Required) A shading object (see below) defining the shading pattern’s gradi-
ent fill. The contents of the dictionary consist of the entries in Table 4.28 and
those in one of Tables 4.29 to 4.34.

Matrix array (Optional) An array of six numbers specifying the pattern matrix (see Section
4.6.1, “General Properties of Patterns”). Default value: the identity matrix
[1 0 0 1 0 0].

ExtGState dictionary (Optional) A graphics state parameter dictionary (see Section 4.3.4, “Graph-
ics State Parameter Dictionaries”) containing graphics state parameters to be
put into effect temporarily while the shading pattern is painted. Any parame-
ters that are not so specified are inherited from the graphics state that was in
effect at the beginning of the content stream in which the pattern is defined
as a resource.

PatternsSECTION 4.6
303

By setting a shading pattern as the current color in the graphics state, a PDF con-
tent stream can use it with painting operators such as f (fill), S (stroke), Tj (show
text), or Do (paint external object) with an image mask to paint a path, character
glyph, or mask with a smooth color transition. When a shading is used in this
way, the geometry of the gradient fill is independent of that of the object being
painted.

Shading Operator

When the area to be painted is a relatively simple shape whose geometry is the
same as that of the gradient fill itself, the sh operator can be used instead of the
usual painting operators. sh accepts a shading dictionary as an operand and
applies the corresponding gradient fill directly to current user space. This opera-
tor does not require the creation of a pattern dictionary or a path and works with-
out reference to the current color in the graphics state. Table 4.27 describes the sh
operator.

Note: Patterns defined by type 2 pattern dictionaries do not tile. To create a tiling
pattern containing a gradient fill, invoke the sh operator from within the content
stream of a type 1 (tiling) pattern.

TABLE 4.27 Shading operator

OPERANDS OPERATOR DESCRIPTION

name sh (PDF 1.3) Paint the shape and color shading described by a shading dictionary, sub-
ject to the current clipping path. The current color in the graphics state is neither
used nor altered. The effect is different from that of painting a path using a shading
pattern as the current color.

name is the name of a shading dictionary resource in the Shading subdictionary of
the current resource dictionary (see Section 3.7.2, “Resource Dictionaries”). All co-
ordinates in the shading dictionary are interpreted relative to the current user
space. (By contrast, when a shading dictionary is used in a type 2 pattern, the
coordinates are expressed in pattern space.) All colors are interpreted in the color
space identified by the shading dictionary’s ColorSpace entry (see Table 4.28). The
Background entry, if present, is ignored.

This operator should be applied only to bounded or geometrically defined shad-
ings. If applied to an unbounded shading, it paints the shading’s gradient fill across
the entire clipping region, which may be time-consuming.

GraphicsCHAPTER 4
304

Shading Dictionaries

A shading dictionary specifies details of a particular gradient fill, including the
type of shading to be used, the geometry of the area to be shaded, and the geome-
try of the gradient fill. Various shading types are available, depending on the val-
ue of the dictionary’s ShadingType entry:

• Function-based shadings (type 1) define the color of every point in the domain
using a mathematical function (not necessarily smooth or continuous).

• Axial shadings (type 2) define a color blend along a line between two points,
optionally extended beyond the boundary points by continuing the boundary
colors.

• Radial shadings (type 3) define a blend between two circles, optionally ex-
tended beyond the boundary circles by continuing the boundary colors. This
type of shading is commonly used to represent three-dimensional spheres and
cones.

• Free-form Gouraud-shaded triangle meshes (type 4) define a common construct
used by many three-dimensional applications to represent complex colored
and shaded shapes. Vertices are specified in free-form geometry.

• Lattice-form Gouraud-shaded triangle meshes (type 5) are based on the same
geometrical construct as type 4 but with vertices specified as a pseudo-
rectangular lattice.

• Coons patch meshes (type 6) construct a shading from one or more color
patches, each bounded by four cubic Bézier curves.

• Tensor-product patch meshes (type 7) are similar to type 6 but with additional
control points in each patch, affording greater control over color mapping.

Table 4.28 shows the entries that all shading dictionaries share in common;
entries specific to particular shading types are described in the relevant sections
below.

Note: The term target coordinate space, used in many of the following descriptions,
refers to the coordinate space into which a shading is painted. For shadings used
with a type 2 pattern dictionary, this is the pattern coordinate space, discussed in
Section 4.6.1, “General Properties of Patterns.” For shadings used directly with the
sh operator, it is the current user space.

PatternsSECTION 4.6
305

TABLE 4.28 Entries common to all shading dictionaries

KEY TYPE VALUE

ShadingType integer (Required) The shading type:

1 Function-based shading
2 Axial shading
3 Radial shading
4 Free-form Gouraud-shaded triangle mesh
5 Lattice-form Gouraud-shaded triangle mesh
6 Coons patch mesh
7 Tensor-product patch mesh

ColorSpace name or
array

(Required) The color space in which color values are expressed. This may be
any device, CIE-based, or special color space except a Pattern space. See
“Color Space: Special Considerations” on page 306 for further information.

Background array (Optional) An array of color components appropriate to the color space,
specifying a single background color value. If present, this color is used, be-
fore any painting operation involving the shading, to fill those portions of the
area to be painted that lie outside the bounds of the shading object. In the
opaque imaging model, the effect is as if the painting operation were
performed twice: first with the background color and then with the shading.

Note: The background color is applied only when the shading is used as part of
a shading pattern, not when it is painted directly with the sh operator.

BBox rectangle (Optional) An array of four numbers giving the left, bottom, right, and top
coordinates, respectively, of the shading’s bounding box. The coordinates are
interpreted in the shading’s target coordinate space. If present, this bounding
box is applied as a temporary clipping boundary when the shading is painted,
in addition to the current clipping path and any other clipping boundaries in
effect at that time.

AntiAlias boolean (Optional) A flag indicating whether to filter the shading function to prevent
aliasing artifacts. The shading operators sample shading functions at a rate
determined by the resolution of the output device. Aliasing can occur if the
function is not smooth—that is, if it has a high spatial frequency relative to
the sampling rate. Anti-aliasing can be computationally expensive and is usu-
ally unnecessary, since most shading functions are smooth enough or are
sampled at a high enough frequency to avoid aliasing effects. Anti-aliasing
may not be implemented on some output devices, in which case this flag is
ignored. Default value: false.

GraphicsCHAPTER 4
306

Shading types 4 to 7 are defined by a stream containing descriptive data charac-
terizing the shading’s gradient fill. In these cases, the shading dictionary is also a
stream dictionary and can contain any of the standard entries common to all
streams (see Table 3.4 on page 62). In particular, it always includes a Length en-
try, which is required for all streams.

In addition, some shading dictionaries also include a Function entry whose value
is a function object (dictionary or stream) defining how colors vary across the
area to be shaded. In such cases, the shading dictionary usually defines the geom-
etry of the shading, and the function defines the color transitions across that
geometry. The function is required for some types of shading and optional for
others. Functions are described in detail in Section 3.9, “Functions.”

Note: Discontinuous color transitions, or those with high spatial frequency, may ex-
hibit aliasing effects when painted at low effective resolutions.

Color Space: Special Considerations

Conceptually, a shading determines a color value for each individual point within
the area to be painted. In practice, however, the shading may actually be used to
compute color values only for some subset of the points in the target area, with
the colors of the intervening points determined by interpolation between the
ones computed. Consumer applications are free to use this strategy as long as the
interpolated color values approximate those defined by the shading to within the
smoothness tolerance specified in the graphics state (see Section 6.5.2, “Smooth-
ness Tolerance”). The ColorSpace entry common to all shading dictionaries not
only defines the color space in which the shading specifies its color values but
also determines the color space in which color interpolation is performed.

Note: Some shading types (4 to 7) perform interpolation on a parametric value sup-
plied as input to the shading’s color function, as described in the relevant sections
below. This form of interpolation is conceptually distinct from the interpolation
described here, which operates on the output color values produced by the color
function and takes place within the shading’s target color space.

Gradient fills between colors defined by most shadings are implemented using a
variety of interpolation algorithms, and these algorithms are sensitive to the char-
acteristics of the color space. Linear interpolation, for example, may have observ-
ably different results when applied in a DeviceCMYK color space than in a Lab
color space, even if the starting and ending colors are perceptually identical. The

PatternsSECTION 4.6
307

difference arises because the two color spaces are not linear relative to each other.
Shadings are rendered according to the following rules:

• If ColorSpace is a device color space different from the native color space of the
output device, color values in the shading are converted to the native color
space using the standard conversion formulas described in Section 6.2, “Con-
versions among Device Color Spaces.” To optimize performance, these conver-
sions may take place at any time (before or after any interpolation on the color
values in the shading). Thus, shadings defined with device color spaces may
have color gradient fills that are less accurate and somewhat device-dependent.
(This does not apply to axial and radial shadings—shading types 2 and 3—be-
cause those shading types perform gradient fill calculations on a single variable
and then convert to parametric colors.)

• If ColorSpace is a CIE-based color space, all gradient fill calculations are per-
formed in that space. Conversion to device colors occurs only after all interpo-
lation calculations have been performed. Thus, the color gradients are device-
independent for the colors generated at each point.

• If ColorSpace is a Separation or DeviceN color space and the specified colo-
rants are supported, no color conversion calculations are needed. If the speci-
fied colorants are not supported (so that the space’s alternate color space must
be used), gradient fill calculations are performed in the designated Separation
or DeviceN color space before conversion to the alternate space. Thus, non-
linear tint transformation functions are accommodated for the best possible
representation of the shading.

• If ColorSpace is an Indexed color space, all color values specified in the shading
are immediately converted to the base color space. Depending on whether the
base color space is a device or CIE-based space, gradient fill calculations are
performed as stated above. Interpolation never occurs in an Indexed color
space, which is quantized and therefore inappropriate for calculations that as-
sume a continuous range of colors. For similar reasons, an Indexed color space
is not allowed in any shading whose color values are generated by a function;
this rule applies to any shading dictionary that contains a Function entry.

Shading Types

In addition to the entries listed in Table 4.28, all shading dictionaries have entries
specific to the type of shading they represent, as indicated by the value of their

GraphicsCHAPTER 4
308

ShadingType entry. The following sections describe the available shading types
and the dictionary entries specific to each.

Type 1 (Function-Based) Shadings

In type 1 (function-based) shadings, the color at every point in the domain is
defined by a specified mathematical function. The function need not be smooth
or continuous. This type is the most general of the available shading types and is
useful for shadings that cannot be adequately described with any of the other
types. Table 4.29 shows the shading dictionary entries specific to this type of
shading, in addition to those common to all shading dictionaries (Table 4.28).

Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.29 Additional entries specific to a type 1 shading dictionary

The domain rectangle (Domain) establishes an internal coordinate space for the
shading that is independent of the target coordinate space in which it is to be
painted. The color function(s) (Function) specify the color of the shading at each
point within this domain rectangle. The transformation matrix (Matrix) then
maps the domain rectangle into a corresponding rectangle or parallelogram in
the target coordinate space. Points within the shading’s bounding box (BBox) that
fall outside this transformed domain rectangle are painted with the shading’s

KEY TYPE VALUE

Domain array (Optional) An array of four numbers [xmin xmax ymin ymax] specifying the
rectangular domain of coordinates over which the color function(s) are defined.
Default value: [0.0 1.0 0.0 1.0].

Matrix array (Optional) An array of six numbers specifying a transformation matrix mapping
the coordinate space specified by the Domain entry into the shading’s target co-
ordinate space. For example, to map the domain rectangle [0.0 1.0 0.0 1.0] to a
1-inch square with lower-left corner at coordinates (100, 100) in default user
space, the Matrix value would be [72 0 0 72 100 100]. Default value: the iden-
tity matrix [1 0 0 1 0 0].

Function function (Required) A 2-in, n-out function or an array of n 2-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). Each
function’s domain must be a superset of that of the shading dictionary. If the val-
ue returned by the function for a given color component is out of range, it is ad-
justed to the nearest valid value.

PatternsSECTION 4.6
309

background color (Background); if the shading dictionary has no Background
entry, such points are left unpainted. If the function is undefined at any point
within the declared domain rectangle, an error may occur, even if the corre-
sponding transformed point falls outside the shading’s bounding box.

Type 2 (Axial) Shadings

Type 2 (axial) shadings define a color blend that varies along a linear axis be-
tween two endpoints and extends indefinitely perpendicular to that axis. The
shading may optionally be extended beyond either or both endpoints by continu-
ing the boundary colors indefinitely. Table 4.30 shows the shading dictionary en-
tries specific to this type of shading, in addition to those common to all shading
dictionaries (Table 4.28).

Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.30 Additional entries specific to a type 2 shading dictionary

The color blend is accomplished by linearly mapping each point (x, y) along the
axis between the endpoints (x0 , y0) and (x1 , y1) to a corresponding point in the

KEY TYPE VALUE

Coords array (Required) An array of four numbers [x0 y0 x1 y1] specifying the starting and
ending coordinates of the axis, expressed in the shading’s target coordinate
space.

Domain array (Optional) An array of two numbers [t0 t1] specifying the limiting values of a
parametric variable t. The variable is considered to vary linearly between these
two values as the color gradient varies between the starting and ending points of
the axis. The variable t becomes the input argument to the color function(s). De-
fault value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). The
function(s) are called with values of the parametric variable t in the domain de-
fined by the Domain entry. Each function’s domain must be a superset of that of
the shading dictionary. If the value returned by the function for a given color
component is out of range, it is adjusted to the nearest valid value.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending points of the axis, respectively. Default
value: [false false].

GraphicsCHAPTER 4
310

domain specified by the shading dictionary’s Domain entry. The points (0, 0) and
(1, 0) in the domain correspond respectively to (x0 , y0) and (x1 , y1) on the axis.
Since all points along a line in domain space perpendicular to the line from (0, 0)
to (1, 0) have the same color, only the new value of x needs to be computed:

The value of the parametric variable t is then determined from x ′ as follows:

• For 0 ≤ x ′ ≤ 1, t = t0 + (t1 − t0) × x ′.

• For x ′ < 0, if the first element of the Extend array is true, then t = t0 ; otherwise,
t is undefined and the point is left unpainted.

• For x ′ > 1, if the second element of the Extend array is true, then t = t1 ; other-
wise, t is undefined and the point is left unpainted.

The resulting value of t is passed as input to the function(s) defined by the shad-
ing dictionary’s Function entry, yielding the component values of the color with
which to paint the point (x, y).

Plate 10 shows three examples of the use of an axial shading to fill a rectangle and
display text. The area to be filled extends beyond the shading’s bounding box.
The shading is the same in all three cases, except for the values of the Background
and Extend entries in the shading dictionary. In the first example, the shading is
not extended at either end and no background color is specified; therefore, the
shading is clipped to its bounding box at both ends. The second example still has
no background color specified, but the shading is extended at both ends; the re-
sult is to fill the remaining portions of the filled area with the colors defined at the
ends of the shading. In the third example, the shading is extended at both ends
and a background color is specified; therefore, the background color is used for
the portions of the filled area beyond the ends of the shading.

Type 3 (Radial) Shadings

Type 3 (radial) shadings define a color blend that varies between two circles.
Shadings of this type are commonly used to depict three-dimensional spheres
and cones. Shading dictionaries for this type of shading contain the entries shown
in Table 4.31, as well as those common to all shading dictionaries (Table 4.28).

x′
x1 x0–() x x0–()× y1 y0–() y y0–()×+

x1 x0–()2 y1 y0–()2+
--=

PatternsSECTION 4.6
311

Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.31 Additional entries specific to a type 3 shading dictionary

The color blend is based on a family of blend circles interpolated between the
starting and ending circles that are defined by the shading dictionary’s Coords
entry. The blend circles are defined in terms of a subsidiary parametric variable

KEY TYPE VALUE

Coords array (Required) An array of six numbers [x0 y0 r0 x1 y1 r1] specifying the centers and
radii of the starting and ending circles, expressed in the shading’s target coor-
dinate space. The radii r0 and r1 must both be greater than or equal to 0. If one
radius is 0, the corresponding circle is treated as a point; if both are 0, nothing is
painted.

Domain array (Optional) An array of two numbers [t0 t1] specifying the limiting values of a
parametric variable t. The variable is considered to vary linearly between these
two values as the color gradient varies between the starting and ending circles.
The variable t becomes the input argument to the color function(s). Default
value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). The
function(s) are called with values of the parametric variable t in the domain de-
fined by the shading dictionary’s Domain entry. Each function’s domain must be
a superset of that of the shading dictionary. If the value returned by the function
for a given color component is out of range, it is adjusted to the nearest valid val-
ue.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending circles, respectively. Default value:
[false false].

s
t t0–
t1 t0–
---------------=

GraphicsCHAPTER 4
312

which varies linearly between 0.0 and 1.0 as t varies across the domain from t0 to
t1 , as specified by the dictionary’s Domain entry. The center and radius of each
blend circle are given by the following parametric equations:

Each value of s between 0.0 and 1.0 determines a corresponding value of t, which
is passed as the input argument to the function(s) defined by the shading dictio-
nary’s Function entry. This yields the component values of the color with which
to fill the corresponding blend circle. For values of s not lying between 0.0 and
1.0, the boolean elements of the shading dictionary’s Extend array determine
whether and how the shading is extended. If the first of the two elements is true,
the shading is extended beyond the defined starting circle to values of s less than
0.0; if the second element is true, the shading is extended beyond the defined
ending circle to s values greater than 1.0.

Note that either of the starting and ending circles may be larger than the other. If
the shading is extended at the smaller end, the family of blend circles continues as
far as that value of s for which the radius of the blend circle r (s) = 0. If the shading
is extended at the larger end, the blend circles continue as far as that s value for
which r (s) is large enough to encompass the shading’s entire bounding box
(BBox). Extending the shading can thus cause painting to extend beyond the
areas defined by the two circles themselves. The two examples in the rightmost
column of Plate 11 depict the results of extending the shading at the smaller and
larger ends, respectively.

Conceptually, all of the blend circles are painted in order of increasing values of s,
from smallest to largest. Blend circles extending beyond the starting circle are
painted in the same color defined by the shading dictionary’s Function entry for
the starting circle (t = t0 , s = 0.0). Blend circles extending beyond the ending cir-
cle are painted in the color defined for the ending circle (t = t1 , s = 1.0). The
painting is opaque, with the color of each circle completely overlaying those pre-
ceding it. Therefore, if a point lies within more than one blend circle, its final col-
or is that of the last of the enclosing circles to be painted, corresponding to the
greatest value of s.

xc s() x0 s x1 x0–()×+=
yc s() y0 s y1 y0–()×+=
r s() r0 s r1 r0–()×+=

PatternsSECTION 4.6
313

Note the following points:

• If one of the starting and ending circles entirely contains the other, the shading
depicts a sphere, as in Plates 12 and 13. In Plate 12, the inner circle has zero ra-
dius; it is the starting circle in the figure on the left and the ending circle in the
figure on the right. Neither shading is extended at either the smaller or larger
end. In Plate 13, the inner circle in both figures has a nonzero radius and the
shading is extended at the larger end. In each plate, a background color is spec-
ified for the figure on the right but not for the figure on the left.

• If neither circle contains the other, the shading depicts a cone. If the starting
circle is larger, the cone appears to point out of the page. If the ending circle is
larger, the cone appears to point into the page (see Plate 11).

Example 4.25 paints the leaf-covered branch shown in Plate 14. Each leaf is filled
with the same radial shading (object number 5). The color function (object 10) is
a stitching function (described in Section 3.9.3, “Type 3 (Stitching) Functions”)
whose two subfunctions (objects 11 and 12) are both exponential interpolation
functions (see Section 3.9.2, “Type 2 (Exponential Interpolation) Functions”).
Each leaf is drawn as a path and then filled with the shading, using code such as
that shown in Example 4.26 (where the name Sh1 is associated with object 5 by
the Shading subdictionary of the current resource dictionary; see Section 3.7.2,
“Resource Dictionaries”).

Example 4.25

5 0 obj % Shading dictionary
<< /ShadingType 3

 /ColorSpace /DeviceCMYK
 /Coords [0.0 0.0 0.096 0.0 0.0 1.0 00] % Concentric circles
 /Function 10 0 R
 /Extend [true true]

>>
endobj

10 0 obj % Color function
<< /FunctionType 3

 /Domain [0.0 1.0]
 /Functions [11 0 R 12 0 R]
 /Bounds [0.708]
 /Encode [1.0 0.0 0.0 1.0]

>>
endobj

GraphicsCHAPTER 4
314

11 0 obj % First subfunction
<< /FunctionType 2

 /Domain [0.0 1.0]
 /C0 [0.929 0.357 1.000 0.298]
 /C1 [0.631 0.278 1.000 0.027]
 /N 1.048

>>
endobj

12 0 obj % Second subfunction
<< /FunctionType 2

 /Domain [0.0 1.0]
 /C0 [0.929 0.357 1.000 0.298]
 /C1 [0.941 0.400 1.000 0.102]
 /N 1.374

>>
endobj

Example 4.26

316.789 140.311 m % Move to start of leaf
303.222 146.388 282.966 136.518 279.122 121.983 c % Curved segment
277.322 120.182 l % Straight line
285.125 122.688 291.441 121.716 298.156 119.386 c % Curved segment
336.448 119.386 l % Straight line
331.072 128.643 323.346 137.376 316.789 140.311 c % Curved segment
W n % Set clipping path
q % Save graphics state

27.7843 0.0000 0.0000 −27.7843 310.2461 121.1521 cm % Set matrix
/Sh1 sh % Paint shading

Q % Restore graphics state

Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)

Type 4 shadings (free-form Gouraud-shaded triangle meshes) are commonly
used to represent complex colored and shaded three-dimensional shapes. The
area to be shaded is defined by a path composed entirely of triangles. The color at
each vertex of the triangles is specified, and a technique known as Gouraud
interpolation is used to color the interiors. The interpolation functions defining
the shading may be linear or nonlinear. Table 4.32 shows the entries specific to
this type of shading dictionary, in addition to those common to all shading dic-
tionaries (Table 4.28) and stream dictionaries (Table 3.4 on page 62).

PatternsSECTION 4.6
315

TABLE 4.32 Additional entries specific to a type 4 shading dictionary

Unlike shading types 1 to 3, types 4 to 7 are represented as streams. Each stream
contains a sequence of vertex coordinates and color data that defines the triangle
mesh. In a type 4 shading, each vertex is specified by the following values, in the
order shown:

f x y c1 … cn

KEY TYPE VALUE

BitsPerCoordinate integer (Required) The number of bits used to represent each vertex coordinate.
Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for each ver-
tex (see below). Valid values of BitsPerFlag are 2, 4, and 8, but only the
least significant 2 bits in each flag value are used. Valid values for the edge
flag are 0, 1, and 2.

Decode array (Required) An array of numbers specifying how to map vertex coordinates
and color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Note that only one pair of c values should be specified if a Function entry
is present.

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

GraphicsCHAPTER 4
316

where

f is the vertex’s edge flag (discussed below)

x and y are its horizontal and vertical coordinates

c1 … cn are its color components

All vertex coordinates are expressed in the shading’s target coordinate space. If
the shading dictionary includes a Function entry, only a single parametric value,
t, is permitted for each vertex in place of the color components c1 … cn .

The edge flag associated with each vertex determines the way it connects to the
other vertices of the triangle mesh. A vertex va with an edge flag value fa = 0
begins a new triangle, unconnected to any other. At least two more vertices (vb
and vc) must be provided, but their edge flags are ignored. These three vertices
define a triangle (va , vb , vc), as shown in Figure 4.16.

FIGURE 4.16 Starting a new triangle in a free-form Gouraud-shaded triangle mesh

Subsequent triangles are defined by a single new vertex combined with two verti-
ces of the preceding triangle. Given triangle (va , vb , vc), where vertex va precedes
vertex vb in the data stream and vb precedes vc , a new vertex vd can form a new
triangle on side vbc or side vac , as shown in Figure 4.17. (Side vab is assumed to be
shared with a preceding triangle and therefore is not available for continuing the
mesh.) If the edge flag is fd = 1 (side vbc), the next vertex forms the triangle
(vb , vc , vd); if the edge flag is fd = 2 (side vac), the next vertex forms the triangle
(va , vc , vd). An edge flag of fd = 0 would start a new triangle, as described above.

fa=0
(Start new triangle)

Previous
triangle va

vcvb

PatternsSECTION 4.6
317

FIGURE 4.17 Connecting triangles in a free-form Gouraud-shaded triangle mesh

Complex shapes can be created by using the edge flags to control the edge on
which subsequent triangles are formed. Figure 4.18 shows two simple examples.
Mesh 1 begins with triangle 1 and uses the following edge flags to draw each suc-
ceeding triangle:

Mesh 2 again begins with triangle 1 and uses the following edge flags:

The stream must provide vertex data for a whole number of triangles with appro-
priate edge flags; otherwise, an error occurs.

Three new
vertices

vd

vfve

fd =0 fd =1

va

vcvb

One new
vertexvd

va

vcvb

fd =2

One new
vertex

vdva

vcvb

1 fa fb fc 0= = =() 7 fi 2=()

2 fd 1=() 8 fj 2=()

3 fe 1=() 9 fk 2=()

4 ff 1=() 10 fl 1=()

5 fg 1=() 11 fm 1=()

6 fh 1=()

1 fa fb fc 0= = =() 4 ff 2=()

2 fd 1=() 5 fg 2=()

3 fe 2=() 6 fh 2=()

GraphicsCHAPTER 4
318

FIGURE 4.18 Varying the value of the edge flag to create different shapes

The data for each vertex consists of the following items, reading in sequence from
higher-order to lower-order bit positions:

• An edge flag, expressed in BitsPerFlag bits

• A pair of horizontal and vertical coordinates, expressed in BitsPerCoordinate
bits each

• A set of n color components (where n is the number of components in the
shading’s color space), expressed in BitsPerComponent bits each, in the order
expected by the sc operator

Each set of vertex data must occupy a whole number of bytes. If the total number
of bits required is not divisible by 8, the last data byte for each vertex is padded at
the end with extra bits, which are ignored. The coordinates and color values are
decoded according to the Decode array in the same way as in an image dictionary
(see “Decode Arrays” on page 344).

If the shading dictionary contains a Function entry, the color data for each vertex
must be specified by a single parametric value t rather than by n separate color
components. All linear interpolation within the triangle mesh is done using the t
values. After interpolation, the results are passed to the function(s) specified in
the Function entry to determine the color at each point.

Mesh 1 Mesh 2

vl vj vi vf ve

vcva ve vg vavh
vc

vd

vk

vb vh vg vd
vm

vm = vb

vk = vd

vh = va

vf vb

1

4

5 3

6 2

5

8

9 7

4

31

10

11

2 6

PatternsSECTION 4.6
319

Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)

Type 5 shadings (lattice-form Gouraud-shaded triangle meshes) are similar to
type 4, but instead of using free-form geometry, their vertices are arranged in a
pseudorectangular lattice, which is topologically equivalent to a rectangular grid.
The vertices are organized into rows, which need not be geometrically linear (see
Figure 4.19).

FIGURE 4.19 Lattice-form triangle meshes

Table 4.33 shows the shading dictionary entries specific to this type of shading, in
addition to those common to all shading dictionaries (Table 4.28) and stream dic-
tionaries (Table 3.4 on page 62).

The data stream for a type 5 shading has the same format as for type 4, except that
type 5 does not use edge flags to define the geometry of the triangle mesh. The
data for each vertex thus consists of the following values, in the order shown:

x y c1 … cn

where

x and y are the vertex’s horizontal and vertical coordinates

c1 … cn are its color components

Ideal lattice

(i, j) (i, j+1)

(i+1, j) (i+1, j+1)

Pseudorectangular lattice

GraphicsCHAPTER 4
320

TABLE 4.33 Additional entries specific to a type 5 shading dictionary

All vertex coordinates are expressed in the shading’s target coordinate space. If
the shading dictionary includes a Function entry, only a single parametric value,
t, is permitted for each vertex in place of the color components c1 … cn .

The VerticesPerRow entry in the shading dictionary gives the number of vertices
in each row of the lattice. All of the vertices in a row are specified sequentially,
followed by those for the next row. Given m rows of k vertices each, the triangles

KEY TYPE VALUE

BitsPerCoordinate integer (Required) The number of bits used to represent each vertex coordinate.
Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

VerticesPerRow integer (Required) The number of vertices in each row of the lattice; the value
must be greater than or equal to 2. The number of rows need not be
specified.

Decode array (Required) An array of numbers specifying how to map vertex coordinates
and color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Note that only one pair of c values should be specified if a Function entry
is present.

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry cannot be used with an Indexed color space.

PatternsSECTION 4.6
321

of the mesh are constructed using the following triplets of vertices, as shown in
Figure 4.19:

See “Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)” on page
314 for further details on the format of the vertex data.

Type 6 Shadings (Coons Patch Meshes)

Type 6 shadings (Coons patch meshes) are constructed from one or more color
patches, each bounded by four cubic Bézier curves. Degenerate Bézier curves are
allowed and are useful for certain graphical effects. At least one complete patch
must be specified.

A Coons patch generally has two independent aspects:

• Colors are specified for each corner of the unit square, and bilinear interpola-
tion is used to fill in colors over the entire unit square (see the upper figure in
Plate 15).

• Coordinates are mapped from the unit square into a four-sided patch whose
sides are not necessarily linear (see the lower figure in Plate 15). The mapping
is continuous: the corners of the unit square map to corners of the patch and
the sides of the unit square map to sides of the patch, as shown in Figure 4.20.

The sides of the patch are given by four cubic Bézier curves, C1 , C2 , D1 , and D2 ,
defined over a pair of parametric variables, u and v, that vary horizontally and
vertically across the unit square. The four corners of the Coons patch satisfy the
following equations:

Vi j, Vi j 1+, Vi 1+ j,, ,() for 0 i m 2–≤ ≤ 0 j k 2–≤ ≤,
Vi j 1+, Vi 1+ j, Vi 1+ j 1+,, ,)(

C1 0() D1 0()=

C1 1() D2 0()=

C2 0() D1 1()=

C2 1() D2 1()=

GraphicsCHAPTER 4
322

FIGURE 4.20 Coordinate mapping from a unit square to a four-sided Coons patch

Two surfaces can be described that are linear interpolations between the bound-
ary curves. Along the u axis, the surface SC is defined by

Along the v axis, the surface SD is given by

A third surface is the bilinear interpolation of the four corners:

The coordinate mapping for the shading is given by the surface S, defined as

This defines the geometry of each patch. A patch mesh is constructed from a
sequence of one or more such colored patches.

Patches can sometimes appear to fold over on themselves—for example, if a
boundary curve intersects itself. As the value of parameter u or v increases in
parameter space, the location of the corresponding pixels in device space may
change direction so that new pixels are mapped onto previous pixels already

D1

C1

D2

C2

v

u

SC u v,() 1 v–() C1 u()× v C2 u()×+=

SD u v,() 1 u–() D1 v() u D2 v()×+×=

SB u v,() 1 v–() 1 u–() C1 0()×[u C1 1()×+]×
v 1 u–() C2 0()×[u C2 1()×]+×+

=

S SC SD SB–+=

PatternsSECTION 4.6
323

mapped. If more than one point (u, v) in parameter space is mapped to the same
point in device space, the point selected is the one with the largest value of v. If
multiple points have the same v, the one with the largest value of u is selected. If
one patch overlaps another, the patch that appears later in the data stream paints
over the earlier one.

Note also that the patch is a control surface rather than a painting geometry. The
outline of a projected square (that is, the painted area) might not be the same as
the patch boundary if, for example, the patch folds over on itself, as shown in
Figure 4.21.

FIGURE 4.21 Painted area and boundary of a Coons patch

Table 4.34 shows the shading dictionary entries specific to this type of shading, in
addition to those common to all shading dictionaries (Table 4.28) and stream dic-
tionaries (Table 3.4 on page 62).

Appearance Painted area Patch boundary

GraphicsCHAPTER 4
324

TABLE 4.34 Additional entries specific to a type 6 shading dictionary

The data stream provides a sequence of Bézier control points and color values
that define the shape and colors of each patch. All of a patch’s control points are
given first, followed by the color values for its corners. Note that this differs from
a triangle mesh (shading types 4 and 5), in which the coordinates and color of
each vertex are given together. All control point coordinates are expressed in the
shading’s target coordinate space. See “Type 4 Shadings (Free-Form Gouraud-

KEY TYPE VALUE

BitsPerCoordinate integer (Required) The number of bits used to represent each geometric coordi-
nate. Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

BitsPerComponent integer (Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

BitsPerFlag integer (Required) The number of bits used to represent the edge flag for each
patch (see below). Valid values of BitsPerFlag are 2, 4, and 8, but only the
least significant 2 bits in each flag value are used. Valid values for the edge
flag are 0, 1, 2, and 3.

Decode array (Required) An array of numbers specifying how to map coordinates and
color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin xmax ymin ymax c1,min c1,max … cn,min cn,max]

Note that only one pair of c values should be specified if a Function entry
is present.

Function function (Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

PatternsSECTION 4.6
325

Shaded Triangle Meshes)” on page 314 for further details on the format of the da-
ta.

As in free-form triangle meshes (type 4), each patch has an edge flag that indi-
cates which edge, if any, it shares with the previous patch. An edge flag of 0 begins
a new patch, unconnected to any other. This must be followed by 12 pairs of co-
ordinates, x1 y1 x2 y2 … x12 y12 , which specify the Bézier control points that
define the four boundary curves. Figure 4.22 shows how these control points cor-
respond to the cubic Bézier curves C1 , C2 , D1 , and D2 identified in Figure 4.20 on
page 322. Color values are given for the four corners of the patch, in the same or-
der as the control points corresponding to the corners. Thus, c1 is the color at co-
ordinates (x1 , y1), c2 at (x4 , y4), c3 at (x7 , y7), and c4 at (x10 , y10), as shown in the
figure.

FIGURE 4.22 Color values and edge flags in Coons patch meshes

Figure 4.22 also shows how nonzero values of the edge flag (f = 1, 2, or 3) connect
a new patch to one of the edges of the previous patch. In this case, some of the
previous patch’s control points serve implicitly as control points for the new patch
as well (see Figure 4.23), and therefore are not explicitly repeated in the data
stream. Table 4.35 summarizes the required data values for various values of the
edge flag.

5

3 8

6
7

9

11

12
2

1

4

10

Use this side when next f = 3.

Use this side when next f = 1.

Use this side when next f = 2.
This side already attached
to previous patch. Start a
new patch when next f = 0.

c1

c2

c3

c4C1

C2

D2D1

GraphicsCHAPTER 4
326

FIGURE 4.23 Edge connections in a Coons patch mesh

If the shading dictionary contains a Function entry, the color data for each corner
of a patch must be specified by a single parametric value t rather than by n sepa-
rate color components c1 … cn . All linear interpolation within the mesh is done
using the t values. After interpolation, the results are passed to the function(s)
specified in the Function entry to determine the color at each point.

When fB = 0, start a new patch.

Patch B
fB = 1

Patch A

Patch B
fB = 3

Patch B
fB = 2

2

1

4
5

3

c1

c2

12 9 3

41

1

2

2
4

3
11

c1

c1

c2
c4

1

4

7
6
8 2

3
c3 c1

c2

c2

10

PatternsSECTION 4.6
327

TABLE 4.35 Data values in a Coons patch mesh

Type 7 Shadings (Tensor-Product Patch Meshes)

Type 7 shadings (tensor-product patch meshes) are identical to type 6, except that
they are based on a bicubic tensor-product patch defined by 16 control points in-
stead of the 12 control points that define a Coons patch. The shading dictionaries
representing the two patch types differ only in the value of the ShadingType entry
and in the number of control points specified for each patch in the data stream.

EDGE FLAG NEXT SET OF DATA VALUES

f = 0 x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c1 c2 c3 c4

New patch; no implicit values

f = 1 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x4 , y4) previous c1 = c2 previous
(x2 , y2) = (x5 , y5) previous c2 = c3 previous
(x3 , y3) = (x6 , y6) previous
(x4 , y4) = (x7 , y7) previous

f = 2 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x7 , y7) previous c1 = c3 previous
(x2 , y2) = (x8 , y8) previous c2 = c4 previous
(x3 , y3) = (x9 , y9) previous
(x4 , y4) = (x10 , y10) previous

f = 3 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9 x10 y10 x11 y11 x12 y12
c3 c4

Implicit values:

(x1 , y1) = (x10 , y10) previous c1 = c4 previous
(x2 , y2) = (x11 , y11) previous c2 = c1 previous
(x3 , y3) = (x12 , y12) previous
(x4 , y4) = (x1 , y1) previous

GraphicsCHAPTER 4
328

Although the Coons patch is more concise and easier to use, the tensor-product
patch affords greater control over color mapping.

Note: The data format for type 7 shadings (as for types 4 through 6) is the same in
PDF as it is in PostScript. However, the numbering and order of control points was
described incorrectly in the first printing of the PostScript Language Reference,
Third Edition. That description has been corrected here.

Like the Coons patch mapping, the tensor-product patch mapping is controlled
by the location and shape of four cubic Bézier curves marking the boundaries of
the patch. However, the tensor-product patch has four additional, “internal”
control points to adjust the mapping. The 16 control points can be arranged in a
4-by-4 array indexed by row and column, as follows (see Figure 4.24):

p03 p13 p23 p33
p02 p12 p22 p32
p01 p11 p21 p31
p00 p10 p20 p30

FIGURE 4.24 Control points in a tensor-product patch

p02

p00

p01

p12 p22

p21p11

p10

p20

p30

p31

p32

p33

p23

p13

p03

PatternsSECTION 4.6
329

As in a Coons patch mesh, the geometry of the tensor-product patch is described
by a surface defined over a pair of parametric variables, u and v, which vary hori-
zontally and vertically across the unit square. The surface is defined by the equa-
tion

where pij is the control point in column i and row j of the tensor, and Bi and Bj are
the Bernstein polynomials

Since each point pij is actually a pair of coordinates (xij , yij), the surface can also
be expressed as

The geometry of the tensor-product patch can be visualized in terms of a cubic
Bézier curve moving from the bottom boundary of the patch to the top. At the
bottom and top, the control points of this curve coincide with those of the patch’s
bottom (p00 … p30) and top (p03 … p33) boundary curves, respectively. As the
curve moves from the bottom edge of the patch to the top, each of its four control
points follows a trajectory that is in turn a cubic Bézier curve defined by the four
control points in the corresponding column of the array. That is, the starting
point of the moving curve follows the trajectory defined by control points
p00 … p03 , the trajectory of the ending point is defined by points p30 … p33 , and

S u v,() pij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

B0 t() 1 t–()3=

B1 t() 3t 1 t–()2×=

B2 t() 3t2 1 t–()×=

B3 t() t3=

x u v,() xij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

y u v,() yij Bi u() Bj v()××

j 0=

3

∑
i 0=

3

∑=

GraphicsCHAPTER 4
330

those of the two intermediate control points by p10 … p13 and p20 … p23 . Equiva-
lently, the patch can be considered to be traced by a cubic Bézier curve moving
from the left edge to the right, with its control points following the trajectories
defined by the rows of the coordinate array instead of the columns.

The Coons patch (type 6) is actually a special case of the tensor-product patch
(type 7) in which the four internal control points (p11 , p12 , p21 , p22) are implicitly
defined by the boundary curves. The values of the internal control points are giv-
en by these equations:

In the more general tensor-product patch, the values of these four points are un-
restricted.

The coordinates of the control points in a tensor-product patch are actually spec-
ified in the shading’s data stream in the following order:

4 5 6 7
3 14 15 8
2 13 16 9
1 12 11 10

All control point coordinates are expressed in the shading’s target coordinate
space. These are followed by the color values for the four corners of the patch, in
the same order as the corners themselves. If the patch’s edge flag f is 0, all 16
control points and four corner colors must be explicitly specified in the data
stream. If f is 1, 2, or 3, the control points and colors for the patch’s shared edge
are implicitly understood to be the same as those along the specified edge of the
previous patch and are not repeated in the data stream. Table 4.36 summarizes
the data values for various values of the edge flag f, expressed in terms of the row
and column indices used in Figure 4.24 above. See “Type 4 Shadings (Free-Form

p11 1 9⁄
4– p00× 6 p01 p10+()× 2 p03 p30+()×– 3 p31 p13+()× 1 p33×–+ +[]

×=

p12 1 9⁄
4– p03× 6 p02 p13+()× 2 p00 p33+()×– 3 p32 p10+()× 1 p× 30–+ +[]

×=

p21 1 9⁄
4– p30× 6 p31 p20+()× 2 p33 p00+()×– 3 p01 p23+()× 1 p03×–+ +[]

×=

p22 1 9⁄
4– p33× 6 p32 p23+()× 2 p30 p03+()×– 3 p02 p20+()× 1 p00×–+ +[]

×=

PatternsSECTION 4.6
331

Gouraud-Shaded Triangle Meshes)” on page 314 for further details on the format
of the data.

TABLE 4.36 Data values in a tensor-product patch mesh

EDGE FLAG NEXT SET OF DATA VALUES

f = 0 x00 y00 x01 y01 x02 y02 x03 y03 x13 y13 x23 y23 x33 y33 x32 y32
x31 y31 x30 y30 x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c00 c03 c33 c30

New patch; no implicit values

f = 1 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x03 , y03) previous c00 = c03 previous
(x01 , y01) = (x13 , y13) previous c03 = c33 previous
(x02 , y02) = (x23 , y23) previous
(x03 , y03) = (x33 , y33) previous

f = 2 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x33 , y33) previous c00 = c33 previous
(x01 , y01) = (x32 , y32) previous c03 = c30 previous
(x02 , y02) = (x31 , y31) previous
(x03 , y03) = (x30 , y30) previous

f = 3 x13 y13 x23 y23 x33 y33 x32 y32 x31 y31 x30 y30
x20 y20 x10 y10 x11 y11 x12 y12 x22 y22 x21 y21
c33 c30

Implicit values:

(x00 , y00) = (x30 , y30) previous c00 = c30 previous
(x01 , y01) = (x20 , y20) previous c03 = c00 previous
(x02 , y02) = (x10 , y10) previous
(x03 , y03) = (x00 , y00) previous

GraphicsCHAPTER 4
332

4.7 External Objects

An external object (commonly called an XObject) is a graphics object whose con-
tents are defined by a self-contained content stream, separate from the content
stream in which it is used. There are three types of external objects:

• An image XObject (Section 4.8.4, “Image Dictionaries”) represents a sampled
visual image such as a photograph.

• A form XObject (Section 4.9, “Form XObjects”) is a self-contained description
of an arbitrary sequence of graphics objects.

• A PostScript XObject (Section 4.7.1, “PostScript XObjects”) contains a fragment
of code expressed in the PostScript page description language. PostScript XOb-
jects are no longer recommended to be used.

Two further categories of external objects, group XObjects and reference XObjects
(both PDF 1.4), are actually specialized types of form XObjects with additional
properties. See Sections 4.9.2, “Group XObjects,” and 4.9.3, “Reference XObjects,”
for additional information.

Any XObject can be painted as part of another content stream by means of the Do
operator (see Table 4.37). This operator applies to any type of XObject—image,
form, or PostScript. The syntax is the same in all cases, although details of the
operator’s behavior differ depending on the type. (See implementation note 51 in
Appendix H.)

TABLE 4.37 XObject operator

OPERANDS OPERATOR DESCRIPTION

name Do Paint the specified XObject. The operand name must appear as a key in the
XObject subdictionary of the current resource dictionary (see Section 3.7.2, “Re-
source Dictionaries”). The associated value must be a stream whose Type entry,
if present, is XObject. The effect of Do depends on the value of the XObject’s
Subtype entry, which may be Image (see Section 4.8.4, “Image Dictionaries”),
Form (Section 4.9, “Form XObjects”), or PS (Section 4.7.1, “PostScript XOb-
jects”).

External ObjectsSECTION 4.7
333

4.7.1 PostScript XObjects

Beginning with PDF 1.1, a content stream can include PostScript language frag-
ments. These fragments are used only when printing to a PostScript output de-
vice; they have no effect either when viewing the document on-screen or when
printing it to a non-PostScript device. In addition, applications that understand
PDF are unlikely to be able to interpret the PostScript fragments. Hence, this ca-
pability should be used with extreme caution and only if there is no other way to
achieve the same result. Inappropriate use of PostScript XObjects can cause PDF
files to print incorrectly.

Note: Since PDF 1.4 encompasses all of the Adobe imaging model features of the
PostScript language, there is no longer any reason to use PostScript XObjects. This
feature is likely to be removed from PDF in a future version.

A PostScript XObject is an XObject stream whose Subtype entry has the value PS.
A PostScript XObject dictionary can contain the entries shown in Table 4.38 in
addition to the usual entries common to all streams (see Table 3.4 on page 62).

TABLE 4.38 Additional entries specific to a PostScript XObject dictionary

When a PDF content stream is translated into the PostScript language, any Do
operation that references a PostScript XObject is replaced by the contents of the
XObject stream itself. The stream is copied without interpretation. The PostScript
fragment may use Type 1 and TrueType fonts listed in the Font subdictionary of
the current resource dictionary (see Section 3.7.2, “Resource Dictionaries”), ac-
cessing them by their BaseFont names using the PostScript findfont operator. The
fragment may not use other types of fonts listed in the Font subdictionary. It

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
XObject for a PostScript XObject.

Subtype name (Required) The type of XObject that this dictionary describes; must be PS for a Post-
Script XObject.

Note: Alternatively, the value of this entry may be Form, with an additional Subtype2
entry whose value is PS.

Level1 stream (Optional) A stream whose contents are to be used in place of the PostScript
XObject’s stream when the target PostScript interpreter is known to support only
LanguageLevel 1.

GraphicsCHAPTER 4
334

should not reference the PostScript definitions corresponding to PDF procedure
sets (see Section 10.1, “Procedure Sets”), which are subject to change.

4.8 Images

PDF’s painting operators include general facilities for dealing with sampled im-
ages. A sampled image (or just image for short) is a rectangular array of sample
values, each representing a color. The image may approximate the appearance of
some natural scene obtained through an input scanner or a video camera, or it
may be generated synthetically.

FIGURE 4.25 Typical sampled image

An image is defined by a sequence of samples obtained by scanning the image
array in row or column order. Each sample in the array consists of as many color
components as are needed for the color space in which they are specified—for
example, one component for DeviceGray, three for DeviceRGB, four for
DeviceCMYK, or whatever number is required by a particular DeviceN space.
Each component is a 1-, 2-, 4-, 8-, or (in PDF 1.5) 16-bit integer, permitting the
representation of 2, 4, 16, 256, or (in PDF 1.5) 65536 distinct values for each com-
ponent. (Other component sizes can be accommodated when a JPXDecode filter
is used; see Section 3.3.8, “JPXDecode Filter.)

ImagesSECTION 4.8
335

PDF provides two means for specifying images:

• An image XObject (described in Section 4.8.4, “Image Dictionaries”) is a
stream object whose dictionary specifies attributes of the image and whose
data contains the image samples. Like all external objects, it is painted on the
page by invoking the Do operator in a content stream (see Section 4.7, “Exter-
nal Objects”). Image XObjects have other uses as well, such as for alternate im-
ages (see “Alternate Images” on page 347), image masks (Section 4.8.5,
“Masked Images”), and thumbnail images (Section 8.2.3, “Thumbnail
Images”).

• An inline image is a small image that is completely defined—both attributes
and data—directly inline within a content stream. The kinds of images that can
be represented in this way are limited; see Section 4.8.6, “Inline Images,” for
details.

4.8.1 Image Parameters

The properties of an image—resolution, orientation, scanning order, and so
forth—are entirely independent of the characteristics of the raster output device
on which the image is to be rendered. A PDF consumer application usually ren-
ders images by a sampling technique that attempts to approximate the color val-
ues of the source as accurately as possible. The actual accuracy achieved depends
on the resolution and other properties of the output device.

To paint an image, four interrelated items must be specified:

• The format of the image: number of columns (width), number of rows (height),
number of color components per sample, and number of bits per color compo-
nent

• The sample data constituting the image’s visual content

• The correspondence between coordinates in user space and those in the image’s
own internal coordinate space, defining the region of user space that will re-
ceive the image

• The mapping from color component values in the image data to component
values in the image’s color space

All of these items are specified explicitly or implicitly by an image XObject or an
inline image.

GraphicsCHAPTER 4
336

Note: For convenience, the following sections refer consistently to the object defining
an image as an image dictionary. Although this term properly refers only to the
dictionary portion of the stream object representing an image XObject, it should be
understood to apply equally to the stream’s data portion or to the parameters and
data of an inline image.

4.8.2 Sample Representation

The source format for an image can be described by four parameters:

• The width of the image in samples

• The height of the image in samples

• The number of color components per sample

• The number of bits per color component

The image dictionary specifies the width, height, and number of bits per compo-
nent explicitly. The number of color components can be inferred from the color
space specified in the dictionary.

Note: For images using the JPXDecode filter (see Section 3.3.8, “JPXDecode Filter”),
the number of bits per component is determined from the image data and not speci-
fied in the image dictionary. The color space may or may not be specified in the dic-
tionary.

Sample data is represented as a stream of bytes, interpreted as 8-bit unsigned
integers in the range 0 to 255. The bytes constitute a continuous bit stream, with
the high-order bit of each byte first. This bit stream, in turn, is divided into units
of n bits each, where n is the number of bits per component. Each unit encodes a
color component value, given with high-order bit first; units of 16 bits are given
with the most significant byte first. Byte boundaries are ignored, except that each
row of sample data must begin on a byte boundary. If the number of data bits per
row is not a multiple of 8, the end of the row is padded with extra bits to fill out
the last byte. A PDF consumer application ignores these padding bits.

Each n-bit unit within the bit stream is interpreted as an unsigned integer in the
range 0 to 2n − 1, with the high-order bit first. The image dictionary’s Decode
entry maps this integer to a color component value, equivalent to what could be
used with color operators such as sc or g. Color components are interleaved sam-

ImagesSECTION 4.8
337

ple by sample; for example, in a three-component RGB image, the red, green, and
blue components for one sample are followed by the red, green, and blue compo-
nents for the next.

Normally, the color samples in an image are interpreted according to the color
space specified in the image dictionary (see Section 4.5, “Color Spaces”), without
reference to the color parameters in the graphics state. However, if the image dic-
tionary’s ImageMask entry is true, the sample data is interpreted as a stencil mask
for applying the graphics state’s nonstroking color parameters (see “Stencil Mask-
ing” on page 350).

4.8.3 Image Coordinate System

Each image has its own internal coordinate system, or image space. The image oc-
cupies a rectangle in image space w units wide and h units high, where w and h
are the width and height of the image in samples. Each sample occupies one
square unit. The coordinate origin (0, 0) is at the upper-left corner of the image,
with coordinates ranging from 0 to w horizontally and 0 to h vertically.

The image’s sample data is ordered by row, with the horizontal coordinate varying
most rapidly. This is shown in Figure 4.26, where the numbers inside the squares
indicate the order of the samples, counting from 0. The upper-left corner of the
first sample is at coordinates (0, 0), the second at (1, 0), and so on through the last
sample of the first row, whose upper-left corner is at (w − 1, 0) and whose upper-
right corner is at (w, 0). The next samples after that are at coordinates (0, 1),
(1, 1), and so on to the final sample of the image, whose upper-left corner is at
(w − 1, h − 1) and whose lower-right corner is at (w, h).

Note: The image coordinate system and scanning order imposed by PDF do not pre-
clude using different conventions in the actual image. Coordinate transformations
can be used to map from other conventions to the PDF convention.

The correspondence between image space and user space is constant: the unit
square of user space, bounded by user coordinates (0, 0) and (1, 1), corresponds
to the boundary of the image in image space (see Figure 4.27). Following the
normal convention for user space, the coordinate (0, 0) is at the lower-left corner
of this square, corresponding to coordinates (0, h) in image space. The transfor-
mation from image space to user space could be described by the matrix
[1 ⁄ w 0 0 −1 ⁄ h 0 1].

GraphicsCHAPTER 4
338

FIGURE 4.26 Source image coordinate system

FIGURE 4.27 Mapping the source image

An image can be placed on the output page in any position, orientation, and size
by using the cm operator to modify the current transformation matrix (CTM) so
as to map the unit square of user space to the rectangle or parallelogram in which
the image is to be painted. Typically, this is done within a pair of q and Q opera-
tors to isolate the effect of the transformation, which can include translation, ro-

0

1

h-1

2

h

0 1 2 w-1 w

0 1 w-1

w w+1 2w-1

(h-1)w (h-1)w+1 hw-1

h

0 w
0

(0, 1) (1, 1)

(0, 0) (1, 0)

Unit square
in user space Current pageSource image

CTM

ImagesSECTION 4.8
339

tation, reflection, and skew (see Section 4.2, “Coordinate Systems”). For example,
if the XObject subdictionary of the current resource dictionary defines the name
Image1 to denote an image XObject, the code shown in Example 4.27 paints the
image in a rectangle whose lower-left corner is at coordinates (100, 200), that is
rotated 45 degrees counterclockwise, and that is 150 units wide and 80 units high.

Example 4.27

q % Save graphics state
1 0 0 1 100 200 cm % Translate
0. 7071 0. 7071 −0. 7071 0. 7071 0 0 cm % Rotate
150 0 0 80 0 0 cm % Scale
/Image1 Do % Paint image

Q % Restore graphics state

(As discussed in Section 4.2.3, “Transformation Matrices,” these three transfor-
mations could be combined into one.) Of course, if the aspect ratio (width to
height) of the original image in this example is different from 150:80, the result
will be distorted.

4.8.4 Image Dictionaries

An image dictionary—that is, the dictionary portion of a stream representing an
image XObject—can contain the entries listed in Table 4.39 in addition to the
usual entries common to all streams (see Table 3.4 on page 62). There are many
relationships among these entries, and the current color space may limit the
choices for some of them. Attempting to use an image dictionary whose entries
are inconsistent with each other or with the current color space causes an error.

Note: The entries described here are appropriate for a base image—one that is in-
voked directly with the Do operator. Some of the entries are not relevant for images
used in other ways, such as for alternate images (see “Alternate Images” on page
347), image masks (Section 4.8.5, “Masked Images”), or thumbnail images (Section
8.2.3, “Thumbnail Images”). Except as noted, such irrelevant entries are simply ig-
nored.

GraphicsCHAPTER 4
340

TABLE 4.39 Additional entries specific to an image dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be XObject for an image XObject.

Subtype name (Required) The type of XObject that this dictionary describes; must be
Image for an image XObject.

Width integer (Required) The width of the image, in samples.

Height integer (Required) The height of the image, in samples.

ColorSpace name or
array

(Required for images, except those that use the JPXDecode filter; not allowed
for image masks) The color space in which image samples are specified; it
can be any type of color space except Pattern.

If the image uses the JPXDecode filter, this entry is optional:

• If ColorSpace is present, any color space specifications in the JPEG2000
data are ignored.

• If ColorSpace is absent, the color space specifications in the JPEG2000
data are used. The Decode array is also ignored unless ImageMask is
true.

BitsPerComponent integer (Required except for image masks and images that use the JPXDecode filter)
The number of bits used to represent each color component. Only a single
value may be specified; the number of bits is the same for all color compo-
nents. Valid values are 1, 2, 4, 8, and (in PDF 1.5) 16. If ImageMask is true,
this entry is optional, and if specified, its value must be 1.

If the image stream uses a filter, the value of BitsPerComponent must be
consistent with the size of the data samples that the filter delivers. In par-
ticular, a CCITTFaxDecode or JBIG2Decode filter always delivers 1-bit sam-
ples, a RunLengthDecode or DCTDecode filter delivers 8-bit samples, and
an LZWDecode or FlateDecode filter delivers samples of a specified size if
a predictor function is used.

If the image stream uses the JPXDecode filter, this entry is optional and ig-
nored if present. The bit depth is determined in the process of decoding
the JPEG2000 image.

Intent name (Optional; PDF 1.1) The name of a color rendering intent to be used in
rendering the image (see “Rendering Intents” on page 260). Default value:
the current rendering intent in the graphics state.

ImagesSECTION 4.8
341

ImageMask boolean (Optional) A flag indicating whether the image is to be treated as an image
mask (see Section 4.8.5, “Masked Images”). If this flag is true, the value of
BitsPerComponent must be 1 and Mask and ColorSpace should not be
specified; unmasked areas are painted using the current nonstroking col-
or. Default value: false.

Mask stream
or array

(Optional except for image masks; not allowed for image masks; PDF 1.3)
An image XObject defining an image mask to be applied to this image (see
“Explicit Masking” on page 351), or an array specifying a range of colors
to be applied to it as a color key mask (see “Color Key Masking” on page
351). If ImageMask is true, this entry must not be present. (See
implementation note 52 in Appendix H.)

Decode array (Optional) An array of numbers describing how to map image samples
into the range of values appropriate for the image’s color space (see
“Decode Arrays” on page 344). If ImageMask is true, the array must be
either [0 1] or [1 0]; otherwise, its length must be twice the number of
color components required by ColorSpace. If the image uses the
JPXDecode filter and ImageMask is false, Decode is ignored.

Default value: see “Decode Arrays” on page 344.

Interpolate boolean (Optional) A flag indicating whether image interpolation is to be per-
formed (see “Image Interpolation” on page 346). Default value: false.

Alternates array (Optional; PDF 1.3) An array of alternate image dictionaries for this image
(see “Alternate Images” on page 347). The order of elements within the
array has no significance. This entry may not be present in an image XOb-
ject that is itself an alternate image.

SMask stream (Optional; PDF 1.4) A subsidiary image XObject defining a soft-mask
image (see “Soft-Mask Images” on page 553) to be used as a source of
mask shape or mask opacity values in the transparent imaging model. The
alpha source parameter in the graphics state determines whether the mask
values are interpreted as shape or opacity.

If present, this entry overrides the current soft mask in the graphics state,
as well as the image’s Mask entry, if any. (However, the other transparency-
related graphics state parameters—blend mode and alpha constant—
remain in effect.) If SMask is absent, the image has no associated soft
mask (although the current soft mask in the graphics state may still ap-
ply).

KEY TYPE VALUE

GraphicsCHAPTER 4
342

SMaskInData integer (Optional for images that use the JPXDecode filter, meaningless otherwise;
PDF 1.5) A code specifying how soft-mask information (see “Soft-Mask
Images” on page 553) encoded with image samples should be used:

0 If present, encoded soft-mask image information should be ig-
nored.

1 The image’s data stream includes encoded soft-mask values. An
application can create a soft-mask image from the information to
be used as a source of mask shape or mask opacity in the transpar-
ency imaging model.

2 The image’s data stream includes color channels that have been
preblended with a background; the image data also includes an
opacity channel. An application can create a soft-mask image with
a Matte entry from the opacity channel information to be used as
a source of mask shape or mask opacity in the transparency mod-
el.

If this entry has a nonzero value, SMask should not be specified. See also
Section 3.3.8, “JPXDecode Filter.”

Default value: 0.

Name name (Required in PDF 1.0; optional otherwise) The name by which this image
XObject is referenced in the XObject subdictionary of the current resource
dictionary (see Section 3.7.2, “Resource Dictionaries”).

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 53 in Appendix H.)

StructParent integer (Required if the image is a structural content item; PDF 1.3) The integer key
of the image’s entry in the structural parent tree (see “Finding Structure
Elements from Content Items” on page 868).

ID byte string (Optional; PDF 1.3; indirect reference preferred) The digital identifier of
the image’s parent Web Capture content set (see Section 10.9.5, “Object
Attributes Related to Web Capture”).

OPI dictionary (Optional; PDF 1.2) An OPI version dictionary for the image (see Section
10.10.6, “Open Prepress Interface (OPI)”). If ImageMask is true, this entry
is ignored.

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the image
(see Section 10.2.2, “Metadata Streams”).

KEY TYPE VALUE

ImagesSECTION 4.8
343

Example 4.28 defines an image 256 samples wide by 256 high, with 8 bits per
sample in the DeviceGray color space. It paints the image on a page with its lower-
left corner positioned at coordinates (45, 140) in current user space and scaled to
a width and height of 132 user space units.

Example 4.28

20 0 obj % Page object
<< /Type /Page

 /Parent 1 0 R
 /Resources 21 0 R
 /MediaBox [0 0 612 792]
 /Contents 23 0 R

>>
endobj

21 0 obj % Resource dictionary for page
<< /ProcSet [/PDF /ImageB]

 /XObject << /Im1 22 0 R >>
>>

endobj

22 0 obj % Image XObject
<< /Type /XObject

 /Subtype /Image
 /Width 256
 /Height 256
 /ColorSpace /DeviceGray
 /BitsPerComponent 8
 /Length 83183
 /Filter /ASCII85Decode

>>

OC dictionary (Optional; PDF 1.5) An optional content group or optional content mem-
bership dictionary (see Section 4.10, “Optional Content”), specifying the
optional content properties for this image XObject. Before the image is
processed, its visibility is determined based on this entry. If it is deter-
mined to be invisible, the entire image is skipped, as if there were no Do
operator to invoke it.

KEY TYPE VALUE

GraphicsCHAPTER 4
344

stream
9LhZI9h\GY9i+bb;,p:e;G9SP92/)X9MJ>^:f14d;,U(X8P;cO;G9e];c$=k9Mn\]
… Image data representing 65,536 samples …
8P;cO;G9e];c$=k9Mn\]~>
endstream
endobj

23 0 obj % Contents of page
<< /Length 56 >>

stream
q % Save graphics state

132 0 0 132 45 140 cm % Translate to (45,140) and scale by 132
/Im1 Do % Paint image

Q % Restore graphics state
endstream
endobj

Decode Arrays

An image’s data stream is initially decomposed into integers in the domain 0 to
2n − 1, where n is the value of the image dictionary’s BitsPerComponent entry.
The image’s Decode array specifies a linear mapping of each integer component
value to a number that would be appropriate as a component value in the image’s
color space.

Each pair of numbers in a Decode array specifies the lower and upper values to
which the domain of sample values in the image is mapped. A Decode array con-
tains one pair of numbers for each component in the color space specified by the
image’s ColorSpace entry. The mapping for each color component is a linear
transformation; that is, it uses the following formula for linear interpolation:

Generally, this formula is used to convert a value x between xmin and xmax to a
corresponding value y between ymin and ymax , projecting along the line defined
by the points (xmin , ymin) and (xmax , ymax). While this formula applies to values
outside the domain xmin to xmax and does not require that xmin < xmax , note that
interpolation used for color conversion, such as the Decode array, does require

y Interpolate x xmin xmax ymin ymax, , , ,)(=

ymin x xmin–)(
ymax ymin–
xmax xmin–
----------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

ImagesSECTION 4.8
345

that xmin < xmax and clips x values to this domain so that y = ymin for all x ≤ xmin ,
and y = ymax for all x ≥ xmax .

For a Decode array of the form [Dmin Dmax], this can be written as

where

n is the value of BitsPerComponent

x is the input value, in the domain 0 to 2n − 1

Dmin and Dmax are the values specified in the Decode array

y is the output value, to be interpreted in the image’s color space

Samples with a value of 0 are mapped to Dmin , those with a value of 2n − 1 are
mapped to Dmax , and those with intermediate values are mapped linearly be-
tween Dmin and Dmax . Table 4.40 lists the default Decode arrays for use with the
various color spaces. For most color spaces, the Decode arrays listed in the table
map into the full range of allowed component values. For an Indexed color space,
the default Decode array ensures that component values that index a color table
are passed through unchanged.

TABLE 4.40 Default Decode arrays

COLOR SPACE Decode ARRAY

DeviceGray [0.0 1.0]

DeviceRGB [0.0 1.0 0.0 1.0 0.0 1.0]

DeviceCMYK [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

CalGray [0.0 1.0]

CalRGB [0.0 1.0 0.0 1.0 0.0 1.0]

Lab [0 100 amin amax bmin bmax] where amin , amax , bmin , and bmax
correspond to the values in the Range array of the image’s color
space

y Interpolate x 0 2n 1– Dmin Dmax, , , ,)(=

Dmin x
Dmax Dmin–

2n 1–
-------------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

GraphicsCHAPTER 4
346

It is possible to specify a mapping that inverts sample color intensities by specify-
ing a Dmin value greater than Dmax . For example, if the image’s color space is
DeviceGray and the Decode array is [1.0 0.0], an input value of 0 is mapped to 1.0
(white); an input value of 2n − 1 is mapped to 0.0 (black).

The Dmin and Dmax parameters for a color component are not required to fall
within the range of values allowed for that component. For instance, if an applica-
tion uses 6-bit numbers as its native image sample format, it can represent those
samples in PDF in 8-bit form, setting the two unused high-order bits of each
sample to 0. The image dictionary should then specify a Decode array of
[0.00000 4.04762], which maps input values from 0 to 63 into the range 0.0 to 1.0
(4.04762 being approximately equal to 255 ÷ 63). If an output value falls outside
the range allowed for a component, it is automatically adjusted to the nearest al-
lowed value.

Image Interpolation

When the resolution of a source image is significantly lower than that of the out-
put device, each source sample covers many device pixels. As a result, images can
appear jaggy or blocky. These visual artifacts can be reduced by applying an im-
age interpolation algorithm during rendering. Instead of painting all pixels cov-
ered by a source sample with the same color, image interpolation attempts to
produce a smooth transition between adjacent sample values. Image interpola-
tion is enabled by setting the Interpolate entry in the image dictionary to true. It
is disabled by default because it may increase the time required to render the im-
age.

ICCBased Same as the value of Range in the ICC profile of the image’s color
space

Indexed [0 N], where N = 2n − 1

Pattern (Not permitted with images)

Separation [0.0 1.0]

DeviceN [0.0 1.0 0.0 1.0 … 0.0 1.0] (one pair of elements for each color
component)

COLOR SPACE Decode ARRAY

ImagesSECTION 4.8
347

Note: The interpolation algorithm is implementation-dependent and is not specified
by PDF. Image interpolation may not always be performed for some classes of imag-
es or on some output devices.

Alternate Images

Alternate images (PDF 1.3) provide a straightforward and backward-compatible
way to include multiple versions of an image in a PDF file for different purposes.
These variant representations of the image may differ, for example, in resolution
or in color space. The primary goal is to reduce the need to maintain separate
versions of a PDF document for low-resolution on-screen viewing and high-
resolution printing.

In PDF 1.3, a base image (that is, the image XObject referred to in a resource
dictionary) can contain an Alternates entry. The value of this entry is an array of
alternate image dictionaries specifying variant representations of the base image.
Each alternate image dictionary contains an image XObject for one variant and
specifies its properties. Table 4.41 shows the contents of an alternate image dictio-
nary.

TABLE 4.41 Entries in an alternate image dictionary

Example 4.29 shows an image with a single alternate. The base image is a gray-
scale image, and the alternate is a high-resolution RGB image stored on a Web
server.

KEY TYPE VALUE

Image stream (Required) The image XObject for the alternate image.

DefaultForPrinting boolean (Optional) A flag indicating whether this alternate image is the default ver-
sion to be used for printing. At most one alternate for a given base image may
be so designated. If no alternate has this entry set to true, the base image is
used for printing.

OC dictionary (Optional; PDF 1.5) An optional content group (see Section 4.10.1, “Optional
Content Groups”) or optional content membership dictionary (see “Optional
Content Membership Dictionaries” on page 365”) that facilitates the selec-
tion of which alternate image to use.

GraphicsCHAPTER 4
348

Example 4.29

10 0 obj % Image XObject
<< /Type /XObject

 /Subtype /Image
 /Width 100
 /Height 200
 /ColorSpace /DeviceGray
 /BitsPerComponent 8
 /Alternates 15 0 R
 /Length 2167
 /Filter /DCTDecode

>>
stream
… Image data …
endstream
endobj

15 0 obj % Alternate images array
[<< /Image 16 0 R

/DefaultForPrinting true
 >>
]

endobj

16 0 obj % Alternate image
<< /Type /XObject

 /Subtype /Image
 /Width 1000
 /Height 2000
 /ColorSpace /DeviceRGB
 /BitsPerComponent 8
 /Length 0 % This is an external stream
 /F << /FS /URL

 /F (http : / / www . myserver . mycorp . com / images / exttest . jpg)
 >>

 /FFilter /DCTDecode
>>

stream
endstream
endobj

ImagesSECTION 4.8
349

In PDF 1.5, optional content (see Section 4.10) can be used to facilitate selection
between alternate images. If an image XObject contains both an Alternates entry
and an OC entry, the choice of which image to use is determined as follows:

1. If the image’s OC entry specifies that the base image is visible, that image is dis-
played.

2. Otherwise, the list of alternates specified by the Alternates entry is examined,
and the first alternate containing an OC entry specifying that its content
should be visible is shown. (Alternate images that have no OC entry are not
shown.)

4.8.5 Masked Images

Ordinarily, in the opaque imaging model, images mark all areas they occupy on
the page as if with opaque paint. All portions of the image, whether black, white,
gray, or color, completely obscure any marks that may previously have existed in
the same place on the page. In the graphic arts industry and page layout appli-
cations, however, it is common to crop or mask out the background of an image
and then place the masked image on a different background so that the existing
background shows through the masked areas. A number of PDF features are
available for achieving such masking effects (see implementation note 54 in Ap-
pendix H):

• The ImageMask entry in the image dictionary, available in all versions of PDF,
specifies that the image data is to be used as a stencil mask for painting in the
current color.

• The Mask entry in the image dictionary (PDF 1.3) may specify a separate image
XObject to be used as an explicit mask specifying which areas of the image to
paint and which to mask out.

• Alternatively, the Mask entry (PDF 1.3) may specify a range of colors to be
masked out wherever they occur within the image. This technique is known as
color key masking.

Note: Although the Mask entry is a PDF 1.3 feature, its effects are commonly simu-
lated in earlier versions of PDF by defining a clipping path enclosing only those of an
image’s samples that are to be painted. However, implementation limits can cause
errors if the clipping path is very complex (or if there is more than one clipping
path). An alternative way to achieve the effect of an explicit mask in PDF 1.2 is to

GraphicsCHAPTER 4
350

define the image being clipped as a pattern, make it the current color, and then
paint the explicit mask as an image whose ImageMask entry is true. In any case, the
PDF 1.3 features allow masked images to be placed on the page regardless of the
complexity of the clipping path.

In the transparent imaging model, a fourth type of masking effect, soft masking, is
available through the SMask entry (PDF 1.4) or the SMaskInData entry (PDF 1.5)
in the image dictionary; see Section 7.5.4, “Specifying Soft Masks,” for further
discussion.

Stencil Masking

An image mask (an image XObject whose ImageMask entry is true) is a mono-
chrome image in which each sample is specified by a single bit. However, instead
of being painted in opaque black and white, the image mask is treated as a stencil
mask that is partly opaque and partly transparent. Sample values in the image do
not represent black and white pixels; rather, they designate places on the page that
should either be marked with the current color or masked out (not marked at all).
Areas that are masked out retain their former contents. The effect is like applying
paint in the current color through a cut-out stencil, which lets the paint reach the
page in some places and masks it out in others.

An image mask differs from an ordinary image in the following significant ways:

• The image dictionary does not contain a ColorSpace entry because sample
values represent masking properties (1 bit per sample) rather than colors.

• The value of the BitsPerComponent entry must be 1.

• The Decode entry determines how the source samples are to be interpreted. If
the Decode array is [0 1] (the default for an image mask), a sample value of 0
marks the page with the current color, and a 1 leaves the previous contents un-
changed. If the Decode array is [1 0], these meanings are reversed.

One of the most important uses of stencil masking is for painting character
glyphs represented as bitmaps. Using such a glyph as a stencil mask transfers only
its “black” bits to the page, leaving the “white” bits (which are really just back-
ground) unchanged. For reasons discussed in Section 5.5.4, “Type 3 Fonts,” an
image mask, rather than an image, should almost always be used to paint glyph
bitmaps.

ImagesSECTION 4.8
351

Note: If image interpolation (see “Image Interpolation” on page 346) is requested
during stencil masking, the effect is to smooth the edges of the mask, not to interpo-
late the painted color values. This effect can minimize the jaggy appearance of a
low-resolution stencil mask.

Explicit Masking

In PDF 1.3, the Mask entry in an image dictionary may be an image mask, as de-
scribed above under “Stencil Masking,” which serves as an explicit mask for the
primary (base) image. The base image and the image mask need not have the
same resolution (Width and Height values), but since all images are defined on
the unit square in user space, their boundaries on the page will coincide; that is,
they will overlay each other. The image mask indicates which places on the page
are to be painted and which are to be masked out (left unchanged). Unmasked ar-
eas are painted with the corresponding portions of the base image; masked areas
are not.

Color Key Masking

In PDF 1.3, the Mask entry in an image dictionary may alternatively be an array
specifying a range of colors to be masked out. Samples in the image that fall with-
in this range are not painted, allowing the existing background to show through.
The effect is similar to that of the video technique known as chroma-key.

For color key masking, the value of the Mask entry is an array of 2 × n integers,
[min1 max1 … minn maxn], where n is the number of color components in the
image’s color space. Each integer must be in the range 0 to 2BitsPerComponent − 1,
representing color values before decoding with the Decode array. An image sam-
ple is masked (not painted) if all of its color components before decoding, c1 … cn ,
fall within the specified ranges (that is, if mini ≤ ci ≤ maxi for all 1 ≤ i ≤ n).

Note: When color key masking is specified, the use of a DCTDecode filter for the
stream is not recommended. DCTDecode is a lossy filter, meaning that the output is
only an approximation of the original input data. Therefore, the use of this filter can
lead to slight changes in the color values of image samples, possibly causing samples
that were intended to be masked to be unexpectedly painted instead, in colors slight-
ly different from the mask color.

GraphicsCHAPTER 4
352

4.8.6 Inline Images

As an alternative to the image XObjects described in Section 4.8.4, “Image Dic-
tionaries,” a sampled image may be specified in the form of an inline image. This
type of image is defined directly within the content stream in which it will be
painted rather than as a separate object. Because the inline format gives the appli-
cation less flexibility in managing the image data, it should be used only for small
images (4 KB or less).

An inline image object is delimited in the content stream by the operators BI
(begin image), ID (image data), and EI (end image). These operators are summa-
rized in Table 4.42. BI and ID bracket a series of key-value pairs specifying the
characteristics of the image, such as its dimensions and color space; the image
data follows between the ID and EI operators. The format is thus analogous to that
of a stream object such as an image XObject:

BI
… Key-value pairs …
ID
… Image data …
EI

TABLE 4.42 Inline image operators

Inline image objects may not be nested; that is, two BI operators may not appear
without an intervening EI to close the first object. Similarly, an ID operator may
appear only between a BI and its balancing EI. Unless the image uses
ASCIIHexDecode or ASCII85Decode as one of its filters, the ID operator should be
followed by a single white-space character, and the next character is interpreted
as the first byte of image data.

The key-value pairs appearing between the BI and ID operators are analogous to
those in the dictionary portion of an image XObject (though the syntax is differ-
ent). Table 4.43 shows the entries that are valid for an inline image, all of which

OPERANDS OPERATOR DESCRIPTION

— BI Begin an inline image object.

— ID Begin the image data for an inline image object.

— EI End an inline image object.

ImagesSECTION 4.8
353

have the same meanings as in a stream dictionary (Table 3.4 on page 62) or an
image dictionary (Table 4.39). Entries other than those listed are ignored; in par-
ticular, the Type, Subtype, and Length entries normally found in a stream or im-
age dictionary are unnecessary. For convenience, the abbreviations shown in the
table may be used in place of the fully spelled-out keys. Table 4.44 shows addi-
tional abbreviations that can be used for the names of color spaces and filters.
Note, however, that these abbreviations are valid only in inline images; they may
not be used in image XObjects. Also note that JBIG2Decode and JPXDecode are
not listed in Table 4.44 because those filters can be applied only to image
XObjects.

TABLE 4.43 Entries in an inline image object

TABLE 4.44 Additional abbreviations in an inline image object

FULL NAME ABBREVIATION

BitsPerComponent BPC

ColorSpace CS

Decode D

DecodeParms DP

Filter F

Height H

ImageMask IM

Intent (PDF 1.1) No abbreviation

Interpolate I (uppercase I)

Width W

FULL NAME ABBREVIATION

DeviceGray G

DeviceRGB RGB

DeviceCMYK CMYK

Indexed I (uppercase I)

GraphicsCHAPTER 4
354

The color space specified by the ColorSpace (or CS) entry may be any of the stan-
dard device color spaces (DeviceGray, DeviceRGB, or DeviceCMYK). It may not be
a CIE-based color space or a special color space, with the exception of a limited
form of Indexed color space whose base color space is a device space and whose
color table is specified by a byte string (see “Indexed Color Spaces” on page 262).
Beginning with PDF 1.2, the value of the ColorSpace entry may also be the name
of a color space in the ColorSpace subdictionary of the current resource dictio-
nary (see Section 3.7.2, “Resource Dictionaries”). In this case, the name may des-
ignate any color space that can be used with an image XObject.

Note: The names DeviceGray, DeviceRGB, and DeviceCMYK (as well as their abbre-
viations G, RGB, and CMYK) always identify the corresponding color spaces directly;
they never refer to resources in the ColorSpace subdictionary.

The image data in an inline image may be encoded by using any of the standard
PDF filters. The bytes between the ID and EI operators are treated much the same
as a stream object’s data (see Section 3.2.7, “Stream Objects”), even though they
do not follow the standard stream syntax. (This is an exception to the usual rule
that the data in a content stream is interpreted according to the standard PDF
syntax for objects.)

Example 4.30 shows an inline image 17 samples wide by 17 high with 8 bits per
component in the DeviceRGB color space. The image has been encoded using
LZW and ASCII base-85 encoding. The cm operator is used to scale it to a width
and height of 17 units in user space and position it at coordinates (298, 388). The
q and Q operators encapsulate the cm operation to limit its effect to resizing the
image.

ASCIIHexDecode AHx

ASCII85Decode A85

LZWDecode LZW

FlateDecode (PDF 1.2) Fl (uppercase F, lowercase L)

RunLengthDecode RL

CCITTFaxDecode CCF

DCTDecode DCT

FULL NAME ABBREVIATION

Form XObjectsSECTION 4.9
355

Example 4.30

q % Save graphics state
17 0 0 17 298 388 cm % Scale and translate coordinate space
BI % Begin inline image object

/W 17 % Width in samples
/H 17 % Height in samples
/CS /RGB % Color space
/BPC 8 % Bits per component
/F [/A85 /LZW] % Filters

ID % Begin image data
J1/gKA>.]AN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ
… Omitted data …
R.s(4KE3&d&7hb*7[%Ct2HCqC~>
EI % End inline image object
Q % Restore graphics state

4.9 Form XObjects

A form XObject is a PDF content stream that is a self-contained description of any
sequence of graphics objects (including path objects, text objects, and sampled
images). A form XObject may be painted multiple times—either on several pages
or at several locations on the same page—and produces the same results each
time, subject only to the graphics state at the time it is invoked. Not only is this
shared definition economical to represent in the PDF file, but under suitable cir-
cumstances the PDF consumer application can optimize execution by caching the
results of rendering the form XObject for repeated reuse.

Note: The term form also refers to a completely different kind of object, an inter-
active form (sometimes called an AcroForm), discussed in Section 8.6, “Interactive
Forms.” Whereas the form XObjects described in this section correspond to the no-
tion of forms in the PostScript language, interactive forms are the PDF equivalent of
the familiar paper instrument. Any unqualified use of the word form is understood
to refer to an interactive form; the type of form described here is always referred to
explicitly as a form XObject.

GraphicsCHAPTER 4
356

Form XObjects have various uses:

• As its name suggests, a form XObject can serve as the template for an entire
page. For example, a program that prints filled-in tax forms can first paint the
fixed template as a form XObject and then paint the variable information on
top of it.

• Any graphical element that is to be used repeatedly, such as a company logo or
a standard component in the output from a computer-aided design system, can
be defined as a form XObject.

• Certain document elements that are not part of a page’s contents, such as
annotation appearances (see Section 8.4.4, “Appearance Streams”), are repre-
sented as form XObjects.

• A specialized type of form XObject, called a group XObject (PDF 1.4), can be
used to group graphical elements together as a unit for various purposes (see
Section 4.9.2, “Group XObjects”). In particular, group XObjects are used to de-
fine transparency groups and soft masks for use in the transparent imaging
model (see “Soft-Mask Dictionaries” on page 552 and Section 7.5.5, “Transpar-
ency Group XObjects”).

• Another specialized type of form XObject, a reference XObject (PDF 1.4), can
be used to import content from one PDF document into another (see Section
4.9.3, “Reference XObjects”).

The use of form XObjects requires two steps:

1. Define the appearance of the form XObject. A form XObject is a PDF content
stream. The dictionary portion of the stream (called the form dictionary)
contains descriptive information about the form XObject; the body of the
stream describes the graphics objects that produce its appearance. The con-
tents of the form dictionary are described in Section 4.9.1, “Form Diction-
aries.”

2. Paint the form XObject. The Do operator (see Section 4.7, “External Objects”)
paints a form XObject whose name is supplied as an operand. (The name is
defined in the XObject subdictionary of the current resource dictionary.)
Before invoking this operator, the content stream in which it appears should
set appropriate parameters in the graphics state. In particular, it should alter
the current transformation matrix to control the position, size, and orientation
of the form XObject in user space.

Form XObjectsSECTION 4.9
357

Each form XObject is defined in its own coordinate system, called form space.
The BBox entry in the form dictionary is expressed in form space, as are any
coordinates used in the form XObject’s content stream, such as path coordinates.
The Matrix entry in the form dictionary specifies the mapping from form space to
the current user space. Each time the form XObject is painted by the Do operator,
this matrix is concatenated with the current transformation matrix to define the
mapping from form space to device space. (This differs from the Matrix entry in a
pattern dictionary, which maps pattern space to the initial user space of the con-
tent stream in which the pattern is used.)

When the Do operator is applied to a form XObject, it does the following tasks:

1. Saves the current graphics state, as if by invoking the q operator (see Section
4.3.3, “Graphics State Operators”)

2. Concatenates the matrix from the form dictionary’s Matrix entry with the cur-
rent transformation matrix (CTM)

3. Clips according to the form dictionary’s BBox entry

4. Paints the graphics objects specified in the form’s content stream

5. Restores the saved graphics state, as if by invoking the Q operator (see Section
4.3.3, “Graphics State Operators”)

Except as described above, the initial graphics state for the form is inherited from
the graphics state that is in effect at the time Do is invoked.

4.9.1 Form Dictionaries

Every form XObject has a form type, which determines the format and meaning
of the entries in its form dictionary. At the time of publication, only one form
type, type 1, has been defined. Form XObject dictionaries may contain the entries
shown in Table 4.45, in addition to the usual entries common to all streams (see
Table 3.4 on page 62).

GraphicsCHAPTER 4
358

TABLE 4.45 Additional entries specific to a type 1 form dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be XObject for a form XObject.

Subtype name (Required) The type of XObject that this dictionary describes; must be Form
for a form XObject.

FormType integer (Optional) A code identifying the type of form XObject that this dictionary
describes. The only valid value defined at the time of publication is 1. Default
value: 1.

BBox rectangle (Required) An array of four numbers in the form coordinate system (see
above), giving the coordinates of the left, bottom, right, and top edges,
respectively, of the form XObject’s bounding box. These boundaries are used
to clip the form XObject and to determine its size for caching.

Matrix array (Optional) An array of six numbers specifying the form matrix, which maps
form space into user space (see Section 4.2.3, “Transformation Matrices”).
Default value: the identity matrix [1 0 0 1 0 0].

Resources dictionary (Optional but strongly recommended; PDF 1.2) A dictionary specifying any
resources (such as fonts and images) required by the form XObject (see Sec-
tion 3.7, “Content Streams and Resources”).

In PDF 1.1 and earlier, all named resources used in the form XObject must be
included in the resource dictionary of each page object on which the form
XObject appears, regardless of whether they also appear in the resource dic-
tionary of the form XObject. It can be useful to specify these resources in the
form XObject’s resource dictionary as well, to determine which resources are
used inside the form XObject. If a resource is included in both dictionaries, it
should have the same name in both locations.

In PDF 1.2 and later versions, form XObjects can be independent of the
content streams in which they appear, and this is strongly recommended
although not required. In an independent form XObject, the resource dictio-
nary of the form XObject is required and contains all named resources used
by the form XObject. These resources are not promoted to the outer content
stream’s resource dictionary, although that stream’s resource dictionary refers
to the form XObject.

Form XObjectsSECTION 4.9
359

Group dictionary (Optional; PDF 1.4) A group attributes dictionary indicating that the contents
of the form XObject are to be treated as a group and specifying the attributes
of that group (see Section 4.9.2, “Group XObjects”).

Note: If a Ref entry (see below) is present, the group attributes also apply to the
external page imported by that entry, which allows such an imported page to be
treated as a group without further modification.

Ref dictionary (Optional; PDF 1.4) A reference dictionary identifying a page to be imported
from another PDF file, and for which the form XObject serves as a proxy (see
Section 4.9.3, “Reference XObjects”).

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the form
XObject (see Section 10.2.2, “Metadata Streams”).

PieceInfo dictionary (Optional; PDF 1.3) A page-piece dictionary associated with the form
XObject (see Section 10.4, “Page-Piece Dictionaries”).

LastModified date (Required if PieceInfo is present; optional otherwise; PDF 1.3) The date and
time (see Section 3.8.3, “Dates”) when the form XObject’s contents were most
recently modified. If a page-piece dictionary (PieceInfo) is present, the modi-
fication date is used to ascertain which of the application data dictionaries it
contains correspond to the current content of the form (see Section 10.4,
“Page-Piece Dictionaries”).

StructParent integer (Required if the form XObject is a structural content item; PDF 1.3) The inte-
ger key of the form XObject’s entry in the structural parent tree (see “Finding
Structure Elements from Content Items” on page 868).

StructParents integer (Required if the form XObject contains marked-content sequences that are
structural content items; PDF 1.3) The integer key of the form XObject’s entry
in the structural parent tree (see “Finding Structure Elements from Content
Items” on page 868).

Note: At most one of the entries StructParent or StructParents may be present. A
form XObject can be either a content item in its entirety or a container for
marked-content sequences that are content items, but not both.

OPI dictionary (Optional; PDF 1.2) An OPI version dictionary for the form XObject (see
Section 10.10.6, “Open Prepress Interface (OPI)”).

KEY TYPE VALUE

GraphicsCHAPTER 4
360

Example 4.31 shows a simple form XObject that paints a filled square 1000 units
on each side.

Example 4.31

6 0 obj % Form XObject
<< /Type /XObject

 /Subtype /Form
 /FormType 1
 /BBox [0 0 1000 1000]
 /Matrix [1 0 0 1 0 0]
 /Resources << /ProcSet [/PDF] >>
 /Length 58

>>
stream

0 0 m
0 1000 l
1000 1000 l
1000 0 l
f

endstream
endobj

4.9.2 Group XObjects

A group XObject (PDF 1.4) is a special type of form XObject that can be used to
group graphical elements together as a unit for various purposes. It is distin-
guished by the presence of the optional Group entry in the form dictionary (see

OC dictionary (Optional; PDF 1.5) An optional content group or optional content member-
ship dictionary (see Section 4.10, “Optional Content”) specifying the option-
al content properties for the form XObject. Before the form is processed, its
visibility is determined based on this entry. If it is determined to be invisible,
the entire form is skipped, as if there were no Do operator to invoke it.

Name name (Required in PDF 1.0; optional otherwise) The name by which this form
XObject is referenced in the XObject subdictionary of the current resource
dictionary (see Section 3.7.2, “Resource Dictionaries”).

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 55 in Appendix H.)

KEY TYPE VALUE

Form XObjectsSECTION 4.9
361

Section 4.9.1, “Form Dictionaries”). The value of this entry is a subsidiary group
attributes dictionary describing the properties of the group.

As shown in Table 4.46, every group XObject has a group subtype (specified by
the S entry in the group attributes dictionary) that determines the format and
meaning of the dictionary’s remaining entries. Only one such subtype is currently
defined, a transparency group XObject (subtype Transparency) representing a
transparency group for use in the transparent imaging model (see Section 7.3,
“Transparency Groups”). The remaining contents of this type of dictionary are
described in Section 7.5.5, “Transparency Group XObjects.”

TABLE 4.46 Entries common to all group attributes dictionaries

4.9.3 Reference XObjects

Reference XObjects (PDF 1.4) enable one PDF document to import content from
another. The document in which the reference occurs is called the containing
document; the one whose content is being imported is the target document. The
target document may reside in a file external to the containing document or may
be included within it as an embedded file stream (see Section 3.10.3, “Embedded
File Streams”).

The reference XObject in the containing document is a form XObject containing
the optional Ref entry in its form dictionary, as described below. This form XOb-
ject serves as a proxy that can be displayed or printed in place of the imported
content. The proxy might consist of a low-resolution image of the imported con-
tent, a piece of descriptive text referring to it, a gray box to be displayed in its
place, or any other similar placeholder. PDF consumers that do not recognize the
Ref entry simply display or print the proxy as an ordinary form XObject (see im-

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must
be Group for a group attributes dictionary.

S name (Required) The group subtype, which identifies the type of group whose at-
tributes this dictionary describes and determines the format and meaning of the
dictionary’s remaining entries. The only group subtype defined in PDF 1.4 is
Transparency; see Section 7.5.5, “Transparency Group XObjects,” for the re-
maining contents of this type of dictionary. Other group subtypes may be added
in the future.

GraphicsCHAPTER 4
362

plementation note 56 in Appendix H). Those that do implement reference XOb-
jects can use the proxy in place of the imported content if the latter is unavailable.
An application may also provide a user interface to allow editing and updating of
imported content links.

The imported content consists of a single, complete PDF page in the target docu-
ment. It is designated by a reference dictionary, which in turn is the value of the
Ref entry in the reference XObject’s form dictionary (see Section 4.9.1, “Form
Dictionaries”). The presence of the Ref entry distinguishes reference XObjects
from other types of form XObjects. Table 4.47 shows the contents of the reference
dictionary.

TABLE 4.47 Entries in a reference dictionary

When the imported content replaces the proxy, it is transformed according to the
proxy object’s transformation matrix and clipped to the boundaries of its bound-
ing box, as specified by the Matrix and BBox entries in the proxy’s form dictionary
(see Section 4.9.1, “Form Dictionaries”). The combination of the proxy object’s
matrix and bounding box thus implicitly defines the bounding box of the import-
ed page. This bounding box typically coincides with the imported page’s crop box
or art box (see Section 10.10.1, “Page Boundaries”), but it is not required to corre-
spond to any of the defined page boundaries. If the proxy object’s form dictionary
contains a Group entry, the specified group attributes apply to the imported page
as well, which allows the imported page to be treated as a group without further
modification.

KEY TYPE VALUE

F file specification (Required) The file containing the target document.

Page integer or
text string

(Required) A page index or page label (see Section 8.3.1, “Page Labels”) iden-
tifying the page of the target document containing the content to be
imported. Note that the reference is a weak one and can be inadvertently in-
validated if the referenced page is changed or replaced in the target document
after the reference is created.

ID array (Optional) An array of two byte strings constituting a file identifier (see Sec-
tion 10.3, “File Identifiers”) for the file containing the target document. The
use of this entry improves an application’s chances of finding the intended file
and allows it to warn the user if the file has changed since the reference was
created.

Form XObjectsSECTION 4.9
363

Printing Reference XObjects

When printing a page containing reference XObjects, an application may emit
any of the following items, depending on the capabilities of the application, the
user’s preferences, and the nature of the print job:

• The imported content designated by the reference XObject

• The reference XObject as a proxy for the imported content

• An OPI proxy or substitute image taken from the reference XObject’s OPI dic-
tionary, if any (see Section 10.10.6, “Open Prepress Interface (OPI)”)

The imported content or the reference XObject may also be emitted in place of an
OPI proxy when generating OPI comments in a PostScript output stream.

Special Considerations

Certain special considerations arise when reference XObjects interact with other
PDF features:

• When the page imported by a reference XObject contains annotations (see Sec-
tion 8.4, “Annotations”), all annotations that contain a printable, unhidden,
visible appearance stream (Section 8.4.4, “Appearance Streams”) must be in-
cluded in the rendering of the imported page. If the proxy is a snapshot image
of the imported page, it must also include the annotation appearances. These
appearances must therefore be converted into part of the proxy’s content
stream, either as subsidiary form XObjects or by flattening them directly into
the content stream.

• Logical structure information associated with a page (see Section 10.6, “Logical
Structure”) should normally be ignored when importing the page into another
document with a reference XObject. In a target document with multiple pages,
structure elements occurring on the imported page are typically part of a larger
structure pertaining to the document as a whole; such elements cannot mean-
ingfully be incorporated into the structure of the containing document. In a
one-page target document or one made up of independent, structurally unre-
lated pages, the logical structure for the imported page may be wholly self-con-
tained; in this case, it may be possible to incorporate this structure information
into that of the containing document. However, PDF provides no mechanism

GraphicsCHAPTER 4
364

for the logical structure hierarchy of one document to refer indirectly to that of
another.

4.10 Optional Content

Optional content (PDF 1.5) refers to sections of content in a PDF document that
can be selectively viewed or hidden by document authors or consumers. This ca-
pability is useful in items such as CAD drawings, layered artwork, maps, and
multi-language documents.

The following sections describe the PDF structures used to implement optional
content:

• Section 4.10.1, “Optional Content Groups,” describes the primary structures
used to control the visibility of content.

• Section 4.10.2, “Making Graphical Content Optional,” describes how individu-
al pieces of content in a document may declare themselves as belonging to one
or more optional content groups.

• Section 4.10.3, “Configuring Optional Content,” describes how the states of op-
tional content groups are set.

4.10.1 Optional Content Groups

An optional content group is a dictionary representing a collection of graphics
that can be made visible or invisible dynamically by users of viewer applications.
The graphics belonging to such a group can reside anywhere in the document:
they need not be consecutive in drawing order, nor even belong to the same con-
tent stream. Table 4.48 shows the entries in an optional content group dictionary.

TABLE 4.48 Entries in an optional content group dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be OCG
for an optional content group dictionary.

Name text string (Required) The name of the optional content group, suitable for presentation in
a viewer application’s user interface.

Optional ContentSECTION 4.10
365

In its simplest form, each dictionary contains a Type entry and a Name for pre-
sentation in a user interface. It may also have an Intent entry that describes its in-
tended use (see “Intent” on page 368) and a Usage entry that describes the nature
of its content (see “Usage and Usage Application Dictionaries” on page 380).

Individual content elements in a document specify the optional content group or
groups that affect their visibility (see Section 4.10.2, “Making Graphical Content
Optional”). Any content whose visibility can be affected by a given optional con-
tent group is said to belong to that group.

A group is assigned a state, which is either ON or OFF. States are not themselves
part of the PDF document but can be set programmatically or through the viewer
user interface to change the visibility of content. When a document is first
opened, the groups’ states are initialized based on the document’s default config-
uration dictionary (see “Optional Content Configuration Dictionaries” on page
375).

In the typical case, content belonging to a group is visible when the group is ON
and invisible when it is OFF. In more complex cases, content can belong to multi-
ple groups, which may have conflicting states. These cases are described by the
use of optional content membership dictionaries, described in the next section.

Optional Content Membership Dictionaries

As mentioned above, content typically belongs to a single optional content group
and is visible when the group is ON and invisible when it is OFF. To express more
complex visibility policies, content should declare itself not to belong directly to

Intent name or array (Optional) A single intent name or an array containing any combination of
names. PDF 1.5 defines two names, View and Design, that indicate the intended
use of the graphics in the group. Future versions may define others. A process-
ing application can choose to use only groups that have a specific intent and ig-
nore others.

Default value: View. See “Intent” on page 368 for more information.

Usage dictionary (Optional) A usage dictionary describing the nature of the content controlled by
the group. It may be used by features that automatically control the state of the
group based on outside factors. See “Usage and Usage Application Dictionaries”
on page 380 for more information.

KEY TYPE VALUE

GraphicsCHAPTER 4
366

an optional content group but rather to an optional content membership dictio-
nary, whose entries are shown in Table 4.49. (Section 4.10.2 describes how con-
tent declares its membership in a group or membership dictionary.)

TABLE 4.49 Entries in an optional content membership dictionary

An optional content membership dictionary can express its visibility policy in
two ways:

• The P entry specifies a simple boolean expression indicating how the optional
content groups specified by the OCGs entry determine the visibility of content
controlled by the membership dictionary.

• PDF 1.6 introduces the VE entry, which is a visibility expression that can specify
an arbitrary boolean expression for computing the visibility of content from the
states of optional content groups.

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be OCMD
for an optional content membership dictionary.

OCGs dictionary or
array

(Optional) A dictionary or array of dictionaries specifying the optional content
groups whose states determine the visibility of content controlled by this member-
ship dictionary.

Note: Null values or references to deleted objects are ignored. If this entry is not
present, is an empty array, or contains references only to null or deleted objects, the
membership dictionary has no effect on the visibility of any content.

P name (Optional) A name specifying the visibility policy for content belonging to this
membership dictionary. Valid values are:

• AllOn: visible only if all of the entries in OCGs are ON

• AnyOn: visible if any of the entries in OCGs are ON

• AnyOff: visible if any of the entries in OCGs are OFF

• AllOff: visible only if all of the entries in OCGs are OFF

Default value: AnyOn

VE array (Optional; PDF 1.6) An array specifying a visibility expression, used to compute
visibility of content based on a set of optional content groups; see discussion be-
low.

Optional ContentSECTION 4.10
367

Note: Since the VE entry is more general, if it is present and supported by the PDF
consumer software, it should be used in preference to OCGs and P. However, for
compatibility purposes, PDF creators should use OCGs and P entries where possible.
When the use of VE is necessary to express the intended behavior, OCGs and P en-
tries should also be provided to approximate the behavior in older consumer soft-
ware.

A visibility expression is an array with the following characteristics:

• Its first element is a name representing a boolean operator (And, Or, or Not).

• Subsequent elements are either optional content groups or other visibility ex-
pressions.

• If the first element is Not, it should have only one subsequent element. If the
first element is And or Or, it may have one or more subsequent elements.

• In evaluating a visibility expression, the ON state of an optional content group is
equated to the boolean value true; OFF is equated to false.

Examples 4.33 and 4.34 illustrate the use of visibility expressions.

Membership dictionaries are useful in cases such as these:

• Some content may choose to be invisible when a group is ON and visible when it
is OFF. In this case, the content would belong to a membership dictionary
whose OCGs entry consists of a single optional content group and whose P en-
try is AnyOff or AllOff.

Note: It is legal to have an OCGs entry consisting of a single group and a P entry
that is AnyOn or AllOn. However, in this case it is preferable to use an optional
content group directly because it uses fewer objects.

• Some content may belong to more than one group and must specify its policy
when the groups are in conflicting states. In this case, the content would belong
to a membership dictionary whose OCGs entry consists of an array of optional
content groups and whose P entry specifies the visibility policy, as illustrated in
Example 4.32 below. (Example 4.33 shows the equivalent policy using visibility
expressions.)

GraphicsCHAPTER 4
368

Example 4.32

<< /Type /OCMD % Content belonging to this optional content
% membership dictionary is controlled by the states

/OCGs [12 0 R 13 0 R 14 0 R] % of three optional content groups.
/P /AllOn % Content is visible only if the state of all three

>> % groups is ON; otherwise it’s hidden.

Example 4.33

<< /Type /OCMD
/VE [/And 12 0 R 13 0 R 14 0 R] % Visibility expression equivalent to Example 4.32.

>>

Example 4.34 shows a more complicated visibility expression based on five op-
tional content groups, represented by objects 1 through 5. It is equivalent to

“OCG 1” OR (NOT “OCG 2”) OR (“OCG 3” AND “OCG 4” AND “OCG 5”)

Example 4.34

<< /Type /OCMD
/VE [/Or % Visibility expression: OR

 1 0 R % OCG 1
 [/Not 2 0 R] % NOT OCG 2
 [/And 3 0 R 4 0 R 5 0 R] % OCG 3 AND OCG 4 AND OCG 5

]
>>

Intent

The Intent entry in Table 4.48 provides a way to distinguish between different in-
tended uses of optional content. For example, many document design applica-
tions, such as CAD packages, offer layering features for collecting groups of
graphics together and selectively hiding or viewing them for the convenience of
the author. However, this layering may be different (at a finer granularity, for ex-
ample) than would be useful to consumers of the document. Therefore, it is pos-
sible to specify different intents for optional content groups within a single
document. A given application may decide to use only groups that are of a specif-
ic intent.

PDF 1.5 defines two intents: Design, which is intended to represent a document
designer’s structural organization of artwork, and View, which is intended for in-

Optional ContentSECTION 4.10
369

teractive use by document consumers. More intents may be added in future PDF
versions; for compatibility with future versions, PDF consumers should allow un-
recognized Intent values.

Configuration dictionaries (see “Optional Content Configuration Dictionaries”
on page 375) also contain an Intent entry. If one or more of a group’s intents is
contained in the current configuration’s set of intents, the group is used in deter-
mining visibility. If there is no match, the group has no effect on visibility.

Note: If the configuration’s Intent is an empty array, no groups are used in determin-
ing visibility; therefore, all content is considered visible.

4.10.2 Making Graphical Content Optional

Graphical content in a PDF file can be made optional by specifying membership
in an optional content group or optional content membership dictionary. Two
primary mechanisms are available:

• Sections of content streams delimited by marked-content operators can be
made optional, as described in “Optional Content in Content Streams,” below.

• Form and image XObjects and annotations can be made optional in their en-
tirety by means of a dictionary entry, as described in “Optional Content in
XObjects and Annotations” on page 374.

When a piece of optional content in a PDF file is determined to be hidden, the
following occurs:

• The content is not drawn.

• Graphics state operations, such as setting the color, transformation matrix, and
clipping, are still applied. In addition, graphics state side effects that arise from
drawing operators are applied; in particular, the current text position is updat-
ed even for text wrapped in optional content. In other words, graphics state pa-
rameters that persist past the end of a marked-content section must be the
same whether the optional content is visible or not. For example, hiding a sec-
tion of optional content does not change the color of objects that do not belong
to the same optional content group.

Note: This rule also applies to operators that set state that is not strictly graphics
state; for example, BX and EX.

GraphicsCHAPTER 4
370

• Objects such as form XObjects and annotations that are made optional may be
skipped entirely, because their contents are encapsulated such that no changes
to the graphics state (or other state) persist beyond the processing of their con-
tent stream.

Other features in PDF consuming applications, such as searching and editing,
may be affected by the ability to selectively show or hide content. Features must
choose whether to use the document’s current state of optional content groups
(and, correspondingly, the document’s visible graphics) or to supply their own
states of optional content groups to control the graphics they process. For exam-
ple, tools to select and move annotations should honor the current on-screen vis-
ibility of annotations when performing cursor tracking and mouse-click
processing. A full text search engine, however, may need to process all content in
a document, regardless of its current visibility on-screen. Export filters might
choose the current on-screen visibility, the full content, or present the user with a
selection of OCGs to control visibility.

Note: All optional content-related PDF structures are unknown to, and hence ig-
nored by, PDF 1.4 and earlier consumers, which therefore draw and otherwise pro-
cess all content in the document.

Optional Content in Content Streams

Sections of content in a content stream (including a page's Contents stream, a
form or pattern’s content stream, glyph descriptions a Type 3 font as specified by
its CharProcs entry, or an annotation’s appearance) can be made optional by en-
closing them between the marked-content operators BDC and EMC (see Section
10.5, “Marked Content”) with a marked-content tag of OC. In addition, a DP
marked-content operator can be placed in a page’s content stream to force a refer-
ence to an optional content group or groups on the page, even when the page has
no current content in that layer.

The property list associated with the marked content specifies either an optional
content group or optional content membership dictionary to which the content
belongs. Because a group must be an indirect object and a membership dictio-
nary contains references to indirect objects, the property list must be a named re-
source listed in the Properties subdictionary of the current resource dictionary
(see Section 10.5.1, “Property Lists”), as shown in Examples 4.35 and 4.36.

Optional ContentSECTION 4.10
371

Note: Although the marked-content tag must be OC, other applications of marked
content are not precluded from using OC as a tag. The marked content is considered
to be for optional content only if the tag is OC and the dictionary operand is a valid
optional content group or optional content membership dictionary.

To avoid conflict with other features that used marked content (such as logical
structure; see Section 10.6, “Logical Structure”), the following strategy is recom-
mended:

• Where content is to be tagged with optional content markers as well as other
markers, the optional content markers should be nested inside the other
marked content.

• Where optional content and the other markers would overlap but there is not
strict containment, the optional content should be broken up into two or more
BDC/EMC sections, nesting the optional content sections inside the others as
necessary. Breaking up optional content spans does not damage the nature of
the visibility of the content, whereas the same guarantee cannot be made for all
other uses of marked content.

Note: Any marked content tagged for optional content that is nested inside other
marked content tagged for optional content is visible only if all the levels indicate
visibility. In other words, if the settings that apply to the outer level indicate that the
content should be hidden, the inner level is hidden regardless of its settings.

In the following example, the state of the Show Greeting optional content group
directly controls the visibility of the text string “Hello” on the page. When the
group is ON, the text is visible; when the group is OFF, the text is hidden.

Example 4.35

% Within a content stream
...
/OC /oc1 BDC % Optional content follows

BT
/F1 1 Tf
12 0 0 12 100 600 Tm
(Hello) Tj

ET
EMC % End of optional content
...

GraphicsCHAPTER 4
372

<< % In the resources dictionary
/Properties << /oc1 5 0 R >> % This dictionary maps the name oc1 to an

... % optional content group (object 5)
>>

5 0 obj % The OCG controlling the visibility
<< % of the text.

/Type /OCG
/Name (Show Greeting)

>>
endobj

The example above shows one piece of content associated with one optional con-
tent group. There are other possibilities:

• More than one section of content can refer to the same group or membership
dictionary, in which case the visibility of both sections is always the same.

• Equivalently, although less space-efficient, different sections can have separate
membership dictionaries with the same OCGs and P entries. The sections will
have identical visibility behavior.

• Two sections of content can belong to membership dictionaries that refer to the
same group(s) but with different P settings. For example, if one section has no P
entry, and the other has a P entry of AllOff, the visibility of the two sections of
content are opposite. That is, the first section is visible when the second is hid-
den, and vice versa.

The following example demonstrates both the direct use of optional content
groups and the indirect use of groups through a membership dictionary. The
content (a black rectangle frame) is drawn if either of the images controlled by
the groups named Image A or Image B is shown. If both groups are hidden, the
rectangle frame is hidden.

Example 4.36

% Within a content stream
...
/OC /OC2 BDC % Draws a black rectangle frame

0 g
4 w
100 100 412 592 re s

EMC

Optional ContentSECTION 4.10
373

/OC /OC3 BDC % Draws an image XObject
q
412 0 0 592 100 100 cm
/Im3 Do
Q

EMC
/OC /OC4 BDC % Draws an image XObject

q
412 0 0 592 100 100 cm
/Im4 Do
Q

EMC
...

<< % The resource dictionary

/Properties << /OC2 20 0 R /OC3 30 0 R /OC4 40 0 R >>
/XObject << /lm3 50 0 R /lm4 /60 0 R >>

>>

20 0 obj
<< % Optional content membership dictionary

/Type /OCMD
/OCGs [30 0 R 40 0 R]
/P /AnyOn

>>
endobj
30 0 obj % Optional content group “Image A”
<<

/Type /OCG
/Name (Image A)

>>
endobj
40 0 obj % Optional content group “Image B”
<<

/Type /OCG
/Name (Image B)

>>
endobj

GraphicsCHAPTER 4
374

Optional Content in XObjects and Annotations

In addition to marked content within content streams, form XObjects and image
XObjects (see Section 4.7, “External Objects”) and annotations (see Section 8.4,
“Annotations”) may contain an OC entry, which is an optional content group or
an optional content membership dictionary.

A form or image XObject's visibility is determined by the state of the group or
those of the groups referenced by the membership dictionary in conjunction with
its P (or VE) entry, along with the current visibility state in the context in which
the XObject is invoked (that is, whether objects are visible in the contents stream
at the place where the Do operation occurred).

Annotations have various flags controlling on-screen and print visibility (see Sec-
tion 8.4.2, “Annotation Flags”). If an annotation contains an OC entry, it is visible
for screen or print only if the flags have the appropriate settings and the group or
membership dictionary indicates it is visible.

4.10.3 Configuring Optional Content

A PDF document containing optional content can specify the default states for
the optional content groups in the document and indicate which external factors
should be used to alter the states. The following sections describe the PDF struc-
tures that are used to specify this information.

• “Optional Content Properties Dictionary” on page 375 describes the structure
that lists all the optional content groups in the document and their possible
configurations.

• “Optional Content Configuration Dictionaries” on page 375 describes the
structures that specify initial state settings and other information about the
groups in the document.

• “Usage and Usage Application Dictionaries” on page 380 and “Determining the
State of Optional Content Groups” on page 385 describe how the states of
groups can be affected based on external factors.

Optional ContentSECTION 4.10
375

Optional Content Properties Dictionary

The optional OCProperties entry in the document catalog (see Section 3.6.1,
“Document Catalog”) holds the optional content properties dictionary, which con-
tains a list of all the optional content groups in the document, as well as informa-
tion about the default and alternate configurations for optional content. This
dictionary is required if the file contains any optional content; if it is missing, a
PDF consumer should ignore any optional content structures in the document.

This dictionary contains the following entries:

TABLE 4.50 Entries in the optional content properties dictionary

Optional Content Configuration Dictionaries

The D and Configs entries in Table 4.50 are configuration dictionaries, which rep-
resent different presentations of a document’s optional content groups for use by
PDF processing applications or features. The D configuration dictionary specifies
the initial state of the optional content groups when a document is first opened.
Configs lists other configurations that may be used under particular circumstanc-
es. The entries in a configuration dictionary are shown in Table 4.51.

KEY TYPE VALUE

OCGs array (Required) An array of indirect references to all the optional content groups in
the document (see Section 4.10.1, “Optional Content Groups”), in any order.
Every optional content group must be included in this array.

D dictionary (Required) The default viewing optional content configuration dictionary (see
“Optional Content Configuration Dictionaries,” below).

Configs array (Optional) An array of alternate optional content configuration dictionaries (see
“Optional Content Configuration Dictionaries,” below) for PDF processing ap-
plications or features.

GraphicsCHAPTER 4
376

TABLE 4.51 Entries in an optional content configuration dictionary

KEY TYPE VALUE

Name text string (Optional) A name for the configuration, suitable for presentation in a user
interface.

Creator text string (Optional) Name of the application or feature that created this configuration
dictionary.

BaseState name (Optional) Used to initialize the states of all the optional content groups in a
document when this configuration is applied. The value of this entry must
be one of the following names:

• ON: The states of all groups are turned ON.

• OFF: The states of all groups are turned OFF.

• Unchanged: The states of all groups are left unchanged.

After this initialization, the contents of the ON and OFF arrays are processed,
overriding the state of the groups included in the arrays.

Default value: ON.

Note: If BaseState is present in the document’s default configuration dictio-
nary, its value must be ON.

ON array (Optional) An array of optional content groups whose state should be set to
ON when this configuration is applied.

Note: If the BaseState entry is ON, this entry is redundant.

OFF array (Optional) An array of optional content groups whose state should be set to
OFF when this configuration is applied.

Note: If the BaseState entry is OFF, this entry is redundant.

Intent name or array (Optional) A single intent name or an array containing any combination of
names. It is used to determine which optional content groups’ states to con-
sider and ignore in calculating the visibility of content (see “Intent” on page
368).

PDF 1.5 defines two intent names, View and Design. Future versions may de-
fine others. In addition, the name All indicates the set of all intents, including
those not yet defined. Default value: View. The value must be View for the
document’s default configuration.

Optional ContentSECTION 4.10
377

AS array (Optional) An array of usage application dictionaries (see Table 4.53) speci-
fying which usage dictionary categories (see Table 4.52) should be consulted
by viewer applications to automatically set the states of optional content
groups based on external factors, such as the current system language or
viewing magnification, and when they should be applied.

Order array (Optional) An array specifying the recommended order for presentation of
optional content groups in a user interface. The array elements may include
the following objects:

• Optional content group dictionaries, whose Name entry is to be displayed
in the user interface.

• Arrays of optional content groups to allow nesting as in a tree or outline
structure. Each nested array may optionally have as its first element a text
string to be used as a non-selectable label in the user interface.

Note: Text labels in nested arrays should be used to present collections of relat-
ed optional content groups, and not to communicate actual nesting of content
inside multiple layers of groups (see Example 4.37). To reflect actual nesting of
groups in the content, such as for layers with sublayers, nested arrays of groups
without a text label should be used (see Example 4.38).

An empty array [] explicitly specifies that no groups should be presented.

In the default configuration dictionary, the default value is an empty array;
in other configuration dictionaries, the default is the Order value from the
default configuration dictionary.

Note: Any groups not listed in this array should not be presented in any user
interface that uses the configuration.

ListMode name (Optional) A name specifying which optional content groups in the Order
array should be displayed to the user. Valid values are:

• AllPages: Display all groups in the Order array.

• VisiblePages: Display only those groups in the Order array that are refer-
enced by one or more visible pages.

Default value: AllPages.

KEY TYPE VALUE

GraphicsCHAPTER 4
378

Examples 4.37 and 4.38 illustrates the use of the Order entry to control the display
of groups in a user interface.

Example 4.37

Given the following PDF objects:

1 0 obj <</Type /OCG /Name (Skin)>> endobj % Optional content groups
2 0 obj <</Type /OCG /Name (Bones)>> endobj
3 0 obj <</Type /OCG /Name (Bark)>> endobj
4 0 obj <</Type /OCG /Name (Wood)>> endobj

5 0 obj % Configuration dictionary

<< /Order [[(Frog Anatomy) 1 0 R 2 0 R] [(Tree Anatomy) 3 0 R 4 0 R]] >>

RBGroups array (Optional) An array consisting of one or more arrays, each of which repre-
sents a collection of optional content groups whose states are intended to fol-
low a radio button paradigm. That is, the state of at most one optional
content group in each array should be ON at a time. If one group is turned
ON, all others must be turned OFF. However, turning a group from ON to
OFF does not force any other group to be turned ON.

An empty array [] explicitly indicates that no such collections exist.

In the default configuration dictionary, the default value is an empty array;
in other configuration dictionaries, the default is the RBGroups value from
the default configuration dictionary.

Locked array (Optional; PDF 1.6) An array of optional content groups that should be
locked when this configuration is applied. The state of a locked group cannot
be changed through the user interface of a viewer application. Producers can
use this entry to prevent the visibility of content that depends on these
groups from being changed by users.

Default value: an empty array.

Note: This entry does not prevent the states of optional content groups from be-
ing changed by means other than the user interface, such as JavaScript or items
in the AS entry of a configuration dictionary.

KEY TYPE VALUE

Optional ContentSECTION 4.10
379

A PDF viewer should display the optional content groups as follows:

Frog Anatomy
Skin
Bones

Tree Anatomy
Bark
Wood

Example 4.38

Given the following PDF objects:
% Page contents

/OC /L1 BDC % Layer 1
/OC /L1a BDC % Sublayer A of layer 1

0 0 100 100 re f
EMC
/OC /L1b BDC % Sublayer B of layer 1

0 100 100 100 re f
EMC

EMC
...
<< /L1 1 0 R % Resource names

/L1a 2 0 R
/L1b 3 0 R

>>
... %Optional content groups
1 0 obj <</Type /OCG /Name (Layer 1)>> endobj
2 0 obj <</Type /OCG /Name (Sublayer A)>> endobj
3 0 obj <</Type /OCG /Name (Sublayer B)>> endobj
...
4 0 obj % Configuration dictionary

<< /Order [1 0 R [2 0 R 3 0 R]] >>

A PDF viewer should display the OCGs as follows:

Layer 1
Sublayer A
Sublayer B

The AS entry is an auto state array consisting of one or more usage application
dictionaries that specify how viewer applications should automatically set the
state of optional content groups based on external factors, as discussed in the fol-
lowing section.

GraphicsCHAPTER 4
380

Usage and Usage Application Dictionaries

Optional content groups are typically constructed to control the visibility of
graphic objects that are related in some way. Objects can be related in several
ways; for example, a group may contain content in a particular language or con-
tent suitable for viewing at a particular magnification.

An optional content group’s usage dictionary (the value of the Usage entry in an
optional content group dictionary; see Table 4.48) contains information describ-
ing the nature of the content controlled by the group. This dictionary can contain
any combination of the entries shown in Table 4.52.

TABLE 4.52 Entries in an optional content usage dictionary

KEY TYPE VALUE

CreatorInfo dictionary (Optional) A dictionary used by the creating application to store application-spe-
cific data associated with this optional content group. It contains two required en-
tries:

• Creator: A text string specifying the application that created the group.

• Subtype: A name defining the type of content controlled by the group. Suggest-
ed values include but are not limited to Artwork, for graphic-design or publish-
ing applications, and Technical, for technical designs such as building plans or
schematics.

Additional entries may be included to present information relevant to the creat-
ing application or related applications.

Note: Groups whose Intent entry contains Design typically include a CreatorInfo en-
try.

Language dictionary (Optional) A dictionary specifying the language of the content controlled by this
optional content group. It has two entries:

• Lang (required): A text string that specifies a language and possibly a locale (see
Section 10.8.1, “Natural Language Specification”). For example, es-MX repre-
sents Mexican Spanish.

• Preferred (optional): A name whose values may be ON or OFF. Default value:
OFF. It is used by viewer applications when there is a partial match but no exact
match between the system language and the language strings in all usage dic-
tionaries. See “Usage and Usage Application Dictionaries” on page 380 for
more information.

Optional ContentSECTION 4.10
381

While the data in the usage dictionary can be viewed as information for a docu-
ment user to examine, it can also be used by viewer applications to automatically

Export dictionary (Optional) A dictionary containing one entry, ExportState, a name whose value
may be ON or OFF. This value indicates the recommended state for content in this
group when the document (or part of it) is saved by a viewer application to a for-
mat that does not support optional content (for example, an earlier version of
PDF or a raster image format).

Zoom dictionary (Optional) A dictionary specifying a range of magnifications at which the content
in this optional content group is best viewed. It may contain one or both of the
following entries:

• min: The minimum recommended magnification factor at which the group
should be ON. Default value: 0.

• max: The magnification factor below which the group should be ON. Default
value: infinity.

Print dictionary (Optional) A dictionary specifying that the content in this group is intended for
use in printing. It contains the following optional entries:

• Subtype: A name object specifying the kind of content controlled by the group;
for example, Trapping, PrintersMarks and Watermark.

• PrintState: A name that may be ON or OFF, indicating that the group should be
set to that state when the document is printed from a viewer application.

View dictionary (Optional) A dictionary that has a single entry, ViewState, a name that may have a
value of ON or OFF, indicating that the group should be set to that state when the
document is opened in a viewer application.

User dictionary (Optional) A dictionary specifying one or more users for whom this optional con-
tent group is primarily intended. Each dictionary has two required entries:

• Type: A name object that can be Ind (individual), Ttl (title), or Org (organiza-
tion).

• Name: A text string or array of text strings representing the name(s) of the in-
dividual, position or organization.

PageElement dictionary (Optional) A dictionary declaring that the group contains a pagination artifact. It
contains one entry, Subtype, whose value is a name that can be HF (header/foot-
er), FG (foreground image or graphic), BG (background image or graphic), or L
(logo).

KEY TYPE VALUE

GraphicsCHAPTER 4
382

manipulate the state of optional content groups based on external factors such as
current system language settings or zoom level. Document authors can use usage
application dictionaries to specify which entries in the usage dictionary should be
consulted to automatically set the state of optional content groups based on such
factors. Usage application dictionaries are listed in the AS entry in an optional
content configuration dictionary (see Table 4.51). If no AS entry is present, states
are not automatically adjusted based on usage information.

A usage application dictionary specifies the rules for which usage entries should
be used by viewer applications to automatically manipulate the state of optional
content groups, which groups should be affected, and under which circumstanc-
es. Table 4.53 shows the entries in a usage application dictionary.

Note: Usage application dictionaries are only intended for use by interactive viewer
applications, not for applications that use PDF as final form output (see “Determin-
ing the State of Optional Content Groups” on page 385 for more information).

TABLE 4.53 Entries in a usage application dictionary

The Event entry specifies whether the usage settings should be applied during
viewing, printing, or exporting the document. The OCGs entry specifies the set of
optional content groups to which usage settings should be applied. For each of
the groups in OCGs, the entries in its usage dictionary (see Table 4.52) specified
by Category are examined to yield a recommended state for the group. If all the
entries yield a recommended state of ON, the group’s state is set to ON; otherwise,
its state is set to OFF.

KEY TYPE VALUE

Event name (Required) A name defining the situation in which this usage application dictio-
nary should be used. May be View, Print, or Export.

OCGs array (Optional) An array listing the optional content groups that should have their
states automatically managed based on information in their usage dictionary
(see “Usage and Usage Application Dictionaries” on page 380). Default value: an
empty array, indicating that no groups are affected.

Category array (Required) An array of names, each of which corresponds to a usage dictionary
entry (see Table 4.52). When managing the states of the optional content groups
in the OCGs array, each of the corresponding categories in the group’s usage dic-
tionary should be considered.

Optional ContentSECTION 4.10
383

The entries in the usage dictionary are used as follows:

• View: The recommended state is the value of the ViewState entry. This entry al-
lows a document to contain content that is relevant only when the document is
viewed interactively, such as instructions for how to interact with the docu-
ment.

• Print: The recommended state is the value of the PrintState entry. If PrintState
is not present, the state of the optional content group is left unchanged.

• Export: The recommended state is the value of the ExportState entry.

• Zoom: If the current magnification level of the document is greater than or
equal to min and less than max, an ON state is recommended; otherwise, OFF is
recommended.

• User: The Name entry specifies a name or names to match with the user’s iden-
tification. The Type entry determines how the Name entry is interpreted
(name, title, or organization). If there is an exact match, an ON state is recom-
mended; otherwise OFF is recommended.

• Language: This category allows the selection of content based on the language
and locale of the application. If an exact match to the language and locale is
found among the Lang entries of the optional content groups in the usage ap-
plication dictionary’s OCGs list, all groups that have exact matches receive an
ON recommendation. If no exact match is found, but a partial match is found
(that is, the language matches but not the locale), all partially matching groups
that have Preferred entries with a value of ON receive an ON recommendation.
All other groups receive an OFF recommendation.

Example 4.39 shows the use of an auto state array with usage application dictio-
naries. The AS entry in the default configuration dictionary is an array of three
usage application dictionaries, one for each of the Event values View, Print, and
Export.

Note: While this case is typical, there is no restriction on multiple entries with the
same value of Event, which allows documents with incompatible usage application
dictionaries to be combined into larger documents and have their behavior pre-
served. If a given optional content group appears in more than one OCGs array, its
state is ON only if all categories in all the usage application dictionaries it appears in
recommend a state of ON.

GraphicsCHAPTER 4
384

Example 4.39

/OCProperties % OCProperties dictionary in document catalog
<< /OCGs [1 0 R 2 0 R 3 0 R 4 0 R]

/D << /BaseState /OFF % The default configuration
/ON [1 0 R]
/AS [% Auto state array of usage application dictionaries

<< /Event /View /Category [/Zoom] /OCGs [1 0 R 2 0 R 3 0 R 4 0 R] >>
<< /Event /Print /Category [/Print] /OCGs [4 0 R] >>
<< /Event /Export /Category [/Export] /OCGs [3 0 R 4 0 R] >>
]

>>
>>

...

1 0 obj
<< /Type /OCG

/Name (20000 foot view)
/Usage << /Zoom << /max 1.0 >> >>

>>
endobj
2 0 obj

<< /Type /OCG
/Name (10000 foot view)
/Usage << /Zoom << /min 1.0 /max 2.0 >> >>

>>
endobj
3 0 obj

<< /Type /OCG
/Name (1000 foot view)
/Usage << /Zoom << /min 2.0 /max 20.0 >>

/Export << /ExportState /OFF >> >>
>>

endobj
4 0 obj

<< /Type /OCG
/Name (Copyright notice)
/Usage << /Print << /PrintState /ON >>

/Export << /ExportState /ON>> >>
>>

endobj

In the example, the usage application dictionary with event type View specifies
that all optional content groups are to have their states managed based on zoom

Optional ContentSECTION 4.10
385

level when viewing. Three groups (objects 1, 2, and 3) contain Zoom usage infor-
mation. Object 4 has none; therefore, it is not affected by zoom level changes. Ob-
ject 3 receives an OFF recommendation when exporting. When printing or
exporting, object 4 receives an ON recommendation.

Determining the State of Optional Content Groups

This section summarizes the rules by which applications make use of the config-
uration and usage application dictionaries to set the state of optional content
groups. For purposes of this discussion, it is useful to distinguish the following
types of applications:

• Viewer applications, such as Acrobat, which allow users to interact with the
document in various ways.

• Design applications, which offer layering features for collecting groups of
graphics together and selectively hiding or viewing them.

Note: The following rules are not meant to apply to design applications; they may
manage their states in an entirely different manner if they choose.

• Aggregating applications, which import PDF files as graphics.

• Printing applications, which print PDF files.

When a document is first opened, its optional content groups are assigned a state
based on the D (default) configuration dictionary in the OCProperties dictionary:

1. The value of BaseState is applied to all the groups.

2. The groups listed in either the ON or OFF array (depending on which one is
opposite to BaseState) have their states adjusted.

This state is the recommended state for printing and aggregating applications,
which should not apply the changes based on usage application dictionaries de-
scribed below. However, for more advanced functionality, they may provide user
control for manipulating the individual states of optional content groups.

Note: Viewer applications should also provide users with an option to view docu-
ments in this state (that is, to disable the automatic adjustments discussed below).
This option permits an accurate preview of the content as it will appear when placed
into an aggregating application or sent to a stand-alone printing system.

GraphicsCHAPTER 4
386

The remaining discussion in this section applies only to viewer applications. Such
applications should examine the AS array for usage application dictionaries that
have an Event of type View. For each one found, the groups listed in its OCGs ar-
ray should be adjusted as described in “Usage and Usage Application Dictionar-
ies” on page 380.

Subsequently, the document is ready for interactive viewing by a user. Whenever
there is a change to a factor that the usage application dictionaries with event type
View depend on (such as zoom level), the corresponding dictionaries should be
reapplied.

The user may manipulate optional content group states manually or by triggering
SetOCGState actions (see “Set-OCG-State Actions” on page 667) by, for example,
clicking links or bookmarks. Manual changes override the states that were set au-
tomatically. The states of these groups remain overridden and are not readjusted
based on usage application dictionaries with event type View as long as the docu-
ment is open (or until the user reverts the document to its original state).

When a document is printed by a viewer application, usage application dictionar-
ies with an event type Print are applied over the current states of optional content
groups. These changes persist only for the duration of the print operation; then
all groups revert to their prior states.

Similarly, when a document is exported to an earlier version of PDF or other for-
mat that does not support optional content, usage application dictionaries with
an event type Export are applied over the current states of optional content
groups. Changes persist only for the duration of the export operation; then all
groups revert to their prior states.

Note: Although the event types Print and Export have identically named counter-
parts that are usage categories, the corresponding usage application dictionaries are
permitted to specify that other categories may be applied.

387

CHAPTER 5

5Text

This chapter describes the special facilities in PDF for dealing with text— specifi-
cally, for representing characters with glyphs from fonts. A glyph is a graphical
shape and is subject to all graphical manipulations, such as coordinate transfor-
mation. Because of the importance of text in most page descriptions, PDF pro-
vides higher-level facilities that permit an application to describe, select, and
render glyphs conveniently and efficiently.

The first section is a general description of how glyphs from fonts are painted on
the page. Subsequent sections cover the following topics in detail:

• Text state. A subset of the graphics state parameters pertain to text, including
parameters that select the font, scale the glyphs to an appropriate size, and
accomplish other graphical effects.

• Text objects and operators. The text operators specify the glyphs to be painted,
represented by string objects whose values are interpreted as sequences of char-
acter codes. A text object encloses a sequence of text operators and associated
parameters.

• Font data structures. Font dictionaries and associated data structures provide
information that a consumer application needs to interpret the text and posi-
tion the glyphs properly. The definitions of the glyphs themselves are contained
in font programs, which may be embedded in the PDF file, built into the appli-
cation, or obtained from an external font file.

TextCHAPTER 5
388

5.1 Organization and Use of Fonts

A character is an abstract symbol, whereas a glyph is a specific graphical render-
ing of a character. For example, the glyphs A, A, and A are renderings of the ab-
stract “A” character. Historically these two terms have often been used
interchangeably in computer typography (as evidenced by the names chosen for
some PDF dictionary keys and PostScript operators), but advances in this area
have made the distinction more meaningful. Consequently, this book distin-
guishes between characters and glyphs, though with some residual names that are
inconsistent.

Glyphs are organized into fonts. A font defines glyphs for a particular character
set; for example, the Helvetica and Times fonts define glyphs for a set of standard
Latin characters. A font for use with a PDF consumer application is prepared in
the form of a program. Such a font program is written in a special-purpose lan-
guage, such as the Type 1 or TrueType font format, that is understood by a special-
ized font interpreter.

In PDF, the term font refers to a font dictionary, a PDF object that identifies the
font program and contains additional information about it. There are several dif-
ferent font types, identified by the Subtype entry of the font dictionary.

For most font types, the font program is defined in a separate font file, which may
be either embedded in a PDF stream object or obtained from an external source.
The font program contains glyph descriptions that generate glyphs.

A content stream paints glyphs on the page by specifying a font dictionary and a
string object that is interpreted as a sequence of one or more character codes
identifying glyphs in the font. This operation is called showing the text string; the
text strings drawn in this way are called show strings. The glyph description con-
sists of a sequence of graphics operators that produce the specific shape for that
character in this font. To render a glyph, the application executes the glyph de-
scription.

Programmers who have experience with scan conversion of general shapes may
be concerned about the amount of computation that this description seems to
imply. However, this is only the abstract behavior of glyph descriptions and font
programs, not how they are implemented. In fact, an efficient implementation
can be achieved through careful caching and reuse of previously rendered glyphs.

Organization and Use of FontsSECTION 5.1
389

5.1.1 Basics of Showing Text

Example 5.1 illustrates the most straightforward use of a font. The text ABC is
placed 10 inches from the bottom of the page and 4 inches from the left edge, us-
ing 12-point Helvetica.

Example 5.1

BT
/F13 12 Tf
288 720 Td
(ABC) Tj

ET

The five lines of this example perform the following steps:

1. Begin a text object.

2. Set the font and font size to use, installing them as parameters in the text state.
(The font resource identified by the name F13 specifies the font externally
known as Helvetica.)

3. Specify a starting position on the page, setting parameters in the text object.

4. Paint the glyphs for a string of characters at that position.

5. End the text object.

The following paragraphs explain these operations in more detail.

To paint glyphs, a content stream must first identify the font to be used. The Tf
operator specifies the name of a font resource—that is, an entry in the Font
subdictionary of the current resource dictionary. The value of that entry is a font
dictionary. The font dictionary identifies the font’s externally known name, such
as Helvetica, and supplies some additional information that the application needs
to paint glyphs from that font. The font dictionary optionally provides the defini-
tion of the font program itself.

Note: The font resource name presented to the Tf operator is arbitrary, as are the
names for all kinds of resources. It bears no relationship to an actual font name,
such as Helvetica.

Example 5.2 illustrates an excerpt from the current page’s resource dictionary,
which defines the font dictionary that is referenced as F13 in Example 5.1.

TextCHAPTER 5
390

Example 5.2

/Resources
<< /Font << /F13 23 0 R >>
>>

23 0 obj
<< /Type /Font

 /Subtype /Type1
 /BaseFont /Helvetica

>>
endobj

A font defines the glyphs for one standard size. This standard is arranged so that
the nominal height of tightly spaced lines of text is 1 unit. In the default user
coordinate system, this means the standard glyph size is 1 unit in user space, or
1 ⁄ 72 inch. (In PDF 1.6, the size of this unit may be specified as greater than 1 ⁄ 72
inch by means of the UserUnit entry of the page dictionary; see Table 3.27.) The
standard-size font must then be scaled to be usable. The scale factor is specified
as the second operand of the Tf operator, thereby setting the text font size param-
eter in the graphics state. Example 5.1 establishes the Helvetica font with a 12-
unit size in the graphics state.

Once the font has been selected and scaled, it can be used to paint glyphs. The Td
operator adjusts the current text position (actually, the translation components of
the text matrix, as described in Section 5.3.1, “Text-Positioning Operators”).
When executed for the first time after BT, Td establishes the text position in the
current user coordinate system. This determines the position on the page at
which to begin painting glyphs.

The Tj operator takes a string operand and paints the corresponding glyphs, us-
ing the current font and other text-related parameters in the graphics state. In Ex-
ample 5.1, the Tj operator treats each element of the string (an integer in the
range 0 to 255) as a character code. Each code selects a glyph description in the
font, and the glyph description is executed to paint that glyph on the page. This is
the behavior of Tj for simple fonts, such as ordinary Latin text fonts. Interpreta-
tion of the string as a sequence of character codes is more complex for composite
fonts, described in Section 5.6, “Composite Fonts.”

Note: What these steps produce on the page is not a 12-point glyph, but rather a
12-unit glyph, where the unit size is that of the text space at the time the glyphs are
rendered on the page. The actual size of the glyph is determined by the text matrix

Organization and Use of FontsSECTION 5.1
391

(Tm) in the text object, several text state parameters, and the current transforma-
tion matrix (CTM) in the graphics state; see Section 5.3.3, “Text Space Details.” If
the text space is later scaled to make the unit size 1 centimeter, painting glyphs from
the same 12-unit font generates results that are 12 centimeters high.

5.1.2 Achieving Special Graphical Effects

Normal uses of Tj and other glyph-painting operators cause black-filled glyphs to
be painted. Other effects can be obtained by combining font operators with gen-
eral graphics operators.

The color used for painting glyphs is the current color in the graphics state: either
the nonstroking color or the stroking color (or both), depending on the text ren-
dering mode (see Section 5.2.5, “Text Rendering Mode”). The default color is
black, but other colors can be obtained by executing an appropriate color-setting
operator or operators (see Section 4.5.7, “Color Operators”) before painting the
glyphs. Example 5.3 uses text rendering mode 0 and the g operator to fill glyphs
in 50 percent gray, as shown in Figure 5.1.

Example 5.3

BT
/F13 48 Tf
20 40 Td
0 Tr
0.5 g
(ABC) Tj

ET

FIGURE 5.1 Glyphs painted in 50% gray

ABC

TextCHAPTER 5
392

Other graphical effects can be achieved by treating the glyph outline as a path in-
stead of filling it. The text rendering mode parameter in the graphics state speci-
fies whether glyph outlines are to be filled, stroked, used as a clipping boundary,
or some combination of these effects. (This parameter does not apply to Type 3
fonts.)

Example 5.4 treats glyph outlines as a path to be stroked. The Tr operator sets the
text rendering mode to 1 (stroke). The w operator sets the line width to 2 units in
user space. Given those graphics state parameters, the Tj operator strokes the
glyph outlines with a line 2 points thick (see Figure 5.2).

Example 5.4

BT
/F13 48 Tf
20 38 Td
1 Tr
2 w
(ABC) Tj

ET

FIGURE 5.2 Glyph outlines treated as a stroked path

Example 5.5 treats the glyphs’ outlines as a clipping boundary. The Tr operator
sets the text rendering mode to 7 (clip), causing the subsequent Tj operator to
impose the glyph outlines as the current clipping path. All subsequent painting
operations mark the page only within this path, as illustrated in Figure 5.3. This
state persists until some earlier clipping path is reinstated by the Q operator.

ABC

Organization and Use of FontsSECTION 5.1
393

Example 5.5

BT
/F13 48 Tf
20 38 Td
7 Tr
(ABC) Tj

ET
… Graphics operators to draw a starburst …

FIGURE 5.3 Graphics clipped by a glyph path

5.1.3 Glyph Positioning and Metrics

A glyph’s width—formally, its horizontal displacement—is the amount of space it
occupies along the baseline of a line of text that is written horizontally. In other
words, it is the distance the current text position moves (by translating text space)
when the glyph is painted. Note that the width is distinct from the dimensions of
the glyph outline.

In some fonts, the width is constant; it does not vary from glyph to glyph. Such
fonts are called fixed-pitch or monospaced. They are used mainly for typewriter-
style printing. However, most fonts used for high-quality typography associate a
different width with each glyph. Such fonts are called proportional or variable-
pitch fonts. In either case, the Tj operator positions the consecutive glyphs of a
string according to their widths.

The width information for each glyph is stored both in the font dictionary and in
the font program itself. (The two sets of widths must be identical; storing this in-
formation in the font dictionary, although redundant, enables a consumer appli-

ABC

TextCHAPTER 5
394

cation to determine glyph positioning without having to look inside the font
program.) The operators for showing text are designed on the assumption that
glyphs are ordinarily positioned according to their standard widths. However,
means are provided to vary the positioning in certain limited ways. For example,
the TJ operator enables the text position to be adjusted between any consecutive
pair of glyphs corresponding to characters in a text string. There are graphics
state parameters to adjust character and word spacing systematically.

In addition to width, a glyph has several other metrics that influence glyph posi-
tioning and painting. For most font types, this information is largely internal to
the font program and is not specified explicitly in the PDF font dictionary. How-
ever, in a Type 3 font, all metrics are specified explicitly (see Section 5.5.4, “Type
3 Fonts”).

The glyph coordinate system is the space in which an individual character’s glyph
is defined. All path coordinates and metrics are interpreted in glyph space. For all
font types except Type 3, the units of glyph space are one-thousandth of a unit of
text space; for a Type 3 font, the transformation from glyph space to text space is
defined by a font matrix specified in an explicit FontMatrix entry in the font.
Figure 5.4 shows a typical glyph outline and its metrics.

FIGURE 5.4 Glyph metrics

The glyph origin is the point (0, 0) in the glyph coordinate system. Tj and other
text-showing operators position the origin of the first glyph to be painted at the
origin of text space. For example, the following code adjusts the origin of text

Glyph
bounding

box

Next
glyph
origin

Glyph
origin

Glyph width

Organization and Use of FontsSECTION 5.1
395

space to (40, 50) in the user coordinate system and then places the origin of the A
glyph at that point:

BT
40 50 Td
(ABC) Tj

ET

The glyph displacement is the distance from the glyph’s origin to the point at
which the origin of the next glyph should normally be placed when painting the
consecutive glyphs of a line of text. This distance is a vector (called the displace-
ment vector) in the glyph coordinate system; it has horizontal and vertical com-
ponents. (A displacement that is horizontal is usually called a width.) Most
Western writing systems, including those based on the Latin alphabet, have a
positive horizontal displacement and a zero vertical displacement. Some Asian
writing systems have a nonzero vertical displacement. In all cases, the text-show-
ing operators transform the displacement vector into text space and then trans-
late text space by that amount.

The glyph bounding box is the smallest rectangle (oriented with the axes of the
glyph coordinate system) that just encloses the entire glyph shape. The bounding
box is expressed in terms of its left, bottom, right, and top coordinates relative to
the glyph origin in the glyph coordinate system.

In some writing systems, text is frequently aligned in two different directions. For
example, it is common to write Japanese and Chinese glyphs either horizontally
or vertically. To handle this, a font can optionally contain a second set of metrics
for each glyph. Which set of metrics to use is selected according to a writing
mode, where 0 specifies horizontal writing and 1 specifies vertical writing. This
feature is available only for composite fonts, discussed in Section 5.6, “Composite
Fonts.”

When a glyph has two sets of metrics, each set specifies a glyph origin and a dis-
placement vector for that writing mode. In vertical writing, the glyph position is
described by a position vector from the origin used for horizontal writing
(origin 0) to the origin used for vertical writing (origin 1). Figure 5.5 illustrates
the metrics for the two writing modes:

• The left diagram illustrates the glyph metrics associated with writing mode 0,
horizontal writing. The coordinates ll and ur specify the bounding box of the
glyph relative to origin 0. w0 is the displacement vector that specifies how the

TextCHAPTER 5
396

text position is changed after the glyph is painted in writing mode 0; its vertical
component is always 0.

• The center diagram illustrates writing mode 1, vertical writing. w1 is the dis-
placement vector for writing mode 1; its horizontal component is always 0.

• In the right diagram, v is a position vector defining the position of origin 1 rel-
ative to origin 0.

FIGURE 5.5 Metrics for horizontal and vertical writing modes

Glyph metric information is also available separately in the form of Adobe font
metrics (AFM) and Adobe composite font metrics (ACFM) files. These files are
for use by application programs that generate PDF page descriptions and must
make formatting decisions based on the widths and other metrics of glyphs. Also
available in the AFM and ACFM files is kerning information, which allows an
application generating a PDF file to determine spacing adjustments between
glyphs depending on context. Specifications for the AFM and ACFM file formats
are available in Adobe Technical Note #5004, Adobe Font Metrics File Format
Specification; the files can be obtained from the Adobe Solutions Network Web
site (see the Bibliography).

5.2 Text State Parameters and Operators

The text state comprises those graphics state parameters that only affect text.
There are nine parameters in the text state (see Table 5.1).

New text
position

ur

w0Origin
0

ll
New text position

Writing mode 0
(horizontal)

Writing mode 1
(vertical)

Mode 1 relative to mode 0

w1

Origin
0

v

Origin 1 Origin 1

Text State Param eters and OperatorsSECTION 5.2
397

TABLE 5.1 Text state parameters

Except for the self-explanatory Tf and Tfs , these parameters are discussed further
in the following sections. (As described in Section 5.3, “Text Objects,” three addi-
tional text-related parameters are defined only within a text object: Tm , the text
matrix; Tlm , the text line matrix; and Trm , the text rendering matrix.) The values
of the text state parameters are consulted when text is positioned and shown
(using the operators described in Sections 5.3.1, “Text-Positioning Operators,”
and 5.3.2, “Text-Showing Operators”). In particular, the spacing and scaling
parameters participate in a computation described in Section 5.3.3, “Text Space
Details.” The text state parameters can be set using the operators listed in Table
5.2.

Note: The text knockout parameter, Tk , is set through the TK entry in a graphics
state parameter dictionary by using the gs operator (see Section 4.3.4, “Graphics
State Parameter Dictionaries”). There is no specific operator for setting this parame-
ter.

The text state operators can appear outside text objects, and the values they set
are retained across text objects in a single content stream. Like other graphics
state parameters, these parameters are initialized to their default values at the
beginning of each page.

PARAMETER DESCRIPTION

Tc Character spacing

Tw Word spacing

Th Horizontal scaling

Tl Leading

Tf Text font

Tfs Text font size

Tmode Text rendering mode

Trise Text rise

Tk Text knockout

TextCHAPTER 5
398

TABLE 5.2 Text state operators

Note that some of these parameters are expressed in unscaled text space units.
This means that they are specified in a coordinate system that is defined by the
text matrix, Tm but is not scaled by the font size parameter, Tfs .

5.2.1 Character Spacing

The character-spacing parameter, Tc , is a number specified in unscaled text space
units (although it is subject to scaling by the Th parameter if the writing mode is
horizontal). When the glyph for each character in the string is rendered, Tc is
added to the horizontal or vertical component of the glyph’s displacement,
depending on the writing mode. (See Section 5.1.3, “Glyph Positioning and
Metrics,” for a discussion of glyph displacements.) In the default coordinate sys-
tem, horizontal coordinates increase from left to right and vertical coordinates
from bottom to top. Therefore, for horizontal writing, a positive value of Tc has

OPERANDS OPERATOR DESCRIPTION

charSpace Tc Set the character spacing, Tc , to charSpace, which is a number expressed in un-
scaled text space units. Character spacing is used by the Tj, TJ, and ' operators.
Initial value: 0.

wordSpace Tw Set the word spacing, Tw , to wordSpace, which is a number expressed in unscaled
text space units. Word spacing is used by the Tj, TJ, and ' operators. Initial
value: 0.

scale Tz Set the horizontal scaling, Th , to (scale ÷ 100). scale is a number specifying the
percentage of the normal width. Initial value: 100 (normal width).

leading TL Set the text leading, Tl , to leading, which is a number expressed in unscaled text
space units. Text leading is used only by the T*, ', and " operators. Initial value: 0.

font size Tf Set the text font, Tf , to font and the text font size, Tfs , to size. font is the name of a
font resource in the Font subdictionary of the current resource dictionary; size is
a number representing a scale factor. There is no initial value for either font or
size; they must be specified explicitly by using Tf before any text is shown.

render Tr Set the text rendering mode, Tmode , to render, which is an integer. Initial value: 0.

rise Ts Set the text rise, Trise , to rise, which is a number expressed in unscaled text space
units. Initial value: 0.

Text State Param eters and OperatorsSECTION 5.2
399

the effect of expanding the distance between glyphs (see Figure 5.6), whereas for
vertical writing, a negative value of Tc has this effect.

FIGURE 5.6 Character spacing in horizontal writing

5.2.2 Word Spacing

Word spacing works the same way as character spacing but applies only to the
space character, code 32. The word-spacing parameter, Tw , is added to the
glyph’s horizontal or vertical displacement (depending on the writing mode). For
horizontal writing, a positive value for Tw has the effect of increasing the spacing
between words. For vertical writing, a positive value for Tw decreases the spacing
between words (and a negative value increases it), since vertical coordinates in-
crease from bottom to top. Figure 5.7 illustrates the effect of word spacing in
horizontal writing.

FIGURE 5.7 Word spacing in horizontal writing

Note: Word spacing is applied to every occurrence of the single-byte character code
32 in a string when using a simple font or a composite font that defines code 32 as a
single-byte code. It does not apply to occurrences of the byte value 32 in multiple-
byte codes.

Character
C h a r a c t e r

Tc = 0 (default)

Tc = 0.25

Tw = 0 (default)

Tw = 2.5

Word Space
Word Space

TextCHAPTER 5
400

5.2.3 Horizontal Scaling

The horizontal scaling parameter, Th , adjusts the width of glyphs by stretching or
compressing them in the horizontal direction. Its value is specified as a percent-
age of the normal width of the glyphs, with 100 being the normal width. The scal-
ing always applies to the horizontal coordinate in text space, independently of the
writing mode. It affects both the glyph’s shape and its horizontal displacement
(that is, its displacement vector). If the writing mode is horizontal, it also affects
the spacing parameters Tc and Tw , as well as any positioning adjustments per-
formed by the TJ operator. Figure 5.8 shows the effect of horizontal scaling.

FIGURE 5.8 Horizontal scaling

5.2.4 Leading

The leading parameter, Tl , is measured in unscaled text space units . It specifies
the vertical distance between the baselines of adjacent lines of text, as shown in
Figure 5.9.

FIGURE 5.9 Leading

The leading parameter is used by the TD, T*, ', and " operators; see Table 5.5 on
page 406 for a precise description of its effects. This parameter always applies to
the vertical coordinate in text space, independently of the writing mode.

Word
WordWord

Th = 100 (default)

Th = 50

This is 12-point text with
14.5-point leading

Leading

Text State Param eters and OperatorsSECTION 5.2
401

5.2.5 Text Rendering Mode

The text rendering mode, Tmode , determines whether showing text causes glyph
outlines to be stroked, filled, used as a clipping boundary, or some combination
of the three. Stroking, filling, and clipping have the same effects for a text object
as they do for a path object (see Sections 4.4.2, “Path-Painting Operators,” and
4.4.3, “Clipping Path Operators”), although they are specified in an entirely dif-
ferent way. The graphics state parameters affecting those operations, such as line
width, are interpreted in user space rather than in text space.

Note: The text rendering mode has no effect on text displayed in a Type 3 font (see
Section 5.5.4, “Type 3 Fonts”).

The text rendering modes are shown in Table 5.3. In the examples, a stroke color
of black and a fill color of light gray are used. For the clipping modes (4 to 7), a
series of lines has been drawn through the glyphs to show where the clipping
occurs.

If the text rendering mode calls for filling, the current nonstroking color in the
graphics state is used; if it calls for stroking, the current stroking color is used. In
modes that perform both filling and stroking, the effect is as if each glyph outline
were filled and then stroked in separate operations. If any of the glyphs overlap,
the result is equivalent to filling and stroking them one at a time, producing the
appearance of stacked opaque glyphs, rather than first filling and then stroking
them all at once (see implementation note 57 in Appendix H). In the transparent
imaging model, these combined filling and stroking modes are subject to further
considerations; see “Special Path-Painting Considerations” on page 569.

The behavior of the clipping modes requires further explanation. Glyph outlines
begin accumulating if a BT operator is executed while the text rendering mode is
set to a clipping mode or if it is set to a clipping mode within a text object. Glyphs
accumulate until the text object is ended by an ET operator; the text rendering
mode must not be changed back to a nonclipping mode before that point.

TextCHAPTER 5
402

TABLE 5.3 Text rendering modes

At the end of the text object, the accumulated glyph outlines, if any, are combined
into a single path, treating the individual outlines as subpaths of that path and ap-
plying the nonzero winding number rule (see “Nonzero Winding Number Rule”
on page 232). The current clipping path in the graphics state is set to the intersec-
tion of this path with the previous clipping path. As is the case for path objects,
this clipping occurs after all filling and stroking operations for the text object
have occurred. It remains in effect until some previous clipping path is restored
by an invocation of the Q operator.

Note: If no glyphs are shown or if the only glyphs shown have no outlines (for exam-
ple, if they are space characters), no clipping occurs.

MODE EXAMPLE DESCRIPTION

0 Fill text.

1 Stroke text.

2 Fill, then stroke text.

3 Neither fill nor stroke text (invisible).

4 Fill text and add to path for clipping (see above).

5 Stroke text and add to path for clipping.

6 Fill, then stroke text and add to path for clipping.

7 Add text to path for clipping.

R

R

R

R

Text State Param eters and OperatorsSECTION 5.2
403

5.2.6 Text Rise

Text rise, Trise , specifies the distance, in unscaled text space units, to move the
baseline up or down from its default location. Positive values of text rise move the
baseline up. Adjustments to the baseline are useful for drawing superscripts or
subscripts. The default location of the baseline can be restored by setting the text
rise to 0. Figure 5.10 illustrates the effect of the text rise. Text rise always applies
to the vertical coordinate in text space, regardless of the writing mode.

FIGURE 5.10 Text rise

5.2.7 Text Knockout

The text knockout parameter, Tk (PDF 1.4), is a boolean flag that determines
what text elements are considered elementary objects for purposes of color com-
positing in the transparent imaging model. Unlike other text state parameters,
there is no specific operator for setting this parameter; it can be set only through
the TK entry in a graphics state parameter dictionary by using the gs operator (see
Section 4.3.4, “Graphics State Parameter Dictionaries”).

The text knockout parameter applies only to entire text objects; it may not be set
between the BT and ET operators delimiting a text object. Its initial value is true. If
its value is false, each glyph in a text object is treated as a separate elementary ob-
ject; when glyphs overlap, they composite with one another.

(This text is) Tj
5 Ts
(superscripted) Tj

(This) Tj
–5 Ts
(text) Tj
5 Ts
(moves) Tj
0 Ts
(around) Tj

(This text is) Tj
–5 Ts
(subscripted) Tj

This text is superscripted

This text
moves around

This text is subscripted

TextCHAPTER 5
404

If the parameter is true, all glyphs in the text object are treated together as a single
elementary object; when glyphs overlap, later glyphs overwrite (“knock out”) ear-
lier ones in the area of overlap. This behavior is equivalent to treating the entire
text object as if it were a non-isolated knockout transparency group; see Section
7.3.5, “Knockout Groups.” Transparency parameters are applied to the glyphs in-
dividually rather than to the implicit transparency group as a whole:

• Graphics state parameters, including transparency parameters, are inherited
from the context in which the text object appears. They are not saved and re-
stored, nor are the transparency parameters reset at the beginning of the trans-
parency group (as they are when a transparency group XObject is explicitly
invoked). Changes made to graphics state parameters within the text object
persist beyond the end of the text object.

• After the implicit transparency group for the text object has been completely
evaluated, the group results are composited with the backdrop, using the
Normal blend mode and alpha and soft mask values of 1.0.

5.3 Text Objects

A PDF text object consists of operators that can show text strings, move the text
position, and set text state and certain other parameters. In addition, three pa-
rameters are defined only within a text object and do not persist from one text
object to the next:

• Tm , the text matrix

• Tlm , the text line matrix

• Trm , the text rendering matrix, which is actually just an intermediate result that
combines the effects of text state parameters, the text matrix (Tm), and the cur-
rent transformation matrix

A text object begins with the BT operator and ends with the ET operator, as shown
below and described in Table 5.4.

BT
… Zero or more text operators or other allowed operators …

ET

Text ObjectsSECTION 5.3
405

TABLE 5.4 Text object operators

These specific categories of text-related operators can appear in a text object:

• Text state operators, described in Section 5.2, “Text State Parameters and Oper-
ators”

• Text-positioning operators, described in Section 5.3.1, “Text-Positioning Opera-
tors”

• Text-showing operators, described in Section 5.3.2, “Text-Showing Operators”

The latter two sections also provide further details about the text object parame-
ters described above. The other operators that can appear in a text object are
those related to the general graphics state, color, and marked content, as shown in
Figure 4.1 on page 197.

Note: If a content stream does not contain any text, the Text procedure set may be
omitted (see Section 10.1, “Procedure Sets”). In those circumstances, no text opera-
tors (including operators that merely set the text state) may be present in the content
stream, since those operators are defined in the same procedure set.

Note: Although text objects cannot be statically nested, text might be shown using a
Type 3 font whose glyph descriptions include any graphics objects, including another
text object. Likewise, the current color might be a tiling pattern whose pattern cell
includes a text object.

OPERANDS OPERATOR DESCRIPTION

— BT Begin a text object, initializing the text matrix, Tm , and the text line matrix, Tlm , to
the identity matrix. Text objects cannot be nested; a second BT cannot appear before
an ET.

— ET End a text object, discarding the text matrix.

TextCHAPTER 5
406

5.3.1 Text-Positioning Operators

Text space is the coordinate system in which text is shown. It is defined by the
text matrix, Tm , and the text state parameters Tfs , Th , and Trise , which together
determine the transformation from text space to user space. Specifically, the ori-
gin of the first glyph shown by a text-showing operator is placed at the origin of
text space. If text space has been translated, scaled, or rotated, then the position,
size, or orientation of the glyph in user space is correspondingly altered.

TABLE 5.5 Text-positioning operators

OPERANDS OPERATOR DESCRIPTION

tx ty Td Move to the start of the next line, offset from the start of the current line by
(tx , ty). tx and ty are numbers expressed in unscaled text space units. More pre-
cisely, this operator performs the following assignments:

tx ty TD Move to the start of the next line, offset from the start of the current line by
(tx , ty). As a side effect, this operator sets the leading parameter in the text state.
This operator has the same effect as the following code:

−ty TL
tx ty Td

a b c d e f Tm Set the text matrix, Tm , and the text line matrix, Tlm :

The operands are all numbers, and the initial value for Tm and Tlm is the identity
matrix, [1 0 0 1 0 0]. Although the operands specify a matrix, they are passed
to Tm as six separate numbers, not as an array.

The matrix specified by the operands is not concatenated onto the current text
matrix, but replaces it.

— T* Move to the start of the next line. This operator has the same effect as the code

0 Tl Td

where Tl is the current leading parameter in the text state.

Tm Tlm

1 0 0
0 1 0
tx ty 1

Tlm×= =

Tm Tlm

a b 0
c d 0
e f 1

= =

Text ObjectsSECTION 5.3
407

At the beginning of a text object, Tm is the identity matrix; therefore, the origin of
text space is initially the same as that of user space. The text-positioning operators,
described in Table 5.5, alter Tm and thereby control the placement of glyphs that
are subsequently painted. Also, the text-showing operators, described in Table 5.6
in the next section, update Tm (by altering its e and f translation components) to
take into account the horizontal or vertical displacement of each glyph painted as
well as any character or word-spacing parameters in the text state.

Additionally, a text object keeps track of a text line matrix, Tlm , which captures
the value of Tm at the beginning of a line of text. This is convenient for aligning
evenly spaced lines of text. The text-positioning and text-showing operators read
and set Tlm on specific occasions mentioned in Tables 5.5 and 5.6.

Note: The text-positioning operators can appear only within text objects.

5.3.2 Text-Showing Operators

The text-showing operators (Table 5.6) show text on the page, repositioning text
space as they do so. All of the operators interpret the text string and apply the text
state parameters as described below.

TABLE 5.6 Text-showing operators

OPERANDS OPERATOR DESCRIPTION

string Tj Show a text string.

string ' Move to the next line and show a text string. This operator has the same effect as
the code

T*
string Tj

aw ac string " Move to the next line and show a text string, using aw as the word spacing and ac
as the character spacing (setting the corresponding parameters in the text state).
aw and ac are numbers expressed in unscaled text space units. This operator has
the same effect as the following code:

aw Tw
ac Tc
string '

TextCHAPTER 5
408

FIGURE 5.11 Operation of the TJ operator in horizontal writing

Note: The text-showing operators can appear only within text objects.

A string operand of a text-showing operator is interpreted as a sequence of char-
acter codes identifying the glyphs to be painted. With most font types, each byte
of the string is treated as a separate character code. The character code is then
looked up in the font’s encoding to select the glyph, as described in Section 5.5.5,
“Character Encoding.”

Beginning with PDF 1.2, a string may be shown in a composite font that uses
multiple-byte codes to select some of its glyphs. In that case, one or more consec-
utive bytes of the string are treated as a single character code. The code lengths
and the mappings from codes to glyphs are defined in a data structure called a
CMap, described in Section 5.6, “Composite Fonts.”

The strings must conform to the syntax for string objects. When a string is writ-
ten by enclosing the data in parentheses, bytes whose values are the same as those

array TJ Show one or more text strings, allowing individual glyph positioning (see imple-
mentation note 58 in Appendix H). Each element of array can be a string or a
number. If the element is a string, this operator shows the string. If it is a num-
ber, the operator adjusts the text position by that amount; that is, it translates the
text matrix, Tm . The number is expressed in thousandths of a unit of text space
(see Section 5.3.3, “Text Space Details,” and implementation note 59 in Appen-
dix H). This amount is subtracted from the current horizontal or vertical coordi-
nate, depending on the writing mode. In the default coordinate system, a
positive adjustment has the effect of moving the next glyph painted either to the
left or down by the given amount. Figure 5.11 shows an example of the effect of
passing offsets to TJ.

OPERANDS OPERATOR DESCRIPTION

[(AWAY again)] TJ AWAY again
[(A) 120 (W) 120 (A) 95 (Y again)] TJ AWAY again

Text ObjectsSECTION 5.3
409

of the ASCII characters left parenthesis (40), right parenthesis (41), and backslash
(92) must be preceded by a backslash character. All other byte values between 0
and 255 may be used in a string object. These rules apply to each individual byte
in a string object, whether the string is interpreted by the text-showing operators
as single-byte or multiple-byte character codes.

Strings presented to the text-showing operators may be of any length—even a
single character code per string—and may be placed on the page in any order.
The grouping of glyphs into strings has no significance for the display of text.
Showing multiple glyphs with one invocation of a text-showing operator such as
Tj produces the same results as showing them with a separate invocation for each
glyph. However, the performance of text searching (and other text extraction op-
erations) is significantly better if the text strings are as long as possible and are
shown in natural reading order.

Note: In some cases, the text that is extracted can vary depending on the grouping of
glyphs into strings. See, for example, “Reverse-Order Show Strings” on page 890.

5.3.3 Text Space Details

As stated in Section 5.3.1, “Text-Positioning Operators,” text is shown in text
space, which is defined by the combination of the text matrix, Tm , and the text
state parameters Tfs , Th , and Trise . This determines how text coordinates are
transformed into user space. Both the glyph’s shape and its displacement (hori-
zontal or vertical) are interpreted in text space.

Note: Glyphs are actually defined in glyph space, whose definition varies according
to the font type as discussed in Section 5.1.3, “Glyph Positioning and Metrics.” Glyph
coordinates are first transformed from glyph space to text space before being subject-
ed to the transformations described below.

The entire transformation from text space to device space can be represented by a
text rendering matrix, Trm :

Trm

Tfs Th× 0 0

0 Tfs 0

0 Trise 1

Tm CTM××=

TextCHAPTER 5
410

Trm is a temporary matrix; conceptually, it is recomputed before each glyph is
painted during a text-showing operation.

After the glyph is painted, the text matrix is updated according to the glyph dis-
placement and any spacing parameters that apply. First, a combined displacement
is computed, denoted by tx in horizontal writing mode or ty in vertical writing
mode (the variable corresponding to the other writing mode is set to 0):

where

w0 and w1 are the glyph’s horizontal and vertical displacements

Tj is a position adjustment specified by a number in a TJ array, if any

Tfs and Th are the current text font size and horizontal scaling parameters in the
graphics state

Tc and Tw are the current character- and word-spacing parameters in the
graphics state, if applicable

The text matrix is then updated as follows:

5.4 Introduction to Font Data Structures

A font is represented in PDF as a dictionary specifying the type of font, its Post-
Script name, its encoding, and information that can be used to provide a substi-
tute when the font program is not available. Optionally, the font program can be
embedded as a stream object in the PDF file.

The font types are distinguished by the Subtype entry in the font dictionary.
Table 5.7 lists the font types defined in PDF. Type 0 fonts are called composite
fonts; other types of fonts are called simple fonts. In addition to fonts, PDF sup-

tx w0
Tj

1000-----------–⎝ ⎠
⎛ ⎞ Tfs× Tc Tw+ +⎝

⎛
⎠
⎞ Th×=

ty w1
Tj

1000-----------–⎝ ⎠
⎛ ⎞ Tfs× Tc Tw+ +=

Tm

1 0 0
0 1 0
tx ty 1

Tm×=

Introduction to Font Data StructuresSECTION 5.4
411

ports two classes of font-related objects, called CIDFonts and CMaps, described in
Section 5.6.1, “CID-Keyed Fonts Overview.” CIDFonts are listed in Table 5.7 be-
cause, like fonts, they are collections of glyphs; however, a CIDFont is never used
directly but only as a component of a Type 0 font.

TABLE 5.7 Font types

For all font types, the term font dictionary refers to a PDF dictionary containing
information about the font; likewise, a CIDFont dictionary contains information
about a CIDFont. Except for Type 3, this dictionary is distinct from the font pro-
gram that defines the font’s glyphs. That font program may be embedded in the
PDF file as a stream object or be obtained from some external source.

Note: This terminology differs from that used in the PostScript language. In Post-
Script, a font dictionary is a PostScript data structure that is created as a direct re-
sult of interpreting a font program. In PDF, a font program is always treated as if it
were a separate file, even if its contents are embedded in the PDF file. The font pro-
gram is interpreted by a specialized font interpreter when necessary; its contents
never materialize as PDF objects.

TYPE SUBTYPE VALUE DESCRIPTION

Type 0 Type0 (PDF 1.2) A composite font—a font composed of glyphs from a descendant
CIDFont (see Section 5.6, “Composite Fonts”)

Type 1 Type1 A font that defines glyph shapes using Type 1 font technology (see Section
5.5.1, “Type 1 Fonts”).

MMType1 A multiple master font—an extension of the Type 1 font that allows the gen-
eration of a wide variety of typeface styles from a single font (see “Multiple
Master Fonts” on page 416)

Type 3 Type3 A font that defines glyphs with streams of PDF graphics operators (see Sec-
tion 5.5.4, “Type 3 Fonts”)

TrueType TrueType A font based on the TrueType font format (see Section 5.5.2, “TrueType
Fonts”)

CIDFont CIDFontType0 (PDF 1.2) A CIDFont whose glyph descriptions are based on Type 1 font
technology (see Section 5.6.3, “CIDFonts”)

CIDFontType2 (PDF 1.2) A CIDFont whose glyph descriptions are based on TrueType font
technology (see Section 5.6.3, “CIDFonts”)

TextCHAPTER 5
412

Most font programs (and related programs, such as CIDFonts and CMaps) con-
form to external specifications, such as the Adobe Type 1 Font Format. This book
does not include those specifications. See the Bibliography for more information
about the specifications mentioned in this chapter.

The most predictable and dependable results are produced when all font
programs used to show text are embedded in the PDF file. The following sections
describe precisely how to do so. If a PDF file refers to font programs that are not
embedded, the results depend on the availability of fonts in the consumer appli-
cation’s environment. The following sections specify some conventions for refer-
ring to external font programs. However, some details of font naming, font
substitution, and glyph selection are implementation-dependent and may vary
among different applications and operating system environments.

5.5 Simple Fonts

There are several types of simple fonts, all of which have the following properties:

• Glyphs in the font are selected by single-byte character codes obtained from a
string that is shown by the text-showing operators. Logically, these codes index
into a table of 256 glyphs; the mapping from codes to glyphs is called the font’s
encoding. Each font program has a built-in encoding. Under some circum-
stances, the encoding can be altered by means described in Section 5.5.5,
“Character Encoding.”

• Each glyph has a single set of metrics, including a horizontal displacement or
width, as described in Section 5.1.3, “Glyph Positioning and Metrics;” that is,
simple fonts support only horizontal writing mode.

• Except for Type 0 fonts, Type 3 fonts in non-Tagged PDF documents, and cer-
tain standard Type 1 fonts, every font dictionary contains a subsidiary dictio-
nary, the font descriptor, containing font-wide metrics and other attributes of
the font; see Section 5.7, “Font Descriptors.” Among those attributes is an op-
tional font file stream containing the font program.

5.5.1 Type 1 Fonts

A Type 1 font program is a stylized PostScript program that describes glyph
shapes. It uses a compact encoding for the glyph descriptions, and it includes hint
information that enables high-quality rendering even at small sizes and low reso-

Simple FontsSECTION 5.5
413

lutions. Details on this format are provided in a separate book, Adobe Type 1 Font
Format. An alternative, more compact but functionally equivalent representation
of a Type 1 font program is documented in Adobe Technical Note #5176, The
Compact Font Format Specification.

Note: Although a Type 1 font program uses PostScript language syntax, using it does
not require a full PostScript interpreter; a specialized Type 1 font interpreter suffices.

A Type 1 font dictionary contains the entries listed in Table 5.8. Some entries are
optional for the standard 14 fonts listed under “Standard Type 1 Fonts (Standard
14 Fonts)” on page 416, but are required otherwise.

TABLE 5.8 Entries in a Type 1 font dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a font dictionary.

Subtype name (Required) The type of font; must be Type1 for a Type 1 font.

Name name (Required in PDF 1.0; optional otherwise) The name by which this font is ref-
erenced in the Font subdictionary of the current resource dictionary.

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 60 in Appendix H.)

BaseFont name (Required) The PostScript name of the font. For Type 1 fonts, this is usually
the value of the FontName entry in the font program; for more information,
see Section 5.2 of the PostScript Language Reference, Third Edition. The Post-
Script name of the font can be used to find the font’s definition in the con-
sumer application or its environment. It is also the name that is used when
printing to a PostScript output device.

FirstChar integer (Required except for the standard 14 fonts) The first character code defined in
the font’s Widths array.

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

TextCHAPTER 5
414

LastChar integer (Required except for the standard 14 fonts) The last character code defined in
the font’s Widths array.

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

Widths array (Required except for the standard 14 fonts; indirect reference preferred) An ar-
ray of (LastChar − FirstChar + 1) widths, each element being the glyph width
for the character code that equals FirstChar plus the array index. For charac-
ter codes outside the range FirstChar to LastChar, the value of MissingWidth
from the FontDescriptor entry for this font is used. The glyph widths are
measured in units in which 1000 units corresponds to 1 unit in text space.
These widths must be consistent with the actual widths given in the font pro-
gram. (See implementation note 61 in Appendix H.) For more information
on glyph widths and other glyph metrics, see Section 5.1.3, “Glyph Position-
ing and Metrics.”

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

FontDescriptor dictionary (Required except for the standard 14 fonts; must be an indirect reference) A font
descriptor describing the font’s metrics other than its glyph widths (see Sec-
tion 5.7, “Font Descriptors”).

Note: For the standard 14 fonts, the entries FirstChar, LastChar, Widths, and
FontDescriptor must either all be present or all be absent. Ordinarily, they are
absent; specifying them enables a standard font to be overridden (see “Standard
Type 1 Fonts (Standard 14 Fonts),” below).

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

Encoding name or
dictionary

(Optional) A specification of the font’s character encoding if different from its
built-in encoding. The value of Encoding is either the name of a predefined
encoding (MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding,
as described in Appendix D) or an encoding dictionary that specifies differ-
ences from the font’s built-in encoding or from a specified predefined encod-
ing (see Section 5.5.5, “Character Encoding”).

KEY TYPE VALUE

Simple FontsSECTION 5.5
415

Example 5.6 shows the font dictionary for the Adobe Garamond® Semibold font.
The font has an encoding dictionary (object 25), although neither the encoding
dictionary nor the font descriptor (object 7) is shown in the example.

Example 5.6

14 0 obj
<< /Type /Font

 /Subtype /Type1
 /BaseFont /AGaramond−Semibold
 /FirstChar 0
 /LastChar 255
 /Widths 21 0 R
 /FontDescriptor 7 0 R
 /Encoding 25 0 R

>>
endobj

21 0 obj
[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
 255 280 438 510 510 868 834 248 320 320 420 510 255 320 255 347
 510 510 510 510 510 510 510 510 510 510 255 255 510 510 510 330
 781 627 627 694 784 580 533 743 812 354 354 684 560 921 780 792
 588 792 656 504 682 744 650 968 648 590 638 320 329 320 510 500
 380 420 510 400 513 409 301 464 522 268 259 484 258 798 533 492
 516 503 349 346 321 520 434 684 439 448 390 320 255 320 510 255
 627 627 694 580 780 792 744 420 420 420 420 420 420 402 409 409
 409 409 268 268 268 268 533 492 492 492 492 492 520 520 520 520
 486 400 510 510 506 398 520 555 800 800 1044 360 380 549 846 792
 713 510 549 549 510 522 494 713 823 549 274 354 387 768 615 496
 330 280 510 549 510 549 612 421 421 1000 255 627 627 792 1016 730
 500 1000 438 438 248 248 510 494 448 590 100 510 256 256 539 539
 486 255 248 438 1174 627 580 627 580 580 354 354 354 354 792 792
 790 792 744 744 744 268 380 380 380 380 380 380 380 380 380 380
]

endobj

ToUnicode stream (Optional; PDF 1.2) A stream containing a CMap file that maps character
codes to Unicode values (see Section 5.9, “Extraction of Text Content”).

KEY TYPE VALUE

TextCHAPTER 5
416

Standard Type 1 Fonts (Standard 14 Fonts)

The PostScript names of 14 Type 1 fonts, known as the standard 14 fonts, are as
follows:

Times−Roman Helvetica Courier Symbol
Times−Bold Helvetica−Bold Courier−Bold ZapfDingbats
Times−Italic Helvetica−Oblique Courier−Oblique
Times−BoldItalic Helvetica−BoldOblique Courier−BoldOblique

These fonts, or their font metrics and suitable substitution fonts, must be avail-
able to the consumer application. The character sets and encodings for these
fonts are listed in Appendix D. The Adobe font metrics (AFM) files for the stan-
dard 14 fonts are available from the ASN Web site (see the Bibliography). For
more information on font metrics, see Adobe Technical Note #5004, Adobe Font
Metrics File Format Specification.

Ordinarily, a font dictionary that refers to one of the standard fonts should omit
the FirstChar, LastChar, Widths, and FontDescriptor entries. However, it is per-
missible to override a standard font by including these entries and embedding the
font program in the PDF file. (See implementation note 62 in Appendix H.)

Note: Beginning with PDF 1.5, the special treatment given to the standard 14 fonts
is deprecated. All fonts used in a PDF document should be represented using a com-
plete font descriptor. For backwards capability, viewer applications must still pro-
vide the special treatment identified for the standard 14 fonts.

Multiple Master Fonts

The multiple master font format is an extension of the Type 1 font format that al-
lows the generation of a wide variety of typeface styles from a single font pro-
gram. This is accomplished through the presence of various design dimensions in
the font. Examples of design dimensions are weight (light to extra-bold) and
width (condensed to expanded). Coordinates along these design dimensions
(such as the degree of boldness) are specified by numbers. A particular choice of
numbers selects an instance of the multiple master font. Adobe Technical Note
#5015, Type 1 Font Format Supplement, describes multiple master fonts in detail.

Simple FontsSECTION 5.5
417

The font dictionary for a multiple master font instance has the same entries as a
Type 1 font dictionary (Table 5.8 on page 413), with the following differences:

• The value of Subtype is MMType1.

• If the PostScript name of the instance contains spaces, the spaces are replaced
by underscores in the value of BaseFont. For instance, as illustrated in Example
5.7, the name “MinionMM 366 465 11 ” (which ends with a space character)
becomes /MinionMM_366_465_11_.

Example 5.7

7 0 obj
<< /Type /Font

 /Subtype /MMType1
 /BaseFont /MinionMM_366_465_11_
 /FirstChar 32
 /LastChar 255
 /Widths 19 0 R
 /FontDescriptor 6 0 R
 /Encoding 5 0 R

>>
endobj

19 0 obj
[187 235 317 430 427 717 607 168 326 326 421 619 219 317 219 282 427
 … Omitted data …
 569 0 569 607 607 607 239 400 400 400 400 253 400 400 400 400 400
]

endobj

This example illustrates a convention for including the numeric values of the
design coordinates as part of the instance’s BaseFont name. This convention is
commonly used for accessing multiple master font instances from an external
source in the consumer application’s environment; it is documented in Adobe
Technical Note #5088, Font Naming Issues. However, this convention is not pre-
scribed as part of the PDF specification. In particular, if the font program for this
instance is embedded in the PDF file, it must be an ordinary Type 1 font program,
not a multiple master font program. This font program is called a snapshot of the
multiple master font instance that incorporates the chosen values of the design
coordinates.

TextCHAPTER 5
418

5.5.2 TrueType Fonts

The TrueType font format was developed by Apple Computer, Inc., and has been
adopted as a standard font format for the Microsoft Windows operating system.
Specifications for the TrueType font file format are available in Apple’s TrueType
Reference Manual and Microsoft’s TrueType 1.0 Font Files Technical Specification.

Note: A TrueType font program can be embedded directly in a PDF file as a stream
object. The Type 42 font format that is defined for PostScript does not apply to PDF.

A TrueType font dictionary can contain the same entries as a Type 1 font dictio-
nary (Table 5.8 on page 413), with the following differences:

• The value of Subtype is TrueType.

• The value of BaseFont is derived differently, as described below.

• The value of Encoding is subject to limitations that are described in Section
5.5.5, “Character Encoding.”

The PostScript name for the value of BaseFont is determined in one of two ways:

• Use the PostScript name that is an optional entry in the “name” table of the
TrueType font.

• In the absence of such an entry in the “name” table, derive a PostScript name
from the name by which the font is known in the host operating system. On a
Windows system, the name is based on the lfFaceName field in a LOGFONT
structure; in the Mac OS, it is based on the name of the FOND resource. If the
name contains any spaces, the spaces are removed.

If the font in a source document uses a bold or italic style but there is no font data
for that style, the host operating system synthesizes the style. In this case, a com-
ma and the style name (one of Bold, Italic, or BoldItalic) are appended to the font
name. For example, for a TrueType font that is a bold variant of the New York
font, the BaseFont value is written as /NewYork , Bold (as illustrated in Example
5.8).

Simple FontsSECTION 5.5
419

Example 5.8

17 0 obj
<< /Type /Font

 /Subtype /TrueType
 /BaseFont /NewYork , Bold
 /FirstChar 0
 /LastChar 255
 /Widths 23 0 R
 /FontDescriptor 7 0 R
 /Encoding /MacRomanEncoding

>>
endobj

23 0 obj
[0 333 333 333 333 333 333 333 0 333 333 333 333 333 333 333 333 333
 … Omitted data …
 803 790 803 780 780 780 340 636 636 636 636 636 636 636 636 636 636
]

endobj

Note that for CJK (Chinese, Japanese, and Korean) fonts, the host font system’s
font name is often encoded in the host operating system’s script. For instance, a
Japanese font may have a name that is written in Japanese using some (unidenti-
fied) Japanese encoding. Thus, TrueType font names may contain multiple-byte
character codes, each of which requires multiple characters to represent in a PDF
name object (using the # notation to quote special characters as needed).

5.5.3 Font Subsets

PDF 1.1 permits documents to include subsets of Type 1 and TrueType fonts.
The font and font descriptor that describe a font subset are slightly different
from those of ordinary fonts. These differences allow an application to recog-
nize font subsets and to merge documents containing different subsets of the
same font. (For more information on font descriptors, see Section 5.7, “Font De-
scriptors.”)

For a font subset, the PostScript name of the font—the value of the font’s
BaseFont entry and the font descriptor’s FontName entry—begins with a tag
followed by a plus sign (+). The tag consists of exactly six uppercase letters; the
choice of letters is arbitrary, but different subsets in the same PDF file must have
different tags. For example, EOODIA+Poetica is the name of a subset of Poetica®, a
Type 1 font. (See implementation note 63 in Appendix H.)

TextCHAPTER 5
420

5.5.4 Type 3 Fonts

Type 3 fonts differ from the other fonts supported by PDF. A Type 3 font dictio-
nary defines the font; font dictionaries for other fonts simply contain information
about the font and refer to a separate font program for the actual glyph descrip-
tions. In Type 3 fonts, glyphs are defined by streams of PDF graphics operators.
These streams are associated with character names. A separate encoding entry
maps character codes to the appropriate character names for the glyphs.

Type 3 fonts are more flexible than Type 1 fonts because the glyph descriptions
may contain arbitrary PDF graphics operators. However, Type 3 fonts have no
hinting mechanism for improving output at small sizes or low resolutions. A Type
3 font dictionary contains the entries listed in Table 5.9.

TABLE 5.9 Entries in a Type 3 font dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a font dictionary.

Subtype name (Required) The type of font; must be Type3 for a Type 3 font.

Name name (Required in PDF 1.0; optional otherwise) See Table 5.8 on page 413.

FontBBox rectangle (Required) A rectangle (see Section 3.8.4, “Rectangles”) expressed in the
glyph coordinate system, specifying the font bounding box. This is the small-
est rectangle enclosing the shape that would result if all of the glyphs of the
font were placed with their origins coincident and then filled.

If all four elements of the rectangle are zero, no assumptions are made based
on the font bounding box. If any element is nonzero, it is essential that the
font bounding box be accurate. If any glyph’s marks fall outside this bounding
box, incorrect behavior may result.

FontMatrix array (Required) An array of six numbers specifying the font matrix, mapping
glyph space to text space (see Section 5.1.3, “Glyph Positioning and
Metrics”). A common practice is to define glyphs in terms of a 1000-unit
glyph coordinate system, in which case the font matrix is
[0.001 0 0 0.001 0 0].

Simple FontsSECTION 5.5
421

CharProcs dictionary (Required) A dictionary in which each key is a character name and the value
associated with that key is a content stream that constructs and paints the
glyph for that character. The stream must include as its first operator either
d0 or d1, followed by operators describing one or more graphics objects,
which may include path, text, or image objects. See below for more details
about Type 3 glyph descriptions.

Encoding name or
dictionary

(Required) An encoding dictionary whose Differences array specifies the
complete character encoding for this font (see Section 5.5.5, “Character
Encoding”; also see implementation note 64 in Appendix H).

FirstChar integer (Required) The first character code defined in the font’s Widths array.

LastChar integer (Required) The last character code defined in the font’s Widths array.

Widths array (Required; indirect reference preferred) An array of (LastChar − FirstChar + 1)
widths, each element being the glyph width for the character code that equals
FirstChar plus the array index. For character codes outside the range FirstChar
to LastChar, the width is 0. These widths are interpreted in glyph space as
specified by FontMatrix (unlike the widths of a Type 1 font, which are in
thousandths of a unit of text space).

Note: If FontMatrix specifies a rotation, only the horizontal component of the
transformed width is used. That is, the resulting displacement is always hori-
zontal in text space, as is the case for all simple fonts.

FontDescriptor dictionary (Required in Tagged PDF documents; must be an indirect reference) A font de-
scriptor describing the font’s default metrics other than its glyph widths (see
Section 5.7, “Font Descriptors”).

Resources dictionary (Optional but strongly recommended; PDF 1.2) A list of the named resources,
such as fonts and images, required by the glyph descriptions in this font (see
Section 3.7.2, “Resource Dictionaries”). If any glyph descriptions refer to
named resources but this dictionary is absent, the names are looked up in the
resource dictionary of the page on which the font is used. (See implementa-
tion note 65 in Appendix H.)

ToUnicode stream (Optional; PDF 1.2) A stream containing a CMap file that maps character
codes to Unicode values (see Section 5.9, “Extraction of Text Content”).

KEY TYPE VALUE

TextCHAPTER 5
422

For each character code shown by a text-showing operator that uses a Type 3 font,
the consumer application does the following:

1. Looks up the character code in the font’s Encoding entry, as described in Sec-
tion 5.5.5, “Character Encoding,” to obtain a character name.

2. Looks up the character name in the font’s CharProcs dictionary to obtain a
stream object containing a glyph description. (If the name is not present as a
key in CharProcs, no glyph is painted.)

3. Invokes the glyph description, as described below. The graphics state is saved
before this invocation and restored afterward; therefore, any changes the glyph
description makes to the graphics state do not persist after it finishes.

When the glyph description begins execution, the current transformation matrix
(CTM) is the concatenation of the font matrix (FontMatrix in the current font
dictionary) and the text space that was in effect at the time the text-showing op-
erator was invoked (see Section 5.3.3, “Text Space Details”). This means that
shapes described in the glyph coordinate system are transformed into the user
coordinate system and appear in the appropriate size and orientation on the page.
The glyph description should describe the glyph in terms of absolute coordinates
in the glyph coordinate system, placing the glyph origin at (0, 0) in this space. It
should make no assumptions about the initial text position.

Aside from the CTM, the graphics state is inherited from the environment of the
text-showing operator that caused the glyph description to be invoked. To ensure
predictable results, the glyph description must initialize any graphics state
parameters on which it depends. In particular, if it invokes the S (stroke) opera-
tor, it should explicitly set the line width, line join, line cap, and dash pattern to
appropriate values. Normally, it is unnecessary and undesirable to initialize the
current color parameter because the text-showing operators are designed to paint
glyphs with the current color.

The glyph description must execute one of the operators described in Table 5.10
to pass width and bounding box information to the font machinery. This must
precede the execution of any path construction or path-painting operators de-
scribing the glyph.

Note: Type 3 fonts in PDF are very similar to those in PostScript. Some of the in-
formation provided in Type 3 font dictionaries and glyph descriptions, while seem-
ingly redundant or unnecessary, is nevertheless required for correct results when a

Simple FontsSECTION 5.5
423

PDF consumer application prints to a PostScript output device. This applies par-
ticularly to the operands of the d0 and d1 operators, which in PostScript are
named setcharwidth and setcachedevice. For further explanation, see Section 5.7
of the PostScript Language Reference, Third Edition.

TABLE 5.10 Type 3 font operators

OPERANDS OPERATOR DESCRIPTION

wx wy d0 Set width information for the glyph and declare that the glyph descrip-
tion specifies both its shape and its color. (Note that this operator name
ends in the digit 0.) wx specifies the horizontal displacement in the glyph
coordinate system; it must be consistent with the corresponding width
in the font’s Widths array. wy must be 0 (see Section 5.1.3, “Glyph Posi-
tioning and Metrics”).

This operator is permitted only in a content stream appearing in a
Type 3 font’s CharProcs dictionary. It is typically used only if the glyph
description executes operators to set the color explicitly.

wx wy llx lly urx ury d1 Set width and bounding box information for the glyph and declare that
the glyph description specifies only shape, not color. (Note that this
operator name ends in the digit 1.) wx specifies the horizontal displace-
ment in the glyph coordinate system; it must be consistent with the
corresponding width in the font’s Widths array. wy must be 0 (see Section
5.1.3, “Glyph Positioning and Metrics”).

llx and lly are the coordinates of the lower-left corner, and urx and ury the
upper-right corner, of the glyph bounding box. The glyph bounding box
is the smallest rectangle, oriented with the axes of the glyph coordinate
system, that completely encloses all marks placed on the page as a result
of executing the glyph’s description. The declared bounding box must be
correct—in other words, sufficiently large to enclose the entire glyph. If
any marks fall outside this bounding box, the result is unpredictable.

A glyph description that begins with the d1 operator should not execute
any operators that set the color (or other color-related parameters) in the
graphics state; any use of such operators is ignored. The glyph descrip-
tion is executed solely to determine the glyph’s shape. Its color is deter-
mined by the graphics state in effect each time this glyph is painted by a
text-showing operator. For the same reason, the glyph description may
not include an image; however, an image mask is acceptable, since it
merely defines a region of the page to be painted with the current color.

This operator is permitted only in a content stream appearing in a
Type 3 font’s CharProcs dictionary.

TextCHAPTER 5
424

Example of a Type 3 Font

Example shows the definition of a Type 3 font with only two glyphs—a filled
square and a filled triangle, selected by the character codes a and b. Figure 5.12
shows the result of showing the string (ababab) using this font.

FIGURE 5.12 Output from Example

4 0 obj
<< /Type /Font

 /Subtype /Type3
 /FontBBox [0 0 750 750]
 /FontMatrix [0.001 0 0 0.001 0 0]
 /CharProcs 10 0 R
 /Encoding 9 0 R
 /FirstChar 97
 /LastChar 98
 /Widths [1000 1000]

>>
endobj

9 0 obj
<< /Type /Encoding

 /Differences [97 /square /triangle]
>>

endobj

10 0 obj
<< /square 11 0 R

 /triangle 12 0 R
>>

endobj

Simple FontsSECTION 5.5
425

11 0 obj
<< /Length 39 >>

stream
1000 0 0 0 750 750 d1
0 0 750 750 re
f

endstream
endobj

12 0 obj
<< /Length 48 >>

stream
1000 0 0 0 750 750 d1
0 0 m
375 750 l
750 0 l
f

endstream
endobj

5.5.5 Character Encoding

A font’s encoding is the association between character codes (obtained from text
strings that are shown) and glyph descriptions. This section describes the charac-
ter encoding scheme used with simple PDF fonts. Composite fonts (Type 0) use a
different character mapping algorithm, as discussed in Section 5.6, “Composite
Fonts.”

Except for Type 3 fonts, every font program has a built-in encoding. Under cer-
tain circumstances, a PDF font dictionary can change a font’s built-in encoding to
match the requirements of the application generating the text being shown. This
flexibility in character encoding is valuable for two reasons:

• It permits showing text that is encoded according to any of the various existing
conventions. For example, the Microsoft Windows and Apple Mac OS oper-
ating systems use different standard encodings for Latin text, and many appli-
cations use their own special-purpose encodings.

• It permits applications to specify how characters selected from a large character
set are to be encoded. Some character sets consist of more than 256 characters,
including ligatures, accented characters, and other symbols required for high-

TextCHAPTER 5
426

quality typography or non-Latin writing systems. Different encodings can se-
lect different subsets of the same character set.

Latin-text font programs produced by Adobe Systems use the Adobe standard
encoding, often referred to as StandardEncoding. The name StandardEncoding
has no special meaning in PDF, but this encoding does play a role as a default en-
coding (as shown in Table 5.11 below). The regular encodings used for Latin-text
fonts on Mac OS and Windows systems are named MacRomanEncoding and
WinAnsiEncoding, respectively. An encoding named MacExpertEncoding is used
with “expert” fonts that contain additional characters useful for sophisticated ty-
pography. Complete details of these encodings and of the characters present in
typical fonts are provided in Appendix D.

In PDF, a font is classified as either nonsymbolic or symbolic according to whether
all of its characters are members of the Adobe standard Latin character set. This
is indicated by flags in the font descriptor; see Section 5.7.1, “Font Descriptor
Flags.” Symbolic fonts contain other character sets, to which the encodings men-
tioned above ordinarily do not apply. Such font programs have built-in encodings
that are usually unique to each font. The standard 14 fonts include two symbolic
fonts, Symbol and ZapfDingbats, whose encodings and character sets are docu-
mented in Appendix D.

A font program’s built-in encoding can be overridden or altered by including an
Encoding entry in the PDF font dictionary. The possible encoding modifications
depend on the font type, as discussed below. The value of the Encoding entry is
either a named encoding (the name of one of the predefined encodings
MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding) or an encoding
dictionary. An encoding dictionary contains the entries listed in Table 5.11.

Simple FontsSECTION 5.5
427

TABLE 5.11 Entries in an encoding dictionary

The value of the Differences entry is an array of character codes and character
names organized as follows:

code1 name1,1 name1,2 …
code2 name2,1 name2,2 …
…
coden namen,1 namen,2 …

Each code is the first index in a sequence of character codes to be changed. The
first character name after the code becomes the name corresponding to that code.
Subsequent names replace consecutive code indices until the next code appears
in the array or the array ends. These sequences may be specified in any order but
should not overlap.

For example, in the encoding dictionary in Example 5.9, the name quotesingle (')
is associated with character code 39, Adieresis (Ä) with code 128, Aring (Å) with
129, and trademark (™) with 170.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must
be Encoding for an encoding dictionary.

BaseEncoding name (Optional) The base encoding—that is, the encoding from which the Differences
entry (if present) describes differences—specified as the name of a predefined
encoding MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding (see
Appendix D).

If this entry is absent, the Differences entry describes differences from an im-
plicit base encoding. For a font program that is embedded in the PDF file, the
implicit base encoding is the font program’s built-in encoding, as described
above and further elaborated in the sections on specific font types below. Other-
wise, for a nonsymbolic font, it is StandardEncoding, and for a symbolic font, it
is the font’s built-in encoding.

Differences array (Optional; not recommended with TrueType fonts) An array describing the differ-
ences from the encoding specified by BaseEncoding or, if BaseEncoding is ab-
sent, from an implicit base encoding. The Differences array is described below.

TextCHAPTER 5
428

Example 5.9

25 0 obj
<< /Type /Encoding

 /Differences
[39 /quotesingle

 96 /grave
128 /Adieresis /Aring /Ccedilla /Eacute /Ntilde /Odieresis /Udieresis

 /aacute /agrave /acircumflex /adieresis /atilde /aring /ccedilla
 /eacute /egrave /ecircumflex /edieresis /iacute /igrave /icircumflex
 /idieresis /ntilde /oacute /ograve /ocircumflex /odieresis /otilde
 /uacute /ugrave /ucircumflex /udieresis /dagger /degree /cent
 /sterling /section /bullet /paragraph /germandbls /registered
 /copyright /trademark /acute /dieresis

174 /AE /Oslash
177 /plusminus
180 /yen /mu
187 /ordfeminine /ordmasculine
190 /ae /oslash /questiondown /exclamdown /logicalnot
196 /florin
199 /guillemotleft /guillemotright /ellipsis
203 /Agrave /Atilde /Otilde /OE /oe /endash /emdash /quotedblleft

 /quotedblright /quoteleft /quoteright /divide
216 /ydieresis /Ydieresis /fraction /currency /guilsinglleft /guilsinglright

 /fi /fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase
 /perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave
 /Iacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex

241 /Ograve /Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde
 /macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek
 /caron

]
>>

endobj

By convention, the name . notdef can be used to indicate that no character name
is associated with a given character code.

Encodings for Type 1 Fonts

A Type 1 font program’s glyph descriptions are keyed by character names, not by
character codes. Character names are ordinary PDF name objects. Descriptions of
Latin alphabetic characters are normally associated with names consisting of
single letters, such as A or a. Other characters are associated with names com-

Simple FontsSECTION 5.5
429

posed of words, such as three, ampersand, or parenleft. A Type 1 font’s built-in
encoding is defined by an Encoding array that is part of the font program, not to
be confused with the Encoding entry in the PDF font dictionary.

An Encoding entry can alter a Type 1 font’s mapping from character codes to
character names. The Differences array can map a code to the name of any glyph
description that exists in the font program, regardless of whether that glyph is ref-
erenced by the font’s built-in encoding or by the encoding specified in the
BaseEncoding entry.

All Type 1 font programs contain an actual glyph named . notdef. The effect pro-
duced by showing the . notdef glyph is at the discretion of the font designer; in
Type 1 font programs produced by Adobe, it is the same as the space character. If
an encoding maps to a character name that does not exist in the Type 1 font pro-
gram, the . notdef glyph is substituted.

Encodings for Type 3 Fonts

A Type 3 font, like a Type 1 font, contains glyph descriptions that are keyed by
character names; in this case, they appear as explicit keys in the font’s CharProcs
dictionary. A Type 3 font’s mapping from character codes to character names is
entirely defined by its Encoding entry, which is required in this case.

Encodings for TrueType Fonts

A TrueType font program’s built-in encoding maps directly from character codes
to glyph descriptions by means of an internal data structure called a “cmap” (not
to be confused with the CMap described in Section 5.6.4, “CMaps”). This section
describes how the PDF font dictionary’s Encoding entry is used in conjunction
with a “cmap” to map from a character code in a string to a glyph description in a
TrueType font program.

A “cmap” table may contain one or more subtables that represent multiple encod-
ings intended for use on different platforms (such as Mac OS and Windows).
Each subtable is identified by the two numbers, such as (3, 1), that represent a
combination of a platform ID and a platform-specific encoding ID, respectively.

Glyph names are not mandatory in TrueType fonts, although some font programs
have an optional “post” table listing glyph names for the glyphs. If the consumer

TextCHAPTER 5
430

application needs to select glyph descriptions by name, it translates from glyph
names to codes in one of the encodings given in the font program’s “cmap” table.
When there is no character code in the “cmap” that corresponds to a glyph name,
the “post” table is used to select a glyph description directly from the glyph name.

Because some aspects of TrueType glyph selection are dependent on the consum-
er implementation or the operating system, PDF files that use TrueType fonts
should follow certain guidelines to ensure predictable behavior across all applica-
tions:

• The font program should be embedded.

• A nonsymbolic font should specify MacRomanEncoding or WinAnsiEncoding
as the value of its Encoding entry, with no Differences array.

• A font that is used to display glyphs that do not use MacRomanEncoding or
WinAnsiEncoding should not specify an Encoding entry. The font descriptor’s
Symbolic flag (see Table 5.20) should be set, and its font program’s “cmap” table
should contain a (1, 0) subtable. It may also contain a (3, 0) subtable; if present,
this subtable should map from character codes in the range 0xF000 to 0xF0FF
by prepending the single-byte codes in the (1, 0) subtable with 0xF0 and map-
ping to the corresponding glyph descriptions.

Note: Some popular TrueType font programs contain incorrect encoding informa-
tion. Implementations of TrueType font interpreters have evolved heuristics for deal-
ing with such problems; those heuristics are not described here. For maximum
portability, only well-formed TrueType font programs should be used in PDF files.
Therefore, a TrueType font program in a PDF file may need to be modified to con-
form to the guidelines described above.

The following paragraphs describe the treatment of TrueType font encodings be-
ginning with PDF 1.3, as implemented in Acrobat 5.0 and later viewers. This in-
formation does not necessarily apply to earlier versions or implementations.

If the font has a named Encoding entry of either MacRomanEncoding or
WinAnsiEncoding, or if the font descriptor’s Nonsymbolic flag (see Table 5.20) is
set, the viewer creates a table that maps from character codes to glyph names:

• If the Encoding entry is one of the names MacRomanEncoding or WinAnsiEn-
coding, the table is initialized with the mappings described in Appendix D.

Simple FontsSECTION 5.5
431

• If the Encoding entry is a dictionary, the table is initialized with the entries
from the dictionary’s BaseEncoding entry (see Table 5.11). Any entries in the
Differences array are used to update the table. Finally, any undefined entries in
the table are filled using StandardEncoding.

If a (3, 1) “cmap” subtable (Microsoft Unicode) is present:

• A character code is first mapped to a glyph name using the table described
above.

• The glyph name is then mapped to a Unicode value by consulting the Adobe
Glyph List (see the Bibliography).

• Finally, the Unicode value is mapped to a glyph description according to the
(3, 1) subtable.

If no (3, 1) subtable is present but a (1, 0) subtable (Macintosh Roman) is present:

• A character code is first mapped to a glyph name using the table described
above.

• The glyph name is then mapped back to a character code according to the stan-
dard Roman encoding used on Mac OS (see note below).

• Finally, the code is mapped to a glyph description according to the (1, 0) sub-
table.

In either of the cases above, if the glyph name cannot be mapped as specified, the
glyph name is looked up in the font program’s “post” table (if one is present) and
the associated glyph description is used.

Note: The standard Roman encoding that is used on Mac OS is the same as the
MacRomanEncoding described in Appendix D, with the addition of following 15 en-
tries and the replacement of the currency glyph with the Euro glyph, as shown in Ta-
ble 5.12.

TABLE 5.12 Differences between MacRomanEncoding and Mac OS Roman encoding

NAME CODE (OCTAL) CODE (DECIMAL)

notequal 255 173

infinity 260 176

TextCHAPTER 5
432

When the font has no Encoding entry, or the font descriptor’s Symbolic flag is set
(in which case the Encoding entry is ignored), the following occurs:

• If the font contains a (3, 0) subtable, the range of character codes must be one
of the following: 0x0000 - 0x00FF, 0xF000 - 0xF0FF, 0xF100 - 0xF1FF, or
0xF200 - 0xF2FF. Depending on the range of codes, each byte from the string is
prepended with the high byte of the range, to form a two-byte character, which
is used to select the associated glyph description from the subtable.

• Otherwise, if the font contains a (1, 0) subtable, single bytes from the string are
used to look up the associated glyph descriptions from the subtable.

If a character cannot be mapped in any of the ways described above, the results
are implementation-dependent.

lessequal 262 178

greaterequal 263 179

partialdiff 266 182

summation 267 183

product 270 184

pi 271 185

integral 272 186

Omega 275 189

radical 303 195

approxequal 305 197

Delta 306 198

lozenge 327 215

Euro 333 219

apple 360 240

NAME CODE (OCTAL) CODE (DECIMAL)

Composite FontsSECTION 5.6
433

5.6 Composite Fonts

A composite font, also called a Type 0 font, is one whose glyphs are obtained from
a fontlike object called a CIDFont. A composite font is represented by a font dic-
tionary whose Subtype value is Type0. The Type 0 font is known as the root font,
and its associated CIDFont is called its descendant.

Note: Composite fonts in PDF are analogous to composite fonts in PostScript but
with some limitations. In particular, PDF requires that the character encoding be
defined by a CMap (described below), which is only one of several encoding methods
available in PostScript.Also, PostScript allows a Type 0 font to have multiple descen-
dants, which might also be Type 0 fonts. PDF supports only a single descendant,
which must be a CIDFont.

When the current font is composite, the text-showing operators behave different-
ly than with simple fonts. For simple fonts, each byte of a string to be shown se-
lects one glyph, whereas for composite fonts, a sequence of one or more bytes can
be decoded to select a glyph from the descendant CIDFont. This facility supports
the use of very large character sets, such as those for the Chinese, Japanese, and
Korean languages. It also simplifies the organization of fonts that have complex
encoding requirements.

This section first introduces the architecture of CID-keyed fonts, which are the
only kind of composite font supported in PDF. Then it describes the CIDFont and
CMap dictionaries, which are the PDF objects that represent the correspondingly
named components of a CID-keyed font. Finally, it describes the Type 0 font dic-
tionary, which combines a CIDFont and a CMap to produce a font whose glyphs
can be accessed by means of variable-length character codes in a string to be
shown.

5.6.1 CID-Keyed Fonts Overview

CID-keyed fonts provide a convenient and efficient method for defining
multiple-byte character encodings, fonts with a large number of glyphs, and fonts
that incorporate glyphs obtained from other fonts. These capabilities provide
great flexibility for representing text in writing systems for languages with large
character sets, such as Chinese, Japanese, and Korean (CJK).

The CID-keyed font architecture specifies the external representation of certain
font programs, called CMap and CIDFont files, along with some conventions for

TextCHAPTER 5
434

combining and using those files. As mentioned earlier, PDF does not support the
entire CID-keyed font architecture, which is independent of PDF; CID-keyed
fonts can be used in other environments. For complete documentation on the ar-
chitecture and the file formats, see Adobe Technical Notes #5092, CID-Keyed
Font Technology Overview, and #5014, Adobe CMap and CIDFont Files Specifica-
tion. This section describes only the PDF objects that represent these font pro-
grams.

The term CID-keyed font reflects the fact that CID (character identifier) numbers
are used to index and access the glyph descriptions in the font. This method is
more efficient for large fonts than the method of accessing by character name, as
is used for some simple fonts. CIDs range from 0 to a maximum value that is sub-
ject to an implementation limit (see Table C.1 on page 992).

A character collection is an ordered set of all glyphs needed to support one or
more popular character sets for a particular language. The order of the glyphs in
the character collection determines the CID number for each glyph. Each CID-
keyed font must explicitly reference the character collection on which its CID
numbers are based; see Section 5.6.2, “CIDSystemInfo Dictionaries.”

A CMap (character map) file specifies the correspondence between character
codes and the CID numbers used to identify glyphs. It is equivalent to the con-
cept of an encoding in simple fonts. Whereas a simple font allows a maximum of
256 glyphs to be encoded and accessible at one time, a CMap can describe a map-
ping from multiple-byte codes to thousands of glyphs in a large CID-keyed font.
For example, it can describe Shift-JIS, one of several widely used encodings for
Japanese.

A CMap can reference an entire character collection, a subset, or multiple charac-
ter collections. It can also reference characters in other fonts by character code or
character name. The CMap mapping yields a font number (which in PDF is al-
ways 0) and a character selector (which in PDF is always a CID). Furthermore, a
CMap can incorporate another CMap by reference, without having to duplicate it.
These features enable character collections to be combined or supplemented and
make all the constituent characters accessible to text-showing operations through
a single encoding.

A CIDFont file contains the glyph descriptions for a character collection. The
glyph descriptions themselves are typically in a format similar to those used in
simple fonts, such as Type 1. However, they are identified by CIDs rather than by
names, and they are organized differently.

Composite FontsSECTION 5.6
435

In PDF, the CMap and CIDFont are represented by PDF objects, which are de-
scribed below. The CMap and CIDFont programs themselves can be either refer-
enced by name or embedded as stream objects in the PDF file. As stated earlier,
the external file formats are documented in Adobe Technical Note #5014, Adobe
CMap and CIDFont Files Specification.

A CID-keyed font, then, is the combination of a CMap with a CIDFont contain-
ing glyph descriptions. It is represented as a Type 0 font. It contains an Encoding
entry whose value is a CMap dictionary, and its DescendantFonts entry refer-
ences the CIDFont dictionary with which the CMap has been combined.

5.6.2 CIDSystemInfo Dictionaries

CIDFont and CMap dictionaries contain a CIDSystemInfo entry specifying the
character collection assumed by the CIDFont associated with the CMap—that is,
the interpretation of the CID numbers used by the CIDFont. A character collec-
tion is uniquely identified by the Registry, Ordering, and Supplement entries in
the CIDSystemInfo dictionary, as described in Table 5.13. Character collections
whose Registry and Ordering values are the same are compatible.

The CIDSystemInfo entry in a CIDFont is a dictionary that specifies the
CIDFont’s character collection. The CIDFont need not contain glyph descriptions
for all the CIDs in a collection; it can contain a subset. The CIDSystemInfo entry
in a CMap is either a single dictionary or an array of dictionaries, depending on
whether it associates codes with a single character collection or with multiple
character collections; see Section 5.6.4, “CMaps.”

For proper behavior, the CIDSystemInfo entry of a CMap should be compatible
with that of the CIDFont or CIDFonts with which it is used. If they are incompat-
ible, the effects produced are unpredictable.

TABLE 5.13 Entries in a CIDSystemInfo dictionary

KEY TYPE VALUE

Registry ASCII
string

(Required) A string identifying the issuer of the character collection—for example,
Adobe. For information about assigning a registry identifier, contact the Adobe
Solutions Network or consult the ASN Web site (see the Bibliography).

Ordering ASCII
string

(Required) A string that uniquely names the character collection within the speci-
fied registry—for example, Japan1.

TextCHAPTER 5
436

5.6.3 CIDFonts

A CIDFont program contains glyph descriptions that are accessed using a CID as
the character selector. There are two types of CIDFonts:

• A Type 0 CIDFont contains glyph descriptions based on the Adobe Type 1 font
format

Note: The term “Type 0” when applied to a CIDFont has a different meaning than
for a “Type 0 font”.

• A Type 2 CIDFont contains glyph descriptions based on the TrueType font format

A CIDFont dictionary is a PDF object that contains information about a CIDFont
program. Although its Type value is Font, a CIDFont is not actually a font. It does
not have an Encoding entry, it cannot be listed in the Font subdictionary of a re-
source dictionary, and it cannot be used as the operand of the Tf operator. It is
used only as a descendant of a Type 0 font. The CMap in the Type 0 font is what
defines the encoding that maps character codes to CIDs in the CIDFont. Table
5.14 lists the entries in a CIDFont dictionary.

TABLE 5.14 Entries in a CIDFont dictionary

Supplement integer (Required) The supplement number of the character collection. An original charac-
ter collection has a supplement number of 0. Whenever additional CIDs are
assigned in a character collection, the supplement number is increased. Supple-
ments do not alter the ordering of existing CIDs in the character collection. This
value is not used in determining compatibility between character collections.

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a CIDFont dictionary.

Subtype name (Required) The type of CIDFont; CIDFontType0 or CIDFontType2.

BaseFont name (Required) The PostScript name of the CIDFont. For Type 0 CIDFonts, this
is usually the value of the CIDFontName entry in the CIDFont program. For
Type 2 CIDFonts, it is derived the same way as for a simple TrueType font;
see Section 5.5.2, “TrueType Fonts.” In either case, the name can have a sub-
set prefix if appropriate; see Section 5.5.3, “Font Subsets.”

KEY TYPE VALUE

Composite FontsSECTION 5.6
437

Glyph Selection in CIDFonts

Type 0 and Type 2 CIDFonts handle the mapping from CIDs to glyph descrip-
tions in somewhat different ways.

CIDSystemInfo dictionary (Required) A dictionary containing entries that define the character collec-
tion of the CIDFont. See Table 5.13 on page 435.

FontDescriptor dictionary (Required; must be an indirect reference) A font descriptor describing the
CIDFont’s default metrics other than its glyph widths (see Section 5.7, “Font
Descriptors”).

DW integer (Optional) The default width for glyphs in the CIDFont (see “Glyph Metrics
in CIDFonts” on page 439). Default value: 1000.

W array (Optional) A description of the widths for the glyphs in the CIDFont. The
array’s elements have a variable format that can specify individual widths
for consecutive CIDs or one width for a range of CIDs (see “Glyph Metrics
in CIDFonts” on page 439). Default value: none (the DW value is used for all
glyphs).

DW2 array (Optional; applies only to CIDFonts used for vertical writing) An array of two
numbers specifying the default metrics for vertical writing (see “Glyph
Metrics in CIDFonts” on page 439). Default value: [880 −1000].

W2 array (Optional; applies only to CIDFonts used for vertical writing) A description
of the metrics for vertical writing for the glyphs in the CIDFont (see “Glyph
Metrics in CIDFonts” on page 439). Default value: none (the DW2 value is
used for all glyphs).

CIDToGIDMap stream
or name

(Optional; Type 2 CIDFonts only) A specification of the mapping from CIDs
to glyph indices. If the value is a stream, the bytes in the stream contain the
mapping from CIDs to glyph indices: the glyph index for a particular CID
value c is a 2-byte value stored in bytes 2 × c and 2 × c + 1, where the first
byte is the high-order byte. If the value of CIDToGIDMap is a name, it must
be Identity, indicating that the mapping between CIDs and glyph indices is
the identity mapping. Default value: Identity.

This entry may appear only in a Type 2 CIDFont whose associated True-
Type font program is embedded in the PDF file (see the next section).

KEY TYPE VALUE

TextCHAPTER 5
438

For Type 0, the CIDFont program contains glyph descriptions that are identified
by CIDs. The CIDFont program identifies the character collection by a
CIDSystemInfo dictionary, which should simply be copied into the PDF CIDFont
dictionary. CIDs are interpreted uniformly in all CIDFont programs supporting a
given character collection, whether the program is embedded in the PDF file or
obtained from an external source.

When the CIDFont contains an embedded font program that is represented in
the Compact Font Format (CFF), the FontFile3 entry in the font descriptor (see
Table 5.23) can be CIDFontType0C or OpenType. There are two cases, depending
on the contents of the font program:

• The “CFF” font program has a Top DICT that uses CIDFont operators: The CIDs
are used to determine the GID value for the glyph procedure using the charset
table in the CFF program. The GID value is then used to look up the glyph pro-
cedure using the CharStrings INDEX table. Although in many fonts the CID val-
ue and GID value are the same, the CID and GID values may differ.

• The “CFF” font program has a Top DICT that does not use CIDFont operators:
The CIDs are used directly as GID values, and the glyph procedure is retrieved
using the CharStrings INDEX.

For Type 2, the CIDFont program is actually a TrueType font program, which has
no native notion of CIDs. In a TrueType font program, glyph descriptions are
identified by glyph index values. Glyph indices are internal to the font and are not
defined consistently from one font to another. Instead, a TrueType font program
contains a “cmap” table that provides mappings directly from character codes to
glyph indices for one or more predefined encodings.

TrueType font programs are integrated with the CID-keyed font architecture in
one of two ways, depending on whether the font program is embedded in the
PDF file:

• If the TrueType font program is embedded, the Type 2 CIDFont dictionary
must contain a CIDToGIDMap entry that maps CIDs to the glyph indices for the
appropriate glyph descriptions in that font program.

• If the TrueType font program is not embedded but is referenced by name, the
Type 2 CIDFont dictionary must not contain a CIDToGIDMap entry, since it is
not meaningful to refer to glyph indices in an external font program. In this
case, CIDs do not participate in glyph selection, and only predefined CMaps

Composite FontsSECTION 5.6
439

may be used with this CIDFont (see Section 5.6.4, “CMaps”). The consumer
application selects glyphs by translating characters from the encoding specified
by the predefined CMap to one of the encodings in the TrueType font’s “cmap”
table. The means by which this is accomplished are implementation-depen-
dent.

Even though the CIDs are sometimes not used to select glyphs in a Type 2
CIDFont, they are always used to determine the glyph metrics, as described in the
next section.

Every CIDFont must contain a glyph description for CID 0, which is analogous to
the . notdef character name in simple fonts (see “Handling Undefined Characters”
on page 454).

Glyph Metrics in CIDFonts

As discussed in Section 5.1.3, “Glyph Positioning and Metrics,” the width of a
glyph refers to the horizontal displacement between the origin of the glyph and
the origin of the next glyph when writing in horizontal mode. In this mode, the
vertical displacement between origins is always 0. Widths for a CIDFont are de-
fined using the DW and W entries in the CIDFont dictionary. These widths must
be consistent with the actual widths given in the CIDFont program. (See imple-
mentation note 61 in Appendix H.)

The DW entry defines the default width, which is used for all glyphs whose widths
are not specified individually. This entry is particularly useful for Chinese, Japa-
nese, and Korean fonts, in which many of the glyphs have the same width.

The W array allows the definition of widths for individual CIDs. The elements of
the array are organized in groups of two or three, where each group is in one of
the following two formats:

c [w1 w2 … wn]
cfirst clast w

In the first format, c is an integer specifying a starting CID value; it is followed by
an array of n numbers that specify the widths for n consecutive CIDs, starting
with c. The second format defines the same width, w, for all CIDs in the range
cfirst to clast .

TextCHAPTER 5
440

The following is an example of a W entry:

/W [120 [400 325 500]
 7080 8032 1000
]

In this example, the glyphs having CIDs 120, 121, and 122 are 400, 325, and 500
units wide, respectively. CIDs in the range 7080 through 8032 all have a width of
1000 units.

Glyphs from a CIDFont can be shown in vertical writing mode. (This is selected
by the WMode entry in the associated CMap dictionary; see Section 5.6.4,
“CMaps.”) To be used in this way, the CIDFont must define the vertical dis-
placement for each glyph and the position vector that relates the horizontal and
vertical writing origins.

The default position vector and vertical displacement vector are specified by the
DW2 entry in the CIDFont dictionary. DW2 is an array of two values: the vertical
component of the position vector v and the vertical component of the displace-
ment vector w1 (see Figure 5.5 on page 396). The horizontal component of the
position vector is always half the glyph width, and that of the displacement vector
is always 0. For example, if the DW2 entry is

/ DW2 [880 −1000]

then a glyph’s position vector and vertical displacement vector are

where w0 is the width (horizontal displacement) for the same glyph. Note that a
negative value for the vertical component places the origin of the next glyph be-
low the current glyph because vertical coordinates in a standard coordinate sys-
tem increase from bottom to top.

The W2 array allows the definition of vertical metrics for individual CIDs. The
elements of the array are organized in groups of two or five, where each group is
in one of the following two formats:

c [w11y v1x v1y w12y v2x v2y …]
cfirst clast w11y v1x v1y

v w0 2÷ 880(,)=
w1 0 1000–(,)=

Composite FontsSECTION 5.6
441

In the first format, c is a starting CID and is followed by an array containing num-
bers interpreted in groups of three. Each group consists of the vertical component
of the vertical displacement vector w1 (whose horizontal component is always 0)
followed by the horizontal and vertical components for the position vector v. Suc-
cessive groups define the vertical metrics for consecutive CIDs starting with c.
The second format defines a range of CIDs from cfirst to clast , followed by three
numbers that define the vertical metrics for all CIDs in this range. For example:

/W2 [120 [−1000 250 772]
 7080 8032 −1000 500 900
]

This W2 entry defines the vertical displacement vector for the glyph with CID
120 as (0, −1000) and the position vector as (250, 772). It also defines the dis-
placement vector for CIDs in the range 7080 through 8032 as (0, −1000) and the
position vector as (500, 900).

5.6.4 CMaps

A CMap specifies the mapping from character codes to character selectors. In
PDF, the character selectors are always CIDs in a CIDFont (as mentioned earlier,
PostScript CMaps may use names or codes as well). A CMap serves a function
analogous to the Encoding dictionary for a simple font. The CMap does not refer
directly to a specific CIDFont; instead, it is combined with it as part of a CID-
keyed font, represented in PDF as a Type 0 font dictionary (see Section 5.6.5,
“Type 0 Font Dictionaries”). Within the CMap, the character mappings refer to
the associated CIDFont by font number, which in PDF is always 0.

Note: PDF also uses a special type of CMap to map character codes to Unicode val-
ues (see Section 5.9.2, “ToUnicode CMaps”).

A CMap also specifies the writing mode—horizontal or vertical—for any
CIDFont with which the CMap is combined. The writing mode determines
which metrics are to be used when glyphs are painted from that font. (Writing
mode is specified as part of the CMap because, in some cases, different shapes are
used when writing horizontally and vertically. In such cases, the horizontal and
vertical variants of a CMap specify different CIDs for a given character code.)

TextCHAPTER 5
442

A CMap may be specified in two ways:

• As a name object identifying a predefined CMap, whose definition is known to
the consumer application

• As a stream object whose contents are a CMap file (see implementation note 66
in Appendix H)

Predefined CMaps

Table 5.15 lists the names of the predefined CMaps. These CMaps map character
codes to CIDs in a single descendant CIDFont. CMaps whose names end in H
specify horizontal writing mode; those ending in V specify vertical writing mode.

Note: Several of the CMaps define mappings from Unicode encodings to character
collections. Unicode values appearing in a text string are represented in big-endian
order (high-order byte first). CMap names containing "UCS2" use UCS-2 encoding;
names containing "UTF16" use UTF-16BE (big-endian) encoding.

TABLE 5.15 Predefined CJK CMap names

NAME DESCRIPTION

Chinese (Simplified)

GB−EUC−H Microsoft Code Page 936 (lfCharSet 0x86), GB 2312-80 character set, EUC-CN encoding

GB−EUC−V Vertical version of GB−EUC−H

GBpc−EUC−H Mac OS, GB 2312-80 character set, EUC-CN encoding, Script Manager code 19

GBpc−EUC−V Vertical version of GBpc−EUC−H

GBK−EUC−H Microsoft Code Page 936 (lfCharSet 0x86), GBK character set, GBK encoding

GBK−EUC−V Vertical version of GBK−EUC−H

GBKp−EUC−H Same as GBK−EUC−H but replaces half-width Latin characters with proportional forms
and maps character code 0x24 to a dollar sign ($) instead of a yuan symbol (¥)

GBKp−EUC−V Vertical version of GBKp−EUC−H

GBK2K−H GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding

Composite FontsSECTION 5.6
443

GBK2K−V Vertical version of GBK2K−H

UniGB−UCS2−H Unicode (UCS-2) encoding for the Adobe-GB1 character collection

UniGB−UCS2−V Vertical version of UniGB−UCS2−H

UniGB−UTF16−H Unicode (UTF-16BE) encoding for the Adobe-GB1 character collection; contains map-
pings for all characters in the GB18030-2000 character set

UniGB−UTF16−V Vertical version of UniGB−UTF16−H

Chinese (Traditional)

B5pc−H Mac OS, Big Five character set, Big Five encoding, Script Manager code 2

B5pc−V Vertical version of B5pc−H

HKscs−B5−H Hong Kong SCS, an extension to the Big Five character set and encoding

HKscs−B5−V Vertical version of HKscs−B5−H

ETen−B5−H Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set with ETen extensions

ETen−B5−V Vertical version of ETen−B5−H

ETenms−B5−H Same as ETen−B5−H but replaces half-width Latin characters with proportional forms

ETenms−B5−V Vertical version of ETenms−B5−H

CNS−EUC−H CNS 11643-1992 character set, EUC-TW encoding

CNS−EUC−V Vertical version of CNS−EUC−H

UniCNS−UCS2−H Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

UniCNS−UCS2−V Vertical version of UniCNS−UCS2−H

UniCNS−UTF16−H Unicode (UTF-16BE) encoding for the Adobe-CNS1 character collection; contains
mappings for all the characters in the HKSCS-2001 character set and contains both 2-
and 4-byte character codes

UniCNS−UTF16−V Vertical version of UniCNS−UTF16−H

NAME DESCRIPTION

TextCHAPTER 5
444

Japanese

83pv−RKSJ−H Mac OS, JIS X 0208 character set with KanjiTalk6 extensions, Shift-JIS encoding, Script
Manager code 1

90ms−RKSJ−H Microsoft Code Page 932 (lfCharSet 0x80), JIS X 0208 character set with NEC and IBM®

extensions

90ms−RKSJ−V Vertical version of 90ms−RKSJ−H

90msp−RKSJ−H Same as 90ms−RKSJ−H but replaces half-width Latin characters with proportional forms

90msp−RKSJ−V Vertical version of 90msp−RKSJ−H

90pv−RKSJ−H Mac OS, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS encoding, Script
Manager code 1

Add−RKSJ−H JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding

Add−RKSJ−V Vertical version of Add−RKSJ−H

EUC−H JIS X 0208 character set, EUC-JP encoding

EUC−V Vertical version of EUC−H

Ext−RKSJ−H JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding

Ext−RKSJ−V Vertical version of Ext−RKSJ−H

H JIS X 0208 character set, ISO-2022-JP encoding

V Vertical version of H

UniJIS−UCS2−H Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

UniJIS−UCS2−V Vertical version of UniJIS−UCS2−H

UniJIS−UCS2−HW−H Same as UniJIS−UCS2−H but replaces proportional Latin characters with half-width
forms

UniJIS−UCS2−HW−V Vertical version of UniJIS−UCS2−HW−H

UniJIS−UTF16-H Unicode (UTF-16BE) encoding for the Adobe-Japan1 character collection; contains
mappings for all characters in the JIS X 0213:1000 character set

UniJIS−UTF16-V Vertical version of UniJIS−UTF16-H

NAME DESCRIPTION

Composite FontsSECTION 5.6
445

The Identity−H and Identity−V CMaps can be used to refer to glyphs directly by
their CIDs when showing a text string. When the current font is a Type 0 font
whose Encoding entry is Identity−H or Identity−V, the string to be shown is inter-
preted as pairs of bytes representing CIDs, high-order byte first. This works with
any CIDFont, independently of its character collection. Additionally, when used
in conjunction with a Type 2 CIDFont whose CIDToGIDMap entry is Identity, the
2-byte CID values represent glyph indices for the glyph descriptions in the True-
Type font program. This works only if the TrueType font program is embedded in
the PDF file.

Korean

KSC−EUC−H KS X 1001:1992 character set, EUC-KR encoding

KSC−EUC−V Vertical version of KSC−EUC−H

KSCms−UHC−H Microsoft Code Page 949 (lfCharSet 0x81), KS X 1001:1992 character set plus 8822 addi-
tional hangul, Unified Hangul Code (UHC) encoding

KSCms−UHC−V Vertical version of KSCms−UHC−H

KSCms−UHC−HW−H Same as KSCms−UHC−H but replaces proportional Latin characters with half-width forms

KSCms−UHC−HW−V Vertical version of KSCms−UHC−HW−H

KSCpc−EUC−H Mac OS, KS X 1001:1992 character set with Mac OS KH extensions, Script Manager
Code 3

UniKS−UCS2−H Unicode (UCS-2) encoding for the Adobe-Korea1 character collection

UniKS−UCS2−V Vertical version of UniKS−UCS2−H

UniKS−UTF16−H Unicode (UTF-16BE) encoding for the Adobe-Korea1 character collection

UniKS−UTF16−V Vertical version of UniKS−UTF16−H

Generic

Identity−H The horizontal identity mapping for 2-byte CIDs; may be used with CIDFonts using any
Registry, Ordering, and Supplement values. It maps 2-byte character codes ranging from
0 to 65,535 to the same 2-byte CID value, interpreted high-order byte first (see below).

Identity−V Vertical version of Identity−H. The mapping is the same as for Identity−H.

NAME DESCRIPTION

TextCHAPTER 5
446

Table 5.16 lists the character collections referenced by the predefined CMaps for
the different versions of PDF. A dash (—) indicates that the CMap is not pre-
defined in that PDF version.

TABLE 5.16 Character collections for predefined CMaps, by PDF version

CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5

Chinese (Simplified)

GB−EUC−H/V Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBpc−EUC−H Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBpc−EUC−V — Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0

GBK−EUC−H/V — Adobe-GB1-2 Adobe-GB1-2 Adobe-GB1-2

GBKp−EUC−H/V — — Adobe-GB1-2 Adobe-GB1-2

GBK2K−H/V — — Adobe-GB1-4 Adobe-GB1-4

UniGB−UCS2−H/V — Adobe-GB1-2 Adobe-GB1-4 Adobe-GB1-4

UniGB−UTF16-H/V — — — Adobe-GB1-4

Chinese (Traditional)

B5pc−H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

HKscs−B5−H/V — — Adobe-CNS1-3 Adobe-CNS1-3

ETen−B5−H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

ETenms−B5−H/V — Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

CNS−EUC−H/V Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0 Adobe-CNS1-0

UniCNS−UCS2−H/V — Adobe-CNS1-0 Adobe-CNS1-3 Adobe-CNS1-3

UniCNS−UTF16-H/V — — — Adobe-CNS1-4

Japanese

83pv−RKSJ−H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

90ms−RKSJ−H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

90msp−RKSJ−H/V — Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

90pv−RKSJ−H Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

Composite FontsSECTION 5.6
447

As noted in Section 5.6.2, “CIDSystemInfo Dictionaries,” a character collection is
identified by registry, ordering, and supplement number, and supplements are
cumulative; that is, a higher-numbered supplement includes the CIDs contained
in lower-numbered supplements, as well as some additional CIDs. Consequently,
text encoded according to the predefined CMaps for a given PDF version is valid
when interpreted by a consumer application supporting the same or a later PDF
version. When interpreted by an application supporting an earlier PDF version,
such text causes an error if a CMap is encountered that is not predefined for that
PDF version. If character codes are encountered that were added in a higher-
numbered supplement than the one corresponding to the supported PDF ver-
sion, no characters are displayed for those codes; see “Handling Undefined Char-
acters” on page 454. See also implementation note 67 in Appendix H.

Add−RKSJ−H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

EUC−H/V — Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

Ext−RKSJ−H/V Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2 Adobe-Japan1-2

H/V Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1 Adobe-Japan1-1

UniJIS−UCS2−H/V — Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4

UniJIS−UCS2−HW−H/V — Adobe-Japan1-2 Adobe-Japan1-4 Adobe-Japan1-4

UniJIS−UTF16−H/V — — — Adobe-Japan1-5

Korean

KSC−EUC−H/V Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0

KSCms−UHC−H/V Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

KSCms−UHC−HW−H/V — Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

KSCpc−EUC−H Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0 Adobe-Korea1-0

UniKS−UCS2−H/V — Adobe-Korea1-1 Adobe-Korea1-1 Adobe-Korea1-1

UniKS−UTF16−H/V — — — Adobe-Korea1-2

Generic

Identity−H/V Adobe-Identity-0 Adobe-Identity-0 Adobe-Identity-0 Adobe-Identity-0

CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5

TextCHAPTER 5
448

Note: If an application producing a PDF file encounters text to be included that
uses CIDs from a higher-numbered supplement than the one corresponding to the
PDF version being generated, the application should embed the CMap for the
higher-numbered supplement rather than refer to the predefined CMap (see the
next section).

The CMap programs that define the predefined CMaps are available through the
ASN Web site and are also provided in conjunction with the book CJKV Informa-
tion Processing by Ken Lunde. Details on the character collections, including sam-
ple glyphs for all the CIDs, can be found in a number of Adobe Technical Notes.
For more information about these Notes and the aforementioned book, see the
Bibliography.

Embedded CMap Files

For character encodings that are not predefined, the PDF file must contain a
stream that defines the CMap. In addition to the standard entries for streams
(listed in Table 3.4 on page 62), the CMap stream dictionary contains the entries
listed in Table 5.17. The data in the stream defines the mapping from character
codes to a font number and a character selector. The data must follow the syntax
defined in Adobe Technical Note #5014, Adobe CMap and CIDFont Files Specifi-
cation.

TABLE 5.17 Additional entries in a CMap dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
CMap for a CMap dictionary. (Although this object is the value of an entry
named Encoding in a Type 0 font, its type is CMap.)

CMapName name (Required) The PostScript name of the CMap. It should be the same as the
value of CMapName in the CMap file.

CIDSystemInfo dictionary (Required) A dictionary (see Section 5.6.2, “CIDSystemInfo Dictionaries”)
containing entries that define the character collection for the CIDFont or
CIDFonts associated with the CMap.

The value of this entry should be the same as the value of CIDSystemInfo in
the CMap file. (However, it does not need to match the values of
CIDSystemInfo for the Identity-H or Identity-V CMaps.)

Composite FontsSECTION 5.6
449

CMap Example and Operator Summary

CMap files are fully documented in Adobe Technical Note #5014, Adobe CMap
and CIDFont Files Specification. The following example of a CMap stream object
illustrates and partially explains the contents of a CMap file. There are several
reasons for including this material here:

• It documents some restrictions on the contents of a CMap file that can be
embedded in a PDF file.

• It provides background to aid in understanding subsequent material, particu-
larly “CMap Mapping” on page 453.

• It is the basis for a PDF feature, the ToUnicode CMap, which is a minor exten-
sion of the CMap file format. This extension is described in Section 5.9,
“Extraction of Text Content.”

Example 5.10 is a sample CMap for a Japanese Shift-JIS encoding. Character
codes in this encoding can be either 1 or 2 bytes in length. This CMap could be
used with a CIDFont that uses the same CID ordering as specified in the
CIDSystemInfo entry. Note that several of the entries in the stream dictionary are
also replicated in the stream data.

WMode integer (Optional) A code that determines the writing mode for any CIDFont with
which this CMap is combined. The possible values are 0 for horizontal and 1
for vertical. Default value: 0.

The value of this entry should be the same as the value of WMode in the
CMap file.

UseCMap name or
stream

(Optional) The name of a predefined CMap, or a stream containing a CMap,
that is to be used as the base for this CMap. This base allows the CMap to be
defined differentially, specifying only the character mappings that differ from
the base CMap.

KEY TYPE VALUE

TextCHAPTER 5
450

Example 5.10

22 0 obj
<< /Type /CMap

 /CMapName /90ms−RKSJ−H
 /CIDSystemInfo << /Registry (Adobe)

 /Ordering (Japan1)
 /Supplement 2

 >>
 /WMode 0
 /Length 23 0 R

>>

stream
%!PS−Adobe−3 . 0 Resource−CMap
%%DocumentNeededResources : ProcSet (CIDInit)
%%IncludeResource : ProcSet (CIDInit)
%%BeginResource : CMap (90ms−RKSJ−H)
%%Title : (90ms−RKSJ−H Adobe Japan1 2)
%%Version : 10 . 001
%%Copyright : Copyright 1990−2001 Adobe Systems Inc .
%%Copyright : All Rights Reserved .
%%EndComments

/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
3 dict dup begin
/Registry (Adobe) def
/Ordering (Japan1) def
/Supplement 2 def
end def

/CMapName /90ms−RKSJ−H def
/CMapVersion 10 . 001 def
/CMapType 1 def
/UIDOffset 950 def
/XUID [1 10 25343] def
/WMode 0 def

4 begincodespacerange
< 00 > < 80 >
< 8140 > < 9FFC >
< A0 > < DF >
< E040 > < FCFC >
endcodespacerange

Composite FontsSECTION 5.6
451

1 beginnotdefrange
< 00 > < 1F > 231
endnotdefrange

100 begincidrange
< 20 > < 7D > 231
< 7E > < 7E > 631
< 8140 > < 817E > 633
< 8180 > < 81AC > 696
< 81B8 > < 81BF > 741
< 81C8 > < 81CE > 749
… Additional ranges …
< FB40 > < FB7E > 8518
< FB80 > < FBFC > 8581
< FC40 > < FC4B > 8706
endcidrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end
%%EndResource
%%EOF
endstream
endobj

As can be seen from this example, a CMap file conforms to PostScript language
syntax; however, a full PostScript interpreter is not needed to interpret it. Aside
from some required boilerplate, the CMap file consists of one or more occur-
rences of several special CMap construction operators, invoked in a specific
order. Following is a summary of these operators:

• begincmap and endcmap enclose the CMap definition.

• usecmap incorporates the code mappings from another CMap file. In PDF, the
other CMap must also be identified in the UseCMap entry in the CMap dictio-
nary (see Table 5.17 on page 448).

• begincodespacerange and endcodespacerange define codespace ranges—the
valid input character code ranges—by specifying a pair of codes of some partic-
ular length giving the lower and upper bounds of each range; see “CMap Map-
ping” on page 453.

TextCHAPTER 5
452

• usefont specifies a font number that is an implicit operand of all the character
code mapping operations that follow. In PDF, the font number must be 0;
therefore, usefont typically does not actually appear.

• beginbfchar and endbfchar define mappings of individual input character
codes to character codes or character names in the associated font.
beginbfrange and endbfrange do the same for ranges of input codes. In PDF,
these operators may not appear in a CMap that is used as the Encoding entry of
a Type 0 font; however, they may appear in the definition of a ToUnicode CMap
(see Section 5.9, “Extraction of Text Content”).

• begincidchar and endcidchar define mappings of individual input character
codes to CIDs in the associated CIDFont. begincidrange and endcidrange do
the same, but for ranges of input codes.

• beginnotdefchar, endnotdefchar, beginnotdefrange, and endnotdefrange
define notdef mappings from character codes to CIDs. As described in the
section “Handling Undefined Characters” on page 454, a notdef mapping is
used if the normal mapping produces a CID for which no glyph is present in
the associated CIDFont.

The beginrearrangedfont, endrearrangedfont, beginusematrix, and
endusematrix operators, described in Adobe Technical Note #5014, Adobe CMap
and CIDFont Files Specification, cannot be used in CMap files embedded in a
PDF file.

5.6.5 Type 0 Font Dictionaries

A Type 0 font dictionary contains the entries listed in Table 5.18.

Example 5.11 shows a Type 0 font that refers to a single CIDFont. The CMap used
is one of the predefined CMaps listed in Table 5.15 on page 442 and is referenced
by name.

TABLE 5.18 Entries in a Type 0 font dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a font dictionary.

Subtype name (Required) The type of font; must be Type0 for a Type 0 font.

Composite FontsSECTION 5.6
453

Example 5.11

14 0 obj
<< /Type /Font

 /Subtype /Type0
 /BaseFont /HeiseiMin−W5−90ms−RKSJ−H
 /Encoding /90ms−RKSJ−H
 /DescendantFonts [15 0 R]

>>
endobj

CMap Mapping

The Encoding entry of a Type 0 font dictionary specifies a CMap that determines
how text-showing operators (such as Tj) interpret the bytes in the string to be
shown when the current font is the Type 0 font. The following paragraphs
describe how the characters in the string are decoded and mapped into character
selectors (which in PDF must always be CIDs).

BaseFont name (Required) The PostScript name of the font. In principle, this is an arbitrary
name, since there is no font program associated directly with a Type 0 font
dictionary. The conventions described here ensure maximum compatibility
with existing Acrobat products.

If the descendant is a Type 0 CIDFont, this name should be the concatenation
of the CIDFont’s BaseFont name, a hyphen, and the CMap name given in the
Encoding entry (or the CMapName entry in the CMap). If the descendant is a
Type 2 CIDFont, this name should be the same as the CIDFont’s BaseFont
name.

Encoding name or
stream

(Required) The name of a predefined CMap, or a stream containing a CMap
that maps character codes to font numbers and CIDs. If the descendant is a
Type 2 CIDFont whose associated TrueType font program is not embedded
in the PDF file, the Encoding entry must be a predefined CMap name (see
“Glyph Selection in CIDFonts” on page 437).

DescendantFonts array (Required) A one-element array specifying the CIDFont dictionary that is the
descendant of this Type 0 font.

ToUnicode stream (Optional) A stream containing a CMap file that maps character codes to
Unicode values (see Section 5.9, “Extraction of Text Content”).

KEY TYPE VALUE

TextCHAPTER 5
454

The codespace ranges in the CMap (delimited by begincodespacerange and
endcodespacerange) determine how many bytes are extracted from the string for
each successive character code. A codespace range is specified by a pair of codes
of some particular length giving the lower and upper bounds of that range. A
code is considered to match the range if it is the same length as the bounding
codes and the value of each of its bytes lies between the corresponding bytes of
the lower and upper bounds. The code length cannot exceed the number of bytes
representable in an integer (see Appendix C).

A sequence of one or more bytes is extracted from the string and matched against
the codespace ranges in the CMap. That is, the first byte is matched against 1-byte
codespace ranges; if no match is found, a second byte is extracted, and the 2-byte
code is matched against 2-byte codespace ranges. This process continues for suc-
cessively longer codes until a match is found or all codespace ranges have been
tested. There will be at most one match because codespace ranges do not overlap.

The code extracted from the string is looked up in the character code mappings
for codes of that length. (These are the mappings defined by beginbfchar,
endbfchar, begincidchar, endcidchar, and corresponding operators for ranges.)
Failing that, it is looked up in the notdef mappings, as described in the next
section.

The results of the CMap mapping algorithm are a font number and a character
selector. The font number is used as an index into the Type 0 font’s
DescendantFonts array to select a CIDFont. In PDF, the font number is always 0
and the character selector is always a CID; this is the only case described here.
The CID is then used to select a glyph in the CIDFont. If the CIDFont contains
no glyph for that CID, the notdef mappings are consulted, as described in the
next section.

Handling Undefined Characters

A CMap mapping operation can fail to select a glyph for a variety of reasons. This
section describes those reasons and what happens when they occur.

If a code maps to a CID for which no such glyph exists in the descendant
CIDFont, the notdef mappings in the CMap are consulted to obtain a substitute
character selector. These mappings (so called by analogy with the . notdef charac-
ter mechanism in simple fonts) are delimited by the operators beginnotdefchar,
endnotdefchar, beginnotdefrange, and endnotdefrange. They always map to a

Font DescriptorsSECTION 5.7
455

CID. If a matching notdef mapping is found, the CID selects a glyph in the associ-
ated descendant, which must be a CIDFont. If no glyph exists for that CID, the
glyph for CID 0 (which is required to be present) is substituted.

If the CMap does not contain either a character mapping or a notdef mapping for
the code, descendant 0 is selected and the glyph for CID 0 is substituted from the
associated CIDFont.

If the code is invalid—that is, the bytes extracted from the string to be shown do
not match any codespace range in the CMap—a substitute glyph is chosen as just
described. The character mapping algorithm is reset to its original position in the
string, and a modified mapping algorithm chooses the best partially matching
codespace range:

1. If the first byte extracted from the string to be shown does not match the first
byte of any codespace range, the range having the shortest codes is chosen.

2. Otherwise (that is, if there is a partial match), for each additional byte extract-
ed, the code accumulated so far is matched against the beginnings of all longer
codespace ranges until the longest such partial match has been found. If multi-
ple codespace ranges have partial matches of the same length, the one having
the shortest codes is chosen.

The length of the codes in the chosen codespace range determines the total num-
ber of bytes to consume from the string for the current mapping operation.

5.7 Font Descriptors

A font descriptor specifies metrics and other attributes of a simple font or a
CIDFont as a whole, as distinct from the metrics of individual glyphs. These font
metrics provide information that enables a consumer application to synthesize a
substitute font or select a similar font when the font program is unavailable. The
font descriptor may also be used to embed the font program in the PDF file.

Font descriptors are not used with Type 0 fonts. Beginning with PDF 1.5, font de-
scriptors may be used with Type 3 fonts in Tagged PDF documents (see Section
10.7, “Tagged PDF”).

A font descriptor is a dictionary whose entries specify various font attributes. The
entries common to all font descriptors—for both simple fonts and CIDFonts—are

TextCHAPTER 5
456

listed in Table 5.19. Additional entries in the font descriptor for a CIDFont are de-
scribed in Section 5.7.2, “Font Descriptors for CIDFonts.” All integer values are
units in glyph space. The conversion from glyph space to text space is described
in Section 5.1.3, “Glyph Positioning and Metrics.”

TABLE 5.19 Entries common to all font descriptors

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
FontDescriptor for a font descriptor.

FontName name (Required) The PostScript name of the font. This name should be the same as
the value of BaseFont in the font or CIDFont dictionary that refers to this
font descriptor.

FontFamily byte string (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) A byte string specifying the preferred font family name. For example,
for the font Times Bold Italic, the FontFamily is Times.

FontStretch name (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) The font stretch value. It must be one of the following names (or-
dered from narrowest to widest): UltraCondensed, ExtraCondensed,
Condensed, SemiCondensed, Normal, SemiExpanded, Expanded, ExtraExpand-
ed or UltraExpanded.

Note: The specific interpretation of these values varies from font to font. For ex-
ample, Condensed in one font may appear most similar to Normal in another.

FontWeight number (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) The weight (thickness) component of the fully-qualified font name
or font specifier. The possible values are 100, 200, 300, 400, 500, 600, 700,
800, or 900, where each number indicates a weight that is at least as dark as its
predecessor. A value of 400 indicates a normal weight; 700 indicates bold.

Note: The specific interpretation of these values varies from font to font. For ex-
ample, 300 in one font may appear most similar to 500 in another.

Flags integer (Required) A collection of flags defining various characteristics of the font
(see Section 5.7.1, “Font Descriptor Flags”).

FontBBox rectangle (Required, except for Type 3 fonts) A rectangle (see Section 3.8.4, “Rectan-
gles”), expressed in the glyph coordinate system, specifying the font bounding
box. This is the smallest rectangle enclosing the shape that would result if all
of the glyphs of the font were placed with their origins coincident and then
filled.

Font DescriptorsSECTION 5.7
457

ItalicAngle number (Required) The angle, expressed in degrees counterclockwise from the verti-
cal, of the dominant vertical strokes of the font. (For example, the 9-o’clock
position is 90 degrees, and the 3-o’clock position is –90 degrees.) The value is
negative for fonts that slope to the right, as almost all italic fonts do.

Ascent number (Required, except for Type 3 fonts) The maximum height above the baseline
reached by glyphs in this font, excluding the height of glyphs for accented
characters.

Descent number (Required, except for Type 3 fonts) The maximum depth below the baseline
reached by glyphs in this font. The value is a negative number.

Leading number (Optional) The spacing between baselines of consecutive lines of text. Default
value: 0.

CapHeight number (Required for fonts that have Latin characters, except for Type 3 fonts) The ver-
tical coordinate of the top of flat capital letters, measured from the baseline.

XHeight number (Optional) The font’s x height: the vertical coordinate of the top of flat non-
ascending lowercase letters (like the letter x), measured from the baseline, in
fonts that have Latin characters. Default value: 0.

StemV number (Required, except for Type 3 fonts) The thickness, measured horizontally, of
the dominant vertical stems of glyphs in the font.

StemH number (Optional) The thickness, measured vertically, of the dominant horizontal
stems of glyphs in the font. Default value: 0.

AvgWidth number (Optional) The average width of glyphs in the font. Default value: 0.

MaxWidth number (Optional) The maximum width of glyphs in the font. Default value: 0.

MissingWidth number (Optional) The width to use for character codes whose widths are not speci-
fied in a font dictionary’s Widths array. This has a predictable effect only if all
such codes map to glyphs whose actual widths are the same as the value of
the MissingWidth entry. Default value: 0.

FontFile stream (Optional) A stream containing a Type 1 font program (see Section 5.8,
“Embedded Font Programs”).

FontFile2 stream (Optional; PDF 1.1) A stream containing a TrueType font program (see Sec-
tion 5.8, “Embedded Font Programs”).

KEY TYPE VALUE

TextCHAPTER 5
458

5.7.1 Font Descriptor Flags

The value of the Flags entry in a font descriptor is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the font. Bit positions within the
flag word are numbered from 1 (low-order) to 32 (high-order). Table 5.20 shows
the meanings of the flags; all undefined flag bits are reserved and must be set to 0.
Figure 5.13 shows examples of fonts with these characteristics.

TABLE 5.20 Font flags

FontFile3 stream (Optional; PDF 1.2) A stream containing a font program whose format is
specified by the Subtype entry in the stream dictionary (see Table 5.23 and
implementation note 68 in Appendix H).

At most, only one of the FontFile, FontFile2, and FontFile3 entries may be
present.

CharSet ASCII string
or byte string

(Optional; meaningful only in Type 1 fonts; PDF 1.1) A string listing the char-
acter names defined in a font subset. The names in this string must be in PDF
syntax—that is, each name preceded by a slash (/). The names can appear in
any order. The name . notdef should be omitted; it is assumed to exist in the
font subset. If this entry is absent, the only indication of a font subset is the
subset tag in the FontName entry (see Section 5.5.3, “Font Subsets”).

BIT POSITION NAME MEANING

1 FixedPitch All glyphs have the same width (as opposed to proportional or variable-pitch
fonts, which have different widths).

2 Serif Glyphs have serifs, which are short strokes drawn at an angle on the top and
bottom of glyph stems. (Sans serif fonts do not have serifs.)

3 Symbolic Font contains glyphs outside the Adobe standard Latin character set. This
flag and the Nonsymbolic flag cannot both be set or both be clear (see be-
low).

4 Script Glyphs resemble cursive handwriting.

6 Nonsymbolic Font uses the Adobe standard Latin character set or a subset of it (see below).

7 Italic Glyphs have dominant vertical strokes that are slanted.

KEY TYPE VALUE

Font DescriptorsSECTION 5.7
459

The Nonsymbolic flag (bit 6 in the Flags entry) indicates that the font’s character
set is the Adobe standard Latin character set (or a subset of it) and that it uses the
standard names for those glyphs. This character set is shown in Section D.1, “Lat-
in Character Set and Encodings.” If the font contains any glyphs outside this set,
the Symbolic flag should be set and the Nonsymbolic flag clear. In other words,
any font whose character set is not a subset of the Adobe standard character set is
considered to be symbolic. This influences the font’s implicit base encoding and
may affect a consumer application’s font substitution strategies.

FIGURE 5.13 Characteristics represented in the Flags entry of a font descriptor

17 AllCap Font contains no lowercase letters; typically used for display purposes, such
as for titles or headlines.

18 SmallCap Font contains both uppercase and lowercase letters. The uppercase letters are
similar to those in the regular version of the same typeface family. The glyphs
for the lowercase letters have the same shapes as the corresponding uppercase
letters, but they are sized and their proportions adjusted so that they have the
same size and stroke weight as lowercase glyphs in the same typeface family.

19 ForceBold See below.

BIT POSITION NAME MEANING

The quick brown fox jumped.

The quick brown fox jumped.

The quick brown fox jumped.

✴❈❅ ❑◆❉❃❋ ❂❒❏◗■ ❆❏❘ ❊◆❍❐❅❄✎

The quick brown fox jumped.

The quick brown fox jumped.

The quick brown fox jumped

The quick brown fox jumped.

Fixed-pitch font

Serif font

Sans serif font

Symbolic font

Script font

Italic font

All-cap font

Small-cap font

TextCHAPTER 5
460

Note: This classification of nonsymbolic and symbolic fonts is peculiar to PDF. A
font may contain additional characters that are used in Latin writing systems but
are outside the Adobe standard Latin character set; PDF considers such a font to be
symbolic. The use of two flags to represent a single binary choice is a historical acci-
dent.

The ForceBold flag (bit 19) determines whether bold glyphs are painted with
extra pixels even at very small text sizes. Typically, when glyphs are painted at
small sizes on very low-resolution devices such as display screens, features of bold
glyphs may appear only 1 pixel wide. Because this is the minimum feature width
on a pixel-based device, ordinary (nonbold) glyphs also appear with 1-pixel-wide
features and therefore cannot be distinguished from bold glyphs. If the ForceBold
flag is set, features of bold glyphs may be thickened at small text sizes.

Example 5.12 illustrates a font descriptor whose Flags entry has the Serif,
Nonsymbolic, and ForceBold flags (bits 2, 6, and 19) set.

Example 5.12

7 0 obj
<< /Type /FontDescriptor

 /FontName /AGaramond−Semibold
 /Flags 262178 % Bits 2, 6, and 19
 /FontBBox [−177 −269 1123 866]
 /MissingWidth 255
 /StemV 105
 /StemH 45
 /CapHeight 660
 /XHeight 394
 /Ascent 720
 /Descent −270
 /Leading 83
 /MaxWidth 1212
 /AvgWidth 478
 /ItalicAngle 0

>>
endobj

5.7.2 Font Descriptors for CIDFonts

In addition to the entries in Table 5.19 on page 456, the FontDescriptor dictionar-
ies of CIDFonts may contain the entries listed in Table 5.21.

Font DescriptorsSECTION 5.7
461

TABLE 5.21 Additional font descriptor entries for CIDFonts

Style

The Style dictionary contains entries that define style attributes and values for the
CIDFont. Currently, only the Panose entry is defined. The value of Panose is a
12-byte string consisting of the following elements:

• The font family class and subclass ID bytes, given in the sFamilyClass field of the
“OS/2” table in a TrueType font. This field is documented in Microsoft’s True-
Type 1.0 Font Files Technical Specification.

• Ten bytes for the PANOSE classification number for the font. The PANOSE
classification system is documented in Hewlett-Packard Company’s PANOSE
Classification Metrics Guide.

See the Bibliography for more information about these documents.

KEY TYPE VALUE

Style dictionary (Optional) A dictionary containing entries that describe the style of the glyphs in the
font (see “Style” on page 461).

Lang name (Optional) A name specifying the language of the font, used for encodings where the
language is not implied by the encoding itself. The possible values are the codes de-
fined by Internet RFC 3066, Tags for the Identification of Languages (see the Bibliogra-
phy). If this entry is absent, the language is considered to be unknown.

Note: This specification for the allowable language codes is introduced in PDF 1.5. Prior
versions supported a subset: the 2-character language codes defined by ISO 639 (see the
Bibliography).

FD dictionary (Optional) A dictionary whose keys identify a class of glyphs in a CIDFont. Each value
is a dictionary containing entries that override the corresponding values in the main
font descriptor dictionary for that class of glyphs (see “FD” on page 462).

CIDSet stream (Optional) A stream identifying which CIDs are present in the CIDFont file. If this en-
try is present, the CIDFont contains only a subset of the glyphs in the character collec-
tion defined by the CIDSystemInfo dictionary. If it is absent, the only indication of a
CIDFont subset is the subset tag in the FontName entry (see Section 5.5.3, “Font Sub-
sets”).

The stream’s data is organized as a table of bits indexed by CID. The bits should be
stored in bytes with the high-order bit first. Each bit corresponds to a CID. The most
significant bit of the first byte corresponds to CID 0, the next bit to CID 1, and so on.

TextCHAPTER 5
462

The following is an example of a Style entry in the font descriptor:

/Style << /Panose < 01 05 02 02 03 00 00 00 00 00 00 00 > >>

FD

A CIDFont may be made up of different classes of glyphs, each class requiring
different sets of the font-wide attributes that appear in font descriptors. Latin
glyphs, for example, may require different attributes than kanji glyphs. The font
descriptor defines a set of default attributes that apply to all glyphs in the
CIDFont. The FD entry in the font descriptor contains exceptions to these de-
faults.

The key for each entry in an FD dictionary is the name of a class of glyphs—that
is, a particular subset of the CIDFont’s character collection. The entry’s value is a
font descriptor whose contents are to override the font-wide attributes for that
class only. This font descriptor should contain entries for metric information
only; it should not include FontFile, FontFile2, FontFile3, or any of the entries list-
ed in Table 5.21.

It is strongly recommended that the FD dictionary contain at least the metrics for
the proportional Latin glyphs. With the information for these glyphs, a more ac-
curate substitution font can be created.

The names of the glyph classes depend on the character collection, as identified
by the Registry, Ordering, and Supplement entries in the CIDSystemInfo
dictionary. Table 5.22 lists the valid keys for the Adobe-GB1, Adobe-CNS1, Ado-
be-Japan1, Adobe-Japan2, and Adobe-Korea1 character collections.

Font DescriptorsSECTION 5.7
463

TABLE 5.22 Glyph classes in CJK fonts

CHARACTER COLLECTION CLASS GLYPHS IN CLASS

Adobe-GB1 Alphabetic
Dingbats
Generic
Hanzi
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Full-width hanzi (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing

Adobe-CNS1 Alphabetic
Dingbats
Generic
Hanzi
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Full-width hanzi (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing

Adobe-Japan1 Alphabetic
AlphaNum
Dingbats
DingbatsRot
Generic
GenericRot
HKana
HKanaRot
HRoman
HRomanRot
Kana
Kanji
Proportional
ProportionalRot
Ruby

Full-width Latin, Greek, and Cyrillic glyphs
Numeric glyphs
Special symbols
Same as Dingbats but rotated for use in vertical writing
Typeface-independent glyphs, such as line-drawing
Same as Generic but rotated for use in vertical writing
Half-width kana (katakana and hiragana) glyphs
Same as HKana but rotated for use in vertical writing
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Full-width kana (katakana and hiragana) glyphs
Full-width kanji (Chinese) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing
Glyphs used for setting ruby (small glyphs that serve to annotate
other glyphs with meanings or readings)

Adobe-Japan2 Alphabetic
Dingbats
HojoKanji

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Full-width kanji glyphs

TextCHAPTER 5
464

Example 5.13 illustrates an FD dictionary containing two entries.

Example 5.13

/FD << /Proportional 25 0 R
 /HKana 26 0 R

 >>

25 0 obj
<< /Type /FontDescriptor

 /FontName /HeiseiMin−W3−Proportional
 /Flags 2
 /AvgWidth 478
 /MaxWidth 1212
 /MissingWidth 250
 /StemV 105
 /StemH 45
 /CapHeight 660
 /XHeight 394
 /Ascent 720
 /Descent −270
 /Leading 83

>>
endobj

26 0 obj
<< /Type /FontDescriptor

 /FontName /HeiseiMin−W3−HKana
 /Flags 3
 /AvgWidth 500
 /MaxWidth 500
 /MissingWidth 500

 Adobe-Korea1 Alphabetic
Dingbats
Generic
Hangul
Hanja
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Typeface-independent glyphs, such as line-drawing
Hangul and jamo glyphs
Full-width hanja (Chinese) glyphs
Half-width Latin glyphs
Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing

CHARACTER COLLECTION CLASS GLYPHS IN CLASS

Embed ded Font ProgramsSECTION 5.8
465

 /StemV 50
 /StemH 75
 /Ascent 720
 /Descent 0
 /Leading 83

>>
endobj

5.8 Embedded Font Programs

A font program can be embedded in a PDF file as data contained in a PDF stream
object. Such a stream object is also called a font file by analogy with font programs
that are available from sources external to the consumer application. (See also
implementation note 69 in Appendix H.)

Font programs are subject to copyright, and the copyright owner may impose
conditions under which a font program can be used. These permissions are re-
corded either in the font program or as part of a separate license. One of the con-
ditions may be that the font program cannot be embedded, in which case it
should not be incorporated into a PDF file. A font program may allow embed-
ding for the sole purpose of viewing and printing the document but not for creat-
ing new or modified text that uses the font (in either the same document or other
documents). The latter operation would require the user performing the opera-
tion to have a licensed copy of the font program, not a copy extracted from the
PDF file. In the absence of explicit information to the contrary, a PDF consumer
should assume that any embedded font programs are to be used only to view and
print the document and not for any other purposes.

Table 5.23 summarizes the ways in which font programs are embedded in a PDF
file, depending on the representation of the font program. The key is the name
used in the font descriptor to refer to the font file stream; the subtype is the value
of the Subtype key, if present, in the font file stream dictionary. Further details of
specific font program representations are given below.

TABLE 5.23 Embedded font organization for various font types

KEY SUBTYPE DESCRIPTION

FontFile — Type 1 font program, in the original (noncompact) format described in
Adobe Type 1 Font Format. This entry can appear in the font descriptor for
a Type1 or MMType1 font dictionary.

TextCHAPTER 5
466

The stream dictionary for a font file contains the normal entries for a stream,
such as Length and Filter (listed in Table 3.4 on page 62), plus the additional
entries listed in Table 5.24.

TABLE 5.24 Additional entries in an embedded font stream dictionary

FontFile2 — (PDF 1.1) TrueType font program, as described in the TrueType Reference
Manual. This entry can appear in the font descriptor for a TrueType font
dictionary or (in PDF 1.3) for a CIDFontType2 CIDFont dictionary.

FontFile3 Type1C (PDF 1.2) Type 1–equivalent font program represented in the Compact
Font Format (CFF), as described in Adobe Technical Note #5176, The
Compact Font Format Specification. This entry can appear in the font de-
scriptor for a Type1 or MMType1 font dictionary.

CIDFontType0C (PDF 1.3) Type 0 CIDFont program represented in the Compact Font For-
mat (CFF), as described in Adobe Technical Note #5176, The Compact
Font Format Specification. This entry can appear in the font descriptor for
a CIDFontType0 CIDFont dictionary.

OpenType (PDF 1.6) OpenType font program, as described in the OpenType Font
Specification (see the Bibliography). OpenType is an extension of True-
Type that allows inclusion of font programs that use the Compact Font
Format (CFF).

This entry can appear in the font descriptor for the following types of font
dictionaries:

• A TrueType font dictionary or a CIDFontType2 CIDFont dictionary, if
the embedded font program contains a “glyf ” table.

• A CIDFontType0 CIDFont dictionary, if the embedded font program
contains a “CFF” table with a Top DICT that uses CIDFont operators
(this is equivalent to subtype CIDFontType0C above).

• A Type1 font dictionary or CIDFontType0 CIDFont dictionary, if the
embedded font program contains a “CFF” table without CIDFont oper-
ators.

KEY TYPE VALUE

Length1 integer (Required for Type 1 and TrueType fonts) The length in bytes of the clear-text portion of the
Type 1 font program (see below), or the entire TrueType font program, after it has been de-
coded using the filters specified by the stream’s Filter entry, if any.

KEY SUBTYPE DESCRIPTION

Embed ded Font ProgramsSECTION 5.8
467

A standard Type 1 font program, as described in the Adobe Type 1 Font Format
specification, consists of three parts: a clear-text portion (written using PostScript
syntax), an encrypted portion, and a fixed-content portion. The fixed-content
portion contains 512 ASCII zeros followed by a cleartomark operator, and per-
haps followed by additional data. Although the encrypted portion of a standard
Type 1 font may be in binary or ASCII hexadecimal format, PDF supports only the
binary format. However, the entire font program may be encoded using any filters.

Example 5.14 shows the structure of an embedded standard Type 1 font.

Example 5.14

12 0 obj
<< /Filter /ASCII85Decode

 /Length 41116
 /Length1 2526
 /Length2 32393
 /Length3 570

>>
stream
,p>`rDKJj'E+LaU0eP.@+AH9dBOu$hFD55nC
… Omitted data …
JJQ&Nt')<=^p&mGf(%:%h1%9c//K(/*o=.C>UXkbVGTrr~>
endstream
endobj

Length2 integer (Required for Type 1 fonts) The length in bytes of the encrypted portion of the Type 1 font
program (see below) after it has been decoded using the filters specified by the stream’s Fil-
ter entry.

Length3 integer (Required for Type 1 fonts) The length in bytes of the fixed-content portion of the Type 1
font program (see below) after it has been decoded using the filters specified by the stream’s
Filter entry. If Length3 is 0, it indicates that the 512 zeros and cleartomark have not been in-
cluded in the FontFile font program and must be added.

Subtype name (Required if referenced from FontFile3; PDF 1.2) A name specifying the format of the embed-
ded font program. The name must be Type1C for Type 1 compact fonts, CIDFontType0C for
Type 0 compact CIDFonts, or OpenType for OpenType fonts. When additional font formats
are added to PDF, more values will be defined for Subtype.

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the embedded font pro-
gram (see Section 10.2.2, “Metadata Streams”).

KEY TYPE VALUE

TextCHAPTER 5
468

As noted in Table 5.23, a Type 1–equivalent font program or a Type 0 CIDFont
program can be represented in the Compact Font Format (CFF). The Length1,
Length2, and Length3 entries are not needed in that case. Although CFF enables
multiple font or CIDFont programs to be bundled together in a single file, an em-
bedded CFF font file in PDF must consist of exactly one font or CIDFont (as ap-
propriate for the associated font dictionary).

Note: According to the Adobe Type 1 Font Format specification, a Type 1 font pro-
gram may contain a PaintType entry specifying whether the glyphs’ outlines are to
be filled or stroked. For fonts embedded in a PDF file, this entry is ignored; the deci-
sion whether to fill or stroke glyph outlines is entirely determined by the PDF text
rendering mode parameter (see Section 5.2.5, “Text Rendering Mode”). This also
applies to Type 1 compact fonts and Type 0 compact CIDFonts.

A TrueType font program may be used as part of either a font or a CIDFont.
Although the basic font file format is the same in both cases, there are different
requirements for what information must be present in the font program. The fol-
lowing TrueType tables are always required: “head,” “hhea,” “loca,” “maxp,” “cvt ,”
“prep,” “glyf,” “hmtx,” and “fpgm.” If used with a simple font dictionary, the font
program must additionally contain a “cmap” table defining one or more encod-
ings, as discussed in “Encodings for TrueType Fonts” on page 429. If used with a
CIDFont dictionary, the “cmap” table is not needed, since the mapping from
character codes to glyph descriptions is provided separately.

Note: The “vhea” and “vmtx” tables that specify vertical metrics are never used by a
PDF consumer application. The only way to specify vertical metrics in PDF is by
means of the DW2 and W2 entries in a CIDFont dictionary.

Beginning with PDF 1.6, font programs may be embedded using the OpenType
format, which is an extension of the TrueType format that allows inclusion of font
programs using the Compact Font Format (CFF). It also allows inclusion of data
to describe glyph substitutions, kerning, and baseline adjustments. In addition to
rendering glyphs, applications can use the data in OpenType fonts to do advanced
line layout, automatically substitute ligatures, provide selections of alternate
glyphs to users, and handle complicated writing scripts.

Like TrueType, OpenType font programs contain a number of tables, as defined
in the OpenType Font Specification (see the Bibliography). For OpenType fonts
based on TrueType, the “glyf ” table contains the glyph descriptions. For Open-
Type fonts based on CFF, the “CFF” table is a complete font program containing

Extraction of Text ContentSECTION 5.9
469

the glyph descriptions. These tables, as well as the “cmap” table, are required to be
present when embedding fonts. In addition, for OpenType fonts based on True-
Type, the “head,” “hhea,” “loca,” “maxp,” “cvt ,” “prep,” “hmtx,” and “fpgm” tables
are required.

Note: Other tables, such as those used for advanced line layout, need not be present;
however, their absence may prevent editing of text containing the font.

The process of finding glyph descriptions in OpenType fonts is the following:

• For Type 1 fonts using “CFF” tables, the process is as described in “Encodings
for Type 1 Fonts” on page 428.

• For TrueType fonts using “glyf ” tables, the process is as described in “Encod-
ings for TrueType Fonts” on page 429. Since this process sometimes produces
ambiguous results, it is strongly recommended that PDF creators, instead of us-
ing a simple font, use a Type 0 font with an Identity-H encoding and use the
glyph indices as character codes, as described following Table 5.15 on page 442.

• For CIDFontType0 fonts using “CFF” tables, the process is as described in the
discussion of embedded Type 0 CIDFonts in “Glyph Selection in CIDFonts” on
page 437.

• For CIDFontType2 fonts using “glyf ” tables, the process is as described in the
discussion of embedded Type 2 CIDFonts in “Glyph Selection in CIDFonts” on
page 437.

As discussed in Section 5.5.3, “Font Subsets,” an embedded font program may
contain only the subset of glyphs that are used in the PDF document. This may be
indicated by the presence of a CharSet or CIDSet entry in the font descriptor that
refers to the font file, although subset fonts are not always so identified.

5.9 Extraction of Text Content

The preceding sections describe all the facilities for showing text and causing
glyphs to be painted on the page. In addition to displaying text, consumer appli-
cations sometimes need to determine the information content of text—that is, its
meaning according to some standard character identification as opposed to its
rendered appearance. This need arises during operations such as searching, in-
dexing, and exporting of text to other applications.

TextCHAPTER 5
470

The Unicode standard defines a system for numbering all of the common charac-
ters used in a large number of languages. It is a suitable scheme for representing
the information content of text, but not its appearance, since Unicode values
identify characters, not glyphs. For information about Unicode, see the Unicode
Standard by the Unicode Consortium (see the Bibliography).

When extracting character content, a consumer application can easily convert
text to Unicode values if a font’s characters are identified according to a standard
character set that is known to the application. This character identification can
occur if either the font uses a standard named encoding or the characters in the
font are identified by standard character names or CIDs in a well-known collec-
tion. Section 5.9.1, “Mapping Character Codes to Unicode Values,” describes in
detail the overall algorithm for mapping character codes to Unicode values.

If a font is not defined in one of these ways, the glyphs can still be shown, but the
characters cannot be converted to Unicode values without additional informa-
tion:

• This information can be provided as an optional ToUnicode entry in the font
dictionary (PDF 1.2; see Section 5.9.2, “ToUnicode CMaps”), whose value is a
stream object containing a special kind of CMap file that maps character codes
to Unicode values.

• An ActualText entry for a structure element or marked-content sequence (see
Section 10.8.3, “Replacement Text”) can be used to specify the text content di-
rectly.

5.9.1 Mapping Character Codes to Unicode Values

A consumer application can use the following methods, in the priority given, to
map a character code to a Unicode value. Tagged PDF documents, in particular,
must provide at least one of these methods (see “Unicode Mapping in Tagged
PDF” on page 892):

• If the font dictionary contains a ToUnicode CMap (see Section 5.9.2,
“ToUnicode CMaps”), use that CMap to convert the character code to Unicode.

• If the font is a simple font that uses one of the predefined encodings
MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding, or that has an
encoding whose Differences array includes only character names taken from

Extraction of Text ContentSECTION 5.9
471

the Adobe standard Latin character set and the set of named characters in the
Symbol font (see Appendix D):

1. Map the character code to a character name according to Table D.1 on
page 996 and the font’s Differences array.

2. Look up the character name in the Adobe Glyph List (see the Bibliography)
to obtain the corresponding Unicode value.

• If the font is a composite font that uses one of the predefined CMaps listed in
Table 5.15 on page 442 (except Identity–H and Identity–V) or whose descendant
CIDFont uses the Adobe-GB1, Adobe-CNS1, Adobe-Japan1, or Adobe-Korea1
character collection:

1. Map the character code to a character identifier (CID) according to the
font’s CMap.

2. Obtain the registry and ordering of the character collection used by the
font’s CMap (for example, Adobe and Japan1) from its CIDSystemInfo dic-
tionary.

3. Construct a second CMap name by concatenating the registry and order-
ing obtained in step 2 in the format registry–ordering–UCS2 (for example,
Adobe–Japan1–UCS2).

4. Obtain the CMap with the name constructed in step 3 (available from the
ASN Web site; see the Bibliography).

5. Map the CID obtained in step 1 according to the CMap obtained in step 4,
producing a Unicode value.

Note: Type 0 fonts whose descendant CIDFonts use the Adobe-GB1, Adobe-CNS1,
Adobe-Japan1, or Adobe-Korea1 character collection (as specified in the
CIDSystemInfo dictionary) must have a supplement number corresponding to the
version of PDF supported by the application. See Table 5.16 on page 446 for a list of
the character collections corresponding to a given PDF version. (Other supplements
of these character collections can be used, but if the supplement is higher-numbered
than the one corresponding to the supported PDF version, only the CIDs in the latter
supplement are considered to be standard CIDs.)

If these methods fail to produce a Unicode value, there is no way to determine
what the character code represents.

TextCHAPTER 5
472

5.9.2 ToUnicode CMaps

The CMap defined in the ToUnicode entry of the font dictionary must follow the
syntax for CMaps introduced in Section 5.6.4, “CMaps” and fully documented in
Adobe Technical Note #5014, Adobe CMap and CIDFont Files Specification. Addi-
tional guidance regarding the CMap defined in this entry is provided in Adobe
Technical Note #5411, ToUnicode Mapping File Tutorial. This CMap differs from
an ordinary one in the following ways:

• The only pertinent entry in the CMap stream dictionary (see Table 5.17 on
page 448) is UseCMap, which may be used if the CMap is based on another
ToUnicode CMap.

• The CMap file must contain begincodespacerange and endcodespacerange
operators that are consistent with the encoding that the font uses. In particular,
for a simple font, the codespace must be one byte long.

• It must use the beginbfchar, endbfchar, beginbfrange, and endbfrange opera-
tors to define the mapping from character codes to Unicode character sequenc-
es expressed in UTF-16BE encoding.

Example 5.15 illustrates a Type 0 font that uses the Identity−H CMap to map from
character codes to CIDs and whose descendant CIDFont uses the Identity map-
ping from CIDs to TrueType glyph indices. Text strings shown using this font
simply use a 2-byte glyph index for each glyph. In the absence of a ToUnicode en-
try, no information would be available about what the glyphs mean.

Example 5.15

14 0 obj
<< /Type /Font

 /Subtype /Type0
 /BaseFont /Ryumin−Light
 /Encoding /Identity−H
 /DescendantFonts [15 0 R]
 /ToUnicode 16 0 R

>>
endobj

15 0 obj
<< /Type /Font

 /Subtype /CIDFontType2
 /BaseFont /Ryumin−Light

Extraction of Text ContentSECTION 5.9
473

 /CIDSystemInfo 17 0 R
 /FontDescriptor 18 0 R
 /CIDToGIDMap /Identity

>>
endobj

The value of the ToUnicode entry is a stream object that contains the definition of
the CMap, as shown in Example 5.16.

Example 5.16

16 0 obj
<< /Length 433 >>

stream
/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
<< /Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def
/CMapName /Adobe−Identity−UCS def
/CMapType 2 def
1 begincodespacerange
< 0000 > < FFFF >
endcodespacerange
2 beginbfrange
< 0000 > < 005E > < 0020 >
< 005F > < 0061 > [< 00660066 > < 00660069 > < 00660066006C >]
endbfrange
1 beginbfchar
<3A51> <D840DC3E>
endbfchar
endcmap
CMapName currentdict /CMap defineresource pop
end
end
endstream
endobj

TextCHAPTER 5
474

The begincodespacerange and endcodespacerange operators in Example 5.16
define the source character code range to be the 2-byte character codes from
< 00 00 > to < FF FF >. The specific mappings for several of the character codes are
shown. For example, < 00 00 > to < 00 5E > are mapped to the Unicode values
U+0020 to U+007E (where Unicode values are conventionally written as U+ fol-
lowed by four to six hexadecimal digits). This is followed by the definition of a
mapping where each character code represents more than one Unicode value:

< 005F > < 0061 > [< 00660066 > < 00660069 > < 00660066006C >]

In this case, the original character codes are the glyph indices for the ligatures ff,
fi, and ffl. The entry defines the mapping from the character codes < 00 5F >,
< 00 60 >, and < 00 61 > to the strings of Unicode values with a Unicode scalar val-
ue for each character in the ligature: U+0066 U+0066 are the Unicode values for
the character sequence f f, U+0066 U+0069 for f i, and U+0066 U+0066 U+006c for
f f l.

Finally, the character code < 3A 51> is mapped to the Unicode value U+2003E,
which is expressed by the byte sequence <D840DC3E> in UTF-16BE encoding.

Example 5.16 illustrates several extensions to the way destination values can be
defined. To support mappings from a source code to a string of destination codes,
the following extension has been made to the ranges defined after a beginbfchar
operator:

n beginbfchar
srcCode dstString
endbfchar

where dstString can be a string of up to 512 bytes. Likewise, mappings after the
beginbfrange operator may be defined as

n beginbfrange
srcCode1 srcCode2 dstString
endbfrange

In this case, the last byte of the string is incremented for each consecutive code in
the source code range. When defining ranges of this type, care must be taken to
ensure that the value of the last byte in the string is less than or equal to 255 −
 (srcCode2 − srcCode1). This ensures that the last byte of the string is not incre-

Extraction of Text ContentSECTION 5.9
475

mented past 255; otherwise, the result of mapping is undefined and an error oc-
curs.

To support more compact representations of mappings from a range of source
character codes to a discontiguous range of destination codes, the CMaps used
for the ToUnicode entry can use the following syntax for the mappings following
a beginbfrange definition:

n beginbfrange
srcCode1 srcCode2 [dstString1 dstString2 … dstStringm]
endbfrange

Consecutive codes starting with srcCode1 and ending with srcCode2 are mapped to
the destination strings in the array starting with dstString1 and ending with
dstStringm . The value of dstString can be a string of up to 512 bytes. The value of
m represents the number of continuous character codes in the source character
code range:

m = srcCode2 - srcCode1 + 1

TextCHAPTER 5
476

477

CHAPTER 6

6Rendering

The Adobe imaging model separates graphics (the specification of shapes and col-
ors) from rendering (controlling a raster output device). Figures 4.12 and 4.13 on
pages 238 and 239 illustrate this division. Chapter 4 describes the facilities for
specifying the appearance of pages in a device-independent way. This chapter de-
scribes the facilities for controlling how shapes and colors are rendered on the
raster output device. All of the facilities discussed here depend on the specific
characteristics of the output device. PDF documents that are intended to be de-
vice-independent should limit themselves to the general graphics facilities de-
scribed in Chapter 4.

Nearly all of the rendering facilities that are under the control of a PDF document
pertain to the reproduction of color. Colors are rendered by a multiple-step pro-
cess outlined below. (Depending on the current color space and on the character-
istics of the device, it is not always necessary to perform every step.)

1. If a color has been specified in a CIE-based color space (see Section 4.5.4,
“CIE-Based Color Spaces”), it must first be transformed to the native color
space of the raster output device (also called its process color model).

2. If a color has been specified in a device color space that is inappropriate for the
output device (for example, RGB color with a CMYK or grayscale device), a
color conversion function is invoked.

3. The device color values are now mapped through transfer functions, one for
each color component. The transfer functions compensate for peculiarities of
the output device, such as nonlinear gray-level response. This step is some-
times called gamma correction.

4. If the device cannot reproduce continuous tones, but only certain discrete
colors such as black and white pixels, a halftone function is invoked, which
approximates the desired colors by means of patterns of pixels.

RenderingCHAPTER 6
478

5. Finally, scan conversion is performed to mark the appropriate pixels of the ras-
ter output device with the requested colors.

Once these operations have been performed for all graphics objects on the page,
the resulting raster data is used to mark the physical output medium, such as
pixels on a display or ink on a printed page. A PDF document specifies very little
about the properties of the physical medium on which the output will be pro-
duced; that information is obtained from the following sources:

• The media box and a few other entries in the page dictionary (see Section
10.10.1, “Page Boundaries”).

• An interactive dialog conducted when the user requests viewing or printing.

• A job ticket, either embedded in the PDF file or provided separately, specifying
detailed instructions for imposing PDF pages onto media and for controlling
special features of the output device. Various standards exist for the format of
job tickets. Two of them, JDF (Job Definition Format) and PJTF (Portable Job
Ticket Format), are described in the CIP4 document JDF Specification and in
Adobe Technical Note #5620, Portable Job Ticket Format (see the Bibliography).

Some of the rendering facilities described in this chapter are controlled by device-
dependent graphics state parameters, listed in Table 4.3 on page 212. These pa-
rameters can be changed by invoking the gs operator with a parameter dictionary
containing entries shown in Table 4.8 on page 220.

6.1 CIE-Based Color to Device Color

To render CIE-based colors on an output device, the consumer application must
convert from the specified CIE-based color space to the device’s native color
space (typically DeviceGray, DeviceRGB, or DeviceCMYK), taking into account the
known properties of the device. As discussed in Section 4.5.4, “CIE-Based Color
Spaces,” CIE-based color is based on a model of human color perception. The
goal of CIE-based color rendering is to produce output in the device’s native color
space that accurately reproduces the requested CIE-based color values as per-
ceived by a human observer. CIE-based color specification and rendering are a
feature of PDF 1.1 (CalGray, CalRGB, and Lab) and PDF 1.3 (ICCBased).

The conversion from CIE-based color to device color is complex, and the theory
on which it is based is beyond the scope of this book; see the Bibliography for
sources of further information. The algorithm has many parameters, including an

CIE-Based Color to Device ColorSECTION 6.1
479

optional, full three-dimensional color lookup table. The color fidelity of the out-
put depends on having these parameters properly set, usually by a method that
includes some form of calibration. The colors that a device can produce are char-
acterized by a device profile, which is usually specified by an ICC profile associat-
ed with the device (and entirely separate from the profile that is specified in an
ICCBased color space).

Note: PDF has no equivalent of the PostScript color rendering dictionary. The
means by which a device profile is associated with a consumer application’s output
device are implementation-dependent and cannot be specified in a PDF file. Typi-
cally, this is done through a color management system (CMS) that is provided by the
operating system. Beginning with PDF 1.4, a PDF document can also specify one or
more output intents providing possible profiles that might be used to process the
document (see Section 10.10.4, “Output Intents”).

Conversion from a CIE-based color value to a device color value requires two
main operations:

1. Adjust the CIE-based color value according to a CIE-based gamut mapping
function. A gamut is a subset of all possible colors in some color space. A page
description has a source gamut consisting of all the colors it uses. An output
device has a device gamut consisting of all the colors it can reproduce. This
step transforms colors from the source gamut to the device gamut in a way that
attempts to preserve color appearance, visual contrast, or some other explicitly
specified rendering intent (see “Rendering Intents” on page 260).

2. Generate a corresponding device color value according to a CIE-based color
mapping function. For a given CIE-based color value, this function computes a
color value in the device’s native color space.

The CIE-based gamut and color mapping functions are applied only to color
values presented in a CIE-based color space. By definition, color values in device
color spaces directly control the device color components (though this can be al-
tered by the DefaultGray, DefaultRGB, and DefaultCMYK color space resources;
see “Default Color Spaces” on page 257).

The source gamut is specified by a page description when it selects a CIE-based
color space. This specification is device-independent. The corresponding proper-
ties of the output device are given in the device profile associated with the device.
The gamut mapping and color mapping functions are part of the implementation
of the consumer application.

RenderingCHAPTER 6
480

6.2 Conversions among Device Color Spaces

Each raster output device has a native color space, which typically is one of the
standard device color spaces (DeviceGray, DeviceRGB, or DeviceCMYK). In other
words, most devices support reproduction of colors according to a grayscale
(monochrome), RGB (red-green-blue), or CMYK (cyan-magenta-yellow-black)
model. If the device supports continuous-tone output, reproduction occurs di-
rectly. Otherwise, it is accomplished by means of halftoning.

A device’s native color space is also called its process color model. Process colors
are ones that are produced by combinations of one or more standard process
colorants. Colors specified in any device or CIE-based color space are rendered as
process colors. (A device can also support additional spot colorants, which can be
painted only by means of Separation or DeviceN color spaces. They are not in-
volved in the rendering of device or CIE-based color spaces, nor are they subject
to the conversions described below.)

Note: Some devices provide a native color space that is not one of the three named
above but consists of a different combination of colorants. In that case, conversion
from the standard device color spaces to the device’s native color space is performed
by device-dependent means.

Knowing the native color space and other output capabilities of the device, the
consumer application can automatically convert the color values specified in a
document to those appropriate for the device’s native color space. For example, if
a document specifies colors in the DeviceRGB color space but the device supports
grayscale (such as a monochrome display) or CMYK (such as a color printer), the
consumer application performs the necessary conversions. If the document spec-
ifies colors directly in the device’s native color space, no conversions are neces-
sary.

The algorithms used to convert among device color spaces are very simple. As
perceived by a human viewer, the conversions produce only crude approxima-
tions of the original colors. More sophisticated control over color conversion can
be achieved by means of CIE-based color specification and rendering. Addition-
ally, device color spaces can be remapped into CIE-based color spaces (see
“Default Color Spaces” on page 257).

Conversions among Device Color SpacesSECTION 6.2
481

6.2.1 Conversion between DeviceGray and DeviceRGB

Black, white, and intermediate shades of gray can be considered special cases of
RGB color. A grayscale value is described by a single number: 0.0 corresponds to
black, 1.0 to white, and intermediate values to different gray levels.

A gray level is equivalent to an RGB value with all three components the same. In
other words, the RGB color value equivalent to a specific gray value is simply

The gray value for a given RGB value is computed according to the NTSC video
standard, which determines how a color television signal is rendered on a black-
and-white television set:

6.2.2 Conversion between DeviceGray and DeviceCMYK

Nominally, a gray level is the complement of the black component of CMYK.
Therefore, the CMYK color value equivalent to a specific gray level is simply

To obtain the equivalent gray level for a given CMYK value, the contributions of
all components must be taken into account:

The interactions between the black component and the other three are elaborated
below.

6.2.3 Conversion from DeviceRGB to DeviceCMYK

Conversion of a color value from RGB to CMYK is a two-step process. The first
step is to convert the red-green-blue value to equivalent cyan, magenta, and yel-

red gray=
green gray=
blue gray=

gray 0.3 red× 0.59 green× 0.11 blue×+ +=

cyan 0.0=
magenta 0.0=

yellow 0.0=
black 1.0 gray–=

gray 1.0 min(1.0· 0.3 cyan× 0.59 magenta× 0.11 yellow× black+ + +),–=

RenderingCHAPTER 6
482

low components. The second step is to generate a black component and alter the
other components to produce a better approximation of the original color.

The subtractive color primaries cyan, magenta, and yellow are the complements
of the additive primaries red, green, and blue. For example, a cyan ink subtracts
the red component of white light. In theory, the conversion is very simple:

For example, a color that is 0.2 red, 0.7 green, and 0.4 blue can also be expressed
as 1.0 − 0.2 = 0.8 cyan, 1.0 − 0.7 = 0.3 magenta, and 1.0 − 0.4 = 0.6 yellow.

Logically, only cyan, magenta, and yellow are needed to generate a printing color.
An equal level of cyan, magenta, and yellow should create the equivalent level of
black. In practice, however, colored printing inks do not mix perfectly; such com-
binations often form dark brown shades instead of true black. To obtain a truer
color rendition on a printer, true black ink is often substituted for the mixed-
black portion of a color. Most color printers support a black component (the K
component of CMYK). Computing the quantity of this component requires some
additional steps:

1. Black generation calculates the amount of black to be used when trying to re-
produce a particular color.

2. Undercolor removal reduces the amounts of the cyan, magenta, and yellow
components to compensate for the amount of black that was added by black
generation.

The complete conversion from RGB to CMYK is as follows, where BG (k) and
UCR (k) are invocations of the black-generation and undercolor-removal func-
tions, respectively:

cyan 1.0 red–=
magenta 1.0 green–=

yellow 1.0 blue–=

c 1.0 red–=
m 1.0 green–=
y 1.0 blue–=
k min c m y, ,()=

cyan min 1.0 max 0.0 c UCR k()–,(),)(=
magenta min 1.0 max 0.0 m UCR k()–,(),)(=

yellow min 1.0 max 0.0 y UCR k()–,(),)(=
black min 1.0 max 0.0 BG k(),(),)(=

Conversions among Device Color SpacesSECTION 6.2
483

In PDF 1.2, the black-generation and undercolor-removal functions are defined
as PDF function dictionaries (see Section 3.9, “Functions”) that are parameters in
the graphics state. They are specified as the values of the BG and UCR (or BG2 and
UCR2) entries in a graphics state parameter dictionary (see Table 4.8 on page
220). Each function is called with a single numeric operand and is expected to
return a single numeric result.

The input of both the black-generation and undercolor-removal functions is k,
the minimum of the intermediate c, m, and y values that have been computed by
subtracting the original red, green, and blue components from 1.0. Nominally, k is
the amount of black that can be removed from the cyan, magenta, and yellow
components and substituted as a separate black component.

The black-generation function computes the black component as a function of
the nominal k value. It can simply return its k operand unchanged, or it can re-
turn a larger value for extra black, a smaller value for less black, or 0.0 for no
black at all.

The undercolor-removal function computes the amount to subtract from each of
the intermediate c, m, and y values to produce the final cyan, magenta, and yellow
components. It can simply return its k operand unchanged, or it can return 0.0
(so that no color is removed), some fraction of the black amount, or even a nega-
tive amount, thereby adding to the total amount of colorant.

The final component values that result after applying black generation and un-
dercolor removal are expected to be in the range 0.0 to 1.0. If a value falls outside
this range, the nearest valid value is substituted automatically without error indi-
cation. This substitution is indicated explicitly by the min and max operations in
the formulas above.

The correct choice of black-generation and undercolor-removal functions de-
pends on the characteristics of the output device—for example, how inks mix.
Each device is configured with default values that are appropriate for that device.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular,
“Rendering Intent and Color Conversions” on page 574, for further discussion of
the role of black-generation and undercolor-removal functions in the transparent
imaging model.

RenderingCHAPTER 6
484

6.2.4 Conversion from DeviceCMYK to DeviceRGB

Conversion of a color value from CMYK to RGB is a simple operation that does
not involve black generation or undercolor removal:

In other words, the black component is simply added to each of the other compo-
nents, which are then converted to their complementary colors by subtracting
them each from 1.0.

6.3 Transfer Functions

In PDF 1.2, a transfer function adjusts the values of color components to compen-
sate for nonlinear response in an output device and in the human eye. Each com-
ponent of a device color space—for example, the red component of the
DeviceRGB space—is intended to represent the perceived lightness or intensity of
that color component in proportion to the component’s numeric value. Many de-
vices do not actually behave this way, however; the purpose of a transfer function
is to compensate for the device’s actual behavior. This operation is sometimes
called gamma correction (not to be confused with the CIE-based gamut mapping
function performed as part of CIE-based color rendering).

In the sequence of steps for processing colors, the consumer application applies
the transfer function after performing any needed conversions between color
spaces, but before applying a halftone function, if necessary. Each color compo-
nent has its own separate transfer function; there is no interaction between com-
ponents.

Transfer functions always operate in the native color space of the output device,
regardless of the color space in which colors were originally specified. (For exam-
ple, for a CMYK device, the transfer functions apply to the device’s cyan, magen-
ta, yellow, and black color components, even if the colors were originally
specified in, for example, a DeviceRGB or CalRGB color space.) The transfer func-
tion is called with a numeric operand in the range 0.0 to 1.0 and must return a
number in the same range. The input is the value of a color component in the de-
vice’s native color space, either specified directly or produced by conversion from

red 1.0 min 1.0 cyan black+,)(–=
green 1.0 min 1.0 magenta black+,)(–=
blue 1.0 min 1.0 yellow black+,)(–=

Transfer FunctionsSECTION 6.3
485

some other color space. The output is the transformed component value to be
transmitted to the device (after halftoning, if necessary).

Both the input and the output of a transfer function are always interpreted as if
the corresponding color component were additive (red, green, blue, or gray): the
greater the numeric value, the lighter the color. If the component is subtractive
(cyan, magenta, yellow, black, or a spot color), it is converted to additive form by
subtracting it from 1.0 before it is passed to the transfer function. The output of
the function is always in additive form and is passed on to the halftone function
in that form.

In PDF 1.2, transfer functions are defined as PDF function objects (see Section
3.9, “Functions”). There are two ways to specify transfer functions:

• The current transfer function parameter in the graphics state consists of either a
single transfer function or an array of four separate transfer functions, one each
for red, green, blue, and gray or their complements cyan, magenta, yellow, and
black. (If only a single function is specified, it applies to all components.) An
RGB device uses the first three, a monochrome device uses the gray transfer
function only, and a CMYK device uses all four. The current transfer function
can be specified as the value of the TR or TR2 entry in a graphics state parameter
dictionary; see Table 4.8 on page 220.

• The current halftone parameter in the graphics state can specify transfer func-
tions as optional entries in halftone dictionaries (see Section 6.4.4, “Halftone
Dictionaries”). This is the only way to set transfer functions for nonprimary
color components or for any component in devices whose native color space
uses components other than the ones listed above. A transfer function specified
in a halftone dictionary overrides the corresponding one specified by the cur-
rent transfer function parameter in the graphics state.

In addition to their intended use for gamma correction, transfer functions can be
used to produce a variety of special, device-dependent effects. For example, on a
monochrome device, the PostScript calculator function

{ 1 exch sub }

inverts the output colors, producing a negative rendition of the page. In general,
this method does not work for color devices; inversion can be more complicated
than merely inverting each of the components. Because transfer functions pro-

RenderingCHAPTER 6
486

duce device-dependent effects, a page description that is intended to be device-
independent should not alter them.

Note: When the current color space is DeviceGray and the output device’s native
color space is DeviceCMYK, the interpreter uses only the gray transfer function. The
normal conversion from DeviceGray to DeviceCMYK produces 0.0 for the cyan,
magenta, and yellow components. These components are not passed through their
respective transfer functions but are rendered directly, producing output containing
no colored inks. This special case exists for compatibility with existing applications
that use a transfer function to obtain special effects on monochrome devices, and
applies only to colors specified in the DeviceGray color space.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular,
“Halftone and Transfer Function” on page 573, for further discussion of the role
of transfer functions in the transparent imaging model.

6.4 Halftones

Halftoning is a process by which continuous-tone colors are approximated on an
output device that can achieve only a limited number of discrete colors. Colors
that the device cannot produce directly are simulated by using patterns of pixels
in the colors available. Perhaps the most familiar example is the rendering of gray
tones with black and white pixels, as in a newspaper photograph.

Some output devices can reproduce continuous-tone colors directly. Halftoning is
not required for such devices; after gamma correction by the transfer functions,
the color components are transmitted directly to the device. On devices that do
require halftoning, it occurs after all color components have been transformed by
the applicable transfer functions. The input to the halftone function consists of
continuous-tone, gamma-corrected color components in the device’s native color
space. Its output consists of pixels in colors the device can reproduce.

PDF provides a high degree of control over details of the halftoning process. For
example, in color printing, independent halftone screens can be specified for each
of several colorants. When rendering on low-resolution displays, fine control
over halftone patterns is needed to achieve the best approximations of gray levels
or colors and to minimize visual artifacts.

Note: Remember that everything pertaining to halftones is, by definition, device-
dependent. In general, when a PDF document provides its own halftone specifica-

HalftonesSECTION 6.4
487

tions, it sacrifices portability. Associated with every output device is a default half-
tone definition that is appropriate for most purposes. Only relatively sophisticated
documents need to define their own halftones to achieve special effects.

All halftones are defined in device space, unaffected by the current transforma-
tion matrix. For correct results, a PDF document that defines a new halftone
must make assumptions about the resolution and orientation of device space. The
best choice of halftone parameters often depends on specific physical properties
of the output device, such as pixel shape, overlap between pixels, and the effects of
electronic or mechanical noise.

6.4.1 Halftone Screens

In general, halftoning methods are based on the notion of a halftone screen, which
divides the array of device pixels into cells that can be modified to produce the
desired halftone effects. A screen is defined by conceptually laying a uniform
rectangular grid over the device pixel array. Each pixel belongs to one cell of the
grid; a single cell typically contains many pixels. The screen grid is defined entire-
ly in device space and is unaffected by modifications to the current transforma-
tion matrix. This property is essential to ensure that adjacent areas colored by
halftones are properly stitched together without visible seams.

On a bilevel (black-and-white) device, each cell of a screen can be made to ap-
proximate a shade of gray by painting some of the cell’s pixels black and some
white. Numerically, the gray level produced within a cell is the ratio of white pix-
els to the total number of pixels in the cell. A cell containing n pixels can render
n + 1 different gray levels, ranging from all pixels black to all pixels white. A gray
value g in the range 0.0 to 1.0 is produced by making i pixels white, where
i = floor (g × n).

The foregoing description also applies to color output devices whose pixels con-
sist of primary colors that are either completely on or completely off. Most color
printers, but not color displays, work this way. Halftoning is applied to each color
component independently, producing shades of that color.

Color components are presented to the halftoning machinery in additive form,
regardless of whether they were originally specified additively (RGB or gray) or
subtractively (CMYK or tint). Larger values of a color component represent light-
er colors—greater intensity in an additive device such as a display or less ink in a

RenderingCHAPTER 6
488

subtractive device such as a printer. Transfer functions produce color values in
additive form; see Section 6.3, “Transfer Functions.”

6.4.2 Spot Functions

A common way of defining a halftone screen is by specifying a frequency, angle,
and spot function. The frequency is the number of halftone cells per inch; the
angle indicates the orientation of the grid lines relative to the device coordinate
system. As a cell’s desired gray level varies from black to white, individual pixels
within the cell change from black to white in a well-defined sequence: if a partic-
ular gray level includes certain white pixels, lighter grays will include the same
white pixels along with some additional ones. The order in which pixels change
from black to white for increasing gray levels is determined by a spot function,
which specifies that order in an indirect way that minimizes interactions with the
screen frequency and angle.

Consider a halftone cell to have its own coordinate system: the center of the cell is
the origin and the corners are at coordinates ±1.0 horizontally and vertically.
Each pixel in the cell is centered at horizontal and vertical coordinates that both
lie in the range −1.0 to +1.0. For each pixel, the spot function is invoked with the
pixel’s coordinates as input and must return a single number in the range −1.0 to
+1.0, defining the pixel’s position in the whitening order.

The specific values the spot function returns are not significant; all that matters
are the relative values returned for different pixels. As a cell’s gray level varies
from black to white, the first pixel whitened is the one for which the spot function
returns the lowest value, the next pixel is the one with the next higher spot func-
tion value, and so on. If two pixels have the same spot function value, their rela-
tive order is chosen arbitrarily.

PDF provides built-in definitions for many of the most commonly used spot
functions. A halftone can simply specify any of these predefined spot functions
by name instead of giving an explicit function definition. For example, the name
SimpleDot designates a spot function whose value is inversely related to a pixel’s
distance from the center of the halftone cell. This produces a “dot screen” in
which the black pixels are clustered within a circle whose area is inversely pro-
portional to the gray level. The predefined function Line is a spot function whose
value is the distance from a given pixel to a line through the center of the cell,
producing a “line screen” in which the white pixels grow away from that line.

HalftonesSECTION 6.4
489

Table 6.1 shows the predefined spot functions. The table gives the mathematical
definition of each function along with the corresponding PostScript language
code as it would be defined in a PostScript calculator function (see Section 3.9.4,
“Type 4 (PostScript Calculator) Functions”). The image accompanying each
function shows how the relative values of the function are distributed over the
halftone cell, indicating the approximate order in which pixels are whitened. Pix-
els corresponding to darker points in the image are whitened later than those cor-
responding to lighter points. (See implementation note 70 in Appendix H.)

TABLE 6.1 Predefined spot functions

NAME APPEARANCE DEFINITION

SimpleDot 1 − (x 2 + y 2)

{ dup mul exch dup mul add 1 exch sub }

InvertedSimpleDot x 2 + y 2 − 1

{ dup mul exch dup mul add 1 sub }

DoubleDot

{ 360 mul sin 2 div exch 360 mul sin 2 div add }

InvertedDoubleDot

{ 360 mul sin 2 div exch 360 mul sin 2 div add neg }

360 x×()sin
2------------------------------ 360 y×()sin

2------------------------------+

360 x×()sin
2------------------------------ 360 y×()sin

2------------------------------+⎝
⎛– ⎠

⎞

RenderingCHAPTER 6
490

CosineDot

{ 180 mul cos exch 180 mul cos add 2 div }

Double

{ 360 mul sin 2 div exch 2 div 360 mul sin 2 div add }

InvertedDouble

{ 360 mul sin 2 div exch 2 div 360 mul sin 2 div add neg }

Line − | y |

{ exch pop abs neg }

LineX x

{ pop }

NAME APPEARANCE DEFINITION

180 x×()cos
2------------------------------- 180 y×()cos

2-------------------------------+

360 x
2--×⎝ ⎠

⎛ ⎞sin

2------------------------------- 360 y×()sin
2------------------------------+

360 x
2--×⎝ ⎠

⎛ ⎞sin

2------------------------------- 360 y×()sin
2------------------------------+

⎠
⎟
⎟
⎟
⎞

⎝
⎜
⎜
⎜
⎛

–

HalftonesSECTION 6.4
491

LineY y

{ exch pop }

Round if | x | + | y | ≤ 1 then 1 − (x 2 + y 2)
else (| x | − 1) 2 + (| y | − 1) 2 − 1

{ abs exch abs
 2 copy add 1 le

{ dup mul exch dup mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub dup mul add 1 sub }

ifelse }

Ellipse let w = (3 × | x |) + (4 × | y |) − 3

if w < 0 then

else if w > 1 then

else 0.5 − w

{ abs exch abs 2 copy 3 mul exch 4 mul add 3 sub dup 0 lt
{ pop dup mul exch 0.75 div dup mul add
 4 div 1 exch sub }
{ dup 1 gt

{ pop 1 exch sub dup mul
 exch 1 exch sub 0.75 div dup mul add
 4 div 1 sub }
{ 0.5 exch sub exch pop exch pop }

ifelse }
ifelse }

NAME APPEARANCE DEFINITION

1
x2 y

0.75----------⎝ ⎠
⎛ ⎞ 2

+

4------------------------------–

1 x–()2 1 y–
0.75---------------⎝ ⎠

⎛ ⎞ 2
+

4--- 1–

RenderingCHAPTER 6
492

EllipseA 1 − (x 2 + 0.9 × y 2)

{ dup mul 0.9 mul exch dup mul add 1 exch sub }

InvertedEllipseA x 2 + 0.9 × y 2 − 1

{ dup mul 0.9 mul exch dup mul add 1 sub }

EllipseB

{ dup 5 mul 8 div mul exch dup mul exch add sqrt
 1 exch sub }

EllipseC 1 − (0.9 × x2 + y2)

{ dup mul exch dup mul 0.9 mul add 1 exch sub }

InvertedEllipseC 0.9 × x 2 + y 2 − 1

{ dup mul exch dup mul 0.9 mul add 1 sub }

NAME APPEARANCE DEFINITION

1 x2 5
8-- y2×+–

HalftonesSECTION 6.4
493

Figure 6.1 illustrates the effects of some of the predefined spot functions.

Square −max (| x | , | y |)

{ abs exch abs 2 copy lt
{ exch }

if
 pop neg }

Cross −min (| x | , | y |)

{ abs exch abs 2 copy gt
{ exch }

if
 pop neg }

Rhomboid

{ abs exch abs 0.9 mul add 2 div }

Diamond if | x | + | y | ≤ 0.75 then 1 − (x 2 + y 2)
else if | x | + | y | ≤ 1.23 then 1 − (0.85 × | x | + | y |)
else (| x | – 1) 2 + (| y | – 1) 2 – 1

{ abs exch abs 2 copy add 0.75 le
{ dup mul exch dup mul add 1 exch sub }
{ 2 copy add 1.23 le

{ 0.85 mul add 1 exch sub }
{ 1 sub dup mul exch 1 sub dup mul add 1 sub }

ifelse }
ifelse }

NAME APPEARANCE DEFINITION

0.9 x× y+
2---------------------------------

RenderingCHAPTER 6
494

FIGURE 6.1 Various halftoning effects

6.4.3 Threshold Arrays

Another way to define a halftone screen is with a threshold array that directly
controls individual device pixels in a halftone cell. This technique provides a high
degree of control over halftone rendering. It also permits halftone cells to be arbi-
trary rectangles, whereas those controlled by a spot function are always square.

A threshold array is much like a sampled image—a rectangular array of pixel
values—but is defined entirely in device space. Depending on the halftone type,
the threshold values occupy 8 or 16 bits each. Threshold values nominally repre-
sent gray levels in the usual way, from 0 for black up to the maximum (255 or
65,535) for white. The threshold array is replicated to tile the entire device space:
each pixel in device space is mapped to a particular sample in the threshold array.
On a bilevel device, where each pixel is either black or white, halftoning with a
threshold array proceeds as follows:

1. For each device pixel that is to be painted with some gray level, consult the
corresponding threshold value from the threshold array.

150 per inch at 45
Round dot screen

100 per inch at 45
Round dot screen

50 per inch at 45
Round dot screen

75 per inch at 45
Line screen

HalftonesSECTION 6.4
495

2. If the requested gray level is less than the threshold value, paint the device pix-
el black; otherwise, paint it white. Gray levels in the range 0.0 to 1.0 corre-
spond to threshold values from 0 to the maximum available (255 or 65,535).

Note: A threshold value of 0 is treated as if it were 1; therefore, a gray level of 0.0
paints all pixels black, regardless of the values in the threshold array.

This scheme easily generalizes to monochrome devices with multiple bits per
pixel. For example, if there are 2 bits per pixel, each pixel can directly represent
one of four different gray levels: black, dark gray, light gray, or white, encoded as
0, 1, 2, and 3, respectively. For any device pixel that is specified with some in-
between gray level, the halftoning algorithm consults the corresponding value in
the threshold array to determine whether to use the next-lower or next-higher
representable gray level. In this situation, the threshold values do not represent
absolute gray levels, but rather gradations between any two adjacent represent-
able gray levels.

A halftone defined in this way can also be used with color displays that have a
limited number of values for each color component. The red, green, and blue
components are simply treated independently as gray levels, applying the ap-
propriate threshold array to each. (This technique also works for a screen defined
as a spot function, since the spot function is used to compute a threshold array
internally.)

6.4.4 Halftone Dictionaries

In PDF 1.2, the graphics state includes a current halftone parameter, which deter-
mines the halftoning process to be used by the painting operators. The current
halftone can be specified as the value of the HT entry in a graphics state parameter
dictionary; see Table 4.8 on page 220. It may be defined by either a dictionary or a
stream, depending on the type of halftone; the term halftone dictionary is used
generically throughout this section to refer to either a dictionary object or the
dictionary portion of a stream object. (The halftones that are defined by streams
are specifically identified as such in the descriptions of particular halftone types;
unless otherwise stated, they are understood to be defined by simple dictionaries
instead.)

Every halftone dictionary must have a HalftoneType entry whose value is an inte-
ger specifying the overall type of halftone definition. The remaining entries in the

RenderingCHAPTER 6
496

dictionary are interpreted according to this type. PDF supports the halftone types
listed in Table 6.2.

TABLE 6.2 PDF halftone types

The dictionaries representing these halftone types contain the same entries as
the corresponding PostScript language halftone dictionaries (as described in Sec-
tion 7.4 of the PostScript Language Reference, Third Edition), with the following
exceptions:

• The PDF dictionaries may contain a Type entry with the value Halftone, identi-
fying the type of PDF object that the dictionary describes.

• Spot functions and transfer functions are represented by function objects in-
stead of PostScript procedures.

• Threshold arrays are specified as streams instead of files.

• In type 5 halftone dictionaries, the keys for colorants must be name objects;
they may not be strings as they may in PostScript.

Halftone dictionaries have an optional entry, HalftoneName, that identifies the
halftone by name. In PDF 1.3, if this entry is present, all other entries, including
HalftoneType, are optional. At rendering time, if the output device has a halftone
with the specified name, that halftone is used, overriding any other halftone pa-
rameters specified in the dictionary. This provides a way for PDF documents to

TYPE MEANING

1 Defines a single halftone screen by a frequency, angle, and spot function.

5 Defines an arbitrary number of halftone screens, one for each colorant or color
component (including both primary and spot colorants). The keys in this dic-
tionary are names of colorants; the values are halftone dictionaries of other
types, each defining the halftone screen for a single colorant.

6 Defines a single halftone screen by a threshold array containing 8-bit sample
values.

10 Defines a single halftone screen by a threshold array containing 8-bit sample
values, representing a halftone cell that may have a nonzero screen angle.

16 (PDF 1.3) Defines a single halftone screen by a threshold array containing 16-
bit sample values, representing a halftone cell that may have a nonzero screen
angle.

HalftonesSECTION 6.4
497

select the proprietary halftones supplied by some device manufacturers, which
would not otherwise be accessible because they are not explicitly defined in PDF.
If there is no HalftoneName entry, or if the requested halftone name does not ex-
ist on the device, the halftone’s parameters are defined by the other entries in the
dictionary, if any. If no other entries are present, the default halftone is used.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular,
“Halftone and Transfer Function” on page 573, for further discussion of the role
of halftones in the transparent imaging model.

Type 1 Halftones

Table 6.3 describes the contents of a halftone dictionary of type 1, which defines a
halftone screen in terms of its frequency, angle, and spot function.

TABLE 6.3 Entries in a type 1 halftone dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this dictionary
describes; must be 1 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Frequency number (Required) The screen frequency, measured in halftone cells per inch in
device space.

Angle number (Required) The screen angle, in degrees of rotation counterclockwise
with respect to the device coordinate system. (Most output devices
have left-handed device spaces. On such devices, a counterclockwise
angle in device space corresponds to a clockwise angle in default user
space and on the physical medium.)

SpotFunction function or name (Required) A function object defining the order in which device pixels
within a screen cell are adjusted for different gray levels, or the name of
one of the predefined spot functions (see Table 6.1 on page 489).

AccurateScreens boolean (Optional) A flag specifying whether to invoke a special halftone al-
gorithm that is extremely precise but computationally expensive; see
below for further discussion. Default value: false.

RenderingCHAPTER 6
498

If the AccurateScreens entry has a value of true, a highly precise halftoning algo-
rithm is substituted in place of the standard one. If AccurateScreens is false or not
present, ordinary halftoning is used. Accurate halftoning achieves the requested
screen frequency and angle with very high accuracy, whereas ordinary halftoning
adjusts them so that a single screen cell is quantized to device pixels. High accu-
racy is important mainly for making color separations on high-resolution devic-
es. However, it may be computationally expensive and therefore is ordinarily
disabled.

In principle, PDF permits the use of halftone screens with arbitrarily large cells—
in other words, arbitrarily low frequencies. However, cells that are very large
relative to the device resolution or that are oriented at unfavorable angles may ex-
ceed the capacity of available memory. If this happens, an error occurs. The
AccurateScreens feature often requires very large amounts of memory to achieve
the highest accuracy.

Example 6.1 shows a halftone dictionary for a type 1 halftone.

Example 6.1

28 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 120
 /Angle 30
 /SpotFunction /CosineDot
 /TransferFunction /Identity

>>
endobj

TransferFunction function or name (Optional) A transfer function, which overrides the current transfer
function in the graphics state for the same component. This entry is re-
quired if the dictionary is a component of a type 5 halftone (see “Type
5 Halftones” on page 505) and represents either a nonprimary or non-
standard primary color component (see Section 6.3, “Transfer Func-
tions”). The name Identity may be used to specify the identity
function.

KEY TYPE VALUE

HalftonesSECTION 6.4
499

Type 6 Halftones

A type 6 halftone defines a halftone screen with a threshold array. The halftone is
represented as a stream containing the threshold values; the parameters defining
the halftone are specified by entries in the stream dictionary. This dictionary can
contain the entries shown in Table 6.4 in addition to the usual entries common to
all streams (see Table 3.4 on page 62). The Width and Height entries specify the
dimensions of the threshold array in device pixels; the stream must contain
Width × Height bytes, each representing a single threshold value. Threshold val-
ues are defined in device space in the same order as image samples in image space
(see Figure 4.26 on page 338), with the first value at device coordinates (0, 0) and
horizontal coordinates changing faster than vertical coordinates.

Type 10 Halftones

Although type 6 halftones can be used to specify a threshold array with a zero
screen angle, they make no provision for other angles. The type 10 halftone re-
moves this restriction and allows the use of threshold arrays for halftones with
nonzero screen angles as well.

TABLE 6.4 Additional entries specific to a type 6 halftone dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this dictionary
describes; must be 6 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Width integer (Required) The width of the threshold array, in device pixels.

Height integer (Required) The height of the threshold array, in device pixels.

TransferFunction function or name (Optional) A transfer function, which overrides the current transfer
function in the graphics state for the same component. This entry is re-
quired if the dictionary is a component of a type 5 halftone (see “Type
5 Halftones” on page 505) and represents either a nonprimary or non-
standard primary color component (see Section 6.3, “Transfer Func-
tions”). The name Identity may be used to specify the identity
function.

RenderingCHAPTER 6
500

Halftone cells at nonzero angles can be difficult to specify because they may not
line up well with scan lines and because it may be difficult to determine where a
given sampled point goes. The type 10 halftone addresses these difficulties by
dividing the halftone cell into a pair of squares that line up at zero angles with the
output device’s pixel grid. The squares contain the same information as the origi-
nal cell but are much easier to store and manipulate. In addition, they can be
mapped easily into the internal representation used for all rendering.

Figure 6.2 shows a halftone cell with a frequency of 38.4 cells per inch and an
angle of 50.2 degrees, represented graphically in device space at a resolution of
300 dots per inch. Each asterisk in the figure represents a location in device space
that is mapped to a specific location in the threshold array.

FIGURE 6.2 Halftone cell with a nonzero angle

Figure 6.3 shows how the halftone cell can be divided into two squares. If the
squares and the original cell are tiled across device space, the area to the right of
the upper square maps exactly into the empty area of the lower square, and vice
versa (see Figure 6.4). The last row in the first square is immediately adjacent to
the first row in the second square and starts in the same column.

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *
*

HalftonesSECTION 6.4
501

FIGURE 6.3 Angled halftone cell divided into two squares

FIGURE 6.4 Halftone cell and two squares tiled across device space

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *

* * * * * * * * * *
* * * * * * * *

* * * * * *
* * * *

* *
*

X

Y

a a a a a a a a a a

a a a a a a a a

a a a a a a

a a a a

a a

a a a a a a a a a a

a a a a a a a a

a a a a a a

a a a a

a a

a

b b b b b * b b b b

b b b b b b b b

b b b b b b

b b b b

b b

b b b b b b b b b b

b b b b b b b b

b b b b b b

b b b b

b b

bc c c c c * c c c c

c c c c c c c c

c c c c c c

c c c c

c c

c c c c c c c c c c

c c c c c c c c

c c c c c c

c c c c

c c

c

X

X

X

Y

Y

Y

Y

RenderingCHAPTER 6
502

Any halftone cell can be divided in this way. The side of the upper square (X) is
equal to the horizontal displacement from a point in one halftone cell to the cor-
responding point in the adjacent cell, such as those marked by asterisks in Figure
6.4. The side of the lower square (Y) is the vertical displacement between the
same two points. The frequency of a halftone screen constructed from squares
with sides X and Y is thus given by

and the angle by

Like a type 6 halftone, a type 10 halftone is represented as a stream containing
the threshold values, with the parameters defining the halftone specified by en-
tries in the stream dictionary. This dictionary can contain the entries shown in
Table 6.5 in addition to the usual entries common to all streams (see Table 3.4 on
page 62). The Xsquare and Ysquare entries replace the type 6 halftone’s Width
and Height entries.

TABLE 6.5 Additional entries specific to a type 10 halftone dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this dictionary
describes; must be 10 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Xsquare integer (Required) The side of square X, in device pixels; see below.

Ysquare integer (Required) The side of square Y, in device pixels; see below.

TransferFunction function or
name

(Optional) A transfer function, which overrides the current transfer func-
tion in the graphics state for the same component. This entry is required
if the dictionary is a component of a type 5 halftone (see “Type 5 Half-
tones” on page 505) and represents either a nonprimary or nonstandard
primary color component (see Section 6.3, “Transfer Functions”). The
name Identity may be used to specify the identity function.

frequency resolution

X2 Y2+
-----------------------=

angle Y
X---⎝ ⎠
⎛ ⎞atan=

HalftonesSECTION 6.4
503

The Xsquare and Ysquare entries specify the dimensions of the two squares in
device pixels. The stream must contain Xsquare 2 + Ysquare 2 bytes, each repre-
senting a single threshold value. The contents of square X are specified first,
followed by those of square Y. Threshold values within each square are defined in
device space in the same order as image samples in image space (see Figure 4.26
on page 338), with the first value at device coordinates (0, 0) and horizontal coor-
dinates changing faster than vertical coordinates.

Type 16 Halftones

Like type 10, a type 16 halftone (PDF 1.3) defines a halftone screen with a thresh-
old array and allows nonzero screen angles. In type 16, however, each element of
the threshold array is 16 bits wide instead of 8. This allows the threshold array to
distinguish 65,536 levels of color rather than only 256 levels. The threshold array
can consist of either one rectangle or two rectangles. If two rectangles are speci-
fied, they tile the device space as shown in Figure 6.5. The last row in the first
rectangle is immediately adjacent to the first row in the second and starts in the
same column.

FIGURE 6.5 Tiling of device space in a type 16 halftone

A type 16 halftone, like type 6 and type 10, is represented as a stream containing
the threshold values, with the parameters defining the halftone specified by en-
tries in the stream dictionary. This dictionary can contain the entries shown in
Table 6.6 in addition to the usual entries common to all streams (see Table 3.4 on
page 62). The dictionary’s Width and Height entries define the dimensions of the
first (or only) rectangle. The dimensions of the second, optional rectangle are de-
fined by the optional entries Width2 and Height2. Each threshold value is repre-

Width ´ HeightHeight

Height2

Width

Width2 ´
Height2

Width2

RenderingCHAPTER 6
504

sented as 2 bytes, with the high-order byte first. The stream must therefore
contain 2 × Width × Height bytes if there is only one rectangle or
2 × (Width × Height + Width2 × Height2) bytes if there are two rectangles. The
contents of the first rectangle are specified first, followed by those of the second
rectangle. Threshold values within each rectangle are defined in device space in
the same order as image samples in image space (see Figure 4.26 on page 338),
with the first value at device coordinates (0, 0) and horizontal coordinates chang-
ing faster than vertical coordinates.

TABLE 6.6 Additional entries specific to a type 16 halftone dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Halftone for a halftone dictionary.

HalftoneType integer (Required) A code identifying the halftone type that this dictionary
describes; must be 16 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

Width integer (Required) The width of the first (or only) rectangle in the threshold
array, in device pixels.

Height integer (Required) The height of the first (or only) rectangle in the threshold
array, in device pixels.

Width2 integer (Optional) The width of the optional second rectangle in the threshold
array, in device pixels. If this entry is present, the Height2 entry must
be present as well. If this entry is absent, the Height2 entry must also be
absent, and the threshold array has only one rectangle.

Height2 integer (Optional) The height of the optional second rectangle in the threshold
array, in device pixels.

TransferFunction function or name (Optional) A transfer function, which overrides the current transfer
function in the graphics state for the same component. This entry is re-
quired if the dictionary is a component of a type 5 halftone (see “Type
5 Halftones,” below) and represents either a nonprimary or nonstand-
ard primary color component (see Section 6.3, “Transfer Functions”).
The name Identity may be used to specify the identity function.

HalftonesSECTION 6.4
505

Type 5 Halftones

Some devices, particularly color printers, require separate halftones for each indi-
vidual colorant. Also, devices that can produce named separations may require
individual halftones for each separation. Halftone dictionaries of type 5 allow
individual halftones to be specified for an arbitrary number of colorants or color
components.

A type 5 halftone dictionary (Table 6.7) is a composite dictionary containing
independent halftone definitions for multiple colorants. Its keys are name objects
representing the names of individual colorants or color components. The values
associated with these keys are other halftone dictionaries, each defining the half-
tone screen and transfer function for a single colorant or color component. The
component halftone dictionaries may be of any supported type except 5.

TABLE 6.7 Entries in a type 5 halftone dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Halftone for a halftone dictionary.

HalftoneType number (Required) A code identifying the halftone type that this dictionary describes;
must be 5 for this type of halftone.

HalftoneName byte string (Optional) The name of the halftone dictionary.

any colorant
name

dictionary
or stream

(Required, one per colorant) The halftone corresponding to the colorant or
color component named by the key. The halftone may be of any type other
than 5. Note that the key must be a name object; strings are not permitted, as
they are in type 5 PostScript halftone dictionaries.

Default dictionary
or stream

(Required) A halftone to be used for any colorant or color component that
does not have an entry of its own. The value may not be a type 5 halftone. If
there are any nonprimary colorants, the default halftone must have a transfer
function.

RenderingCHAPTER 6
506

The colorants or color components represented in a type 5 halftone dictionary
fall into two categories:

• Primary color components for the standard native device color spaces (Gray for
DeviceGray; Red, Green, and Blue for DeviceRGB; Cyan, Magenta, Yellow, and
Black for DeviceCMYK;).

• Nonstandard color components for use as spot colorants in Separation and
DeviceN color spaces. Some of these may also be used as process colorants if
the native color space is nonstandard.

The dictionary must also contain an entry whose key is Default. The value of this
entry is a halftone dictionary to be used for any color component that does not
have an entry of its own.

When a halftone dictionary of some other type appears as the value of an entry in
a type 5 halftone dictionary, it applies only to the single colorant or color com-
ponent named by that entry’s key. This is in contrast to such a dictionary’s being
used as the current halftone parameter in the graphics state, which applies to all
color components. If nonprimary colorants are requested when the current half-
tone is defined by any means other than a type 5 halftone dictionary, the gray
halftone screen and transfer function are used for all such colorants.

Example 6.2 shows a type 5 halftone dictionary with the primary color compo-
nents for a CMYK device. In this example, the halftone dictionaries for the color
components and for the default all use the same spot function.

Example 6.2

27 0 obj
<< /Type /Halftone

 /HalftoneType 5
 /Cyan 31 0 R
 /Magenta 32 0 R
 /Yellow 33 0 R
 /Black 34 0 R
 /Default 35 0 R

>>
endobj

HalftonesSECTION 6.4
507

31 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 89.827
 /Angle 15
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

32 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 89.827
 /Angle 75
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

33 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 90.714
 /Angle 0
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

34 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 89.803
 /Angle 45
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

RenderingCHAPTER 6
508

35 0 obj
<< /Type /Halftone

 /HalftoneType 1
 /Frequency 90.000
 /Angle 45
 /SpotFunction /Round
 /AccurateScreens true

>>
endobj

6.5 Scan Conversion Details

The final step of rendering is scan conversion. As discussed in Section 2.1.4, “Scan
Conversion,” the application executes a scan conversion algorithm to paint
graphics, text, and images in the raster memory of the output device.

The specifics of the scan conversion algorithm are not defined as part of PDF.
Different implementations can perform scan conversion in different ways; tech-
niques that are appropriate for one device may be inappropriate for another. Still,
it is useful to have a general understanding of how scan conversion works, partic-
ularly when creating PDF documents intended for viewing on a display. At the
low resolutions typical of displays, variations of even one pixel’s width can have a
noticeable effect on the appearance of painted shapes.

The following sections describe the scan conversion algorithms that are typical of
Acrobat products. (These details also apply to PostScript products, yielding con-
sistent results when an application prints a document on a PostScript printer.)
Most scan conversion details are not under program control, but a few are; the
parameters for controlling them are described here.

6.5.1 Flatness Tolerance

The flatness tolerance controls the maximum permitted distance in device pixels
between the mathematically correct path and an approximation constructed from
straight line segments, as shown in Figure 6.6. Flatness can be specified as the op-
erand of the i operator (see Table 4.7 on page 219) or as the value of the FL entry
in a graphics state parameter dictionary (see Table 4.8 on page 220). It must be a
positive number; smaller values yield greater precision at the cost of more com-
putation.

Scan Conversion DetailsSECTION 6.5
509

Note: Although the figure exaggerates the difference between the curved and flat-
tened paths for the sake of clarity, the purpose of the flatness tolerance is to control
the precision of curve rendering, not to draw inscribed polygons. If the parameter’s
value is large enough to cause visible straight line segments to appear, the result is
unpredictable.

FIGURE 6.6 Flatness tolerance

6.5.2 Smoothness Tolerance

The smoothness tolerance (PDF 1.3) controls the quality of smooth shading
(type 2 patterns and the sh operator) and thus indirectly controls the rendering
performance. Smoothness is the allowable color error between a shading approx-
imated by piecewise linear interpolation and the true value of a (possibly non-
linear) shading function. The error is measured for each color component, and
the maximum error is used. The allowable error (or tolerance) is expressed as a
fraction of the range of the color component, from 0.0 to 1.0. Thus, a smoothness
tolerance of 0.1 represents a tolerance of 10 percent in each color component.
Smoothness can be specified as the value of the SM entry in a graphics state
parameter dictionary (see Table 4.8 on page 220).

Each output device may have internal limits on the maximum and minimum
tolerances attainable. For example, setting smoothness to 1.0 may result in an in-
ternal smoothness of 0.5 on a high-quality color device, while setting it to 0.0 on
the same device may result in an internal smoothness of 0.01 if an error of that
magnitude is imperceptible on the device.

Flatness error
tolerance

RenderingCHAPTER 6
510

The smoothness tolerance may also interact with the accuracy of color conver-
sion. In the case of a color conversion defined by a sampled function, the con-
version function is unknown. Thus the error may be sampled at too low a
frequency, in which case the accuracy defined by the smoothness tolerance can-
not be guaranteed. In most cases, however, where the conversion function is
smooth and continuous, the accuracy should be within the specified tolerance.

The effect of the smoothness tolerance is similar to that of the flatness tolerance.
Note, however, that flatness is measured in device-dependent units of pixel width,
whereas smoothness is measured as a fraction of color component range.

6.5.3 Scan Conversion Rules

The following rules determine which device pixels a painting operation affects.
All references to coordinates and pixels are in device space. A shape is a path to be
painted with the current color or with an image. Its coordinates are mapped into
device space but not rounded to device pixel boundaries. At this level, curves
have been flattened to sequences of straight lines, and all “insideness” computa-
tions have been performed.

Pixel boundaries always fall on integer coordinates in device space. A pixel is a
square region identified by the location of its corner with minimum horizontal
and vertical coordinates. The region is half-open, meaning that it includes its
lower but not its upper boundaries. More precisely, for any point whose real-
number coordinates are (x, y), let i = floor (x) and j = floor (y). The pixel that con-
tains this point is the one identified as (i, j). The region belonging to that pixel is
defined to be the set of points (x ′, y ′) such that i ≤ x ′ < i + 1 and j ≤ y ′ < j + 1.
Like pixels, shapes to be painted by filling and stroking operations are also treated
as half-open regions that include the boundaries along their “floor” sides, but not
along their “ceiling” sides.

A shape is scan-converted by painting any pixel whose square region intersects
the shape, no matter how small the intersection is. This ensures that no shape
ever disappears as a result of unfavorable placement relative to the device pixel
grid, as might happen with other possible scan conversion rules. The area cov-
ered by painted pixels is always at least as large as the area of the original shape.
This rule applies both to fill operations and to strokes with nonzero width. Zero-
width strokes are done in a device-dependent manner that may include fewer
pixels than the rule implies.

Scan Conversion DetailsSECTION 6.5
511

Note: Normally, the intersection of two regions is defined as the intersection of their
interiors. However, for purposes of scan conversion, a filling region is considered to
intersect every pixel through which its boundary passes, even if the interior of the
filling region is empty. Thus, for example, a zero-width or zero-height rectangle
paints a line 1 pixel wide.

The region of device space to be painted by a sampled image is determined simi-
larly to that of a filled shape, though not identically. The application transforms
the image’s source rectangle into device space and defines a half-open region, just
as for fill operations. However, only those pixels whose centers lie within the re-
gion are painted. The position of the center of such a pixel—in other words, the
point whose coordinate values have fractional parts of one-half—is mapped back
into source space to determine how to color the pixel. There is no averaging over
the pixel area; if the resolution of the source image is higher than that of device
space, some source samples are not used.

For clipping, the clipping region consists of the set of pixels that would be in-
cluded by a fill operation. Subsequent painting operations affect a region that is
the intersection of the set of pixels defined by the clipping region with the set of
pixels for the region to be painted.

Scan conversion of character glyphs is performed by a different algorithm from
the one above. That font rendering algorithm uses hints in the glyph descriptions
and techniques that are specialized to glyph rasterization.

6.5.4 Automatic Stroke Adjustment

When a stroke is drawn along a path, the scan conversion algorithm may produce
lines of nonuniform thickness because of rasterization effects. In general, the line
width and the coordinates of the endpoints, transformed into device space, are
arbitrary real numbers not quantized to device pixels. A line of a given width can
intersect with different numbers of device pixels, depending on where it is posi-
tioned. Figure 6.7 illustrates this effect.

For best results, it is important to compensate for the rasterization effects to pro-
duce strokes of uniform thickness. This is especially important in low-resolution
display applications. To meet this need, PDF 1.2 provides an optional automatic
stroke adjustment feature. When stroke adjustment is enabled, the line width and
the coordinates of a stroke are automatically adjusted as necessary to produce

RenderingCHAPTER 6
512

lines of uniform thickness. The thickness is as near as possible to the requested
line width—no more than half a pixel different.

FIGURE 6.7 Rasterization without stroke adjustment

Note: If stroke adjustment is enabled and the requested line width, transformed into
device space, is less than half a pixel, the stroke is rendered as a single-pixel line.
This is the thinnest line that can be rendered at device resolution. It is equivalent to
the effect produced by setting the line width to 0 (see Section 6.5.3, “Scan Conver-
sion Rules”).

Because automatic stroke adjustment can have a substantial effect on the appear-
ance of lines, a PDF document must be able to control whether the adjustment is
to be performed. This can be specified with the stroke adjustment parameter in
the graphics state, set by means of the SA entry in a graphics state parameter dic-
tionary (see Section 4.3.4, “Graphics State Parameter Dictionaries”); see imple-
mentation note 71 in Appendix H.

Path

Resulting line

Line width

Resulting line

Line width

Path

1
pixel

513

CHAPTER 7

7Transparency

PDF 1.4 extends the Adobe imaging model to include the notion of transparency.
Transparent objects do not necessarily obey a strict opaque painting model but
can blend (composite) in interesting ways with other overlapping objects. This
chapter describes the general transparency model but does not cover how it is im-
plemented. Implementation-like descriptions are used at various points to de-
scribe how things work, for the purpose of elucidating the behavior of the model.
The actual implementation will almost certainly be different from what these de-
scriptions might imply.

The chapter is organized as follows:

• Section 7.1, “Overview of Transparency,” introduces the basic concepts of the
transparency model and its associated terminology.

• Section 7.2, “Basic Compositing Computations,” describes the mathematics
involved in compositing a single object with its backdrop.

• Section 7.3, “Transparency Groups,” introduces the concept of transparency
groups and describes their properties and behavior.

• Section 7.4, “Soft Masks,” covers the creation and use of masks to specify
position-dependent shape and opacity.

• Section 7.5, “Specifying Transparency in PDF,” describes how transparency
properties are represented in a PDF document.

• Section 7.6, “Color Space and Rendering Issues,” deals with some specific inter-
actions between transparency and other aspects of color specification and
rendering.

TransparencyCHAPTER 7
514

7.1 Overview of Transparency

The original Adobe imaging model paints objects (fills, strokes, text, and images),
possibly clipped by a path, opaquely onto a page. The color of the page at any
point is that of the topmost enclosing object, disregarding any previous objects it
may overlap. This effect can be—and often is—realized simply by rendering ob-
jects directly to the page in the order in which they are specified, with each object
completely overwriting any others that it overlaps.

Under the transparent imaging model, all of the objects on a page can potentially
contribute to the result. Objects at a given point can be thought of as forming a
transparency stack (or stack for short). The objects are arranged from bottom to
top in the order in which they are specified. The color of the page at each point is
determined by combining the colors of all enclosing objects in the stack accord-
ing to compositing rules defined by the transparency model.

Note: The order in which objects are specified determines the stacking order but not
necessarily the order in which the objects are actually painted onto the page. In
particular, the transparency model does not require a consumer application to ras-
terize objects immediately or to commit to a raster representation at any time before
rendering the entire stack onto the page. This is important, since rasterization often
causes significant loss of information and precision that is best avoided during inter-
mediate stages of the transparency computation.

A given object is composited with a backdrop. Ordinarily, the backdrop consists
of the stack of all objects that have been specified previously. The result of com-
positing is then treated as the backdrop for the next object. However, within cer-
tain kinds of transparency groups (see below), a different backdrop is chosen.

When an object is composited with its backdrop, the color at each point is com-
puted using a specified blend mode, which is a function of both the object’s color
and the backdrop color. The blend mode determines how colors interact; differ-
ent blend modes can be used to achieve a variety of useful effects. A single blend
mode is in effect for compositing all of a given object, but different blend modes
can be applied to different objects.

Compositing of an object with its backdrop is mediated by two scalar quantities
called shape and opacity. Conceptually, for each object, these quantities are de-
fined at every point in the plane, just as if they were additional color components.
(In actual practice, they are often obtained from auxiliary sources rather than be-
ing intrinsic to the object.)

Overview of TransparencySECTION 7.1
515

Both shape and opacity vary from 0.0 (no contribution) to 1.0 (maximum contri-
bution). At any point where either the shape or the opacity of an object is 0.0, its
color is undefined. At points where the shape is 0.0, the opacity is also undefined.
The shape and opacity are subject to compositing rules; therefore, the stack as a
whole also has a shape and opacity at each point.

An object’s opacity, in combination with the backdrop’s opacity, determines the
relative contributions of the backdrop color, the object’s color, and the blended
color to the resulting composite color. The object’s shape then determines the de-
gree to which the composite color replaces the backdrop color. Shape values of
0.0 and 1.0 identify points that lie outside and inside a conventional sharp-edged
object; intermediate values are useful in defining soft-edged objects.

Shape and opacity are conceptually very similar. In fact, they can usually be com-
bined into a single value, called alpha, which controls both the color compositing
computation and the fading between an object and its backdrop. However, there
are a few situations in which they must be treated separately; see Section 7.3.5,
“Knockout Groups.” Moreover, raster-based implementations must maintain a
separate shape parameter to do anti-aliasing properly; it is therefore convenient
to have it be an explicit part of the model.

One or more consecutive objects in a stack can be collected together into a trans-
parency group (often referred to hereafter simply as a group). The group as a
whole can have various properties that modify the compositing behavior of ob-
jects within the group and their interactions with its backdrop. An additional
blend mode, shape, and opacity can also be associated with the group as a whole
and used when compositing it with its backdrop. Groups can be nested within
other groups, forming a tree-structured hierarchy.

Note: The concept of a transparency group is independent of existing notions of
group or layer in applications such as Adobe Illustrator®. Those groupings reflect
logical relationships among objects that are meaningful when editing those objects,
but they are not part of the imaging model.

Plate 16 illustrates the effects of transparency grouping. In the upper two figures,
three colored circles are painted as independent objects with no grouping. At the
upper left, the three objects are painted opaquely (opacity = 1.0); each object
completely replaces its backdrop (including previously painted objects) with its
own color. At the upper right, the same three independent objects are painted
with an opacity of 0.5, causing them to composite with each other and with the

TransparencyCHAPTER 7
516

gray and white backdrop. In the lower two figures, the three objects are combined
as a transparency group. At the lower left, the individual objects have an opacity
of 1.0 within the group, but the group as a whole is painted in the Normal blend
mode with an opacity of 0.5. The objects thus completely overwrite each other
within the group, but the resulting group then composites transparently with the
gray and white backdrop. At the lower right, the objects have an opacity of 0.5
within the group and thus composite with each other. The group as a whole is
painted against the backdrop with an opacity of 1.0 but in a different blend mode
(HardLight), producing a different visual effect.

The color result of compositing a group can be converted to a single-component
luminosity value and treated as a soft mask. Such a mask can then be used as an
additional source of shape or opacity values for subsequent compositing opera-
tions. When the mask is used as a shape, this technique is known as soft clipping;
it is a generalization of the current clipping path in the opaque imaging model
(see Section 4.4.3, “Clipping Path Operators”).

The notion of current page is generalized to refer to a transparency group consist-
ing of the entire stack of objects placed on the page, composited with a backdrop
that is pure white and fully opaque. Logically, this entire stack is then rasterized
to determine the actual pixel values to be transmitted to the output device.

Note: In contexts where a PDF page is treated as a piece of artwork to be placed on
some other page—such as an Illustrator artboard or an Encapsulated PostScript
(EPS) file—it is treated not as a page but as a group, whose backdrop may be de-
fined differently from that of a page.

7.2 Basic Compositing Computations

This section describes the basic computations for compositing a single object
with its backdrop. These computations are extended in Section 7.3, “Transparen-
cy Groups,” to cover groups consisting of multiple objects.

7.2.1 Basic Notation for Compositing Computations

In general, variable names in this chapter consisting of a lowercase letter denote a
scalar quantity, such as an opacity. Uppercase letters denote a value with multiple
scalar components, such as a color. In the descriptions of the basic color compos-
iting computations, color values are generally denoted by the letter C, with a

Basic Compositing ComputationsSECTION 7.2
517

mnemonic subscript indicating which of several color values is being referred to;
for instance, Cs stands for “source color.” Shape and opacity values are denoted re-
spectively by the letters f (for “form factor”) and q (for “opaqueness”)—again with
a mnemonic subscript, such as qs for “source opacity.” The symbol α (alpha)
stands for a product of shape and opacity values.

In certain computations, one or more variables may have undefined values; for
instance, when opacity is zero, the corresponding color is undefined. A quantity
can also be undefined if it results from division by zero. In any formula that uses
such an undefined quantity, the quantity has no effect on the ultimate result
because it is subsequently multiplied by zero or otherwise canceled out. The sig-
nificant point is that while any arbitrary value can be chosen for such an unde-
fined quantity, the computation must not malfunction because of exceptions
caused by overflow or division by zero. It is convenient to adopt the further con-
vention that 0 ÷ 0 = 0.

7.2.2 Basic Compositing Formula

The primary change in the imaging model to accommodate transparency is in
how colors are painted. In the transparent model, the result of painting (the result
color) is a function of both the color being painted (the source color) and the color
it is painted over (the backdrop color). Both of these colors may vary as a function
of position on the page; however, this section focuses on some fixed point on the
page and assumes a fixed backdrop and source color.

Other parameters in this computation are the alpha, which controls the relative
contributions of the backdrop and source colors, and the blend function, which
specifies how they are combined in the painting operation. The resulting basic
color compositing formula (or just basic compositing formula for short) determines
the result color produced by the painting operation:

where the variables have the meanings shown in Table 7.1.

Cr 1
αs
αr
-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
----- 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

TransparencyCHAPTER 7
518

TABLE 7.1 Variables used in the basic compositing formula

This formula is actually a simplified form of the compositing formula in which
the shape and opacity values are combined and represented as a single alpha val-
ue; the more general form is presented later. This function is based on the over
operation defined in the article “Compositing Digital Images,” by Porter and Duff
(see the Bibliography), extended to include a blend mode in the region of over-
lapping coverage. The following sections elaborate on the meaning and implica-
tions of this formula.

7.2.3 Blending Color Space

The compositing formula shown above is actually a vector function: the colors it
operates on are represented in the form of n-element vectors, where n is the num-
ber of components required by the color space in which compositing is per-
formed. The ith component of the result color Cr is obtained by applying the
compositing formula to the ith components of the constituent colors Cb , Cs , and
B (Cb , Cs). The result of the computation thus depends on the color space in
which the colors are represented. For this reason, the color space used for com-
positing, called the blending color space, is explicitly made part of the transparent
imaging model. When necessary, backdrop and source colors are converted to the
blending color space before the compositing computation.

VARIABLE MEANING

Backdrop color

Source color

Result color

Backdrop alpha

Source alpha

Result alpha

Blend function

Cb

Cs

Cr

αb

αs

αr

B Cb Cs,()

Basic Compositing ComputationsSECTION 7.2
519

Of the PDF color spaces described in Section 4.5, “Color Spaces,” the following
are supported as blending color spaces:

• DeviceGray

• DeviceRGB

• DeviceCMYK

• CalGray

• CalRGB

• ICCBased color spaces equivalent to those above (including calibrated CMYK)

The Lab space and ICCBased spaces that represent lightness and chromaticity sep-
arately (such as L*a*b*, L*u*v*, and HSV) are not allowed as blending color spac-
es because the compositing computations in such spaces do not give meaningful
results when applied separately to each component. In addition, an ICCBased
space used as a blending color space must be bidirectional; that is, the ICC profile
must contain both AToB and BToA transformations.

The blending color space is consulted only for process colors. Although blending
can also be done on individual spot colors specified in a Separation or DeviceN
color space, such colors are never converted to a blending color space (except in
the case where they first revert to their alternate color space, as described under
“Separation Color Spaces” on page 264 and “DeviceN Color Spaces” on page
268). Instead, the specified color components are blended individually with the
corresponding components of the backdrop.

The blend functions for the various blend modes assume that the range for each
color component is 0.0 to 1.0 and that the color space is additive. The former
condition is true for all of the allowed blending color spaces, but the latter condi-
tion is not true. In particular, the DeviceCMYK, Separation, and DeviceN spaces
are subtractive. When performing blending operations in subtractive color spac-
es, it is assumed that the color component values are complemented (subtracted
from 1.0) before the blend function is applied and that the results of the function
are then complemented back before being used. This adjustment makes the ef-
fects of the various blend modes numerically consistent across all color spaces.
However, the actual visual effect produced by a given blend mode still depends
on the color space. Blending in a device color space produces device-dependent
results, whereas in a CIE-based space it produces results that are consistent
across all devices. See Section 7.6, “Color Space and Rendering Issues,” for addi-
tional details concerning color spaces.

TransparencyCHAPTER 7
520

7.2.4 Blend Mode

In principle, the blend function B (Cb , Cs), used in the compositing formula to
customize the blending operation, could be any function of the backdrop and
source colors that yields another color, Cr , for the result. PDF defines a standard
set of named blend functions, or blend modes, listed in Tables 7.2 and 7.3. Plates
18 and 19 illustrate the resulting visual effects for RGB and CMYK colors, respec-
tively.

A blend mode is termed separable if each component of the result color is com-
pletely determined by the corresponding components of the constituent back-
drop and source colors—that is, if the blend mode function B is applied
separately to each set of corresponding components:

where the lowercase variables cr , cb , and cs denote corresponding components of
the colors Cr , Cb , and Cs , expressed in additive form. (Theoretically, a blend
mode could have a different function for each color component and still be sepa-
rable; however, none of the standard PDF blend modes have this property.) A
separable blend mode can be used with any color space, since it applies indepen-
dently to any number of components. Only separable blend modes can be used
for blending spot colors.

Table 7.2 lists the standard separable blend modes available in PDF.

TABLE 7.2 Standard separable blend modes

NAME RESULT

Normal Selects the source color, ignoring the backdrop:

Multiply Multiplies the backdrop and source color values:

The result color is always at least as dark as either of the two constituent colors. Multiply-
ing any color with black produces black; multiplying with white leaves the original color
unchanged. Painting successive overlapping objects with a color other than black or white
produces progressively darker colors.

cr B cb cs,()=

B cb cs,() cs=

B cb cs,() cb cs×=

Basic Compositing ComputationsSECTION 7.2
521

Screen Multiplies the complements of the backdrop and source color values, then complements
the result:

The result color is always at least as light as either of the two constituent colors. Screening
any color with white produces white; screening with black leaves the original color un-
changed. The effect is similar to projecting multiple photographic slides simultaneously
onto a single screen.

Overlay Multiplies or screens the colors, depending on the backdrop color value. Source colors
overlay the backdrop while preserving its highlights and shadows. The backdrop color is
not replaced but is mixed with the source color to reflect the lightness or darkness of the
backdrop.

Darken Selects the darker of the backdrop and source colors:

The backdrop is replaced with the source where the source is darker; otherwise, it is left
unchanged.

Lighten Selects the lighter of the backdrop and source colors:

The backdrop is replaced with the source where the source is lighter; otherwise, it is left
unchanged.

ColorDodge Brightens the backdrop color to reflect the source color. Painting with black produces no
changes.

ColorBurn Darkens the backdrop color to reflect the source color. Painting with white produces no
change.

NAME RESULT

B cb cs,() 1 1 cb–() 1 cs–()×[]–=
cb cs cb cs×()–+=

B cb cs,() HardLight cs cb,()=

B cb cs,() min cb cs,()=

B cb cs,() max cb cs,()=

B cb cs,()
min 1 cb 1 cs–()⁄,() if cs 1<

1 if cs 1=⎩
⎨
⎧

=

B cb cs,()
1 min 1 1 cb–() cs⁄,()– if cs 0>

0 if cs 0=⎩
⎨
⎧

=

TransparencyCHAPTER 7
522

Table 7.3 lists the standard nonseparable blend modes. Since the nonseparable
blend modes consider all color components in combination, their computation
depends on the blending color space in which the components are interpreted.
They may be applied to all multiple-component color spaces that are allowed as
blending color spaces (see Section 7.2.3, “Blending Color Space”).

All of these blend modes conceptually entail the following steps:

1. Convert the backdrop and source colors from the blending color space to an
intermediate HSL (hue-saturation-luminosity) representation.

2. Create a new color from some combination of hue, saturation, and luminosity
components selected from the backdrop and source colors.

HardLight Multiplies or screens the colors, depending on the source color value. The effect is similar
to shining a harsh spotlight on the backdrop.

SoftLight Darkens or lightens the colors, depending on the source color value. The effect is similar
to shining a diffused spotlight on the backdrop.

where

Difference Subtracts the darker of the two constituent colors from the lighter color:

Painting with white inverts the backdrop color; painting with black produces no change.

Exclusion Produces an effect similar to that of the Difference mode but lower in contrast. Painting
with white inverts the backdrop color; painting with black produces no change.

NAME RESULT

B cb cs,()
Multiply cb 2 cs×,() if cs 0.5≤

Screen cb 2 cs 1–×,() if cs 0.5>⎩
⎨
⎧

=

B cb cs,()
cb 1 2 cs×–() cb 1 cb–()××– if cs 0.5≤

cb 2 cs 1–×() D cb() cb–()×+ if cs 0.5>⎩
⎨
⎧

=

D x()
16 x 12–×() x 4+×() x× if x 0.25≤

x if x 0.25>⎩
⎨
⎧

=

B cb cs,() cb cs–=

B cb cs,() cb cs 2 cb c×× s–+=

Basic Compositing ComputationsSECTION 7.2
523

3. Convert the result back to the original (blending) color space.

However, the formulas given below do not actually perform these conversions.
Instead, they start with whichever color (backdrop or source) is providing the hue
for the result; then they adjust this color to have the proper saturation and lumi-
nosity.

The nonseparable blend mode formulas make use of several auxiliary functions.
These functions operate on colors that are assumed to have red, green, and blue
components. (Blending of CMYK color spaces requires special treatment, as de-
scribed below.)

Lum C() 0.3 Cred× 0.59 Cgreen× 0.11 Cblue×+ +=

SetLum C l,()
let d l Lum C()
Cred

–
Cred d

Cgreen

+
Cgreen d

Cblue

+
Cblue d

returnClipColor C()
+

=
=
=
=

ClipColor C()
let l Lum C()
let n min Cred Cgreen Cblue, ,()
let x max Cred Cgreen Cblue, ,()
if n 0.0
 Cred

<
l Cred l–() l×() l n–()⁄()

 Cgreen

+
l Cgreen l–() l×() l n–()⁄()

 Cblue

+
l Cblue l–() l×() l n–()⁄()

if x 1.0
 Cred

>
+

l Cred l–() 1 l–()×() x l–()⁄()
 Cgreen

+
l Cgreen l–() 1 l–()×() x l–()⁄()

 Cblue

+
l Cblue l–() 1 l–()×() x l–()⁄()

return C
+

=
=
=

=
=
=

=
=
=

Sat C() max Cred Cgreen Cblue, ,() min Cred Cgreen Cblue, ,()–=

TransparencyCHAPTER 7
524

In the following function, the subscripts min, mid, and max refer to the color
components having the minimum, middle, and maximum values upon entry to
the function.

TABLE 7.3 Standard nonseparable blend modes

NAME RESULT

Hue Creates a color with the hue of the source color and the saturation and luminosity of the
backdrop color.

Saturation Creates a color with the saturation of the source color and the hue and luminosity of the
backdrop color. Painting with this mode in an area of the backdrop that is a pure gray (no
saturation) produces no change.

Color Creates a color with the hue and saturation of the source color and the luminosity of the
backdrop color. This preserves the gray levels of the backdrop and is useful for coloring
monochrome images or tinting color images.

Luminosity Creates a color with the luminosity of the source color and the hue and saturation of the
backdrop color. This produces an inverse effect to that of the Color mode.

SetSat C s,()
if Cmax Cmin
 Cmid

>
Cmid Cmin–() s×() Cmax Cmin–()⁄()

 Cmax s
else
 Cmid Cmax 0.0
Cmin 0.0
return C

=
=

= =
=

B Cb Cs,() SetLum SetSat Cs Sat Cb(),() Lum Cb(),()=

B Cb Cs,() SetLum SetSat Cb Sat Cs(),() Lum Cb(),()=

B Cb Cs,() SetLum Cs Lum Cb(),()=

B Cb Cs,() SetLum Cb Lum Cs(),()=

Basic Compositing ComputationsSECTION 7.2
525

The above formulas apply to RGB spaces. Blending in CMYK spaces (including
both DeviceCMYK and ICCBased calibrated CMYK spaces) is handled in the fol-
lowing way:

• The C, M, and Y components are converted to their complementary R, G, and
B components in the usual way. The formulas above are applied to the RGB col-
or values. The results are converted back to C, M, and Y.

• For the K component, the result is the K component of Cb for the Hue, Satura-
tion, and Color blend modes; it is the K component of Cs for the Luminosity
blend mode.

Note: An additional standard blend mode, Compatible, is a vestige of an earlier de-
sign and is no longer needed but is still recognized for the sake of compatibility. Its
effect is equivalent to that of the Normal blend mode. See “Compatibility with
Opaque Overprinting” on page 567 for further discussion.

7.2.5 Interpretation of Alpha

The color compositing formula

produces a result color that is a weighted average of the backdrop color, the
source color, and the blended B (Cb , Cs) term, with the weighting determined by
the backdrop and source alphas αb and αs . For the simplest blend mode, Normal,
defined by

the compositing formula collapses to a simple weighted average of the backdrop
and source colors, controlled by the backdrop and source alpha values. For more
interesting blend functions, the backdrop and source alphas control whether the
effect of the blend mode is fully realized or is toned down by mixing the result
with the backdrop and source colors.

The result alpha, αr , is actually a computed result, described below in Section
7.2.6, “Shape and Opacity Computations.” The result color is normalized by the
result alpha, ensuring that when this color and alpha are subsequently used to-

Cr 1
αs
αr
-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
----- 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

B cb
· cs,() cs=

TransparencyCHAPTER 7
526

gether in another compositing operation, the color’s contribution is correctly rep-
resented. Note that if αr is zero, the result color is undefined.

The formula shown above is a simplification of the following formula, which pre-
sents the relative contributions of backdrop, source, and blended colors in a more
straightforward way:

(The simplification requires a substitution based on the alpha compositing for-
mula, which is presented in the next section.) Thus, mathematically, the back-
drop and source alphas control the influence of the backdrop and source colors,
respectively, while their product controls the influence of the blend function. An
alpha value of αs = 0.0 or αb = 0.0 results in no blend mode effect; setting αs = 1.0
and αb = 1.0 results in maximum blend mode effect.

7.2.6 Shape and Opacity Computations

As stated earlier, the alpha values that control the compositing process are de-
fined as the product of shape and opacity:

This section examines the various shape and opacity values individually. Once
again, keep in mind that conceptually these values are computed for every point
on the page.

Source Shape and Opacity

Shape and opacity values can come from several sources. The transparency mod-
el provides for three independent sources for each. However, the PDF representa-
tion imposes some limitations on the ability to specify all of these sources
independently (see Section 7.5.3, “Specifying Shape and Opacity”).

• Object shape. Elementary objects such as strokes, fills, and text have an intrin-
sic shape, whose value is 1.0 for points inside the object and 0.0 outside. Simi-
larly, an image with an explicit mask (see “Explicit Masking” on page 351) has a

αr Cr× 1 αs–() αb Cb××[] 1 αb–() αs Cs××[] αb αs B Cb Cs,()××[]+ +=

αb fb qb×=
αr fr qr×=
αs fs qs×=

Basic Compositing ComputationsSECTION 7.2
527

shape that is 1.0 in the unmasked portions and 0.0 in the masked portions. The
shape of a group object is the union of the shapes of the objects it contains.

Note: Mathematically, elementary objects have “hard” edges, with a shape value
of either 0.0 or 1.0 at every point. However, when such objects are rasterized to
device pixels, the shape values along the boundaries may be anti-aliased, taking
on fractional values representing fractional coverage of those pixels. When such
anti-aliasing is performed, it is important to treat the fractional coverage as shape
rather than opacity.

• Mask shape. Shape values for compositing an object can be taken from an addi-
tional source, or soft mask, independent of the object itself. (See Section 7.4,
“Soft Masks,” for a discussion of how such a mask might be generated.) The use
of a soft mask to modify the shape of an object or group, called soft clipping, can
produce effects such as a gradual transition between an object and its backdrop,
as in a vignette.

• Constant shape. The source shape can be modified at every point by a scalar
shape constant. This is merely a convenience, since the same effect could be
achieved with a shape mask whose value is the same everywhere.

• Object opacity. Elementary objects have an opacity of 1.0 everywhere. The
opacity of a group object is the result of the opacity computations for all of the
objects it contains.

• Mask opacity. Opacity values, like shape values, can be provided by a soft mask
independent of the object being composited.

• Constant opacity. The source opacity can be modified at every point by a scalar
opacity constant. It is useful to think of this value as the “current opacity,” anal-
ogous to the current color used when painting elementary objects.

All of these shape and opacity inputs range in value from 0.0 to 1.0, with a default
value of 1.0. The intent is that any of the inputs make the painting operation more
transparent as it goes toward 0.0. If more than one input goes toward 0.0, the ef-
fect is compounded. This is achieved mathematically by simply multiplying the
three inputs of each type, producing intermediate values called the source shape
and the source opacity:

where the variables have the meanings shown in Table 7.4.

fs fj fm fk××=
qs qj qm qk××=

TransparencyCHAPTER 7
528

TABLE 7.4 Variables used in the source shape and opacity formulas

Note: When an object is painted with a tiling pattern, the object shape and object
opacity for points in the object’s interior are determined by those of corresponding
points in the pattern, rather than being 1.0 everywhere (see Section 7.5.6, “Patterns
and Transparency”).

Result Shape and Opacity

In addition to a result color, the painting operation also computes an associated
result shape and result opacity. These computations are based on the union func-
tion

where b and s are the backdrop and source values to be composited. This is a gen-
eralization of the conventional concept of union for opaque shapes, and it can be
thought of as an “inverted multiplication”—a multiplication with the inputs and
outputs complemented. The result tends toward 1.0: if either input is 1.0, the re-
sult is 1.0.

VARIABLE MEANING

Source shape

Object shape

Mask shape

Constant shape

Source opacity

Object opacity

Mask opacity

Constant opacity

fs

fj

fm

fk

qs

qj

qm

qk

Union b s,() 1 1 b–() 1 s–()×[]–=
b s b s×()–+=

Basic Compositing ComputationsSECTION 7.2
529

The result shape and opacity are given by

where the variables have the meanings shown in Table 7.5.

TABLE 7.5 Variables used in the result shape and opacity formulas

These formulas can be interpreted as follows:

• The result shape is simply the union of the backdrop and source shapes.

• The result opacity is the union of the backdrop and source opacities, weighted
by their respective shapes. The result is then normalized by the result shape,
ensuring that when this shape and opacity are subsequently used together in
another compositing operation, the opacity’s contribution is correctly repre-
sented.

Since alpha is just the product of shape and opacity, it can easily be shown that

This formula can be used whenever the independent shape and opacity results
are not needed.

VARIABLE MEANING

Result shape

Backdrop shape

Source shape

Result opacity

Backdrop opacity

Source opacity

fr Union fb fs,()=

qr
Union fb qb× fs qs×,()

fr
---=

fr

fb

fs

qr

qb

qs

αr Union αb αs,()=

TransparencyCHAPTER 7
530

7.2.7 Summary of Basic Compositing Computations

Below is a summary of all the computations presented in this section. They are
given in an order such that no variable is used before it is computed; also, some of
the formulas have been rearranged to simplify them. See Tables 7.1, 7.4, and 7.5
above for the meanings of the variables used in these formulas.

7.3 Transparency Groups

A transparency group is a sequence of consecutive objects in a transparency stack
that are collected together and composited to produce a single color, shape, and
opacity at each point. The result is then treated as if it were a single object for sub-
sequent compositing operations. This facilitates creating independent pieces of
artwork, each composed of multiple objects, and then combining them, possibly
with additional transparency effects applied during the combination. Groups can
be nested within other groups to form a tree-structured group hierarchy.

The objects contained within a group are treated as a separate transparency stack
called the group stack. The objects in the stack are composited against some initial
backdrop (discussed later), producing a composite color, shape, and opacity for
the group as a whole. The result is an object whose shape is the union of the

Union b s,() 1 1 b–() 1 s–()×[]–=
b s b s×()–+=

fs fj fm fk××=
qs qj qm qk××=
fr Union fb

· fs,()=

αb fb qb×=
αs fs qs×=
αr Union αb αs,()=

qr
αr
fr
-----=

Cr 1
αs
αr
-----–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Cb×
αs
αr
----- 1 αb–() Cs× αb B Cb Cs,()×+[]×+=

Transparency GroupsSECTION 7.3
531

shapes of its constituent objects and whose color and opacity are the result of the
compositing operations. This object is then composited with the group’s back-
drop in the usual way.

In addition to its computed color, shape, and opacity, the group as a whole can
have several further attributes:

• All of the input variables that affect the compositing computation for individu-
al objects can also be applied when compositing the group with its backdrop.
These variables include mask and constant shape, mask and constant opacity,
and blend mode.

• The group can be isolated or non-isolated, determining the initial backdrop
against which its stack is composited.

• The group can be knockout or non-knockout, determining whether the objects
within its stack are composited with one another or only with the group’s back-
drop.

• An isolated group can specify its own blending color space, independent of that
of the group’s backdrop.

• Instead of being composited onto the current page, a group’s results can be used
as a source of shape or opacity values for creating a soft mask (see Section 7.4,
“Soft Masks”).

The next section introduces some notation for dealing with group compositing.
Subsequent sections describe the group compositing formulas for a non-isolated,
non-knockout group and the special properties of isolated and knockout groups.

7.3.1 Notation for Group Compositing Computations

Since we are now dealing with multiple objects at a time, it is useful to have some
notation for distinguishing among them. Accordingly, the variables introduced
earlier are altered to include a second-level subscript denoting an object’s position
in the transparency stack. Thus, for example, stands for the source color of
the ith object in the stack. The subscript 0 represents the initial backdrop; sub-
scripts 1 to n denote the bottommost to topmost objects in an n-element stack. In
addition, the subscripts b and r are dropped from the variables Cb , fb , qb , αb , Cr ,
fr , qr , and αr ; other variables retain their mnemonic subscripts.

Csi

TransparencyCHAPTER 7
532

These conventions permit the compositing formulas to be restated as recurrence
relations among the elements of a stack. For instance, the result of the color com-
positing computation for object i is denoted by Ci (formerly Cr). This computa-
tion takes as one of its inputs the immediate backdrop color, which is the result of
the color compositing computation for object i − 1; this is denoted by Ci − 1
(formerly Cb).

The revised formulas for a simple n-element stack (not including any groups) are,
for i = 1, … , n:

where the variables have the meanings shown in Table 7.6. Compare these
formulas with those shown in Section 7.2.7, “Summary of Basic Compositing
Computations.”

TABLE 7.6 Revised variables for the basic compositing formulas

VARIABLE MEANING

Source shape for object i

Object shape for object i

Mask shape for object i

fsi
fji

fmi
fki

××=

qsi
qji

qmi
qki

××=

αsi
fsi

qsi
×=

αi Union αi 1– αsi
,()=

fi Union fi 1– fsi
,()=

qi
αi
fi
-----=

Ci 1
αsi
αi
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Ci 1–×
αsi
αi
------- 1 αi 1––() Csi

× αi 1– Bi Ci 1– Csi
,()×+[]×+=

fsi

fji

fmi

Transparency GroupsSECTION 7.3
533

7.3.2 Group Structure and Nomenclature

As stated earlier, the elements of a group are treated as a separate transparency
stack, the group stack. These objects are composited against a selected initial
backdrop (to be described) and the resulting color, shape, and opacity are then
treated as if they belonged to a single object. The resulting object is in turn com-
posited with the group’s backdrop in the usual way.

This computation entails interpreting the stack as a tree. For an n-element group
that begins at position i in the stack, it treats the next n objects as an n-element
substack, whose elements are given an independent numbering of 1 to n. These
objects are then removed from the object numbering in the parent (containing)

Constant shape for object i

Result shape after compositing object i

Source opacity for object i

Object opacity for object i

Mask opacity for object i

Constant opacity for object i

Result opacity after compositing object i

Source alpha for object i

Result alpha after compositing object i

Source color for object i

Result color after compositing object i

Blend function for object i

VARIABLE MEANING

fki

fi

qsi

qji

qmi

qki

qi

αsi

αi

Csi

Ci

Bi Ci 1– Csi
,()

TransparencyCHAPTER 7
534

stack and replaced by the group object, numbered i, followed by the remaining
objects to be painted on top of the group, renumbered starting at i + 1. This oper-
ation applies recursively to any nested subgroups. Henceforth, the term element
(denoted Ei) refers to a member of some group; it can be either an individual ob-
ject or a contained subgroup.

From the perspective of a particular element in a nested group, there are three
different backdrops of interest:

• The group backdrop is the result of compositing all elements up to but not in-
cluding the first element in the group. (This definition is altered if the parent
group is a knockout group; see Section 7.3.5, “Knockout Groups.”)

• The initial backdrop is a backdrop that is selected for compositing the group’s
first element. This is either the same as the group backdrop (for a non-isolated
group) or a fully transparent backdrop (for an isolated group).

• The immediate backdrop is the result of compositing all elements in the group
up to but not including the current element.

When all elements in a group have been composited, the result is treated as if the
group were a single object, which is then composited with the group backdrop.
(This operation occurs whether the initial backdrop chosen for compositing the
elements of the group was the group backdrop or a transparent backdrop. There
is a special correction to ensure that the backdrop’s contribution to the overall re-
sult is applied only once.)

7.3.3 Group Compositing Computations

The color and opacity of a group are defined by the group compositing function:

where the variables have the meanings shown in Table 7.7.

TABLE 7.7 Arguments and results of the group compositing function

VARIABLE MEANING

The transparency group: a compound object consisting of all ele-
ments E1, … , En of the group—the n constituent objects’ colors,
shapes, opacities, and blend modes

C f α, ,〈 〉 Composite C0 α0 G, ,()=

G

Transparency GroupsSECTION 7.3
535

Note that the opacity is not given explicitly as an argument or result of this func-
tion. Almost all of the computations use the product of shape and opacity (alpha)
rather than opacity alone; therefore, it is usually convenient to work directly with
shape and alpha rather than shape and opacity. When needed, the opacity can be
computed by dividing the alpha by the associated shape.

The result of applying the group compositing function is then treated as if it were
a single object, which in turn is composited with the group’s backdrop according
to the usual formulas. In those formulas, the color, shape, and alpha (C, f, and α)
calculated by the group compositing function are used, respectively, as the source
color Cs , the object shape fj , and the object alpha αj .

The group compositing formulas for a non-isolated, non-knockout group are de-
fined as follows:

• Initialization:

• For each group element Ei ∈ G (i = 1, … , n):

Color of the group’s backdrop

Computed color of the group, to be used as the source color when
the group is treated as an object

Computed shape of the group, to be used as the object shape when
the group is treated as an object

Alpha of the group’s backdrop

Computed alpha of the group, to be used as the object alpha when
the group is treated as an object

VARIABLE MEANING

C0

C

f

α0

α

fg0
αg0

0.0= =

Csi
fji

αji
, ,〈 〉

Composite Ci 1– αi 1– Ei, ,()

intrinsic color, shape, and shape opacity×() of Ei⎩
⎨
⎧

=
if Ei is a group
otherwise

TransparencyCHAPTER 7
536

• Result:

where the variables have the meanings shown in Table 7.8 (in addition to those in
Table 7.7 above).

For an element Ei that is an elementary object, the color, shape, and alpha
values , , and are intrinsic attributes of the object. For an element that is
a group, the group compositing function is applied recursively to the subgroup
and the resulting C, f, and α values are used for its , , and in the calcula-
tions for the parent group.

TABLE 7.8 Variables used in the group compositing formulas

VARIABLE MEANING

Element i of the group: a compound variable representing the ele-
ment’s color, shape, opacity, and blend mode

Source shape for element Ei

Object shape for element Ei

Mask shape for element Ei

fsi
fji

fmi
fki

××=

αsi
αji

fmi
qmi

×() fki
qki

×()××=

fgi
Union fgi 1–

fsi
,()=

αgi
Union αgi 1–

αsi
,()=

αi Union α0 αgi
,()=

Ci 1
αsi
αi
-------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

Ci 1–×
αsi
αi
------- 1 αi 1––() Csi

× αi 1– Bi Ci 1– Csi
,()×+()×+=

C Cn Cn C0–()
α0
αgn

-------- α0–
⎝ ⎠
⎜ ⎟
⎛ ⎞

×+=

f fgn
=

α αgn
=

Csi
fji

αji

Csi
fji

αji

Ei

fsi

fji

fmi

Transparency GroupsSECTION 7.3
537

Note that the elements of a group are composited onto a backdrop that includes
the group’s initial backdrop. This is done to achieve the correct effects of the
blend modes, most of which are dependent on both the backdrop and source col-
ors being blended. (This feature is what distinguishes non-isolated groups from
isolated groups, discussed in the next section.)

Special attention should be directed to the formulas at the end that compute the
final results, C, f, and α, of the group compositing function. Essentially, these for-
mulas remove the contribution of the group backdrop from the computed results.
This ensures that when the group is subsequently composited with that backdrop

Constant shape for element Ei

Group shape: the accumulated source shapes of group elements E1
to Ei , excluding the initial backdrop

Mask opacity for element Ei

Constant opacity for element Ei

Source alpha for element Ei

Object alpha for element Ei : the product of its object shape and ob-
ject opacity

Group alpha: the accumulated source alphas of group elements E1
to Ei, excluding the initial backdrop

Accumulated alpha after compositing element Ei , including the ini-
tial backdrop

Source color for element Ei

Accumulated color after compositing element Ei , including the ini-
tial backdrop

Blend function for element Ei

VARIABLE MEANING

fki

fgi

qmi

qki

αsi

αji

αgi

αi

Csi

Ci

Bi Ci 1– Csi
,()

TransparencyCHAPTER 7
538

(possibly with additional shape or opacity inputs or a different blend mode), the
backdrop’s contribution is included only once.

For color, the backdrop removal is accomplished by an explicit calculation, whose
effect is essentially the reverse of compositing with the Normal blend mode. The
formula is a simplification of the following formulas, which present this opera-
tion more intuitively:

where φb is the backdrop fraction, the relative contribution of the backdrop color
to the overall color.

For shape and alpha, backdrop removal is accomplished by maintaining two sets
of variables to hold the accumulated values. The group shape and alpha,

 and , accumulate only the shape and alpha of the group elements, exclud-
ing the group backdrop. Their final values become the group results returned by
the group compositing function. The complete alpha, αi , includes the backdrop
contribution as well; its value is used in the color compositing computations.
(There is never any need to compute the corresponding complete shape, fi , that
includes the backdrop contribution.)

As a result of these corrections, the effect of compositing objects as a group is the
same as that of compositing them separately (without grouping) if the following
conditions hold:

• The group is non-isolated and has the same knockout attribute as its parent
group (see Sections 7.3.4, “Isolated Groups,” and 7.3.5, “Knockout Groups”).

• When compositing the group’s results with the group backdrop, the Normal
blend mode is used, and the shape and opacity inputs are always 1.0.

7.3.4 Isolated Groups

An isolated group is one whose elements are composited onto a fully transparent
initial backdrop rather than onto the group’s backdrop. The resulting source

φb

1 αgn
–() α0×

Union α0 αgn
,()

---------------------------------------=

C
Cn φb C0×–

1 φb–-------------------------------=

fgi
αgi

Transparency GroupsSECTION 7.3
539

color, object shape, and object alpha for the group are therefore independent of
the group backdrop. The only interaction with the group backdrop occurs when
the group’s computed color, shape, and alpha are then composited with it.

In particular, the special effects produced by the blend modes of objects within
the group take into account only the intrinsic colors and opacities of those ob-
jects; they are not influenced by the group’s backdrop. For example, applying the
Multiply blend mode to an object in the group produces a darkening effect on
other objects lower in the group’s stack but not on the group’s backdrop.

Plate 17 illustrates this effect for a group consisting of four overlapping circles in a
light gray color (C = M = Y = 0.0; K = 0.15). The circles are painted within the
group with opacity 1.0 in the Multiply blend mode; the group itself is painted
against its backdrop in Normal blend mode. In the top row, the group is isolated
and thus does not interact with the rainbow backdrop. In the bottom row, the
group is non-isolated and composites with the backdrop. The plate also illustrates
the difference between knockout and non-knockout groups (see Section 7.3.5,
“Knockout Groups”).

The effect of an isolated group can be represented by a simple object that directly
specifies a color, shape, and opacity at each point. This flattening of an isolated
group is sometimes useful for importing and exporting fully composited artwork
in applications. Furthermore, a group that specifies an explicit blending color
space must be an isolated group.

For an isolated group, the group compositing formulas are altered by simply add-
ing one statement to the initialization:

That is, the initial backdrop on which the elements of the group are composited is
transparent rather than inherited from the group’s backdrop. This substitution
also makes C0 undefined, but the normal compositing formulas take care of that.
Also, the result computation for C automatically simplifies to C = Cn , since there
is no backdrop contribution to be factored out.

7.3.5 Knockout Groups

In a knockout group, each individual element is composited with the group’s
initial backdrop rather than with the stack of preceding elements in the group.

α0 0.0= if the group is isolated

TransparencyCHAPTER 7
540

When objects have binary shapes (1.0 for inside, 0.0 for outside), each object
overwrites (knocks out) the effects of any earlier elements it overlaps within the
same group. At any given point, only the topmost object enclosing the point con-
tributes to the result color and opacity of the group as a whole.

Plate 17, already discussed above in Section 7.3.4, “Isolated Groups,” illustrates
the difference between knockout and non-knockout groups. In the left column,
the four overlapping circles are defined as a knockout group and therefore do not
composite with each other within the group. In the right column, the circles form
a non-knockout group and thus do composite with each other. In each column,
the upper and lower figures depict an isolated and a non-isolated group, respec-
tively.

This model is similar to the opaque imaging model, except that the “topmost
object wins” rule applies to both the color and the opacity. Knockout groups are
useful in composing a piece of artwork from a collection of overlapping objects,
where the topmost object in any overlap completely obscures those beneath. At
the same time, the topmost object interacts with the group’s initial backdrop in
the usual way, with its opacity and blend mode applied as appropriate.

The concept of knockout is generalized to accommodate fractional shape values.
In that case, the immediate backdrop is only partially knocked out and replaced
by only a fraction of the result of compositing the object with the initial backdrop.

The restated group compositing formulas deal with knockout groups by intro-
ducing a new variable, b, which is a subscript that specifies which previous result
to use as the backdrop in the compositing computations: 0 in a knockout group
or i − 1 in a non-knockout group. When b = i − 1, the formulas simplify to the
ones given in Section 7.3.3, “Group Compositing Computations.”

In the general case, the computation proceeds in two stages:

1. Composite the object with the group’s initial backdrop, disregarding the ob-
ject’s shape and using a source shape value of 1.0 everywhere. This produces
unnormalized temporary alpha and color results, αt and Ct . (For color, this

Transparency GroupsSECTION 7.3
541

computation is essentially the same as the unsimplified color compositing for-
mula given in Section 7.2.5, “Interpretation of Alpha,” but using a source shape
of 1.0.)

2. Compute a weighted average of this result with the object’s immediate back-
drop, using the source shape as the weighting factor. Then normalize the result
color by the result alpha:

This averaging computation is performed for both color and alpha. The formulas
above show this averaging directly. The formulas in Section 7.3.7, “Summary of
Group Compositing Computations,” are slightly altered to use source shape and
alpha rather than source shape and opacity, avoiding the need to compute a
source opacity value explicitly. (Note that Ct there is slightly different from Ct
above: it is premultiplied by .)

The extreme values of the source shape produce the straightforward knockout
effect. That is, a shape value of 1.0 (inside) yields the color and opacity that result
from compositing the object with the initial backdrop. A shape value of 0.0 (out-
side) leaves the previous group results unchanged. The existence of the knockout
feature is the main reason for maintaining a separate shape value rather than only
a single alpha that combines shape and opacity. The separate shape value must be
computed in any group that is subsequently used as an element of a knockout
group.

A knockout group can be isolated or non-isolated; that is, isolated and knockout
are independent attributes. A non-isolated knockout group composites its top-
most enclosing element with the group’s backdrop. An isolated knockout group
composites the element with a transparent backdrop.

αt Union αgb
qsi

,()=

Ct 1 qsi
–() αb Cb×× qsi

1 αb–() Csi
× αb Bi Cb Csi

,()×+()×+=

αgi
1 fsi
–() αgi 1–

× fsi
αt×+=

αi Union α0 αgi
,()=

Ci

1 fsi
–() αi 1– Ci 1–×× fsi

Ct×+

αi
--=

fsi

TransparencyCHAPTER 7
542

Note: When a non-isolated group is nested within a knockout group, the initial
backdrop of the inner group is the same as that of the outer group; it is not the im-
mediate backdrop of the inner group. This behavior, although perhaps unexpected,
is a consequence of the group compositing formulas when b = 0.

7.3.6 Page Group

All of the elements painted directly onto a page—both top-level groups and top-
level objects that are not part of any group—are treated as if they were contained
in a transparency group P, which in turn is composited with a context-dependent
backdrop. This group is called the page group.

The page group can be treated in two distinctly different ways:

• Ordinarily, the page is imposed directly on an output medium, such as paper or
a display screen. The page group is treated as an isolated group, whose results
are then composited with a backdrop color appropriate for the medium. The
backdrop is nominally white, although varying according to the actual proper-
ties of the medium. However, some applications may choose to provide a dif-
ferent backdrop, such as a checkerboard or grid to aid in visualizing the effects
of transparency in the artwork.

• A “page” of a PDF file can be treated as a graphics object to be used as an ele-
ment of a page of some other document. This case arises, for example, when
placing a PDF file containing a piece of artwork produced by Illustrator into a
page layout produced by InDesign®. In this situation, the PDF “page” is not
composited with the media color; instead, it is treated as an ordinary transpar-
ency group, which can be either isolated or non-isolated and is composited
with its backdrop in the normal way.

The remainder of this section pertains only to the first use of the page group,
where it is to be imposed directly on the medium.

The color C of the page at a given point is defined by a simplification of the gen-
eral group compositing formula:

Cg fg αg, ,〈 〉 Composite U· 0 P, ,()=

C 1 αg–() W× αg Cg×+=

Transparency GroupsSECTION 7.3
543

where the variables have the meanings shown in Table 7.9. The first formula com-
putes the color and alpha for the group given a transparent backdrop—in effect,
treating P as an isolated group. The second formula composites the results with
the context-dependent backdrop (using the equivalent of the Normal blend
mode).

TABLE 7.9 Variables used in the page group compositing formulas

If not otherwise specified, the page group’s color space is inherited from the
native color space of the output device—that is, a device color space, such as
DeviceRGB or DeviceCMYK. It is often preferable to specify an explicit color space,
particularly a CIE-based space, to ensure more predictable results of the compos-
iting computations within the page group. In this case, all page-level compositing
is done in the specified color space, with the entire result then converted to the
native color space of the output device before being composited with the context-
dependent backdrop. This case also arises when the page is not actually being
rendered but is converted to a flattened representation in an opaque imaging
model, such as PostScript.

VARIABLE MEANING

The page group, consisting of all elements E1, … , En in the page’s
top-level stack

Computed color of the page group

Computed shape of the page group

Computed alpha of the page group

Computed color of the page

Initial color of the page (nominally white but may vary depending
on the properties of the medium or the needs of the application)

An undefined color (which is not used, since the α0 argument of
Composite is 0)

P

Cg

fg

αg

C

W

U

TransparencyCHAPTER 7
544

7.3.7 Summary of Group Compositing Computations

The following restatement of the group compositing formulas also takes isolated
groups and knockout groups into account. See Tables 7.7 and 7.8 on pages 534
and 536 for the meanings of the variables.

• Initialization:

• For each group element Ei ∈ G (i = 1, … , n):

C f α, ,〈 〉 Composite C0 α0 G, ,()=

fg0
αg0

0= =

α0 0 if the group is isolated=

b
0

i 1–⎩
⎨
⎧

=
if the group is knockout
otherwise

Csi
fji

αji
, ,〈 〉

Composite Cb αb Ei, ,()

intrinsic color, shape, and shape opacity×() of Ei⎩
⎨
⎧

=
if Ei is a group
otherwise

fsi
fji

fmi
fki

××=

αsi
αji

fmi
qmi

×() fki
qki

×()××=

fgi
Union fgi 1–

fsi
,()=

αgi
1 fsi
–() αgi 1–

× fsi
αsi
–() αgb

× αsi
+ +=

αi Union α0 αgi
,()=

Ct fsi
αsi
–() αb Cb×× αsi

1 αb–() Csi
× αb Bi Cb Csi

,()×+()×+=

Ci

1 fsi
–() αi 1– Ci 1–×× Ct+

αi
--=

Soft MasksSECTION 7.4
545

• Result:

Note: Once again, keep in mind that these formulas are in their most general form.
They can be significantly simplified when some sources of shape and opacity are not
present or when shape and opacity need not be maintained separately. Furthermore,
in each specific type of group (isolated or not, knockout or not), some terms of these
formulas cancel or drop out. An efficient implementation should use the simplified
derived formulas.

7.4 Soft Masks

As stated in earlier sections, the shape and opacity values used in compositing an
object can include components called the mask shape (fm) and mask opacity
(qm), which originate from a source independent of the object. Such an indepen-
dent source, called a soft mask, defines values that can vary across different points
on the page. The word soft emphasizes that the mask value at a given point is not
limited to just 0.0 or 1.0 but can take on intermediate fractional values as well.
Such a mask is typically the only means of providing position-dependent opacity
values, since elementary objects do not have intrinsic opacity of their own.

A mask used as a source of shape values is also called a soft clip, by analogy with
the “hard” clipping path of the opaque imaging model (see Section 4.4.3, “Clip-
ping Path Operators”). The soft clip is a generalization of the hard clip: a hard clip
can be represented as a soft clip having shape values of 1.0 inside and 0.0 outside
the clipping path. Everywhere inside a hard clipping path, the source object’s col-
or replaces the backdrop; everywhere outside, the backdrop shows through un-
changed. With a soft clip, by contrast, a gradual transition can be created between
an object and its backdrop, as in a vignette.

A mask can be defined by creating a transparency group and painting objects into
it, thereby defining color, shape, and opacity in the usual way. The resulting group
can then be used to derive the mask in either of two ways, as described in the fol-
lowing sections.

C Cn Cn C0–()
α0
αgn

-------- α0–
⎝ ⎠
⎜ ⎟
⎛ ⎞

×+=

f fgn
=

α αgn
=

TransparencyCHAPTER 7
546

7.4.1 Deriving a Soft Mask from Group Alpha

In the first method of defining a soft mask, the color, shape, and opacity of a
transparency group G are first computed by the usual formula

where C0 and α0 represent an arbitrary backdrop whose value does not contrib-
ute to the eventual result. The C, f, and α results are the group’s color, shape, and
alpha, respectively, with the backdrop factored out.

The mask value at each point is then derived from the alpha of the group. Since
the group’s color is not used in this case, there is no need to compute it. The alpha
value is passed through a separately specified transfer function, allowing the
masking effect to be customized.

7.4.2 Deriving a Soft Mask from Group Luminosity

The second method of deriving a soft mask from a transparency group begins by
compositing the group with a fully opaque backdrop of some selected color. The
mask value at any given point is then defined to be the luminosity of the resulting
color. This allows the mask to be derived from the shape and color of an arbitrary
piece of artwork drawn with ordinary painting operators.

The color C used to create the mask from a group G is defined by

where C0 is the selected backdrop color.

C f α, ,〈 〉 Composite C0 α0 G, ,()=

Cg fg αg, ,〈 〉 Composite C0
· 1 G, ,()=

C 1 αg–() C0× αg Cg×+=

Specifying Transparency in PDFSECTION 7.5
547

G can be any kind of group—isolated or not, knockout or not—producing vari-
ous effects on the C result in each case. The color C is then converted to luminos-
ity in one of the following ways, depending on the group’s color space:

• For CIE-based spaces, convert to the CIE 1931 XYZ space and use the Y com-
ponent as the luminosity. This produces a colorimetrically correct luminosity.
In the case of a PDF CalRGB space, the formula is

using components of the Gamma and Matrix entries of the color space dictio-
nary (see Table 4.14 on page 248). An analogous computation applies to other
CIE-based color spaces.

• For device color spaces, convert the color to DeviceGray by device-dependent
means and use the resulting gray value as the luminosity, with no compensa-
tion for gamma or other color calibration. This method makes no pretense of
colorimetric correctness; it merely provides a numerically simple means to pro-
duce continuous-tone mask values. Here are some recommended formulas for
converting from DeviceRGB and DeviceCMYK, respectively:

Following this conversion, the result is passed through a separately specified
transfer function, allowing the masking effect to be customized.

The backdrop color most likely to be useful is black, which causes any areas out-
side the group’s shape to have zero luminosity values in the resulting mask. If the
contents of the group are viewed as a positive mask, this produces the results that
would be expected with respect to points outside the shape.

7.5 Specifying Transparency in PDF

The preceding sections have presented the transparent imaging model at an
abstract level, with little mention of its representation in PDF. This section
describes the facilities available for specifying transparency in PDF 1.4.

Y YA A
GR× YB B

GG× YC C
GB×+ +=

Y 0.30 R× 0.59 G× 0.11 B×+ +=

Y 0.30 1 C–()× 1 K–()×=
 0.59 1 M–()× 1 K–()×+
 0.11 1 Y–()× 1 K–()×+

TransparencyCHAPTER 7
548

7.5.1 Specifying Source and Backdrop Colors

Single graphics objects, as defined in Section 4.1, “Graphics Objects,” are treated
as elementary objects for transparency compositing purposes (subject to special
treatment for text objects, as described in Section 5.2.7, “Text Knockout”). That
is, all of a given object is considered to be one element of a transparency stack.
Portions of an object are not composited with one another, even if they are de-
scribed in a way that would seem to cause overlaps (such as a self-intersecting
path, combined fill and stroke of a path, or a shading pattern containing an
overlap or fold-over). An object’s source color Cs , used in the color compositing
formula, is specified in the same way as in the opaque imaging model: by means
of the current color in the graphics state or the source samples in an image. The
backdrop color Cb is the result of previous painting operations.

7.5.2 Specifying Blending Color Space and Blend Mode

The blending color space is an attribute of the transparency group within which
an object is painted; its specification is described in Section 7.5.5, “Transparency
Group XObjects.” The page as a whole is also treated as a group, the page group
(see Section 7.3.6, “Page Group”), with a color space attribute of its own. If not
otherwise specified, the page group’s color space is inherited from the native color
space of the output device.

The blend mode B (Cb , Cs) is determined by the current blend mode parameter in
the graphics state (see Section 4.3, “Graphics State”), which is specified by the BM
entry in a graphics state parameter dictionary (Section 4.3.4, “Graphics State Pa-
rameter Dictionaries”). Its value is either a name object, designating one of the
standard blend modes listed in Tables 7.2 and 7.3 on pages 520 and 524, or an ar-
ray of such names. In the latter case, the application should use the first blend
mode in the array that it recognizes (or Normal if it recognizes none of them).
Therefore, new blend modes can be introduced in the future, and applications
that do not recognize them have reasonable fallback behavior. (See implementa-
tion note 72 in Appendix H.)

Note: The current blend mode always applies to process color components but only
sometimes to spot colorants; see “Blend Modes and Overprinting” on page 566 for
details.

Specifying Transparency in PDFSECTION 7.5
549

7.5.3 Specifying Shape and Opacity

As discussed under “Source Shape and Opacity” on page 526, the shape (f) and
opacity (q) values used in the compositing computation can come from a variety
of sources:

• The intrinsic shape (fj) and opacity (qj) of the object being composited

• A separate shape (fm) or opacity (qm) mask independent of the object itself

• A scalar shape (fk) or opacity (qk) constant to be added at every point

The following sections describe how each of these shape and opacity sources are
specified in PDF.

Object Shape and Opacity

The shape value fj of an object painted with PDF painting operators is defined as
follows:

• For objects defined by a path or a glyph and painted in a uniform color with a
path-painting or text-showing operator (Sections 4.4.2, “Path-Painting Opera-
tors,” and 5.3.2, “Text-Showing Operators”), the shape is always 1.0 inside and
0.0 outside the path.

• For images (Section 4.8, “Images”), the shape is nominally 1.0 inside the image
rectangle and 0.0 outside it. This can be further modified by an explicit or color
key mask (“Explicit Masking” on page 351 and “Color Key Masking” on page
351).

• For image masks (“Stencil Masking” on page 350), the shape is 1.0 for painted
areas and 0.0 for masked areas.

• For objects painted with a tiling pattern (Section 4.6.2, “Tiling Patterns”) or a
shading pattern (Section 4.6.3, “Shading Patterns), the shape is further con-
strained by the objects that define the pattern (see Section 7.5.6, “Patterns and
Transparency”).

• For objects painted with the sh operator (“Shading Operator” on page 303), the
shape is 1.0 inside and 0.0 outside the bounds of the shading’s painting
geometry, disregarding the Background entry in the shading dictionary (see
“Shading Dictionaries” on page 304).

TransparencyCHAPTER 7
550

All elementary objects have an intrinsic opacity qj of 1.0 everywhere. Any desired
opacity less than 1.0 must be applied by means of an opacity mask or constant, as
described in the following sections.

Mask Shape and Opacity

At most one mask input—called a soft mask, or alpha mask—can be provided to
any PDF compositing operation. The mask can serve as a source of either shape
(fm) or opacity (qm) values, depending on the setting of the alpha source parame-
ter in the graphics state (see Section 4.3, “Graphics State”). This is a boolean flag,
set with the AIS (“alpha is shape”) entry in a graphics state parameter dictionary
(Section 4.3.4, “Graphics State Parameter Dictionaries”): true if the soft mask
contains shape values, false for opacity.

The soft mask can be specified in one of the following ways:

• The current soft mask parameter in the graphics state, set with the SMask entry
in a graphics state parameter dictionary, contains a soft-mask dictionary (see
“Soft-Mask Dictionaries” on page 552) defining the contents of the mask. The
name None may be specified in place of a soft-mask dictionary, denoting the
absence of a soft mask. In this case, the mask shape or opacity is implicitly 1.0
everywhere. (See implementation note 72 in Appendix H.)

• An image XObject can contain its own soft-mask image in the form of a subsid-
iary image XObject in the SMask entry of the image dictionary (see Section
4.8.4, “Image Dictionaries”). This mask, if present, overrides any explicit or col-
or key mask specified by the image dictionary’s Mask entry. Either form of
mask in the image dictionary overrides the current soft mask in the graphics
state. (See implementation note 73 in Appendix H.)

• An image XObject that has a JPXDecode filter as its data source can specify an
SMaskInData entry, indicating that the soft mask is embedded in the data
stream (see Section 3.3.8, “JPXDecode Filter”).

Note: The current soft mask in the graphics state is intended to be used to clip only a
single object at a time (either an elementary object or a transparency group). If a
soft mask is applied when painting two or more overlapping objects, the effect of the
mask multiplies with itself in the area of overlap (except in a knockout group), pro-
ducing a result shape or opacity that is probably not what is intended. To apply a
soft mask to multiple objects, it is usually best to define the objects as a transparency

Specifying Transparency in PDFSECTION 7.5
551

group and apply the mask to the group as a whole. These considerations also apply
to the current alpha constant (see the next section).

Constant Shape and Opacity

The current alpha constant parameter in the graphics state (see Section 4.3,
“Graphics State”) specifies two scalar values—one for strokes and one for all
other painting operations—to be used for the constant shape (fk) or constant
opacity (qk) component in the color compositing formulas. This parameter can
be thought of as analogous to the current color used when painting elementary
objects. (Note, however, that the nonstroking alpha constant is also applied when
painting a transparency group’s results onto its backdrop; see also implementa-
tion note 72 in Appendix H.)

The stroking and nonstroking alpha constants are set, respectively, by the CA and
ca entries in a graphics state parameter dictionary (see Section 4.3.4, “Graphics
State Parameter Dictionaries”). As described above for the soft mask, the alpha
source flag in the graphics state determines whether the alpha constants are inter-
preted as shape values (true) or opacity values (false).

Note: The note at the end of “Mask Shape and Opacity,” above, applies to the cur-
rent alpha constant parameter as well as the current soft mask.

7.5.4 Specifying Soft Masks

As noted under “Mask Shape and Opacity” on page 550, soft masks for use in
compositing computations can be specified in one of the following ways:

• As a soft-mask dictionary in the current soft mask parameter of the graphics
state; see “Soft-Mask Dictionaries,” below, for more details.

• As a soft-mask image associated with a sampled image; see “Soft-Mask Images”
on page 553 for more details.

• (In PDF 1.5) as a mask channel embedded in JPEG2000 encoded data; see Sec-
tion 3.3.8, “JPXDecode Filter,” and the SMaskInData entry of Table 4.39 for
more details.

TransparencyCHAPTER 7
552

Soft-Mask Dictionaries

The most common way of defining a soft mask is with a soft-mask dictionary
specified as the current soft mask in the graphics state (see Section 4.3, “Graphics
State”). Table 7.10 shows the contents of this type of dictionary. (See implementa-
tion note 72 in Appendix H.)

The mask values are derived from those of a transparency group, using one of the
two methods described in Sections 7.4.1, “Deriving a Soft Mask from Group
Alpha,” and 7.4.2, “Deriving a Soft Mask from Group Luminosity.” The group is
defined by a transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”) designated by the G entry in the soft-mask dictionary. The S
(subtype) entry specifies which of the two derivation methods to use:

• If the subtype is Alpha, the transparency group XObject G is evaluated to com-
pute a group alpha only. The colors of the constituent objects are ignored and
the color compositing computations are not performed. The transfer function
TR is then applied to the computed group alpha to produce the mask values.
Outside the bounding box of the transparency group, the mask value is the re-
sult of applying the transfer function to the input value 0.0.

• If the subtype is Luminosity, the transparency group XObject G is composited
with a fully opaque backdrop whose color is everywhere defined by the soft-
mask dictionary’s BC entry. The computed result color is then converted to a
single-component luminosity value, and the transfer function TR is applied to
this luminosity to produce the mask values. Outside the transparency group’s
bounding box, the mask value is derived by transforming the BC color to lumi-
nosity and applying the transfer function to the result.

The mask’s coordinate system is defined by concatenating the transformation
matrix specified by the Matrix entry in the transparency group’s form dictio-
nary (see Section 4.9.1, “Form Dictionaries”) with the current transformation
matrix at the moment the soft mask is established in the graphics state with the
gs operator.

Note: In a transparency group XObject that defines a soft mask, spot color compo-
nents are never available, even if they are available in the group or page on which
the soft mask is used. If the group XObject’s content stream specifies a Separation or
DeviceN color space that uses spot color components, the alternate color space is
substituted (see “Separation Color Spaces” on page 264 and “DeviceN Color Spaces”
on page 268).

Specifying Transparency in PDFSECTION 7.5
553

TABLE 7.10 Entries in a soft-mask dictionary

Soft-Mask Images

The second way to define a soft mask is by associating a soft-mask image with an
image XObject. This is a subsidiary image XObject specified in the SMask entry

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Mask for a soft-mask dictionary.

S name (Required) A subtype specifying the method to be used in deriving the mask
values from the transparency group specified by the G entry:

Alpha Use the group’s computed alpha, disregarding its color (see
Section 7.4.1, “Deriving a Soft Mask from Group Alpha”).

Luminosity Convert the group’s computed color to a single-component
luminosity value (see Section 7.4.2, “Deriving a Soft Mask
from Group Luminosity”).

G stream (Required) A transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”) to be used as the source of alpha or color values for deriv-
ing the mask. If the subtype S is Luminosity, the group attributes dictionary
must contain a CS entry defining the color space in which the compositing
computation is to be performed.

BC array (Optional) An array of component values specifying the color to be used as
the backdrop against which to composite the transparency group XObject G.
This entry is consulted only if the subtype S is Luminosity. The array consists
of n numbers, where n is the number of components in the color space speci-
fied by the CS entry in the group attributes dictionary (see Section 7.5.5,
“Transparency Group XObjects”). Default value: the color space’s initial
value, representing black.

TR function or name (Optional) A function object (see Section 3.9, “Functions”) specifying the
transfer function to be used in deriving the mask values. The function ac-
cepts one input, the computed group alpha or luminosity (depending on the
value of the subtype S), and returns one output, the resulting mask value.
Both the input and output must be in the range 0.0 to 1.0; if the computed
output falls outside this range, it is forced to the nearest valid value. The
name Identity may be specified in place of a function object to designate the
identity function. Default value: Identity.

TransparencyCHAPTER 7
554

of the parent XObject’s image dictionary (see Section 4.8.4, “Image Dictionaries”;
see also implementation note 73 in Appendix H). Entries in the subsidiary image
dictionary for such a soft-mask image have the same format and meaning as in
that of an ordinary image XObject (as described in Table 4.39 on page 340), sub-
ject to the restrictions listed in Table 7.11. This type of image dictionary can also
optionally contain an additional entry, Matte, discussed below.

When an image is accompanied by a soft-mask image, it is sometimes advanta-
geous for the image data to be preblended with some background color, called the
matte color. Each image sample represents a weighted average of the original
source color and the matte color, using the corresponding mask sample as the
weighting factor. (This is a generalization of a technique commonly called pre-
multiplied alpha.)

If the image data is preblended, the matte color must be specified by a Matte
entry in the soft-mask image dictionary (see Table 7.12). The preblending com-
putation, performed independently for each component, is

where

c′ is the value to be provided in the image source data

c is the original image component value

m is the matte color component value

α is the corresponding mask sample

Note: This computation uses actual color component values, with the effects of the
Filter and Decode transformations already performed. The computation is the same
whether the color space is additive or subtractive.

TABLE 7.11 Restrictions on the entries in a soft-mask image dictionary

KEY RESTRICTION

Type If present, must be XObject.

Subtype Must be Image.

c' m α c m–()×+=

Specifying Transparency in PDFSECTION 7.5
555

TABLE 7.12 Additional entry in a soft-mask image dictionary

Width If a Matte entry (see Table 7.12, below) is present, must be the
same as the Width value of the parent image; otherwise inde-
pendent of it. Both images are mapped to the unit square in
user space (as are all images), regardless of whether the sam-
ples coincide individually.

Height Same considerations as for Width.

ColorSpace Required; must be DeviceGray.

BitsPerComponent Required.

Intent Ignored.

ImageMask Must be false or absent.

Mask Must be absent.

SMask Must be absent.

Decode Default value: [0 1].

Interpolate Optional.

Alternates Ignored.

Name Ignored.

StructParent Ignored.

ID Ignored.

OPI Ignored.

KEY TYPE VALUE

Matte array (Optional; PDF 1.4) An array of component values specifying the matte color with
which the image data in the parent image has been preblended. The array consists of n
numbers, where n is the number of components in the color space specified by the
ColorSpace entry in the parent image’s image dictionary; the numbers must be valid
color components in that color space. If this entry is absent, the image data is not
preblended.

KEY RESTRICTION

TransparencyCHAPTER 7
556

When preblended image data is used in transparency blending and compositing
computations, the results are the same as if the original, unblended image data
were used and no matte color were specified. In particular, the inputs to the blend
function are the original color values. To derive c from c′, the application may
sometimes need to invert the formula shown above. If the resulting c value lies
outside the range of color component values for the image color space, the results
are unpredictable.

The preblending computation is done in the color space specified by the parent
image’s ColorSpace entry. This is independent of the group color space into which
the image may be painted. If a color conversion is required, inversion of the preb-
lending must precede the color conversion. If the image color space is an Indexed
space (see “Indexed Color Spaces” on page 262), the color values in the color table
(not the index values themselves) are preblended.

7.5.5 Transparency Group XObjects

A transparency group is represented in PDF as a special type of group XObject
(see Section 4.9.2, “Group XObjects”) called a transparency group XObject. A
group XObject is in turn a type of form XObject, distinguished by the presence of
a Group entry in its form dictionary (see Section 4.9.1, “Form Dictionaries”). The
value of this entry is a subsidiary group attributes dictionary defining the proper-
ties of the group. The format and meaning of the dictionary’s contents are deter-
mined by its group subtype, which is specified by the dictionary’s S entry. The
entries for a transparency group (subtype Transparency) are shown in Table 7.13.

Note: A page object (see “Page Objects” on page 144) may also have a Group entry,
whose value is a group attributes dictionary specifying the attributes of the page
group (see Section 7.3.6, “Page Group”). Some of the dictionary entries are inter-
preted slightly differently for a page group than for a transparency group XObject;
see their descriptions in the table for details.

TABLE 7.13 Additional entries specific to a transparency group attributes dictionary

KEY TYPE VALUE

S name (Required) The group subtype, which identifies the type of group whose at-
tributes this dictionary describes; must be Transparency for a transparency
group.

Specifying Transparency in PDFSECTION 7.5
557

CS name or array (Sometimes required, as discussed below) The group color space, which is used
for the following purposes:

• As the color space into which colors are converted when painted into the
group

• As the blending color space in which objects are composited within the group
(see Section 7.2.3, “Blending Color Space”)

• As the color space of the group as a whole when it in turn is painted as an ob-
ject onto its backdrop

The group color space may be any device or CIE-based color space that treats its
components as independent additive or subtractive values in the range 0.0 to 1.0,
subject to the restrictions described in Section 7.2.3, “Blending Color Space.”
These restrictions exclude Lab and lightness-chromaticity ICCBased color spac-
es, as well as the special color spaces Pattern, Indexed, Separation, and DeviceN.
Device color spaces are subject to remapping according to the DefaultGray,
DefaultRGB, and DefaultCMYK entries in the ColorSpace subdictionary of the
current resource dictionary (see “Default Color Spaces” on page 257).

Ordinarily, the CS entry is allowed only for isolated transparency groups (those
for which I, below, is true), and even then it is optional. However, this entry is re-
quired in the group attributes dictionary for any transparency group XObject
that has no parent group or page from which to inherit—in particular, one that
is the value of the G entry in a soft-mask dictionary of subtype Luminosity (see
“Soft-Mask Dictionaries” on page 552).

In addition, it is always permissible to specify CS in the group attributes dictio-
nary associated with a page object, even if I is false or absent. In the normal case
in which the page is imposed directly on the output medium, the page group is
effectively isolated regardless of the I value, and the specified CS value is there-
fore honored. But if the page is in turn used as an element of some other page
and if the group is non-isolated, CS is ignored and the color space is inherited
from the actual backdrop with which the page is composited (see Section 7.3.6,
“Page Group”).

Default value: the color space of the parent group or page into which this trans-
parency group is painted. (The parent’s color space in turn can be either explicit-
ly specified or inherited.)

Note: For a transparency group XObject used as an annotation appearance (see
Section 8.4.4, “Appearance Streams”), the default color space is inherited from the
page on which the annotation appears.

KEY TYPE VALUE

TransparencyCHAPTER 7
558

The transparency group XObject’s content stream defines the graphics objects be-
longing to the group. Invoking the Do operator on the XObject executes its con-
tent stream and composites the resulting group color, shape, and opacity into the
group’s parent group or page as if they had come from an elementary graphics ob-
ject. When applied to a transparency group XObject, Do performs the following
actions in addition to the normal ones for a form XObject (as described in Sec-
tion 4.9, “Form XObjects”):

• If the transparency group is non-isolated (the value of the I entry in its group
attributes dictionary is false), its initial backdrop, within the bounding box
specified by the XObject’s BBox entry, is defined to be the accumulated color
and alpha of the parent group or page—that is, the result of everything that has
been painted in the parent up to that point. (However, if the parent is a knock-
out group, the initial backdrop is the same as that of the parent.) If the group is
isolated (I is true), its initial backdrop is defined to be transparent.

• Before execution of the transparency group XObject’s content stream, the cur-
rent blend mode in the graphics state is initialized to Normal, the current strok-
ing and nonstroking alpha constants to 1.0, and the current soft mask to None.

Note: The purpose of initializing these graphics state parameters at the beginning
of execution is to ensure that they are not applied twice: once when member ob-
jects are painted into the group and again when the group is painted into the par-
ent group or page.

I boolean (Optional) A flag specifying whether the transparency group is isolated (see Sec-
tion 7.3.4, “Isolated Groups”). If this flag is true, objects within the group are
composited against a fully transparent initial backdrop; if false, they are com-
posited against the group’s backdrop. Default value: false.

In the group attributes dictionary for a page, the interpretation of this entry is
slightly altered. In the normal case in which the page is imposed directly on the
output medium, the page group is effectively isolated and the specified I value is
ignored. But if the page is in turn used as an element of some other page, it is
treated as if it were a transparency group XObject; the I value is interpreted in
the normal way to determine whether the page group is isolated.

K boolean (Optional) A flag specifying whether the transparency group is a knockout
group (see Section 7.3.5, “Knockout Groups”). If this flag is false, later objects
within the group are composited with earlier ones with which they overlap; if
true, they are composited with the group’s initial backdrop and overwrite
(“knock out”) any earlier overlapping objects. Default value: false.

KEY TYPE VALUE

Specifying Transparency in PDFSECTION 7.5
559

• Objects painted by operators in the transparency group XObject’s content
stream are composited into the group according to the rules described in Sec-
tion 7.2.2, “Basic Compositing Formula.” The knockout flag (K) in the group at-
tributes dictionary and the transparency-related parameters of the graphics
state contribute to this computation.

• If a group color space (CS) is specified in the group attributes dictionary, all
painting operators convert source colors to that color space before compositing
objects into the group, and the resulting color at each point is interpreted in
that color space. If no group color space is specified, the prevailing color space
is dynamically inherited from the parent group or page. (If not otherwise spec-
ified, the page group’s color space is inherited from the native color space of the
output device.)

• After execution of the transparency group XObject’s content stream, the graph-
ics state reverts to its former state before the invocation of the Do operator (as it
does for any form XObject). The group’s shape—the union of all objects paint-
ed into the group, clipped by the group XObject’s bounding box—is then paint-
ed into the parent group or page, using the group’s accumulated color and
opacity at each point.

Note: If the Do operator is invoked more than once for a given transparency group
XObject, each invocation is treated as a separate transparency group. That is, the
result is as if the group were independently composited with the backdrop on each
invocation. Applications that perform caching of rendered form XObjects must take
this requirement into account.

The actions described above occur only for a transparency group XObject—a
form XObject having a Group entry that designates a group attributes subdic-
tionary whose group subtype (S) is Transparency. An ordinary form XObject—
one having no Group entry—is not subject to any grouping behavior for transpar-
ency purposes. That is, the graphics objects it contains are composited individu-
ally, just as if they were painted directly into the parent group or page.

7.5.6 Patterns and Transparency

In the transparent imaging model, the graphics objects making up the pattern cell
of a tiling pattern (see Section 4.6.2, “Tiling Patterns”) can include transparent
objects and transparency groups. Transparent compositing can occur both within
the pattern cell and between it and the backdrop wherever the pattern is painted.

TransparencyCHAPTER 7
560

Similarly, a shading pattern (Section 4.6.3, “Shading Patterns”) composites with
its backdrop as if the shading dictionary were applied with the sh operator.

In both cases, the pattern definition is treated as if it were implicitly enclosed in a
non-isolated transparency group: a non-knockout group for tiling patterns, a
knockout group for shading patterns. The definition does not inherit the current
values of the graphics state parameters at the time it is evaluated; these take effect
only when the resulting pattern is later used to paint an object. Instead, the
graphics state parameters are initialized as follows:

• As always for transparency groups, those parameters related to transparency
(blend mode, soft mask, and alpha constant) are initialized to their standard
default values.

• All other parameters are initialized to their values at the beginning of the con-
tent stream (such as a page or a form XObject) in which the pattern is defined
as a resource. This is the normal behavior for all patterns, in both the opaque
and transparent imaging models.

• In the case of a shading pattern, the parameter values may be augmented by the
contents of the ExtGState entry in the pattern dictionary (see Section 4.6.3,
“Shading Patterns”). Only those parameters that affect the sh operator, such as
the current transformation matrix and rendering intent, are used. Parameters
that affect path-painting operators are not used, since the execution of sh does
not entail painting a path.

• If the shading dictionary has a Background entry, the pattern’s implicit trans-
parency group is filled with the specified background color before the sh oper-
ator is invoked.

When the pattern is later used to paint a graphics object, the color, shape, and
opacity values resulting from the evaluation of the pattern definition are used as
the object’s source color (Cs), object shape (fj), and object opacity (qj) in the
transparency compositing formulas. This painting operation is subject to the val-
ues of the graphics state parameters in effect at the time, just as in painting an ob-
ject with a constant color.

Unlike the opaque imaging model, in which the pattern cell of a tiling pattern can
be evaluated once and then replicated indefinitely to fill the painted area, the
effect in the general transparent case is as if the pattern definition were reexecut-
ed independently for each tile, taking into account the color of the backdrop at
each point. However, in the common case in which the pattern consists entirely

Color Space and Rendering IssuesSECTION 7.6
561

of objects painted with the Normal blend mode, this behavior can be optimized
by treating the pattern cell as if it were an isolated group. Since in this case the
results depend only on the color, shape, and opacity of the pattern cell and not on
those of the backdrop, the pattern cell can be evaluated once and then replicated,
just as in opaque painting.

Note: In a raster-based implementation of tiling, it is important that all tiles togeth-
er be treated as a single transparency group. This avoids artifacts due to multiple
marking of pixels along the boundaries between adjacent tiles.

The foregoing discussion applies to both colored (PaintType 1) and uncolored
(PaintType 2) tiling patterns. In the latter case, the restriction that an uncolored
pattern’s definition may not specify colors extends as well to any transparency
group that the definition may include. There are no corresponding restrictions,
however, on specifying transparency-related parameters in the graphics state.

7.6 Color Space and Rendering Issues

This section describes the interactions between transparency and other aspects of
color specification and rendering in the Adobe imaging model.

7.6.1 Color Spaces for Transparency Groups

As discussed in Section 7.5.5, “Transparency Group XObjects,” a transparency
group can either have an explicitly declared color space of its own or inherit that
of its parent group. In either case, the colors of source objects within the group
are converted to the group’s color space, if necessary, and all blending and com-
positing computations are done in that space (see Section 7.2.3, “Blending Color
Space”). The resulting colors are then interpreted in that color space when the
group is subsequently composited with its backdrop.

Under this arrangement, it is envisioned that all or most of a given piece of art-
work will be created in a single color space—most likely, the working color space
of the application generating it. The use of multiple color spaces typically will
arise only when assembling independently produced artwork onto a page. After
all the artwork has been placed on the page, the conversion from the group’s color
space to the page’s device color space will be done as the last step, without any
further transparency compositing. The transparent imaging model does not re-
quire that this convention be followed, however; the reason for adopting it is to

TransparencyCHAPTER 7
562

avoid the loss of color information and the introduction of errors resulting from
unnecessary color space conversions.

Only an isolated group may have an explicitly declared color space of its own.
Non-isolated groups must inherit their color space from the parent group (sub-
ject to special treatment for the page group, as described in Section 7.3.6, “Page
Group”). This is because the use of an explicit color space in a non-isolated group
would require converting colors from the backdrop’s color space to that of the
group in order to perform the compositing computations. Such conversion may
not be possible (since some color conversions can be performed only in one
direction), and even if possible, it would entail an excessive number of color con-
versions.

The choice of a group color space has significant effects on the results that are
produced:

• As noted in Section 7.2.3, “Blending Color Space,” the results of compositing in
a device color space is device-dependent. For the compositing computations to
work in a device-independent way, the group’s color space must be CIE-based.

• A consequence of choosing a CIE-based group color space is that only CIE-
based spaces can be used to specify the colors of objects within the group. This
is because conversion from device to CIE-based colors is not possible in gener-
al; the defined conversions work only in the opposite direction. See below for
further discussion.

• The compositing computations and blend functions generally compute linear
combinations of color component values, on the assumption that the compo-
nent values themselves are linear. For this reason, it is usually best to choose a
group color space that has a linear gamma function. If a nonlinear color space
is chosen, the results are still well-defined, but the appearance may not match
the user’s expectations. Note, in particular, that the CIE-based sRGB color
space (see page 256) is nonlinear and hence may be unsuitable for use as a
group color space.

Note: Implementations of the transparent imaging model are advised to use as
much precision as possible in representing colors during compositing computations
and in the accumulated group results. To minimize the accumulation of roundoff er-
rors and avoid additional errors arising from the use of linear group color spaces,
more precision is needed for intermediate results than is typically used to represent
either the original source data or the final rasterized results.

Color Space and Rendering IssuesSECTION 7.6
563

If a group’s color space—whether specified explicitly or inherited from the parent
group—is CIE-based, any use of device color spaces for painting objects is subject
to special treatment. Device colors cannot be painted directly into such a group,
since there is no generally defined method for converting them to the CIE-based
color space. This problem arises in the following cases:

• DeviceGray, DeviceRGB, and DeviceCMYK color spaces, unless remapped to de-
fault CIE-based color spaces (see “Default Color Spaces” on page 257)

• Operators (such as rg) that specify a device color space implicitly, unless that
space is remapped

• Special color spaces whose base or underlying space is a device color space, un-
less that space is remapped

It is recommended that the default color space remapping mechanism always be
employed when defining a transparency group whose color space is CIE-based. If a
device color is specified and is not remapped, it is converted to the CIE-based color
space in an implementation-dependent fashion, producing unpredictable results.

Note: The foregoing restrictions do not apply if the group’s color space is implicitly
converted to DeviceCMYK, as discussed in “Implicit Conversion of CIE-Based Color
Spaces” on page 259.

7.6.2 Spot Colors and Transparency

The foregoing discussion of color spaces has been concerned with process colors—
those produced by combinations of an output device’s process colorants. Process
colors may be specified directly in the device’s native color space (such as Device-
CMYK), or they may be produced by conversion from some other color space,
such as a CIE-based (CalRGB or ICCBased) space. Whatever means is used to
specify them, process colors are subject to conversion to and from the group’s col-
or space.

A spot color is an additional color component, independent of those used to pro-
duce process colors. It may represent either an additional separation to be
produced or an additional colorant to be applied to the composite page (see “Sep-
aration Color Spaces” on page 264 and “DeviceN Color Spaces” on page 268).
The color component value, or tint, for a spot color specifies the concentration of
the corresponding spot colorant. Tints are conventionally represented as subtrac-
tive, rather than additive, values.

TransparencyCHAPTER 7
564

Spot colors are inherently device-dependent and are not always available. In the
opaque imaging model, each use of a spot color component in a Separation or
DeviceN color space is accompanied by an alternate color space and a tint transfor-
mation function for mapping tint values into that space. This enables the color to
be approximated with process colorants when the corresponding spot colorant is
not available on the device.

Spot colors can be accommodated straightforwardly in the transparent imaging
model (except for issues relating to overprinting, discussed in Section 7.6.3,
“Overprinting and Transparency”). When an object is painted transparently with
a spot color component that is available in the output device, that color is com-
posited with the corresponding spot color component of the backdrop, indepen-
dently of the compositing that is performed for process colors. A spot color
retains its own identity; it is not subject to conversion to or from the color space
of the enclosing transparency group or page. If the object is an element of a trans-
parency group, one of two things can happen:

• The group maintains a separate color value for each spot color component,
independently of the group’s color space. In effect, the spot color passes directly
through the group hierarchy to the device, with no color conversions per-
formed. However, it is still subject to blending and compositing with other ob-
jects that use the same spot color.

• The spot color is converted to its alternate color space. The resulting color is
then subject to the usual compositing rules for process colors. In particular,
spot colors are never available in a transparency group XObject that is used to
define a soft mask; the alternate color space is always substituted in that case.

Only a single shape value and opacity value are maintained at each point in the
computed group results; they apply to both process and spot color components.
In effect, every object is considered to paint every existing color component, both
process and spot. Where no value has been explicitly specified for a given com-
ponent in a given object, an additive value of 1.0 (or a subtractive tint value of
0.0) is assumed. For instance, when painting an object with a color specified in a
DeviceCMYK or ICCBased color space, the process color components are painted
as specified and the spot color components are painted with an additive value of
1.0. Likewise, when painting an object with a color specified in a Separation color
space, the named spot color is painted as specified and all other components
(both process colors and other spot colors) are painted with an additive value of
1.0. The consequences of this are discussed in Section 7.6.3, “Overprinting and
Transparency.”

Color Space and Rendering IssuesSECTION 7.6
565

The opaque imaging model also allows process color components to be addressed
individually, as if they were spot colors. For instance, it is possible to specify a
Separation color space named Cyan, which paints just the cyan component on a
CMYK output device. However, this capability is very difficult to extend to trans-
parency groups. In general, the color components in a group are not the process
colorants themselves, but are converted to process colorants only after the com-
pletion of all color compositing computations for the group (and perhaps some of
its parent groups as well). For instance, if the group’s color space is ICCBased, the
group has no Cyan component to be painted. Consequently, treating a process
color component as if it were a spot color is permitted only within a group that
inherits the native color space of the output device (or is implicitly converted to
DeviceCMYK, as discussed in “Implicit Conversion of CIE-Based Color Spaces”
on page 259). Attempting to do so in a group that specifies its own color space re-
sults in conversion of the requested spot color to its alternate color space.

7.6.3 Overprinting and Transparency

In the opaque imaging model, overprinting is controlled by two parameters of the
graphics state: the overprint parameter and the overprint mode (see Section 4.5.6,
“Overprint Control”). Painting an object causes some specific set of device colo-
rants to be marked, as determined by the current color space and current color in
the graphics state. The remaining colorants are either erased or left unchanged,
depending on whether the overprint parameter is false or true. When the current
color space is DeviceCMYK, the overprint mode parameter additionally enables
this selective marking of colorants to be applied to individual color components
according to whether the component value is zero or nonzero.

Because this model of overprinting deals directly with the painting of device
colorants, independently of the color space in which source colors have been
specified, it is highly device-dependent and primarily addresses production
needs rather than design intent. Overprinting is usually reserved for opaque colo-
rants or for very dark colors, such as black. It is also invoked during late-stage
production operations such as trapping (see Section 10.10.5, “Trapping Sup-
port”), when the actual set of device colorants has already been determined.

Consequently, it is best to think of transparency as taking place in appearance
space, but overprinting of device colorants in device space. This means that colo-
rant overprint decisions should be made at output time, based on the actual re-
sultant colorants of any transparency compositing operation. On the other hand,
effects similar to overprinting can be achieved in a device-independent manner
by taking advantage of blend modes, as described in the next section.

TransparencyCHAPTER 7
566

Blend Modes and Overprinting

As stated in Section 7.6.2, “Spot Colors and Transparency,” each graphics object
that is painted affects all existing color components: all process colorants in the
transparency group’s color space as well as any available spot colorants. For color
components whose value has not been specified, a source color value of 1.0 is
assumed; when objects are fully opaque and the Normal blend mode is used, this
has the effect of erasing those components. This treatment is consistent with the
behavior of the opaque imaging model with the overprint parameter set to false.

The transparent imaging model defines some blend modes, such as Darken, that
can be used to achieve effects similar to overprinting. The blend function for
Darken is

In this blend mode, the result of compositing is always the same as the backdrop
color when the source color is 1.0, as it is for all unspecified color components.
When the backdrop is fully opaque, this leaves the result color unchanged from
that of the backdrop. This is consistent with the behavior of the opaque imaging
model with the overprint parameter set to true.

If the object or backdrop is not fully opaque, the actions described above are al-
tered accordingly. That is, the erasing effect is reduced, and overprinting an ob-
ject with a color value of 1.0 may affect the result color. While these results may
or may not be useful, they lie outside the realm of the overprinting and erasing
behavior defined in the opaque imaging model.

When process colors are overprinted or erased (because a spot color is being paint-
ed), the blending computations described above are done independently for each
component in the group’s color space. If that space is different from the native col-
or space of the output device, its components are not the device’s actual process
colorants; the blending computations affect the process colorants only after the
group’s results are converted to the device color space. Thus the effect is different
from that of overprinting or erasing the device’s process colorants directly. On the
other hand, this is a fully general operation that works uniformly, regardless of the
type of object or of the computations that produced the source color.

The discussion so far has focused on those color components whose values are
not specified and that are to be either erased or left unchanged. However, the

B cb cs,() min cb cs,()=

Color Space and Rendering IssuesSECTION 7.6
567

Normal or Darken blend modes used for these purposes may not be suitable for
use on those components whose color values are specified. In particular, using
the Darken blend mode for such components would preclude overprinting a dark
color with a lighter one. Moreover, some other blend mode may be specifically
desired for those components.

The PDF graphics state specifies only one current blend mode parameter, which
always applies to process colorants and sometimes to spot colorants as well.
Specifically, only separable, white-preserving blend modes can be used for spot
colors. A blend mode is white-preserving if its blend function B has the property
that B (1.0, 1.0) = 1.0. (Of the standard separable blend modes listed in Table 7.2
on page 520, all except Difference and Exclusion are white-preserving.) If the
specified blend mode is not separable and white-preserving, it applies only to
process color components; the Normal blend mode is substituted for spot colors.
This ensures that when objects accumulate in an isolated transparency group, the
accumulated values for unspecified components remain 1.0 as long as only white-
preserving blend modes are used. The group’s results can then be overprinted us-
ing Darken (or other useful modes) while avoiding unwanted interactions with
components whose values were never specified within the group.

Compatibility with Opaque Overprinting

Because the use of blend modes to achieve effects similar to overprinting does
not make direct use of the overprint control parameters in the graphics state,
such methods are usable only by transparency-aware applications. For compati-
bility with the methods of overprint control used in the opaque imaging model, a
special blend mode, CompatibleOverprint, is provided that consults the over-
print-related graphics state parameters to compute its result. This mode applies
only when painting elementary graphics objects (fills, strokes, text, images, and
shadings). It is never invoked explicitly and is not identified by any PDF name
object; rather, it is implicitly invoked whenever an elementary graphics object is
painted while overprinting is enabled (that is, when the overprint parameter in
the graphics state is true).

Note: Earlier designs of the transparent imaging model included an additional
blend mode named Compatible, which explicitly invoked the CompatibleOverprint
blend mode described here. Because CompatibleOverprint is now invoked implicitly
whenever appropriate, it is never necessary to specify the Compatible blend mode
for use in compositing. It is still recognized as a valid blend mode for the sake of
compatibility but is simply treated as equivalent to Normal.

TransparencyCHAPTER 7
568

The value of the blend function B (cb , cs) in the CompatibleOverprint mode is
either cb or cs , depending on the setting of the overprint mode parameter, the
current and group color spaces, and the source color value cs :

• If the overprint mode is 1 (nonzero overprint mode) and the current color
space and group color space are both DeviceCMYK, then only process color
components with nonzero values replace the corresponding component values
of the backdrop. All other component values leave the existing backdrop value
unchanged. That is, the value of the blend function B (cb , cs) is the source com-
ponent cs for any process (DeviceCMYK) color component whose (subtractive)
color value is nonzero; otherwise it is the backdrop component cb . For spot col-
or components, the value is always cb .

• In all other cases, the value of B (cb , cs) is cs for all color components specified
in the current color space, otherwise cb . For instance, if the current color space
is DeviceCMYK or CalRGB, the value of the blend function is cs for process color
components and cb for spot components. On the other hand, if the current col-
or space is a Separation space representing a spot color component, the value is
cs for that spot component and cb for all process components and all other spot
components.

Note: In the descriptions above, the term current color space refers to the color
space used for a painting operation. This may be specified by the current color space
parameter in the graphics state (see Section 4.5.1, “Color Values”), implicitly by col-
or operators such as rg (Section 4.5.7, “Color Operators”), or by the ColorSpace en-
try of an image XObject (Section 4.8.4, “Image Dictionaries”). In the case of an
Indexed space, it refers to the base color space (see “Indexed Color Spaces” on page
262); likewise for Separation and DeviceN spaces that revert to their alternate color
space, as described under “Separation Color Spaces” on page 264 and “DeviceN
Color Spaces” on page 268.

If the current blend mode when CompatibleOverprint is invoked is any mode
other than Normal, the object being painted is implicitly treated as if it were
defined in a non-isolated, non-knockout transparency group and painted using
the CompatibleOverprint blend mode. The group’s results are then painted using
the current blend mode in the graphics state.

Note: It is not necessary to create such an implicit transparency group if the current
blend mode is Normal; simply substituting the CompatibleOverprint blend mode
while painting the object produces equivalent results. There are some additional
cases in which the implicit transparency group can be optimized out.

Color Space and Rendering IssuesSECTION 7.6
569

Plate 20 shows the effects of all four possible combinations of blending and over-
printing, using the Screen blend mode in the DeviceCMYK color space. The label
“overprint enabled” means that the overprint parameter in the graphics state is
true and the overprint mode is 1. In the upper half of the figure, a light green oval
is painted opaquely (opacity = 1.0) over a backdrop shading from pure yellow to
pure magenta. In the lower half, the same object is painted with transparency
(opacity = 0.5).

Special Path-Painting Considerations

The overprinting considerations discussed above also affect those path-painting
operations that combine filling and stroking a path in a single operation. These
include the B, B*, b, and b* operators (see Section 4.4.2, “Path-Painting Opera-
tors”) and the painting of glyphs with text rendering mode 2 or 6 (Section 5.2.5,
“Text Rendering Mode”). For transparency compositing purposes, the combined
fill and stroke are treated as a single graphics object, as if they were enclosed in a
transparency group. This implicit group is established and used as follows:

• If overprinting is enabled (the overprint parameter in the graphics state is true)
and the current stroking and nonstroking alpha constants are equal, a non-
isolated, non-knockout transparency group is established. Within the group,
the fill and stroke are performed with an alpha value of 1.0 but with the Com-
patibleOverprint blend mode. The group results are then composited with the
backdrop, using the originally specified alpha and blend mode.

• In all other cases, a non-isolated knockout group is established. Within the
group, the fill and stroke are performed with their respective prevailing alpha
constants and the prevailing blend mode. The group results are then composit-
ed with the backdrop, using an alpha value of 1.0 and the Normal blend mode.

Note that in the case of showing text with the combined filling and stroking text
rendering modes, this behavior is independent of the text knockout parameter in
the graphics state (see Section 5.2.7, “Text Knockout”).

The purpose of these rules is to avoid having a non-opaque stroke composite with
the result of the fill in the region of overlap, which would produce a double bor-
der effect that is usually undesirable. The special case that applies when the over-
print parameter is true is for backward compatibility with the overprinting
behavior of the opaque imaging model. If a desired effect cannot be achieved with
a combined filling and stroking operator or text rendering mode, it can be

TransparencyCHAPTER 7
570

achieved by specifying the fill and stroke with separate path objects and an ex-
plicit transparency group.

Note: Overprinting of the stroke over the fill does not work in the second case de-
scribed above (although either the fill or the stroke can still overprint the backdrop).
Furthermore, if the overprint graphics state parameter is true, the results are discon-
tinuous at the transition between equal and unequal values of the stroking and non-
stroking alpha constants. For this reason, it is best not to use overprinting for
combined filling and stroking operations if the stroking and nonstroking alpha con-
stants are being varied independently.

Summary of Overprinting Behavior

Tables 7.14 and 7.15 summarize the overprinting and erasing behavior in the
opaque and transparent imaging models, respectively. Table 7.14 shows the over-
printing rules used in the opaque model, as described in Section 4.5.6, “Overprint
Control.” Table 7.15 shows the equivalent rules as implemented by the Compatib-
leOverprint blend mode in the transparent model. The names OP and OPM in the
tables refer to the overprint and overprint mode parameters of the graphics state.

TABLE 7.14 Overprinting behavior in the opaque imaging model

SOURCE COLOR SPACE

AFFECTED COLOR
COMPONENT

EFFECT ON COLOR COMPONENT

OP FALSE OP TRUE, OPM 0 OP TRUE, OPM 1

DeviceCMYK,
specified directly,
not in a sampled image

C, M, Y, or K Paint source Paint source Paint source if ≠ 0.0
Do not paint if = 0.0

Process colorant
other than CMYK

Paint source Paint source Paint source

Spot colorant Paint 0.0 Do not paint Do not paint

Any process color
space (including other
cases of DeviceCMYK)

Process colorant Paint source Paint source Paint source

Spot colorant Paint 0.0 Do not paint Do not paint

Color Space and Rendering IssuesSECTION 7.6
571

TABLE 7.15 Overprinting behavior in the transparent imaging model

Separation or
DeviceN

Process colorant Paint 0.0 Do not paint Do not paint

Spot colorant
named in source
space

Paint source Paint source Paint source

Spot colorant not
named in source
space

Paint 0.0 Do not paint Do not paint

SOURCE COLOR SPACE

AFFECTED COLOR
COMPONENT OF
GROUP COLOR SPACE

VALUE OF BLEND FUNCTION B (cb , cs) EXPRESSED AS TINT

OP FALSE OP TRUE, OPM 0 OP TRUE, OPM 1

DeviceCMYK,
specified directly,
not in a sampled image

C, M, Y, or K cs cs cs if cs ≠ 0.0
cb if cs = 0.0

Process color
component other
than CMYK

cs cs cs

Spot colorant cs (= 0.0) cb cb

Any process color
space (including other
cases of DeviceCMYK)

Process color
component

cs cs cs

Spot colorant cs (= 0.0) cb cb

Separation or
DeviceN

Process color
component

cs (= 0.0) cb cb

Spot colorant
named in source
space

cs cs cs

Spot colorant not
named in source
space

cs (= 0.0) cb cb

SOURCE COLOR SPACE

AFFECTED COLOR
COMPONENT

EFFECT ON COLOR COMPONENT

OP FALSE OP TRUE, OPM 0 OP TRUE, OPM 1

TransparencyCHAPTER 7
572

Color component values are represented in these tables as subtractive tint values
because overprinting is typically applied to subtractive colorants such as inks
rather than to additive ones such as phosphors on a display screen. The Compati-
bleOverprint blend mode is therefore described as if it took subtractive argu-
ments and returned subtractive results. In reality, however, CompatibleOverprint
(like all blend modes) treats color components as additive values; subtractive
components must be complemented before and after application of the blend
function.

Note an important difference between the two tables. In Table 7.14, the process
color components being discussed are the actual device colorants—the color
components of the output device’s native color space (DeviceGray, DeviceRGB, or
DeviceCMYK). In Table 7.15, the process color components are those of the
group’s color space, which is not necessarily the same as that of the output device
(and can even be something like CalRGB or ICCBased). For this reason, the pro-
cess color components of the group color space cannot be treated as if they were
spot colors in a Separation or DeviceN color space (see Section 7.6.2, “Spot
Colors and Transparency”). This difference between opaque and transparent
overprinting and erasing rules arises only within a transparency group (including
the page group, if its color space is different from the native color space of the
output device). There is no difference in the treatment of spot color components.

Table 7.15 has one additional row at the bottom. It applies when painting an ob-
ject that is a transparency group rather than an elementary object (fill, stroke,
text, image, or shading). As stated in Section 7.6.2, “Spot Colors and Transparen-
cy,” a group is considered to paint all color components, both process and spot.
Color components that were not explicitly painted by any object in the group
have an additive color value of 1.0 (subtractive tint 0.0). Since no information is
retained about which components were actually painted within the group, com-
patible overprinting is not possible in this case; the CompatibleOverprint blend
mode reverts to Normal, with no consideration of the overprint and overprint
mode parameters. (A transparency-aware application can choose a more suitable
blend mode, such as Darken, to produce an effect similar to overprinting.)

A group (not an
elementary object)

All color
components

cs cs cs

SOURCE COLOR SPACE

AFFECTED COLOR
COMPONENT OF
GROUP COLOR SPACE

VALUE OF BLEND FUNCTION B (cb , cs) EXPRESSED AS TINT

OP FALSE OP TRUE, OPM 0 OP TRUE, OPM 1

Color Space and Rendering IssuesSECTION 7.6
573

7.6.4 Rendering Parameters and Transparency

The opaque imaging model has several graphics state parameters dealing with the
rendering of color: the current halftone (see Section 6.4.4, “Halftone Diction-
aries”), transfer functions (Section 6.3, “Transfer Functions”), rendering intent
(“Rendering Intents” on page 260), and black-generation and undercolor-removal
functions (Section 6.2.3, “Conversion from DeviceRGB to DeviceCMYK”). All of
these rendering parameters can be specified on a per-object basis; they control
how a particular object is rendered. When all objects are opaque, it is easy to define
what this means. But when they are transparent, more than one object can con-
tribute to the color at a given point; it is unclear which rendering parameters to ap-
ply in an area where transparent objects overlap. At the same time, the transparent
imaging model should be consistent with the opaque model when only opaque ob-
jects are painted.

Furthermore, some of the rendering parameters—the halftone and transfer func-
tions, in particular—can be applied only when the final color at a given point is
known. In the presence of transparency, these parameters must be treated some-
what differently from those (rendering intent, black generation, and undercolor
removal) that apply whenever colors must be converted from one color space to
another. When objects are transparent, the rendering of an object does not occur
when the object is specified but at some later time. Hence, for rendering param-
eters in the former category, the implementation must keep track of the rendering
parameters at each point from the time they are specified until the time the ren-
dering actually occurs. This means that these rendering parameters must be asso-
ciated with regions of the page rather than with individual objects.

Halftone and Transfer Function

The halftone and transfer function to be used at any given point on the page are
those in effect at the time of painting the last (topmost) elementary graphics object
enclosing that point, but only if the object is fully opaque. (Only elementary objects
are relevant; the rendering parameters associated with a group object are ignored.)
The topmost object at any point is defined to be the topmost elementary object in
the entire page stack that has a nonzero object shape value (fj) at that point (that is,
for which the point is inside the object). An object is considered to be fully opaque
if all of the following conditions hold at the time the object is painted:

• The current alpha constant in the graphics state (stroking or nonstroking, de-
pending on the painting operation) is 1.0.

TransparencyCHAPTER 7
574

• The current blend mode in the graphics state is Normal (or Compatible, which
is treated as equivalent to Normal).

• The current soft mask in the graphics state is None. If the object is an image
XObject, there is no SMask entry in its image dictionary.

• The foregoing three conditions were also true at the time the Do operator was
invoked for the group containing the object, as well as for any direct ancestor
groups.

• If the current color is a tiling pattern, all objects in the definition of its pattern
cell also satisfy the foregoing conditions.

Together, these conditions ensure that only the object itself contributes to the col-
or at the given point, completely obscuring the backdrop. For portions of the page
whose topmost object is not fully opaque or that are never painted at all, the de-
fault halftone and transfer function for the page are used.

Note: If a graphics object is painted with overprinting enabled—that is, if the applic-
able (stroking or nonstroking) overprint parameter in the graphics state is true—the
halftone and transfer function to use at a given point must be determined indepen-
dently for each color component. Overprinting implicitly invokes the Compatible-
Overprint blend mode (see “Compatibility with Opaque Overprinting” on page
567). An object is considered opaque for a given component only if Compatible-
Overprint yields the source color (not the backdrop color) for that component.

Rendering Intent and Color Conversions

The rendering intent, black-generation, and undercolor-removal parameters
need to be handled somewhat differently. The rendering intent influences the
conversion from a CIE-based color space to a target color space, taking into ac-
count the target space’s color gamut (the range of colors it can reproduce).
Whereas in the opaque imaging model the target space is always the native color
space of the output device, in the transparent model it may instead be the group
color space of a transparency group into which an object is being painted.

The rendering intent is needed at the moment such a conversion must be per-
formed—that is, when painting an elementary or group object specified in a CIE-
based color space into a parent group having a different color space. This differs
from the current halftone and transfer function, whose values are used only when
all color compositing has been completed and rasterization is being performed.

Color Space and Rendering IssuesSECTION 7.6
575

In all cases, the rendering intent to use for converting an object’s color (whether
that of an elementary object or of a transparency group) is determined by the ren-
dering intent parameter associated with the object. In particular:

• When painting an elementary object with a CIE-based color into a transpar-
ency group having a different color space, the rendering intent used is the cur-
rent rendering intent in effect in the graphics state at the time of the painting
operation.

• When painting a transparency group whose color space is CIE-based into a
parent group having a different color space, the rendering intent used is the
current rendering intent in effect at the time the Do operator is applied to the
group.

• When the color space of the page group is CIE-based, the rendering intent used
to convert colors to the native color space of the output device is the default
rendering intent for the page.

Note: Since there may be one or more nested transparency groups having different
CIE-based color spaces, the color of an elementary source object may be converted to
the device color space in multiple stages, controlled by the rendering intent in effect
at each stage. The proper choice of rendering intent at each stage depends on the rel-
ative gamuts of the source and target color spaces. It is specified explicitly by the doc-
ument producer, not prescribed by the PDF specification, since no single policy for
managing rendering intents is appropriate for all situations.

A similar approach works for the black-generation and undercolor-removal func-
tions, which are applied only during conversion from DeviceRGB to DeviceCMYK
color spaces:

• When painting an elementary object with a DeviceRGB color directly into a
transparency group whose color space is DeviceCMYK, the functions used are
the current black-generation and undercolor-removal functions in effect in the
graphics state at the time of the painting operation.

• When painting a transparency group whose color space is DeviceRGB into a
parent group whose color space is DeviceCMYK, the functions used are the ones
in effect at the time the Do operator is applied to the group.

• When the color space of the page group is DeviceRGB and the native color
space of the output device is DeviceCMYK, the functions used to convert colors
to the device’s color space are the default functions for the page.

TransparencyCHAPTER 7
576

7.6.5 PostScript Compatibility

Because the PostScript language does not support the transparent imaging
model, PDF 1.4 consumer applications must have some means for converting the
appearance of a document that uses transparency to a purely opaque description
for printing on PostScript output devices. Similar techniques can also be used to
convert such documents to a form that can be correctly viewed by PDF 1.3 and
earlier consumers.

Converting the contents of a page from transparent to opaque form entails some
combination of shape decomposition and prerendering to flatten the stack of
transparent objects on the page, perform all the needed transparency computa-
tions, and describe the final appearance using opaque objects only. Whether the
page contains transparent content needing to be flattened can be determined by
straightforward analysis of the page’s resources; it is not necessary to analyze the
content stream itself. The conversion to opaque form is irreversible, since all in-
formation about how the transparency effects were produced is lost.

To perform the transparency computations properly, the application needs to
know the native color space of the output device. This is no problem when the ap-
plication controls the output device directly. However, when generating Post-
Script output, the application has no way of knowing the native color space of the
PostScript output device. An incorrect assumption will ruin the calibration of any
CIE-based colors appearing on the page. This problem can be addressed in either
of two ways:

• If the entire page consists of CIE-based colors, flatten the colors to a single CIE-
based color space rather than to a device color space. The preferred color space
for this purpose can easily be determined if the page has a group attributes dic-
tionary (Group entry in the page object) specifying a CIE-based color space
(see Section 7.5.5, “Transparency Group XObjects”).

• Otherwise, flatten the colors to some assumed device color space with pre-
determined calibration. In the generated PostScript output, paint the flattened
colors in a CIE-based color space having that calibration.

Because the choice between using spot colorants and converting them to an alter-
nate color space affects the flattened results of process colors, a decision must also
be made during PostScript conversion about the set of available spot colorants to
assume. (This differs from strictly opaque painting, where the decision can be
deferred until the generated PostScript code is executed.)

577

CHAPTER 8

8Interactive Features

This chapter describes the PDF features that allow a user to interact with a docu-
ment on the screen, using the mouse and keyboard (with the exception of multi-
media features, which are described in Chapter 9, “Multimedia Features”):

• Preference settings to control the way the document is presented on the screen
(Section 8.1, “Viewer Preferences”)

• Navigation facilities for moving through the document in a variety of ways
(Sections 8.2, “Document-Level Navigation,” and 8.3, “Page-Level Navigation”)

• Annotations for adding text notes, sounds, movies, and other ancillary infor-
mation to the document (Section 8.4, “Annotations”)

• Actions that can be triggered by specified events (Section 8.5, “Actions”)

• Interactive forms for gathering information from the user (Section 8.6, “Interac-
tive Forms”)

• Digital signatures that authenticate the identity of a user and the validity of the
document’s contents (Section 8.7, “Digital Signatures”)

• Measurement properties that enable the display of real-world units correspond-
ing to objects on a page (Section 8.8, “Measurement Properties”)

8.1 Viewer Preferences

The ViewerPreferences entry in a document’s catalog (see Section 3.6.1, “Docu-
ment Catalog”) designates a viewer preferences dictionary (PDF 1.2) controlling
the way the document is to be presented on the screen or in print. If no such dic-
tionary is specified, viewing and printing applications should behave in accor-
dance with their own current user preference settings. Table 8.1 shows the
contents of the viewer preferences dictionary.

Interactive FeaturesCHAPTER 8
578

TABLE 8.1 Entries in a viewer preferences dictionary

KEY TYPE VALUE

HideToolbar boolean (Optional) A flag specifying whether to hide the viewer application’s tool
bars when the document is active. Default value: false.

HideMenubar boolean (Optional) A flag specifying whether to hide the viewer application’s
menu bar when the document is active. Default value: false.

HideWindowUI boolean (Optional) A flag specifying whether to hide user interface elements in
the document’s window (such as scroll bars and navigation controls),
leaving only the document’s contents displayed. Default value: false.

FitWindow boolean (Optional) A flag specifying whether to resize the document’s window to
fit the size of the first displayed page. Default value: false.

CenterWindow boolean (Optional) A flag specifying whether to position the document’s window
in the center of the screen. Default value: false.

DisplayDocTitle boolean (Optional; PDF 1.4) A flag specifying whether the window’s title bar
should display the document title taken from the Title entry of the docu-
ment information dictionary (see Section 10.2.1, “Document Informa-
tion Dictionary”). If false, the title bar should instead display the name
of the PDF file containing the document. Default value: false.

NonFullScreenPageMode name (Optional) The document’s page mode, specifying how to display the
document on exiting full-screen mode:

UseNone Neither document outline nor thumbnail images
visible

UseOutlines Document outline visible
UseThumbs Thumbnail images visible
UseOC Optional content group panel visible

This entry is meaningful only if the value of the PageMode entry in the
catalog dictionary (see Section 3.6.1, “Document Catalog”) is FullScreen;
it is ignored otherwise. Default value: UseNone.

Direction name (Optional; PDF 1.3) The predominant reading order for text:
L2R Left to right
R2L Right to left (including vertical writing systems, such

as Chinese, Japanese, and Korean)

This entry has no direct effect on the document’s contents or page num-
bering but can be used to determine the relative positioning of pages
when displayed side by side or printed n-up. Default value: L2R.

Viewer PreferencesSECTION 8.1
579

ViewArea name (Optional; PDF 1.4) The name of the page boundary representing the
area of a page to be displayed when viewing the document on the screen.
The value is the key designating the relevant page boundary in the page
object (see “Page Objects” on page 144 and Section 10.10.1, “Page
Boundaries”). If the specified page boundary is not defined in the page
object, its default value is used, as specified in Table 3.27 on page 145.
Default value: CropBox.

Note: This entry is intended primarily for use by prepress applications that
interpret or manipulate the page boundaries as described in Section
10.10.1, “Page Boundaries.” Most PDF consumer applications disregard it.

ViewClip name (Optional; PDF 1.4) The name of the page boundary to which the con-
tents of a page are to be clipped when viewing the document on the
screen. The value is the key designating the relevant page boundary in
the page object (see “Page Objects” on page 144 and Section 10.10.1,
“Page Boundaries”). If the specified page boundary is not defined in the
page object, its default value is used, as specified in Table 3.27 on page
145. Default value: CropBox.

Note: This entry is intended primarily for use by prepress applications that
interpret or manipulate the page boundaries as described in Section
10.10.1, “Page Boundaries.” Most PDF consumer applications disregard it.

PrintArea name (Optional; PDF 1.4) The name of the page boundary representing the
area of a page to be rendered when printing the document. The value is
the key designating the relevant page boundary in the page object (see
“Page Objects” on page 144 and Section 10.10.1, “Page Boundaries”). If
the specified page boundary is not defined in the page object, its default
value is used, as specified in Table 3.27 on page 145. Default value:
CropBox.

Note: This entry is intended primarily for use by prepress applications that
interpret or manipulate the page boundaries as described in Section
10.10.1, “Page Boundaries.” Most PDF consumer applications disregard it.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
580

PrintClip name (Optional; PDF 1.4) The name of the page boundary to which the con-
tents of a page are to be clipped when printing the document. The value
is the key designating the relevant page boundary in the page object (see
“Page Objects” on page 144 and Section 10.10.1, “Page Boundaries”). If
the specified page boundary is not defined in the page object, its default
value is used, as specified in Table 3.27 on page 145. Default value:
CropBox.

Note: This entry is intended primarily for use by prepress applications that
interpret or manipulate the page boundaries as described in Section
10.10.1, “Page Boundaries.” Most PDF consumer applications disregard it.

PrintScaling name (Optional; PDF 1.6) The page scaling option to be selected when a print
dialog is displayed for this document. Valid values are None, which indi-
cates that the print dialog should reflect no page scaling, and
AppDefault, which indicates that applications should use the current
print scaling. If this entry has an unrecognized value, applications
should use the current print scaling. Default value: AppDefault.

Note: If the print dialog is suppressed and its parameters are provided di-
rectly by the application, the value of this entry should still be used.

Duplex name (Optional; PDF 1.7) The paper handling option to use when printing the
file from the print dialog. The following values are valid:

Simplex - Print single-sided

DuplexFlipShortEdge - Duplex and flip on the short edge of the sheet

DuplexFlipLongEdge - Duplex and flip on the long edge of the sheet

Default value: none

PickTrayByPDFSize boolean (Optional; PDF 1.7) A flag specifying whether the PDF page size is used
to select the input paper tray. This setting influences only the preset val-
ues used to populate the print dialog presented by a PDF viewer applica-
tion. If PickTrayByPDFSize is true, the check box in the print dialog
associated with input paper tray is checked.

Note: This setting has no effect on Mac OS systems, which do not provide
the ability to pick the input tray by size.

Default value: as defined by the PDF viewer application

KEY TYPE VALUE

Document-Level NavigationSECTION 8.2
581

8.2 Document-Level Navigation

The features described in this section allow a PDF viewer application to present
the user with an interactive, global overview of a document in either of two forms:

• As a hierarchical outline showing the document’s internal structure

• As a collection of thumbnail images representing the pages of the document in
miniature form

Each item in the outline or each thumbnail image can be associated with a corre-
sponding destination in the document, so that the user can jump directly to the
destination by clicking with the mouse.

8.2.1 Destinations

A destination defines a particular view of a document, consisting of the following
items:

• The page of the document to be displayed

• The location of the document window on that page

• The magnification (zoom) factor to use when displaying the page

Destinations may be associated with outline items (see Section 8.2.2, “Document
Outline”), annotations (“Link Annotations” on page 622), or actions (“Go-To Ac-

PrintPageRange array (Optional; PDF 1.7) The page numbers used to initialize the print dialog
box when the file is printed. The first page of the PDF file is denoted by
1. Each pair consists of the first and last pages in the sub-range. An odd
number of integers causes this entry to be ignored. Negative numbers
cause the entire array to be ignored.

Default value: as defined by PDF viewer application

NumCopies integer (Optional; PDF 1.7) The number of copies to be printed when the print
dialog is opened for this file. Supported values are the integers 2 through
5. Values outside this range are ignored.

Default value: as defined by PDF viewer application, but typically 1

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
582

tions” on page 654 and “Remote Go-To Actions” on page 655). In each case, the
destination specifies the view of the document to be presented when the outline
item or annotation is opened or the action is performed. In addition, the optional
OpenAction entry in a document’s catalog (Section 3.6.1, “Document Catalog”)
may specify a destination to be displayed when the document is opened. A desti-
nation may be specified either explicitly by an array of parameters defining its
properties or indirectly by name.

Explicit Destinations

Table 8.2 shows the allowed syntactic forms for specifying a destination explicitly
in a PDF file. In each case, page is an indirect reference to a page object. All coor-
dinate values (left, right, top, and bottom) are expressed in the default user space
coordinate system. The page’s bounding box is the smallest rectangle enclosing all
of its contents. (If any side of the bounding box lies outside the page’s crop box,
the corresponding side of the crop box is used instead; see Section 10.10.1, “Page
Boundaries,” for further discussion of the crop box.)

Note: No page object can be specified for a destination associated with a remote go-
to action (see “Remote Go-To Actions” on page 655) because the destination page is
in a different PDF document. In this case, the page parameter specifies a page num-
ber within the remote document instead of a page object in the current document.

TABLE 8.2 Destination syntax

SYNTAX MEANING

[page /XYZ left top zoom] Display the page designated by page, with the coordinates (left, top) posi-
tioned at the upper-left corner of the window and the contents of the page
magnified by the factor zoom. A null value for any of the parameters left, top,
or zoom specifies that the current value of that parameter is to be retained un-
changed. A zoom value of 0 has the same meaning as a null value.

[page /Fit] Display the page designated by page, with its contents magnified just enough
to fit the entire page within the window both horizontally and vertically. If
the required horizontal and vertical magnification factors are different, use
the smaller of the two, centering the page within the window in the other
dimension.

Document-Level NavigationSECTION 8.2
583

Named Destinations

Instead of being defined directly with the explicit syntax shown in Table 8.2, a
destination may be referred to indirectly by means of a name object (PDF 1.1) or
a byte string (PDF 1.2). This capability is especially useful when the destination is

[page /FitH top] Display the page designated by page, with the vertical coordinate top posi-
tioned at the top edge of the window and the contents of the page magnified
just enough to fit the entire width of the page within the window. A null value
for top specifies that the current value of that parameter is to be retained un-
changed.

[page /FitV left] Display the page designated by page, with the horizontal coordinate left posi-
tioned at the left edge of the window and the contents of the page magnified
just enough to fit the entire height of the page within the window. A null val-
ue for left specifies that the current value of that parameter is to be retained
unchanged.

[page /FitR left bottom right top] Display the page designated by page, with its contents magnified just enough
to fit the rectangle specified by the coordinates left, bottom, right, and top
entirely within the window both horizontally and vertically. If the required
horizontal and vertical magnification factors are different, use the smaller of
the two, centering the rectangle within the window in the other dimension. A
null value for any of the parameters may result in unpredictable behavior.

[page /FitB] (PDF 1.1) Display the page designated by page, with its contents magnified
just enough to fit its bounding box entirely within the window both hori-
zontally and vertically. If the required horizontal and vertical magnification
factors are different, use the smaller of the two, centering the bounding box
within the window in the other dimension.

[page /FitBH top] (PDF 1.1) Display the page designated by page, with the vertical coordinate
top positioned at the top edge of the window and the contents of the page
magnified just enough to fit the entire width of its bounding box within the
window. A null value for top specifies that the current value of that parameter
is to be retained unchanged.

[page /FitBV left] (PDF 1.1) Display the page designated by page, with the horizontal coordi-
nate left positioned at the left edge of the window and the contents of the page
magnified just enough to fit the entire height of its bounding box within the
window. A null value for left specifies that the current value of that parameter
is to be retained unchanged.

SYNTAX MEANING

Interactive FeaturesCHAPTER 8
584

located in another PDF document. For example, a link to the beginning of Chap-
ter 6 in another document might refer to the destination by a name, such as
Chap6 . begin, instead of by an explicit page number in the other document. Then,
the location of the chapter in the other document could change without invalidat-
ing the link. If an annotation or outline item that refers to a named destination
has an associated action, such as a remote go-to action (see “Remote Go-To Ac-
tions” on page 655) or a thread action (“Thread Actions” on page 661), the desti-
nation is in the file specified by the action’s F entry, if any; if there is no F entry,
the destination is in the current file.

In PDF 1.1, the correspondence between name objects and destinations is
defined by the Dests entry in the document catalog (see Section 3.6.1, “Docu-
ment Catalog”). The value of this entry is a dictionary in which each key is a des-
tination name and the corresponding value is either an array defining the
destination, using the syntax shown in Table 8.2, or a dictionary with a D entry
whose value is such an array. The latter form allows additional attributes to be
associated with the destination, as well as enabling a go-to action (see “Go-To
Actions” on page 654) to be used as the target of a named destination.

In PDF 1.2, the correspondence between strings and destinations is defined by
the Dests entry in the document’s name dictionary (see Section 3.6.3, “Name Dic-
tionary”). The value of this entry is a name tree (Section 3.8.5, “Name Trees”)
mapping name strings to destinations. (The keys in the name tree may be treated
as text strings for display purposes.) The destination value associated with a key
in the name tree may be either an array or a dictionary, as described in the pre-
ceding paragraph.

Note: The use of strings as destination names is a PDF 1.2 feature. If compatibility
with earlier versions of PDF is required, only name objects may be used to refer to
named destinations. A document that supports PDF 1.2 can contain both types.
However, if backward compatibility is not a consideration, applications should use
the string form of representation in the Dests name tree.

8.2.2 Document Outline

A PDF document may optionally display a document outline on the screen, allow-
ing the user to navigate interactively from one part of the document to another.
The outline consists of a tree-structured hierarchy of outline items (sometimes
called bookmarks), which serve as a visual table of contents to display the docu-
ment’s structure to the user. The user can interactively open and close individual

Document-Level NavigationSECTION 8.2
585

items by clicking them with the mouse. When an item is open, its immediate chil-
dren in the hierarchy become visible on the screen; each child may in turn be
open or closed, selectively revealing or hiding further parts of the hierarchy.
When an item is closed, all of its descendants in the hierarchy are hidden. Click-
ing the text of any visible item activates the item, causing the viewer application to
jump to a destination or trigger an action associated with the item.

The root of a document’s outline hierarchy is an outline dictionary specified by
the Outlines entry in the document catalog (see Section 3.6.1, “Document Cata-
log”). Table 8.3 shows the contents of this dictionary. Each individual outline item
within the hierarchy is defined by an outline item dictionary (Table 8.4). The
items at each level of the hierarchy form a linked list, chained together through
their Prev and Next entries and accessed through the First and Last entries in the
parent item (or in the outline dictionary in the case of top-level items). When dis-
played on the screen, the items at a given level appear in the order in which they
occur in the linked list. (See also implementation note 74 in Appendix H.)

TABLE 8.3 Entries in the outline dictionary

TABLE 8.4 Entries in an outline item dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Outlines for an outline dictionary.

First dictionary (Required if there are any open or closed outline entries; must be an indirect ref-
erence) An outline item dictionary representing the first top-level item in the
outline.

Last dictionary (Required if there are any open or closed outline entries; must be an indirect ref-
erence) An outline item dictionary representing the last top-level item in the
outline.

Count integer (Required if the document has any open outline entries) The total number of
open items at all levels of the outline. This entry should be omitted if there
are no open outline items.

KEY TYPE VALUE

Title text string (Required) The text to be displayed on the screen for this item.

Parent dictionary (Required; must be an indirect reference) The parent of this item in the outline
hierarchy. The parent of a top-level item is the outline dictionary itself.

Interactive FeaturesCHAPTER 8
586

The value of the outline item dictionary’s F entry (PDF 1.4) is an unsigned 32-bit
integer containing flags specifying style characteristics for displaying the item. Bit
positions within the flag word are numbered from 1 (low-order) to 32 (high-

Prev dictionary (Required for all but the first item at each level; must be an indirect reference)
The previous item at this outline level.

Next dictionary (Required for all but the last item at each level; must be an indirect reference)
The next item at this outline level.

First dictionary (Required if the item has any descendants; must be an indirect reference) The
first of this item’s immediate children in the outline hierarchy.

Last dictionary (Required if the item has any descendants; must be an indirect reference) The
last of this item’s immediate children in the outline hierarchy.

Count integer (Required if the item has any descendants) If the item is open, the total num-
ber of its open descendants at all lower levels of the outline hierarchy. If the
item is closed, a negative integer whose absolute value specifies how many
descendants would appear if the item were reopened.

Dest name,
byte string, or
array

(Optional; not permitted if an A entry is present) The destination to be dis-
played when this item is activated (see Section 8.2.1, “Destinations”; see also
implementation note 75 in Appendix H).

A dictionary (Optional; PDF 1.1; not permitted if a Dest entry is present) The action to be
performed when this item is activated (see Section 8.5, “Actions”).

SE dictionary (Optional; PDF 1.3; must be an indirect reference) The structure element to
which the item refers (see Section 10.6.1, “Structure Hierarchy”).

Note: The ability to associate an outline item with a structure element (such as
the beginning of a chapter) is a PDF 1.3 feature. For backward compatibility
with earlier PDF versions, such an item should also specify a destination (Dest)
corresponding to an area of a page where the contents of the designated struc-
ture element are displayed.

C array (Optional; PDF 1.4) An array of three numbers in the range 0.0 to 1.0, repre-
senting the components in the DeviceRGB color space of the color to be used
for the outline entry’s text. Default value: [0.0 0.0 0.0].

F integer (Optional; PDF 1.4) A set of flags specifying style characteristics for display-
ing the outline item’s text (see Table 8.5). Default value: 0.

KEY TYPE VALUE

Document-Level NavigationSECTION 8.2
587

order). Table 8.5 shows the meanings of the flags; all undefined flag bits are
reserved and must be set to 0.

TABLE 8.5 Outline item flags

Example 8.1 shows a typical outline dictionary and outline item dictionary. See
Appendix G for an example of a complete outline hierarchy.

Example 8.1

21 0 obj
<< /Count 6

 /First 22 0 R
 /Last 29 0 R

>>
endobj

22 0 obj
<< /Title (Chapter 1)

 /Parent 21 0 R
 /Next 26 0 R
 /First 23 0 R
 /Last 25 0 R
 /Count 3
 /Dest [3 0 R /XYZ 0 792 0]

>>
endobj

8.2.3 Thumbnail Images

A PDF document can define thumbnail images representing the contents of its
pages in miniature form. A viewer application can display these images on the
screen, allowing the user to navigate to a page by clicking its thumbnail image:

Note: Thumbnail images are not required, and may be included for some pages and
not for others.

BIT POSITION NAME MEANING

1 Italic If set, display the item in italic.

2 Bold If set, display the item in bold.

Interactive FeaturesCHAPTER 8
588

The thumbnail image for a page is an image XObject specified by the Thumb
entry in the page object (see “Page Objects” on page 144). It has the usual struc-
ture for an image dictionary (Section 4.8.4, “Image Dictionaries”), but only the
Width, Height, ColorSpace, BitsPerComponent, and Decode entries are signifi-
cant; all of the other entries listed in Table 4.39 on page 340 are ignored if present.
(If a Subtype entry is specified, its value must be Image.) The image’s color space
must be either DeviceGray or DeviceRGB, or an Indexed space based on one of
these. Example 8.2 shows a typical thumbnail image definition.

Example 8.2

12 0 obj
<< /Width 76

 /Height 99
 /ColorSpace /DeviceRGB
 /BitsPerComponent 8
 /Length 13 0 R
 /Filter [/ASCII85Decode /DCTDecode]

>>
stream
s4IA>!"M;*Ddm8XA,lT0!!3,S!/(=R!<E3%!<N<(!WrK*!WrN,
… Omitted data …
endstream
endobj

13 0 obj % Length of stream
…

endobj

8.2.4 Collections

Beginning with PDF 1.7, PDF documents can specify how a viewer application’s
user interface presents collections of file attachments, where the attachments are
related in structure or content. Such a presentation is called a portable collection.
The intent of portable collections is to present, sort, and search collections of relat-
ed documents, such as email archives, photo collections, and engineering bid
sets. There is no requirement that files in a collection have an implicit relation-
ship or even a similarity; however, showing differentiating characteristics of relat-
ed documents can be helpful for document navigation.

Document-Level NavigationSECTION 8.2
589

A collection dictionary specifies the viewing and organizational characteristics of
portable collections. If this dictionary is present in a PDF document, the user in-
terface presents the document as a portable collection. The EmbeddedFiles name
tree specifies file attachments (see Section 3.10.3, “Embedded File Streams).

When a PDF 1.7-compliant viewer application first opens a PDF document con-
taining a collection, it must display the contents of the initial document, along
with a list of the documents present in the EmbeddedFiles name tree. The docu-
ment list must include the additional document information specified by the col-
lection schema. The initial document can be the container PDF or one of the
embedded documents.

The page content in the initial document typically contains information that
helps the viewer understand what is contained in the collection, such as a title
and an introductory paragraph.

The file attachments comprising a collection are located in the EmbeddedFiles
name tree. All attachments in that tree are in the collection; any attachments not
in that tree are not.

Table 8.6 describes the entries in a collection dictionary.

TABLE 8.6 Entries in a collection dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Collection for a collection dictionary.

Schema dictionary (Optional) A collection schema dictionary (see Table 8.7). If absent,
the PDF viewer application may choose useful defaults that are
known to exist in a file specification dictionary, such as the file
name, file size, and modified date.

D byte string (Optional) A string that identifies an entry in the EmbeddedFiles
name tree, controlling the document that is initially presented in
the user interface. If the D entry is missing or in error, the initial
document is the one that contains the collection dictionary.

Interactive FeaturesCHAPTER 8
590

A collection schema dictionary consists of a variable number of individual collec-
tion field dictionaries. Each collection field dictionary has a key chosen by the
producer, which is used to associate a field with data in a file specification. Table
8.7 describes the entries in a collection schema dictionary.

TABLE 8.7 Entries in a collection schema dictionary

A collection field dictionary describes the attributes of a particular field in a porta-
ble collection, including the type of data stored in the field and the lookup key
used to locate the field data in the file specification dictionary. Table 8.8 describes
the entries in a collection field dictionary.

View name (Optional) The initial view. The following values are valid:

D The collection view is presented in details mode, with all
information in the Schema dictionary presented in a multi-
column format. This mode provides the most information
to the user.

T The collection view is presented in tile mode, with each file
in the collection denoted by a small icon and a subset of in-
formation from the Schema dictionary. This mode provides
top-level information about the file attachments to the user.

H The collection view is initially hidden, without preventing
the user from obtaining a file list via explicit action.

Default value: D

Sort dictionary (Optional) A collection sort dictionary, which specifies the order in
which items in the collection should be sorted in the user interface
(see Table 8.9 on page 592).

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be CollectionSchema for a collection schema dictio-
nary.

Other keys chosen by
producer

dictionary (Optional) Each dictionary entry is a collection field dictionary.
Each key name is chosen at the discretion of the producer. The key
name of each collection field dictionary is used to identify a corre-
sponding collection item dictionary in a file specification dictio-
nary.

KEY TYPE VALUE

Document-Level NavigationSECTION 8.2
591

TABLE 8.8 Entries in a collection field dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be CollectionField for a collection field dictionary.

Subtype name (Required) The subtype of collection field or file-related field that this dic-
tionary describes. This entry identifies the type of data that is stored in the
field.

The following values identify the types of fields in the collection item or
collection subitem dictionary:

S A text field. The field data is stored as a PDF text string.

D A date field. The field data is stored as a PDF date string.

N A number field. The field data is stored as a PDF number.

The following values identify the types of file-related fields:

F The field data is the file name of the embedded file stream, as iden-
tified by the UF entry of the file specification, if present; otherwise
by the F entry of the file specification (see Table 3.41).

Desc The field data is the description of the embedded file stream, as
identified by the Desc entry in the file specification dictionary (see
Table 3.41).

ModDate The field data is the modification date of the embedded file
stream, as identified by the ModDate entry in the embedded file
parameter dictionary (see Table 3.43).

CreationDate The field data is the creation date of the embedded file
stream, as identified by the CreationDate entry in the embedded
file parameter dictionary (see Table 3.43).

Size The field data is the size of the embedded file, as identified by the
Size entry in the embedded file parameter dictionary (see Table
3.43).

N text string (Required) The textual field name that is displayed to the user by the PDF
viewer application.

O integer (Optional) The relative order of the field name in the user interface. Fields
are sorted by the PDF viewer application in ascending order.

Interactive FeaturesCHAPTER 8
592

A collection sort dictionary identifies the fields that are used to sort items in the
collection. The type of sorting depends on the type of data:

• Text strings are ordered lexically from smaller to larger, if ascending order is
specified.

• Numbers are ordered numerically from smaller to larger, if ascending order is
specified.

• Dates are ordered from oldest to newest, if ascending order is specified.

Table 8.9 describes the entries in a collection sort dictionary.

TABLE 8.9 Entries in a collection sort dictionary

V boolean (Optional) The initial visibility of the field in the user interface. Default
value: true.

E boolean (Optional) A flag indicating whether the PDF viewer application should
provide support for editing the field value. Default value: false.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be CollectionSort for a collection sort dictionary.

S name or
array

(Required) The name or names of fields that the PDF viewer application uses
to sort the items in the collection. If the value is a name, it identifies a field
described in the parent collection dictionary.

If the value is an array, each element of the array is a name that identifies a
field described in the parent collection dictionary. The array form is used to
allow additional fields to contribute to the sort, where each additional field
is used to break ties. More specifically, if multiple collection item dictionar-
ies have the same value for the first field named in the array, the values for
successive fields named in the array are used for sorting, until a unique or-
der is determined or until the named fields are exhausted.

A boolean or
array

(Optional) Specifies whether the items in the collection are sorted in ascend-
ing order. If the array form is used, each element of the array is a boolean
value that specifies whether the entry at the same index in the S array is sort-
ed in ascending order.

Default value: true.

KEY TYPE VALUE

Document-Level NavigationSECTION 8.2
593

Example 8.3 shows a collection dictionary representing an email in-box, where
each item in the collection is an email message. The actual email messages are
contained in file specification dictionaries. The organizational data associated
with each email is described in a collection schema dictionary. Most actual orga-
nizational data (from, to, date, and subject) is provided in a collection item dic-
tionary, but the size data comes from the embedded file parameter dictionary.

Example 8.3
/Collection <<

/Type /Collection
/Schema <<

/Type /CollectionSchema
/from << /Subtype /S /N (From) /O 1 /V true /E false>>
/to << /Subtype /S /N (To) /O 2 /V true /E false >>
/date << /Subtype /D /N (Date received) /O 3 /V true /E false >>
/subject << /Subtype /S /N (Subject) /O 4 /V true /E false >>
/size << /Subtype /Size /N (Size) /O 5 /V true /E false >>
>>

/D (Doc1)
/View /D
/Sort << /S /date /A false >>

>>

Example 8.4 shows a collection item dictionary and a collection subitem dictio-
nary. These dictionaries contain entries that correspond to the schema entries
specified in Example 8.3. Section 3.10.5, “Collection Items” specifies the collec-
tion item and collection subitem dictionaries.

Example 8.4
/CI <<

/Type /CollectionItem
/from (Rob McAfee)
/to (Patty McAfee)
/subject <<

/Type /CollectionSubitem
/P (Re:)
/D (Let's have lunch on Friday!)

>>
/date (D:20050621094703-07’00’)

>>

Interactive FeaturesCHAPTER 8
594

8.3 Page-Level Navigation

This section describes PDF facilities that enable the user to navigate from page to
page within a document:

• Page labels for numbering or otherwise identifying individual pages (see Sec-
tion 8.3.1)

• Article threads, which chain together items of content within the document that
are logically connected but not physically sequential (see Section 8.3.2)

• Presentations that display the document in the form of a slide show, advancing
from one page to the next either automatically or under user control (see Sec-
tion 8.3.3)

For another important form of page-level navigation, see “Link Annotations” on
page 622.

8.3.1 Page Labels

Each page in a PDF document is identified by an integer page index that expresses
the page’s relative position within the document. In addition, a document may
optionally define page labels (PDF 1.3) to identify each page visually on the screen
or in print. Page labels and page indices need not coincide: the indices are fixed,
running consecutively through the document starting from 0 for the first page,
but the labels can be specified in any way that is appropriate for the particular
document. For example, if the document begins with 12 pages of front matter
numbered in roman numerals and the remainder of the document is numbered
in arabic, the first page would have a page index of 0 and a page label of i, the
twelfth page would have index 11 and label xii, and the thirteenth page would
have index 12 and label 1.

For purposes of page labeling, a document can be divided into labeling ranges,
each of which is a series of consecutive pages using the same numbering system.
Pages within a range are numbered sequentially in ascending order. A page’s label
consists of a numeric portion based on its position within its labeling range,
optionally preceded by a label prefix denoting the range itself. For example, the
pages in an appendix might be labeled with decimal numeric portions prefixed
with the string A−; the resulting page labels would be A−1, A−2, and so on.

A document’s labeling ranges are defined by the PageLabels entry in the docu-
ment catalog (see Section 3.6.1, “Document Catalog”). The value of this entry is a

Page-Level NavigationSECTION 8.3
595

number tree (Section 3.8.6, “Number Trees”), each of whose keys is the page
index of the first page in a labeling range. The corresponding value is a page label
dictionary defining the labeling characteristics for the pages in that range. The
tree must include a value for page index 0. Table 8.10 shows the contents of a page
label dictionary. (See implementation note 76 in Appendix H.)

Example 8.5 shows a document with pages labeled

i, ii, iii, iv, 1, 2, 3, A−8, A−9, …

Example 8.5

1 0 obj
<< /Type /Catalog

 /PageLabels << /Nums [0 << /S /r >> % A number tree containing
 4 << /S /D >> % three page label dictionaries
 7 << /S /D

 /P (A−)
 /St 8

 >>
]

 >>
 …

>>
endobj

TABLE 8.10 Entries in a page label dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
PageLabel for a page label dictionary.

S name (Optional) The numbering style to be used for the numeric portion of each page label:

D Decimal arabic numerals
R Uppercase roman numerals
r Lowercase roman numerals
A Uppercase letters (A to Z for the first 26 pages, AA to ZZ for the next 26, and so on)
a Lowercase letters (a to z for the first 26 pages, aa to zz for the next 26, and so on)

There is no default numbering style; if no S entry is present, page labels consist solely of a
label prefix with no numeric portion. For example, if the P entry (below) specifies the la-
bel prefix Contents, each page is simply labeled Contents with no page number. (If the P
entry is also missing or empty, the page label is an empty string.)

Interactive FeaturesCHAPTER 8
596

8.3.2 Articles

Some types of documents may contain sequences of content items that are logi-
cally connected but not physically sequential. For example, a news story may be-
gin on the first page of a newsletter and run over onto one or more
nonconsecutive interior pages. To represent such sequences of physically discon-
tiguous but logically related items, a PDF document may define one or more arti-
cles (PDF 1.1). The sequential flow of an article is defined by an article thread; the
individual content items that make up the article are called beads on the thread.
PDF viewer applications can provide navigation facilities to allow the user to fol-
low a thread from one bead to the next.

The optional Threads entry in the document catalog (see Section 3.6.1, “Docu-
ment Catalog”) holds an array of thread dictionaries (Table 8.11) defining the
document’s articles. Each individual bead within a thread is represented by a bead
dictionary (Table 8.12). The thread dictionary’s F entry points to the first bead in
the thread; the beads are chained together sequentially in a doubly linked list
through their N (next) and V (previous) entries. In addition, for each page on
which article beads appear, the page object (see “Page Objects” on page 144)
should contain a B entry whose value is an array of indirect references to the
beads on the page, in drawing order.

TABLE 8.11 Entries in a thread dictionary

P text string (Optional) The label prefix for page labels in this range.

St integer (Optional) The value of the numeric portion for the first page label in the range. Sub-
sequent pages are numbered sequentially from this value, which must be greater than or
equal to 1. Default value: 1.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Thread for a thread dictionary.

F dictionary (Required; must be an indirect reference) The first bead in the thread.

I dictionary (Optional) A thread information dictionary containing information about the thread,
such as its title, author, and creation date. The contents of this dictionary are similar
to those of the document information dictionary (see Section 10.2.1, “Document In-
formation Dictionary”).

KEY TYPE VALUE

Page-Level NavigationSECTION 8.3
597

TABLE 8.12 Entries in a bead dictionary

Example 8.6 shows a thread with three beads.

Example 8.6

22 0 obj
<< /F 23 0 R

 /I << /Title (Man Bites Dog) >>
>>

endobj

23 0 obj
<< /T 22 0 R

 /N 24 0 R
 /V 25 0 R
 /P 8 0 R
 /R [158 247 318 905]

>>
endobj

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Bead for a bead dictionary.

T dictionary (Required for the first bead of a thread; optional for all others; must be an indirect refer-
ence) The thread to which this bead belongs.

Note: In PDF 1.1, this entry is permitted only for the first bead of a thread. In PDF 1.2
and higher, it is permitted for any bead but required only for the first.

N dictionary (Required; must be an indirect reference) The next bead in the thread. In the last bead,
this entry points to the first.

V dictionary (Required; must be an indirect reference) The previous bead in the thread. In the first
bead, this entry points to the last.

P dictionary (Required; must be an indirect reference) The page object representing the page on
which this bead appears.

R rectangle (Required) A rectangle specifying the location of this bead on the page.

Interactive FeaturesCHAPTER 8
598

24 0 obj
<< /T 22 0 R

 /N 25 0 R
 /V 23 0 R
 /P 8 0 R
 /R [322 246 486 904]

>>
endobj

25 0 obj
<< /T 22 0 R

 /N 23 0 R
 /V 24 0 R
 /P 10 0 R
 /R [157 254 319 903]

>>
endobj

8.3.3 Presentations

Some PDF viewer applications may allow a document to be displayed in the form
of a presentation or slide show, advancing from one page to the next either auto-
matically or under user control. In addition, PDF 1.5 introduces the ability to ad-
vance between different states of the same page (see “Sub-page Navigation” on
page 601).

Note: PDF 1.4 introduces a different mechanism, known as alternate presentations,
for slide show displays, described in Section 9.4, “Alternate Presentations.”

A page object (see “Page Objects” on page 144) may contain two optional entries,
Dur and Trans (PDF 1.1), to specify how to display that page in presentation
mode. The Trans entry contains a transition dictionary describing the style and
duration of the visual transition to use when moving from another page to the
given page during a presentation. Table 8.13 shows the contents of the transition
dictionary. (Some of the entries shown are needed only for certain transition
styles, as indicated in the table.)

The Dur entry in the page object specifies the page’s display duration (also called
its advance timing): the maximum length of time, in seconds, that the page is dis-
played before the presentation automatically advances to the next page. (The user
can advance the page manually before the specified time has expired.) If no Dur
entry is specified in the page object, the page does not advance automatically.

Page-Level NavigationSECTION 8.3
599

TABLE 8.13 Entries in a transition dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Trans for a transition dictionary.

S name (Optional) The transition style to use when moving to this page from another during a
presentation. Default value: R.

Split Two lines sweep across the screen, revealing the new page. The lines may
be either horizontal or vertical and may move inward from the edges of
the page or outward from the center, as specified by the Dm and M
entries, respectively.

Blinds Multiple lines, evenly spaced across the screen, synchronously sweep in
the same direction to reveal the new page. The lines may be either hori-
zontal or vertical, as specified by the Dm entry. Horizontal lines move
downward; vertical lines move to the right.

Box A rectangular box sweeps inward from the edges of the page or outward
from the center, as specified by the M entry, revealing the new page.

Wipe A single line sweeps across the screen from one edge to the other in the
direction specified by the Di entry, revealing the new page.

Dissolve The old page dissolves gradually to reveal the new one.

Glitter Similar to Dissolve, except that the effect sweeps across the page in a
wide band moving from one side of the screen to the other in the direc-
tion specified by the Di entry.

R The new page simply replaces the old one with no special transition ef-
fect; the D entry is ignored.

Fly (PDF 1.5) Changes are flown out or in (as specified by M), in the direc-
tion specified by Di, to or from a location that is offscreen except when
Di is None.

Push (PDF 1.5) The old page slides off the screen while the new page slides in,
pushing the old page out in the direction specified by Di.

Cover (PDF 1.5) The new page slides on to the screen in the direction specified
by Di, covering the old page.

Uncover (PDF 1.5) The old page slides off the screen in the direction specified by
Di, uncovering the new page in the direction specified by Di.

Fade (PDF 1.5) The new page gradually becomes visible through the old one.

Interactive FeaturesCHAPTER 8
600

Figure 8.1 illustrates the relationship between transition duration (D in the transi-
tion dictionary) and display duration (Dur in the page object). Note that the tran-

D number (Optional) The duration of the transition effect, in seconds. Default value: 1.

Dm name (Optional; Split and Blinds transition styles only) The dimension in which the specified
transition effect occurs:

H Horizontal
V Vertical

Default value: H.

M name (Optional; Split, Box and Fly transition styles only) The direction of motion for the speci-
fied transition effect:

I Inward from the edges of the page
O Outward from the center of the page

Default value: I.

Di number or
name

(Optional; Wipe, Glitter, Fly, Cover, Uncover and Push transition styles only) The direction
in which the specified transition effect moves, expressed in degrees counterclockwise
starting from a left-to-right direction. (This differs from the page object’s Rotate entry,
which is measured clockwise from the top.)

The following numeric values are valid:
 0 Left to right
 90 Bottom to top (Wipe only)
180 Right to left (Wipe only)
270 Top to bottom
315 Top-left to bottom-right (Glitter only)

The only valid name value is None, which is relevant only for the Fly transition when
the value of SS is not 1.0.

Default value: 0.

SS number (Optional; PDF 1.5; Fly transition style only) The starting or ending scale at which the
changes are drawn. If M specifies an inward transition, the scale of the changes drawn
progresses from SS to 1.0 over the course of the transition. If M specifies an outward
transition, the scale of the changes drawn progresses from 1.0 to SS over the course of
the transition

Default: 1.0.

B boolean (Optional; PDF 1.5; Fly transition style only) If true, the area to be flown in is rectangu-
lar and opaque. Default: false.

KEY TYPE VALUE

Page-Level NavigationSECTION 8.3
601

sition duration specified for a page (page 2 in the figure) governs the transition to
that page from another page; the transition from the page is governed by the next
page’s transition duration.

FIGURE 8.1 Presentation timing

Example 8.7 shows the presentation parameters for a page to be displayed for 5
seconds. Before the page is displayed, there is a 3.5-second transition in which
two vertical lines sweep outward from the center to the edges of the page.

Example 8.7

10 0 obj
<< /Type /Page

 /Parent 4 0 R
 /Contents 16 0 R
 /Dur 5
 /Trans << /Type /Trans

/D 3.5
/S /Split
/Dm /V
/M /O

 >>
>>

endobj

Sub-page Navigation

Sub-page navigation (PDF 1.5) allows navigating not only between pages but also
between different states of the same page. For example, a single page in a PDF
presentation could have a series of bullet points that could be individually turned
on and off. In such an example, the bullets would be represented by optional con-
tent (see Section 4.10, “Optional Content”), and each state of the page would be
represented as a navigation node.

Transition from
page 1 to page 2 Page 2 displayed

Transition from
page 2 to page 3

Transition duration
for page 2

Display duration for page 2 Transition duration
for page 3

.

Interactive FeaturesCHAPTER 8
602

Note: Viewer applications should save the state of optional content groups when a
user enters presentation mode and restore it when presentation mode ends. This en-
sures, for example, that transient changes to bullets do not affect the printing of the
document.

A navigation node dictionary (see Table 8.14) specifies actions to execute when
the user makes a navigation request; for example, by pressing an arrow key. The
navigation nodes on a page form a doubly linked list by means of their Next and
Prev entries. The primary node on a page is determined by the optional PresSteps
entry in a page dictionary (see Table 3.27).

Note: It is recommended that a viewer application respect navigation nodes only
when in presentation mode (see Section 8.3.3, “Presentations”).

TABLE 8.14 Entries in a navigation node dictionary

A viewer application should support the notion of a current navigation node.
When a user navigates to a page, if the page dictionary has a PresSteps entry, the
node specified by that entry becomes the current node. (Otherwise, there is no
current node.) If there is a request to navigate forward (such as an arrow key
press) and there is a current navigation node, the following occurs:

1. The sequence of actions specified by NA (if present) is executed.

Note: If NA specifies an action that navigates to another page, the actions de-
scribed below for navigating to another page take place, and Next should not be
present.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; must be NavNode
for a navigation node dictionary.

NA dictionary (Optional) The sequence of actions to execute when a user navigates forward.

PA dictionary (Optional) The sequence of actions to execute when a user navigates backward.

Next dictionary (Optional) The next navigation node, if any.

Prev dictionary (Optional) The previous navigation node, if any.

Dur number (Optional) The maximum number of seconds before the viewer application should
automatically advance forward to the next navigation node. If this entry is not spec-
ified, no automatic advance should occur.

Page-Level NavigationSECTION 8.3
603

2. The node specified by Next (if present) becomes the new current navigation
node.

Similarly, if there is a request to navigate backward and there is a current naviga-
tion node, the following occurs:

1. The sequence of actions specified by PA (if present) is executed.

Note: If PA specifies an action that navigates to another page, the actions de-
scribed below for navigating to another page take place, and Prev should not be
present.

2. The node specified by Prev (if present) becomes the new current navigation
node.

When navigating between nodes, it is possible to specify transition effects. These
effects are similar to the page transitions specified in the previous section. How-
ever, they use a different mechanism; see “Transition Actions” on page 670.

Note: “Forward” and “backward” are determined by user actions, such as pressing
right or left arrow keys, not by the actual page that is the destination of an action.

If there is a request to navigate to another page (regardless of whether there is a
current node) and that page’s dictionary contains a PresSteps entry, the following
occurs:

1. The navigation node represented by PresSteps becomes the current node.

2. If the navigation request was forward, or if the navigation request was for ran-
dom access (such as by clicking on a link), the actions specified by NA are exe-
cuted and the node specified by Next becomes the new current node, as
described above.

If the navigation request was backward, the actions specified by PA are execut-
ed and the node specified by Prev becomes the new current node, as described
above.

3. The viewer application makes the new page the current page and displays it.
Any page transitions specified by the Trans entry of the page dictionary are
performed.

Interactive FeaturesCHAPTER 8
604

8.4 Annotations

An annotation associates an object such as a note, sound, or movie with a location
on a page of a PDF document, or provides a way to interact with the user by
means of the mouse and keyboard. PDF includes a wide variety of standard an-
notation types, described in detail in Section 8.4.5, “Annotation Types.”

Many of the standard annotation types may be displayed in either the open or the
closed state. When closed, they appear on the page in some distinctive form, such
as an icon, a box, or a rubber stamp, depending on the specific annotation type.
When the user activates the annotation by clicking it, it exhibits its associated ob-
ject, such as by opening a pop-up window displaying a text note (Figure 8.2) or by
playing a sound or a movie.

FIGURE 8.2 Open annotation

Viewer applications may permit the user to navigate through the annotations on
a page by using the keyboard (in particular, the tab key); see implementation note
77 in Appendix H. Beginning with PDF 1.5, PDF producers may make the navi-

WE HAVE BEEN TRACKING GREAT EMPLOYEES SINCE 1981,
when we began research on our book The 100 Best
Companies to Work for in America. From our database of
more than 1,000 companies, we selected 238 as the most
viable candidates for this list. Of this group, 161 agreed to
participate. (To be eligible, a company must be at least ten
years old and have a minimum of 500 employees.)
 We asked each candidate company to distribute to 225
randomly selected employees the Great Place to Work
Trust Index. This employee survey was designed by the
Great Place to Work Institute of San Francisco to evaluate
trust in management, pride in work/company, and
camaraderie. Responses were returned directly to us.
 Each company was also required to fill out the Hewitt
People Practices Inventory, a comprehensive 29-page
questionnaire designed by our partner in this project,
Hewitt Associates of Lincolnshire, Ill., a leading
management consulting firm. Finally we asked each of our
candidates to send us additional corporate materials, such

This is the text associated with the
highlight annotation.

Comment

Anno ta tionsSECTION 8.4
605

gation order explicit with the optional Tabs entry in a page object (see Table 3.27).
The following are the possible values for this entry:

• R (row order): Annotations are visited in rows running horizontally across the
page. The direction within a row is determined by the Direction entry in the
viewer preferences dictionary (see Section 8.1, “Viewer Preferences”). The first
annotation visited is the first annotation in the topmost row. When the end of a
row is encountered, the first annotation in the next row is visited.

• C (column order): Annotations are visited in columns running vertically up
and down the page. Columns are ordered by the Direction entry in the viewer
preferences dictionary (see Section 8.1, “Viewer Preferences”). The first anno-
tation visited is the one at the top of the first column. When the end of a col-
umn is encountered, the first annotation in the next column is visited.

• S (structure order): Annotations are visited in the order in which they appear in
the structure tree (see Section 10.6, “Logical Structure”). The order for annota-
tions that are not included in the structure tree is application-dependent.

Note: The descriptions above assume the page is being viewed in the orientation
specified by the Rotate entry.

The behavior of each annotation type is implemented by a software module
called an annotation handler. Handlers for the standard annotation types are built
directly into the PDF viewer application; handlers for additional types can be
supplied as plug-in extensions.

8.4.1 Annotation Dictionaries

The optional Annots entry in a page object (see “Page Objects” on page 144)
holds an array of annotation dictionaries, each representing an annotation associ-
ated with the given page. Table 8.15 shows the required and optional entries that
are common to all annotation dictionaries. The dictionary may contain addition-
al entries specific to a particular annotation type; see the descriptions of individ-
ual annotation types in Section 8.4.5, “Annotation Types,” for details.

Note: A given annotation dictionary may be referenced from the Annots array of
only one page. Attempting to share an annotation dictionary among multiple pages
produces unpredictable behavior. This requirement applies only to the annotation
dictionary itself, not to subsidiary objects, which can be shared among multiple an-
notations without causing any difficulty.

Interactive FeaturesCHAPTER 8
606

TABLE 8.15 Entries common to all annotation dictionaries

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Annot for an annotation dictionary.

Subtype name (Required) The type of annotation that this dictionary describes; see Table 8.20
on page 615 for specific values.

Rect rectangle (Required) The annotation rectangle, defining the location of the annotation on
the page in default user space units.

Contents text string (Optional) Text to be displayed for the annotation or, if this type of annotation
does not display text, an alternate description of the annotation’s contents in
human-readable form. In either case, this text is useful when extracting the
document’s contents in support of accessibility to users with disabilities or for
other purposes (see Section 10.8.2, “Alternate Descriptions”). See Section 8.4.5,
“Annotation Types” for more details on the meaning of this entry for each an-
notation type.

P dictionary (Optional; PDF 1.3; not used in FDF files) An indirect reference to the page ob-
ject with which this annotation is associated.

Note: This entry is required for screen annotations associated with rendition ac-
tions (PDF 1.5; see “Screen Annotations” on page 639 and “Rendition Actions” on
page 668).

NM text string (Optional; PDF 1.4) The annotation name, a text string uniquely identifying it
among all the annotations on its page.

M date or
text string

(Optional; PDF 1.1) The date and time when the annotation was most recently
modified. The preferred format is a date string as described in Section 3.8.3,
“Dates,” but viewer applications should be prepared to accept and display a
string in any format. (See implementation note 78 in Appendix H.)

F integer (Optional; PDF 1.1) A set of flags specifying various characteristics of the anno-
tation (see Section 8.4.2, “Annotation Flags”). Default value: 0.

AP dictionary (Optional; PDF 1.2) An appearance dictionary specifying how the annotation is
presented visually on the page (see Section 8.4.4, “Appearance Streams” and
also implementation note 79 in Appendix H). Individual annotation handlers
may ignore this entry and provide their own appearances.

Anno ta tionsSECTION 8.4
607

AS name (Required if the appearance dictionary AP contains one or more subdictionaries;
PDF 1.2) The annotation’s appearance state, which selects the applicable
appearance stream from an appearance subdictionary (see Section 8.4.4, “Ap-
pearance Streams” and also implementation note 79 in Appendix H).

Border array (Optional) An array specifying the characteristics of the annotation’s border.
The border is specified as a rounded rectangle.

In PDF 1.0, the array consists of three numbers defining the horizontal corner
radius, vertical corner radius, and border width, all in default user space units.
If the corner radii are 0, the border has square (not rounded) corners; if the
border width is 0, no border is drawn. (See implementation note 81 in Appen-
dix H.)

In PDF 1.1, the array may have a fourth element, an optional dash array
defining a pattern of dashes and gaps to be used in drawing the border. The
dash array is specified in the same format as in the line dash pattern parameter
of the graphics state (see “Line Dash Pattern” on page 217). For example, a Bor-
der value of [0 0 1 [3 2]] specifies a border 1 unit wide, with square corners,
drawn with 3-unit dashes alternating with 2-unit gaps. Note that no dash phase
is specified; the phase is assumed to be 0. (See implementation note 82 in Ap-
pendix H.)

Note: In PDF 1.2 or later, this entry may be ignored in favor of the BS entry (see
above); see implementation note 82 in Appendix H.

Default value: [0 0 1].

C array (Optional; PDF 1.1) An array of numbers in the range 0.0 to 1.0, representing a
color used for the following purposes:

• The background of the annotation’s icon when closed

• The title bar of the annotation’s pop-up window

• The border of a link annotation

The number of array elements determines the color space in which the color is
defined:

0 No color; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
608

8.4.2 Annotation Flags

The value of the annotation dictionary’s F entry is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the annotation. Bit positions
within the flag word are numbered from 1 (low-order) to 32 (high-order). Table
8.16 shows the meanings of the flags; all undefined flag bits are reserved and must
be set to 0.

TABLE 8.16 Annotation flags

StructParent integer (Required if the annotation is a structural content item; PDF 1.3) The integer key
of the annotation’s entry in the structural parent tree (see “Finding Structure El-
ements from Content Items” on page 868).

OC dictionary (Optional; PDF 1.5) An optional content group or optional content member-
ship dictionary (see Section 4.10, “Optional Content”) specifying the optional
content properties for the annotation. Before the annotation is drawn, its visi-
bility is determined based on this entry as well as the annotation flags specified
in the F entry (see Section 8.4.2, “Annotation Flags”). If it is determined to be
invisible, the annotation is skipped, as if it were not in the document.

BIT POSITION NAME MEANING

1 Invisible If set, do not display the annotation if it does not belong to one of the stan-
dard annotation types and no annotation handler is available. If clear, display
such an unknown annotation using an appearance stream specified by its ap-
pearance dictionary, if any (see Section 8.4.4, “Appearance Streams”).

2 Hidden (PDF 1.2) If set, do not display or print the annotation or allow it to interact
with the user, regardless of its annotation type or whether an annotation
handler is available. In cases where screen space is limited, the ability to hide
and show annotations selectively can be used in combination with appearance
streams (see Section 8.4.4, “Appearance Streams”) to display auxiliary pop-up
information similar in function to online help systems. (See implementation
note 83 in Appendix H.)

3 Print (PDF 1.2) If set, print the annotation when the page is printed. If clear, never
print the annotation, regardless of whether it is displayed on the screen. This
can be useful, for example, for annotations representing interactive pushbut-
tons, which would serve no meaningful purpose on the printed page. (See
implementation note 83 in Appendix H.)

KEY TYPE VALUE

Anno ta tionsSECTION 8.4
609

If the NoZoom flag is set, the annotation always maintains the same fixed size on
the screen and is unaffected by the magnification level at which the page itself is
displayed. Similarly, if the NoRotate flag is set, the annotation retains its original
orientation on the screen when the page is rotated (by changing the Rotate entry
in the page object; see “Page Objects” on page 144).

4 NoZoom (PDF 1.3) If set, do not scale the annotation’s appearance to match the magni-
fication of the page. The location of the annotation on the page (defined by
the upper-left corner of its annotation rectangle) remains fixed, regardless of
the page magnification. See below for further discussion.

5 NoRotate (PDF 1.3) If set, do not rotate the annotation’s appearance to match the rota-
tion of the page. The upper-left corner of the annotation rectangle remains in
a fixed location on the page, regardless of the page rotation. See below for fur-
ther discussion.

6 NoView (PDF 1.3) If set, do not display the annotation on the screen or allow it to
interact with the user. The annotation may be printed (depending on the
setting of the Print flag) but should be considered hidden for purposes of on-
screen display and user interaction.

7 ReadOnly (PDF 1.3) If set, do not allow the annotation to interact with the user. The
annotation may be displayed or printed (depending on the settings of the
NoView and Print flags) but should not respond to mouse clicks or change its
appearance in response to mouse motions.

Note: This flag is ignored for widget annotations; its function is subsumed by the
ReadOnly flag of the associated form field (see Table 8.70 on page 676).

8 Locked (PDF 1.4) If set, do not allow the annotation to be deleted or its properties (in-
cluding position and size) to be modified by the user. However, this flag does
not restrict changes to the annotation’s contents, such as the value of a form
field. (See implementation note 84 in Appendix H.)

9 ToggleNoView (PDF 1.5) If set, invert the interpretation of the NoView flag for certain
events. A typical use is to have an annotation that appears only when a mouse
cursor is held over it; see implementation note 85 in Appendix H.

10 LockedContents (PDF 1.7) If set, do not allow the contents of the annotation to be modified by
the user. This flag does not restrict deletion of the annotation or changes to
other annotation properties, such as position and size.

BIT POSITION NAME MEANING

Interactive FeaturesCHAPTER 8
610

In either case, the annotation’s position is determined by the coordinates of the
upper-left corner of its annotation rectangle, as defined by the Rect entry in the
annotation dictionary and interpreted in the default user space of the page. When
the default user space is scaled or rotated, the positions of the other three corners
of the annotation rectangle are different in the altered user space than they were
in the original user space. The viewer application performs this alteration auto-
matically. However, it does not actually change the annotation’s Rect entry, which
continues to describe the annotation’s relationship with the unscaled, unrotated
user space.

For example, Figure 8.3 shows how an annotation whose NoRotate flag is set re-
mains upright when the page it is on is rotated 90 degrees clockwise. The upper-
left corner of the annotation remains at the same point in default user space; the
annotation pivots around that point.

FIGURE 8.3 Coordinate adjustment with the NoRotate flag

8.4.3 Border Styles

An annotation may optionally be surrounded by a border when displayed or
printed. If present, the border is drawn completely inside the annotation rec-
tangle. In PDF 1.1, the characteristics of the border are specified by the Border
entry in the annotation dictionary (see Table 8.15 on page 606). Beginning with

Before page rotation

abcdefghijklm
nopqrstuvwxyz

(0, 0)

After page rotation

abcdefghijklm
nopqrstuvw

xyz

(0, 0)

Anno ta tionsSECTION 8.4
611

PDF 1.2, some types of annotations may instead specify their border characteris-
tics in a border style dictionary designated by the annotation’s BS entry. Such dic-
tionaries are also used to specify the width and dash pattern for the lines drawn
by line, square, circle, and ink annotations. Table 8.17 summarizes the contents of
the border style dictionary. If neither the Border nor the BS entry is present, the
border is drawn as a solid line with a width of 1 point.

TABLE 8.17 Entries in a border style dictionary

Beginning with PDF 1.5, some annotations (square, circle, and polygon) can have
a BE entry, which is a border effect dictionary that specifies an effect to be applied
to the border of the annotations. Beginning with PDF 1.6, the free text annotation
can also have a BE entry. Table 8.18 describes the entries in a border effect dictio-
nary.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Border for a border style dictionary.

W number (Optional) The border width in points. If this value is 0, no border is drawn. Default
value: 1.

S name (Optional) The border style:

S (Solid) A solid rectangle surrounding the annotation.

D (Dashed) A dashed rectangle surrounding the annotation. The dash pattern
is specified by the D entry (see below).

B (Beveled) A simulated embossed rectangle that appears to be raised above the
surface of the page.

I (Inset) A simulated engraved rectangle that appears to be recessed below the
surface of the page.

U (Underline) A single line along the bottom of the annotation rectangle.

Other border styles may be defined in the future. Default value: S.

D array (Optional) A dash array defining a pattern of dashes and gaps to be used in drawing a
dashed border (border style D above). The dash array is specified in the same format
as in the line dash pattern parameter of the graphics state (see “Line Dash Pattern” on
page 217). The dash phase is not specified and is assumed to be 0. For example, a D
entry of [3 2] specifies a border drawn with 3-point dashes alternating with 2-point
gaps. Default value: [3].

Interactive FeaturesCHAPTER 8
612

TABLE 8.18 Entries in a border effect dictionary

8.4.4 Appearance Streams

Beginning with PDF 1.2, an annotation can specify one or more appearance
streams as an alternative to the simple border and color characteristics available
in earlier versions. Appearance streams enable the annotation to be presented vi-
sually in different ways to reflect its interactions with the user. Each appearance
stream is a form XObject (see Section 4.9, “Form XObjects”): a self-contained
content stream to be rendered inside the annotation rectangle.

The following method is used to map from the coordinate system of the appear-
ance XObject (as defined by its Matrix entry; see Table 4.45) to the annotation’s
rectangle in default user space:

Algorithm 8.1

1. The appearance’s bounding box (specified by its BBox entry) is transformed, using
Matrix, to produce a quadrilateral with arbitrary orientation. The transformed ap-
pearance box is the smallest upright rectangle that encompasses this quadrilateral.

2. A matrix A is computed that scales and translates the transformed appearance box
to align with the edges of the annotation’s rectangle (specified by the Rect entry). A
maps the lower-left corner (the corner with the smallest x and y coordinates) and
the upper-right corner (the corner with the greatest x and y coordinates) of the
transformed appearance box to the corresponding corners of the annotation’s
rectangle.

3. Matrix is concatenated with A to form a matrix AA that maps from the appearance’s
coordinate system to the annotation’s rectangle in default user space:

AA = A × Matrix

KEY TYPE VALUE

S name (Optional) A name representing the border effect to apply. Possible values are:

S No effect: the border is as described by the annotation dictionary’s BS entry.

C The border should appear “cloudy”. The width and dash array specified by BS
are honored.

Default value: S.

I number (Optional; valid only if the value of S is C) A number describing the intensity of the ef-
fect. Suggested values range from 0 to 2. Default value: 0.

Anno ta tionsSECTION 8.4
613

The annotation may be further scaled and rotated if either the NoZoom or
NoRotate flag is set (see Section 8.4.2, “Annotation Flags”). Any transformation
applied to the annotation as a whole is also applied to the appearance within it.

In PDF 1.4, an annotation appearance can include transparency. If the appear-
ance’s stream dictionary does not contain a Group entry, it is treated as a non-iso-
lated, non-knockout transparency group. Otherwise, the isolated and knockout
values specified in the group dictionary (see Section 7.5.5, “Transparency Group
XObjects”) are used.

The transparency group is composited with a backdrop consisting of the page
content along with any previously painted annotations, using a blend mode of
Normal, an alpha constant of 1.0, and a soft mask of None. (See implementation
note 87 in Appendix H.)

Note: If a transparent annotation appearance is painted over an annotation that is
drawn without using an appearance stream, the effect is implementation-depen-
dent. This is because such annotations are sometimes drawn by means that do not
conform to the Adobe imaging model. Also, the effect of highlighting a transparent
annotation appearance is implementation-dependent.

An annotation can define as many as three separate appearances:

• The normal appearance is used when the annotation is not interacting with the
user. This appearance is also used for printing the annotation.

• The rollover appearance is used when the user moves the cursor into the anno-
tation’s active area without pressing the mouse button.

• The down appearance is used when the mouse button is pressed or held down
within the annotation’s active area.

Note: As used here, the term mouse denotes a generic pointing device that controls
the location of a cursor on the screen and has at least one button that can be pressed,
held down, and released. See Section 8.5.2, “Trigger Events,” for further discussion.

The normal, rollover, and down appearances are defined in an appearance
dictionary, which in turn is the value of the AP entry in the annotation dictionary
(see Table 8.15 on page 606). Table 8.19 shows the contents of the appearance dic-
tionary.

Interactive FeaturesCHAPTER 8
614

TABLE 8.19 Entries in an appearance dictionary

Each entry in the appearance dictionary may contain either a single appearance
stream or an appearance subdictionary. In the latter case, the subdictionary de-
fines multiple appearance streams corresponding to different appearance states of
the annotation.

For example, an annotation representing an interactive check box might have two
appearance states named On and Off. Its appearance dictionary might be defined
as

/AP << /N << /On formXObject1
 /Off formXObject2

 >>
 /D << /On formXObject3

 /Off formXObject4
 >>

 >>

where formXObject1 and formXObject2 define the check box’s normal appearance
in its checked and unchecked states, and formXObject3 and formXObject4 provide
visual feedback, such as emboldening its outline, when the user clicks it. (No R
entry is defined because no special appearance is needed when the user moves
the cursor over the check box without pressing the mouse button.) The choice be-
tween the checked and unchecked appearance states is determined by the AS en-
try in the annotation dictionary (see Table 8.15 on page 606).

Note: Some of the standard PDF annotation types, such as movie annotations—as
well as all custom annotation types defined by third parties—are implemented
through plug-in extensions. If the plug-in for a particular annotation type is not
available, PDF viewer applications should display the annotation with its normal
(N) appearance. Viewer applications should also attempt to provide reasonable be-

KEY TYPE VALUE

N stream or dictionary (Required) The annotation’s normal appearance.

R stream or dictionary (Optional) The annotation’s rollover appearance. Default value: the value of
the N entry.

D stream or dictionary (Optional) The annotation’s down appearance. Default value: the value of the
N entry.

Anno ta tionsSECTION 8.4
615

havior (such as displaying nothing) if an annotation’s AS entry designates an ap-
pearance state for which no appearance is defined in the appearance dictionary.

For convenience in managing appearance streams that are used repeatedly, the AP
entry in a PDF document’s name dictionary (see Section 3.6.3, “Name Diction-
ary”) can contain a name tree mapping name strings to appearance streams. The
name strings have no standard meanings; no PDF objects refer to appearance
streams by name.

8.4.5 Annotation Types

PDF supports the standard annotation types listed in Table 8.20. The following
sections describe each of these types in detail. Plug-in extensions may add new
annotation types, and further standard types may be added in the future. (See im-
plementation note 88 in Appendix H.)

The values in the first column of Table 8.20 represent the value of the annotation
dictionary’s Subtype entry. The third column indicates whether the annotation is
a markup annotation, as described in “Markup Annotations,” below. The section
also provides more information about the value of the Contents entry for differ-
ent annotation types.

TABLE 8.20 Annotation types

ANNOTATION TYPE DESCRIPTION MARKUP? DISCUSSED IN SECTION

Text Text annotation Yes “Text Annotations” on page 621

Link Link annotation No “Link Annotations” on page 622

FreeText (PDF 1.3) Free text annotation Yes “Free Text Annotations” on page 623

Line (PDF 1.3) Line annotation Yes “Line Annotations” on page 626

Square (PDF 1.3) Square annotation Yes “Square and Circle Annotations” on page 630

Circle (PDF 1.3) Circle annotation Yes “Square and Circle Annotations” on page 630

Polygon (PDF 1.5) Polygon annotation Yes “Polygon and Polyline Annotations” on page
632

PolyLine (PDF 1.5) Polyline annotation Yes “Polygon and Polyline Annotations” on page
632

Interactive FeaturesCHAPTER 8
616

Markup Annotations

As mentioned in Section 8.4.1, “Annotation Dictionaries”, the meaning of an an-
notation’s Contents entry varies by annotation type. Typically, it is the text to be
displayed for the annotation or, if the annotation does not display text, an alter-
nate description of the annotation’s contents in human-readable form. In either
case, the Contents entry is useful when extracting the document’s contents in
support of accessibility to users with disabilities or for other purposes (see Sec-
tion 10.8.2, “Alternate Descriptions”).

Highlight (PDF 1.3) Highlight annotation Yes “Text Markup Annotations” on page 633

Underline (PDF 1.3) Underline annotation Yes “Text Markup Annotations” on page 633

Squiggly (PDF 1.4) Squiggly-underline
annotation

Yes “Text Markup Annotations” on page 633

StrikeOut (PDF 1.3) Strikeout annotation Yes “Text Markup Annotations” on page 633

Stamp (PDF 1.3) Rubber stamp annotation Yes “Rubber Stamp Annotations” on page 635

Caret (PDF 1.5) Caret annotation Yes “Caret Annotations” on page 634

Ink (PDF 1.3) Ink annotation Yes “Ink Annotations” on page 636

Popup (PDF 1.3) Pop-up annotation No “Pop-up Annotations” on page 637

FileAttachment (PDF 1.3) File attachment
annotation

Yes “File Attachment Annotations” on page 637

Sound (PDF 1.2) Sound annotation Yes “Sound Annotations” on page 638

Movie (PDF 1.2) Movie annotation No “Movie Annotations” on page 639

Widget (PDF 1.2) Widget annotation No “Widget Annotations” on page 640

Screen (PDF 1.5) Screen annotation No “Screen Annotations” on page 639

PrinterMark (PDF 1.4) Printer’s mark annotation No “Printer’s Mark Annotations” on page 643

TrapNet (PDF 1.3) Trap network annotation No “Trap Network Annotations” on page 643

Watermark (PDF 1.6) Watermark annotation No “Watermark Annotations” on page 644

3D (PDF 1.6) 3D annotation No “3D Annotations” on page 791

ANNOTATION TYPE DESCRIPTION MARKUP? DISCUSSED IN SECTION

Anno ta tionsSECTION 8.4
617

Many annotation types are defined as markup annotations because they are used
primarily to mark up PDF documents (see Table 8.20). These annotations have
text that appears as part of the annotation and may be displayed in other ways by
a viewer application, such as in a Comments pane.

Markup annotations can be divided into the following groups:

• Free text annotations display text directly on the page. The annotation’s
Contents entry specifies the displayed text.

• Most other markup annotations have an associated pop-up window that may
contain text. The annotation’s Contents entry specifies the text to be displayed
when the pop-up window is opened. These include text, line, square, circle,
polygon, polyline, highlight, underline, squiggly-underline, strikeout, rubber
stamp, caret, ink, and file attachment annotations.

• Sound annotations do not have a pop-up window but may also have associated
text specified by the Contents entry.

Note: When separating text into paragraphs, a carriage return should be used (and
not, for example, a line feed character).

Note: A subset of markup annotations are called text markup annotations (see
“Text Markup Annotations” on page 633).

The remaining annotation types are not considered markup annotations:

• The pop-up annotation type typically does not appear by itself; it is associated
with a markup annotation that uses it to display text.

Note: The Contents entry for a pop-up annotation is relevant only if it has no par-
ent; in that case, it represents the text of the annotation.

• For all other annotation types (Link, Movie, Widget, PrinterMark, and TrapNet),
the Contents entry provides an alternate representation of the annotation’s con-
tents in human-readable form, which is useful when extracting the document’s
contents in support of accessibility to users with disabilities or for other pur-
poses (see Section 10.8.2, “Alternate Descriptions”).

Table 8.21 lists entries that apply to all markup annotations.

Interactive FeaturesCHAPTER 8
618

TABLE 8.21 Additional entries specific to markup annotations

KEY TYPE VALUE

T text string (Optional; PDF 1.1) The text label to be displayed in the title bar of the annota-
tion’s pop-up window when open and active. By convention, this entry identifies
the user who added the annotation.

Popup dictionary (Optional; PDF 1.3) An indirect reference to a pop-up annotation for entering or
editing the text associated with this annotation.

CA number (Optional; PDF 1.4) The constant opacity value to be used in painting the anno-
tation (see Sections 7.1, “Overview of Transparency,” and 7.2.6, “Shape and
Opacity Computations”). This value applies to all visible elements of the annota-
tion in its closed state (including its background and border) but not to the pop-
up window that appears when the annotation is opened.

The specified value is not used if the annotation has an appearance stream (see
Section 8.4.4, “Appearance Streams”); in that case, the appearance stream must
specify any transparency. (However, if the viewer regenerates the annotation’s
appearance stream, it may incorporate the CA value into the stream’s content.)

The implicit blend mode (see Section 7.2.4, “Blend Mode”) is Normal. Default
value: 1.0.

Note: If no explicit appearance stream is defined for the annotation, it is painted by
implementation-dependent means that do not necessarily conform to the Adobe
imaging model; in this case, the effect of this entry is implementation-dependent as
well.

RC text string or
text stream

(Optional; PDF 1.5) A rich text string (see “Rich Text Strings” on page 680) to be
displayed in the pop-up window when the annotation is opened.

CreationDate date (Optional; PDF 1.5) The date and time (Section 3.8.3, “Dates”) when the annota-
tion was created.

IRT dictionary (Required if an RT entry is present, otherwise optional; PDF 1.5) A reference to the
annotation that this annotation is “in reply to.” Both annotations must be on the
same page of the document. The relationship between the two annotations is
specified by the RT entry.

If this entry is present in an FDF file (see Section 8.6.6, “Forms Data Format”),
its type is not a dictionary but a text string containing the contents of the NM en-
try of the annotation being replied to, to allow for a situation where the annota-
tion being replied to is not in the same FDF file.

Anno ta tionsSECTION 8.4
619

In PDF 1.6, a set of annotations can be grouped so that they function as a single
unit when a user interacts with them. The group consists of a primary annotation,
which must not have an IRT entry, and one or more subordinate annotations,
which must have an IRT entry that refers to the primary annotation and an RT en-
try whose value is Group.

Some entries in the primary annotation are treated as “group attributes” that
should apply to the group as a whole; the corresponding entries in the subordi-

Subj text string (Optional; PDF 1.5) Text representing a short description of the subject being
addressed by the annotation.

RT name (Optional; meaningful only if IRT is present; PDF 1.6) A name specifying the rela-
tionship (the “reply type”) between this annotation and one specified by IRT. Val-
id values are:

R The annotation is considered a reply to the annotation specified by
IRT. Viewer applications should not display replies to an annotation
individually but together in the form of threaded comments.

Group The annotation is grouped with the annotation specified by IRT; see
discussion below.

Default value: R.

IT name (Optional; PDF 1.6) A name describing the intent of the markup annotation. In-
tents allow viewer applications to distinguish between different uses and behav-
iors of a single markup annotation type. If this entry is not present or its value is
the same as the annotation type, the annotation has no explicit intent and should
behave in a generic manner in a viewer application.

Free text annotations (Table 8.25), line annotations (Table 8.26), polygon anno-
tations (Table 8.29), and (in PDF 1.7) polyline annotations (Table 8.29) have de-
fined intents, whose values are enumerated in the corresponding tables.

ExData dictionary (Optional; PDF 1.7) An external data dictionary specifying data to be associated
with the annotation. This dictionary contains the following entries:

Type (optional): If present, must be ExData.
Subtype (required): a name specifying the type of data that the markup anno-

tation is associated with. In PDF 1.7, the only defined value is
Markup3D.

For each value of Subtype, other entries are defined. Table 9.48 on page 835
lists the values that correspond to a subtype of Markup3D. (See also
implementation note 96 in Appendix H.)

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
620

nate annotations should be ignored. These entries are Contents (or RC and DS),
M, C, T, Popup, CreationDate, Subj, and Open. Operations that manipulate any
annotation in a group, such as movement, cut, and copy, should be treated by
viewer applications as acting on the entire group.

Note: A primary annotation may have replies that are not subordinate annotations;
that is, that do not have an RT value of Group.

Annotation States

Beginning with PDF 1.5, annotations may have an author-specific state associated
with them. The state is not specified in the annotation itself but in a separate text
annotation that refers to the original annotation by means of its IRT (“in reply to”)
entry (see Table 8.24). States are grouped into a number of state models, as shown
in Table 8.22.

TABLE 8.22 Annotation states

Annotations can be thought of as initially being in the default state for each state
model. State changes made by a user are indicated in a text annotation with the
following entries:

• The T entry (see Table 8.21) specifies the user.

• The IRT entry (see Table 8.24)refers to the original annotation.

• State and StateModel (see Table 8.23) update the state of the original annota-
tion for the specified user.

STATE MODEL STATE DESCRIPTION

Marked Marked The annotation has been marked by the user.

Unmarked The annotation has not been marked by the user (the default).

Review Accepted The user agrees with the change.

Rejected The user disagrees with the change.

Cancelled The change has been cancelled.

Completed The change has been completed.

None The user has indicated nothing about the change (the default).

Anno ta tionsSECTION 8.4
621

Additional state changes are made by adding text annotations in reply to the pre-
vious reply for a given user.

Text Annotations

A text annotation represents a “sticky note” attached to a point in the PDF docu-
ment. When closed, the annotation appears as an icon; when open, it displays a
pop-up window containing the text of the note in a font and size chosen by the
viewer application. Text annotations do not scale and rotate with the page; they
behave as if the NoZoom and NoRotate annotation flags (see Table 8.16 on page
608) were always set. Table 8.23 shows the annotation dictionary entries specific
to this type of annotation.

TABLE 8.23 Additional entries specific to a text annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Text
for a text annotation.

Open boolean (Optional) A flag specifying whether the annotation should initially be displayed
open. Default value: false (closed).

Name name (Optional) The name of an icon to be used in displaying the annotation. Viewer
applications should provide predefined icon appearances for at least the follow-
ing standard names:

Comment Key Note
Help NewParagraph Paragraph
Insert

Additional names may be supported as well. Default value: Note.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Name entry; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

State text string (Optional; PDF 1.5) The state to which the original annotation should be set; see
“Annotation States,” above.

Default: “Unmarked” if StateModel is “Marked”; “None” if StateModel is “Re-
view”.

StateModel text string (Required if State is present, otherwise optional; PDF 1.5) The state model corre-
sponding to State; see “Annotation States,” above.

Interactive FeaturesCHAPTER 8
622

Example 8.8 shows the definition of a text annotation.

Example 8.8

22 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [266 116 430 204]
 /Contents (The quick brown fox ate the lazy mouse .)

>>
endobj

Link Annotations

A link annotation represents either a hypertext link to a destination elsewhere in
the document (see Section 8.2.1, “Destinations”) or an action to be performed
(Section 8.5, “Actions”). Table 8.24 shows the annotation dictionary entries spe-
cific to this type of annotation.

TABLE 8.24 Additional entries specific to a link annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Link
for a link annotation.

A dictionary (Optional; PDF 1.1) An action to be performed when the link annotation is ac-
tivated (see Section 8.5, “Actions”).

Dest array, name or
byte string

(Optional; not permitted if an A entry is present) A destination to be displayed
when the annotation is activated (see Section 8.2.1, “Destinations”; see also im-
plementation note 89 in Appendix H).

H name (Optional; PDF 1.2) The annotation’s highlighting mode, the visual effect to be
used when the mouse button is pressed or held down inside its active area:

N (None) No highlighting.
I (Invert) Invert the contents of the annotation rectangle.
O (Outline) Invert the annotation’s border.
P (Push) Display the annotation as if it were being pushed below the sur-

face of the page; see implementation note 90 in Appendix H.
Default value: I.
Note: In PDF 1.1, highlighting is always done by inverting colors inside the anno-
tation rectangle.

Anno ta tionsSECTION 8.4
623

Example 8.9 shows a link annotation that jumps to a destination elsewhere in the
document.

Example 8.9

93 0 obj
<< /Type /Annot

 /Subtype /Link
 /Rect [71 717 190 734]
 /Border [16 16 1]
 /Dest [3 0 R /FitR –4 399 199 533]

>>
endobj

Free Text Annotations

A free text annotation (PDF 1.3) displays text directly on the page. Unlike an ordi-
nary text annotation (see “Text Annotations” on page 621), a free text annotation
has no open or closed state; instead of being displayed in a pop-up window, the
text is always visible. Table 8.25 shows the annotation dictionary entries specific
to this type of annotation. “Variable Text” on page 677 describes the process of
using these entries to generate the appearance of the text in these annotations.

PA dictionary (Optional; PDF 1.3) A URI action (see “URI Actions” on page 662) formerly
associated with this annotation. When Web Capture (Section 10.9, “Web Cap-
ture”) changes an annotation from a URI to a go-to action (“Go-To Actions”
on page 654), it uses this entry to save the data from the original URI action so
that it can be changed back in case the target page for the go-to action is subse-
quently deleted.

QuadPoints array (Optional; PDF 1.6) An array of 8 × n numbers specifying the coordinates of n
quadrilaterals in default user space that comprise the region in which the link
should be activated. The coordinates for each quadrilateral are given in the order

x1 y1 x2 y2 x3 y3 x4 y4

specifying the four vertices of the quadrilateral in counterclockwise order. For
orientation purposes, such as when applying an underline border style, the
bottom of a quadrilateral is the line formed by (x1 , y1) and (x2 , y2).

If this entry is not present or the viewer application does not recognize it, the
region specified by the Rect entry should be used. QuadPoints should be ig-
nored if any coordinate in the array lies outside the region specified by Rect.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
624

TABLE 8.25 Additional entries specific to a free text annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
FreeText for a free text annotation.

DA string (Required) The default appearance string to be used in formatting the text (see
“Variable Text” on page 677).

Note: The annotation dictionary’s AP entry, if present, takes precedence over the DA
entry; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

Q integer (Optional; PDF 1.4) A code specifying the form of quadding (justification) to be
used in displaying the annotation’s text:

0 Left-justified
1 Centered
2 Right-justified

Default value: 0 (left-justified).

RC text string or
text stream

(Optional; PDF 1.5) A rich text string (see “Rich Text Strings” on page 680) to be
used to generate the appearance of the annotation.

DS text string (Optional; PDF 1.5) A default style string, as described in “Rich Text Strings” on
page 680.

CL array (Optional; PDF 1.6) An array of four or six numbers specifying a callout line at-
tached to the free text annotation. Six numbers [x1 y1 x2 y2 x3 y3] represent
the starting, knee point, and ending coordinates of the line in default user space,
as shown in Figure 8.4. Four numbers [x1 y1 x2 y2] represent the starting and
ending coordinates of the line.

IT name (Optional; PDF 1.6) A name describing the intent of the free text annotation (see
also Table 8.21). Valid values are FreeTextCallout, which means that the annota-
tion is intended to function as a callout, and FreeTextTypeWriter, which means
that the annotation is intended to function as a click-to-type or typewriter ob-
ject.

BE dictionary (Optional; PDF 1.6) A border effect dictionary (see Table 8.18) used in conjunc-
tion with the border style dictionary specified by the BS entry.

Anno ta tionsSECTION 8.4
625

FIGURE 8.4 Free text annotation with callout

RD rectangle (Optional; PDF 1.6) A set of four numbers describing the numerical differences
between two rectangles: the Rect entry of the annotation and a rectangle con-
tained within that rectangle. The inner rectangle is where the annotation’s text
should be displayed. Any border styles and/or border effects specified by BS and
BE entries, respectively, are applied to the border of the inner rectangle.

The four numbers correspond to the differences in default user space between
the left, top, right, and bottom coordinates of Rect and those of the inner rectan-
gle, respectively. Each value must be greater than or equal to 0. The sum of the
top and bottom differences must be less than the height of Rect, and the sum of
the left and right differences must be less than the width of Rect.

BS dictionary (Optional; PDF 1.6) A border style dictionary (see Table 8.17 on page 611) speci-
fying the line width and dash pattern to be used in drawing the annotation’s bor-
der.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the In-
kList and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance
Streams.”

LE array (Optional; PDF 1.6) An array of two names specifying the line ending styles to be
used in drawing the annotation’s border. The first and second elements of the ar-
ray specify the line ending styles for the endpoints defined, respectively, by the
first and second pairs of coordinates, (x1 , y1) and (x2 , y2), in the L array. Table
8.27 shows the possible values. Default value: [/None /None].

KEY TYPE VALUE

Free text with callouts

x3, y3

x2, y2

x1, y1

Interactive FeaturesCHAPTER 8
626

Line Annotations

A line annotation (PDF 1.3) displays a single straight line on the page. When
opened, it displays a pop-up window containing the text of the associated note.
Table 8.26 shows the annotation dictionary entries specific to this type of anno-
tation.

TABLE 8.26 Additional entries specific to a line annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Line
for a line annotation.

L array (Required) An array of four numbers, [x1 y1 x2 y2], specifying the starting and
ending coordinates of the line in default user space.

Note: If the LL entry is present, this value represents the endpoints of the leader
lines rather than the endpoints of the line itself; see Figure 8.5.

BS dictionary (Optional) A border style dictionary (see Table 8.17 on page 611) specifying the
width and dash pattern to be used in drawing the line.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the L
and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

LE array (Optional; PDF 1.4) An array of two names specifying the line ending styles to be
used in drawing the line. The first and second elements of the array specify the
line ending styles for the endpoints defined, respectively, by the first and second
pairs of coordinates, (x1 , y1) and (x2 , y2), in the L array. Table 8.27 shows the
possible values. Default value: [/None /None].

IC array (Optional; PDF 1.4) An array of numbers in the range 0.0 to 1.0 specifying the
interior color with which to fill the annotation’s line endings (see Table 8.27). The
number of array elements determines the color space in which the color is de-
fined:

0 No color; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

Anno ta tionsSECTION 8.4
627

LL number (Required if LLE is present, otherwise optional; PDF 1.6) The length of leader lines
in default user space that extend from each endpoint of the line perpendicular to
the line itself, as shown in Figure 8.5. A positive value means that the leader lines
appear in the direction that is clockwise when traversing the line from its start-
ing point to its ending point (as specified by L); a negative value indicates the op-
posite direction.

Default value: 0 (no leader lines).

LLE number (Optional; PDF 1.6) A non-negative number representing the length of leader
line extensions that extend from the line proper 180 degrees from the leader
lines, as shown in Figure 8.5.

Default value: 0 (no leader line extensions).

Cap boolean (Optional; PDF 1.6) If true, the text specified by the Contents or RC entries
should be replicated as a caption in the appearance of the line, as shown in Fig-
ure 8.6 and Figure 8.7. The text should be rendered in a manner appropriate to
the content, taking into account factors such as writing direction.

Default value: false.

IT name (Optional; PDF 1.6) A name describing the intent of the line annotation (see also
Table 8.21). Valid values are LineArrow, which means that the annotation is in-
tended to function as an arrow, and LineDimension, which means that the anno-
tation is intended to function as a dimension line.

LLO number (Optional; PDF 1.7) A non-negative number representing the length of the lead-
er line offset, which is the amount of empty space between the endpoints of the
annotation and the beginning of the leader lines.

CP name (Optional; meaningful only if Cap is true; PDF 1.7) A name describing the anno-
tation’s caption positioning. Valid values are Inline, meaning the caption will be
centered inside the line, and Top, meaning the caption will be on top of the line.

Default value: Inline

Measure dictionary (Optional; PDF 1.7) A measure dictionary (see Table 8.110) that specifies the
scale and units that apply to the line annotation.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
628

FIGURE 8.5 Leader lines

CO array (Optional; meaningful only if Cap is true; PDF 1.7) An array of two numbers
specifying the offset of the caption text from its normal position. The first value
is the horizontal offset along the annotation line from its midpoint, with a posi-
tive value indicating offset to the right and a negative value indicating offset to
the left. The second value is the vertical offset perpendicular to the annotation
line, with a positive value indicating a shift up and a negative value indicating a
shift down.

Default value: [0, 0] (no offset from normal positioning)

KEY TYPE VALUE

/LLE 10 -- 10 point leader
line extension

/LL 50 -- 50 point leader line

/LLO 10 -- 10 point leader
line offset

/LL -50 -- 50 point inverse
leader line

/LLE 10 -- 10 point leader
line extension

/LLO 10 -- 10 point leader
line offset

Anno ta tionsSECTION 8.4
629

Figure 8.6 illustrates the effect of including a caption to a line annotation, which
is specified by setting Cap to true.

FIGURE 8.6 Lines with captions appearing as part of the line

Figure 8.7 illustrates the effect of applying a caption to a line annotation that has a
leader offset.

FIGURE 8.7 Line with a caption appearing as part of the offset

This is an inside caption

This is a caption that is longer than the line

This is a top caption

This is an offset caption
/CO [30, 15] -- 30 point horizontal offset along the annotation line
and 15 point vertical offset perpendicular to the annotation line

Interactive FeaturesCHAPTER 8
630

TABLE 8.27 Line ending styles

Square and Circle Annotations

Square and circle annotations (PDF 1.3) display, respectively, a rectangle or an
ellipse on the page. When opened, they display a pop-up window containing the
text of the associated note. The rectangle or ellipse is inscribed within the annota-
tion rectangle defined by the annotation dictionary’s Rect entry (see Table 8.15 on
page 606). Figure 8.8 shows two annotations, each with a border width of 18
points. Despite the names square and circle, the width and height of the annota-
tion rectangle need not be equal. Table 8.28 shows the annotation dictionary en-
tries specific to these types of annotations.

NAME APPEARANCE DESCRIPTION

Square A square filled with the annotation’s interior color, if any

Circle A circle filled with the annotation’s interior color, if any

Diamond A diamond shape filled with the annotation’s interior color, if any

OpenArrow Two short lines meeting in an acute angle to form an open arrowhead

ClosedArrow Two short lines meeting in an acute angle as in the OpenArrow style (see
above) and connected by a third line to form a triangular closed arrowhead
filled with the annotation’s interior color, if any

None No line ending

Butt (PDF 1.5) A short line at the endpoint perpendicular to the line itself

ROpenArrow (PDF 1.5) Two short lines in the reverse direction from OpenArrow

RClosedArrow (PDF 1.5) A triangular closed arrowhead in the reverse direction from
ClosedArrow

Slash (PDF 1.6) A short line at the endpoint approximately 30 degrees clockwise
from perpendicular to the line itself

Anno ta tionsSECTION 8.4
631

FIGURE 8.8 Square and circle annotations

TABLE 8.28 Additional entries specific to a square or circle annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Square
or Circle for a square or circle annotation, respectively.

BS dictionary (Optional) A border style dictionary (see Table 8.17 on page 611) specifying the
line width and dash pattern to be used in drawing the rectangle or ellipse.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Rect and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance
Streams.”

IC array (Optional; PDF 1.4) An array of numbers in the range 0.0 to 1.0 specifying the
interior color with which to fill the annotation’s rectangle or ellipse. The number
of array elements determines the color space in which the color is defined:

0 No color; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BE dictionary (Optional; PDF 1.5) A border effect dictionary describing an effect applied to the
border described by the BS entry (see Table 8.18).

18 pt 18 pt

Rect

Square annotation Circle annotation

Interactive FeaturesCHAPTER 8
632

Polygon and Polyline Annotations

Polygon annotations (PDF 1.5) display closed polygons on the page. Such poly-
gons may have any number of vertices connected by straight lines. Polyline anno-
tations (PDF 1.5) are similar to polygons, except that the first and last vertex are
not implicitly connected.

TABLE 8.29 Additional entries specific to a polygon or polyline annotation

RD rectangle (Optional; PDF 1.5) A set of four numbers describing the numerical differences
between two rectangles: the Rect entry of the annotation and the actual bound-
aries of the underlying square or circle. Such a difference can occur in situations
where a border effect (described by BE) causes the size of the Rect to increase be-
yond that of the square or circle.

The four numbers correspond to the differences in default user space between
the left, top, right, and bottom coordinates of Rect and those of the square or cir-
cle, respectively. Each value must be greater than or equal to 0. The sum of the
top and bottom differences must be less than the height of Rect, and the sum of
the left and right differences must be less than the width of Rect.

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
Polygon or PolyLine for a polygon or polyline annotation, respectively.

Vertices array (Required) An array of numbers representing the alternating horizontal and ver-
tical coordinates, respectively, of each vertex, in default user space.

LE array (Optional; meaningful only for polyline annotations) An array of two names spec-
ifying the line ending styles. The first and second elements of the array specify
the line ending styles for the endpoints defined, respectively, by the first and last
pairs of coordinates in the Vertices array. Table 8.27 shows the possible values.
Default value: [/None /None].

BS dictionary (Optional) A border style dictionary (see Table 8.17 on page 611) specifying the
width and dash pattern to be used in drawing the line.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Vertices and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance
Streams.”

KEY TYPE VALUE

Anno ta tionsSECTION 8.4
633

Text Markup Annotations

Text markup annotations appear as highlights, underlines, strikeouts (all PDF
1.3), or jagged (“squiggly”) underlines (PDF 1.4) in the text of a document. When
opened, they display a pop-up window containing the text of the associated note.
Table 8.30 shows the annotation dictionary entries specific to these types of an-
notations.

IC array (Optional; PDF 1.4) An array of numbers in the range 0.0 to 1.0 specifying the
interior color with which to fill the annotation’s line endings (see Table 8.27). The
number of array elements determines the color space in which the color is de-
fined:

0 No color; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BE dictionary (Optional; meaningful only for polygon annotations) A border effect dictionary de-
scribing an effect applied to the border described by the BS entry (see Table
8.18).

IT name (Optional; PDF 1.6) A name describing the intent of the polygon or polyline an-
notation (see also Table 8.21). The following values are valid:

PolygonCloud, which means that the annotation is intended to function as a
cloud object

PolyLineDimension (PDF 1.7), which indicates that the polyline annotation is
intended to function as a dimension

PolygonDimension (PDF 1.7), which indicates that the polygon annotation is
intended to function as a dimension

Measure dictionary (Optional; PDF 1.7) A measure dictionary (see Table 8.110) that specifies the
scale and units that apply to the annotation.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
634

TABLE 8.30 Additional entries specific to text markup annotations

FIGURE 8.9 QuadPoints specification

Caret Annotations

A caret annotation (PDF 1.5) is a visual symbol that indicates the presence of text
edits. Table 8.31 lists the entries specific to caret annotations.

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
Highlight, Underline, Squiggly, or StrikeOut for a highlight, underline,
squiggly-underline, or strikeout annotation, respectively.

QuadPoints array (Required) An array of 8 × n numbers specifying the coordinates of n quadri-
laterals in default user space. Each quadrilateral encompasses a word or
group of contiguous words in the text underlying the annotation. The coordi-
nates for each quadrilateral are given in the order

x1 y1 x2 y2 x3 y3 x4 y4

specifying the quadrilateral’s four vertices in counterclockwise order (see
Figure 8.9). The text is oriented with respect to the edge connecting points
(x1 , y1) and (x2 , y2). (See implementation note 92 in Appendix H.)

Note: The annotation dictionary’s AP entry, if present, takes precedence over
QuadPoints; see Table 8.15 and Section 8.4.4, “Appearance Streams.”

Jupiter
(x3 , y3)

(x2 , y2)

(x1 , y1)

(x4 , y4)

Anno ta tionsSECTION 8.4
635

TABLE 8.31 Additional entries specific to a caret annotation

Rubber Stamp Annotations

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as
if they were stamped on the page with a rubber stamp. When opened, it displays a
pop-up window containing the text of the associated note. Table 8.32 shows the
annotation dictionary entries specific to this type of annotation.

TABLE 8.32 Additional entries specific to a rubber stamp annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Caret
for a caret annotation.

RD rectangle (Optional; PDF 1.5) A set of four numbers describing the numerical differences
between two rectangles: the Rect entry of the annotation and the actual bound-
aries of the underlying caret. Such a difference can occur, for example, when a
paragraph symbol specified by Sy is displayed along with the caret.

The four numbers correspond to the differences in default user space between
the left, top, right, and bottom coordinates of Rect and those of the caret, respec-
tively. Each value must be greater than or equal to 0. The sum of the top and bot-
tom differences must be less than the height of Rect, and the sum of the left and
right differences must be less than the width of Rect.

Sy name (Optional) A name specifying a symbol to be associated with the caret:

P A new paragraph symbol (¶) should be associated with the caret.
None No symbol should be associated with the caret.

Default value: None.

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Stamp
for a rubber stamp annotation.

Interactive FeaturesCHAPTER 8
636

Ink Annotations

An ink annotation (PDF 1.3) represents a freehand “scribble” composed of one or
more disjoint paths. When opened, it displays a pop-up window containing the
text of the associated note. Table 8.33 shows the annotation dictionary entries
specific to this type of annotation.

TABLE 8.33 Additional entries specific to an ink annotation

Name name (Optional) The name of an icon to be used in displaying the annotation. Viewer
applications should provide predefined icon appearances for at least the follow-
ing standard names:

Approved Experimental NotApproved
AsIs Expired NotForPublicRelease
Confidential Final Sold
Departmental ForComment TopSecret
Draft ForPublicRelease

Additional names may be supported as well. Default value: Draft.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Name entry; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Ink for
an ink annotation.

InkList array (Required) An array of n arrays, each representing a stroked path. Each array is a
series of alternating horizontal and vertical coordinates in default user space,
specifying points along the path. When drawn, the points are connected by
straight lines or curves in an implementation-dependent way. (See implementa-
tion note 93 in Appendix H.)

BS dictionary (Optional) A border style dictionary (see Table 8.17 on page 611) specifying the
line width and dash pattern to be used in drawing the paths.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the In-
kList and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance
Streams.”

KEY TYPE VALUE

Anno ta tionsSECTION 8.4
637

Pop-up Annotations

A pop-up annotation (PDF 1.3) displays text in a pop-up window for entry and
editing. It typically does not appear alone but is associated with a markup annota-
tion, its parent annotation, and is used for editing the parent’s text. It has no
appearance stream or associated actions of its own and is identified by the Popup
entry in the parent’s annotation dictionary (see Table 8.21 on page 618). Table
8.34 shows the annotation dictionary entries specific to this type of annotation.

TABLE 8.34 Additional entries specific to a pop-up annotation

File Attachment Annotations

A file attachment annotation (PDF 1.3) contains a reference to a file, which typi-
cally is embedded in the PDF file (see Section 3.10.3, “Embedded File Streams”);
see implementation note 95 in Appendix H. For example, a table of data might
use a file attachment annotation to link to a spreadsheet file based on that data;
activating the annotation extracts the embedded file and gives the user an oppor-
tunity to view it or store it in the file system. Table 8.35 shows the annotation dic-
tionary entries specific to this type of annotation.

The Contents entry of the annotation dictionary may specify descriptive text re-
lating to the attached file. Viewer applications should use this entry rather than
the optional Desc entry (PDF 1.6) in the file specification dictionary (see Table
3.41) identified by the annotation’s FS entry; see implementation note 95 in Ap-
pendix H.

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
Popup for a pop-up annotation.

Parent dictionary (Optional; must be an indirect reference) The parent annotation with which
this pop-up annotation is associated.

Note: If this entry is present, the parent annotation’s Contents, M, C, and T
entries (see Table 8.15 on page 606) override those of the pop-up annotation
itself.

Open boolean (Optional) A flag specifying whether the pop-up annotation should initially
be displayed open. Default value: false (closed).

Interactive FeaturesCHAPTER 8
638

TABLE 8.35 Additional entries specific to a file attachment annotation

Sound Annotations

A sound annotation (PDF 1.2) is analogous to a text annotation except that in-
stead of a text note, it contains sound recorded from the computer’s microphone
or imported from a file. When the annotation is activated, the sound is played.
The annotation behaves like a text annotation in most ways, with a different icon
(by default, a speaker) to indicate that it represents a sound. Table 8.36 shows the
annotation dictionary entries specific to this type of annotation. Sound objects
are discussed in Section 9.2, “Sounds.”

TABLE 8.36 Additional entries specific to a sound annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
FileAttachment for a file attachment annotation.

FS file specification (Required) The file associated with this annotation.

Name name (Optional) The name of an icon to be used in displaying the annotation.
Viewer applications should provide predefined icon appearances for at least
the following standard names:

Graph PushPin
Paperclip Tag

Additional names may be supported as well. Default value: PushPin.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Name entry; see Table 8.15 on page 606 and Section 8.4.4, “Appearance
Streams.”

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Sound
for a sound annotation.

Sound stream (Required) A sound object defining the sound to be played when the annotation
is activated (see Section 9.2, “Sounds”).

Anno ta tionsSECTION 8.4
639

Movie Annotations

A movie annotation (PDF 1.2) contains animated graphics and sound to be pre-
sented on the computer screen and through the speakers. When the annotation is
activated, the movie is played. Table 8.37 shows the annotation dictionary entries
specific to this type of annotation. Movies are discussed in Section 9.3, “Movies.”

TABLE 8.37 Additional entries specific to a movie annotation

Screen Annotations

A screen annotation (PDF 1.5) specifies a region of a page upon which media clips
may be played. It also serves as an object from which actions can be triggered.
“Rendition Actions” on page 668 discusses the relationship between screen anno-
tations and rendition actions. Table 8.38 shows the annotation dictionary entries
specific to this type of annotation.

Name name (Optional) The name of an icon to be used in displaying the annotation. Viewer
applications should provide predefined icon appearances for at least the stan-
dard names Speaker and Mic. Additional names may be supported as well. De-
fault value: Speaker.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the
Name entry; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Movie
for a movie annotation.

T text string (Optional) The title of the movie annotation. Movie actions (page 664) can use
this title to reference the movie annotation.

Movie dictionary (Required) A movie dictionary describing the movie’s static characteristics (see
Section 9.3, “Movies”).

A boolean or
dictionary

(Optional) A flag or dictionary specifying whether and how to play the movie
when the annotation is activated. If this value is a dictionary, it is a movie activa-
tion dictionary (see Section 9.3, “Movies”) specifying how to play the movie. If
the value is the boolean true, the movie should be played using default activation
parameters. If the value is false, the movie should not be played. Default value:
true.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
640

TABLE 8.38 Additional entries specific to a screen annotation

In addition to the above entries, screen annotations use the common entries in
the annotation dictionary (see Table 8.15) in the following ways:

• The P entry is required for a screen annotation referenced by a rendition ac-
tion. It must reference a valid page object, and the annotation must be present
in the page’s Annots array for the action to be valid.

• The AP entry refers to an appearance dictionary (see Table 8.19) whose normal
appearance provides the visual appearance for a screen annotation that is used
for printing and default display when a media clip is not being played. If AP is
not present, the screen annotation has no default visual appearance and is not
printed.

Widget Annotations

Interactive forms (see Section 8.6, “Interactive Forms”) use widget annotations
(PDF 1.2) to represent the appearance of fields and to manage user interactions.
As a convenience, when a field has only a single associated widget annotation, the
contents of the field dictionary (Section 8.6.2, “Field Dictionaries”) and the anno-
tation dictionary can be merged into a single dictionary containing entries that
pertain to both a field and an annotation. (This presents no ambiguity, since the
contents of the two kinds of dictionaries do not conflict.) Table 8.39 shows the

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Screen
for a screen annotation.

T text string (Optional) The title of the screen annotation.

MK dictionary (Optional) An appearance characteristics dictionary (see Table 8.40). The I entry
of this dictionary provides the icon used in generating the appearance referred
to by the screen annotation’s AP entry.

A dictionary (Optional; PDF 1.1) An action to be performed when the annotation is activated
(see Section 8.5, “Actions”).

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the screen anno-
tation’s behavior in response to various trigger events (see Section 8.5.2, “Trigger
Events”).

Anno ta tionsSECTION 8.4
641

annotation dictionary entries specific to this type of annotation; interactive forms
and fields are discussed at length in Section 8.6.

TABLE 8.39 Additional entries specific to a widget annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be Widget
for a widget annotation.

H name (Optional) The annotation’s highlighting mode, the visual effect to be used when
the mouse button is pressed or held down inside its active area:

N (None) No highlighting.

I (Invert) Invert the contents of the annotation rectangle.

O (Outline) Invert the annotation’s border.

P (Push) Display the annotation’s down appearance, if any (see Section
8.4.4, “Appearance Streams”). If no down appearance is defined, offset
the contents of the annotation rectangle to appear as if it were being
pushed below the surface of the page.

T (Toggle) Same as P (which is preferred).

A highlighting mode other than P overrides any down appearance defined for
the annotation. Default value: I.

MK dictionary (Optional) An appearance characteristics dictionary (see Table 8.40) to be used
in constructing a dynamic appearance stream specifying the annotation’s visual
presentation on the page.

The name MK for this entry is of historical significance only and has no direct
meaning.

A dictionary (Optional; PDF 1.1) An action to be performed when the annotation is activated
(see Section 8.5, “Actions”).

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the annotation’s
behavior in response to various trigger events (see Section 8.5.2, “Trigger
Events”).

BS dictionary (Optional; PDF 1.2) A border style dictionary (see Table 8.17 on page 611) speci-
fying the width and dash pattern to be used in drawing the annotation’s border.

Note: The annotation dictionary’s AP entry, if present, takes precedence over the L
and BS entries; see Table 8.15 on page 606 and Section 8.4.4, “Appearance Streams.”

Interactive FeaturesCHAPTER 8
642

The MK entry can be used to provide an appearance characteristics dictionary con-
taining additional information for constructing the annotation’s appearance
stream. Table 8.40 shows the contents of this dictionary.

TABLE 8.40 Entries in an appearance characteristics dictionary

KEY TYPE VALUE

R integer (Optional) The number of degrees by which the widget annotation is rotated
counterclockwise relative to the page. The value must be a multiple of 90.
Default value: 0.

BC array (Optional) An array of numbers in the range 0.0 to 1.0 specifying the color of the
widget annotation’s border. The number of array elements determines the color
space in which the color is defined:

0 No color; transparent
1 DeviceGray
3 DeviceRGB
4 DeviceCMYK

BG array (Optional) An array of numbers in the range 0.0 to 1.0 specifying the color of the
widget annotation’s background. The number of array elements determines the
color space, as described above for BC.

CA text string (Optional; button fields only) The widget annotation’s normal caption, displayed
when it is not interacting with the user.

Note: Unlike the remaining entries listed below, which apply only to widget annota-
tions associated with pushbutton fields (see “Pushbuttons” on page 686), the CA
entry can be used with any type of button field, including check boxes (“Check Box-
es” on page 686) and radio buttons (“Radio Buttons” on page 688).

RC text string (Optional; pushbutton fields only) The widget annotation’s rollover caption, dis-
played when the user rolls the cursor into its active area without pressing the
mouse button.

AC text string (Optional; pushbutton fields only) The widget annotation’s alternate (down)
caption, displayed when the mouse button is pressed within its active area.

I stream (Optional; pushbutton fields only; must be an indirect reference) A form XObject
defining the widget annotation’s normal icon, displayed when it is not interacting
with the user.

Anno ta tionsSECTION 8.4
643

Printer’s Mark Annotations

A printer’s mark annotation (PDF 1.4) represents a graphic symbol, such as a
registration target, color bar, or cut mark, added to a page to assist production
personnel in identifying components of a multiple-plate job and maintaining
consistent output during production. See Section 10.10.2, “Printer’s Marks,” for
further discussion.

Trap Network Annotations

A trap network annotation (PDF 1.3) defines the trapping characteristics for a
page of a PDF document. (Trapping is the process of adding marks to a page
along color boundaries to avoid unwanted visual artifacts resulting from mis-
registration of colorants when the page is printed.) A page may have at most one

RI stream (Optional; pushbutton fields only; must be an indirect reference) A form XObject
defining the widget annotation’s rollover icon, displayed when the user rolls the
cursor into its active area without pressing the mouse button.

IX stream (Optional; pushbutton fields only; must be an indirect reference) A form XObject
defining the widget annotation’s alternate (down) icon, displayed when the
mouse button is pressed within its active area.

IF dictionary (Optional; pushbutton fields only) An icon fit dictionary (see Table 8.97 on page
719) specifying how to display the widget annotation’s icon within its annotation
rectangle. If present, the icon fit dictionary applies to all of the annotation’s icons
(normal, rollover, and alternate).

TP integer (Optional; pushbutton fields only) A code indicating where to position the text of
the widget annotation’s caption relative to its icon:

0 No icon; caption only
1 No caption; icon only
2 Caption below the icon
3 Caption above the icon
4 Caption to the right of the icon
5 Caption to the left of the icon
6 Caption overlaid directly on the icon

Default value: 0.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
644

trap network annotation, whose Subtype entry has the value TrapNet and which
is always the last element in the page object’s Annots array (see “Page Objects” on
page 144). See Section 10.10.5, “Trapping Support,” for further discussion.

Watermark Annotations

A watermark annotation (PDF 1.6) is used to represent graphics that are expected
to be printed at a fixed size and position on a page, regardless of the dimensions
of the printed page. The FixedPrint entry of a watermark annotation dictionary
(see Table 8.41) is a dictionary that contains values for specifying the size and po-
sition of the annotation (see Table 8.42).

Watermark annotations have no pop-up window or other interactive elements.
When displaying a watermark annotation on-screen, viewer applications should
use the dimensions of the media box as the page size so that the scroll and zoom
behavior is the same as for other annotations.

Note: Since many printing devices have nonprintable margins, it is recommended
that such margins be taken into consideration when positioning watermark annota-
tions near the edge of a page.

TABLE 8.41 Additional entries specific to a watermark annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
Watermark for a watermark annotation.

FixedPrint dictionary (Optional) A fixed print dictionary (see Table 8.42) that specifies how this anno-
tation should be drawn relative to the dimensions of the target media. If this en-
try is not present, the annotation is drawn without any special consideration for
the dimensions of the target media.

Note: If the dimensions of the target media are not known at the time of drawing,
drawing is done relative to the dimensions specified by the page’s MediaBox entry
(see Table 3.27).

Anno ta tionsSECTION 8.4
645

TABLE 8.42 Entries in a fixed print dictionary

When rendering a watermark annotation with a FixedPrint entry, the following
behavior occurs:

• The annotation’s rectangle (as specified by its Rect entry) is translated to the or-
igin and transformed by the Matrix entry of its FixedPrint dictionary to produce
a quadrilateral with arbitrary orientation.

• The transformed annotation rectangle is defined as the smallest upright rectan-
gle that encompasses this quadrilateral; it is used in place of the annotation
rectangle referred to in steps 2 and 3 of Algorithm 8.1 on page 612.

In addition, given a matrix B that maps a scaled and rotated page into the default
user space, a new matrix is computed that cancels out B and translates the origin
of the printed page to the origin of the default user space. This transformation is
applied to ensure the correct scaling and alignment.

Example 8.10 shows a watermark annotation that prints a text string one inch
from the left and one inch from the top of the printed page.

KEY TYPE VALUE

Type name (Required) Must be FixedPrint.

Matrix array (Optional) The matrix used to transform the annotation’s rectangle before ren-
dering.

Default value: the identity matrix [1 0 0 1 0 0].

Note: When positioning content near the edge of a page, it is recommended that
this entry be used to provide a reasonable offset to allow for nonprintable margins.

H number (Optional) The amount to translate the associated content horizontally, as a per-
centage of the width of the target media (or if unknown, the width of the page’s
MediaBox). 1.0 represents 100% and 0.0 represents 0%. Negative values are not
recommended, since they may cause content to be drawn off the page.

Default value: 0.

V number (Optional) The amount to translate the associated content vertically, as a per-
centage of the height of the target media (or if unknown, the height of the page’s
MediaBox). 1.0 represents 100% and 0.0 represents 0%. Negative values are not
recommended, since they may cause content to be drawn off the page.

Default value: 0.

Interactive FeaturesCHAPTER 8
646

Example 8.10

8 0 obj % Watermark appearance
<<

/Length ...
/Subtype /Form
/Resources ...
/BBox ...

>>
stream
...

BT
/F1 1 Tf
36 0 0 36 0 -36 Tm
(Do Not Build) Tx
ET
...

endstream
endobj

9 0 obj % Watermark annotation

<<
/Rect ...
/Type /Annot
/Subtype /Watermark
/FixedPrint 10 0 R
/AP <</N 8 0 R>>

>>

% in the page dictionary

/Annots [9 0 R]

10 0 obj % Fixed print dictionary

<<
/Type /FixedPrint
/Matrix [1 0 0 1 72 -72] % Translate one inch right and one inch down
/H 0
/V 1.0 % Translate the full height of the page vertically

>>
endobj

ActionsSECTION 8.5
647

In situations other than the usual case where the PDF page size equals the printed
page size, watermark annotations with a FixedPrint entry should be printed in the
following manner:

• When page tiling is selected in a viewer application (that is, a single PDF page
is printed on multiple pages), the annotations are printed at the specified size
and position on each page to ensure that any enclosed content is present and
legible on each printed page.

• When n-up printing is selected (that is, multiple PDF pages are printed on a
single page), the annotations are printed at the specified size and are positioned
as if the dimensions of the printed page were limited to a single portion of the
page. This ensures that any enclosed content does not overlap content from
other pages, thus rendering it illegible. (See implementation note 97 in Appen-
dix H.)

8.5 Actions

Instead of simply jumping to a destination in the document, an annotation or
outline item can specify an action (PDF 1.1) for the viewer application to per-
form, such as launching an application, playing a sound, or changing an annota-
tion’s appearance state. The optional A entry in the annotation or outline item
dictionary (see Tables 8.15 on page 606 and 8.4 on page 585) specifies an action
to be performed when the annotation or outline item is activated; in PDF 1.2, a
variety of other circumstances may trigger an action as well (see Section 8.5.2,
“Trigger Events”). In addition, the optional OpenAction entry in a document’s
catalog (Section 3.6.1, “Document Catalog”) may specify an action to be per-
formed when the document is opened. PDF includes a wide variety of standard
action types, described in detail in Section 8.5.3, “Action Types.”

8.5.1 Action Dictionaries

An action dictionary defines the characteristics and behavior of an action. Table
8.43 shows the required and optional entries that are common to all action
dictionaries. The dictionary may contain additional entries specific to a particu-
lar action type; see the descriptions of individual action types in Section 8.5.3,
“Action Types,” for details.

Interactive FeaturesCHAPTER 8
648

TABLE 8.43 Entries common to all action dictionaries

The action dictionary’s Next entry (PDF 1.2) allows sequences of actions to be
chained together. For example, the effect of clicking a link annotation with the
mouse might be to play a sound, jump to a new page, and start up a movie. Note
that the Next entry is not restricted to a single action but may contain an array of
actions, each of which in turn may have a Next entry of its own. The actions may
thus form a tree instead of a simple linked list. Actions within each Next array are
executed in order, each followed in turn by any actions specified in its Next entry,
and so on recursively. Viewer applications should attempt to provide reasonable
behavior in anomalous situations. For example, self-referential actions should not
be executed more than once, and actions that close the document or otherwise
render the next action impossible should terminate the execution sequence.
Applications should also provide some mechanism for the user to interrupt and
manually terminate a sequence of actions.

PDF 1.5 introduces transition actions, which allow the control of drawing during
a sequence of actions; see “Transition Actions” on page 670.

Note: No action should modify its own action dictionary or any other in the action
tree in which it resides. The effect of such modification on subsequent execution of
actions in the tree is undefined.

8.5.2 Trigger Events

An annotation, page object, or (beginning with PDF 1.3) interactive form field
may include an entry named AA that specifies an additional-actions dictionary
(PDF 1.2) that extends the set of events that can trigger the execution of an ac-

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be Action for an action dictionary.

S name (Required) The type of action that this dictionary describes; see Table 8.48
on page 653 for specific values.

Next dictionary or array (Optional; PDF 1.2) The next action or sequence of actions to be per-
formed after the action represented by this dictionary. The value is either
a single action dictionary or an array of action dictionaries to be per-
formed in order; see below for further discussion.

ActionsSECTION 8.5
649

tion. In PDF 1.4, the document catalog dictionary (see Section 3.6.1, “Document
Catalog”) may also contain an AA entry for trigger events affecting the document
as a whole. Tables 8.44 to 8.47 show the contents of this type of dictionary. (See
implementation notes 98 and 99 in Appendix H.)

PDF 1.5 introduces four trigger events to support multimedia presentations:

• The PO and PC entries have a similar function to the O and C entries in the page
object’s additional-actions dictionary (see Table 8.45). However, associating
these triggers with annotations allows annotation objects to be self-contained
and greatly simplifies authoring. For example, annotations containing such ac-
tions can be copied or moved between pages without requiring page open/close
actions to be changed.

• The PV and PI entries allow a distinction between pages that are open and pages
that are visible. At any one time, only a single page is considered open in the
viewer application, while more than one page may be visible, depending on the
page layout.

Note: For these trigger events, the values of the flags specified by the annotation’s F
entry (see Section 8.4.2, “Annotation Flags”) have no bearing on whether a given
trigger event occurs.

TABLE 8.44 Entries in an annotation’s additional-actions dictionary

KEY TYPE VALUE

E dictionary (Optional; PDF 1.2) An action to be performed when the cursor enters the annotation’s
active area.

X dictionary (Optional; PDF 1.2) An action to be performed when the cursor exits the annotation’s
active area.

D dictionary (Optional; PDF 1.2) An action to be performed when the mouse button is pressed
inside the annotation’s active area. (The name D stands for “down.”)

U dictionary (Optional; PDF 1.2) An action to be performed when the mouse button is released
inside the annotation’s active area. (The name U stands for “up.”)

Note: For backward compatibility, the A entry in an annotation dictionary, if present,
takes precedence over this entry (see Table 8.15 on page 606).

Fo dictionary (Optional; PDF 1.2; widget annotations only) An action to be performed when the
annotation receives the input focus.

Interactive FeaturesCHAPTER 8
650

TABLE 8.45 Entries in a page object’s additional-actions dictionary

Bl dictionary (Optional; PDF 1.2; widget annotations only) (Uppercase B, lowercase L) An action to
be performed when the annotation loses the input focus. (The name Bl stands for
“blurred.”)

PO dictionary (Optional; PDF 1.5) An action to be performed when the page containing the annota-
tion is opened (for example, when the user navigates to it from the next or previous
page or by means of a link annotation or outline item). The action is executed after the
O action in the page’s additional-actions dictionary (see Table 8.45) and the
OpenAction entry in the document catalog (see Table 3.25), if such actions are present.

PC dictionary (Optional; PDF 1.5) An action to be performed when the page containing the annota-
tion is closed (for example, when the user navigates to the next or previous page, or fol-
lows a link annotation or outline item). The action is executed before the C action in
the page’s additional-actions dictionary (see Table 8.45), if present.

PV dictionary (Optional; PDF 1.5) An action to be performed when the page containing the annota-
tion becomes visible in the viewer application’s user interface.

PI dictionary (Optional; PDF 1.5) An action to be performed when the page containing the annota-
tion is no longer visible in the viewer application’s user interface.

KEY TYPE VALUE

O dictionary (Optional; PDF 1.2) An action to be performed when the page is opened (for example,
when the user navigates to it from the next or previous page or by means of a link an-
notation or outline item). This action is independent of any that may be defined by the
OpenAction entry in the document catalog (see Section 3.6.1, “Document Catalog”)
and is executed after such an action. (See implementation note 100 in Appendix H.)

C dictionary (Optional; PDF 1.2) An action to be performed when the page is closed (for example,
when the user navigates to the next or previous page or follows a link annotation or an
outline item). This action applies to the page being closed and is executed before any
other page is opened. (See implementation note 100 in Appendix H.)

KEY TYPE VALUE

ActionsSECTION 8.5
651

TABLE 8.46 Entries in a form field’s additional-actions dictionary

TABLE 8.47 Entries in the document catalog’s additional-actions dictionary

For purposes of the trigger events E (enter), X (exit), D (down), and U (up), the
term mouse denotes a generic pointing device with the following characteristics:

• A selection button that can be pressed, held down, and released. If there is more
than one mouse button, the selection button is typically the left button.

KEY TYPE VALUE

K dictionary (Optional; PDF 1.3) A JavaScript action to be performed when the user types a key-
stroke into a text field or combo box or modifies the selection in a scrollable list box.
This action can check the keystroke for validity and reject or modify it.

F dictionary (Optional; PDF 1.3) A JavaScript action to be performed before the field is formatted to
display its current value. This action can modify the field’s value before formatting.

V dictionary (Optional; PDF 1.3) A JavaScript action to be performed when the field’s value is
changed. This action can check the new value for validity. (The name V stands for “val-
idate.”)

C dictionary (Optional; PDF 1.3) A JavaScript action to be performed to recalculate the value of this
field when that of another field changes. (The name C stands for “calculate.”) The order
in which the document’s fields are recalculated is defined by the CO entry in the inter-
active form dictionary (see Section 8.6.1, “Interactive Form Dictionary”).

KEY TYPE VALUE

WC dictionary (Optional; PDF 1.4) A JavaScript action to be performed before closing a document.
(The name WC stands for “will close.”)

WS dictionary (Optional; PDF 1.4) A JavaScript action to be performed before saving a document.
(The name WS stands for “will save.”)

DS dictionary (Optional; PDF 1.4) A JavaScript action to be performed after saving a document. (The
name DS stands for “did save.”)

WP dictionary (Optional; PDF 1.4) A JavaScript action to be performed before printing a document.
(The name WP stands for “will print.”)

DP dictionary (Optional; PDF 1.4) A JavaScript action to be performed after printing a document.
(The name DP stands for “did print.”)

Interactive FeaturesCHAPTER 8
652

• A notion of location—that is, an indication of where on the screen the device is
pointing. Location is typically denoted by a screen cursor.

• A notion of focus—that is, which element in the document is currently interact-
ing with the user. In many systems, this element is denoted by a blinking caret,
a focus rectangle, or a color change.

PDF viewer applications must ensure the presence of such a device for the corre-
sponding actions to be executed correctly. Mouse-related trigger events are sub-
ject to the following constraints:

• An E (enter) event can occur only when the mouse button is up.

• An X (exit) event cannot occur without a preceding E event.

• A U (up) event cannot occur without a preceding E and D event.

• In the case of overlapping or nested annotations, entering a second annotation’s
active area causes an X event to occur for the first annotation.

Note: The field-related trigger events K (keystroke), F (format), V (validate), and C
(calculate) are not defined for button fields (see “Button Fields” on page 685). The
effects of an action triggered by one of these events are limited only by the action it-
self and can occur outside the described scope of the event. For example, even
though the F event is used to trigger actions that format field values prior to display,
it is possible for an action triggered by this event to perform a calculation or make
any other modification to the document.

These field-related trigger events can occur either through user interaction or pro-
grammatically, such as in response to the NeedAppearances entry in the interactive
form dictionary (see Section 8.6.1, “Interactive Form Dictionary”), importation of
FDF data (Section 8.6.6, “Forms Data Format”), or JavaScript actions (“JavaScript
Actions” on page 709). For example, the user’s modifying a field value can trigger a
cascade of calculations and further formatting and validation for other fields in the
document.

8.5.3 Action Types

PDF supports the standard action types listed in Table 8.48. The following sec-
tions describe each of these types in detail. Plug-in extensions may add new
action types.

ActionsSECTION 8.5
653

TABLE 8.48 Action types

Note: Previous versions of the PDF specification described an action type known as
the set-state action; this type of action is now considered obsolete and its use is no
longer recommended. An additional action type, the no-op action, was defined in
PDF 1.2 but never implemented; it is no longer defined and should be ignored.

ACTION TYPE DESCRIPTION DISCUSSED IN SECTION

GoTo Go to a destination in the current document. “Go-To Actions” on page 654

GoToR (“Go-to remote”) Go to a destination in another
document.

“Remote Go-To Actions” on page 655

GoToE (“Go-to embedded”; PDF 1.6) Go to a destination in an
embedded file.

“Embedded Go-To Actions” on page
655

Launch Launch an application, usually to open a file. “Launch Actions” on page 659

Thread Begin reading an article thread. “Thread Actions” on page 661

URI Resolve a uniform resource identifier. “URI Actions” on page 662

Sound (PDF 1.2) Play a sound. “Sound Actions” on page 663

Movie (PDF 1.2) Play a movie. “Movie Actions” on page 664

Hide (PDF 1.2) Set an annotation’s Hidden flag. “Hide Actions” on page 665

Named (PDF 1.2) Execute an action predefined by the viewer
application.

“Named Actions” on page 666

SubmitForm (PDF 1.2) Send data to a uniform resource locator. “Submit-Form Actions” on page 703

ResetForm (PDF 1.2) Set fields to their default values. “Reset-Form Actions” on page 707

ImportData (PDF 1.2) Import field values from a file. “Import-Data Actions” on page 708

JavaScript (PDF 1.3) Execute a JavaScript script. “JavaScript Actions” on page 709

SetOCGState (PDF 1.5) Set the states of optional content groups. “Set-OCG-State Actions” on page 667

Rendition (PDF 1.5) Controls the playing of multimedia content. “Rendition Actions” on page 668

Trans (PDF 1.5) Updates the display of a document, using a
transition dictionary.

“Transition Actions” on page 670

GoTo3DView (PDF 1.6) Set the current view of a 3D annotation “Go-To-3D-View Actions” on page
670

Interactive FeaturesCHAPTER 8
654

Go-To Actions

A go-to action changes the view to a specified destination (page, location, and
magnification factor). Table 8.49 shows the action dictionary entries specific to
this type of action.

TABLE 8.49 Additional entries specific to a go-to action

Specifying a go-to action in the A entry of a link annotation or outline item (see
Tables 8.24 on page 622 and 8.4 on page 585) has the same effect as specifying the
destination directly with the Dest entry. For example, the link annotation shown
in Example 8.11, which uses a go-to action, has the same effect as the one in Ex-
ample 8.9 on page 623, which specifies the destination directly. However, the go-
to action is less compact and is not compatible with PDF 1.0; therefore, using a
direct destination is preferable.

Example 8.11

93 0 obj
<< /Type /Annot

 /Subtype /Link
 /Rect [71 717 190 734]
 /Border [16 16 1]
 /A << /Type /Action

 /S /GoTo
 /D [3 0 R /FitR –4 399 199 533]

 >>
>>

endobj

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be GoTo for a
go-to action.

D name,
byte string,
or array

(Required) The destination to jump to (see Section 8.2.1, “Destinations”).

ActionsSECTION 8.5
655

Remote Go-To Actions

A remote go-to action is similar to an ordinary go-to action but jumps to a desti-
nation in another PDF file instead of the current file. Table 8.50 shows the action
dictionary entries specific to this type of action.

Note: Remote go-to actions cannot be used with embedded files; see “Embedded Go-
To Actions” on page 655”.

TABLE 8.50 Additional entries specific to a remote go-to action

Embedded Go-To Actions

An embedded go-to action (PDF 1.6) is similar to a remote go-to action but allows
jumping to or from a PDF file that is embedded in another PDF file (see “Embed-
ded File Streams” on page 184). Embedded files may be associated with file at-
tachment annotations (see “File Attachment Annotations” on page 637) or with
entries in the EmbeddedFiles name tree (see Section 3.6.3, “Name Dictionary”).
Embedded files may in turn contain embedded files. Table 8.51 shows the action
dictionary entries specific to embedded go-to actions.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be GoToR
for a remote go-to action.

F file specification (Required) The file in which the destination is located.

D name,
byte string,
or array

(Required) The destination to jump to (see Section 8.2.1, “Destinations”). If
the value is an array defining an explicit destination (as described under
“Explicit Destinations” on page 582), its first element must be a page number
within the remote document rather than an indirect reference to a page ob-
ject in the current document. The first page is numbered 0.

NewWindow boolean (Optional; PDF 1.2) A flag specifying whether to open the destination docu-
ment in a new window. If this flag is false, the destination document replaces
the current document in the same window. If this entry is absent, the viewer
application should behave in accordance with the current user preference.

Interactive FeaturesCHAPTER 8
656

Embedded go-to actions provide a complete facility for linking between a file in a
hierarchy of nested embedded files and another file in the same or different hier-
archy. The following terminology is used:

• The source is the document containing the embedded go-to action.

• The target is the document in which the destination lives.

The T entry in the action dictionary is a target dictionary that locates the target
in relation to the source, in much the same way that a relative path describes
the physical relationship between two files in a file system. Target dictionaries
may be nested recursively to specify one or more intermediate targets before
reaching the final one. As the hierarchy is navigated, each intermediate target is
referred to as the current document. Initially, the source is the current docu-
ment.

Note: It is an error for a target dictionary to have an infinite cycle (for example,
one where a target dictionary refers to itself). Viewer applications should attempt
to detect such cases and refuse to execute the action if found.

• A child document is one that is embedded within another PDF file.

• The document in which a file is embedded is its parent.

• A root document is one that is not embedded in another PDF file. The target
and source may be contained in root documents or embedded documents.

TABLE 8.51 Additional entries specific to an embedded go-to action

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be GoToE
for an embedded go-to action.

F file specification (Optional) The root document of the target relative to the root document of
the source. If this entry is absent, the source and target share the same root
document.

D name,
byte string,
or array

(Required) The destination in the target to jump to (see Section 8.2.1, “Desti-
nations”).

NewWindow boolean (Optional) If true, the destination document should be opened in a new win-
dow; if false, the destination document should replace the current document
in the same window. If this entry is absent, the viewer application should hon-
or the current user preference.

ActionsSECTION 8.5
657

TABLE 8.52 Entries specific to a target dictionary

T dictionary (Optional if F is present; otherwise required) A target dictionary (see Table 8.52)
specifying path information to the target document. Each target dictionary
specifies one element in the full path to the target and may have nested target
dictionaries specifying additional elements.

KEY TYPE VALUE

R name (Required) Specifies the relationship between the current document and the
target (which may be an intermediate target). Valid values are P (the target is
the parent of the current document) and C (the target is a child of the current
document).

N byte string (Required if the value of R is C and the target is located in the EmbeddedFiles
name tree; otherwise, it must be absent) The name of the file in the
EmbeddedFiles name tree.

P integer or
byte string

(Required if the value of R is C and the target is associated with a file attachment
annotation; otherwise, it must be absent) If the value is an integer, it specifies
the page number (zero-based) in the current document containing the file at-
tachment annotation. If the value is a string, it specifies a named destination
in the current document that provides the page number of the file attachment
annotation.

A integer or text
string

(Required if the value of R is C and the target is associated with a file attachment
annotation; otherwise, it must be absent) If the value is an integer, it specifies
the index (zero-based) of the annotation in the Annots array (see Table 3.27)
of the page specified by P. If the value is a text string, it specifies the value of
NM in the annotation dictionary (see Table 8.15).

T dictionary (Optional) A target dictionary specifying additional path information to the
target document. If this entry is absent, the current document is the target file
containing the destination.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
658

Example 8.12 illustrates several possible relationships between source and target.
Each object shown is an action dictionary for an embedded go-to action.

Example 8.12

1 0 obj % Link to a child
<< /Type /Action

/S /GoToE
/D (Chapter 1)
/T << /R /C

/N (Embedded document) >>
>>

endobj

2 0 obj % Link to the parent

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/T << /R /P >>

>>
endobj

3 0 obj % Link to a sibling
<< /Type /Action

/S /GoToE
/D (Chapter 1)
/T << /R /P

/T << /R /C
/N (Another embedded document) >>

>>
>>

endobj

4 0 obj % Link to an embedded file in an external document

<< /Type /Action
/S /GoToE
/D (Chapter 1)
/F (someFile.pdf)
/T << /R /C

/N (Embedded document) >>
>>

endobj

ActionsSECTION 8.5
659

5 0 obj % Link from an embedded file to a normal file
<< /Type /Action

/S /GoToE
/D (Chapter 1)
/F (someFile.pdf)

>>
endobj

6 0 obj % Link to a grandchild
<< /Type /Action

/S /GoToE
/D (Chapter 1)
/T << /R /C

/N (Embedded document)
/T << /R /C

/P (A destination name)
/A (annotName)

>>
>>

>>
endobj

7 0 obj % Link to a niece/nephew through the source’s parent

<< /Type /Action
/S /GoToE
/D (destination)
/T << /R /P

/T << /R /C
/N (Embedded document)
/T << /R /C

/P 3
/A (annotName)

>>
>>

>>
>>

endobj

Launch Actions

A launch action launches an application or opens or prints a document. Table
8.53 shows the action dictionary entries specific to this type of action.

Interactive FeaturesCHAPTER 8
660

The optional Win, Mac, and Unix entries allow the action dictionary to include
platform-specific parameters for launching the designated application. If no
such entry is present for the given platform, the F entry is used instead. Table
8.54 shows the platform-specific launch parameters for the Windows platform.
Parameters for the Mac OS and UNIX platforms are not yet defined at the time
of publication.

TABLE 8.53 Additional entries specific to a launch action

TABLE 8.54 Entries in a Windows launch parameter dictionary

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Launch
for a launch action.

F file specification (Required if none of the entries Win, Mac, or Unix is present) The application to
be launched or the document to be opened or printed. If this entry is absent
and the viewer application does not understand any of the alternative entries,
it should do nothing.

Win dictionary (Optional) A dictionary containing Windows-specific launch parameters (see
Table 8.54; see also implementation note 101 in Appendix H).

Mac (undefined) (Optional) Mac OS–specific launch parameters; not yet defined.

Unix (undefined) (Optional) UNIX-specific launch parameters; not yet defined.

NewWindow boolean (Optional; PDF 1.2) A flag specifying whether to open the destination docu-
ment in a new window. If this flag is false, the destination document replaces
the current document in the same window. If this entry is absent, the viewer
application should behave in accordance with the current user preference.
This entry is ignored if the file designated by the F entry is not a PDF docu-
ment.

KEY TYPE VALUE

F byte string (Required) The file name of the application to be launched or the document
to be opened or printed, in standard Windows pathname format. If the name
string includes a backslash character (\), the backslash must itself be preceded
by a backslash.

Note: This value must be a simple string; it is not a file specification.

ActionsSECTION 8.5
661

Thread Actions

A thread action jumps to a specified bead on an article thread (see Section 8.3.2,
“Articles”), in either the current document or a different one. Table 8.55 shows
the action dictionary entries specific to this type of action.

TABLE 8.55 Additional entries specific to a thread action

D byte string (Optional) A bye string specifying the default directory in standard DOS syn-
tax.

O ASCII string (Optional) An ASCII string specifying the operation to perform:

open Open a document.
print Print a document.

If the F entry designates an application instead of a document, this entry is ig-
nored and the application is launched. Default value: open.

P byte string (Optional) A parameter string to be passed to the application designated by
the F entry. This entry should be omitted if F designates a document.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Thread
for a thread action.

F file specification (Optional) The file containing the thread. If this entry is absent, the thread is
in the current file.

D dictionary, integer,
or text string

(Required) The destination thread, specified in one of the following forms:

• An indirect reference to a thread dictionary (see Section 8.3.2, “Articles”).
In this case, the thread must be in the current file.

• The index of the thread within the Threads array of its document’s catalog
(see Section 3.6.1, “Document Catalog”). The first thread in the array has
index 0.

• The title of the thread as specified in its thread information dictionary (see
Table 8.11 on page 596). If two or more threads have the same title, the one
appearing first in the document catalog’s Threads array is used.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
662

URI Actions

A uniform resource identifier (URI) is a string that identifies (resolves to) a re-
source on the Internet—typically a file that is the destination of a hypertext link,
although it can also resolve to a query or other entity. (URIs are described in In-
ternet RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax; see the Bib-
liography.)

A URI action causes a URI to be resolved. Table 8.56 shows the action dictionary
entries specific to this type of action. (See implementation notes 102 and 103 in
Appendix H.)

TABLE 8.56 Additional entries specific to a URI action

If the IsMap flag is true and the user has triggered the URI action by clicking an
annotation, the coordinates of the mouse position at the time the action is per-
formed should be transformed from device space to user space and then offset
relative to the upper-left corner of the annotation rectangle (that is, the value of

B dictionary or integer (Optional) The bead in the destination thread, specified in one of the follow-
ing forms:

• An indirect reference to a bead dictionary (see Section 8.3.2, “Articles”). In
this case, the thread must be in the current file.

• The index of the bead within its thread. The first bead in a thread has
index 0.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be URI for a URI ac-
tion.

URI ASCII
string

(Required) The uniform resource identifier to resolve, encoded in 7-bit ASCII.

IsMap boolean (Optional) A flag specifying whether to track the mouse position when the URI is re-
solved (see below). Default value: false.

This entry applies only to actions triggered by the user’s clicking an annotation; it is
ignored for actions associated with outline items or with a document’s OpenAction
entry.

KEY TYPE VALUE

ActionsSECTION 8.5
663

the Rect entry in the annotation with which the URI action is associated). For ex-
ample, if the mouse coordinates in user space are (xm , ym) and the annotation
rectangle extends from (llx , lly) at the lower-left to (urx , ury) at the upper-right,
the final coordinates (xf , yf) are as follows:

If the resulting coordinates (xf , yf) are fractional, they should be rounded to the
nearest integer values. They are then appended to the URI to be resolved, separat-
ed by commas and preceded by a question mark, as shown in this example:

http : / / www . adobe . com / intro ?100 , 200

To support URI actions, a PDF document’s catalog (see Section 3.6.1, “Document
Catalog”) may include a URI entry whose value is a URI dictionary. At the time of
publication, only one entry is defined for such a dictionary (see Table 8.57).

TABLE 8.57 Entry in a URI dictionary

The Base entry allows the URI of the document to be recorded in situations in
which the document may be accessed out of context. For example, if a document
has been moved to a new location but contains relative links to other documents
that have not been moved, the Base entry could be used to refer such links to the
true location of the other documents, rather than that of the moved document.

Sound Actions

A sound action (PDF 1.2) plays a sound through the computer’s speakers. Table
8.58 shows the action dictionary entries specific to this type of action. Sounds are
discussed in Section 9.2, “Sounds.”

KEY TYPE VALUE

Base ASCII
string

(Optional) The base URI to be used in resolving relative URI references. URI actions
within the document may specify URIs in partial form, to be interpreted relative to
this base address. If no base URI is specified, such partial URIs are interpreted rela-
tive to the location of the document itself. The use of this entry is parallel to that of
the body element <BASE >, as described in the HTML 4.01 Specification (see the Bibli-
ography).

xf xm llx–=()

yf ury ym–=

Interactive FeaturesCHAPTER 8
664

TABLE 8.58 Additional entries specific to a sound action

Movie Actions

A movie action (PDF 1.2) can be used to play a movie in a floating window or
within the annotation rectangle of a movie annotation (see “Movie Annotations”
on page 639 and Section 9.3, “Movies”). The movie annotation must be asso-
ciated with the page that is the destination of the link annotation or outline item
containing the movie action, or with the page object with which the action is
associated. (See implementation note 108 in Appendix H.)

Note: A movie action by itself does not guarantee that the page the movie is on will
be displayed before attempting to play the movie; such page change actions must be
done explicitly.

The contents of a movie action dictionary are identical to those of a movie activa-
tion dictionary (see Table 9.31 on page 785), with the additional entries shown in
Table 8.59. The contents of the activation dictionary associated with the movie

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Sound
for a sound action.

Sound stream (Required) A sound object defining the sound to be played (see Section 9.2,
“Sounds”; see also implementation note 104 in Appendix H).

Volume number (Optional) The volume at which to play the sound, in the range −1.0 to 1.0;
see implementation note 106 in Appendix H. Default value: 1.0.

Synchronous boolean (Optional) A flag specifying whether to play the sound synchronously or
asynchronously; see implementation note 106 in Appendix H. If this flag is
true, the viewer application retains control, allowing no further user interac-
tion other than canceling the sound, until the sound has been completely
played. Default value: false.

Repeat boolean (Optional) A flag specifying whether to repeat the sound indefinitely. If this
entry is present, the Synchronous entry is ignored. Default value: false.

Mix boolean (Optional) A flag specifying whether to mix this sound with any other sound
already playing; see implementation note 107 in Appendix H. If this flag is
false, any previously playing sound is stopped before starting this sound; this
can be used to stop a repeating sound (see Repeat, above). Default value:
false.

ActionsSECTION 8.5
665

annotation provide the default values. Any information specified in the movie ac-
tion dictionary overrides these values.

TABLE 8.59 Additional entries specific to a movie action

Hide Actions

A hide action (PDF 1.2) hides or shows one or more annotations on the screen by
setting or clearing their Hidden flags (see Section 8.4.2, “Annotation Flags”). This
type of action can be used in combination with appearance streams and trigger
events (Sections 8.4.4, “Appearance Streams,” and 8.5.2, “Trigger Events”) to dis-
play pop-up help information on the screen. For example, the E (enter) and X (ex-
it) trigger events in an annotation’s additional-actions dictionary can be used to
show and hide the annotation when the user rolls the cursor in and out of its ac-
tive area on the page. This can be used to pop up a help label, or tool tip,
describing the effect of clicking at that location on the page. Table 8.60 shows the
action dictionary entries specific to this type of action. (See implementation
notes 109 and 110 in Appendix H.)

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Movie for a
movie action.

Annotation dictionary (Optional) An indirect reference to a movie annotation identifying the movie to be
played.

T text string (Optional) The title of a movie annotation identifying the movie to be played.

Note: The dictionary must include either an Annotation or a T entry but not both.

Operation name (Optional) The operation to be performed on the movie:

Play Start playing the movie, using the play mode specified by the dic-
tionary’s Mode entry (see Table 9.31 on page 785). If the movie is
currently paused, it is repositioned to the beginning before play-
ing (or to the starting point specified by the dictionary’s Start en-
try, if present).

Stop Stop playing the movie.

Pause Pause a playing movie.

Resume Resume a paused movie.

Default value: Play.

Interactive FeaturesCHAPTER 8
666

TABLE 8.60 Additional entries specific to a hide action

Named Actions

Table 8.61 lists several named actions (PDF 1.2) that PDF viewer applications are
expected to support; further names may be added in the future. (See implementa-
tion notes 111 and 112 in Appendix H.)

TABLE 8.61 Named actions

Note: Viewer applications may support additional, nonstandard named actions, but
any document using them is not portable. If the viewer encounters a named action
that is inappropriate for a viewing platform, or if the viewer does not recognize the
name, it should take no action.

Table 8.62 shows the action dictionary entries specific to named actions.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Hide for a hide
action.

T dictionary,
text string, or
array

(Required) The annotation or annotations to be hidden or shown, specified in any
of the following forms:

• An indirect reference to an annotation dictionary

• A text string giving the fully qualified field name of an interactive form field
whose associated widget annotation or annotations are to be affected (see “Field
Names” on page 676)

• An array of such dictionaries or text strings

H boolean (Optional) A flag indicating whether to hide the annotation (true) or show it (false).
Default value: true.

NAME ACTION

NextPage Go to the next page of the document.

PrevPage Go to the previous page of the document.

FirstPage Go to the first page of the document.

LastPage Go to the last page of the document.

ActionsSECTION 8.5
667

TABLE 8.62 Additional entries specific to named actions

Set-OCG-State Actions

A set-OCG-state action (PDF 1.5) sets the state of one or more optional content
groups (see Section 4.10, “Optional Content”). Table 8.63 shows the action dictio-
nary entries specific to this type of action.

TABLE 8.63 Additional entries specific to a set-OCG-state action

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Named for a named
action.

N name (Required) The name of the action to be performed (see Table 8.61).

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be SetOCGState
for a set-OCG-state action.

State array (Required) An array consisting of any number of sequences beginning with a name
object (ON, OFF, or Toggle) followed by one or more optional content group dictio-
naries. The array elements are processed from left to right; each name is applied to
the subsequent groups until the next name is encountered:

• ON sets the state of subsequent groups to ON

• OFF sets the state of subsequent groups to OFF

• Toggle reverses the state of subsequent groups.

PreserveRB boolean (Optional) If true, indicates that radio-button state relationships between optional
content groups (as specified by the RBGroups entry in the current configuration
dictionary; see Table 4.51 on page 376) should be preserved when the states in the
State array are applied. That is, if a group is set to ON (either by ON or Toggle) dur-
ing processing of the State array, any other groups belonging to the same radio-but-
ton group are turned OFF. If a group is set to OFF, there is no effect on other groups.

If PreserveRB is false, radio-button state relationships, if any, are ignored.

Default value: true.

Interactive FeaturesCHAPTER 8
668

When a set-OCG-state action is performed, the State array is processed from left
to right. Each name is applied to subsequent groups in the array until the next
name is encountered, as shown in the following example.

Example 8.13

<< /S /SetOCGState
/State [/OFF 2 0 R 3 0 R /Toggle 16 0 R 19 0 R /ON 5 0 R]

>>

A group can appear more than once in the State array; its state is set each time it
is encountered, based on the most recent name. For example, if the array con-
tained [/OFF 1 0 R /Toggle 1 0 R], the group’s state would be ON after the action was
performed. ON, OFF and Toggle sequences have no required order. More than
one sequence in the array may contain the same name.

Note: While the specification allows a group to appear more than once in the State
array, this is not intended to implement animation or any other sequential drawing
operations. PDF processing applications are free to accumulate all state changes and
apply only the net changes simultaneously to all affected groups before redrawing.

Rendition Actions

A rendition action (PDF 1.5) controls the playing of multimedia content (see Sec-
tion 9.1, “Multimedia”). This action can be used in the following ways:

• To begin the playing of a rendition object (see Section 9.1.2, “Renditions”), as-
sociating it with a screen annotation (see “Screen Annotations” on page 639).
The screen annotation specifies where the rendition is played unless otherwise
specified.

• To stop, pause, or resume a playing rendition.

• To trigger the execution of a JavaScript script that may perform custom opera-
tions.

Table 8.64 lists the entries in a rendition action dictionary.

ActionsSECTION 8.5
669

TABLE 8.64 Additional entries specific to a rendition action

Either the JS entry or the OP entry must be present. If both are present, OP is con-
sidered a fallback to be executed if the viewer application is unable to execute
JavaScripts. If OP has an unrecognized value and there is no JS entry, the action is
invalid.

In some situations, a pause (OP value of 2) or resume (OP value of 3) operation may
not make sense (for example, for a JPEG image) or the player may not support it. In
such cases, the user should be notified of the failure to perform the operation.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Rendition for a
rendition action.

R dictionary (Required when OP is present with a value of 0 or 4; otherwise optional) A rendition ob-
ject (see Section 9.1.2, “Renditions”).

AN dictionary (Required if OP is present with a value of 0, 1, 2, 3 or 4; otherwise optional) An indirect
reference to a screen annotation (see “Screen Annotations” on page 639).

OP integer (Required if JS is not present; otherwise optional) The operation to perform when the
action is triggered. Valid values are:

0 If no rendition is associated with the annotation specified by AN, play the ren-
dition specified by R, associating it with the annotation. If a rendition is al-
ready associated with the annotation, it is stopped, and the new rendition is
associated with the annotation.

1 Stop any rendition being played in association with the annotation specified
by AN, and remove the association. If no rendition is being played, there is no
effect.

2 Pause any rendition being played in association with the annotation specified
by AN. If no rendition is being played, there is no effect.

3 Resume any rendition being played in association with the annotation speci-
fied by AN. If no rendition is being played or the rendition is not paused, there
is no effect.

4 Play the rendition specified by R, associating it with the annotation specified
by AN. If a rendition is already associated with the annotation, resume the
rendition if it is paused; otherwise, do nothing.

JS text string
or stream

(Required if OP is not present; otherwise optional) A text string or stream containing a
JavaScript script to be executed when the action is triggered.

Interactive FeaturesCHAPTER 8
670

Before a rendition action is executed, the viewer application must make sure that
the P entry of the screen annotation dictionary references a valid page object and
that the annotation is present in the page object’s Annots array (see Table 3.27).

A rendition may play in the rectangle occupied by a screen annotation, even if the
annotation itself is not visible; for example, if its Hidden or NoView flags (see Ta-
ble 8.16) are set. If a screen annotation is not visible because its location on the
page is not being displayed by the viewer, the rendition is not visible. However, it
may become visible if the view changes, such as by scrolling.

Transition Actions

A transition action (PDF 1.5) can be used to control drawing during a sequence of
actions. As discussed in Section 8.5.1, “Action Dictionaries,” the Next entry in an
action dictionary can specify a sequence of actions. Viewer applications should
normally suspend drawing when such a sequence begins and resume drawing
when it ends. If a transition action is present during a sequence, the viewer should
render the state of the page viewing area as it exists after completion of the previous
action and display it using a transition specified in the action dictionary (see Table
8.65). Once this transition completes, drawing should be suspended again.

TABLE 8.65 Additional entries specific to a transition action

Go-To-3D-View Actions

A go-to-3D-view action (PDF 1.6) identifies a 3D annotation and specifies a view
for the annotation to use (see Section 9.5, “3D Artwork”). Table 8.66 shows the
entries in a go-to-3D-view action dictionary.

TABLE 8.66 Additional entries specific to a go-to-3D-view action

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be Trans for a
transition action.

Trans dictionary (Required) The transition to use for the update of the display (see Table 8.13).

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be GoTo3DView
for a transition action.

Interactive FormsSECTION 8.6
671

The V entry selects the view to apply to the annotation specified by TA. This view
may be one of the predefined views specified by the VA entry of the 3D stream
(see Table 9.35) or a unique view specified here.

If the predefined view is specified by the names N (next) or P (previous), it should
be interpreted in the following way:

• When the last view applied was specified by means of the VA array, N and P in-
dicate the next and previous entries, respectively, in the VA array (wrapping
around if necessary).

• When the last view was not specified by means of VA, using N or P should result
in reverting to the default view.

8.6 Interactive Forms

An interactive form (PDF 1.2)—sometimes referred to as an AcroForm—is a
collection of fields for gathering information interactively from the user. A PDF
document may contain any number of fields appearing on any combination of
pages, all of which make up a single, global interactive form spanning the entire
document. Arbitrary subsets of these fields can be imported or exported from the
document; see Section 8.6.4, “Form Actions.”

Note: Interactive forms should not be confused with form XObjects (see Section 4.9,
“Form XObjects”). Despite the similarity of names, the two are different, unrelated
types of objects.

TA dictionary (Required) The target annotation for which to set the view.

V (various) (Required) The view to use. It can be one of the following types:

• A 3D view dictionary (see Section 9.5.3, “3D Views”).

• An integer specifying an index into the VA array in the 3D stream (see Table
9.35).

• A text string matching the IN entry in one of the views in the VA array (see Table
9.39).

• A name that indicates the first (F), last (L), next (N), previous (P), or default (D)
entries in the VA array; see discussion below.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
672

Each field in a document’s interactive form is defined by a field dictionary (see
Section 8.6.2, “Field Dictionaries”). For purposes of definition and naming, the
fields can be organized hierarchically and can inherit attributes from their an-
cestors in the field hierarchy. A field’s children in the hierarchy may also include
widget annotations (see “Widget Annotations” on page 640) that define its ap-
pearance on the page. A field whose children are widget annotations is called a
terminal field.

As a convenience, when a field has only a single associated widget annotation, the
contents of the field dictionary and the annotation dictionary (Section 8.4.1, “An-
notation Dictionaries”) may be merged into a single dictionary containing entries
that pertain to both a field and an annotation. (This presents no ambiguity, since
the contents of the two kinds of dictionaries do not conflict.) If such an object de-
fines an appearance stream, the appearance must be consistent with the object’s
current value as a field.

Note: Fields containing text whose contents are not known in advance may need to
construct their appearance streams dynamically instead of defining them statically
in an appearance dictionary; see “Variable Text” on page 677.

8.6.1 Interactive Form Dictionary

The contents and properties of a document’s interactive form are defined by an
interactive form dictionary that is referenced from the AcroForm entry in the doc-
ument catalog (see Section 3.6.1, “Document Catalog”). Table 8.67 shows the
contents of this dictionary.

TABLE 8.67 Entries in the interactive form dictionary

KEY TYPE VALUE

Fields array (Required) An array of references to the document’s root fields (those
with no ancestors in the field hierarchy).

NeedAppearances boolean (Optional) A flag specifying whether to construct appearance streams
and appearance dictionaries for all widget annotations in the docu-
ment (see “Variable Text” on page 677). Default value: false.

SigFlags integer (Optional; PDF 1.3) A set of flags specifying various document-level
characteristics related to signature fields (see Table 8.68, below, and
“Signature Fields” on page 695). Default value: 0.

Interactive FormsSECTION 8.6
673

The value of the interactive form dictionary’s SigFlags entry is an unsigned 32-bit
integer containing flags specifying various document-level characteristics related
to signature fields (see “Signature Fields” on page 695). Bit positions within the
flag word are numbered from 1 (low-order) to 32 (high-order). Table 8.68 shows
the meanings of the flags; all undefined flag bits are reserved and must be set to 0.

CO array (Required if any fields in the document have additional-actions dictio-
naries containing a C entry; PDF 1.3) An array of indirect references to
field dictionaries with calculation actions, defining the calculation or-
der in which their values will be recalculated when the value of any
field changes (see Section 8.5.2, “Trigger Events”).

DR dictionary (Optional) A resource dictionary (see Section 3.7.2, “Resource Dic-
tionaries”) containing default resources (such as fonts, patterns, or col-
or spaces) to be used by form field appearance streams. At a
minimum, this dictionary must contain a Font entry specifying the re-
source name and font dictionary of the default font for displaying text.
(See implementation notes 113 and 114 in Appendix H.)

DA string (Optional) A document-wide default value for the DA attribute of vari-
able text fields (see “Variable Text” on page 677).

Q integer (Optional) A document-wide default value for the Q attribute of vari-
able text fields (see “Variable Text” on page 677).

XFA stream or array (Optional; PDF 1.5) A stream or array containing an XFA resource,
whose format is described by the Data Package (XDP) Specification.
(see the Bibliography).

The value of this entry must be either a stream representing the entire
contents of the XML Data Package or an array of text string and
stream pairs representing the individual packets comprising the XML
Data Package.

See Section 8.6.7, “XFA Forms,” for more information.

Note: In the original version of the PDF 1.5 specification, the value of
this entry was defined as a stream only; see implementation note 115 in
Appendix H.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
674

TABLE 8.68 Signature flags

8.6.2 Field Dictionaries

Each field in a document’s interactive form is defined by a field dictionary, which
must be an indirect object. The field dictionaries may be organized hierarchically
into one or more tree structures. Many field attributes are inheritable, meaning
that if they are not explicitly specified for a given field, their values are taken from
those of its parent in the field hierarchy. Such inheritable attributes are designated
as such in the tables below. The designation (Required; inheritable) means that an
attribute must be defined for every field, whether explicitly in its own field dictio-
nary or by inheritance from an ancestor in the hierarchy. Table 8.69 shows those
entries that are common to all field dictionaries, regardless of type. Entries that
pertain only to a particular type of field are described in the relevant sections be-
low.

BIT POSITION NAME MEANING

1 SignaturesExist If set, the document contains at least one signature field. This flag allows a
viewer application to enable user interface items (such as menu items or
pushbuttons) related to signature processing without having to scan the
entire document for the presence of signature fields.

2 AppendOnly If set, the document contains signatures that may be invalidated if the file
is saved (written) in a way that alters its previous contents, as opposed to
an incremental update. Merely updating the file by appending new infor-
mation to the end of the previous version is safe (see Section G.6, “Up-
dating Example”). Viewer applications can use this flag to present a user
requesting a full save with an additional alert box warning that signatures
will be invalidated and requiring explicit confirmation before continuing
with the operation.

Interactive FormsSECTION 8.6
675

TABLE 8.69 Entries common to all field dictionaries

KEY TYPE VALUE

FT name (Required for terminal fields; inheritable) The type of field that this dictionary
describes:

Btn Button (see “Button Fields” on page 685)
Tx Text (see “Text Fields” on page 691)
Ch Choice (see “Choice Fields” on page 693)
Sig (PDF 1.3) Signature (see “Signature Fields” on page 695)

Note: This entry may be present in a nonterminal field (one whose descendants
are fields) to provide an inheritable FT value. However, a nonterminal field does
not logically have a type of its own; it is merely a container for inheritable at-
tributes that are intended for descendant terminal fields of any type.

Parent dictionary (Required if this field is the child of another in the field hierarchy; absent other-
wise) The field that is the immediate parent of this one (the field, if any,
whose Kids array includes this field). A field can have at most one parent; that
is, it can be included in the Kids array of at most one other field.

Kids array (Sometimes required, as described below) An array of indirect references to the
immediate children of this field.

In a non-terminal field, the Kids array is required to refer to field dictionaries
that are immediate descendants of this field. In a terminal field, the Kids array
ordinarily must refer to one or more separate widget annotations that are as-
sociated with this field. However, if there is only one associated widget anno-
tation, and its contents have been merged into the field dictionary, Kids must
be omitted.

T text string (Optional) The partial field name (see “Field Names,” below; see also imple-
mentation notes 116 and 117 in Appendix H).

TU text string (Optional; PDF 1.3) An alternate field name to be used in place of the actual
field name wherever the field must be identified in the user interface (such as
in error or status messages referring to the field). This text is also useful when
extracting the document’s contents in support of accessibility to users with
disabilities or for other purposes (see Section 10.8.2, “Alternate Descrip-
tions”).

TM text string (Optional; PDF 1.3) The mapping name to be used when exporting inter-
active form field data from the document.

Ff integer (Optional; inheritable) A set of flags specifying various characteristics of the
field (see Table 8.70). Default value: 0.

Interactive FeaturesCHAPTER 8
676

The value of the field dictionary’s Ff entry is an unsigned 32-bit integer contain-
ing flags specifying various characteristics of the field. Bit positions within the
flag word are numbered from 1 (low-order) to 32 (high-order). The flags shown
in Table 8.70 are common to all types of fields. Flags that apply only to specific
field types are discussed in the sections describing those types. All undefined flag
bits are reserved and must be set to 0.

TABLE 8.70 Field flags common to all field types

Field Names

The T entry in the field dictionary (see Table 8.69 on page 675) holds a text string
defining the field’s partial field name. The fully qualified field name is not explicit-
ly defined but is constructed from the partial field names of the field and all of its

V (various) (Optional; inheritable) The field’s value, whose format varies depending on
the field type. See the descriptions of individual field types for further infor-
mation.

DV (various) (Optional; inheritable) The default value to which the field reverts when a
reset-form action is executed (see “Reset-Form Actions” on page 707). The
format of this value is the same as that of V.

AA dictionary (Optional; PDF 1.2) An additional-actions dictionary defining the field’s
behavior in response to various trigger events (see Section 8.5.2, “Trigger
Events”). This entry has exactly the same meaning as the AA entry in an
annotation dictionary (see Section 8.4.1, “Annotation Dictionaries”).

BIT POSITION NAME MEANING

1 ReadOnly If set, the user may not change the value of the field. Any associated widget
annotations will not interact with the user; that is, they will not respond to
mouse clicks or change their appearance in response to mouse motions. This
flag is useful for fields whose values are computed or imported from a data-
base.

2 Required If set, the field must have a value at the time it is exported by a submit-form
action (see “Submit-Form Actions” on page 703).

3 NoExport If set, the field must not be exported by a submit-form action (see “Submit-
Form Actions” on page 703).

KEY TYPE VALUE

Interactive FormsSECTION 8.6
677

ancestors. For a field with no parent, the partial and fully qualified names are the
same. For a field that is the child of another field, the fully qualified name is
formed by appending the child field’s partial name to the parent’s fully qualified
name, separated by a period (.):

parent’s_full_name . child’s_partial_name

For example, if a field with the partial field name PersonalData has a child whose
partial name is Address, which in turn has a child with the partial name ZipCode,
the fully qualified name of this last field is

PersonalData . Address . ZipCode

Thus, all fields descended from a common ancestor share the ancestor’s fully
qualified field name as a common prefix in their own fully qualified names.

It is possible for different field dictionaries to have the same fully qualified field
name if they are descendants of a common ancestor with that name and have no
partial field names (T entries) of their own. Such field dictionaries are different
representations of the same underlying field; they should differ only in properties
that specify their visual appearance. In particular, field dictionaries with the same
fully qualified field name must have the same field type (FT), value (V), and de-
fault value (DV).

Variable Text

When the contents and properties of a field are known in advance, its visual ap-
pearance can be specified by an appearance stream defined in the PDF file (see
Section 8.4.4, “Appearance Streams,” and “Widget Annotations” on page 640). In
some cases, however, the field may contain text whose value is not known until
viewing time. Examples include text fields to be filled in with text typed by the
user from the keyboard and scrollable list boxes whose contents are determined
interactively at the time the document is displayed.

In such cases, the PDF document cannot provide a statically defined appearance
stream for displaying the field. Instead, the viewer application must construct an
appearance stream dynamically at viewing time. The dictionary entries shown in
Table 8.71 provide general information about the field’s appearance that can be
combined with the specific text it contains to construct an appearance stream.

Interactive FeaturesCHAPTER 8
678

TABLE 8.71 Additional entries common to all fields containing variable text

The new appearance stream becomes the normal appearance (N) in the appear-
ance dictionary associated with the field’s widget annotation (see Table 8.19 on
page 614). (If the widget annotation has no appearance dictionary, the viewer ap-
plication must create one and store it in the annotation dictionary’s AP entry.)

In PDF 1.5, form fields that have the RichText flag set (see Table 8.77) specify for-
matting information as described in “Rich Text Strings” on page 680. For these
fields, the conventions described below are not used, and the entire annotation
appearance is regenerated each time the value is changed.

For non-rich text fields, the appearance stream—which, like all appearance
streams, is a form XObject—has the contents of its form dictionary initialized as
follows:

• The resource dictionary (Resources) is created using resources from the inter-
active form dictionary’s DR entry (see Table 8.67); see also implementation note
118 in Appendix H.

• The lower-left corner of the bounding box (BBox) is set to coordinates (0, 0) in
the form coordinate system. The box’s top and right coordinates are taken from

KEY TYPE VALUE

DA string (Required; inheritable) The default appearance string containing a sequence of valid
page-content graphics or text state operators that define such properties as the field’s
text size and color.

Q integer (Optional; inheritable) A code specifying the form of quadding (justification) to be
used in displaying the text:

0 Left-justified
1 Centered
2 Right-justified

Default value: 0 (left-justified).

DS text string (Optional; PDF 1.5) A default style string, as described in “Rich Text Strings” on page
680.

RV text string or
text stream

(Optional; PDF 1.5) A rich text string, as described in “Rich Text Strings” on page 680.

Interactive FormsSECTION 8.6
679

the dimensions of the annotation rectangle (the Rect entry in the widget anno-
tation dictionary).

• All other entries in the appearance stream’s form dictionary are set to their
default values (see Section 4.9, “Form XObjects”).

The appearance stream includes the following section of marked content, which
represents the portion of the stream that draws the text:

Example 8.14

/Tx BMC % Begin marked content with tag Tx
q % Save graphics state

… Any required graphics state changes, such as clipping …
BT % Begin text object

… Default appearance string (DA) …
… Text-positioning and text-showing operators to show the variable text …

ET % End text object
Q % Restore graphics state

EMC % End marked content

The BMC (begin marked content) and EMC (end marked content) operators are
discussed in Section 10.5, “Marked Content”. q (save graphics state) and Q (re-
store graphics state) are discussed in Section 4.3.3, “Graphics State Operators”. BT
(begin text object) and ET (end text object) are discussed in Section 5.3, “Text
Objects.” See Example 8.18 for an example.

The default appearance string (DA) contains any graphics state or text state oper-
ators needed to establish the graphics state parameters, such as text size and color,
for displaying the field’s variable text. Only operators that are allowed within text
objects may occur in this string (see Figure 4.1 on page 197). At a minimum, the
string must include a Tf (text font) operator along with its two operands, font and
size. The specified font value must match a resource name in the Font entry of the
default resource dictionary (referenced from the DR entry of the interactive form
dictionary; see Table 8.67). A zero value for size means that the font is to be auto-
sized: its size is computed as a function of the height of the annotation rectangle.

The default appearance string should contain at most one Tm (text matrix) opera-
tor. If this operator is present, the viewer application should replace the horizon-
tal and vertical translation components with positioning values it determines to
be appropriate, based on the field value, the quadding (Q) attribute, and any lay-
out rules it employs. If the default appearance string contains no Tm operator, the

Interactive FeaturesCHAPTER 8
680

viewer should insert one in the appearance stream (with appropriate horizontal
and vertical translation components) after the default appearance string and be-
fore the text-positioning and text-showing operators for the variable text.

To update an existing appearance stream to reflect a new field value, the viewer
application should first copy any needed resources from the document’s DR dic-
tionary (see Table 8.67) into the stream’s Resources dictionary. (If the DR and
Resources dictionaries contain resources with the same name, the one already in
the Resources dictionary should be left intact, not replaced with the correspond-
ing value from the DR dictionary.) The viewer application should then replace the
existing contents of the appearance stream from /Tx BMC to the matching EMC
with the corresponding new contents as shown in Example 8.14. (If the existing
appearance stream contains no marked content with tag Tx, the new contents
should be appended to the end of the original stream.) Also see implementation
note 119 in Appendix H.

Rich Text Strings

Beginning with PDF 1.5, the text contents of variable text form fields, as well as
markup annotations, can include formatting (style) information. These rich text
strings are fully-formed XML documents that conform to the rich text conven-
tions specified for the XML Forms Architecture (XFA) specification, which is it-
self a subset of the XHTML 1.0 specification, augmented with a restricted set of
CSS2 style attributes (see the Bibliography for references to all these standards).

Table 8.72 lists the XHTML elements that can appear in rich text strings. The
<body> element is the root element; its required attributes are listed in Table 8.73.
Other elements (<p> and) contain enclosed text that may take style at-
tributes, which are listed in Table 8.74. These style attributes are CSS inline style
property declarations of the form name:value, with each declaration separated by
a semicolon, as illustrated in Example 8.15 on page 684.

In PDF 1.6, PDF supports the rich text elements and attributes specified in the
XML Forms Architecture (XFA) Specification, 2.2 (see Bibliography). These rich
text elements and attributes are a superset of those described in Table 8.72, Table
8.73 and Table 8.73. In PDF 1.7, PDF supports the rich text elements and at-
tributes specified in the XML Forms Architecture (XFA) Specification, 2.4 (see Bib-
liography). XFA 2.2 and XFA 2.4 describe the same rich text elements and
attributes; however, XFA 2.4 expands the range of supported character codes.

Interactive FormsSECTION 8.6
681

TABLE 8.72 XHTML elements used in rich text strings

TABLE 8.73 Attributes of the <body> element

ELEMENT DESCRIPTION

<body> The element at the root of the XML document. Table 8.73 lists the required attributes for this
element.

<p> Encloses text that is interpreted as a paragraph. It may take the style attributes listed in Table
8.74.

<i> Encloses text that is displayed in an italic font.

 Encloses text that is displayed in a bold font.

 Groups text solely for the purpose of applying styles (using the attributes in Table 8.74).

ATTRIBUTE DESCRIPTION

xmlns The default namespaces for elements within the rich text string. Must be xmlns="http://
www.w3.org/1999/xhtml"

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0".

xfa:contentType Must be "text/html".

xfa:APIVersion A string that identifies the software used to generate the rich text string. It must be of the
form software_name:software_version, where

• software_name identifies the software by name. It must not contain spaces.

• software_version identifies the version of the software. It consists of a series of integers
separated by decimal points. Each integer is a version number, the leftmost value being a
major version number, with values to the right increasingly minor. When comparing
strings, the versions are compared in order. For example “5.2” is less than “5.13” because
2 is less than 13; the string is not treated as a decimal number. When comparing strings
with different numbers of sections, the string with fewer sections is implicitly padded on
the right with sections containing “0” to make the number of sections equivalent.

xfa:spec The version of the XML Forms Architecture (XFA) specification to which the rich text
string complies. PDF 1.5 supports XFA 2.0; PDF 1.6 supports XFA 2.2; and PDF 1.7 sup-
ports XFA 2.4.

Interactive FeaturesCHAPTER 8
682

TABLE 8.74 CSS2 style attributes used in rich text strings

ATTRIBUTE VALUE DESCRIPTION

text-align keyword Horizontal alignment. Possible values: left, right, and center.

vertical-align decimal An amount by which to adjust the baseline of the enclosed text. A positive
value indicates a superscript; a negative value indicates a subscript. The value
is of the form <decimal number>pt, optionally preceded by a sign, and fol-
lowed by “pt”. Examples: -3pt, 4pt.

font-size decimal The font size of the enclosed text. The value is of the form
<decimal number>pt.

font-style keyword Specifies whether the enclosed text should be displayed using a normal or
italic (oblique) font. Possible values: normal, italic.

font-weight keyword The weight of the font for the enclosed text. Possible values: normal, bold,
100, 200, 300, 400, 500, 600, 700, 800, 900.

Note: normal is equivalent to 400, and bold is equivalent to 700.

font-family list A font name or list of font names to be used to display the enclosed text. (If a
list is provided, the first one containing glyphs for the specified text is used.)

font list A shorthand CSS font property of the form

font:<font-style> <font-weight> <font-size> <font-family>

color RGB value The color of the enclosed text. It can be in one of two forms:

• #rrggbb with a 2-digit hexadecimal value for each component

• rgb(rrr,ggg,bbb) with a decimal value for each component.

Note: Although the values specified by the color property are interpreted as
sRGB values, they are transformed into values in a non-ICC based color space
when used to generate the annotation’s appearance.

text-decoration keyword One of the following keywords:

• underline: The enclosed text should be underlined.

• line-through: The enclosed text should have a line drawn through it.

font-stretch keyword Specifies a normal, condensed or extended face from a font family. Support-
ed values from narrowest to widest are ultra-condensed, extra-condensed,
condensed, semi-condensed, normal, semi-expanded, expanded, extra-
expanded, and ultra-expanded.

Interactive FormsSECTION 8.6
683

Rich text strings are specified by the RV entry of variable text form field dictionar-
ies (see Table 8.71) and the RC entry of markup annotation dictionaries (see Table
8.21). Rich text strings may be packaged as text streams (see Section 3.8.2, “Text
Streams”). Form fields using rich text streams should also have the RichText flag
set (see Table 8.77).

A default style string is specified by the DS entry for free text annotations (see Ta-
ble 8.25) or variable text form fields (see Table 8.71). This string specifies the de-
fault values for style attributes, which are used for any style attributes that are not
explicitly specified for the annotation or field. All attributes listed in Table 8.74
are legal in the default style string. This string, in addition to the RV or RC entry, is
used to generate the appearance. The following entries are ignored by PDF 1.5-
compliant viewers: the Contents entry for annotations, the DA entry for free text
annotations, and the V, DA, and Q entries for form fields.

Note: Markup annotations other than free text annotations (see “Markup Annota-
tions” on page 616) do not use a default style string because their appearances are
implemented using platform controls requiring the viewer application to pick an ap-
propriate system font for display.

When a form field or annotation contains rich text strings, the flat text (character
data) of the string should also be preserved (in the V entry for form fields and the
Contents entry for annotations). This enables older viewer applications to read
and edit the data (although with loss of formatting information). The DA entry
should be written out as well when the file is saved.

If a document containing rich text strings is edited in a viewer that does not sup-
port PDF 1.5, the rich text strings remain unchanged (because they are unknown
to the viewer), even though the corresponding flat text may have changed. When
a viewer that supports PDF 1.5 reads a rich text string from a document, it must
check whether the corresponding flat text has changed by using the following
procedure:

1. Create a new flat text string containing the character data from the rich text
string. Character references (such as ) should be converted to their char-
acter equivalents.

Note: No attempt should be made to preserve formatting specified with markup
elements. For example, although the <p> element implies a new line, a carriage
return should not be generated in the associated flat text.

Interactive FeaturesCHAPTER 8
684

2. If either of the values uses UTF-16 encoding, promote the other value to UTF-
16 if necessary.

3. Compare the resulting strings.

If the strings are unequal, it is assumed the field has been modified by an older
viewer, and a new rich text string should be created from the flat text.

When a rich text string specifies font attributes, the viewer application should use
font name selection as described in section 15.3 of the CSS2 specification (see the
Bibliography). It is strongly recommended that precedence be given to the fonts
in the default resources dictionary, as specified by the DR entry in Table 8.67; see
Implementation note 120 in Appendix H.

The following example illustrates the entries in a widget annotation dictionary
for rich text. The DS entry specifies the default font. The RV entry contains two
paragraphs of rich text: the first paragraph specifies bold and italic text in the de-
fault font; the second paragraph changes the font size.

Example 8.15

/DS (font: 18pt Arial) % Default style string using an abbreviated font
% descriptor to specify 18pt text using an Arial font

/RV (<?xml version="1.0"?><body xmlns="http://www.w3.org/1999/xtml"
xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="text/html" xfa:APIVersion="Acrobat:8.0.0" xfa:spec="2.4">
<p style="text-align:left">

<i>

Here is some bold italic text
</i>

</p>
<p style= "font-size:16pt">

This text uses default text state parameters but changes the font size to 16.
</p>

</body>)

Interactive FormsSECTION 8.6
685

8.6.3 Field Types

Interactive forms support the following field types:

• Button fields represent interactive controls on the screen that the user can
manipulate with the mouse. They include pushbuttons, check boxes, and radio
buttons.

• Text fields are boxes or spaces in which the user can enter text from the key-
board.

• Choice fields contain several text items, at most one of which may be selected as
the field value. They include scrollable list boxes and combo boxes.

• Signature fields represent electronic signatures for authenticating the identity of
a user and the validity of the document’s contents.

The following sections describe each of these field types in detail. Further types
may be added in the future.

Button Fields

A button field (field type Btn) represents an interactive control on the screen that
the user can manipulate with the mouse. There are three types of button fields:

• A pushbutton is a purely interactive control that responds immediately to user
input without retaining a permanent value (see “Pushbuttons” on page 686).

• A check box toggles between two states, on and off (see “Check Boxes” on page
686).

• Radio button fields contain a set of related buttons that can each be on or off.
Typically, at most one radio button in a set may be on at any given time, and se-
lecting any one of the buttons automatically deselects all the others. (There are
exceptions to this rule, as noted in “Radio Buttons” on page 688.)

The various types of button fields are distinguished by flags in the Ff entry, as
shown in Table 8.75.

Interactive FeaturesCHAPTER 8
686

TABLE 8.75 Field flags specific to button fields

Pushbuttons

The simplest type of field is a pushbutton field, which has a field type of Btn and
the Pushbutton flag (see Table 8.75) set. Because this type of button retains no
permanent value, it does not use the V and DV entries in the field dictionary (see
Table 8.69 on page 675).

Check Boxes

A check box field represents one or more check boxes that toggle between two
states, on and off, when manipulated by the user with the mouse or keyboard. Its
field type is Btn and its Pushbutton and Radio flags (see Table 8.75) are both clear.
Each state can have a separate appearance, which is defined by an appearance
stream in the appearance dictionary of the field’s widget annotation (see Section
8.4.4, “Appearance Streams”). The appearance for the off state is optional but, if
present, must be stored in the appearance dictionary under the name Off. The
recommended (but not required) name for the on state is Yes.

The V entry in the field dictionary (see Table 8.69 on page 675) holds a name ob-
ject representing the check box’s appearance state, which is used to select the ap-
propriate appearance from the appearance dictionary.

Example 8.16 shows a typical check box definition.

BIT POSITION NAME MEANING

15 NoToggleToOff (Radio buttons only) If set, exactly one radio button must be selected at all
times; clicking the currently selected button has no effect. If clear, clicking
the selected button deselects it, leaving no button selected.

16 Radio If set, the field is a set of radio buttons; if clear, the field is a check box.
This flag is meaningful only if the Pushbutton flag is clear.

17 Pushbutton If set, the field is a pushbutton that does not retain a permanent value.

26 RadiosInUnison (PDF 1.5) If set, a group of radio buttons within a radio button field that
use the same value for the on state will turn on and off in unison; that is if
one is checked, they are all checked. If clear, the buttons are mutually ex-
clusive (the same behavior as HTML radio buttons).

Interactive FormsSECTION 8.6
687

Example 8.16

1 0 obj
<< /FT /Btn

 /T (Urgent)
 /V /Yes
 /AS /Yes
 /AP << /N << /Yes 2 0 R /Off 3 0 R>>

>>
endobj

2 0 obj
<< /Resources 20 0 R

 /Length 104
>>

stream
q

0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

3 0 obj
<< /Resources 20 0 R

 /Length 104
>>

stream
q

0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

Interactive FeaturesCHAPTER 8
688

Beginning with PDF 1.4, the field dictionary for check boxes and radio buttons
contains an optional Opt entry (see Table 8.76), which holds an array of text
strings representing the export value of each annotation in the field. It is used for
the following purposes:

• To represent the export values of check box and radio button fields in non-Lat-
in writing systems. Because name objects in the appearance dictionary are lim-
ited to PDFDocEncoding, they cannot represent non-Latin text.

• To allow radio buttons or check boxes to be checked independently, even if
they have the same export value.

An example is a group of check boxes that are duplicated on more than one
page, and the desired behavior is that when a user checks a box, the corre-
sponding boxes on each of the other pages is also checked. In this case, each of
the corresponding check boxes is a widget in the Kids array of a check box field.

Note: For radio buttons, the same behavior occurs only if the RadiosInUnison flag
is set. If it is not set, at most one radio button in a field can be set at a time. See
implementation note 121 in Appendix H.

TABLE 8.76 Additional entry specific to check box and radio button fields

Radio Buttons

A radio button field is a set of related buttons. Like check boxes, individual radio
buttons have two states, on and off. A single radio button may not be turned off
directly but only as a result of another button being turned on. Typically, a set of
radio buttons (annotations that are children of a single radio button field) have at

KEY TYPE VALUE

Opt array of
text strings

(Optional; inheritable; PDF 1.4) An array containing one entry for each widget annota-
tion in the Kids array of the radio button or check box field. Each entry is a text string
representing the on state of the corresponding widget annotation.

When this entry is present, the names used to represent the on state in the AP dictionary
of each annotation are computer-generated numbers equivalent to the numerical posi-
tion (starting with 0) of the annotation in the Kids array. This allows distinguishing be-
tween the annotations even if two or more of them have the same value in the Opt array.
For example, two radio buttons may have the same on state, but if the RadiosInUnison
flag is not set, only one of them at a time can be checked by the user.

Interactive FormsSECTION 8.6
689

most one button in the on state at any given time; selecting any of the buttons au-
tomatically deselects all the others.

Note: An exception occurs when multiple radio buttons in a field have the same on
state and the RadiosInUnison flag is set. In that case, turning on one of the buttons
turns on all of them.

The field type is Btn, the Pushbutton flag (see Table 8.75 on page 686) is clear, and
the Radio flag is set. This type of button field has an additional flag, NoToggle-
ToOff, which specifies, if set, that exactly one of the radio buttons must be select-
ed at all times. In this case, clicking the currently selected button has no effect; if
the NoToggleToOff flag is clear, clicking the selected button deselects it, leaving
no button selected.

The Kids entry in the radio button field’s field dictionary (see Table 8.69 on page
675) holds an array of widget annotations representing the individual buttons in
the set. The parent field’s V entry holds a name object corresponding to the ap-
pearance state of whichever child field is currently in the on state; the default val-
ue for this entry is Off. Example 8.17 shows the object definitions for a set of radio
buttons.

Example 8.17

10 0 obj % Radio button field
<< /FT /Btn

 /Ff … % … Radio flag = 1, Pushbutton = 0 …
 /T (Credit card)
 /V /MasterCard
 /Kids [11 0 R

 12 0 R
]

>>
endobj

11 0 obj % First radio button
<< /Parent 10 0 R

 /AS /MasterCard
 /AP << /N << /MasterCard 8 0 R

 /Off 9 0 R
>>

 >>
>>

endobj

Interactive FeaturesCHAPTER 8
690

12 0 obj % Second radio button
<< /Parent 10 0 R

 /AS /Off
 /AP << /N << /Visa 8 0 R

 /Off 9 0 R
>>

 >>
>>

endobj

8 0 obj % Appearance stream for "on" state
<< /Resources 20 0 R

 /Length 104
>>

stream
q

0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(8) Tj

ET
Q

endstream
endobj

9 0 obj % Appearance stream for "off" state
<< /Resources 20 0 R

 /Length 104
>>

stream
q

0 0 1 rg
BT

/ZaDb 12 Tf
0 0 Td
(4) Tj

ET
Q

endstream
endobj

Like a check box field, a radio button field can use the optional Opt entry in the
field dictionary (PDF 1.4) to define export values for its constituent radio buttons,

Interactive FormsSECTION 8.6
691

using Unicode encoding for non-Latin characters (see Table 8.76). Opt holds an
array of text strings corresponding to the widget annotations representing the in-
dividual buttons in the field’s Kids array.

Text Fields

A text field (field type Tx) is a box or space in which the user can enter text from
the keyboard. The text may be restricted to a single line or may be permitted to
span multiple lines, depending on the setting of the Multiline flag in the field dic-
tionary’s Ff entry. Table 8.77 shows the flags pertaining to this type of field.

TABLE 8.77 Field flags specific to text fields

BIT POSITION NAME MEANING

13 Multiline If set, the field can contain multiple lines of text; if clear, the field’s text is
restricted to a single line.

14 Password If set, the field is intended for entering a secure password that should not
be echoed visibly to the screen. Characters typed from the keyboard
should instead be echoed in some unreadable form, such as asterisks or
bullet characters.

To protect password confidentiality, viewer applications should never
store the value of the text field in the PDF file if this flag is set.

21 FileSelect (PDF 1.4) If set, the text entered in the field represents the pathname of a
file whose contents are to be submitted as the value of the field.

23 DoNotSpellCheck (PDF 1.4) If set, text entered in the field is not spell-checked.

24 DoNotScroll (PDF 1.4) If set, the field does not scroll (horizontally for single-line fields,
vertically for multiple-line fields) to accommodate more text than fits
within its annotation rectangle. Once the field is full, no further text is ac-
cepted.

25 Comb (PDF 1.5) Meaningful only if the MaxLen entry is present in the text field
dictionary (see Table 8.78) and if the Multiline, Password, and FileSelect
flags are clear. If set, the field is automatically divided into as many equally
spaced positions, or combs, as the value of MaxLen, and the text is laid out
into those combs.

26 RichText (PDF 1.5) If set, the value of this field should be represented as a rich text
string (see “Rich Text Strings” on page 680). If the field has a value, the RV
entry of the field dictionary (Table 8.71) specifies the rich text string.

Interactive FeaturesCHAPTER 8
692

The field’s text is held in a text string (or, beginning with PDF 1.5, a stream) in the
V (value) entry of the field dictionary. The contents of this text string or stream
are used to construct an appearance stream for displaying the field, as described
under “Variable Text” on page 677. The text is presented in a single style (font,
size, color, and so forth), as specified by the DA (default appearance) string.

If the FileSelect flag (PDF 1.4) is set, the field functions as a file-select control. In
this case, the field’s text represents the pathname of a file whose contents are to be
submitted as the field’s value:

• For fields submitted in HTML Form format, the submission uses the MIME
content type multipart / form-data, as described in Internet RFC 2045, Multi-
purpose Internet Mail Extensions (MIME), Part One: Format of Internet Message
Bodies (see the Bibliography).

• For Forms Data Format (FDF) submission, the value of the V entry in the FDF
field dictionary (see “FDF Fields” on page 717) is a file specification (Section
3.10, “File Specifications”) identifying the selected file.

• XML format is not supported for file-select controls; therefore, no value is sub-
mitted in this case.

Besides the usual entries common to all fields (see Table 8.69 on page 675) and to
fields containing variable text (see Table 8.71), the field dictionary for a text field
can contain the additional entry shown in Table 8.78.

TABLE 8.78 Additional entry specific to a text field

Example 8.18 shows the object definitions for a typical text field.

Example 8.18

6 0 obj
<< /FT /Tx

 /Ff … % Set Multiline flag
 /T (Silly prose)
 /DA (0 0 1 rg /Ti 12 Tf)
 /V (The quick brown fox ate the lazy mouse)
 /AP << /N 5 0 R >>

>>
endobj

KEY TYPE VALUE

MaxLen integer (Optional; inheritable) The maximum length of the field’s text, in characters.

Interactive FormsSECTION 8.6
693

5 0 obj
<< /Resources 21 0 R

 /Length 172
>>

stream
/Tx BMC

q
BT

0 0 1 rg
/Ti 12 Tf
1 0 0 1 100 100 Tm
0 0 Td
(The quick brown fox) Tj
0 −13 Td
(ate the lazy mouse.) Tj

ET
Q

EMC
endstream
endobj

Choice Fields

A choice field (field type Ch) contains several text items, one or more of which
may be selected as the field value. The items may be presented to the user in
either of two forms:

• A scrollable list box

• A combo box consisting of a drop-down list optionally accompanied by an edit-
able text box in which the user can type a value other than the predefined
choices

TABLE 8.79 Field flags specific to choice fields

BIT POSITION NAME MEANING

18 Combo If set, the field is a combo box; if clear, the field is a list box.

19 Edit If set, the combo box includes an editable text box as well as a drop-
down list; if clear, it includes only a drop-down list. This flag is mean-
ingful only if the Combo flag is set.

Interactive FeaturesCHAPTER 8
694

The various types of choice fields are distinguished by flags in the Ff entry, as
shown in Table 8.79. Table 8.80 shows the field dictionary entries specific to
choice fields.

TABLE 8.80 Additional entries specific to a choice field

20 Sort If set, the field’s option items should be sorted alphabetically. This flag
is intended for use by form authoring tools, not by PDF viewer appli-
cations. Viewers should simply display the options in the order in
which they occur in the Opt array (see Table 8.80).

22 MultiSelect (PDF 1.4) If set, more than one of the field’s option items may be se-
lected simultaneously; if clear, no more than one item at a time may
be selected.

23 DoNotSpellCheck (PDF 1.4) If set, text entered in the field is not spell-checked. This flag
is meaningful only if the Combo and Edit flags are both set.

27 CommitOnSelChange (PDF 1.5) If set, the new value is committed as soon as a selection is
made with the pointing device. This option enables applications to
perform an action once a selection is made, without requiring the user
to exit the field. If clear, the new value is not committed until the user
exits the field.

KEY TYPE VALUE

Opt array (Optional) An array of options to be presented to the user. Each element of the array is
either a text string representing one of the available options or an array consisting of two
text strings: the option’s export value and the text to be displayed as the name of the op-
tion (see implementation note 122 in Appendix H).

If this entry is not present, no choices should be presented to the user.

TI integer (Optional) For scrollable list boxes, the top index (the index in the Opt array of the first
option visible in the list). Default value: 0.

I array (Sometimes required, otherwise optional; PDF 1.4) For choice fields that allow multiple
selection (MultiSelect flag set), an array of integers, sorted in ascending order, represent-
ing the zero-based indices in the Opt array of the currently selected option items. This
entry is required when two or more elements in the Opt array have different names but
the same export value or when the value of the choice field is an array. In other cases, the
entry is permitted but not required. If the items identified by this entry differ from those
in the V entry of the field dictionary (see below), the V entry takes precedence.

BIT POSITION NAME MEANING

Interactive FormsSECTION 8.6
695

The Opt array specifies the list of options in the choice field, each of which is rep-
resented by a text string to be displayed on the screen. Each element of the Opt
array contains either this text string by itself or a two-element array, whose sec-
ond element is the text string and whose first element is a text string representing
the export value to be used when exporting interactive form field data from the
document.

The field dictionary’s V (value) entry (see Table 8.69 on page 675) identifies the
item or items currently selected in the choice field. If the field does not allow mul-
tiple selection—that is, if the MultiSelect flag (PDF 1.4) is not set—or if multiple
selection is supported but only one item is currently selected, V is a text string
representing the name of the selected item, as given in the field dictionary’s Opt
array. If multiple items are selected, V is an array of such strings. (For items repre-
sented in the Opt array by a two-element array, the name string is the second of
the two array elements.) The default value of V is null, indicating that no item is
currently selected.

Example 8.19 shows a typical choice field definition.

Example 8.19

<< /FT /Ch
 /Ff …
 /T (Body Color)
 /V (Blue)
 /Opt [(Red)

 (My favorite color)
 (Blue)
]

>>

Signature Fields

A signature field (PDF 1.3) is a form field that contains a digital signature (see
Section 8.7, “Digital Signatures”). The field dictionary representing a signature
field may contain the additional entries listed in Table 8.81, as well as the stan-
dard entries described in Table 8.69. The field type (FT) is Sig, and the field value
(V) is a signature dictionary containing the signature and specifying various at-
tributes of the signature field (see Table 8.102).

Interactive FeaturesCHAPTER 8
696

Filling in (signing) the signature field entails updating at least the V entry and
usually also the AP entry of the associated widget annotation. Exporting a signa-
ture field typically exports the T, V, and AP entries.

Like any other field, a signature field may actually be described by a widget anno-
tation dictionary containing entries pertaining to an annotation as well as a field
(see “Widget Annotations” on page 640). The annotation rectangle (Rect) in such
a dictionary gives the position of the field on its page. Signature fields that are not
intended to be visible should have an annotation rectangle that has zero height
and width.

The appearance dictionary (AP) of a signature field’s widget annotation defines
the field’s visual appearance on the page (see Section 8.4.4, “Appearance
Streams”). Information about how Acrobat handles digital signature appearances
is in the technical note Digital Signature Appearances (see the Bibliography).

TABLE 8.81 Additional entries specific to a signature field

The value of the SV entry in the field dictionary is a seed value dictionary whose
entries (see Table 8.83) provide constraining information that is to be used at the
time the signature is applied. Its Ff entry specifies whether the other entries in the
dictionary are required to be honored or whether they are merely recommenda-
tions.

Note: The seed value dictionary may include seed values for private entries belong-
ing to multiple handlers. A given handler should use only those entries that are per-
tinent to itself and ignore the others.

KEY TYPE VALUE

Lock dictionary (Optional; must be an indirect reference; PDF 1.5) A signature field lock dictionary that
specifies a set of form fields to be locked when this signature field is signed. Table 8.82
lists the entries in this dictionary.

SV dictionary (Optional; must be an indirect reference; PDF 1.5) A seed value dictionary (see Table
8.83) containing information that constrains the properties of a signature that is ap-
plied to this field.

Interactive FormsSECTION 8.6
697

TABLE 8.82 Entries in a signature field lock dictionary

TABLE 8.83 Entries in a signature field seed value dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
SigFieldLock for a signature field lock dictionary.

Action name (Required) A name which, in conjunction with Fields, indicates the set of fields that
should be locked. Valid values are:

All All fields in the document

Include All fields specified in Fields

Exclude All fields except those specified in Fields

Fields array (Required if the value of Action is Include or Exclude) An array of text strings containing
field names.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be SV for a seed value dictionary.

Filter name (Optional) The signature handler to be used to sign the signature field. Begin-
ning with PDF 1.7, if Filter is specified and the Ff entry indicates this entry is a
required constraint, then the signature handler specified by this entry must be
used when signing; otherwise, signing must not take place. If Ff indicates that
this is an optional constraint, this handler should be used if it is available. If it
is not available, a different handler can be used instead.

SubFilter array (Optional) An array of names indicating encodings to use when signing. The
first name in the array that matches an encoding supported by the signature
handler should be the encoding that is actually used for signing. If SubFilter is
specified and the Ff entry indicates that this entry is a required constraint, then
the first matching encodings must be used when signing; otherwise, signing
must not take place. If Ff indicates that this is an optional constraint, then the
first matching encoding should be used if it is available. If it is not available, a
different encoding can be used.

Interactive FeaturesCHAPTER 8
698

DigestMethod array (Optional; PDF 1.7) An array of names indicating acceptable digest algorithms
to use while signing. The valid values are SHA1, SHA256, SHA384, SHA512 and
RIPEMD160. The default value is implementation-specific.

Note: This property is only applicable if the digital credential signing contains
RSA public/private keys. If it contains DSA public/ private key, the digest algo-
rithm is always SHA1 and this attribute is ignored.

V real (Optional) The minimum required capability of the signature field seed value
dictionary parser. A value of 1 specifies that the parser must be able to recog-
nize all seed value dictionary entries specified in PDF 1.5. A value of 2 specifies
that it must be able to recognize all seed value dictionary entries specified in
PDF 1.7 and earlier.

The Ff entry indicates whether this is a required constraint.

Note: The PDF Reference fifth edition (PDF 1.6) and earlier, erroneously indi-
cates that the V entry is of type integer. This entry is of type real.

Cert dictionary (Optional) A certificate seed value dictionary (see Table 8.84) containing infor-
mation about the certificate to be used when signing.

Reasons array (Optional) An array of text strings that specifying possible reasons for signing
a document. If specified, the reasons supplied in this entry replace those used
by viewer applications. The Ff entry specifies whether one of the reasons in the
array must be used in the signature.

• If the Reasons array is provided and the Ff entry indicates that Reasons is a
required constraint, one of the reasons in the array must be used for the sig-
nature dictionary; otherwise, signing must not take place. If the Ff entry in-
dicates Reasons is an optional constraint, one of the reasons in the array can
be chosen or a custom reason can be provided.

• If the Reasons array is omitted or contains a single 0-character length string
and the Ff entry indicates that Reasons is a required constraint, the Reason
entry must be omitted from the signature dictionary (see Table 8.102).

MDP dictionary (Optional; PDF 1.6) A dictionary containing a single entry whose key is P and
whose value is an integer between 0 and 3. A value of 0 defines the signature as
an ordinary (non-author) signature (see Section 8.7, “Digital Signatures”). The
values 1 through 3 are used for author signatures and correspond to the value
of P in a DocMDP transform parameters dictionary (see Table 8.104).

If this entry is not present or does not contain a P entry, no rules are defined
regarding the type of signature or its permissions.

KEY TYPE VALUE

Interactive FormsSECTION 8.6
699

TimeStamp dictionary (Optional; PDF 1.6) A time stamp dictionary containing two entries:

URL An ASCII string specifying the URL of a time-stamping server,
providing a time stamp that is compliant with RFC 3161, Internet
X.509 Public Key Infrastructure Time-Stamp Protocol (see the Bib-
liography).

Ff An integer whose value is 1 (the signature is required to have a
time stamp) or 0 (the signature is not required to have a time
stamp). Default value: 0.

LegalAttestation array (Optional; PDF 1.6) An array of text strings specifying possible legal attesta-
tions (see Section 8.7.4, “Legal Content Attestations”). The value of the corre-
sponding flag in the Ff entry indicates whether this is a required constraint.

AddRevInfo boolean (Optional; PDF 1.7) A flag indicating whether revocation checking should be
carried out. If AddRevInfo is true, the viewer application performs the follow-
ing additional tasks when signing the signature field:

• Perform revocation checking of the certificate (and the corresponding issu-
ing certificates) used to sign.

• Include the revocation information within the signature value.

A value of true is relevant only if SubFilter is adbe.pkcs7.detached or
adbe.pkcs7.sha1. If SubFilter is x509.rsa_sha1, this entry must be omitted or
set to false; otherwise, the signature process may fail.

If AddRevInfo is true and the Ff entry indicates this is a required constraint,
then the tasks described above must be performed. If they cannot be per-
formed, then signing must fail.

Default value: false

Ff integer (Optional) A set of bit flags specifying the interpretation of specific entries in
this dictionary. A value of 1 for the flag indicates that the associated entry is a
required constraint. A value of 0 indicates that the associated entry is an op-
tional constraint. Bit positions are 1 (Filter); 2 (SubFilter); 3 (V); 4 (Reasons); 5
(LegalAttestation); 6(AddRevInfo); and 7(DigestMethod). Default value: 0.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
700

TABLE 8.84 Entries in a certificate seed value dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be SVCert for a certificate seed value dictionary.

Subject array (Optional) An array of byte strings containing DER-encoded X.509v3 certifi-
cates that are acceptable for signing. X.509v3 certificates are described in RFC
3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate Revo-
cation List (CRL) Profile (see the Bibliography). The value of the corresponding
flag in the Ff entry indicates whether this is a required constraint.

SubjectDN array of
dictionaries

(Optional; PDF 1.7) An array of dictionaries, where each dictionary contains
key value pairs, that specify the Subject Distinguished Name (DN) that must
be present within the certificate for it to be acceptable for signing. The certifi-
cate must at a minimum contain all the attributes specified in the dictionary.
That is, the certificate can contain additional attributes. The Subject Distin-
guished Name is described in RFC 3280 (see the Bibliography). The key can be
any legal attribute identifier. Attribute names are typically of the form ‘cn’, ‘o’,
‘email’, ‘2.5.4.43’ and always contain characters in the set a-z, A-Z, 0-9 and ‘.’.
Values are text strings. An example dictionary is
<</cn (John Smith) /1.5.4.43 (JS)>>.

The value of the corresponding flag in the Ff entry indicates whether this entry
is a required constraint.

Interactive FormsSECTION 8.6
701

KeyUsage array of
ASCII
strings

(Optional; PDF 1.7) An array of ASCII strings, where each string specifies an
acceptable key-usage extension that must be present in the signing certificate.
Multiple strings specify a range of acceptable key-usage extensions. The key-
usage extension is described in RFC 3280 (see the Bibliography).

Each character in a string represents a key-usage type, where the order of the
characters indicates the key-usage extension it represents. The first through
ninth characters in the array, from left to right, represent the required value for
the following key-usage extensions:

1 digitalSignature 4 dataEncipherment 7 cRLSign

2 non-Repudiation 5 keyAgreement 8 encipherOnly

3 keyEncipherment 6 keyCertSign 9 decipherOnly

Any additional characters are ignored. Any missing characters or characters
that are not one of the following values, should be set to ‘X’. The following
character values are supported:

0 Corresponding key-usage must not be set.

1 Corresponding key-usage must be set.

X State of the corresponding key-usage does not matter.

For example, the string values ‘1’ and ‘1XXXXXXXX’ represent settings where the
key-usage type digitalSignature must be set and the state of all other key-usage
types do not matter.

The value of the corresponding flag in the Ff entry indicates whether this is a
required constraint.

Issuer array (Optional) An array of byte strings containing DER-encoded X.509v3 certifi-
cates of acceptable issuers. If the signer’s certificate chains up to any of the
specified issuers (either directly or indirectly), the certificate is considered ac-
ceptable for signing. The value of the corresponding flag in the Ff entry indi-
cates whether this is a required constraint.

OID array (Optional) An array of byte strings that contain Object Identifiers (OIDs) of
the certificate policies that must be present in the signing certificate. An exam-
ple of such a string is (2.16.840.1.113733.1.7.1.1). This field is only applicable if
the value of Issuer is not empty. The certificate policies extension is described
in RFC 3280 (see the Bibliography). The value of the corresponding flag in the
Ff entry indicates whether this is a required constraint.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
702

8.6.4 Form Actions

Interactive forms support four special types of actions in addition to those de-
scribed in Section 8.5.3, “Action Types”:

• Submit-form actions transmit the names and values of selected interactive form
fields to a specified uniform resource locator (URL), presumably the address of
a Web server that will process them and send back a response.

• Reset-form actions reset selected interactive form fields to their default values.

• Import-data actions import Forms Data Format (FDF) data into the document’s
interactive form from a specified file.

URL ASCII
string

(Optional) A URL, the use for which is defined by the URLType entry.

URLType Name (Optional; PDF 1.7) A name indicating the usage of the URL entry. There are
standard uses and there can be implementation-specific uses for this URL. The
following value specifies a valid standard usage:

Browser – The URL references content that should be displayed in a web
browser to allow enrolling for a new credential if a matching credential
is not found. The Ff attribute’s URL bit is ignored for this usage.

The following value specifies a valid implementation-specific usage, defined
for use by Adobe Systems:

ASSP – The URL references a signature web service that can be used for
server-based signing. If the Ff attribute’s URL bit indicates that this is a
required constraint, this implies that the credential used when signing
must come from this server.

Third parties can extend the use of this attribute with their own attribute val-
ues, which must conform to the guidelines described in Appendix E.

The default value is Browser.

Ff integer (Optional) A set of bit flags specifying the interpretation of specific entries in
this dictionary. A value of 1 for the flag means that a signer is required to use
only the specified values for the entry. A value of 0 means that other values are
permissible. Bit positions are 1 (Subject); 2 (Issuer); 3 (OID); 4 (SubjectDN);
5 (Reserved); 6 (KeyUsage); 7 (URL).

Default value: 0.

KEY TYPE VALUE

Interactive FormsSECTION 8.6
703

• JavaScript actions (PDF 1.3) cause a script to be compiled and executed by the
JavaScript interpreter.

Submit-Form Actions

A submit-form action transmits the names and values of selected interactive form
fields to a specified uniform resource locator (URL), presumably the address of a
Web server that will process them and send back a response. Table 8.85 shows the
action dictionary entries specific to this type of action.

The value of the action dictionary’s Flags entry is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the action. Bit positions within
the flag word are numbered from 1 (low-order) to 32 (high-order). Table 8.86
shows the meanings of the flags; all undefined flag bits are reserved and must be
set to 0.

TABLE 8.85 Additional entries specific to a submit-form action

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be
SubmitForm for a submit-form action.

F file specification (Required) A URL file specification (see Section 3.10.4, “URL Spec-
ifications”) giving the uniform resource locator (URL) of the script
at the Web server that will process the submission.

Fields array (Optional) An array identifying which fields to include in the sub-
mission or which to exclude, depending on the setting of the
Include/Exclude flag in the Flags entry (see Table 8.86). Each ele-
ment of the array is either an indirect reference to a field dictionary
or (PDF 1.3) a text string representing the fully qualified name of a
field. Elements of both kinds may be mixed in the same array.

If this entry is omitted, the Include/Exclude flag is ignored, and all
fields in the document’s interactive form are submitted except those
whose NoExport flag (see Table 8.70 on page 676) is set. (Fields
with no values may also be excluded, depending on the setting of
the IncludeNoValueFields flag; see Table 8.86.) See the text follow-
ing Table 8.86 for further discussion.

Flags integer (Optional; inheritable) A set of flags specifying various characteris-
tics of the action (see Table 8.86). Default value: 0.

Interactive FeaturesCHAPTER 8
704

TABLE 8.86 Flags for submit-form actions

BIT POSITION NAME MEANING

1 Include/Exclude If clear, the Fields array (see Table 8.85) specifies which fields to
include in the submission. (All descendants of the specified fields in
the field hierarchy are submitted as well.)

If set, the Fields array tells which fields to exclude. All fields in the
document’s interactive form are submitted except those listed in the
Fields array and those whose NoExport flag (see Table 8.70 on page
676) is set.

2 IncludeNoValueFields If set, all fields designated by the Fields array and the Include/
Exclude flag are submitted, regardless of whether they have a value
(V entry in the field dictionary). For fields without a value, only the
field name is transmitted.

If clear, fields without a value are not submitted.

3 ExportFormat Meaningful only if the SubmitPDF and XFDF flags are clear. If set,
field names and values are submitted in HTML Form format. If
clear, they are submitted in Forms Data Format (FDF); see Section
8.6.6, “Forms Data Format.”

4 GetMethod If set, field names and values are submitted using an HTTP GET
request. If clear, they are submitted using a POST request. This flag
is meaningful only when the ExportFormat flag is set; if ExportFor-
mat is clear, this flag must also be clear.

5 SubmitCoordinates If set, the coordinates of the mouse click that caused the submit-
form action are transmitted as part of the form data. The coordinate
values are relative to the upper-left corner of the field’s widget an-
notation rectangle. They are represented in the data in the format

name . x = xval & name . y = yval

where name is the field’s mapping name (TM in the field dictionary)
if present; otherwise, name is the field name. If the value of the TM
entry is a single space character, both the name and the dot follow-
ing it are suppressed, resulting in the format

x = xval & y = yval

This flag is meaningful only when the ExportFormat flag is set. If
ExportFormat is clear, this flag must also be clear.

Interactive FormsSECTION 8.6
705

6 XFDF (PDF 1.4) Meaningful only if the SubmitPDF flags are clear. If set,
field names and values are submitted as XFDF.

7 IncludeAppendSaves (PDF 1.4) Meaningful only when the form is being submitted in
Forms Data Format (that is, when both the XFDF and ExportFor-
mat flags are clear). If set, the submitted FDF file includes the con-
tents of all incremental updates to the underlying PDF document,
as contained in the Differences entry in the FDF dictionary (see
Table 8.93 on page 714). If clear, the incremental updates are not in-
cluded.

8 IncludeAnnotations (PDF 1.4) Meaningful only when the form is being submitted in
Forms Data Format (that is, when both the XFDF and ExportFor-
mat flags are clear). If set, the submitted FDF file includes all mark-
up annotations in the underlying PDF document (see “Markup
Annotations” on page 616). If clear, markup annotations are not in-
cluded.

9 SubmitPDF (PDF 1.4) If set, the document is submitted as PDF, using the
MIME content type application / pdf (described in Internet RFC
2045, Multipurpose Internet Mail Extensions (MIME), Part One:
Format of Internet Message Bodies; see the Bibliography). If set, all
other flags are ignored except GetMethod.

10 CanonicalFormat (PDF 1.4) If set, any submitted field values representing dates are
converted to the standard format described in Section 3.8.3,
“Dates.” (The interpretation of a form field as a date is not specified
explicitly in the field itself but only in the JavaScript code that pro-
cesses it.)

11 ExclNonUserAnnots (PDF 1.4) Meaningful only when the form is being submitted in
Forms Data Format (that is, when both the XFDF and
ExportFormat flags are clear) and the IncludeAnnotations flag is
set. If set, it includes only those markup annotations whose T entry
(see Table 8.21) matches the name of the current user, as deter-
mined by the remote server to which the form is being submitted.
(The T entry for markup annotations specifies the text label to be
displayed in the title bar of the annotation’s pop-up window and is
assumed to represent the name of the user authoring the annota-
tion.) This allows multiple users to collaborate in annotating a sin-
gle remote PDF document without affecting one another’s
annotations.

BIT POSITION NAME MEANING

Interactive FeaturesCHAPTER 8
706

The set of fields whose names and values are to be submitted is defined by the
Fields array in the action dictionary (Table 8.85) together with the Include/
Exclude and IncludeNoValueFields flags in the Flags entry (Table 8.86). Each ele-
ment of the Fields array identifies an interactive form field, either by an indirect
reference to its field dictionary or (PDF 1.3) by its fully qualified field name (see
“Field Names” on page 676). If the Include/Exclude flag is clear, the submission
consists of all fields listed in the Fields array, along with any descendants of those
fields in the field hierarchy. If the Include/Exclude flag is set, the submission con-
sists of all fields in the document’s interactive form except those listed in the
Fields array.

Note: The NoExport flag in the field dictionary’s Ff entry (see Table 8.69 on page
675 and Table 8.70 on page 676) takes precedence over the action’s Fields array and
Include/Exclude flag. Fields whose NoExport flag is set are never included in a
submit-form action.

Field names and values may be submitted in any of the following formats, de-
pending on the settings of the action’s ExportFormat, SubmitPDF, and XFDF
flags (see the Bibliography for references):

• HTML Form format (described in the HTML 4.01 Specification)

• Forms Data Format (FDF), which is described in Section 8.6.6, “Forms Data
Format”; see also implementation note 123 in Appendix H.

• XFDF, a version of FDF based on XML. XFDF is described in the Adobe tech-
nical note XML Forms Data Format Specification, Version 2.0. XML is described
in the W3C document Extensible Markup Language (XML) 1.1)

• PDF (in this case, the entire document is submitted rather than individual
fields and values).

12 ExclFKey (PDF 1.4) Meaningful only when the form is being submitted in
Forms Data Format (that is, when both the XFDF and ExportFor-
mat flags are clear). If set, the submitted FDF excludes the F entry.

14 EmbedForm (PDF 1.5) Meaningful only when the form is being submitted in
Forms Data Format (that is, when both the XFDF and ExportFor-
mat flags are clear). If set, the F entry of the submitted FDF is a file
specification containing an embedded file stream representing the
PDF file from which the FDF is being submitted.

BIT POSITION NAME MEANING

Interactive FormsSECTION 8.6
707

The name submitted for each field is its fully qualified name (see “Field Names”
on page 676), and the value is specified by the V entry in its field dictionary.

Note: For pushbutton fields submitted in FDF, the value submitted is that of the AP
entry in the field’s widget annotation dictionary. If the submit-form action dictio-
nary contains no Fields entry, such pushbutton fields are not submitted at all.

Fields with no value (that is, whose field dictionary does not contain a V entry)
are ordinarily not included in the submission. The submit-form action’s Include-
NoValueFields flag can override this behavior. If this flag is set, such valueless
fields are included in the submission by name only, with no associated value.

Reset-Form Actions

A reset-form action resets selected interactive form fields to their default values;
that is, it sets the value of the V entry in the field dictionary to that of the DV entry
(see Table 8.69 on page 675). If no default value is defined for a field, its V entry is
removed. For fields that can have no value (such as pushbuttons), the action has
no effect. Table 8.87 shows the action dictionary entries specific to this type of
action.

The value of the action dictionary’s Flags entry is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the action. Bit positions within
the flag word are numbered from 1 (low-order) to 32 (high-order). At the time of
publication, only one flag is defined for this type of action; Table 8.88 shows its
meaning. All undefined flag bits are reserved and must be set to 0.

TABLE 8.87 Additional entries specific to a reset-form action

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be
ResetForm for a reset-form action.

Interactive FeaturesCHAPTER 8
708

TABLE 8.88 Flag for reset-form actions

Import-Data Actions

An import-data action imports Forms Data Format (FDF) data into the docu-
ment’s interactive form from a specified file (see Section 8.6.6, “Forms Data For-
mat”). Table 8.89 shows the action dictionary entries specific to this type of action.

TABLE 8.89 Additional entries specific to an import-data action

Fields array (Optional) An array identifying which fields to reset or which to exclude
from resetting, depending on the setting of the Include/Exclude flag in
the Flags entry (see Table 8.88). Each element of the array is either an in-
direct reference to a field dictionary or (PDF 1.3) a text string represent-
ing the fully qualified name of a field. Elements of both kinds may be
mixed in the same array.

If this entry is omitted, the Include/Exclude flag is ignored; all fields in
the document’s interactive form are reset.

Flags integer (Optional; inheritable) A set of flags specifying various characteristics of
the action (see Table 8.88). Default value: 0.

BIT POSITION NAME MEANING

1 Include/Exclude If clear, the Fields array (see Table 8.87) specifies which fields to reset.
(All descendants of the specified fields in the field hierarchy are reset as
well.) If set, the Fields array indicates which fields to exclude from reset-
ting; that is, all fields in the document’s interactive form are reset except
those listed in the Fields array.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be ImportData
for an import-data action.

F file specification (Required) The FDF file from which to import the data. (See implementation
notes 124 and 125 in Appendix H.)

KEY TYPE VALUE

Interactive FormsSECTION 8.6
709

JavaScript Actions

A JavaScript action (PDF 1.3) causes a script to be compiled and executed by the
JavaScript interpreter. Depending on the nature of the script, various interactive
form fields in the document may update their values or change their visual ap-
pearances. Netscape Communications Corporation’s Client-Side JavaScript Refer-
ence and the Adobe JavaScript for Acrobat API Reference (see the Bibliography)
give details on the contents and effects of JavaScript scripts. Table 8.90 shows the
action dictionary entries specific to this type of action.

TABLE 8.90 Additional entries specific to a JavaScript action

To support the use of parameterized function calls in JavaScript scripts, the
JavaScript entry in a PDF document’s name dictionary (see Section 3.6.3, “Name
Dictionary”) can contain a name tree that maps name strings to document-level
JavaScript actions. When the document is opened, all of the actions in this name
tree are executed, defining JavaScript functions for use by other scripts in the
document.

Note: The name strings associated with individual JavaScript actions in the name
dictionary serve merely as a convenient means for organizing and packaging scripts.
The names are arbitrary and need not bear any relation to the JavaScript name
space.

KEY TYPE VALUE

S name (Required) The type of action that this dictionary describes; must be JavaScript
for a JavaScript action.

JS text string or
text stream

(Required) A text string or text stream containing the JavaScript script to be exe-
cuted.

Note: PDFDocEncoding or Unicode encoding (the latter identified by the Unicode
prefix U+ FEFF) is used to encode the contents of the string or stream. (See imple-
mentation note 126 in Appendix H.)

Interactive FeaturesCHAPTER 8
710

8.6.5 Named Pages

The optional Pages entry (PDF 1.3) in a document’s name dictionary (see Section
3.6.3, “Name Dictionary”) contains a name tree that maps name strings to indi-
vidual pages within the document. Naming a page allows it to be referenced in
two different ways:

• An import-data action can add the named page to the document into which
FDF is being imported, either as a page or as a button appearance.

• A script executed by a JavaScript action can add the named page to the current
document as a regular page.

A named page that is to be visible to the user should be left in the page tree (see
Section 3.6.2, “Page Tree”), and there should be a reference to it in the appropriate
leaf node of the name dictionary’s Pages tree. If the page is not to be displayed by
the viewer application, it should be referenced from the name dictionary’s
Templates tree instead. Such invisible pages should have an object type of
Template rather than Page and should have no Parent or B entry (see Table 3.27
on page 145). Regardless of whether the page is named in the Pages or Templates
tree or is added to a document by an import-data or JavaScript action, the new
copy is not itself named.

8.6.6 Forms Data Format

This section describes Forms Data Format (FDF), the file format used for inter-
active form data (PDF 1.2). FDF is used when submitting form data to a server,
receiving the response, and incorporating it into the interactive form. It can also
be used to export form data to stand-alone files that can be stored, transmitted
electronically, and imported back into the corresponding PDF interactive form.
In addition, beginning in PDF 1.3, FDF can be used to define a container for an-
notations that are separate from the PDF document to which they apply.

Interactive FormsSECTION 8.6
711

FDF is based on PDF; it uses the same syntax (see Section 3.1, “Lexical Conven-
tions”) and basic object types (Section 3.2, “Objects”), and has essentially the
same file structure (Section 3.4, “File Structure”). However, it differs from PDF in
the following ways:

• The cross-reference table (Section 3.4.3, “Cross-Reference Table”) is optional.

• FDF files cannot be updated (see Section 3.4.5, “Incremental Updates”). Ob-
jects can only be of generation 0, and no two objects can have the same object
number.

• The document structure is much simpler than PDF, since the body of an FDF
document consists of only one required object.

• The length of a stream may not be specified by an indirect object.

FDF uses the MIME content type application / vnd . fdf. On the Windows and
UNIX platforms, FDF files have the extension . fdf; on Mac OS, they have file type
' FDF '.

FDF File Structure

An FDF file is structured in essentially the same way as a PDF file but contains
only those elements required for the export and import of interactive form and
annotation data. It consists of three required elements and one optional element
(see Figure 8.10):

• A one-line header identifying the version number of the PDF specification to
which the file conforms

• A body containing the objects that make up the content of the file

• An optional cross-reference table containing information about the objects in
the file

• A trailer giving the location of various objects within the body of the file

Interactive FeaturesCHAPTER 8
712

FIGURE 8.10 FDF file structure

FDF Header

The first line of an FDF file is a header, originally intended to identify the version
of the PDF specification to which the file conforms. However, for historical rea-
sons, this version number is now frozen and must read

%FDF−1 . 2

The true version number is now given by the Version entry in the FDF catalog
dictionary (see “FDF Catalog,” below; see also implementation note 127 in Ap-
pendix H).

FDF Body

The body of an FDF file consists of a sequence of indirect objects representing the
file’s catalog (see “FDF Catalog” on page 713) together with any additional objects
that the catalog may reference. The objects are of the same basic types described
in Section 3.2, “Objects.” Just as in PDF, objects in FDF can be direct or indirect.

Header

Body

Cross-reference
table (optional)

Trailer

Interactive FormsSECTION 8.6
713

FDF Trailer

The trailer of an FDF file enables an application reading the file to find significant
objects quickly within the body of the file. The last line of the file contains only
the end-of-file marker, %%EOF. This marker is preceded by the FDF trailer dictio-
nary, consisting of the keyword trailer followed by a series of one or more key-
value pairs enclosed in double angle brackets (<< … >>). The only required key is
Root, whose value is an indirect reference to the file’s catalog dictionary (see Table
8.91). The trailer may optionally contain additional entries for objects that are
referenced from within the catalog.

TABLE 8.91 Entry in the FDF trailer dictionary

Thus, the trailer has the overall structure

trailer
<< /Root c 0 R

 key2 value2
 …
 keyn valuen

>>
%%EOF

where c is the object number of the file’s catalog dictionary.

FDF Catalog

The root node of an FDF file’s object hierarchy is the catalog dictionary, located
by means of the Root entry in the file’s trailer dictionary (see “FDF Trailer,”
above). As shown in Table 8.92, the only required entry in the catalog is FDF; its
value is an FDF dictionary (Table 8.93), which in turn contains references to other
objects describing the file’s contents. The catalog may also contain an optional
Version entry identifying the version of the PDF specification to which this FDF
file conforms.

KEY TYPE VALUE

Root dictionary (Required; must be an indirect reference) The catalog object for this FDF file (see
“FDF Catalog,” below).

Interactive FeaturesCHAPTER 8
714

TABLE 8.92 Entries in the FDF catalog dictionary

TABLE 8.93 Entries in the FDF dictionary

KEY TYPE VALUE

Version name (Optional; PDF 1.4) The version of the PDF specification to which
this FDF file conforms (for example, 1.4) if later than the version
specified in the file’s header (see “FDF Header” on page 712). If the
header specifies a later version, or if this entry is absent, the docu-
ment conforms to the version specified in the header.

Note: The value of this entry is a name object, not a number, and
therefore must be preceded by a slash character (/) when written in
the FDF file (for example, /1.4).

FDF dictionary (Required) The FDF dictionary for this file (see Table 8.93).

Sig dictionary (Optional; PDF 1.5) A signature dictionary indicating that the doc-
ument is signed using an object digest (see Section 8.7, “Digital Sig-
natures”). This dictionary must contain a signature reference
dictionary whose Data entry is an indirect reference to the catalog
and whose TransformMethod entry is Identity.

KEY TYPE VALUE

F file specification (Optional) The source file or target file: the PDF document file that
this FDF file was exported from or is intended to be imported into.

ID array (Optional) An array of two byte strings constituting a file identifier
(see Section 10.3, “File Identifiers”) for the source or target file des-
ignated by F, taken from the ID entry in the file’s trailer dictionary
(see Section 3.4.4, “File Trailer”).

Fields array (Optional) An array of FDF field dictionaries (see “FDF Fields” on
page 717) describing the root fields (those with no ancestors in the
field hierarchy) to be exported or imported. This entry and the
Pages entry may not both be present.

Status PDFDocEncoded
string

(Optional) A status string to be displayed indicating the result of an
action, typically a submit-form action (see “Submit-Form Actions”
on page 703). The string is encoded with PDFDocEncoding. (See
implementation note 128 in Appendix H.) This entry and the Pages
entry may not both be present.

Interactive FormsSECTION 8.6
715

Pages array (Optional; PDF 1.3) An array of FDF page dictionaries (see “FDF
Pages” on page 720) describing new pages to be added to a PDF
target document. The Fields and Status entries may not be present
together with this entry.

Encoding name (Optional; PDF 1.3) The encoding to be used for any FDF field
value or option (V or Opt in the field dictionary; see Table 8.96 on
page 717) or field name that is a string and does not begin with the
Unicode prefix U+FEFF. (See implementation note 129 in Appendix
H.) Default value: PDFDocEncoding.

Annots array (Optional; PDF 1.3) An array of FDF annotation dictionaries (see
“FDF Annotation Dictionaries” on page 722). The array can include
annotations of any of the standard types listed in Table 8.20 on page
615 except Link, Movie, Widget, PrinterMark, Screen, and TrapNet.

Differences stream (Optional; PDF 1.4) A stream containing all the bytes in all incre-
mental updates made to the underlying PDF document since it was
opened (see Section 3.4.5, “Incremental Updates”). If a submit-
form action submitting the document to a remote server as FDF has
its IncludeAppendSaves flag set (see “Submit-Form Actions” on
page 703), the contents of this stream are included in the submis-
sion. This allows any digital signatures (see Section 8.7, “Digital
Signatures) to be transmitted to the server. An incremental update
is automatically performed just before the submission takes place,
in order to capture all changes made to the document. Note that the
submission always includes the full set of incremental updates back
to the time the document was first opened, even if some of them
may already have been included in intervening submissions.

Note: Although a Fields or Annots entry (or both) may be present
along with Differences, there is no guarantee that their contents will
be consistent with it. In particular, if Differences contains a digital sig-
nature, only the values of the form fields given in the Differences
stream can be considered trustworthy under that signature.

Target string (Optional; PDF 1.4) The name of a browser frame in which the un-
derlying PDF document is to be opened. This mimics the behavior
of the target attribute in HTML < href > tags.

EmbeddedFDFs array (Optional; PDF 1.4) An array of file specifications (see Section 3.10,
“File Specifications”) representing other FDF files embedded with-
in this one (Section 3.10.3, “Embedded File Streams”).

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
716

Embedded FDF files specified in the FDF dictionary’s EmbeddedFDFs entry may
optionally be encrypted. Besides the usual entries for an embedded file stream,
the stream dictionary representing such an encrypted FDF file must contain the
additional entry shown in Table 8.94 to identify the revision number of the FDF
encryption algorithm used to encrypt the file. Although the FDF encryption
mechanism is separate from the one for PDF file encryption described in Section
3.5, “Encryption,” revision 1 (the only one defined at the time of publication) uses
a similar RC4 encryption algorithm based on a 40-bit encryption key. The key is
computed by means of an MD5 hash, using a padded user-supplied password as
input. The computation is identical to steps 1 and 2 of Algorithm 3.2 on page 125;
the first 5 bytes of the result are the encryption key for the embedded FDF file.

TABLE 8.94 Additional entry in an embedded file stream dictionary for an encrypted
FDF file

The JavaScript entry in the FDF dictionary holds a JavaScript dictionary contain-
ing JavaScript scripts that are defined globally at the document level, rather than
associated with individual fields. The dictionary can contain scripts defining Jav-
aScript functions for use by other scripts in the document, as well as scripts to be
executed immediately before and after the FDF file is imported. Table 8.95 shows
the contents of this dictionary.

TABLE 8.95 Entries in the JavaScript dictionary

JavaScript dictionary (Optional; PDF 1.4) A JavaScript dictionary (see Table 8.95) defin-
ing document-level JavaScript scripts.

KEY TYPE VALUE

EncryptionRevision integer (Required if the FDF file is encrypted; PDF 1.4) The revision number of the
FDF encryption algorithm used to encrypt the file. The only valid value
defined at the time of publication is 1.

KEY TYPE VALUE

Before text string or
text stream

(Optional) A text string or text stream containing a JavaScript script to be
executed just before the FDF file is imported.

After text string or
text stream

(Optional) A text string or text stream containing a JavaScript script to be
executed just after the FDF file is imported.

KEY TYPE VALUE

Interactive FormsSECTION 8.6
717

FDF Fields

Each field in an FDF file is described by an FDF field dictionary. Table 8.96 shows
the contents of this type of dictionary. Most of the entries have the same form and
meaning as the corresponding entries in a field dictionary (Table 8.69 on page
675, Table 8.71 on page 678, Table 8.78 on page 692, and Table 8.80 on page 694)
or a widget annotation dictionary (Table 8.15 on page 606 and Table 8.39 on page
641). Unless otherwise indicated in the table, importing a field causes the values
of the entries in the FDF field dictionary to replace those of the corresponding
entries in the field with the same fully qualified name in the target document.
(See implementation notes 130–135 in Appendix H.)

TABLE 8.96 Entries in an FDF field dictionary

AfterPermsReady text string or
text stream

(Optional; PDF 1.6) A text string or text stream containing a JavaScript
script to be executed after the FDF file is imported and the usage rights in
the PDF document have been determined (see “UR” on page 733).

Note: Verification of usage rights requires the entire file to be present, in
which case this script defers execution until that requirement is met.

Doc array (Optional) An array defining additional JavaScript scripts to be added to
those defined in the JavaScript entry of the document’s name dictionary
(see Section 3.6.3, “Name Dictionary”). The array contains an even num-
ber of elements, organized in pairs. The first element of each pair is a
name and the second is a text string or text stream defining the script cor-
responding to that name. Each of the defined scripts is added to those al-
ready defined in the name dictionary and then executed before the script
defined in the Before entry is executed. As described in “JavaScript Ac-
tions” on page 709, these scripts are used to define JavaScript functions
for use by other scripts in the document.

KEY TYPE VALUE

Kids array (Optional) An array containing the immediate children of this field.

Note: Unlike the children of fields in a PDF file, which must be specified as indirect object
references, those of an FDF field may be either direct or indirect objects.

T text string (Required) The partial field name (see “Field Names” on page 676).

V (various) (Optional) The field’s value, whose format varies depending on the field type; see the
descriptions of individual field types in Section 8.6.3 for further information.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
718

Ff integer (Optional) A set of flags specifying various characteristics of the field (see Table 8.70
on page 676, Table 8.75 on page 686, Table 8.77 on page 691, and Table 8.79 on page
693). When imported into an interactive form, the value of this entry replaces that of
the Ff entry in the form’s corresponding field dictionary. If this field is present, the Set-
Ff and ClrFf entries, if any, are ignored.

SetFf integer (Optional) A set of flags to be set (turned on) in the Ff entry of the form’s cor-
responding field dictionary. Bits equal to 1 in SetFf cause the corresponding bits in Ff
to be set to 1. This entry is ignored if an Ff entry is present in the FDF field dictionary.

ClrFf integer (Optional) A set of flags to be cleared (turned off) in the Ff entry of the form’s corre-
sponding field dictionary. Bits equal to 1 in ClrFf cause the corresponding bits in Ff to
be set to 0. If a SetFf entry is also present in the FDF field dictionary, it is applied be-
fore this entry. This entry is ignored if an Ff entry is present in the FDF field dictio-
nary.

F integer (Optional) A set of flags specifying various characteristics of the field’s widget annota-
tion (see Section 8.4.2, “Annotation Flags”). When imported into an interactive form,
the value of this entry replaces that of the F entry in the form’s corresponding annota-
tion dictionary. If this field is present, the SetF and ClrF entries, if any, are ignored.

SetF integer (Optional) A set of flags to be set (turned on) in the F entry of the form’s correspond-
ing widget annotation dictionary. Bits equal to 1 in SetF cause the corresponding bits
in F to be set to 1. This entry is ignored if an F entry is present in the FDF field dictio-
nary.

ClrF integer (Optional) A set of flags to be cleared (turned off) in the F entry of the form’s corre-
sponding widget annotation dictionary. Bits equal to 1 in ClrF cause the correspond-
ing bits in F to be set to 0. If a SetF entry is also present in the FDF field dictionary, it
is applied before this entry. This entry is ignored if an F entry is present in the FDF
field dictionary.

AP dictionary (Optional) An appearance dictionary specifying the appearance of a pushbutton field
(see “Pushbuttons” on page 686). The appearance dictionary’s contents are as shown
in Table 8.19 on page 614, except that the values of the N, R, and D entries must all be
streams.

APRef dictionary (Optional; PDF 1.3) A dictionary holding references to external PDF files containing
the pages to use for the appearances of a pushbutton field. This dictionary is similar to
an appearance dictionary (see Table 8.19 on page 614), except that the values of the N,
R, and D entries must all be named page reference dictionaries (Table 8.100 on page
721). This entry is ignored if an AP entry is present.

KEY TYPE VALUE

Interactive FormsSECTION 8.6
719

In an FDF field dictionary representing a button field, the optional IF entry holds
an icon fit dictionary (PDF 1.3) specifying how to display the button’s icon within
the annotation rectangle of its widget annotation. Table 8.97 shows the contents
of this type of dictionary.

TABLE 8.97 Entries in an icon fit dictionary

IF dictionary (Optional; PDF 1.3; button fields only) An icon fit dictionary (see Table 8.97) specify-
ing how to display a button field’s icon within the annotation rectangle of its widget
annotation.

Opt array (Required; choice fields only) An array of options to be presented to the user. Each
element of the array can take either of two forms:

• A text string representing one of the available options

• A two-element array consisting of a text string representing one of the available op-
tions and a default appearance string for constructing the item’s appearance dynam-
ically at viewing time (see “Variable Text” on page 677)

A dictionary (Optional) An action to be performed when this field’s widget annotation is activated
(see Section 8.5, “Actions”).

AA dictionary (Optional) An additional-actions dictionary defining the field’s behavior in response
to various trigger events (see Section 8.5.2, “Trigger Events”).

RV text string or
text stream

(Optional; PDF 1.5) A rich text string, as described in “Rich Text Strings” on page 680.

KEY TYPE VALUE

SW name (Optional) The circumstances under which the icon should be scaled inside the annota-
tion rectangle:

A Always scale.
B Scale only when the icon is bigger than the annotation rectangle.
S Scale only when the icon is smaller than the annotation rectangle.
N Never scale.

Default value: A.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
720

FDF Pages

The optional Pages field in an FDF dictionary (see Table 8.93 on page 714)
contains an array of FDF page dictionaries (PDF 1.3) describing new pages to be
added to the target document. Table 8.98 shows the contents of this type of
dictionary.

TABLE 8.98 Entries in an FDF page dictionary

S name (Optional) The type of scaling to use:

A Anamorphic scaling: Scale the icon to fill the annotation rectangle exactly, with-
out regard to its original aspect ratio (ratio of width to height).

P Proportional scaling: Scale the icon to fit the width or height of the annotation
rectangle while maintaining the icon’s original aspect ratio. If the required hori-
zontal and vertical scaling factors are different, use the smaller of the two, cen-
tering the icon within the annotation rectangle in the other dimension.

Default value: P.

A array (Optional) An array of two numbers between 0.0 and 1.0 indicating the fraction of left-
over space to allocate at the left and bottom of the icon. A value of [0.0 0.0] positions the
icon at the bottom-left corner of the annotation rectangle. A value of [0.5 0.5] centers it
within the rectangle. This entry is used only if the icon is scaled proportionally. Default
value: [0.5 0.5].

FB boolean (Optional; PDF 1.5) If true, indicates that the button appearance should be scaled to fit
fully within the bounds of the annotation without taking into consideration the line
width of the border; see implementation note 136 in Appendix H. Default value: false.

KEY TYPE VALUE

Templates array (Required) An array of FDF template dictionaries (see Table 8.99) describing the
named pages that serve as templates on the page.

Info dictionary (Optional) An FDF page information dictionary containing additional informa-
tion about the page. At the time of publication, no entries have been defined for
this dictionary.

KEY TYPE VALUE

Interactive FormsSECTION 8.6
721

An FDF template dictionary contains information describing a named page that
serves as a template. Table 8.99 shows the contents of this type of dictionary.

TABLE 8.99 Entries in an FDF template dictionary

The names of fields imported from a template may sometimes conflict with those
of existing fields in the target document. This can occur, for example, if the same
template page is imported more than once or if two different templates have fields
with the same names. If the Rename flag in the FDF template dictionary is true,
fields with such conflicting names are renamed to guarantee their uniqueness. If
Rename is false, the fields are not renamed; this results in multiple fields with the
same name in the target document. Each time the FDF file provides attributes for
a given field name, all fields with that name are updated. (See implementation
notes 137 and 138 in Appendix H.)

The TRef entry in an FDF template dictionary holds a named page reference
dictionary describing the location of external templates or page elements. Table
8.100 shows the contents of this type of dictionary.

TABLE 8.100 Entries in an FDF named page reference dictionary

KEY TYPE VALUE

TRef dictionary (Required) A named page reference dictionary (see Table 8.100) specifying the
location of the template.

Fields array (Optional) An array of references to FDF field dictionaries (see Table 8.96 on
page 717) describing the root fields to be imported (those with no ancestors in
the field hierarchy).

Rename boolean (Optional) A flag specifying whether fields imported from the template may be
renamed in the event of name conflicts with existing fields; see below for further
discussion. Default value: true.

KEY TYPE VALUE

Name string (Required) The name of the referenced page.

F file specification (Optional) The file containing the named page. If this entry is absent, it is
assumed that the page resides in the associated PDF file.

Interactive FeaturesCHAPTER 8
722

FDF Annotation Dictionaries

Each annotation dictionary in an FDF file must have a Page entry (see Table
8.101) indicating the page of the source document to which the annotation is
attached.

TABLE 8.101 Additional entry for annotation dictionaries in an FDF file

8.6.7 XFA Forms

PDF 1.5 introduces support for interactive forms based on the Adobe XML
Forms Architecture (XFA). The XFA entry in the interactive forms dictionary (see
Table 8.67) specifies an XFA resource, which is an XML stream that contains the
form information. The format of an XFA resource is described in the XML Data
Package (XDP) Specification (see the Bibliography).

The XFA entry may be either a stream containing the entire XFA resource or an
array specifying individual packets that together make up the XFA resource. The
resource includes but is not limited to the following information:

• The form template (specified in the template packet), which describes the char-
acteristics of the form, including its fields, calculations, validations, and for-
matting. The XML Template Specification describes the architecture of a form
template (see Bibliography).

• The data (specified in the datasets packet), which represents the state of the
form

• The configuration information (specified in the config packet), which is re-
quired to properly process the form template and associated data. Configura-
tion information is formatted as described in the XML Configuration
Specification (see Bibliography).

Each packet represents a complete XML element, with the exception of the first
and last packet, which specify begin and end tags for the xdp:xdp element. Exam-
ple 8.20 shows the XFA entry consisting of an array of packets; Example 8.21
shows the same entry specified as a stream.

KEY TYPE VALUE

Page integer (Required for annotations in FDF files) The ordinal page number on which
this annotation should appear, where page 0 is the first page.

Interactive FormsSECTION 8.6
723

Example 8.20

1 0 obj XFA entry in interactive form dictionary
<< /XFA [(xdp:xdp) 10 0 R XFA resource specified as individual packets

(template) 11 0 R
(datasets) 12 0 R
(config) 13 0 R
(/xdp:xdp) 14 0 R]

>>
endobj
10 0 obj

stream
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">

endstream

11 0 obj

stream
<template xmlns="http://www.xfa.org/schema/xfa-template/2.4/">
...remaining contents of template packet...
</template>

endstream

12 0 obj

stream
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
...contents of datasets packet...
</xfa:datasets>

endstream

13 0 obj

stream
<config xmlns="http://www.xfa.org/schema/xci/1.0/">
...contents of config node of XFA Data Package...
<config>

endstream

14 0 obj

stream
</xdp:xdp>

endstream

Interactive FeaturesCHAPTER 8
724

Example 8.21

1 0 obj XFA entry in interactive form dictionary
<< /XFA 10 0 R >>

endobj

10 0 obj

stream
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<template xmlns="http://www.xfa.org/schema/xfa-template/2.4/">
...remaining contents of template packet...
</template>
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
...contents of datasets packet...
</xfa:datasets>
<config xmlns="http://www.xfa.org/schema/xci/1.0/">
...contents of config node of XFA Data Package...
<config>
</xdp:xdp>

endstream
endobj

When an XFA entry is present in an interactive form dictionary, the XFA resource
provides most of the information about the form; in particular, all form-related
events such as calculations and validations. The other entries in the interactive
form dictionary must be consistent with the information in the XFA resource.
When creating or modifying a PDF file with an XFA resource, applications
should follow these guidelines:

• PDF interactive form field objects must be present for each field specified in
the XFA resource. The XFA field values must be consistent with the corre-
sponding V entries of the PDF field objects.

• The XFA Scripting Object Model (SOM) specifies a naming convention that
must be used to connect interactive form field names with field names in the
XFA resource. Information about this model is available in the XFA Specifica-
tion, version 2.2 (see the Bibliography).

• No A or AA entries (see Table 8.15) should be present in the annotation dictio-
naries of fields that also have actions specified by the XFA resource. The behav-
ior of a field whose actions are specified in both ways is undefined.

Digital SignaturesSECTION 8.7
725

8.7 Digital Signatures

A digital signature (PDF 1.3) can be used to authenticate the identity of a user and
the document’s contents. It stores information about the signer and the state of
the document when it was signed. The signature may be purely mathematical,
such as a public/private-key encrypted document digest, or it may be a biometric
form of identification, such as a handwritten signature, fingerprint, or retinal
scan. The specific form of authentication used is implemented by a plug-in signa-
ture handler. Third-party handler writers are encouraged to register their handler
names with Adobe; see Appendix E.

Signature information is contained in a signature dictionary, whose entries are
listed in Table 8.102. Signature handlers can use or omit those entries that are
marked optional in the table but are encouraged to use them in a standard way if
they are used at all. In addition, signature handlers may add private entries of
their own. To avoid name duplication, it is suggested that the keys for all such pri-
vate entries be prefixed with the registered handler name followed by a period (.).

Signatures are created by computing a digest of the data (or part of the data) in a
document, and storing the digest in the document. To verify the signature, the di-
gest is recomputed and compared with the one stored in the document. Differ-
ences in the digest values indicate that modifications have been made since the
document was signed.

There are two defined techniques for computing a reproducible digest of the con-
tents of all or part of a PDF file:

• A byte range digest is computed over a range of bytes in the file, indicated by the
the ByteRange entry in the signature dictionary. This range is typically the en-
tire file, including the signature dictionary but excluding the signature value it-
self (the Contents entry). When a byte range digest is present, all values in the
signature dictionary are required to be direct objects. See implementation note
139 in Appendix H.

• An object digest (PDF 1.5) is computed by selectively walking a subtree of ob-
jects in memory, beginning with the referenced object, which is typically the
root object. The resulting digest, along with information about how it was com-
puted, is placed in a signature reference dictionary, whose entries are listed in
Table 8.103. The TransformMethod entry specifies the general method used to
compute the digest, and the TransformParams entry specifies the variable por-

Interactive FeaturesCHAPTER 8
726

tion of the computation. Transform methods are described in detail in Section
8.7.1, “Transform Methods.”

A PDF document may contain the following standard types of signatures:

• One or more document (or ordinary) signatures. These signatures appear in sig-
nature form fields (see “Signature Fields” on page 695). The signature dictio-
nary corresponding to each signature is the value of the form field (as specified
by its V entry). The signature dictionary must contain a ByteRange entry repre-
senting a byte range digest, as described above. A signature is validated by re-
computing the digest and comparing it with the one stored in the signature.

Note: If a signed document is modified and saved by incremental update (see Sec-
tion 3.4.5, “Incremental Updates”), the data corresponding to the byte range of the
original signature is preserved. Therefore, if the signature is valid, it is possible to
recreate the state of the document as it existed at the time of signing.

• At most one MDP (modification detection and prevention) signature (PDF 1.5),
also referred to as an author or certifying signature. The signature dictionary of
an MDP signature must be the value of a signature field and must contain a
ByteRange entry. It may also be referenced from the DocMDP entry in the per-
missions dictionary (see Section 8.7.3, “Permissions”). The signature dictio-
nary must contain a signature reference dictionary (see Table 8.103) that has a
DocMDP transform method. See “DocMDP” on page 731 for information on
how these signatures are created and validated.

A signature dictionary for an MDP or ordinary signature may also have a sig-
nature reference dictionary with a FieldMDP transform method; see “FieldM-
DP” on page 736.

• At most two usage rights signatures (PDF 1.5). Its signature dictionary is refer-
enced from the UR or UR3 (PDF 1.6) entry in the permissions dictionary (not
from a signature field); see Table 8.107. The dictionary must contain a signa-
ture reference dictionary that has a UR transform method. See “UR” on page
733 for information on how these signatures are created and validated.

• The Sig entry in the catalog of an FDF file (see “FDF Catalog” on page 713)
specifies a signature dictionary.

Digital SignaturesSECTION 8.7
727

TABLE 8.102 Entries in a signature dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Sig for a signature dictionary.

Filter name (Required; inheritable) The name of the preferred signature handler to use
when validating this signature. If the Prop_Build entry is not present, it is also
the name of the signature handler that was used to create the signature. If
Prop_Build is present, it can be used to determine the name of the handler
that created the signature (which is typically the same as Filter but is not re-
quired to be). An application may substitute a different handler when verify-
ing the signature, as long as it supports the specified SubFilter format.
Example signature handlers are Adobe.PPKLite, Entrust.PPKEF, CICI.SignIt,
and VeriSign.PPKVS.

SubFilter name (Optional) A name that describes the encoding of the signature value and key
information in the signature dictionary. An application may use any handler
that supports this format to validate the signature.

PDF 1.6 defines the following values for public-key cryptographic signatures:
adbe.x509.rsa_sha1, adbe.pkcs7.detached, and adbe.pkcs7.sha1 (see Section
8.7.2, “Signature Interoperability”). Other values can be defined by third par-
ty developers, subject to the restriction that all names beginning with the
adbe. prefix be reserved for future versions of PDF. All third party names
must be registered with Adobe Systems (see Appendix E).

Contents byte string (Required) The signature value. When ByteRange is present, the value is a
hexadecimal string (see “Hexadecimal Strings” on page 56) representing the
value of the byte range digest. If ByteRange is not present, the value is an ob-
ject digest of the signature dictionary, excluding the Contents entry.

For public-key signatures, Contents is commonly either a DER-encoded
PKCS#1 binary data object or a DER-encoded PKCS#7 binary data object.

Cert array or
byte string

(Required when SubFilter is adbe.x509.rsa_sha1) An array of byte strings rep-
resenting the X.509 certificate chain used when signing and verifying signa-
tures that use public-key cryptography, or a byte string if the chain has only
one entry. The signing certificate must appear first in the array; it is used to
verify the signature value in Contents, and the other certificates are used to
verify the authenticity of the signing certificate.

If SubFilter is adbe.pkcs7.detached or adbe.pkcs7.sha1, this entry is not
used, and the certificate chain must be put in the PKCS#7 envelope in
Contents.

Interactive FeaturesCHAPTER 8
728

ByteRange array (Required for all signatures that are part of a signature field and usage rights
signatures referenced from the UR3 entry in the permissions dictionary) An ar-
ray of pairs of integers (starting byte offset, length in bytes) describing the ex-
act byte range for the digest calculation. Multiple discontiguous byte ranges
are used to describe a digest that does not include the signature value (the
Contents entry) itself.

Reference array (Optional; PDF 1.5) An array of signature reference dictionaries (see Table
8.103).

Changes array (Optional) An array of three integers specifying changes to the document that
have been made between the previous signature and this signature: in this or-
der, the number of pages altered, the number of fields altered, and the num-
ber of fields filled in. (See implementation note 139 in Appendix H.)

Note: The ordering of signatures is determined by the value of ByteRange. Since
each signature results in an incremental save, later signatures have a greater
length value.

Name text string (Optional) The name of the person or authority signing the document. This
value should be used only when it is not possible to extract the name from
the signature; for example, from the certificate of the signer.

M date (Optional) The time of signing. Depending on the signature handler, this may
be a normal unverified computer time or a time generated in a verifiable way
from a secure time server.

This value should be used only when the time of signing is not available in
the signature; for example, a time stamp can be embedded in a PKCS#7 bina-
ry data object (see “PKCS#7 Signatures” on page 738).

Location text string (Optional) The CPU host name or physical location of the signing.

Reason text string (Optional) The reason for the signing, such as (I agree …).

ContactInfo text string (Optional) Information provided by the signer to enable a recipient to contact
the signer to verify the signature; for example, a phone number.

R integer (Optional) The version of the signature handler that was used to create the
signature.

Note: Beginning with PDF 1.5, this entry is deprecated, and the information
should be stored in the Prop_Build dictionary.

KEY TYPE VALUE

Digital SignaturesSECTION 8.7
729

Note: The entries in the signature dictionary can be conceptualized as being in dif-
ferent dictionaries; they are in one dictionary for historical and cryptographic rea-
sons. The categories are signature properties (R, M, Name, Reason, Location,
Prop_Build, Prop_AuthTime, and Prop_AuthType); key information (Cert and por-
tions of Contents when the signature value is a PKCS#7 object); reference
(Reference and ByteRange); and signature value (Contents when the signature val-
ue is a PKCS#1 object).

V integer (Optional; PDF 1.5) The version of the signature dictionary format. It corre-
sponds to the usage of the signature dictionary in the context of the value of
SubFilter. The value is 1 if the Reference dictionary is considered critical to
the validation of the signature.

Default value: 0.

Prop_Build dictionary (Optional; PDF 1.5) A dictionary that can be used by a signature handler to
record information that captures the state of the computer environment used
for signing, such as the name of the handler used to create the signature, soft-
ware build date, version, and operating system.

Adobe publishes a separate specification, the PDF Signature Build Dictionary
Specification for Acrobat 6.0 that provides implementation guidelines for the
use of this dictionary.

Prop_AuthTime integer (Optional; PDF 1.5) The number of seconds since the signer was last authen-
ticated. It is intended to be used in claims of signature repudiation. It should
be omitted if the value is unknown.

Prop_AuthType name (Optional; PDF 1.5) The method used to authenticate the signer. It is intend-
ed to be used in claims of signature repudiation. Valid values include PIN,
Password, and Fingerprint.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
730

TABLE 8.103 Entries in a signature reference dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be SigRef for a signature reference dictionary.

TransformMethod name (Required) The name of the transform method (see Section 8.7.1,
“Transform Methods”) that guides the object digest computation or
modification analysis that takes place when the signature is validat-
ed. Valid values are:

DocMDP Used to detect modifications to a document relative
to a signature field that is signed by the originator of
a document; see “DocMDP” on page 731.

UR Used to detect modifications to a document that
would invalidate a signature in a rights-enabled doc-
ument; see “UR” on page 733.

FieldMDP Used to detect modifications to a list of form fields
specified in TransformParams; see “FieldMDP” on
page 736.

Identity Used when signing a single object, which is specified
by the value of Data in the signature reference dic-
tionary (see Table 8.103). This transform method
supports signing of FDF files. See “Identity” on page
737 for details.

TransformParams dictionary (Optional) A dictionary specifying transform parameters (variable
data) for the transform method specified by TransformMethod.
Each method except Identity takes its own set of parameters. See
each of the sections specified above for details on the individual
transform parameter dictionaries

Data (various) (Required when TransformMethod is FieldMDP or Identity) An indi-
rect reference to the object in the document over which the digest
was computed or upon which the object modification analysis
should be performed. For transform methods other than FieldMDP
and Identity, this object is implicitly defined.

DigestMethod name (Optional) A name identifying the algorithm to be used when com-
puting the digest. Valid values are MD5 and SHA1. (See implemen-
tation note 144 in Appendix H.) Default value: MD5.

Digital SignaturesSECTION 8.7
731

8.7.1 Transform Methods

Transform methods, along with transform parameters, determine which objects
are included and excluded in object digest computation or revision comparison.
The following sections discuss the types of transform methods, their transform
parameters, and when they are used. Appendix I, “Computation of Object Di-
gests,” describes in detail the algorithm for computing object digests.

Note: All transform methods exclude the signature dictionary from the object digest.

DocMDP

The DocMDP transform method is used to detect modifications relative to a sig-
nature field that is signed by the author of a document (the person applying the
first signature). A document can contain only one signature field that contains a
DocMDP transform method; it must be the first signed field in the document. It
enables the author to specify what changes are permitted to be made the docu-
ment and what changes invalidate the author’s signature.

As discussed earlier, “MDP” stands for modification detection and prevention.
Such signatures enable detection of disallowed changes specified by the author. In
addition, disallowed changes can also be prevented when the signature dictionary
is referred to by the DocMDP entry in the permissions dictionary (see Section
8.7.3, “Permissions”).

DigestValue string (Required in some situations) When present, the computed value of
the digest. See Section 8.7.1, “Transform Methods, for details on
when this entry is required.

DigestLocation array (Required when DigestValue is required and TransformMethod is
FieldMDP or DocMDP) An array of two integers specifying the loca-
tion in the PDF file of the DigestValue string. The integers represent
the starting offset and length in bytes, respectively.

This entry is required when DigestValue is written directly to the
PDF file, bypassing any encryption that has been performed on the
document. When specified, the values must be used to read
DigestValue directly from the file during validation.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
732

Note: When creating an author signature, applications are encouraged to create a
legal attestation dictionary (see Section 8.7.4, “Legal Content Attestations”) that
specifies all content that might result in unexpected rendering of the document con-
tents, along with the author’s attestation to such content. This dictionary can be
used to establish an author’s intent if the integrity of the document is questioned.

The P entry in the DocMDP transform parameters dictionary (see Table 8.104) in-
dicates the author’s specification of which changes to the document will invali-
date the signature. (These changes to the document are also prevented if the
signature dictionary is referred to from the DocMDP entry in the permissions dic-
tionary.) A value of 1 for P indicates that the document is intended to be final;
that is, any changes invalidate the signature. The values 2 and 3 permit modifica-
tions that are appropriate for form field or comment workflows.

The DocMDP object digest is computed over a subset of the PDF objects in the
document. Specifically, this subset consists of the objects that are not permitted
to be modified, directly or indirectly, as specified by the transform parameters
dictionary. Appendix I describes the object digest computation.

Validating MDP signatures

To validate an MDP signature, an application first verifies the byte range digest.
Next, it verifies that any modifications that have been made to the document are
permitted by the transform parameters by using one of the following techniques:

• PDF 1.5 required the calculated value of the object digest at the time of signing
to be stored in the DigestValue entry in the signature reference dictionary (see
Table 8.103). Therefore, an application can compare this entry to its calculated
object digest when validating. If the values are different, the signature is invalid.

• In PDF 1.6, the DigestValue entry is not required. Once the byte range digest is
validated, the portion of the document specified by the ByteRange entry in the
signature dictionary (see Table 8.102) is known to correspond to the state of the
document at the time of signing. Therefore, applications can compare the
signed and current versions of the document to see whether there have been
modifications to any objects that are not permitted by the transform parame-
ters. See implementation note 141 in Appendix H.

Digital SignaturesSECTION 8.7
733

TABLE 8.104 Entries in the DocMDP transform parameters dictionary

UR

The UR transform method is used to detect changes to a document that would in-
validate a usage rights signature, which is referred to from the UR or UR3 entry in
the permissions dictionary (see Section 8.7.3, “Permissions). Usage rights signa-
tures are used to enable additional interactive features that are not available by
default in a particular viewer application (such as Adobe Reader). The signature
is used to validate that the permissions have been granted by a bonafide granting
authority. The transform parameters dictionary (see Table 8.105) specifies the ad-
ditional rights that are enabled if the signature is valid. If the signature is invalid
because the document has been modified in a way that is not permitted or the
identity of the signer is not granted the extended permissions, additional rights
are not granted.

Adobe Systems grants permissions, for example, to enable additional features in
Adobe Reader, using public-key cryptography. It uses certificate authorities to is-
sue public key certificates to document creators with which it has entered into a
business relationship. Adobe Reader verifies that the rights-enabling signature
uses a certificate from an Adobe-authorized certificate authority. Other PDF
viewer applications are free to use this same mechanism for their own purposes.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
TransformParams for a transform parameters dictionary.

P number (Optional) The access permissions granted for this document. Valid values are:

1 No changes to the document are permitted; any change to the docu-
ment invalidates the signature.

2 Permitted changes are filling in forms, instantiating page templates,
and signing; other changes invalidate the signature.

3 Permitted changes are the same as for 2, as well as annotation creation,
deletion, and modification; other changes invalidate the signature.

Default value: 2.

V name (Optional) The DocMDP transform parameters dictionary version. The only valid val-
ue is 1.2. (Note that this value is a name object, not a number.) (See implementation
note 145 in Appendix H.) Default value: 1.2.

Interactive FeaturesCHAPTER 8
734

Validation of a usage rights signature depends on whether the signature dictio-
nary is referenced from the UR or UR3 entry in the permissions dictionary (See
implementation note 142 in Appendix H):

• UR: At the time of signing, the application computes the object digest over a
subset of the PDF objects in the document; that is, the objects that are not
modified, directly or indirectly, by permissible operations, as specified by the
transform parameters dictionary. Appendix I describes the object digest com-
putation. The calculated value of this digest is stored in the DigestValue entry
in the signature reference dictionary (see Table 8.103). An application can com-
pare this entry to its calculated object digest when validating. If the values are
different, the signature is invalid.

Note: The use of UR is not recommended because of the complex (and hence prone
to errors) algorithm. Instead, the UR3 (see below) algorithm should be used.

• UR3 (PDF 1.6): The ByteRange entry in the signature dictionary (see Table
8.102) is required to be present. First, the application verifies the byte range di-
gest to determine whether the portion of the document specified by ByteRange
corresponds to the state of the document at the time of signing. Next, the appli-
cation examines the current version of the document to see whether there have
been modifications to any objects that are not permitted by the transform pa-
rameters.

TABLE 8.105 Entries in the UR transform parameters dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
TransformParams for a transform parameters dictionary.

Document array (Optional) An array of names specifying additional document-wide usage rights for
the document. The only defined value is FullSave, which permits a user to save the
document along with modified form and/or annotation data. (See implementation
note 143 in Appendix H.)

Msg text
string

(Optional) A text string that can be used to specify any arbitrary information, such as
the reason for adding usage rights to the document.

V name (Optional) The UR transform parameters dictionary version. The only valid value is
2.2. If an unknown version is present, no rights are enabled. (Note that this value is a
name object, not a number.) (See implementation note 145 in Appendix H.) Default
value: 2.2.

Digital SignaturesSECTION 8.7
735

Annots array (Optional) An array of names specifying additional annotation-related usage rights
for the document. Valid names in PDF 1.5 and later are Create, Delete, Modify, Copy,
Import, and Export, which permit the user to perform the named operation on anno-
tations.

The following names were added in PDF 1.6. They are permitted only when the signa-
ture dictionary is referenced from the UR3 entry of the permissions dictionary (see
Table 8.107):

Online Permits online commenting; that is, the ability to upload or
download markup annotations from a server.

SummaryView Permits a user interface to be shown that summarizes the
comments (markup annotations) in a document.

Form array (Optional) An array of names specifying additional form-field-related usage rights for
the document. Valid names in PDF 1.5 are:

FillIn Permits the user to save a document on which form fill-in
has been done.

Import Permits the user to import form data files in FDF, XFDF
and text (CSV/TSV) formats.

Export Permits the user to export form data files as FDF or XFDF.

SubmitStandalone Permits the user to submit form data when the document is
not open in a Web browser.

SpawnTemplate Permits new pages to be instantiated from named page tem-
plates.

The following names were added in PDF 1.6. They are permitted only when the signa-
ture dictionary is referenced from the UR3 entry of the permissions dictionary; see
Table 8.107 (however, see FormEx below):

BarcodePlaintext Permits text form field data to be encoded as a plaintext
two-dimensional barcode.

Online (PDF 1.6) Permits the use of forms-specific online mecha-
nisms such as SOAP or Active Data Object.

FormEx array (Optional; permitted only when the signature dictionary is referenced from the UR entry
of the permissions dictionary; PDF 1.5) An array of names specifying additional form-
field-related usage rights. The only valid name is BarcodePlaintext, which permits text
form field data to be encoded as a plaintext two-dimensional barcode.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
736

FieldMDP

The FieldMDP transform method computes an object digest over a list of form
field objects and is used to detect changes to the values of those form fields. The
entries in its transform parameters dictionary are listed in Table 8.106.

TABLE 8.106 Entries in the FieldMDP transform parameters dictionary

Signature array (Optional) An array of names specifying additional signature-related usage rights for
the document. The only defined value is Modify, which permits a user to apply a digi-
tal signature to an existing signature form field or clear a signed signature form field.

EF array (Optional; PDF 1.6) An array of names specifying additional usage rights for named
embedded files in the document. Valid names are Create, Delete, Modify, and Import,
which permit the user to perform the named operation on named embedded files.

P boolean (Optional; PDF 1.6) If true, permissions for the document should be restricted in all
consumer applications to those permissions granted by Adobe Reader, while allowing
permissions for rights enabled by other entries in this dictionary. Default value: false.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
TransformParams for a transform parameters dictionary.

Action name (Required) A name that, along with the Fields array, describes which form fields are
included in the object digest (and hence do not permit changes after the signature is
applied). Valid values are:

All All form fields.

Include Only those form fields that are specified in Fields.

Exclude Only those form fields that are not specified in Fields.

Fields array (Required if Action is Include or Exclude) An array of text strings containing field
names.

V name (Optional) The transform parameters dictionary version. The value for PDF 1.5 and
later is 1.2. (Note that this value is a name object, not a number.) (See implementation
note 145 in Appendix H.) Default value: 1.2.

KEY TYPE VALUE

Digital SignaturesSECTION 8.7
737

In documents intended for form field workflows, the following occurs:

• The author specifies that form fields can be filled in without invalidating the
author’s signature. The P entry of the DocMDP transform parameters dictionary
is set to either 2 or 3 (see Table 8.104).

• The author can also specify that after a specific recipient has signed the docu-
ment, any modifications to specific form fields should invalidate that recipient’s
signature. There is a separate signature field for each designated recipient, each
having an associated signature field lock dictionary (see Table 8.82) specifying
the form fields that should be locked for that user.

• When the recipient signs the field, the signature, signature reference, and trans-
form parameters dictionaries are created. The Action and Fields entries in the
transform parameters dictionary are copied from the corresponding fields in
the signature field lock dictionary.

Note: This copying is done because all objects in a signature dictionary must be
direct objects if the dictionary contains a byte range signature. (Even though
FieldMDP signatures are object signatures, any signature dictionary referred to
from a signature field must also have a byte range signature.) Therefore, the
transform parameters dictionary cannot reference the signature field lock dictio-
nary indirectly.

The object digest is computed over all the form fields specified by the transform
parameters dictionary, sorted in alphabetical order (see Appendix I for details).
The specified form fields are locked to prevent changes by marking them read-
only. Any changes to the form fields can be detected when the recipient’s signa-
ture is verified.

FieldMDP signatures are validated in a similar manner to DocMDP signatures. See
“Validating MDP signatures” on page 732 for details.

Identity

The Identity transform method is used when computing an object digest that is
all-inclusive; that is, no objects are excluded. The entire object tree is walked,
starting with the object specified by Data in the signature reference dictionary
(see Table 8.103). Any changes to the contents of the object invalidate the signa-
ture. This method is used to support the signing of FDF files. The FDF catalog is
the object over which the digest is calculated.

Interactive FeaturesCHAPTER 8
738

8.7.2 Signature Interoperability

It is intended that PDF consumer applications allow interoperability between sig-
nature handlers; that is, a PDF file signed with a handler from one vendor must
be able to be validated with a handler from a different vendor.

The SubFilter entry in the signature dictionary specifies the encoding of the sig-
nature value and key information, and the Filter entry specifies the preferred han-
dler to use to validate the signature. Handlers specify the SubFilter encodings
they support; therefore, handlers other than the preferred handler can be used to
validate the signature if necessary or desired.

There are several defined values for the SubFilter entry, all based on public-key
cryptographic standards published by RSA Security and also as part of the stan-
dards issued by the Internet Engineering Task Force (IETF) Public Key Infra-
structure (PKIX) working group; see the Bibliography for references.

PKCS#1 Signatures

The PKCS#1 standard supports several public-key cryptographic algorithms and
digest methods, including RSA encryption, DSA signatures, and SHA-1 and MD5
digests (see the Bibliography for references). For signing PDF files using PKCS#1,
the only recommended value of SubFilter is adbe.x509.rsa_sha1, which uses the
RSA encryption algorithm and SHA-1 digest method. The certificate chain of the
signer is stored in the Cert entry.

PKCS#7 Signatures

When PKCS#7 signatures are used, the value of Contents is a DER-encoded
PKCS#7 binary data object containing the signature. SubFilter can take one of the
following values:

• adbe.pkcs7.detached: No data is encapsulated in the PKCS#7 signed-data field.

• adbe.pkcs7.sha1: The SHA1 digest of the byte range is encapsulated in the
PKCS#7 signed-data field with ContentInfo of type Data.

The PKCS#7 object must conform to the PKCS#7 specification in Internet RFC
2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see the Bibliography).

Digital SignaturesSECTION 8.7
739

At minimum, it must include the signer’s X.509 signing certificate. This certifi-
cate is used to verify the signature value in Contents.

The PKCS#7 object may optionally contain the following attributes:

• Time stamp information as an unsigned attribute (PDF 1.6): The timestamp to-
ken must conform to RFC 3161 and must be computed and embedded into the
PKCS#7 object as described in Appendix A of RFC 3161.

• Revocation information as an signed attribute (PDF 1.6): This attribute can in-
clude all the revocation information that is necessary to carry out revocation
checks for the signer's certificate and its issuer certificates.

• One or more issuer certificates from the signer’s trust chain (PDF 1.6); see im-
plementation note 146 in Appendix H.

• One or more RFC 3281 attribute certificates associated with the signer certifi-
cate (PDF 1.7).

Revocation Information

The following object identifier identifies Adobe's revocation information at-
tribute:

adbe-revocationInfoArchival OBJECT IDENTIFIER ::=
{ adbe(1.2.840.113583) acrobat(1) security(1) 8 }

The value of the revocation information attribute can include any of the following
data types:

• Certificate Revocation Lists (CRLs), described in RFC 3280 (see the Bibliogra-
phy): CRLs are generally large and therefore not recommended to be embed-
ded in the PKCS#7 object.

• Online Certificate Status Protocol (OCSP) Responses, described in RFC 2560,
X.509 Internet Public Key Infrastructure Online Certificate Status Protocol—
OCSP (see the Bibliography): These are generally small and constant in size and
are the suggested data type to be included in the PKCS#7 object.

• Custom revocation information: The format is not prescribed by this specifica-
tion, other than that it be encoded as an OCTET STRING. The application should
be able to determine the type of data contained within the OCTET STRING by
looking at the associated OBJECT IDENTIFIER.

Interactive FeaturesCHAPTER 8
740

Adobe's Revocation Information attribute value has ASN.1 type
RevocationInfoArchival:

RevocationInfoArchival ::= SEQUENCE {
crl [0] EXPLICIT SEQUENCE of CRLs, OPTIONAL
ocsp [1] EXPLICIT SEQUENCE of OCSP Responses, OPTIONAL
otherRevInfo [2] EXPLICIT SEQUENCE of OtherRevInfo, OPTIONAL

}
OtherRevInfo ::= SEQUENCE {
Type OBJECT IDENTIFIER
Value OCTET STRING
}

For byte range signatures, Contents is a hexadecimal string with “<” and “>” de-
limiters. It must fit precisely in the space between the ranges specified by
ByteRange. Since the length of PKCS#7 objects is not entirely predictable, it is of-
ten necessary to pad the value of Contents with zeros at the end of the string (be-
fore the “>” delimiter) before writing the PKCS#7 to the allocated space in the file.

The most common format for encoding signature values is adbe.pkcs7.detached.
This encoding allows the most options in terms of algorithm use. The following
table shows the algorithms supported for the various SubFilter values.

SubFilter value

adbe.pkcs7.detached adbe.pkcs7.sha1 adbe.x509.rsa.sha1a

a. Despite the appearance of sha1 in the name of this SubFilter value, supported encodings are not limited to the
SHA1 algorithm. The PKCS#1 object contains an identifier that indicates which algorithm is used.

Message Digest SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHA512 (PDF 1.7)
RIPEMD160 (PDF 1.7)

SHA1 (PDF 1.3)b

b. Other digest algorithms may be used to digest the signed-data field; however, SHA1 is always used to digest the
data that is being signed.

SHA1 (PDF 1.3)
SHA256 (PDF 1.6)
SHA384 (PDF 1.7)
SHA512 (PDF 1.7)
RIPEMD160 (PDF 1.7)

RSA Algorithm Support Up to 1024-bit (PDF 1.3)
Up to 2048-bit (PDF 1.5)
Up to 4096-bit (PDF 1.5)

See adbe.pkcs7.detached See
adbe.pkcs7.detached

DSA Algorithm Support Up to 4096-bits (PDF 1.6) See adbe.pkcs7.detached No

Digital SignaturesSECTION 8.7
741

8.7.3 Permissions

The Perms entry in the document catalog (see Table 3.25) specifies a permissions
dictionary (PDF 1.5). Each entry in this dictionary (see Table 8.107 for the cur-
rently defined entries) specifies the name of a permission handler that controls ac-
cess permissions for the document. These permissions are similar to those defined
by security handlers (see Table 3.20 on page 123) but do not require that the docu-
ment be encrypted. For a permission (for example, the ability to fill in form fields)
to be actually granted for a document, it must be allowed by each permission han-
dler that is present in the permissions dictionary as well as by the security handler.

TABLE 8.107 Entries in a permissions dictionary

KEY TYPE VALUE

DocMDP dictionary (Optional) An indirect reference to a signature dictionary (see Table 8.102). This
dictionary must contain a Reference entry that is a signature reference dictionary
(see Table 8.103) that has a DocMDP transform method (see “DocMDP” on page
731) and corresponding transform parameters.

If this entry is present, consumer applications should enforce the permissions spec-
ified by the P attribute in the DocMDP transform parameters dictionary and should
also validate the corresponding signature based on whether any of these permis-
sions have been violated.

UR dictionary (Optional) A signature dictionary that is used to specify and validate additional ca-
pabilities (usage rights) granted for this document; that is, the enabling of interac-
tive features of the viewer application that are not available by default.

For example, Adobe Reader does not permit saving documents by default, but Ado-
be Systems may grant permissions that enable saving in Adobe Reader for specific
documents. The signature is used to validate that the permissions have been granted
by Adobe Systems.

The signature dictionary must contain a Reference entry that is a signature refer-
ence dictionary that has a UR transform method (see “UR” on page 733). The trans-
form parameter dictionary for this method indicates which additional permissions
should be granted for the document. If the signature is valid, the Adobe Reader al-
lows the specified permissions for the document, in addition to the application’s de-
fault permissions.

The signature dictionary must not contain a ByteRange entry.

UR3 dictionary (Optional; PDF 1.6) A signature dictionary that specifies and validates usage rights.
The description of the UR entry above applies to UR3, except that the signature dic-
tionary must contain a ByteRange entry. See “UR” on page 733 for details.

Interactive FeaturesCHAPTER 8
742

8.7.4 Legal Content Attestations

The PDF language provides a number of capabilities that can make the rendered
appearance of a PDF document vary. These capabilities could potentially be used
to construct a document that misleads the recipient of a document, intentionally
or unintentionally. These situations are relevant when considering the legal im-
plications of a signed PDF document.

Therefore, it is necessary to have a mechanism by which a document recipient
can determine whether the document can be trusted. The primary method is to
accept only documents that contain author signatures (one that has a DocMDP
signature that defines what is permitted to change in a document; see “DocMDP”
on page 731).

When creating author signatures, applications should also create a legal attesta-
tion dictionary, whose entries are shown in Table 8.108. This dictionary is the val-
ue of the Legal entry in the document catalog (see Table 3.25). Its entries specify
all content that may result in unexpected rendering of the document contents.
The author may provide further clarification of such content by means of the
Attestation entry. Reviewers should establish for themselves that they trust the
author and contents of the document. In the case of a legal challenge to the docu-
ment, any questionable content can be reviewed in the context of the information
in this dictionary.

TABLE 8.108 Entries in a legal attestation dictionary

KEY TYPE VALUE

JavaScriptActions integer (Optional) The number of JavaScript actions found in the document (see
“JavaScript Actions” on page 709).

LaunchActions integer (Optional) The number of launch actions found in the document (see
“Launch Actions” on page 659).

URIActions integer (Optional) The number of URI actions found in the document (see “URI
Actions” on page 662).

MovieActions integer (Optional) The number of movie actions found in the document (see “Mov-
ie Actions” on page 664).

SoundActions integer (Optional) The number of sound actions found in the document (see
“Sound Actions” on page 663).

HideAnnotationActions integer (Optional) The number of hide actions found in the document (see “Hide
Actions” on page 665).

Digital SignaturesSECTION 8.7
743

GoToRemoteActions integer (Optional) The number of remote go-to actions found in the document (see
“Remote Go-To Actions” on page 655).

AlternateImages integer (Optional) The number of alternate images found in the document (see “Al-
ternate Images” on page 347)

ExternalStreams integer (Optional) The number of external streams found in the document.

TrueTypeFonts integer (Optional) The number of TrueType fonts found in the document (see
“TrueType Fonts” on page 418).

ExternalRefXobjects integer (Optional) The number of reference XObjects found in the document (see
“Reference XObjects” on page 361).

ExternalOPIdicts integer (Optional) The number of OPI dictionaries found in the document (see
“Open Prepress Interface (OPI)” on page 978).

NonEmbeddedFonts integer (Optional) The number of non-embedded fonts found in the document (see
Section 5.8, “Embedded Font Programs”)

DevDepGS_OP integer (Optional) The number of references to the graphics state parameter OP
found in the document (see Table 4.8).

DevDepGS_HT integer (Optional) The number of references to the graphics state parameter HT
found in the document (see Table 4.8).

DevDepGS_TR integer (Optional) The number of references to the graphics state parameter TR
found in the document (see Table 4.8).

DevDepGS_UCR integer (Optional) The number of references to the graphics state parameter UCR
found in the document (see Table 4.8).

DevDepGS_BG integer (Optional) The number of references to the graphics state parameter BG
found in the document (see Table 4.8).

DevDepGS_FL integer (Optional) The number of references to the graphics state parameter FL
found in the document (see Table 4.8).

Annotations integer (Optional) The number of annotations found in the document (see Section
8.4, “Annotations”).

OptionalContent boolean (Optional) true if optional content is found in the document (see Section
4.10, “Optional Content”).

Attestation text
string

(Optional) An attestation, created by the author of the document, explain-
ing the presence of any of the other entries in this dictionary or the presence
of any other content affecting the legal integrity of the document.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
744

8.8 Measurement Properties

PDF documents, such as those created by CAD software, may contain graphics
that are intended to represent real-world objects. Users of such documents often
require information about the scale and units of measurement of the correspond-
ing real-world objects and their relationship to units in PDF user space.

This information enables users of viewer applications to perform measurements
that yield results in the units intended by the creator of the document. A mea-
surement in this context is the result of a canonical function that takes as input a
set of n coordinate pairs

and produces a single number as output depending on the type of measurement.
For example, distance measurement is equivalent to

for

Beginning with PDF 1.6, such information may be stored in a measure dictionary
(see Table 8.110). Measure dictionaries provide information about measurement
units associated with a rectangular area of the document known as a viewport.

A viewport (PDF 1.6) is a rectangular region of a page. The optional VP entry in a
page dictionary (see Table 3.27) specifies an array of viewport dictionaries, whose
entries are shown in Table 8.109. Viewports allow different measurement scales
(specified by the Measure entry) to be used in different areas of a page, if necessary.

The dictionaries in the VP array are in drawing order. Since viewports might
overlap, to determine the viewport to use for any point on a page, the dictionaries
in the array are examined, starting with the last one and iterating in reverse, and
the first one whose BBox entry contains the point is chosen.

Note: Any measurement that potentially involves multiple viewports, such as one
specifying the distance between two points, should use the information specified in
the viewport of the first point.

x0 y0,() … xn 1– yn 1–,(), ,{ }

xi xi 1+–()2 yi yi 1+–()2+

i 0=

n 2–

∑

n 2.≥

Measurement PropertiesSECTION 8.8
745

TABLE 8.109 Entries in a viewport dictionary

A measure dictionary specifies an alternate coordinate system for a region of a
page. Along with the viewport dictionary, it provides the information needed to
convert coordinates in the page’s coordinate system to coordinates in the measur-
ing coordinate system. The measure dictionary provides information for format-
ting the resulting values into textual form for presentation in a graphical user
interface.

Table 8.110 shows the entries in a measure dictionary. PDF 1.6 defines only a sin-
gle type of coordinate system, a rectilinear coordinate system, specified by the val-
ue RL for the Subtype entry, which is defined as one in which the x and y axes are
perpendicular and have units that increment linearly (to the right and up, respec-
tively). Other subtypes are permitted, providing the flexibility to measure using
other types of coordinate systems.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; must be Viewport
for a viewport dictionary.

BBox rectangle (Required) A rectangle in default user space coordinates specifying the location of
the viewport on the page.

The two coordinate pairs of the rectangle must be specified in normalized form;
that is, lower-left followed by upper-right, relative to the measuring coordinate sys-
tem. This ordering determines the orientation of the measuring coordinate system
(that is, the direction of the positive x and y axes) in this viewport, which may have
a different rotation from the page.

Note: The coordinates of this rectangle are independent of the origin of the measuring
coordinate system, specified in the O entry (see Table 8.111) of the measurement dic-
tionary specified by Measure.

Name text string (Optional) A descriptive text string or title of the viewport, intended for use in a
user interface.

Measure dictionary (Optional) A measure dictionary (see Table 8.110) that specifies the scale and units
that should apply to measurements taken on the contents within the viewport.

Interactive FeaturesCHAPTER 8
746

TABLE 8.110 Entries in a measure dictionary

Table 8.111 shows the additional entries in a rectilinear measure dictionary. Many
of the entries in this dictionary are number format arrays, which are arrays of
number format dictionaries (see Table 8.112). Each number format dictionary
represents a specific unit of measurement (such as miles or feet). It contains in-
formation about how each unit is expressed in text and factors for calculating the
number of units.

Number format arrays specify all the units that are to be used when expressing a
specific measurement. Each array contains one or more number format dictio-
naries, in descending order of granularity. (For example, a number format dictio-
nary specifying feet should precede one specifying inches.) All the elements in
the array contain text strings that, concatenated together, specify how the units
should be displayed. For example, a measurement of 1.4505 miles might be ex-
pressed as “1.4505 mi”, which would require one number format dictionary for
miles, or as “1 mi 2,378 ft 7 5/8 in”, which would require three dictionaries (for
miles, feet, and inches).

TABLE 8.111 Additional entries in a rectilinear measure dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; must be Measure
for a measure dictionary.

Subtype name (Optional) A name specifying the type of coordinate system to use for measuring.

Default value: RL, which specifies a rectilinear coordinate system

KEY TYPE VALUE

R text string (Required) A text string expressing the scale ratio of the drawing in the region corre-
sponding to this dictionary. Universally recognized unit abbreviations should be
used, either matching those of the number format arrays in this dictionary or those
of commonly used scale ratios. For example, a common scale in architectural draw-
ings is “1/4 in = 1 ft”, indicating that 1/4 inches in default user space is equivalent to
1 foot in real-world measurements.

If the scale ratio differs in the x and y directions, both scales should be specified; for
example, “in X 1 cm = 1 m, in Y 1 cm = 30 m”.

Measurement PropertiesSECTION 8.8
747

X array (Required) A number format array for measurement of change along the x axis and,
if Y is not present, along the y axis as well. The first element in the array contains the
scale factor for converting from default user space units to the largest units in the
measuring coordinate system along that axis.

The directions of the x and y axes are in the measuring coordinate system and are
independent of the page rotation. These directions are determined by the BBox en-
try of the containing viewport (see Table 8.109).

Y array (Required when the x and y scales have different units or conversion factors) A num-
ber format array for measurement of change along the y axis. The first element in
the array contains the scale factor for converting from default user space units to the
largest units in the measuring coordinate system along the y axis.

D array (Required) A number format array for measurement of distance in any direction.
The first element in the array specifies the conversion to the largest distance unit
from units represented by the first element in X. The scale factors from X, Y (if
present) and CYX (if Y is present) are used to convert from default user space to the
appropriate units before applying the distance function.

A array (Required) A number format array for measurement of area. The first element in the
array specifies the conversion to the largest area unit from units represented by the
first element in X, squared. The scale factors from X, Y (if present) and CYX (if Y is
present) are used to convert from default user space to the appropriate units before
applying the area function.

T array (Optional) A number format array for measurement of angles. The first element in
the array specifies the conversion to the largest angle unit from degrees. The scale
factor from CYX (if present) is used to convert from default user space to the appro-
priate units before applying the angle function.

S array (Optional) A number format array for measurement of the slope of a line. The first
element in the array specifies the conversion to the largest slope unit from units rep-
resented by the first element in Y divided by the first element in X. The scale factors
from X, Y (if present) and CYX (if Y is present) are used to convert from default user
space to the appropriate units before applying the slope function.

O array (Optional) An array of two numbers specifying the origin of the measurement coor-
dinate system in default user space coordinates. The directions by which x and y in-
crease in value from this origin is determined by the viewport’s BBox entry (see
Table 8.109).

Default value: the first coordinate pair (lower-left corner) of the rectangle specified
by the viewport’s BBox entry.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
748

The X and Y entries in a measure dictionary are number format arrays that speci-
fy the units used for measurements in the x and y directions, respectively, and the
ratio between user space units and the specified units. Y is present only when the
x and y measurements are in different units or have different ratios; in this case,
the CYX entry is used to convert y values to x values when appropriate.

TABLE 8.112 Entries in a number format dictionary

CYX number (Optional; meaningful only when Y is present) A factor to convert the largest units
along the y axis to the largest units along the x axis. It is required for some calcula-
tions (distance, area, and angle) where the units must be equivalent; if not specified,
these calculations cannot be performed (which would be the case in situations such
as x representing time and y representing temperature). Other calculations (change
in x, change in y, and slope) do not require this value.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; must be
NumberFormat for a number format dictionary.

U text string (Required) A text string specifying a label for displaying the units represented by
this dictionary in a user interface; it is recommended that the label use a universally
recognized abbreviation.

C number (Required) The conversion factor used to multiply a value in partial units of the pre-
vious number format array element to obtain a value in the units of this dictionary.
When this entry is in the first number format dictionary in the array, its meaning
(that is, what it is multiplied by) depends on which entry in the rectilinear measure
dictionary (see Table 8.111) references the number format array.

F name (Optional; meaningful only for the last dictionary in a number format array) A name
indicating whether and in what manner to display a fractional value from the result
of converting to the units of this dictionary by means of the C entry. Valid values
are:

D Show as decimal to the precision specified by the D entry.

F Show as a fraction with denominator specified by the D entry.

R No fractional part; round to the nearest whole unit.

T No fractional part; truncate to achieve whole units.

Default value: D.

KEY TYPE VALUE

Measurement PropertiesSECTION 8.8
749

D integer (Optional; meaningful only for the last dictionary in a number format array) A posi-
tive integer specifying the precision or denominator of a fractional amount:

• When the value of F is D, this entry represents the precision of a decimal display;
it must be a multiple of 10. Low-order zeros may be truncated unless FD is true.
Default value: 100 (hundredths, corresponding to two decimal digits).

• When the value of F is F, this entry represents the denominator of a fractional dis-
play. The fraction may be reduced unless the value of FD is true. Default value: 16.

FD boolean (Optional; meaningful only for the last dictionary in a number format array) If true, a
fractional value formatted according to the D entry may not have its denominator
reduced or low-order zeros truncated.

Default value: false.

RT text string (Optional) Text to be used between orders of thousands in display of numerical val-
ues. An empty string indicates that no text is added.

Default value: comma (“,”), the U.S. convention.

RD text string (Optional) Text to be used as the decimal point in displaying numerical values. An
empty string indicates that the default should be used.

Default value: period (“.”), the U.S. convention.

PS text string (Optional) Text to be concatenated to the left of the label specified by U. An empty
string indicates that no text should be added.

Default value: A single space character (“ ”).

SS text string (Optional) Text to be concatenated after the label specified by U. An empty string in-
dicates that no text should be added.

Default value: A single space character (“ ”).

O name (Optional) A name indicating the ordering of the label specified by U to the calculat-
ed unit value. Valid values are:

S The label is a suffix to the value.

P The label is a prefix to the value.

Note: The characters specified by PS and SS are concatenated before considering this
entry.

Default value: S.

KEY TYPE VALUE

Interactive FeaturesCHAPTER 8
750

To use a number format array to create a text string containing the appropriately
formatted units for display in a user interface, apply Algorithm 8.2:

Algorithm 8.2

1. The entry in the rectilinear measure dictionary (see Table 8.111) that references
the number format array determines the meaning of the initial measurement val-
ue. For example, the X entry specifies user space units, and the T entry specifies
degrees.

2. Multiply the value specified above by the C entry of the first number format dic-
tionary in the array, which converts the measurement to units of the largest gran-
ularity specified in the array. Apply the value of RT as appropriate.

3. If the result contains no nonzero fractional portion, concatenate the label speci-
fied by the U entry in the order specified by O, after adding spacing from PS and
SS. The formatting is then complete.

4. If there is a nonzero fractional portion and no more elements in the array, format
the fractional portion as specified by the RD, F, D, and FD entries of the last dictio-
nary. Concatenate the label specified by the U entry in the order specified by O, af-
ter adding spacing from PS and SS. The formatting is then complete.

5. If there is a nonzero fractional portion and more elements in the array, proceed to
the next number format dictionary in the array. Multiply its C entry by the frac-
tional result from the previous step. Apply the value of RT as appropriate. Then
proceed to step 3.

Note: The concatenation of elements in this process assumes left-to-right order. Doc-
uments using right-to-left languages can modify the process and the meaning of the
entries as appropriate to produce the correct results.

Example 8.22 shows a measure dictionary that specifies that changes in x or y are
expressed in miles; distances are expressed in miles, feet, and inches; and area is
expressed in acres. Given a sample distance in scaled units of 1.4505 miles, the
formatted text produced by applying the number format array would be
“1 mi 2,378 ft 7 5/8 in”.

Document RequirementsSECTION 8.9
751

Example 8.22

<</Type /Measure
/Subtype /RL
/R (1in = 0.1 mi)
/X [<</U (mi) % x offset represented in miles

/C .00139 % Conversion from user space units to miles
/D 100000

]
/D [<< /U (mi) /C 1 >> % Distance: initial unit is miles; no conversion needed

 << /U (ft) /C 5280 >> % Conversion from miles to feet
 << /U (in) /C 12 % Conversion from feet to inches

 /F /F /D 8 >> % Fractions of inches rounded to nearest 1/8
]

/A [<</U (acres) % Area: measured in acres
/C 640 >> % Conversion from square miles to acres

]
>>

8.9 Document Requirements

Beginning with PDF 1.7, a document can specify requirements that must be
present in a PDF consumer application in order for the document to function
properly. The Requirements entry in the document catalog (see Section 3.6.1,
“Document Catalog”) specifies an array of requirement dictionaries, whose en-
tries are shown in Table 8.113. (See also implementation note 147 in Appendix
H.)

TABLE 8.113 Entries common to all requirement dictionaries

KEY TYPE DESCRIPTION

Type name (Optional) The type of PDF object that this dictionary describes. If
present, must be Requirement for a requirement dictionary.

S name (Required) The type of requirement that this dictionary describes.
Currently, the only defined value is EnableJavaScripts.

RH array (Optional) An array of requirement handler dictionaries (see Table
8.114). This array lists the requirement handlers that should be dis-
abled (not executed) if the PDF consumer application can check the
requirement specified in the S entry.

Interactive FeaturesCHAPTER 8
752

The RH entry ensures backward-capability for this feature. Some PDF documents
include JavaScript segments that verify compliance with certain requirements.
Such JavaScript segments are called requirement handlers. Backward-compatibili-
ty is achieved by ensuring that either the PDF consumer application checks the
requirement or the JavaScript segment checks the requirement, but not both.

When a PDF document is first opened, all JavaScript segments in the document
are executed, including the requirement handlers. If the PDF consumer applica-
tion understands the requirement dictionary, it disables execution of the require-
ment handlers named by the RH entry. If the requirement handler is in JavaScript,
the PDF consumer application looks up the segment using the Names dictionary
(Section 3.6.3, “Name Dictionary).

In PDF 1.7, the only defined requirement type is EnableJavaScripts. This require-
ment indicates that the document requires JavaScript execution to be enabled in
the PDF consumer application. If the EnableJavaScripts requirement is present,
the application can allow the user to choose between keeping JavaScript execu-
tion disabled or temporarily enabling it to benefit from the full function of the
document.

If the EnableJavaScripts requirement is present in a requirement dictionary, the
inclusion of the RH entry that specifies a JavaScript segment would be pointless.
Writing a JavaScript segment to verify that JavaScript is enabled would not
achieve the desired goal. The RH entry is provided to support future capability.

8.9.1 Requirement Handlers

A requirement handler is a program that verifies certain requirements are satis-
fied. Table 8.114 describes the entries in a requirement handler dictionary.

TABLE 8.114 Entries in a requirement handler dictionary

KEY TYPE DESCRIPTION

Type name (Optional) The type of PDF object that this dictionary describes. If
present, must be ReqHandler for a requirement handler dictionary.

Document RequirementsSECTION 8.9
753

S name (Required) The type of requirement handler that this dictionary de-
scribes. Valid requirement handler types are JS (for a JavaScript re-
quirement handlers) and NoOp.

A value of NoOp allows older PDF consumer applications to ignore
unrecognized requirements. This value does not add any specific
entry to the requirement handler dictionary.

Script text string (Optional; valid only if the S entry has a value of JS) The name of a
document-level JavaScript action stored in the document name dic-
tionary (see Section 3.6.3, “Name Dictionary). If the PDF consumer
application understands the parent requirement dictionary and can
verify the requirement specified in that dictionary, it disables exe-
cution of the requirement handler identified in this dictionary.

KEY TYPE DESCRIPTION

Interactive FeaturesCHAPTER 8
754

755

CHAPTER 9

9Multimedia Features

This chapter describes those features of PDF that support embedding and playing
multimedia content. It contains the following sections:

• Section 9.1, “Multimedia” describes the comprehensive set of multimedia capa-
bilities that were introduced in PDF 1.5.

• Section 9.2, “Sounds,” and Section 9.3, “Movies,” describe features that have
been supported since PDF 1.2.

• Section 9.4, “Alternate Presentations,” describes a slideshow capability that was
introduced in PDF 1.4.

• Section 9.5, “3D Artwork,” describes the capability of embedding three-dimen-
sional graphics in a document, introduced in PDF 1.6.

9.1 Multimedia

PDF 1.5 introduces a comprehensive set of language constructs to enable the fol-
lowing capabilities:

• Arbitrary media types can be embedded in PDF files. (See implementation
note 148 in Appendix H for a list of media types that are recommended for use
with Acrobat 6.0 viewers).

• Embedded media, as well as referenced media outside a PDF file, can be played
with a variety of player software. (In some situations, the player software may
be the viewer application itself.)

Note: The term playing can be used with a wide variety of media, and is not re-
stricted to audio or video. For example, it may be applied to static images such as
JPEGs.

Multimedia FeaturesCHAPTER 9
756

• Media objects may have multiple renditions, which can be chosen at play-time
based on considerations such as available bandwidth.

• Document authors can control play-time requirements, such as which player
software should be used to play a given media object.

• Media objects can be played in various ways; for example, in a floating window
as well as in a region on a page.

• Future extensions to the media constructs can be handled in an appropriate
manner by current viewer applications. Authors can control how old viewers
treat future extensions.

• Document authors can adapt the use of multimedia to accessibility require-
ments.

• On-line media objects can be played efficiently, even when very large.

The following list summarizes the multimedia features and indicates where each
feature is discussed:

• Section 9.1.1, “Viability,” describes the rules for determining when media ob-
jects are suitable for playing on a particular system.

• Rendition actions (see “Rendition Actions” on page 668) are used to begin the
playing of multimedia content.

• A rendition action associates a screen annotation (see “Screen Annotations” on
page 639) with a rendition (see Section 9.1.2, “Renditions”).

• Renditions are of two varieties: media renditions (see “Media Renditions” on
page 762) that define the characteristics of the media to be played, and selector
renditions (see “Selector Renditions” on page 763) that enables choosing which
of a set of media renditions should be played.

• Media renditions contain entries that specify what should be played (see Sec-
tion 9.1.3, “Media Clip Objects”), how it should be played (see Section 9.1.4,
“Media Play Parameters”), and where it should be played (see Section 9.1.5,
“Media Screen Parameters”).

• Section 9.1.6, “Other Multimedia Objects,” describes several PDF objects that
are referenced by the major objects listed above.

Note: Some of the features described in the following sections have references to cor-
responding elements in the Synchronized Multimedia Integration Language (SMIL
2.0) standard (see the Bibliography).

MultimediaSECTION 9.1
757

9.1.1 Viability

When playing multimedia content, the viewer application must often make deci-
sions such as which player software and which options (for example, volume and
duration) to use. In making these decisions, the viewer must determine the via-
bility of the objects used. If an object is considered non-viable, the media should
not be played. If the object is viable, the media should be played, though possibly
under less than optimum conditions.

There are several entries in the multimedia object dictionaries whose values have
an effect on viability. In particular, some of the object dictionaries define two en-
tries that divide options into one of two categories:

• MH (“must honor”): The options specified by this entry must be honored; other-
wise, the containing object is considered non-viable.

• BE (“best effort”): An attempt should be made to honor the options; however, if
they cannot be honored, the containing object is still considered viable.

MH and BE are both dictionaries, and the same entries are defined for both of
them. In any dictionary where these entries are allowed, both entries may be
present, or only one, or neither. For example, the media play parameters dictio-
nary (see Table 9.14) allows the playback volume to be set by means of the V entry
in its MH and BE dictionaries (see Table 9.15). If the specified volume cannot be
honored, the object is considered non-viable if V is in the MH dictionary, and
playback should not occur. If V is in the BE dictionary (and not also in the MH
dictionary), playback should still occur: the playing software attempts to honor
the specified option as best it can.

Using this mechanism, authors can specify minimum requirements (MH) and
preferred options (BE). They can also specify how entries that are added in the fu-
ture to the multimedia dictionaries are interpreted by old viewer applications. If
an entry that is unrecognized by the viewer is in the MH dictionary, the object is
considered non-viable. If an unrecognized entry is in a BE dictionary, the entry is
ignored and viability is unaffected. Unless otherwise stated, an object should be
considered non-viable if its MH dictionary contains an unrecognized key or an
unrecognized value for a recognized key.

Multimedia FeaturesCHAPTER 9
758

The following rules apply to the entries in MH and BE dictionaries, which behave
somewhat differently from other PDF dictionaries:

• If an entry is required, the requirement is met if the entry is present in either
the MH dictionary or the BE dictionary.

• If an optional entry is not present in either dictionary, it is considered to be
present with its default value (if one is defined) in the BE dictionary.

• If an instance of the same entry is present in both MH and BE, the instance in
the BE dictionary is ignored unless otherwise specified.

• If the value of an entry in an MH or a BE dictionary is a dictionary or array, it is
treated as an atomic unit when determining viability. That is, all entries within
the dictionary or array must be honored for the containing object to be viable.

Note: When determining whether entries can be honored, it is not required that
each one be evaluated independently, since they may be dependent on one another.
That is, a viewer application or player may examine multiple entries at once (even
within different dictionaries) to determine whether their values can be honored.

The following media objects have MH and BE dictionaries. They function as de-
scribed above, except where noted in the individual sections:

• Rendition (Table 9.2)

• Media clip data (Table 9.11)

• Media clip section (Table 9.13)

• Media play parameters (Table 9.15)

• Media screen parameters (Table 9.18)

9.1.2 Renditions

There are two types of rendition objects:

• A media rendition (see “Media Renditions” on page 762) is a basic media object
that specifies what to play, how to play it, and where to play it.

• A selector rendition (see “Selector Renditions” on page 763) contains an ordered
list of renditions. This list may include other selector renditions, resulting in a
tree whose leaves are media renditions. The viewer application should play the
first viable media rendition it encounters in the tree (see Section 9.1.1, “Viabili-
ty”).

MultimediaSECTION 9.1
759

Table 9.1 shows the entries common to all rendition dictionaries. The N entry in a
rendition dictionary specifies a name that can be used to access the rendition ob-
ject by means of name tree lookup (see Table 3.28 on page 150). JavaScript actions
(see “JavaScript Actions” on page 709), for example, use this mechanism. Since
the values referenced by name trees must be indirect objects, it is recommended
that all rendition objects be indirect objects.

Note: A rendition dictionary is not required to have a name tree entry. When it
does, the viewer application should ensure that the name specified in the tree is kept
the same as the value of the N entry (for example, if the user interface allows the
name to be changed). It is recommended (but not required) that a document not
contain multiple renditions with the same name.

The MH and BE entries are dictionaries whose entries may be present in one or
the other of them, as described in Section 9.1.1, “Viability”. For renditions, these
dictionaries have a single entry C (see Table 9.2), whose value is a media criteria
dictionary specifying a set of criteria that must be met for the rendition to be con-
sidered viable (see Table 9.3).

The media criteria dictionary behaves somewhat differently than other MH/BE
entries, as they are described in Section 9.1.1. The criteria specified by all of its
entries must be met regardless of whether they are in an MH or a BE dictionary.
The only exception is that if an entry in a BE dictionary is unrecognized by the
viewer application, it does not affect the viability of the object. If a media criteria
dictionary is present in both MH and BE, the entries in both dictionaries are indi-
vidually evaluated, with MH taking precedence (corresponding BE entries are ig-
nored).

TABLE 9.1 Entries common to all rendition dictionaries

KEY TYPE VALUE

Type name (Optional) The type of PDF object that dictionary describes; if present, must be
Rendition for a rendition object.

S name (Required) The type of rendition that this dictionary describes. May be MR for me-
dia rendition or SR for selector rendition. The rendition is considered non-viable if
the viewer application does not recognize the value of this entry.

N text string (Optional) A Unicode-encoded text string specifying the name of the rendition for
use in a user interface and for name tree lookup by JavaScript actions.

Multimedia FeaturesCHAPTER 9
760

TABLE 9.2 Entries in a rendition MH/BE dictionary

TABLE 9.3 Entries in a media criteria dictionary

MH dictionary (Optional) A dictionary whose entries (see Table 9.2) must be honored for the ren-
dition to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 9.2) need only be honored in a
“best effort” sense.

KEY TYPE VALUE

C dictionary (Optional) A media criteria dictionary (see Table 9.3).

Note: The media criteria dictionary behaves somewhat differently than other MH/BE
entries described in Section 9.1.1, “Viability.” The criteria specified by all of its entries
must be met regardless of whether it is in an MH or a BE dictionary. The only exception
is that if an entry in a BE dictionary is unrecognized by the viewer application, it does
not affect the viability of the object.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaCriteria for a media criteria dictionary.

A boolean (Optional) If specified, the value of this entry must match the user’s preference for
whether to hear audio descriptions in order for this object to be viable. Equivalent
to SMIL’s systemAudioDesc attribute.

C boolean (Optional) If specified, the value of this entry must match the user’s preference for
whether to see text captions in order for this object to be viable. Equivalent to
SMIL’s systemCaptions attribute.

O boolean (Optional) If specified, the value of this entry must match the user’s preference for
whether to hear audio overdubs in order for this object to be viable.

S boolean (Optional) If specified, the value of this entry must match the user’s preference for
whether to see subtitles in order for this object to be viable.

R integer (Optional) If specified, the system’s bandwidth (in bits per second) must be greater
than or equal to the value of this entry in order for this object to be viable. Equiva-
lent to SMIL’s systemBitrate attribute.

KEY TYPE VALUE

MultimediaSECTION 9.1
761

TABLE 9.4 Entries in a minimum bit depth dictionary

D dictionary (Optional) A dictionary (see Table 9.4) specifying the minimum bit depth required
in order for this object to be viable. Equivalent to SMIL’s systemScreenDepth at-
tribute.

Z dictionary (Optional) A dictionary (see Table 9.5) specifying the minimum screen size re-
quired in order for this object to be viable. Equivalent to SMIL’s systemScreenSize at-
tribute.

V array (Optional) An array of software identifier objects (see “Software Identifier Dictio-
nary” on page 779). If this entry is present and non-empty, the viewer application
must be identified by one or more of the objects in the array in order for this object
to be viable.

P array (Optional) An array containing one or two name objects specifying a minimum and
optionally a maximum PDF language version, in the same format as the Version en-
try in the document catalog (see Table 3.25). If this entry is present and non-empty,
the version of multimedia constructs fully supported by the viewer application must
be within the specified range in order for this object to be viable.

L array (Optional) An array of language identifiers (see “Language Identifiers” on page
937). If this entry is present and non-empty, the language in which the viewer appli-
cation is running must exactly match a language identifier, or consist only of a pri-
mary code that matches the primary code of an identifier, in order for this object to
be viable. Equivalent to SMIL’s systemLanguage attribute.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MinBitDepth for a minimum bit depth dictionary.

V integer (Required) A positive integer (0 or greater) specifying the minimum screen depth
(in bits) of the monitor for the rendition to be viable. A negative value is not al-
lowed.

M integer (Optional) A monitor specifier (see Table 9.28) that specifies which monitor the val-
ue of V should be tested against. If the value is unrecognized, the object is not viable.

Default value: 0.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
762

TABLE 9.5 Entries in a minimum screen size dictionary

Media Renditions

Table 9.6 lists the entries in a media rendition dictionary. Its entries specify what
media should be played (C), how (P), and where (SP) it should be played. A media
rendition object is viable if and only if the objects referenced by its C, P, and SP
entries are viable.

C can be omitted only in cases where a referenced player takes no meaningful in-
put. This requires that P is present and that its referenced media play parameters
dictionary (see Table 9.14) contains a PL entry, whose referenced media players
dictionary (see “Media Players Dictionary” on page 777) has a non-empty MU ar-
ray or a non-empty A array.

TABLE 9.6 Additional entries in a media rendition dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MinScreenSize for a rendition object.

V array (Required) An array containing two non-negative integers. The width and height (in
pixels) of the monitor specified by M must be greater than or equal to the values of
the first and second integers in the array, respectively, in order for this object to be
viable.

M integer (Optional) A monitor specifier (see Table 9.28) that specifies which monitor the val-
ue of V should be tested against. If the value is unrecognized, the object is not viable.

Default value: 0.

KEY TYPE VALUE

C dictionary (Optional) A media clip dictionary (see Section 9.1.3, “Media Clip Objects”) that
specifies what should be played when the media rendition object is played.

P dictionary (Required if C is not present, otherwise optional) A media play parameters dictionary
(see Section 9.1.4, “Media Play Parameters”) that specifies how the media rendition
object should be played.

Default value: a media play parameters dictionary whose entries (see Table 9.14) all
contain their default values.

MultimediaSECTION 9.1
763

Selector Renditions

A selector rendition dictionary specifies an array of rendition objects in its R entry
(see Table 9.7). The renditions in this array should be ordered by preference, with
the most preferred rendition first. At play-time, the renditions in the array are
evaluated and the first viable media rendition, if any, is played. If one of the rendi-
tions is itself a selector, that selector is evaluated in turn, yielding the equivalent
of a depth-first tree search. Note, however, that a selector rendition itself may be
non-viable; in this case, none of its associated media renditions are evaluated (in
effect, this branch of the tree is skipped).

This mechanism may be used, for example, to specify that a large video clip
should be used on high-bandwidth machines and a smaller clip should be used
on low-bandwidth machines.

TABLE 9.7 Additional entries specific to a selector rendition dictionary

9.1.3 Media Clip Objects

There are two types of media clip objects, determined by the subtype S, which
can be either MCD for media clip data (see “Media Clip Data” on page 764) or
MCS for media clip section (see “Media Clip Section” on page 767). The entries
common to all media clip dictionaries are listed in Table 9.8.

SP dictionary (Optional) A media screen parameters dictionary (see Section 9.1.5, “Media Screen
Parameters”) that specifies where the media rendition object should be played.

Default value: a media screen parameters dictionary whose entries (see Table 9.17)
all contain their default values.

KEY TYPE VALUE

R array (Required) An array of rendition objects. The first viable media rendition object
found in the array, or nested within a selector rendition in the array, should be used.
An empty array is legal.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
764

TABLE 9.8 Entries common to all media clip dictionaries

Media Clip Data

A media clip data dictionary defines the data for a media object that can be
played. For example, it may reference a URL to a streaming video presentation or
a movie embedded in the PDF file. Its entries are listed in Table 9.9.

TABLE 9.9 Additional entries in a media clip data dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaClip for a media clip dictionary.

S name (Required) The subtype of media clip that this dictionary describes. May be MCD for
media clip data (see “Media Clip Data” on page 764) or MCS for a media clip section
(see “Media Clip Section” on page 767). The media clip is considered non-viable if
the viewer application does not recognize the value of this entry.

N text string (Optional) The name of the media clip, for use in the user interface.

KEY TYPE VALUE

D file specification
or stream

(Required) A full file specification or form XObject that specifies the actual media
data.

CT ASCII string (Optional; not allowed for form XObjects) An ASCII string identifying the type of
data in D. The string should conform to the content type specification described in
Internet RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: For-
mat of Internet Message Bodies (see the Bibliography).

P dictionary (Optional) A media permissions dictionary (see Table 9.10) containing permissions
that control the use of the media data. Default value: a media permissions dictio-
nary containing default values.

Alt array (Optional) An array that provides alternate text descriptions for the media clip data
in case it cannot be played; see “Multi-language Text Arrays” on page 942.

PL dictionary (Optional) A media players dictionary (see “Media Players Dictionary” on page 777)
that identifies, among other things, players that are legal and not legal for playing
the media.

Note: If the media players dictionary is non-viable, the media clip data is non-viable.

MultimediaSECTION 9.1
765

The media clip data object must be considered non-viable if the object referenced
by the D entry does not contain a Type entry, the Type entry is unrecognized, or
the referenced object is not a dictionary or stream. Note that this excludes the use
of simple file specifications (see Section 3.10, “File Specifications”).

If D references a file specification that has an embedded file stream (see Section
3.10.3, “Embedded File Streams”), the embedded file stream’s Subtype entry is ig-
nored if present, and the media clip data dictionary’s CT entry identifies the type
of data.

If D references a form XObject, the associated player is implicitly the viewer ap-
plication, and the form XObject should be rendered as if it were any other data
type. For example, the F and D entries in the media play parameters dictionary
(see Table 9.14) apply to a form XObject just as they do to a QuickTime movie.

For media other than form XObjects, the media clip object must provide enough
information to allow a viewer application to locate an appropriate player. This can
be done by providing one or both of the following entries:

• A CT entry that specifies the content type of the media (the preferred method).
If this entry is present, any player that is selected must support this content
type.

• A PL entry that specifies one or more players that can be used to play the refer-
enced media. It is highly recommended if CT is present. However, see imple-
mentation note 149 in Appendix H.

The P entry specifies a media permissions dictionary (see Table 9.10) specifying
the manner in which the data referenced by the media may be used by a viewer
application. These permissions allow authors control over how their data is ex-
posed to operations that could allow it to be copied. If the dictionary contains un-
recognized entries or entries with unrecognized values, it should be considered
non-viable, and the viewer application should not play the media.

MH dictionary (Optional) A dictionary whose entries (see Table 9.11) must be honored for the me-
dia clip data to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 9.11) need only be honored in a
“best effort” sense.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
766

TABLE 9.10 Entries in a media permissions dictionary

The BU entry in the media clip data MH and BE dictionaries (see Table 9.11) spec-
ifies a base URL for the media data. Relative URLs in the media (which point to
auxiliary files or are used for hyperlinking, for example) should be resolved with
respect to the value of BU. The following should be noted about the BU entry:

• If BU is in the MH dictionary and the base URL is not honored (for example, the
player does not accept base URLs), the media clip data is non-viable.

• Determining the viability of the object does not require checking whether the
base URL is valid (for example, that the target host exists).

• Absolute URls within the media are not affected.

• If the media itself contains a base URL (for example, the <BASE> element is de-
fined in HTML), that value is used in preference to BU.

• BU is completely independent of and unrelated to the value of the URI entry in
the document catalog (see Section 3.6.1, “Document Catalog”).

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaPermissions for a media permissions dictionary.

TF ASCII
string

(Optional) An ASCII string indicating the circumstances under which it is accept-
able to write a temporary file in order to play a media clip. Valid values are:

(TEMPNEVER) Never allowed.

(TEMPEXTRACT) Allowed only if the document permissions allow content
extraction; for example, when bit 5 of the user access
permissions (see Table 3.20) is set.

(TEMPACCESS) Allowed only if the document permissions allow content
extraction, including for accessibility purposes; for example,
when bits 5 or 10 of the user access permissions (see Table
3.20) are set, or both.

(TEMPALWAYS) Always allowed.

Default value: (TEMPNEVER).

An unrecognized value is treated as (TEMPNEVER).

MultimediaSECTION 9.1
767

• If BU is not present and the media is embedded within the document, the URL
to the PDF file itself should be used as if it were the value of a BU entry in the BE
dictionary; that is, as an implicit best-effort base URL.

TABLE 9.11 Entries in a media clip data MH/BE dictionary

Media Clip Section

A media clip section dictionary (see Table 9.12) defines a continuous section of
another media clip object (known as the next-level media clip object). For exam-
ple, a media clip section could define a 15-minute segment of a media clip data
object representing a two-hour movie. The next-level media clip object, specified
by the D entry, can be either a media clip data object or another media clip sec-
tion object. However, the linked list formed by the D entries of media clip sec-
tions must terminate in a media clip data object. If the next-level media object is
non-viable, the media clip section is also non-viable.

TABLE 9.12 Additional entries in a media clip section dictionary

The B and E entries in the media clip section’s MH and BE dictionaries (see Table
9.13) define a subsection of the next-level media object referenced by D by speci-
fying beginning and ending offsets into it. Depending on the media type, the off-
sets may be specified by time, frames, or markers (see “Media Offset Dictionary”
on page 775). B and E are not required to specify the same type of offset.

KEY TYPE VALUE

BU ASCII
string

(Optional) An absolute URL to be used as the base URL in resolving any relative
URLs found within the media data.

KEY TYPE VALUE

D dictionary (Required) The media clip section or media clip data object (the next-level media
object) of which this media clip section object defines a continuous section.

Alt array (Optional) An array that provides alternate text descriptions for the media clip sec-
tion in case it cannot be played; see “Multi-language Text Arrays” on page 942.

MH dictionary (Optional) A dictionary whose entries (see Table 9.13) must be honored for the me-
dia clip section to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 9.13) need only be honored in a
“best effort” sense.

Multimedia FeaturesCHAPTER 9
768

The following rules apply to these offsets:

• For media types where an offset makes no sense (such as JPEG images), B and E
are ignored, with no effect on viability.

• When B or E are specified by time or frames, their value is considered to be rel-
ative to the start of the next-level media clip. However, if E specifies an offset
beyond the end of the next-level media clip, the end value is used instead, and
there is no effect on viability.

• When B or E are specified by markers, there is a corresponding absolute offset
into the underlying media clip data object. If this offset is not within the range
defined by the next-level media clip (if any), or if the marker is not present in
the underlying media clip, the existence of the entry is ignored, and there is no
effect on viability.

• If the absolute offset derived from the values of all B entries in a media clip sec-
tion chain is greater than or equal to the absolute offset derived from the values
of all E entries, an empty range is defined. An empty range is legal.

• Any B or E entry in a media clip section’s MH dictionary must be honored at
play-time in order for the media clip section to be considered viable. (The entry
might not be honored if its value was not viable or if the player did not support
its value; for example, the player did not support markers.)

• If a B or E entry is in a media clip section’s MH dictionary, all B or E entries, re-
spectively, at deeper levels (closer to the media clip data), are evaluated as if
they were in an MH dictionary (even if they are actually within BE dictionaries).

• If B or E entry in a BE dictionary cannot be supported, it may be ignored at
play-time.

TABLE 9.13 Entries in a media clip section MH/BE dictionary

KEY TYPE VALUE

B dictionary (Optional) A media offset dictionary (see “Media Offset Dictionary” on page 775)
that specifies the offset into the next-level media object at which the media clip sec-
tion begins. Default: the start of the next-level media object.

E dictionary (Optional) A media offset dictionary (see “Media Offset Dictionary” on page 775)
that specifies the offset into the next-level media object at which the media clip sec-
tion ends. Default: the end of the next-level media object.

MultimediaSECTION 9.1
769

9.1.4 Media Play Parameters

A media play parameters dictionary specifies how a media object should be
played. It is referenced from a media rendition (see “Media Renditions” on page
762).

TABLE 9.14 Entries in a media play parameters dictionary

TABLE 9.15 Entries in a media play parameters MH/BE dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaPlayParams for a media play parameters dictionary.

PL dictionary (Optional) A media players dictionary (see “Media Players Dictionary” on page
777) that identifies, among other things, players that are legal and not legal for play-
ing the media.

Note: If this object is non-viable, the media play parameters dictionary is considered
non-viable.

MH dictionary (Optional) A dictionary whose entries (see Table 9.13) must be honored for the me-
dia play parameters to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 9.13) need only be honored in a
“best effort” sense.

KEY TYPE VALUE

V integer (Optional) An integer that specifies the desired volume level as a percentage of re-
corded volume level. A zero value is equivalent to mute; negative values are illegal.
Default value: 100.

C boolean (Optional) A flag specifying whether to display a player-specific controller user in-
terface (for example, play/pause/stop controls) when playing. Default value: false

Multimedia FeaturesCHAPTER 9
770

The value of the D entry is a media duration dictionary, whose entries are shown
in Table 9.16. It specifies a temporal duration (which corresponds to the notion of
a simple duration in SMIL). The duration may be a specific amount of time, it
may be infinity, or it may be the media’s intrinsic duration (for example, the in-
trinsic duration of a two-hour QuickTime movie is two hours). The intrinsic du-

F integer‘ (Optional) The manner in which the player should treat a visual media type that
does not exactly fit the rectangle in which it plays.

0 The media’s width and height are scaled while preserving the aspect ratio
so that the media and play rectangles have the greatest possible
intersection while still displaying all media content. Same as “meet” value
of SMIL’s fit attribute.

1 The media’s width and height are scaled while preserving the aspect ratio
so that the play rectangle is entirely filled, and the amount of media
content that does not fit within the play rectangle is minimized. Same as
“slice” value of SMIL’s fit attribute.

2 The media’s width and height are scaled independently so that the media
and play rectangles are the same; the aspect ratio is not necessarily
preserved. Same as “fill” value of SMIL’s fit attribute.

3 The media is not scaled. A scrolling user interface is provided if the media
rectangle is wider or taller than the play rectangle. Same as “scroll” value
of SMIL’s fit attribute.

4 The media is not scaled. Only the portions of the media rectangle that
intersect the play rectangle are displayed. Same as “hidden” value of
SMIL’s fit attribute.

5 Use the player’s default setting (author has no preference).
Default value: 5.

An unrecognized value should be treated as the default value if the entry is in a BE
dictionary. If the entry is in an MH dictionary and it has an unrecognized value, the
object should be considered non-viable.

D dictionary (Optional) A media duration dictionary (see Table 9.16). Default value: a dictionary
specifying the intrinsic duration (see below).

A boolean (Optional) If true, the media should automatically play when activated. If false, the
media should be initially paused when activated (for example, the first frame is dis-
played). Relevant only for media that may be paused. Default value: true.

RC number (Optional) Specifies the number of iterations of the duration D to repeat; similar to
SMIL’s repeatCount attribute. Zero means repeat forever. Negative values are illegal;
non-integral values are legal. Default value: 1.0.

KEY TYPE VALUE

MultimediaSECTION 9.1
771

ration may be modified when a media clip section (see “Media Clip Section” on
page 767) is used: the intrinsic duration is the difference between the absolute be-
gin and end offsets. For a media type having no notion of time (such as a JPEG
image), the duration is considered to be infinity.

If the simple duration is longer than the intrinsic duration, the player should
freeze the media in its final state until the simple duration has elapsed. For visual
media types, the last appearance (frame) would be displayed. For aural media
types, the media is logically frozen but should not continue to produce sound.

Note: In this case, the RC entry, which specifies a repeat count, applies to the simple
duration; therefore, the entire play-pause sequence is repeated RC times.

TABLE 9.16 Entries in a media duration dictionary

9.1.5 Media Screen Parameters

A media screen parameters dictionary (see Table 9.17) specifies where a media
object should be played. It contains MH and BE dictionaries (see Table 9.18),
which function as discussed in Section 9.1.1, “Viability.” All media clips that are
being played are associated with a particular document and must be stopped
when the document is closed.

Note: It is recommended that viewer applications disallow floating windows and
full-screen windows unless specifically allowed by the user. The reason is that docu-
ment-based security attacks are possible if windows containing arbitrary media con-
tent can be displayed without indicating to the user that the window is merely

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaDuration for a media duration dictionary.

S name (Required) The subtype of media duration dictionary. Valid values are:

I The duration is the intrinsic duration of the associated media
F The duration is infinity
T The duration is specified by the T entry

The media duration dictionary is considered non-viable if the viewer application
does not recognize the value of this entry.

T dictionary (Required if the value of S is T; otherwise ignored) A timespan dictionary specifying
an explicit duration (see Table 9.24). A negative duration is illegal.

Multimedia FeaturesCHAPTER 9
772

hosting a media object. This recommendation may be relaxed if it is possible to com-
municate the nature of such windows to the user; for example, with text in a float-
ing window’s title bar.

TABLE 9.17 Entries in a media screen parameters dictionary

TABLE 9.18 Entries in a media screen parameters MH/BE dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaScreenParams for a media screen parameters dictionary.

MH dictionary (Optional) A dictionary whose entries (see Table 9.18) must be honored for the me-
dia screen parameters to be considered viable.

BE dictionary (Optional) A dictionary whose entries (see Table 9.18) need only be honored in a
“best effort” sense.

KEY TYPE VALUE

W integer (Optional) The type of window that the media object should play in:

0 A floating window
1 A full-screen window that obscures all other windows
2 A hidden window
3 The rectangle occupied by the screen annotation (see “Screen

Annotations” on page 639) associated with the media rendition

Default value: 3. Unrecognized value in MH: object is non-viable; in BE: treat as de-
fault value.

B array (Optional) An array of three numbers in the range 0.0 to 1.0 specifying the compo-
nents in the DeviceRGB color space of the background color for the rectangle in
which the media is being played. This color is used if the media object does not en-
tirely cover the rectangle or if it has transparent sections. Ignored for hidden win-
dows.

Default value: implementation-defined. The viewer application should choose a
reasonable value based on the value of W; for example, a system default background
color for floating windows or a user-preferred background color for full-screen
windows.

Note: If a media format has an intrinsic background color, B does not override it.
However, the B color is visible if the media has transparent areas or otherwise does not
cover the entire window.

MultimediaSECTION 9.1
773

The F entry in the media screen parameters MH/BE dictionaries is a floating win-
dow parameters dictionary, whose entries are listed in Table 9.19. The entries in
the floating window parameters dictionary are treated as if they were present in
the MH or BE dictionaries that they are referenced from. That is, the contained
entries are individually evaluated for viability rather than the dictionary being
evaluated as a whole. (There may be an F entry in both MH and BE. In such a case,
if a given entry is present in both floating window parameters dictionaries, the
one in the MH dictionary takes precedence.)

The D, P, and RT entries are used to specify the rectangle that the floating window
occupies. Once created, the floating window’s size and position are not tied to any
other window, even if the initial size or position was computed relative to other
windows.

Unrecognized values for the R, P, RT, and O entries are handled as follows: if they
are nested within an MH dictionary, the floating window parameters object (and
hence the media screen parameters object) must be considered non-viable; if they
are nested within a BE dictionary, they should be considered to have their default
values.

O number (Optional) A number in the range 0.0 to 1.0 specifying the constant opacity value to
be used in painting the background color specified by B. A value below 1.0 means
the window is transparent; for example, windows behind a floating window show
through if the media does not cover the entire floating window. A value of 0.0 indi-
cates full transparency and makes B irrelevant. Ignored for full-screen and hidden
windows.

Default value: 1.0 (fully opaque).

M integer (Optional) A monitor specifier (see Table 9.28) that specifies which monitor in a
multi-monitor system a floating or full-screen window should appear on. Ignored
for other types.

Default value: 0 (document monitor). Unrecognized value in MH: object is non-via-
ble; in BE: treat as default value.

F dictionary (Required if the value of W is 0; otherwise ignored) A floating window parameters
dictionary (see Table 9.19) specifying the size, position, and options used in dis-
playing floating windows.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
774

TABLE 9.19 Entries in a floating window parameters dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
FWParams for a floating window parameters dictionary.

D array (Required) An array containing two non-negative integers representing the floating
window’s width and height, in pixels, respectively. These values correspond to the
dimensions of the rectangle in which the media will play, not including such items
as title bar and resizing handles.

RT integer (Optional) The window relative to which the floating window should be positioned:

0 The document window
1 The application window
2 The full virtual desktop
3 The monitor specified by M in the media screen parameters MH or

BE dictionary (see 9.22)

Default value: 0.

P integer (Optional) The location where the floating window (including such items as title
bar and resizing handles) should be positioned relative to the window specified by
RT:

0 Upper-left corner
1 Upper center
2 Upper-right corner
3 Center left
4 Center
5 Center right
6 Lower-left corner
7 Lower center
8 Lower-right corner

Default value: 4.

O integer (Optional) Specifies what should occur if the floating window is positioned totally
or partially offscreen (that is, not visible on any physical monitor):

0 Take no special action
1 Move and/or resize the window so that it is on-screen
2 Consider the object to be non-viable

Default value: 1

T boolean (Optional) If true, the floating window should have a title bar. Default value: true.

MultimediaSECTION 9.1
775

Media Offset Dictionary

A media offset dictionary (Table 9.20) specifies an offset into a media object. The
S (subtype) entry indicates how the offset is specified: in terms of time (for exam-
ple, “10 seconds”), frames (for example, “frame 20”) or markers (for example,
“Chapter One”). Different media types support different types of offsets.

TABLE 9.20 Entries common to all media offset dictionaries

UC boolean (Optional; meaningful only if T is true) If true, the floating window should include
user interface elements that allow a user to close a floating window.

Default value: true

R integer (Optional) Specifies whether the floating window may be resized by a user:

0 May not be resized
1 May be resized only if aspect ratio is preserved
2 May be resized without preserving aspect ratio

Default value: 0.

TT array (Optional; meaningful only if T is true) An array providing text to display on the
floating window’s title bar. See “Multi-language Text Arrays” on page 942. If this en-
try is not present, the viewer application may provide default text.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaOffset for a media offset dictionary.

S name (Required) The subtype of media offset dictionary. Valid values are:

T A media offset time dictionary (see Table 9.21)
F A media offset frame dictionary (see Table 9.22)
M A media offset marker dictionary (see Table 9.23)

The rendition is considered non-viable if the viewer application does not recognize
the value of this entry.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
776

TABLE 9.21 Additional entries in a media offset time dictionary

TABLE 9.22 Additional entries in a media offset frame dictionary

TABLE 9.23 Additional entries in a media offset marker dictionary

Timespan Dictionary

A timespan dictionary specifies a length of time; its entries are shown in Table
9.24.

TABLE 9.24 Entries in a timespan dictionary

KEY TYPE VALUE

T dictionary (Required) A timespan dictionary (see Table 9.24) that specifies a temporal offset
into a media object. Negative timespans are not allowed in this context. The media
offset time dictionary is non-viable if its timespan dictionary is non-viable.

KEY TYPE VALUE

F integer (Required) Specifies a frame within a media object. Frame numbers begin at 0; neg-
ative frame numbers are not allowed.

KEY TYPE VALUE

M text string (Required) A text string that identifies a named offset within a media object.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Timespan for a timespan dictionary.

S name (Required) The subtype of timespan dictionary. The only value currently allowed is
S (simple timespan). The rendition is considered non-viable if the viewer applica-
tion does not recognize the value of this entry.

V number (Required) The number of seconds in the timespan. Non-integral values are al-
lowed. Negative values are allowed, but may be disallowed in some contexts (all sit-
uations defined in PDF 1.5 disallow negative values).

Note: This entry is required only if the value of the S entry is S. Subtypes defined in the
future need not use this entry.

MultimediaSECTION 9.1
777

9.1.6 Other Multimedia Objects

This section defines several dictionary types that are referenced by the previous
sections.

Media Players Dictionary

A media players dictionary can be referenced by media clip data (see “Media Clip
Data” on page 764) and media play parameters (see Section 9.1.4, “Media Play Pa-
rameters”) dictionaries, and allows them to specify which players may or may not
be used to play the associated media. The media players dictionary references
media player info dictionaries (see “Media Player Info Dictionary,” below) that
provide specific information about each player.

TABLE 9.25 Entries in a media players dictionary

The MU, A, and NU entries each specify one or more media player info objects.
(An empty array is treated as if it is not present.) The media player info objects
are allowed to specify overlapping player ranges (for example, MU could contain a
media player info dictionary describing versions 1 to 10 of Player X and another
describing versions 3 through 5 of Player X).

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaPlayers for a media players dictionary.

MU array (Optional) An array of media player info objects (see Table 9.26) that specify a set of
players, one of which must be used in playing the associated media object.

Note: Any players specified in NU are effectively removed from MU. (For example, if
MU specifies versions 1 through 5 of a player and NU specifies versions 1 and 2 of the
same player, MU is effectively versions 3 through 5.)

A array (Optional) An array of media player info objects (see Table 9.26) that specify a set of
players, any of which may be used in playing the associated media object. If MU is
also present and non-empty, A is ignored.

NU array (Optional) An array of media player info objects (see Table 9.26) that specify a set of
players that must not be used in playing the associated media object (even if they are
also specified in MU).

Multimedia FeaturesCHAPTER 9
778

If a non-viable media player info object is referenced by MU, NU, or A, it is treated
as if it were not present in its original array, and a media player info object con-
taining the same software identifier dictionary (see “Software Identifier Dictio-
nary” on page 779) is logically considered to be present in NU. The same rule
applies to a media player info object that contains a partially unrecognized soft-
ware identifier dictionary.

Since both media clip data and media play parameters dictionaries can be em-
ployed in a play operation, and each can reference a media players dictionary,
there is a potential for conflict between the contents of the two media players dic-
tionaries. At play-time, the viewer should use the following algorithm to deter-
mine whether a player present on the machine can be employed. The player
cannot be used if any of the following conditions are true:

Algorithm 9.1

1. The content type is known and the player does not support the type.

2. The player is found in the NU array of either dictionary.

3. Both dictionaries have non-empty MU arrays and the player is not found in both
of them, or only one of the dictionaries has a non-empty MU array and the player
is not found in it.

4. Neither dictionary has a non-empty MU array, the content type is not known, and
the player is not found in the A array of either dictionary.

If none of the conditions are true, the player can be used.

Note: A player is “found” in the NU, MU, or A arrays if it matches the information
found in the PID entry of one of the entries, as described by Algorithm 9.2.

Media Player Info Dictionary

A media player info dictionary provides a variety of information regarding a spe-
cific media player. Its entries (see Table 9.26) allow information to be associated
with a particular version or range of versions of a player. As of PDF 1.5, only the
PID entry provides information about the player, as described in the next section,
“Software Identifier Dictionary”.

MultimediaSECTION 9.1
779

TABLE 9.26 Entries in a media player info dictionary

Software Identifier Dictionary

A software identifier dictionary allows software to be identified by name, range of
versions, and operating systems; its entries are listed in Table 9.27. A viewer ap-
plication uses this information to determine whether a given media player can be
used in a given situation. If the dictionary contains keys that are unrecognized by
the viewer application, it is considered to be partially recognized. The viewer ap-
plication may or may not decide to treat the software identifier as viable, depend-
ing on the context in which it is used.

The following procedure is used to determine whether a piece of software is con-
sidered to match a software identifier object:

Algorithm 9.2

1. The software name must match the name specified by the U entry (see “Software
URIs,” below).

2. The software version must be within the interval specified by the L, H, LI, and H1
entries (see “Version arrays,” below).

3. The machine’s operating system name must be an exact match for one present in
the OS array. If the array is not present or empty, a match is also considered to ex-
ist.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
MediaPlayerInfo for a media player info dictionary.

PID dictionary (Required) A software identifier object (see “Software Identifier Dictionary,” below)
that specifies the player name, versions, and operating systems to which this media
player info object applies.

MH dictionary (Optional) A dictionary containing entries that must be honored for this object to
be considered viable

Note: Currently, there are no defined entries for this dictionary

BE dictionary (Optional) A dictionary containing entries that need only be honored in a “best ef-
fort” sense.

Note: Currently, there are no defined entries for this dictionary

Multimedia FeaturesCHAPTER 9
780

TABLE 9.27 Entries in a software identifier dictionary

Software URIs

The U entry is a URI (universal resource identifier) that identifies a piece of soft-
ware. It is interpreted according to its scheme; the only presently defined scheme
is vnd.adobe.swname. The scheme name is case-insensitive; if is not recognized by
the viewer application, the software must be considered a non-match. The syntax
of URIs of this scheme is

“vnd.adobe.swname:” software_name

where software_name is equivalent to reg_name as defined in Internet RFC 2396,
Uniform Resource Identifiers (URI): Generic Syntax; see the Bibliography.
software_name is considered to be a sequence of UTF-8-encoded characters that
have been escaped with one pass of URL escaping (see “URL Strings” on page

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
SoftwareIdentifier for a software identifier dictionary.

U ASCII string (Required) A URI that identifies a piece of software (see “Software URIs,” below).

L array (Optional) The lower bound of the range of software versions that this software
identifier object specifies (see “Version arrays,” below). Default value: the array [0].

LI boolean (Optional) If true, the lower bound of the interval defined by L and H is inclusive;
that is, the software version must be greater than or equal to L (see “Version arrays,”
below). If false, it is not inclusive. Default value: true.

H array (Optional) The upper bound of the range of software versions that this software
identifier object specifies (see “Version arrays,” below). Default value: an empty ar-
ray [].

HI boolean (Optional) If true, the upper bound of the interval defined by L and H is inclusive;
that is, the software version must be less than or equal to H (see “Version arrays,” be-
low). If false, it is not inclusive. Default value: true.

OS array (Optional) An array of byte strings representing operating system identifiers that
indicate which operating systems this object applies to. The defined values are the
same as those defined for SMIL 2.0’s systemOperatingSystem attribute. There may
not be multiple copies of the same identifier in the array. An empty array is consid-
ered to represent all operating systems. Default value: an empty array.

MultimediaSECTION 9.1
781

950). That is, to recover the original software name, software_name must be unes-
caped and then treated as a sequence of UTF-8 characters. The actual software
names must be compared in a case-sensitive fashion.

Software names are second-class names (see Appendix E). For example, the URI
for Acrobat is

vnd.adobe.swname:ADBE_Acrobat

Version arrays

The L, H, LI, and HI entries are used to specify a range of software versions. L and
H are version arrays containing zero or more non-negative integers representing
subversion numbers. The first integer is the major version numbers, and subse-
quent integers are increasingly minor. H must be greater than or equal to L, ac-
cording to the following rules for comparing version arrays:

Algorithm 9.3 Comparing version arrays

1. An empty version array is treated as infinity; that is, it is considered greater than
any other version array except another empty array. Two empty arrays are equal.

2. When comparing arrays that contain different numbers of elements, the smaller
array is implicitly padded with zero-valued integers to make the number of ele-
ments equal. For example, when comparing [5 1 2 3 4] to [5], the latter is treated as
[5 0 0 0 0].

3. The corresponding elements of the arrays are compared, starting with the first.
When a difference is found, the array containing the larger element is considered
to have the larger version number. If no differences are found, the versions are
equal.

Note: If a version array contains negative numbers, it is considered non-viable, as
is the enclosing software identifier.

Monitor Specifier

A monitor specifier is an integer that identifies a physical monitor attached to a
system. It can have one of the values in Table 9.28:

Multimedia FeaturesCHAPTER 9
782

TABLE 9.28 Monitor specifier values

For some of these values, it is possible have a “tie” at play-time; for example, two
monitors might have the same color depth. Ties are broken in an implementa-
tion-dependent manner.

9.2 Sounds

A sound object (PDF 1.2) is a stream containing sample values that define a sound
to be played through the computer’s speakers. The Sound entry in a sound anno-
tation or sound action dictionary (see Table 8.36 on page 638 and Table 8.58 on
page 664) identifies a sound object representing the sound to be played when the
annotation is activated.

Since a sound object is a stream, it can contain any of the standard entries com-
mon to all streams, as described in Table 3.4 on page 62. In particular, if it con-
tains an F (file specification) entry, the sound is defined in an external file. This
sound file must be self-describing, containing all information needed to render
the sound; no additional information need be present in the PDF file.

Note: The AIFF, AIFF-C (Mac OS), RIFF (. wav), and snd (. au) file formats are all
self-describing.

If no F entry is present, the sound object itself contains the sample data and all
other information needed to define the sound. Table 9.29 shows the additional
dictionary entries specific to a sound object.

VALUE DESCRIPTION

0 The monitor containing the largest section of the document window

1 The monitor containing the smallest section of the document window

2 Primary monitor. If no monitor is considered primary, use case 0

3 Monitor with the greatest color depth

4 Monitor with the greatest area (in pixels squared)

5 Monitor with the greatest height (in pixels)

6 Monitor with the greatest width (in pixels)

SoundsSECTION 9.2
783

TABLE 9.29 Additional entries specific to a sound object

Sample values are stored in the stream with the most significant bits first (big-en-
dian order for samples larger than 8 bits). Samples that are not a multiple of 8 bits
are packed into consecutive bytes, starting at the most significant end. If a sample
extends across a byte boundary, the most significant bits are placed in the first
byte, followed by less significant bits in subsequent bytes. For dual-channel ste-
reophonic sounds, the samples are stored in an interleaved format, with each
sample value for the left channel (channel 1) preceding the corresponding sample
for the right (channel 2).

To maximize the portability of PDF documents containing embedded sounds, it
is recommended that PDF viewer applications and plug-in extensions support at

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Sound for a sound object.

R number (Required) The sampling rate, in samples per second.

C integer (Optional) The number of sound channels. Default value: 1. (See implementation
note 150 in Appendix H.)

B integer (Optional) The number of bits per sample value per channel. Default value: 8.

E name (Optional) The encoding format for the sample data:
Raw Unspecified or unsigned values in the range 0 to 2B − 1
Signed Twos-complement values
muLaw μ-law–encoded samples
ALaw A-law–encoded samples

Default value: Raw.

CO name (Optional) The sound compression format used on the sample data. (This is separate
from any stream compression specified by the sound object’s Filter entry; see Table
3.4 on page 62 and Section 3.3, “Filters.”) If this entry is absent, no sound compres-
sion has been used; the data contains sampled waveforms to be played at R samples
per second per channel.

CP (various) (Optional) Optional parameters specific to the sound compression format used.

Note: At the time of publication, no standard values have been defined for the CO and
CP entries.

Multimedia FeaturesCHAPTER 9
784

least the following formats (assuming the platform has sufficient hardware and
OS support to play sounds at all):

R 8000, 11,025, or 22,050 samples per second
C 1 or 2 channels
B 8 or 16 bits per channel
E Raw, Signed, or muLaw encoding

If the encoding (E) is Raw or Signed, R must be 11,025 or 22,050 samples per
channel. If the encoding is muLaw, R must be 8000 samples per channel, C must
be 1 channel, and B must be 8 bits per channel. Sound players should be prepared
to convert between formats, downsample rates, and combine channels as neces-
sary to render sound on the target platform.

9.3 Movies

Note: The features described in this section are obsolescent and their use is no longer
recommended. They are superseded by the general multimedia framework described
in Section 9.1, “Multimedia.”

PDF includes the ability to embed movies within a document by means of movie
annotations (see “Movie Annotations” on page 639). Despite the name, a movie
may consist entirely of sound with no visible images to be displayed on the
screen. The Movie and A (activation) entries in the movie annotation dictionary
refer, respectively, to a movie dictionary (Table 9.30) describing the static charac-
teristics of the movie and a movie activation dictionary (Table 9.31) specifying
how it should be presented.

TABLE 9.30 Entries in a movie dictionary

KEY TYPE VALUE

F file specification (Required) A file specification identifying a self-describing movie file.

Note: The format of a self-describing movie file is left unspecified, and there is
no guarantee of portability.

Aspect array (Optional) The width and height of the movie’s bounding box, in pixels, spec-
ified as [width height]. This entry should be omitted for a movie consisting
entirely of sound with no visible images. See implementation note 151 in Ap-
pendix H.

MoviesSECTION 9.3
785

TABLE 9.31 Entries in a movie activation dictionary

Rotate integer (Optional) The number of degrees by which the movie is rotated clockwise
relative to the page. The value must be a multiple of 90. Default value: 0.

Poster boolean or stream (Optional) A flag or stream specifying whether and how to display a poster
image representing the movie. If this value is a stream, it contains an image
XObject (see Section 4.8, “Images”) to be displayed as the poster. If it is the
boolean value true, the poster image should be retrieved from the movie file;
if it is false, no poster should be displayed. See implementation note 152 in
Appendix H. Default value: false.

KEY TYPE VALUE

Start (various) (Optional) The starting time of the movie segment to be played. Movie time
values are expressed in units of time based on a time scale, which defines the
number of units per second. The default time scale is defined in the movie
data. The starting time is nominally a non-negative 64-bit integer, specified
as follows:

• If it is representable as an integer (subject to the implementation limit for
integers, as described in Appendix C), it should be specified as such.

• If it is not representable as an integer, it should be specified as an 8-byte
string representing a 64-bit twos-complement integer, most significant
byte first.

• If it is expressed in a time scale different from that of the movie itself, it is
represented as an array of two values: an integer or byte string denoting the
starting time, as above, followed by an integer specifying the time scale in
units per second.

If this entry is omitted, the movie is played from the beginning.

Duration (various) (Optional) The duration of the movie segment to be played, specified in the
same form as Start. If this entry is omitted, the movie is played to the end.

Rate number (Optional) The initial speed at which to play the movie. If the value of this en-
try is negative, the movie is played backward with respect to Start and
Duration. Default value: 1.0.

Volume number (Optional) The initial sound volume at which to play the movie, in the range
−1.0 to 1.0. Higher values denote greater volume; negative values mute the
sound. Default value: 1.0.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
786

9.4 Alternate Presentations

Beginning with PDF 1.4, a PDF document may contain alternate presentations,
which specify alternate ways in which the document may be viewed. The optional
AlternatePresentations entry (PDF 1.4) in a document’s name dictionary (see Ta-

ShowControls boolean (Optional) A flag specifying whether to display a movie controller bar while
playing the movie. Default value: false.

Mode name (Optional) The play mode for playing the movie:
Once Play once and stop.
Open Play and leave the movie controller bar open.
Repeat Play repeatedly from beginning to end until stopped.
Palindrome Play continuously forward and backward until stopped.

Default value: Once.

Synchronous boolean (Optional) A flag specifying whether to play the movie synchronously or
asynchronously. If this value is true, the movie player retains control until the
movie is completed or dismissed by the user. If the value is false, the player
returns control to the viewer application immediately after starting the mov-
ie. Default value: false.

FWScale array (Optional) The magnification (zoom) factor at which to play the movie. The
presence of this entry implies that the movie is to be played in a floating win-
dow. If the entry is absent, the movie is played in the annotation rectangle.

The value of the entry is an array of two positive integers,
[numerator denominator], denoting a rational magnification factor for the
movie. (See implementation note 153 in Appendix H.) The final window size,
in pixels, is

(numerator ÷ denominator) × Aspect

where the value of Aspect is taken from the movie dictionary (see Table 9.30).

FWPosition array (Optional) For floating play windows, the relative position of the window on
the screen. The value is an array of two numbers

[horiz vert]

each in the range 0.0 to 1.0, denoting the relative horizontal and vertical posi-
tion of the movie window with respect to the screen. For example, the value
[0.5 0.5] centers the window on the screen. See implementation note 154 in
Appendix H. Default value: [0.5 0.5].

KEY TYPE VALUE

Alternate PresentationsSECTION 9.4
787

ble 3.28) contains a name tree that maps name strings to the alternate presenta-
tions available for the document.

Note: Since PDF viewers are not required to support alternate presentations, au-
thors of documents containing alternate presentations should define the files such
that something useful and meaningful can be displayed and printed. For example, if
the document contains an alternate presentation slideshow of a sequence of photo-
graphs, the photographs should be viewable in a static form by viewers that are not
capable of playing the slideshow.

As of PDF 1.5, the only type of alternate presentation is a slideshow. Slideshows
are typically invoked by means of JavaScript actions (see “JavaScript Actions” on
page 709”) initiated by user action on an interactive form element (see Section
8.6, “Interactive Forms”). Implementation note 155 in Appendix H describes Ac-
robat’s implementation of slideshows.

The following table shows the entries in a slideshow dictionary.

TABLE 9.32 Entries in a slideshow dictionary

The Resources name tree represents a virtual file system to the slideshow. It asso-
ciates strings (“file names”) with PDF objects that represent resources used by the
slideshow. For example, a root stream might reference a file name, which would
be looked up in the Resources name tree, and the corresponding object would be
loaded as the file. (This virtual file system is flat; that is, there is no way to refer-
ence subfolders.)

KEY TYPE VALUE

Type name (Required; PDF 1.4) The type of PDF object that this dictionary describes; must be
SlideShow for a slideshow dictionary.

Subtype name (Required; PDF 1.4) The subtype of the PDF object that this dictionary describes;
must be Embedded for a slideshow dictionary.

Resources name tree (Required; PDF 1.4) A name tree that maps name strings to objects referenced by
the alternate presentation.

Note: Even though PDF treats the strings in the name tree as strings without a speci-
fied encoding, the slideshow interprets them as UTF-8 encoded Unicode.

StartResource byte string (Required; PDF 1.4) A byte string that must match one of the strings in the Re-
sources entry. It defines the root object for the slideshow presentation.

Multimedia FeaturesCHAPTER 9
788

Typically, images are stored in the document as image XObjects (see Section
4.8.4, “Image Dictionaries”), thereby allowing them to be shared between the
standard PDF representation and the slideshow. Other media objects are stored
or embedded file streams (see Section 3.10.3, “Embedded File Streams”). Also,
see Implementation note 156 in Appendix H.

To allow viewers to verify content against the supported features in a particular
viewer, it is a requirement that all referenced objects include a Type entry in their
dictionary, even when the Type entry is normally optional for a given object.

The following example illustrates the use of alternate presentation slideshows.

Example 9.1

1 0 obj
<</Type /Catalog

/Pages 2 0 R
/Names 3 0 R % Indirect reference to name dictionary

>>
...
3 0 obj % The name dictionary

<</AlternatePresentations 4 0 R >>
endobj
4 0 obj % The alternate presentations name tree

<</Names [(MySlideShow) 5 0 R]>>
endobj
5 0 obj % The slideshow definition

<</Type /SlideShow
/Subtype /Embedded
/Resources <</Names [(mysvg.svg) 31 0R

(abc0001.jpg) 35 0 R (abc0002.jpg) 36 0 R
(mysvg.js) 61 0 R (mymusic.mp3) 65 0 R]>>

/StartResource (mysvg.svg)
>>

...
31 0 obj

<</Type /Filespec % The root object, which
/F (mysvg.svg) % points to an embedded file stream
/EF <</F 32 0 R>>

>>
endobj
32 0 obj % The embedded file stream

<</Type /EmbeddedFile

3D ArtworkSECTION 9.5
789

/Subtype /image#2Fsvg+xml
/Length 72

>>
stream

<?xml version="1.0" standalone="no"?>
<svg><!-- Some SVG goes here--></svg>

endstream
endobj

% ... other objects not shown

9.5 3D Artwork

PDF 1.6 introduces the capability for collections of three-dimensional objects,
such as those used by CAD software, to be embedded in PDF files. Such collec-
tions are often called 3D models; in the context of PDF, they are referred to as 3D
artwork. The PDF constructs for 3D artwork support the following features:

• 3D artwork can be rendered within a page; that is, not as a separate window or
user interface element.

• Multiple instances of 3D artwork can appear within a page or document.

• Specific views of 3D artwork can be specified, including a default view that is
displayed initially and other views that can be selected. Views can have names
that can be presented in a user interface.

• (PDF 1.7) Views can specify how 3D artwork should be rendered, colored, lit,
and cross-sectioned, without the use of embedded JavaScript. They can also
specify state information to be applied to individual nodes (3D graphic objects
or collections thereof) in the 3D artwork, such as visibility, opacity, position, or
orientation. (See also implementation note 158 in Appendix H.)

• Pages containing 3D artwork can be printed.

• Users can rotate and move the artwork, enabling them to examine complex ob-
jects from any angle or orientation.

• (PDF 1.7) Keyframe animations contained in 3D artwork can be played in spe-
cific styles and timescales, without programatic intervention. (See also imple-
mentation note 158 in Appendix H.)

Multimedia FeaturesCHAPTER 9
790

• JavaScripts and other software can programmatically manipulate objects in the
artwork, creating dynamic presentations in which objects move, spin, appear,
and disappear. The JavaScript for Acrobat API Reference (see the Bibliography)
describes the JavaScript interface to 3D annotations.

• (PDF 1.7) The activation of 3D artwork can trigger the display of additional
user interface items in the viewing application. Such items can include model
trees and toolbars. (See also implementation note 158 in Appendix H.)

• Two-dimensional (2D) content such as labels can be overlaid on 3D artwork.
This feature is not the same as the ability to apply 2D markup annotations.

• (PDF 1.7) 2D markup annotations can be applied to specific views of the 3D
artwork, using the ExData entry to identify the 3D annotation and the 3D view
in that annotation. (See also implementation note 158 in Appendix H.)

The following sections describe the major PDF objects that relate to 3D artwork,
as well as providing background information on 3D graphics:

• 3D annotations provide a virtual camera through which the artwork is viewed.
(see Section 9.5.1, “3D Annotations”).

• 3D streams contain the actual specification of a piece of 3D artwork (see Sec-
tion 9.5.2, “3D Streams”). This specification supports the Standard ECMA-363,
Universal 3D file format developed by the 3D Industry Forum (see Bibliogra-
phy). Other formats may be supported in the future.

• 3D views specify information about the relationship between the camera and
the 3D artwork (see Section 9.5.3, “3D Views”). Beginning with PDF 1.7, views
can also describe additional parameters such as render mode, lighting, cross
sections, and nodes. Nodes are 3D graphic objects or collections thereof.

• 3D coordinate systems are described in Section 9.5.4, “Coordinate Systems for
3D.”

• 2D markup annotations applied to 3D artwork views are described in Section
9.5.5, “3D Markup”

Note: Many of the concepts and terminology of 3D rendering are beyond the scope
of this reference. Readers interested in further information are encouraged to con-
sult outside references.

3D ArtworkSECTION 9.5
791

9.5.1 3D Annotations

3D annotations (PDF 1.6) are the means by which 3D artwork is represented in a
PDF document. Table 9.33 shows the entries specific to a 3D annotation dictio-
nary. Table 8.15 on page 606 describes the entries common to all annotation dic-
tionaries.

In addition to these entries, a 3D annotation is required to provide an appearance
stream in its AP entry (see Table 8.15 on page 606) that has a normal appearance
(the N entry in Table 8.19 on page 614). This appearance can be used by applica-
tions that do not support 3D annotations and by all applications for the initial
display of the annotation.

TABLE 9.33 Additional entries specific to a 3D annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be 3D for
a 3D annotation.

3DD stream or
dictionary

(Required) A 3D stream (see Section 9.5.2, “3D Streams”) or 3D reference dictio-
nary (see “3D Reference Dictionaries” on page 801) that specifies the 3D art-
work to be shown.

3DV (various) (Optional) An object that specifies the default initial view of the 3D artwork that
should be used when the annotation is activated. It can be either a 3D view dic-
tionary (see Section 9.5.3, “3D Views”) or one of the following types specifying
an element in the VA array in the 3D stream (see Table 9.35):

• An integer specifying an index into the VA array.

• A text string matching the IN entry in one of the views in the VA array.

• A name that indicates the first (F), last (L), or default (D) entries in the VA ar-
ray.

Default value: the default view in the 3D stream object specified by 3DD.

3DA dictionary (Optional) An activation dictionary (see Table 9.34) that defines the times at
which the annotation should be activated and deactivated and the state of the 3D
artwork instance at those times. Default value: an activation dictionary contain-
ing default values for all its entries.

Multimedia FeaturesCHAPTER 9
792

The 3DB entry specifies the 3D view box, a rectangle in which the 3D artwork ap-
pears. The view box must fit within the annotation’s rectangle (specified by its
Rect entry). It may be the same size, or it may be smaller if necessary to provide
extra drawing area for additional 2D graphics within the annotation.

Note: Although 3D artwork can internally specify viewport size, PDF consumer ap-
plications ignore it in favor of information provided by the 3DB entry.

The view box is not specified in the same coordinate system as the annotation’s
rectangle, but rather in the annotation’s target coordinate system, whose origin is
at the center of the annotation’s rectangle. Units in this coordinate system are the
same as default user space units. Therefore, the coordinates of the annotation’s
rectangle in the target coordinate system are

[-w/2 -h/2 w/2 h/2]

given w and h as the rectangle’s width and height.

The 3DD entry specifies a 3D stream that contains the 3D artwork to be shown in
the annotation; 3D streams are described in Section 9.5.2. The 3DD entry can
specify a 3D stream directly; it can also specify a 3D stream indirectly by means
of a 3D reference dictionary (see “3D Reference Dictionaries” on page 801).

3DI boolean (Optional) A flag indicating the primary use of the 3D annotation. If true, it is
intended to be interactive; if false, it is intended to be manipulated programmat-
ically, as with a JavaScript animation. Viewer applications may present different
user interface controls for interactive 3D annotations (for example, to rotate,
pan, or zoom the artwork) than for those managed by a script or other mecha-
nism.

Default value: true.

3DB rectangle (Optional) The 3D view box, which is the rectangular area in which the 3D art-
work is to be drawn. It must be within the rectangle specified by the annotation’s
Rect entry and is expressed in the annotation’s target coordinate system (see be-
low).

Default value: the annotation’s Rect entry, expressed in the target coordinate sys-
tem. This value is [-w/2 -h/2 w/2 h/2], where w and h are the width and height,
respectively, of Rect.

KEY TYPE VALUE

3D ArtworkSECTION 9.5
793

These options control whether annotations share the same run-time instance of
the artwork.

The 3DV entry specifies the view of the 3D artwork that is displayed when the an-
notation is activated (as described in the next paragraph). 3D views, which are
described in Section 9.5.3, represent settings for the virtual camera, such as posi-
tion, orientation, and projection style. The view specified by 3DV is one of the 3D
view dictionaries listed in the VA entry in a 3D stream (see Table 9.35).

The 3DA entry is an activation dictionary (see Table 9.34) that determines how
the state of the annotation and its associated artwork can change. These states are
provided to delay the processing or display of 3D artwork until a user chooses to
interact with it. Such delays in activating 3D artwork can be advantageous to per-
formance.

3D annotations can be in one of two states:

• Inactive (the default initial state): the annotation displays the annotation’s nor-
mal appearance.

Note: It is typical, though not required, for the normal appearance to be a pre-
rendered bitmap of the default view of the 3D artwork. Producers should provide
bitmaps of appropriate resolution for all intended uses of the document; for exam-
ple, a high-resolution bitmap for high-quality printing and a screen-resolution
bitmap for on-screen viewing. Optional content (see Section 4.10) can be used to
select the appropriate bitmap for each situation.

• Active: the annotation displays a rendering of the 3D artwork. This rendering is
specified by the annotation’s 3DV entry.

Multimedia FeaturesCHAPTER 9
794

TABLE 9.34 Entries in a 3D activation dictionary

KEY TYPE VALUE

A name (Optional) A name specifying the circumstances under which the annotation
should be activated. Valid values are:

PO The annotation should be activated as soon as the page containing
the annotation is opened.

PV The annotation should be activated as soon as any part of the page
containing the annotation becomes visible.

XA The annotation should remain inactive until explicitly activated by
a script or user action.

Note: At any one time, only a single page is considered open in a viewer applica-
tion, even though more than one page may be visible, depending on the page lay-
out.

Default value: XA.

Note: For performance reasons, it is recommended that documents intended for
viewing in a web browser use explicit activation (XA). In non-interactive applica-
tions, such as printing systems or aggregating applications, PO and PV indicate
that the annotation should be activated when the page is printed or placed; XA in-
dicates that the annotation is never activated and the normal appearance should
always be used.

AIS name (Optional) A name specifying the state of the artwork instance upon activation
of the annotation. Valid values are:

I The artwork is instantiated, but real-time script-driven animations
are disabled.

L Real-time script-driven animations are enabled if present; if not,
the artwork is instantiated.

Default value: L.

Note: In non-interactive applications, the artwork is always instantiated and nev-
er live.

3D ArtworkSECTION 9.5
795

The A and D entries of the activation dictionary determine when a 3D annotation
may become active and inactive. The AIS and DIS entries specify what state the as-
sociated artwork should be in when the annotation is activated or deactivated. 3D

D name (Optional) A name specifying the circumstances under which the annotation
should be deactivated. Valid values are:

PC The annotation should be deactivated as soon as the page is closed.

PI The annotation should be deactivated as soon as the page
containing the annotation becomes invisible.

XD The annotation should remain active until explicitly deactivated by
a script or user action.

Note: At any one time, only a single page is considered open in the viewer applica-
tion, even though more than one page may be visible, depending on the page lay-
out.

Default value: PI.

DIS name (Optional) A name specifying the state of the artwork instance upon deactiva-
tion of the annotation. Valid values are U (uninstantiated), I (instantiated), and
L (live). Default value: U.

Note: If the value of this entry is L, uninstantiation of instantiated artwork is not
required unless it has been modified. Uninstantiation is never required in non-in-
teractive applications.

TB boolean (Optional; PDF 1.7) A flag indicating the default behavior of an interactive tool-
bar associated with this annotation. If true, a toolbar should be displayed by de-
fault when the annotation is activated and given focus. If false, a toolbar should
not be displayed by default. Typically, a toolbar is positioned in proximity to the
3D annotation.

Default value: true.

NP boolean (Optional; PDF 1.7) A flag indicating the default behavior of the user interface
for viewing or managing information about the 3D artwork. Such user interfac-
es can enable navigation to different views or can depict the hierarchy of the ob-
jects in the artwork (the model tree). If true, the user interface should be made
visible when the annotation is activated. If false, the user interface should not
be made visible by default.

Default value: false

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
796

artwork can be in one of three states:

• Uninstantiated: the initial state of the artwork before it has been used in any
way.

• Instantiated: the state in which the artwork has been read and a run-time in-
stance of the artwork has been created. In this state, it can be rendered but
script-driven real-time modifications (that is, animations) are disabled.

• Live: the artwork is instantiated, and it is being modified in real time to achieve
some animation effect. In the case of keyframe animation, the artwork is live
while it is playing and then reverts to an instantiated state when playing com-
pletes or is stopped.

Note: The live state is valid only for keyframe animations or in interactive viewer
applications that have JavaScript support.

If 3D artwork becomes uninstantiated after having been instantiated, later use of
the artwork requires re-instantiation (animations are lost, and the artwork ap-
pears in its initial form). For this reason, uninstantiation is not actually required
unless the artwork has been modified in some way; consumers may choose to
keep unchanged artwork instantiated for performance reasons.

Note: In non-interactive systems such as printing systems, the artwork cannot be
changed. Therefore, applications can choose to deactivate annotations and unin-
stantiate artwork differently, based on factors such as memory usage and the time
needed to instantiate artwork, and the TB, NP, D and DIS entries may be ignored.

Multiple 3D annotations can share an instance of 3D artwork, as described in “3D
Reference Dictionaries” on page 801. In such a case, the state of the artwork in-
stance is determined in the following way:

• If any annotation dictates (through its activation dictionary) that the artwork
should be live, it is live.

• Otherwise, if any annotation dictates that the artwork should be instantiated, it
is instantiated.

• Otherwise, the artwork is uninstantiated.

Note: Artwork must be either instantiated or live (not be uninstantiated) if any an-
notation referring to it is active. It is, however, possible for artwork to be instantiat-
ed or live if all annotations referring to it are inactive.

3D ArtworkSECTION 9.5
797

9.5.2 3D Streams

Beginning with PDF 1.6, the specification of 3D artwork is contained in a 3D
stream. 3D stream dictionaries, whose entries are shown in Table 9.35, can pro-
vide a set of predefined views of the artwork, as well as a default view. They can
also provide scripts and resources for providing customized behaviors or presen-
tations.

TABLE 9.35 Entries in a 3D stream dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be 3D for a 3D stream.

Subtype name (Required) A name specifying the format of the 3D data contained in the
stream. Currently, the only valid value is U3D.

VA array (Optional) An array of 3D view dictionaries, each of which specifies a named
preset view of this 3D artwork (see Section 9.5.3, “3D Views”).

DV (various) (Optional) An object that specifies the default (initial) view of the 3D art-
work. It can be a 3D view dictionary (see Section 9.5.3, “3D Views”) or one of
the following types:

• An integer specifying an index into the VA array.

• A text string matching the IN entry in one of the views in the VA array.

• A name that indicates the first (F) or last (L) entries in the VA array.

Default value: 0 (the first entry in the VA array) if VA is present; if VA is not
present, the default view is specified within the 3D stream itself.

Resources name tree (Optional) A name tree that maps name strings to objects that can be used by
applications or scripts to modify the default view of the 3D artwork.

The names in this name tree must be text strings so that they can be accessible
from JavaScript.

OnInstantiate stream (Optional) A JavaScript script that is executed when the 3D stream is instanti-
ated.

Multimedia FeaturesCHAPTER 9
798

The Subtype entry specifies the format of the 3D stream data. The only valid val-
ue is U3D, which indicates that the stream data conforms to the Universal 3D File
Format specification (see Bibliography). PDF consumer applications must be pre-
pared to encounter unknown values for Subtype and recover appropriately,
which usually means leaving the annotation in its inactive state, displaying its
normal appearance.

Note: Applications are encouraged to follow the approach of falling back to the nor-
mal appearance with regard to entries in other dictionaries that may take different
types or values in future PDF versions than the ones specified here.

The VA entry is an array containing a list of named present views of the 3D art-
work. Each entry in the array is a 3D view dictionary (see Section 9.5.3, “3D
Views”) that contains the name of the view and the information needed to display
the view. The order of array elements is the order in which the views are present-
ed in a user interface. The DV entry specifies the view to use as the initial view of
the 3D artwork.

Note: Default views can be specified in the following order of precedence: in the an-
notation dictionary, in the 3D stream dictionary, or in the 3D artwork contained in
the 3D stream.

3D streams contain information that can be used by applications and scripts to
perform animations and other programmatically-defined behaviors, from chang-
ing the viewing orientation to moving individual components of the artwork. The
OnInstantiate entry specifies a JavaScript script that is executed by applications
that support JavaScript whenever a 3D stream is read to create an instance of the
3D artwork. The Resources entry is a name tree that contains objects that can be
used to modify the initial appearance of the 3D artwork. The 3D JavaScript inter-
face for Acrobat is described in JavaScript for Acrobat API Reference (see the Bib-
liography).

AN dictionary (Optional; PDF 1.7) An animation style dictionary indicating the preferred
method that viewer applications should use to drive keyframe animations
present in this artwork (see “3D Animation Style Dictionaries” on page 799).

Default value: an animation style dictionary whose Subtype entry has a value
of None.

KEY TYPE VALUE

3D ArtworkSECTION 9.5
799

3D Animation Style Dictionaries

A 3D animation style dictionary (PDF 1.7) specifies the preferred method that
viewer applications should use to apply timeline scaling to keyframe animations.
It can also specify that keyframe animations be played repeatedly. The AN entry
of the 3D stream can specify a 3D animation style dictionary.

A keyframe animation can be provided as the content of a 3D stream dictionary.
A keyframe animation provides key frames and specifies the mapping for the po-
sition of geometry over a set period of time (animation timeline). Keyframe ani-
mation is an interactive feature that is highly dependent on the behavior and
controls provided by the viewer application.

Table 9.36 shows the entries in an animation style dictionary.

TABLE 9.36 Entries in an 3D animation style dictionary

KEY TYPE VALUE

Type name (Optional). The type of PDF object that this dictionary describes; if present, must
be 3DAnimationStyle.

Subtype name (Optional) The animation style described by this dictionary; see Table 9.37 for
valid values. If an animation style is encountered other than those described in
Table 9.37, an animation style of None is used.

Default value: None

PC integer (Optional) An integer specifying the play count for this animation style. A non-
negative integer represents the number of times the animation is played. A nega-
tive integer indicates that the animation is infinitely repeated. This value is ig-
nored for animation styles of type None.

Default value: 0

TM number (Optional) A positive number specifying the time multiplier to be used when
running the animation. A value greater than one shortens the time it takes to play
the animation, or effectively speeds up the animation. This allows authors to ad-
just the desired speed of animations, without having to re-author the 3D artwork.

This value is ignored for animation styles of type None.

Default value: 1

Multimedia FeaturesCHAPTER 9
800

The descriptions of the animation styles (see Table 9.37) use the following vari-
ables to represent application time or keyframe settings specified in the 3D art-
work.

• t is a point on the animation time line. This value is used in conjunction with
the keyframe animation data to determine the state of the 3D artwork.

• [r0, r1] is the keyframe animation time line.

• ta is the current time of the viewer application.

• t0 is the time when the viewer application starts the animation.

• p is the time it takes to play the keyframe animation through one cycle. In the
case of the Linear animation style, one cycle plays the animation through once
from beginning to end. In the case of the Oscillating animation style, one cycle
plays the animation from beginning to end and then from end to beginning.

• m is the positive multiplier specified by the TM entry in the animation style dic-
tionary.

TABLE 9.37 Animation styles

None Keyframe animations should not be driven directly by the viewer applica-
tion. This value is used by documents that are intended to drive anima-
tions through an alternate means, such as JavaScript.

The remaining entries in the animation style dictionary are ignored.

Linear Keyframe animations are driven linearly from beginning to end. This ani-
mation style results in a repetitive playthrough of the animation, such as in
a walking motion.

t = (m(ta - t0) + r0) % (r1 - r0)
p = (r1 - r0) / m

The “%” symbol indicates the modulus operator.

Oscillating Keyframe animations should oscillate along their time range. This anima-
tion style results in a back-and-forth playing of the animation, such as ex-
ploding or collapsing parts.

t = (0.5)(r1 - r0)(1 - cos(m(ta - t0))) + r0
p = 2 * pi / m

3D ArtworkSECTION 9.5
801

3D Reference Dictionaries

It is possible for more than one 3D annotation to be associated with the same 3D
artwork. For example, several annotations might show different views of the same
object. There are two ways in which this association can occur, as determined by
the annotation’s 3DD entry (see Table 9.33):

• If the 3DD entry specifies a 3D stream, the annotation has its own run-time in-
stance of the 3D artwork. Any changes to the artwork are reflected only in this
annotation. Other annotations that refer to the same stream have separate run-
time instances.

• If the 3DD entry specifies a 3D reference dictionary (whose entries are shown
in Table 9.38), the annotation shares a run-time instance of the 3D artwork
with all other annotations that specify the same reference dictionary. Any
changes to the artwork are reflected in all such annotations.

TABLE 9.38 Entries in a 3D reference dictionary

Example 9.1 and Figure 9.1 through Figure 9.3 show three annotations that use
the same 3D artwork. Object 100 (Annotation 1) has its own run-time instance of
the 3D stream (object 200); object 101(Annotation 2) and object 102 (Annotation
3) share a run-time instance through the 3D reference dictionary (object 201).

Example 9.2
100 0 obj % 3D annotation 1

<< /Type /Annot
/Subtype /3D
/3DD 200 0 R % Reference to the 3D stream containing the 3D artwork

>>
endobj

101 0 obj % 3D annotation 2
<< /Type /Annot

/Subtype /3D

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be 3DRef for a 3D reference dictionary.

3DD stream (Required) The 3D stream (see Section 9.5.2, “3D Streams”) containing the
specification of the 3D artwork.

Multimedia FeaturesCHAPTER 9
802

/3DD 201 0 R % Reference to a 3D reference dictionary
>>

endobj

102 0 obj % 3D annotation 3

<< /Type /Annot
/Subtype /3D
/3DD 201 0 R % Reference to the same 3D reference dictionary

>>
endobj

200 0 obj % The 3D stream

<< /Type /3D
/Subtype /U3D
... other keys related to a stream, such as /Length

>>
stream

... U3D data...
endstream

endobj

201 0 obj % 3D reference dictionary

<< /Type /3DRef
/3DD 200 0 R % Reference to the actual 3D artwork.

>>
endobj

FIGURE 9.1 Default view of artwork

Annotation 1

Annotation 2

Annotation 3

21
5

B
A

E

21
5

B
A

E

21
5

B
A

E

3D ArtworkSECTION 9.5
803

FIGURE 9.2 Annotation 2 rotated

FIGURE 9.3 Shared artwork (annotations 2 &3) modified

The figures show how the objects in Example 9.1 might be used. Figure 9.1 shows
the same initial view of the artwork in all three annotations. Figure 9.2 shows the
results of rotating the view of the artwork within Annotation 2. Figure 9.3 shows
the results of manipulating the artwork shared by Annotation 2 and Annotation
3: they both reflect the change in the artwork because they share the same run-
time instance. Annotation 1 remains unchanged because it has its own run-time
instance.

Note: When multiple annotations refer to the same instance of 3D artwork, the state
of the instance is determined as described in Section 9.5.1, “3D Annotations.”

Annotation 1

Annotation 2

Annotation 3

21
5

1

1
5

B
A

E

A

B
A

E

Annotation 1

Annotation 2

Annotation 3

21
5

1

21
5

B
A

E

A

B
A

E

Multimedia FeaturesCHAPTER 9
804

9.5.3 3D Views

Beginning with PDF 1.6, a 3D view (or simply view) specifies parameters to be
applied to the virtual camera associated with a 3D annotation. These parameters
may include orientation and position of the camera, details regarding the projec-
tion of camera coordinates into the annotation’s target coordinate system, and a
description of the background on which the artwork is to be drawn. Starting with
PDF 1.7, specific views can also specify how 3D artwork is rendered, colored, lit,
and cross-sectioned, without the use of embedded JavaScript. Specific views can
also specify which nodes (three-dimensional areas) of 3D artwork are included in
a view and whether those nodes are opaque or invisible.

Users can manipulate views by performing interactive operations such as free ro-
tation and translation. In addition, 3D artwork can contain a set of predefined
views that the author deems to be of particular interest. For example, a mechani-
cal drawing of a part may have specific views showing the top, bottom, left, right,
front, and back of an object.

A 3D stream may contain a list of named preset views of the 3D artwork, as spec-
ified by the VA entry, which is an array of 3D view dictionaries. The entries in a
3D view dictionary are shown in Table 9.39.

TABLE 9.39 Entries in a 3D view dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be 3DView for a 3D view dictionary.

XN text string (Required) The external name of the view, suitable for presentation in a user in-
terface.

IN text string (Optional) The internal name of the view, used to refer to the view from other
objects, such as the go-to-3D-view action (see “Go-To-3D-View Actions” on
page 670).

MS name (Optional) A name specifying the entry to use for the 3D camera-to-world
transformation matrix. The following values are supported:

M Indicates that the C2W entry specifies the matrix

U3D Indicates that the U3DPath entry in the 3D stream object is
used for the matrix. This value reflects the sole supported value
of the Subtype entry in the 3D stream dictionary.

If omitted, the view specified in the 3D artwork is used.

3D ArtworkSECTION 9.5
805

C2W array (Required if the value of MS is M, ignored otherwise) A 12-element 3D transfor-
mation matrix that specifies a position and orientation of the camera in world
coordinates.

U3DPath text string or
array

(Required if the value of MS is U3D, ignored otherwise) A sequence of one or
more text strings used to access a view node within the 3D artwork. The first
string in the array is a node ID for the root view node, and each subsequent
string is the node ID for a child of the view node specified by the prior string.
Each view node specifies a 3D transformation matrix (see Section 9.5.4, “Coor-
dinate Systems for 3D”); the concatenation of all the matrices forms the cam-
era-to-world matrix.

Note: The use of an array value for this entry is deprecated. A single text string
(corresponding to the View Node name, as described in section 9.5.4.1 of the Uni-
versal 3D File Format specification) is sufficient to determine the world matrix of
the target view node. See implementation note 157 in Appendix H.

Note: Do not confuse View Nodes with nodes. A View Node is a parameter in
the 3D artwork that specifies a view, while a node is a PDF dictionary that speci-
fies 3D graphic objects or collections thereof.

CO number (Optional; used only if MS is present) A non-negative number indicating a dis-
tance in the camera coordinate system along the z axis to the center of orbit for
this view; see discussion below. If this entry is not present, the viewer applica-
tion must determine the center of orbit.

P dictionary (Optional) A projection dictionary (see “Projection Dictionaries” on page 808)
that defines the projection of coordinates in the 3D artwork (already trans-
formed into camera coordinates) onto the target coordinate system of the anno-
tation.

Default value: a projection dictionary where the value of Subtype is
Perspective, the value of FOV is 90, and all other entries take their default val-
ues.

O stream (Optional; meaningful only if MS and P are present) A form XObject that is used
to overlay 2D graphics on top of the rendered 3D artwork (see Section 9.5.5,
“3D Markup).

BG dictionary (Optional) A background dictionary that defines the background over which the
3D artwork is to be drawn (see “3D Background Dictionaries” on page 812”).
Default value: a background dictionary whose entries take their default values.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
806

For any view, the document author may provide 2D content specific to the view,
to be drawn on top of the 3D artwork. The O entry specifies a form XObject that
is overlaid on the rendered 3D artwork. The coordinate system of the form XOb-
ject is defined to be the same as the (x, y, 0) plane in the camera coordinate sys-
tem (see Section 9.5.4, “Coordinate Systems for 3D”).

RM dictionary (Optional; PDF 1.7) A render mode dictionary that specifies the render mode to
use when rendering 3D artwork with this view (see “3D Render Mode Dictio-
naries” on page 813”). If omitted, the render mode specified in the 3D artwork
is used.

LS dictionary (Optional; PDF 1.7) A lighting scheme dictionary that specifies the lighting
scheme to be used when rendering 3D artwork with this view (see “3D Lighting
Scheme Dictionaries” on page 817”). If omitted, the lighting scheme specified
in the 3D artwork is used.

SA array (Optional; PDF 1.7) An array that contains cross section dictionaries (see “3D
Cross Section Dictionaries” on page 819”). Each cross section dictionary pro-
vides parameters for applying a cross section to the 3D artwork when using this
view. An empty array signifies that no cross sections are displayed.

NA array (Optional; PDF 1.7) A node array consisting of 3D node dictionaries (see “3D
Node Dictionaries” on page 828”). Each node dictionary may contain entries
that change the node’s state, including its opacity and its position in world
space. This entry and the NR entry specify how the state of each node is
changed.

If a node dictionary is present more than once, only the last such dictionary
(using a depth-first traversal) is used.

NR boolean (Optional; PDF 1.7) Specifies whether nodes specified in the NA array are re-
turned to their original states (as specified in the 3D artwork) before applying
transformation matrices and opacity settings specified in the node dictionaries.
If true, the artwork’s 3D node parameters are restored to their original states
and then the dictionaries specified by the NA array are applied. If false, the dic-
tionaries specified by the NA array are applied to the current states of the nodes.

In addition to the parameters specified by a 3D node dictionary, this flag should
also apply to any runtime parameters used by a viewer application, as well as
any additional parameters specified in future PDF versions.

This value is ignored if the NA array is not present.

Default value: false

KEY TYPE VALUE

3D ArtworkSECTION 9.5
807

The form XObject specified by the O entry is subject to the following restrictions;
failure to abide by them could result in misalignment of the overlay with the ren-
dered 3D graphics:

• The form XObject is associated with a specific view (not with the camera posi-
tion defined by the 3D view dictionary). It should only be drawn when the user
navigates using the 3D view, not when the user happens to navigate to the same
orientation by manual means.

• It should only be drawn if the artwork-to-world matrix has not been altered.

• It may only be specified in 3D view dictionaries in which both a camera-to-
world matrix (MS and associated entries) and a projection dictionary (the P en-
try) are present.

The CO entry specifies the distance from the camera to the center of orbit for the
3D view, which is the point around which the camera should rotate when per-
forming an orbit-style navigation. Figure 9.4 illustrates camera positioning when
orbiting around the center of orbit.

FIGURE 9.4 Rotation around the center of orbit

The LS entry allows the lighting of the 3D artwork to be changed without chang-
ing the artwork itself. This enables consumers to view a given piece of 3D artwork
with a variety of lighting options without requiring multiple copies of the 3D art-
work stream that differ only in lighting. It also enables artwork with poor lighting

Center Of Orbit

Multimedia FeaturesCHAPTER 9
808

to be corrected in cases where the original content cannot be re-authored. See
“3D Lighting Scheme Dictionaries” on page 817.”

The SA entry provides cross section information for clipping 3D artwork while its
associated view is active. This allows view authors to be more clear in calling out
the intended areas of interest for a particular view, some of which might other-
wise be completely obscured. See “3D Cross Section Dictionaries” on page 819.”

The NR and NA entries are meant to give a more accurate representation of the 3D
artwork at a given state. These keys give view authors finer granularity in manip-
ulating the artwork to be presented in a particular way. They also provide a
means for returning node parameters to a known state after potential changes by
interactive features such as keyframe animations and JavaScript. See “3D Node
Dictionaries” on page 828.”

Projection Dictionaries

A projection dictionary (see Table 9.40) defines the mapping of 3D camera coordi-
nates onto the target coordinate system of the annotation. Each 3D view can
specify a projection dictionary by means of its P entry.

Note: Although view nodes can specify projection information, PDF consumers ig-
nore it in favor of information in the projection dictionary.

PDF 1.6 introduces near/far clipping. This type of clipping defines a near plane
and a far plane (as shown in Figure 9.5 on page 810). Objects, or parts of objects,
that are beyond the far plane or closer to the camera than the near plane are not
drawn. 3D objects are projected onto the near plane and then scaled and posi-
tioned within the annotation’s target coordinate system, as described below.

TABLE 9.40 Entries in a projection dictionary

KEY TYPE VALUE

Subtype name (Required) The type of projection. Valid values are O (orthographic) or P (perspective).

CS name (Optional) The clipping style. Valid values are XNF (explicit near/far) or ANF (automatic
near/far). Default value: ANF.

F number (Optional; meaningful only if the value of CS is XNF) The far clipping distance, expressed
in the camera coordinate system. No parts of objects whose z coordinates are greater
than the value of this entry are drawn. If this entry is absent, no far clipping occurs.

3D ArtworkSECTION 9.5
809

The CS entry defines how the near and far planes are determined. A value of XNF
means that the N and F entries explicitly specify the z coordinate of the near and

N number (Meaningful only if the value of CS is XNF; required if the value of Subtype is P) The near
clipping distance, expressed in the camera coordinate system. No parts of objects whose
z coordinates are less than the value of this entry are drawn. If Subtype is P, the value
must be positive; if Subtype is O, the value must be non-negative, and the default value
is 0.

FOV number (Required if Subtype is P, ignored otherwise) A number between 0 and 180, inclusive,
specifying the field of view of the virtual camera, in degrees. It defines a cone in 3D
space centered around the z axis and a circle where the cone intersects the near clipping
plane. The circle, along with the value of PS, specify the scaling of the projected artwork
when rendered in the 2D plane of the annotation.

PS number
or name

(Optional; meaningful only if Subtype is P) An object that specifies the scaling used
when projecting the 3D artwork onto the annotation’s target coordinate system. It de-
fines the diameter of the circle formed by the intersection of the near plane and the cone
specified by FOV. The value may be one of the following:

• A positive number that explicitly specifies the diameter as a distance in the annota-
tion’s target coordinate system.

• A name specifying that the diameter must be set to the width (W), height (H), mini-
mum of width and height (Min), or maximum of width and height (Max) of the anno-
tation’s 3D view box. Default value: W.

OS number (Optional; meaningful only if Subtype is O) A positive number that specifies the scale
factor to be applied to both the x and y coordinates when projecting onto the annota-
tion’s target coordinate system (the z coordinate is discarded). Default value: 1.

OB name (Optional; PDF 1.7; meaningful only if Subtype is O) A name that specifies a strategy for
binding (scaling to fit) the near plane’s x and y coordinates onto the annotation’s target
coordinate system. The scaling specified in this entry is applied in addition to the scal-
ing factor specified by the OS entry. The value may be one of the following:

W Scale to fit the width of the annotation

H Scale to fit the height of the annotation

Min Scale to fit the lesser of width or height of the annotation

Max Scale to fit the greater of width or height of the annotation

Absolute No scaling should occur due to binding.

Default value: Absolute.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
810

far planes, respectively. A value of ANF for CS means that the near and far planes
are determined automatically based on the objects in the artwork.

The Subtype entry specifies the type of projection, which determines how objects
are projected onto the near plane and scaled. The possible values are O for ortho-
graphic projection and P for perspective projection.

For orthographic projection, objects are projected onto the near plane by simply
discarding their z value. They are scaled from units of the near plane’s coordinate
system to those of the annotation’s target coordinate system by the combined fac-
tors specified by the OS entry and the OB entry.

For perspective projection, a given coordinate (x, y, z) is projected onto the near
plane, defining a 2D coordinate (x1, y1) using the following formulas:

where n is the z coordinate of the near plane.

Scaling with perspective projection is more complicated than for orthographic
projection. The FOV entry specifies an angle that defines a cone centered along
the z axis in the camera coordinate system (see Figure 9.5). The cone intersects
with the near plane, forming a circular area on the near plane. Figure 9.6 shows
this circle and graphics from the position of the camera.

FIGURE 9.5 Perspective projection of 3D artwork onto the near plane

x1 x n
z
---×=

y1 y n
z
---×=

Far Clipping Plane Near Clipping plane

Objects projected onto near clipping plane

Circle defined by Field of View angle on near clipping plane

Field of View angle Z axis

3D ArtworkSECTION 9.5
811

FIGURE 9.6 Objects projected onto the near clipping plane, as seen from the position of the camera

The PS entry specifies the diameter that this circle will have when the graphics
projected onto the near plane are rendered in the annotation’s 3D view box (see
Figure 9.7). Although the diameter of the circle determines the scaling factor,
graphics outside the circle are also displayed, providing they fit within the view
box, as seen in the figure.

Figure 9.8 shows the entire 3D annotation. In this case, the 3D view box is smaller
than the annotation’s rectangle, which also contains 2D content outside the 3D
view box.

FIGURE 9.7 Positioning and scaling the near plane onto the annotation’s 3D view box

FOV circle

Z axis projected onto near plane

3D Annotation’s 3DB box

Z axis projected onto near plane,
aligned with center of 3DB box,
scaled to fit the width of the 3DB box

Multimedia FeaturesCHAPTER 9
812

FIGURE 9.8 3D annotation positioned on the page

3D Background Dictionaries

A 3D background dictionary defines the background over which a 3D view is to
be drawn; the entries in a background dictionary are shown in Table 9.41. Cur-
rently, only a single opaque color is supported, where the color must be defined in
the DeviceRGB color space. 3D artwork may include transparent objects; howev-
er, there is no interaction between such objects and objects drawn below the an-
notation. In effect, the 3D artwork and its background form a transparency group
whose flattened results have an opacity of 1 (see Chapter 7, “Transparency”).

Note: An annotation’s normal appearance should have the same behavior with re-
spect to transparency when the appearance is intended to depict the 3D artwork.
This recommendation does not necessarily apply when the appearance is used for
another purpose, such as a compatibility warning message.

TABLE 9.41 Entries in a 3D background dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
3DBG for a 3D background dictionary.

Subtype name (Optional) The type of background. The only valid value is SC (solid color), which
indicates a single opaque color. Default value: SC.

CS name or
array

(Optional) The color space of the background. The only valid value is the name De-
viceRGB. Default value: DeviceRGB.

Note: PDF consumers must be prepared to encounter other values that may be sup-
ported in future versions of PDF.

New Planet
Discovered!

The Daily News

3D ArtworkSECTION 9.5
813

3D Render Mode Dictionaries

A 3D render mode dictionary (PDF 1.7) specifies the style in which the 3D art-
work is rendered. For example, surfaces may be filled with opaque colors, they
may be stroked as a "wireframe", or the artwork may be rendered with special
lighting effects.

A render mode dictionary enables document authors to customize the rendered
appearance of 3D artwork to suit the needs of the intended consumer, without re-
authoring the artwork. For consumer applications concerned strictly with geome-
try, complex artwork rendered using the Wireframe or Points style will have much
better performance without the added overhead of texturing and lighting effects.
Artwork in a document intended for print could have a much more integrated
feel when using the Illustration render mode style.

The RM entry in the 3D views dictionary can specify a 3D render mode dictio-
nary.

Table 9.42 shows the entries in a render mode dictionary.

TABLE 9.42 Entries in a render mode dictionary

C (various) (Optional) The color of the background, in the color space defined by CS. Default
value: an array [1 1 1] representing the color white when the value of CS is
DeviceRGB.

EA boolean (Optional) If true, the background should apply to the entire annotation; if false, the
background should apply only to the rectangle specified by the annotation’s 3D view
box (the 3DB entry in Table 9.33). Default value: false.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be 3DRenderMode.

Subtype name (Required) The type of render mode described by this dictionary;
see Table 9.43 on page 815 for specific values. If an unrecognized
value is encountered, then this render mode dictionary is ignored.

KEY TYPE VALUE

Multimedia FeaturesCHAPTER 9
814

AC array (Optional) An array that specifies the auxiliary color to be used
when rendering the 3D image. The first entry in the array is a color
space; the subsequent entries are values specifying color values in
that color space. The interpretation of this entry depends on the
render mode specified by the Subtype entry, but it is often used to
specify a color for drawing points or edges.

The only valid color space is DeviceRGB. If a color space other
than DeviceRGB is specified, this entry is ignored and the default
value is used.

Default value: [/DeviceRGB 0 0 0] representing the color black.

FC name or
array

(Optional) A name or array that specifies the face color to be used
when rendering the 3D image. This entry is relevant only when
Subtype has a value of Illustration.

If the value of FC is an array, the first entry in the array is a color
space and the subsequent entries are values specifying values in that
color space. The only valid color space is DeviceRGB. Any color
space other than DeviceRGB is ignored and the default value is
used.

If the value of FC is a name, it should describe a color. The only val-
id name value is BG, specifying the current background color in use
for displaying the artwork. If a name other than BG is encountered,
this entry is ignored and the background color for the host annota-
tion is used (see Table 8.40 on page 642).

Default value: BG

O number (Optional) A number specifying the opacity of the added transpar-
ency applied by some render modes, using a standard additive
blend.

Default value: 0.5

CV number (Optional) A number specifying the angle, in degrees, to be used as
the crease value to be used when determining silhouette edges. If
two front-facing faces share an edge and the angle between the nor-
mals of those faces is greater than or equal to the crease value, then
that shared edge is considered to be a silhouette edge.

Default value: 45

KEY TYPE VALUE

3D ArtworkSECTION 9.5
815

For render modes that add a level of transparency to the rendering, the O entry
specifies the additional opacity to be used. All such transparency effects use a
standard additive blend mode.

The CV entry sets the crease value that is used when determining silhouette edg-
es, which can be used to adjust the appearance of illustrated render modes. An
edge shared by two faces is considered a silhouette edge if either of the following
conditions are met:

• One face is front-facing and the other is back-facing.

• The angle between the two faces is greater than or equal to the crease value.

Table 9.43 describes the render modes that can be specified in a render mode dic-
tionary.

TABLE 9.43 Render modes

MODE DESCRIPTION

Solid Displays textured and lit geometric shapes. In the case of artwork that
conforms to the Universal 3D File Format specification, these shapes
are triangles. The AC entry is ignored.

SolidWireframe Displays textured and lit geometric shapes (triangles) with single color
edges on top of them. The color of these edges is determined by the AC
entry.

Transparent Displays textured and lit geometric shapes (triangles) with an added
level of transparency. The AC entry is ignored.

TransparentWireframe Displays textured and lit geometric shapes (triangles) with an added
level of transparency, with single color opaque edges on top of it. The
color of these edges is determined by the AC entry.

BoundingBox Displays the bounding box edges of each node, aligned with the axes of
the local coordinate space for that node. The color of the bounding
box edges is determined by the AC entry.

TransparentBoundingBox Displays bounding boxes faces of each node, aligned with the axes of
the local coordinate space for that node, with an added level of
transparency. The color of the bounding box faces is determined by
the FC entry.

Multimedia FeaturesCHAPTER 9
816

Note: If a render mode type is encountered other than those described in Table 9.43,
the render mode dictionary containing that entry must be ignored by its consumers.
This allows future documents using new render modes to behave consistently with
future documents using new 3D view constructs that are ignored by older viewers.

TransparentBoundingBoxOutline Displays bounding boxes edges and faces of each node, aligned with
the axes of the local coordinate space for that node, with an added level
of transparency. The color of the bounding box edges is determined by
the AC entry. The color of the bounding boxes faces is determined by
the FC entry.

Wireframe Displays only edges in a single color. The color of these edges is
determined by the AC entry.

ShadedWireframe Displays only edges, though interpolates their color between their two
vertices and applies lighting. The AC entry is ignored.

HiddenWireframe Displays edges in a single color, though removes back-facing and
obscured edges. The color of these edges is determined by the AC
entry.

Vertices Displays only vertices in a single color. The color of these points is
determined by the AC entry.

ShadedVertices Displays only vertices, though uses their vertex color and applies
lighting. The AC entry is ignored.

Illustration Displays silhouette edges with surfaces, removes obscured lines. The
color of these edges is determined by the AC entry, and the color of the
surfaces is determined by the FC entry.

SolidOutline Displays silhouette edges with lit and textured surfaces, removes
obscured lines. The color of these edges is determined by the AC entry.

ShadedIllustration Displays silhouette edges with lit and textured surfaces and an
additional emissive term to remove poorly lit areas of the artwork. The
color of these edges is determined by the AC entry.

MODE DESCRIPTION

3D ArtworkSECTION 9.5
817

3D Lighting Scheme Dictionaries

A 3D lighting scheme dictionary (PDF 1.7) specifies the lighting to apply to 3D
artwork. The LS entry in the 3D view can include a 3D lighting scheme dictio-
nary.

Table 9.36 shows the entries in a 3D lighting scheme dictionary.

TABLE 9.44 Entries in a 3D lighting scheme dictionary

Table 9.45 describes the supported lighting schemes. With the exception of the
Artwork lighting style, all the lights specified below are infinite lights (also known
as distant lights). Unlike lights from a point source, all rays from an infinite light
source are emitted along a single direction vector. For lights specifying an ambi-
ent term, this term is added to the diffuse color of an object’s material. All colors
are specified in the DeviceRGB color space.

When a style other than Artwork is used, only those lights described should be
present; any lighting described in the artwork should not be used.

TABLE 9.45 3D lighting scheme styles

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be 3DLightingScheme.

Subtype name (Required) The style of lighting scheme described by this dictionary
(see Table 9.45).

SCHEME DESCRIPTION

Artwork Lights as specified in the 3D artwork. This has the same effect as if the
3D lighting scheme dictionary were omitted.

None No lights are used. That is, lighting specified in the 3D artwork is
ignored.

White Three blue-grey infinite lights, no ambient term
Light 1 Color: < 0.38, 0.38, 0.45 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Color: < 0.6, 0.6, 0.67 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < 0.5, 0.5, 0.57 > Direction: < -0.5, 0.0, 2.0 >

Multimedia FeaturesCHAPTER 9
818

Day Three light-grey infinite lights, no ambient term
Light 1 Color: < 0.5, 0.5, 0.5 > Direction: < -2.0, -1.5, -.5 >
Light 2 Color: < 0.8, 0.8, 0.9 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < 0.9, 0.9, 0.9 > Direction: < 0.02, 0.01, 2.0 >

Night One yellow, one aqua, and one blue infinite light, no ambient term
Light 1 Color: < 1, .75, .39 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Color: < 0.31, 0.47, 0.55 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < .5, .5, 1.0 > Direction: < 0.0, 0.0, 2.0 >

Hard Three grey infinite lights, moderate ambient term
Light Color: < 0.5, 0.5, 0.5 > Direction: < -1.5, -1.5, -1.5 >
Light 2 Color: < 0.8, 0.8, 0.9 > Direction: < 1.5, 1.5, -1.5 >
Light 3 Color: < 0.9, 0.9, 0.9 > Direction: < -0.5, 0, 2.0 >
Ambient Color: < 0.5, 0.5, 0.5 >

Primary One red, one green, and one blue infinite light, no ambient term
Light 1 Color: < 1, 0.2, 0.5 > Direction: < -2, -1.5, -0.5 >
Light 2 Color: < 0.2, 1.0, 0.5 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < 0, 0, 1 > Direction: < 0.0, 0.0, 2.0 >

Blue Three blue infinite lights, no ambient term
Light 1 Color: < 0.4, 0.4, 0.7 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Color: < 0.75, 0.75, 0.95 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < 0.7, 0.7, 0.95 > Direction: < 0.0, 0.0, 2.0 >

Red Three red infinite lights, no ambient term
Light 1 Color: < 0.8, 0.3, 0.4 > Direction: < -2.0, -1.5, -0.5 >
Light 2 Color: < 0.95, 0.5, 0.7 > Direction: < 2.0, 1.1, -2.5 >
Light 3 Color: < 0.95, 0.4, 0.5 > Direction: < 0.0, 0.0, 2.0 >

Cube Six grey infinite lights aligned with the major axes, no ambient term
Light 1 Color: < .4, .4, .4 > Direction: < 1.0, 0.01, 0.01 >
Light 2 Color: < .4, .4, .4 > Direction: < 0.01, 1.0, 0.01 >
Light 3 Color: < .4, .4, .4 > Direction: < 0.01, 0.01, 1.0 >
Light 4 Color: < .4, .4, .4 > Direction: < -1.0, 0.01, 0.01 >
Light 5 Color: < .4, .4, .4 > Direction: < 0.01, -1.0, 0.01 >
Light 6 Color: < .4, .4, .4 > Direction: < 0.01, 0.01, -1.0 >

SCHEME DESCRIPTION

3D ArtworkSECTION 9.5
819

Note: If a lighting scheme style is encountered other than those described in Table
9.45, the lighting scheme dictionary containing that entry should be ignored. This
allows future documents using new lighting schemes to behave consistently with fu-
ture documents using new 3D view constructs. That is, the expected behavior is for
the viewer application to ignore unrecognized lighting styles and 3D view con-
structs.

3D Cross Section Dictionaries

A 3D cross section dictionary (PDF 1.7) specifies how a portion of the 3D artwork
is clipped for the purpose of showing artwork cross sections. The SA entry of a
3D view can specify multiple 3D cross section dictionaries.

Cross sections enable viewer applications to display otherwise hidden parts of the
artwork. They also allow users to comment on cross sections, using markup an-
notations. For example, markup annotations can be used apply markup annota-
tions to a cross section or to measure distances in a cross section. If multiple cross
sections are specified for a view, the markup annotations in the view apply to all
cross sections in the view.

Table 9.46 shows the entries in a 3D cross section dictionary.

TABLE 9.46 Entries in a 3D cross section dictionary

CAD Three grey infinite lights and one light attached to the camera, no
ambient term

Light 1 Color: < 0.72, 0.72, 0.81 > Direction: < 0.0, 0.0, 0.0 >
Light 2 Color: < 0.2, 0.2, 0.2 > Direction: < -2.0, -1.5, -0.5 >
Light 3 Color: < 0.32, 0.32, 0.32 > Direction: < 2.0, 1.1, -2.5 >
Light 4 Color: < 0.36, 0.36, 0.36 > Direction: < 0.04, 0.01, 2.0 >

Headlamp Single infinite light attached to the camera, low ambient term
Light 1 Color: < 0.8, 0.8, 0.9 > Direction: < 0.0, 0.0, 0.0 >
Ambient Color: < 0.1, 0.1, 0.1 >

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
3DCrossSection for a 3D cross section dictionary.

SCHEME DESCRIPTION

Multimedia FeaturesCHAPTER 9
820

C array (Optional) A three element array specifying the center of rotation on the cutting plane
in world space coordinates (see Section 9.5.4, “Coordinate Systems for 3D).

Default value: [0 0 0] specifying a cutting plane rotating about the origin of the world
space.

O array (Required) A three-element array specifying the orientation of the cutting plane in
world space, where each value represents the orientation in relation to the X, Y, and Z
axes, respectively (see Section 9.5.4, “Coordinate Systems for 3D). Exactly one of the
values must be null, indicating an initial state of the cutting plane that is perpendicular
to the corresponding axis and clipping all geometry on the positive side of that axis.
The other two values must be numbers indicating the rotation of the plane, in degrees,
around their corresponding axes. The order in which these rotations are applied
should match the order in which the values appear in the array.

Default value: [null 0 0] specifying a cutting plane that is perpendicular to the X axis
and coplanar with the Y and Z axes.

PO number (Optional) A number in the range [0, 1] indicating the opacity of the cutting plane us-
ing a standard additive blend mode.

Default value: 0.5

PC array (Optional) An array that specifies the color for the cutting plane. The first entry in the
array is a color space, and the remaining entries are values in that color space. The
only valid color space is DeviceRGB. If a color space other than DeviceRGB is specified,
this entry is ignored and the default value is used.

Default value: [/DeviceRGB 1 1 1] representing the color white.

IV boolean (Optional) A flag indicating the visibility of the intersection of the cutting plane with
any 3D geometry. If true, then the intersection is visible. If false, then the intersection
is not visible.

Default value: false

IC array (Optional) An array that specifies the color for the cutting plane’s intersection with the
3D artwork. The first entry in the array is a color space, and the remaining entries are
values in that color space. The only valid color space is DeviceRGB. If a color space
other than DeviceRGB is specified, this entry is ignored and the default value is used.
This entry is meaningful only if IV is true.

Default value: [/DeviceRGB 0 1 0] representing the color green.

KEY TYPE VALUE

3D ArtworkSECTION 9.5
821

The C entry specifies the center of the cutting plane. This implies that the plane
passes through the center point, but it is also the point of reference when deter-
mining the orientation of the plane.

The O array indicates the orientation of the cutting plane, taking into account its
center. The orientation can be determined by a two-step process:

• The plane is situated such that it passes through point C, and oriented such that
it is perpendicular to the axis specified by the array entry whose value is null.

• For each of the other two axes, the plane is rotated the specified number of de-
grees around the associated axis, while maintaining C as a fixed point on the
plane. Since the two axes are perpendicular, the order in which the rotations are
performed is irrelevant.

The PO entry specifies the opacity of the plane itself when rendered, while the PC
entry provides its color. When the PO entry is greater than 0, a visual representa-
tion of the cutting plane is rendered with the 3D artwork. This representation is a
square with a side length equal to the length of the diagonal of the maximum
bounding box for the 3D artwork, taking into account any keyframe animations
present. When the PO entry is 0, no visible representation of the cutting plane is
rendered.

The IV entry is a boolean value that determines whether a visual indication is
drawn of the plane’s intersection with the 3D artwork. If such an indication is
drawn, the IC entry specifies its color.

The Example 9.3 describes a set of views and corresponding cross sections that il-
lustrate the various effects of orientation.

Example 9.3
3 0 obj %CrossSection1

<<
/Type /3DCrossSection
/C [0 0 0]
/O [null 0 0]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

Multimedia FeaturesCHAPTER 9
822

4 0 obj %CrossSection2
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null -30 0]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

5 0 obj %CrossSection3
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null 0 30]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

6 0 obj %CrossSection4
<<

/Type /3DCrossSection
/C [0 0 0]
/O [null -30 30]
/PO 0.35
/PC [/DeviceRGB 0.75 0.86 1]
/IV true
/IC [/DeviceRGB 0 1 0]

>>
endobj

7 0 obj %View0
<<

/Type /3DView
/XN (NoCrossSection)
/SA []
...

3D ArtworkSECTION 9.5
823

>>
endobj

8 0 obj %View1
<<

/Type /3DView
/XN (CrossSection1)
/SA [3 0 R]
...

>>
endobj

9 0 obj %View2
<<

/Type /3DView
/XN (CrossSection2)
/SA [4 0 R]
...

>>
endobj

10 0 obj %View3
<<

/Type /3DView
/XN (CrossSection3)
/SA [5 0 R]
...

>>
endobj

11 0 obj %View4
<<

/Type /3DView
/XN (CrossSection4)
/SA [6 0 R]
...

>>
endobj

Multimedia FeaturesCHAPTER 9
824

The following illustrations show the views described in Example 9.3, some of
which include cross sections.

FIGURE 9.9 Rendering of the 3D artwork using View0 (no cross section)

Figure 9.9 through Figure 9.13 use world coordinates whose origin is the center
of the cube. The axes illustrated in each diagram show the relative orientation of
the world coordinate axes, not the actual position of those axes. These axes are
not part of the 3D artwork used in this example.

3D ArtworkSECTION 9.5
825

FIGURE 9.10 Rendering of the 3D artwork using View1 (cross section perpendicular to the x axis)

Figure 9.10 shows the cross section specified for the 3DView that references
CrossSection1. The illustration shows the edges of the cutting plane ending at the
edges of the annotation’s rectangle. This cross section specifies a plane with the
following characteristics:

• Includes the world art origin: /C [0 0 0]

• Perpendicular to the X axis and parallel to the Y and Z axes: /O [null 0 0]

• Opacity of the cutting plane is 35%: /PO 0.35

• Color of the cutting plane is light blue: /PC [/DeviceRGB 0.75 0.86 1]

• Intersection of the cutting plane with the object is visible: /IV true

• Color of the intersection of the cutting plane and the object is green:
/IC [/DeviceRGB 0 1 0]

Multimedia FeaturesCHAPTER 9
826

FIGURE 9.11 Rendering of the 3D artwork using View2 (cross section rotated around the y axis by -30 degrees)

Figure 9.11 shows the cross section specified for the 3DView that references
CrossSection2. This cross section specifies a plane that differs from the one speci-
fied in CrossSection1 (Figure 9.10) in the following way:

• Perpendicular to the X axis, rotated -30 degrees around the Y axis, and parallel
to the Z axis: /O [null -30 0]

3D ArtworkSECTION 9.5
827

FIGURE 9.12 Rendering of the 3D artwork using View3 (cross section rotated around the z axis by 30 degrees)

Figure 9.12 shows the cross section specified for the 3DView that references
CrossSection3. This cross section specifies a plane that differs from the one speci-
fied in CrossSection1 (Figure 9.10) in the following way:

• Perpendicular to the X axis, parallel to the Y axis, and rotated 30 degrees
around the Z axis: /O [null 0 30]

Multimedia FeaturesCHAPTER 9
828

FIGURE 9.13 Rendering of the 3D artwork using View4 (cross section rotated around the y axis by -30 degrees and
around the z axis by 30 degrees)

Figure 9.13 shows the cross section specified for the 3DView that references
CrossSection4. This cross section specifies a plane that differs from the one speci-
fied in CrossSection1 (Figure 9.10) in the following way:

• Perpendicular to the X axis, rotated -30 degrees around the Y axis, and rotated
30 degrees around the Z axis: /O [null -30 30]

3D Node Dictionaries

A 3D view can specify a 3D node dictionary (PDF 1.7), which specifies particular
areas of 3D artwork and the opacity and visibility with which individual nodes
are displayed. The 3D artwork is contained in the parent 3D stream object. The
NA entry of the 3D views dictionary can specify multiple 3D node dictionaries for
a particular view.

While many PDF dictionaries reference 3D artwork in its entirety, it is often use-
ful to reference 3D artwork at a more granular level. This enables properties such
as visibility, opacity, and orientation to be applied to subsets of the 3D artwork.

3D ArtworkSECTION 9.5
829

For example, these controls enable underlying nodes to be revealed, by making
the overlying nodes transparent or by moving them out of the way.

Note: Do not confuse nodes with view nodes. A node is a PDF dictionary that spec-
ifies an area in 3D artwork, while a view node is a parameter in the 3D artwork
that specifies a view.

Table 9.47 shows the entries in a 3D node dictionary.

TABLE 9.47 Entries in a 3D node dictionary

The N entry specifies which node in the 3D stream corresponds to this node dic-
tionary.

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be 3DNode for a 3D node dictionary.

N text string (Required) The name of the node being described by the node dic-
tionary. If the Subtype of the corresponding 3D Stream is U3D, this
entry corresponds to the field Node block name, as described in
the Universal 3D file format specification (see Bibliography). In the
future, nodes may be described using other 3D conventions.

Note: When comparing this entry to node names for a particular con-
vention (such as Universal 3D), PDF viewer applications must trans-
late between the PDF text encoding used by PDF and the character
encoding specified in the 3D stream.

O number (Optional) A number in the range [0, 1] indicating the opacity of
the geometry supplied by this node using a standard additive blend
mode.

If this entry is absent, the viewer should use the opacity specified
for the parent node or for the 3D artwork (in ascending order).

V boolean (Optional) A flag indicating the visibility of this node. If true, then
the node is visible. If false, then the node is not visible.

If this entry is absent, the viewer should use the visibility specified
for the parent node or for the 3D artwork (in ascending order).

M array (Optional) A 12-element 3D transformation matrix that specifies
the position and orientation of this node, relative to its parent, in
world coordinates (see Section 9.5.4, “Coordinate Systems for 3D).

Multimedia FeaturesCHAPTER 9
830

The O entry describes the opacity to be used when rendering this node, and the V
entry determines whether or not the node is rendered at all. While a node with an
opacity of 0 is rendered in the same way as a non-visible node, having a separate
value for the visibility of a node allows interactive viewer applications to show/
hide partially transparent nodes, without overwriting the intended opacity of
those nodes.

The M entry specifies the node’s matrix relative to its parent, in world coordi-
nates. If an hierarchy of nodes is intended to be repositioned while still maintain-
ing its internal structure, then only the node at the root of the hierarchy needs to
be adjusted.

Example 9.4 shows a 3D view specifying an array of node parameters.

Example 9.4
3 0 obj % Default node params with all shapes visible and opaque
[<< /Type /3DNode

/N (Sphere)
/O 1
/V true
/M [...]>>

<< /Type /3DNode
/N (Cone)
/O 1
/V true >>

<< /Type /3DNode
/N (Cube)
/O 1
/V true >>

]

4 0 obj % Params with the cone hidden and the sphere semi-transparent
[<< /Type /3DNode

/N (Sphere)
/O 0.5
/V true >>

<< /Type /3DNode
/N (Cone)
/O 1
/V false >>

<< /Type /3DNode
/N (Cube)

3D ArtworkSECTION 9.5
831

/O 1
/V true >>

]
endobj

5 0 obj %View1, using the default set of node params
<<

/Type /3DView
/XN (View1)
/NA 3 0 R
...

>>
endobj

6 0 obj %View2, using the alternate set of node params
<<

/Type /3DView
/XN (View2)
/NA 4 0 R
...

>>
endobj

FIGURE 9.14 Rendering of the 3D artwork using View1 (all shapes visible and opaque)

Multimedia FeaturesCHAPTER 9
832

Figure 9.14 shows a view whose node array includes three nodes, all of which are
rendered with the appearance opaque (/O 1) and visible (/V true).

FIGURE 9.15 Rendering of the 3D artwork using View2 (the cone is hidden and the sphere is semi-transparent)

Figure 9.15 shows a view with a node array that specifies the same three nodes
used in Figure 9.14. These nodes have the following display characteristics:

• The node named Sphere is partially transparent (/O 0.5) and visible (/V true)

• The node named Cone is opaque (/O 1) and invisible (/V false)

• The node named Cube is opaque (/O 1) and visible (/V true)

9.5.4 Coordinate Systems for 3D

3D artwork is a collection of objects whose positions and geometry are specified
using three-dimensional coordinates. Section 4.2, “Coordinate Systems,” discuss-
es the concepts of two-dimensional coordinate systems, their geometry and
transformations. This section extends those concepts to include the third dimen-
sion.

3D ArtworkSECTION 9.5
833

As described in Section 4.2, positions are defined in terms of pairs of x and y co-
ordinates on the Cartesian plane. The origin of the plane specifies the location (0,
0); x values increase to the right and y values increase upward. For three-dimen-
sional graphics, a third axis, the z axis, is required. The origin is therefore at (0, 0,
0); positive z values increase going into the page.

In two-dimensional graphics, the transformation matrix transforms the position,
size, and orientation of objects in a plane. It is a 3-by-3 matrix, where only six of
the elements can be changed; therefore, the matrix is expressed in PDF as an ar-
ray of six numbers:

In 3D graphics, a 4-by-4 matrix is used to transform the position, size, and orien-
tations of objects in a three-dimensional coordinate system. Only the first three
columns of the matrix can be changed; therefore, the matrix is expressed in PDF
as an array of 12 numbers:

3D coordinate transformations are expressed as matrix transformations:

Carrying out the multiplication has the following results:

Position and orientation of 3D artwork typically involves translation (movement)
and rotation along any axis. The virtual camera represents the view of the art-

a b 0
c d 0

tx ty 1
a b c d tx ty=

a b c 0
d e f 0
g h i 0
tx ty tz 1

a b c d e f g h i tx ty tz=

x' y' z' 1 x y z 1

a b c 0
d e f 0
g h i 0
tx ty tz 1

×=

x' a x d y g z tx+×+×+×=
y' b x e y h z ty+×+×+×=
z' c x f y i z tz+×+×+×=

Multimedia FeaturesCHAPTER 9
834

work. The relationship between camera and artwork can be thought of in two
ways:

• The 3D artwork is in a fixed position and orientation, and the camera moves to
different positions and orientations.

• The camera is in a fixed location, and the 3D artwork is translated and rotated.

Both approaches can achieve the same visual effects; in practice, 3D systems typi-
cally use a combination of both. Conceptually, there are three distinct coordinate
systems:

• The artwork coordinate system.

• The camera coordinate system, in which the camera is positioned at (0, 0, 0) fac-
ing out along the positive z axis, with the positive x axis to the right and the
positive y axis going straight up.

• An intermediate system called the world coordinate system.

Two 3D transformation matrices are used in coordinate conversions:

• The artwork-to-world matrix specifies the position and orientation of the art-
work in the world coordinate system. This matrix is contained in the 3D
stream.

• The camera-to-world matrix specifies the position and orientation of the cam-
era in the world coordinate system. This matrix is specified by either the C2W
or U3DPath entries of the 3D view dictionary.

When drawing 3D artwork in a 3D annotation’s target coordinate system, the fol-
lowing transformations take place:

1. Artwork coordinates are transformed to world coordinates:

2. World coordinates are transformed to camera coordinates:

xw yw zw 1 xa ya za 1 aw×=

xc yc zc 1 xw yw zw 1 cw 1–()×=

3D ArtworkSECTION 9.5
835

The first two steps can be expressed as a single equation, as follows:

3. Finally, the camera coordinates are projected into two dimensions, eliminating
the z coordinate, then scaled and positioned within the annotation’s target co-
ordinate system.

9.5.5 3D Markup

Beginning with PDF 1.7, users can comment on specific views of 3D artwork by
using markup annotations (see “Markup Annotations” on page 616). Markup an-
notations (as other annotations) are normally associated with a location on a
page. To associate the markup with a specific view of a 3D annotation, the anno-
tation dictionary for the markup annotation contains an ExData entry (see Table
8.21 on page 618) that specifies the 3D annotation and view. Table 9.48 describes
the entries in an external data dictionary used to markup 3D annotations.

TABLE 9.48 Entries in an external data dictionary used to markup 3D annotations

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; if present, must be
ExData for an external data dictionary.

Subtype name (Required) The type of external data that this dictionary describes; must be
Markup3D for a 3D comment. In PDF 1.7, the only defined value is Markup3D.

3DA dictionary
or text
string

(Required) The 3D annotation to which this markup annotation applies. The 3D
annotation may be specified as a child dictionary or as the name of a 3D annota-
tion, as specified by its NM entry. In the latter case, the 3D annotation and the
markup annotation must be on the same page of the document.

3DV dictionary (Required) The 3D view that this markup annotation is associated with. The anno-
tation will be hidden unless this view is currently being used for the 3D annotation
specified by 3DA.

MD5 byte string (Optional) A 16-byte string that contains the checksum of the bytes of the 3D
stream data that this 3D comment is associated with. The checksum is calculated
by applying the standard MD5 message-digest algorithm (described in Internet
RFC 1321, The MD5 Message-Digest Algorithm; see the Bibliography) to the bytes
of the stream data. This value is used to determine if artwork data has changed
since this 3D comment was created.

xc yc zc 1 xa ya za 1 aw cw 1–×()×=

Multimedia FeaturesCHAPTER 9
836

In a Markup3D ExData dictionary, the 3DA entry identifies the 3D annotation to
which the markup is associated. Even though the markup annotation exists
alongside the associated annotation in the page’s Annots array, the markup can be
thought of as a child of the 3DA annotation.

The 3DV entry specifies the markup’s associated 3D view. The markup will only
be printed and displayed when the specified view is the current view of its parent
3D annotation. This ensures that the proper context is preserved when the mark-
up is displayed. Note that an equivalent view is not sufficient; if more than one
markup specify equivalent views represented by different objects, the markups
will not display simultaneously.

The MD5 entry gives viewer applications a means to detect whether or not the 3D
stream of the 3D annotation specified by 3DA has changed. If the 3D stream has
changed, the context provided by the 3DV entry may no longer apply, and the
markup may no longer be useful. Any action taken as a response to such a situa-
tion is dependent on the viewer application, but it is recommended that a warn-
ing be issued to the user.

Example 9.5 shows how markup annotations can be associated with particular
views.

Example 9.5
2 0 obj % 3D stream data with two named views

<<
/Type /3D
/Subtype /U3D
/VA [4 0 R 5 0 R]
...

>>
stream

...
endstream
endobj

3 0 obj % 3D annotation
<<

/Type /Annot
/Subtype /3D
/3DD 2 0 R
...

>>

3D ArtworkSECTION 9.5
837

endobj

4 0 obj % CommentView1
<<

/Type /3DView
/XN (CommentView1)
...

>>
endobj

5 0 obj % CommentView2
<<

/Type /3DView
/XN (CommentView2)
...

>>
endobj

6 0 obj % Cloud comment with no ExData
<<

/Type /Annot
/Subtype /Polygon
/IT /PolygonCloud
...

>>
endobj

7 0 obj % Callout comment on CommentView1
<<

/Type /Annot
/Subtype /FreeText
/IT /FreeTextCallout
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 4 0 R

>>
...

>>
endobj

Multimedia FeaturesCHAPTER 9
838

8 0 obj % Dimension comment on CommentView2
<<

/Type /Annot
/Subtype /Line
/IT /LineDimension
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 5 0 R

>>
...

>>
endobj

9 0 obj % Stamp comment on CommentView2
<<

/Type /Annot
/Subtype /Stamp
/ExData <<

/Type /Markup3D
/3DA 3 0 R
/3DV 5 0 R

>>
...

>>
endobj

The following illustrations show the placement of markup on annotations on dif-
ferent views of the same 3D artwork.

FIGURE 9.16 3D artwork set to its default view

3D ArtworkSECTION 9.5
839

Figure 9.16 shows the default view, which has no markup annotations.

FIGURE 9.17 3D artwork set to CommentView1

Figure 9.17 shows another view to which a markup annotation is applied.

FIGURE 9.18 3D artwork set to CommentView2

Figure 9.18 shows a view referenced by two markup annotations:

• A line annotation (/Subtype /Line) with a line dimension intent
(/IT/ LineDimension)

• A stamp annotation (/Subtype /Stamp)

Multimedia FeaturesCHAPTER 9
840

841

CHAPTER 10

10Document Interchange

The features described in this chapter do not affect the final appearance of a doc-
ument. Rather, these features enable a document to include higher-level informa-
tion that is useful for the interchange of documents among applications:

• Procedure sets (Section 10.1) that define the implementation of PDF operators

• Metadata (Section 10.2) consisting of general information about a document or
a component of a document, such as its title, author, and creation and modifi-
cation dates

• File identifiers (Section 10.3) for reliable reference from one PDF file to another

• Page-piece dictionaries (Section 10.4) allowing an application to embed private
data in a PDF document for its own use

• Marked-content operators (Section 10.5) for identifying portions of a content
stream and associating them with additional properties or externally specified
objects

• Logical structure facilities (Section 10.6) for imposing a hierarchical organiza-
tion on the content of a document

• Tagged PDF (Section 10.7), a set of conventions for using the marked content
and logical structure facilities to facilitate the extraction and reuse of a docu-
ment’s content for other purposes

• Various ways of increasing the accessibility of a document to users with disabil-
ities (Section 10.8), including the identification of the natural language in
which it is written (such as English or Spanish) for the benefit of a text-to-
speech engine

Document InterchangeCHAPTER 10
842

• The Web Capture plug-in extension (Section 10.9), which creates PDF files
from Internet-based or locally resident HTML, PDF, GIF, JPEG, and ASCII text
files

• Facilities supporting prepress production workflows (Section 10.10), such as
the specification of page boundaries and the generation of printer’s marks, color
separations, output intents, traps, and low-resolution proxies for high-resolution
images

10.1 Procedure Sets

The PDF operators used in content streams are grouped into categories of related
operators called procedure sets (see Table 10.1). Each procedure set corresponds
to a named resource containing the implementations of the operators in that pro-
cedure set. The ProcSet entry in a content stream’s resource dictionary (see Sec-
tion 3.7.2, “Resource Dictionaries”) holds an array consisting of the names of the
procedure sets used in that content stream. These procedure sets are used only
when the content stream is printed to a PostScript output device. The names
identify PostScript procedure sets that must be sent to the device to interpret the
PDF operators in the content stream. Each element of this array must be one of
the predefined names shown in Table 10.1. (See implementation note 159 in
Appendix H.)

TABLE 10.1 Predefined procedure sets

Note: Beginning with PDF 1.4, this feature is considered obsolete. For compatibility
with existing consumer applications, PDF producer applications should continue to
specify procedure sets (preferably, all of those listed in Table 10.1 unless it is known
that fewer are needed). However, consumer applications should not depend on the
correctness of this information.

NAME CATEGORY OF OPERATORS

PDF Painting and graphics state

Text Text

ImageB Grayscale images or image masks

ImageC Color images

ImageI Indexed (color-table) images

MetadataSECTION 10.2
843

10.2 Metadata

A PDF document may include general information, such as the document’s title,
author, and creation and modification dates. Such global information about the
document (as opposed to its content or structure) is called metadata and is in-
tended to assist in cataloguing and searching for documents in external databas-
es. A document’s metadata may also be added or changed by users or plug-in
extensions (see implementation note 160 in Appendix H). Beginning with PDF
1.4, metadata can also be specified for individual components of a document.

Metadata can be stored in a PDF document in either of the following ways:

• In a document information dictionary associated with the document (Section
10.2.1)

• In a metadata stream (PDF 1.4) associated with the document or a component
of the document (Section 10.2.2)

10.2.1 Document Information Dictionary

The optional Info entry in the trailer of a PDF file (see Section 3.4.4, “File Trailer”)
can hold a document information dictionary containing metadata for the docu-
ment; Table 10.2 shows its contents. Any entry whose value is not known should
be omitted from the dictionary rather than included with an empty string as its
value.

Some plug-in extensions may choose to permit searches on the contents of the
document information dictionary. To facilitate browsing and editing, all keys in
the dictionary are fully spelled out, not abbreviated. New keys should be chosen
with care so that they make sense to users.

The value associated with any key not specifically mentioned in Table 10.2 must
be a text string.

Note: Although consumer applications can store custom metadata in the document
information dictionary, it is inappropriate to store private content or structural in-
formation there. Such information should be stored in the document catalog instead
(see Section 3.6.1, “Document Catalog”).

Document InterchangeCHAPTER 10
844

TABLE 10.2 Entries in the document information dictionary

KEY TYPE VALUE

Title text string (Optional; PDF 1.1) The document’s title.

Author text string (Optional) The name of the person who created the document.

Subject text string (Optional; PDF 1.1) The subject of the document.

Keywords text string (Optional; PDF 1.1) Keywords associated with the document.

Creator text string (Optional) If the document was converted to PDF from another format, the
name of the application (for example, Adobe FrameMaker®) that created the
original document from which it was converted.

Producer text string (Optional) If the document was converted to PDF from another format, the
name of the application (for example, Acrobat Distiller) that converted it to
PDF.

CreationDate date (Optional) The date and time the document was created, in human-readable
form (see Section 3.8.3, “Dates”).

ModDate date (Required if PieceInfo is present in the document catalog; otherwise optional;
PDF 1.1) The date and time the document was most recently modified, in hu-
man-readable form (see Section 3.8.3, “Dates”).

Trapped name (Optional; PDF 1.3) A name object indicating whether the document has
been modified to include trapping information (see Section 10.10.5, “Trap-
ping Support”):

True The document has been fully trapped; no further trapping is
needed. (This is the name True, not the boolean value true.)

False The document has not yet been trapped; any desired
trapping must still be done. (This is the name False, not the
boolean value false.)

Unknown Either it is unknown whether the document has been
trapped or it has been partly but not yet fully trapped; some
additional trapping may still be needed.

Default value: Unknown.

The value of this entry may be set automatically by the software creating the
document’s trapping information, or it may be known only to a human oper-
ator and entered manually.

MetadataSECTION 10.2
845

Example 10.1 shows a typical document information dictionary.

Example 10.1

1 0 obj
<< /Title (PostScript Language Reference, Third Edition)

 /Author (Adobe Systems Incorporated)
 /Creator (Adobe FrameMaker 5 . 5 . 3 for Power Macintosh®)
 /Producer (Acrobat Distiller 3 . 01 for Power Macintosh)
 /CreationDate (D : 19970915110347 - 08 ' 00 ')
 /ModDate (D : 19990209153925 - 08 ' 00 ')

>>
endobj

10.2.2 Metadata Streams

Metadata, both for an entire document and for components within a document,
can be stored in PDF streams called metadata streams (PDF 1.4). Metadata
streams have the following advantages over the document information dictio-
nary:

• PDF-based workflows often embed metadata-bearing artwork as components
within larger documents. Metadata streams provide a standard way of pre-
serving the metadata of these components for examination downstream. PDF-
aware applications should be able to derive a list of all metadata-bearing
document components from the PDF document itself.

• PDF documents are often made available on the Web or in other environments,
where many tools routinely examine, catalog, and classify documents. These
tools should be able to understand the self-contained description of the docu-
ment even if they do not understand PDF.

Besides the usual entries common to all stream dictionaries (see Table 3.4 on
page 62), the metadata stream dictionary contains the additional entries listed in
Table 10.3.

The contents of a metadata stream is the metadata represented in Extensible
Markup Language (XML). This information is visible as plain text to tools that
are not PDF-aware only if the metadata stream is both unfiltered and unencrypt-
ed.

Document InterchangeCHAPTER 10
846

TABLE 10.3 Additional entries in a metadata stream dictionary

The format of the XML representing the metadata is defined as part of a frame-
work called the Extensible Metadata Platform (XMP) and described in the Adobe
document XMP: Extensible Metadata Platform (see the Bibliography). This
framework provides a way to use XML to represent metadata describing docu-
ments and their components and is intended to be adopted by a wider class of ap-
plications than just those that process PDF. It includes a method to embed XML
data within non-XML data files in a platform-independent format that can be
easily located and accessed by simple scanning rather than requiring the docu-
ment file to be parsed.

A metadata stream can be attached to a document through the Metadata entry in
the document catalog (see Chapter 3.6.1, “Document Catalog,” and also see
implementation note 161 in Appendix H). In addition, most PDF document
components represented as a stream or dictionary can have a Metadata entry (see
Table 10.4).

TABLE 10.4 Additional entry for components having metadata

In general, a PDF stream or dictionary can have metadata attached to it as long as
the stream or dictionary represents an actual information resource, as opposed to
serving as an implementation artifact. Some PDF constructs are considered im-
plementational, and hence cannot have associated metadata.

For the remaining PDF constructs, there is sometimes ambiguity about exactly
which stream or dictionary should bear the Metadata entry. Such cases are to be
resolved so that the metadata is attached as close as possible to the object that
actually stores the data resource described. For example, metadata describing a
tiling pattern should be attached to the pattern stream’s dictionary, but a shading
should have metadata attached to the shading dictionary rather than to the shad-

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be Metadata
for a metadata stream.

Subtype name (Required) The type of metadata stream that this dictionary describes; must be XML.

KEY TYPE VALUE

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the component.

File IdentifiersSECTION 10.3
847

ing pattern dictionary that refers to it. Similarly, metadata describing an ICCBased
color space should be attached to the ICC profile stream describing it, and meta-
data for fonts should be attached to font file streams rather than to font dictionar-
ies.

In tables describing document components in this book, the Metadata entry is
listed only for those in which it is most likely to be used. Keep in mind, however,
that this entry may appear in other components represented as streams or dictio-
naries.

In addition, metadata can also be associated with marked content within a con-
tent stream. This association is created by including an entry in the property list
dictionary whose key is Metadata and whose value is the metadata stream dictio-
nary. Because this construct refers to an object outside the content stream, the
property list must be referred to indirectly as a named resource (see Section
10.5.1, “Property Lists”).

10.3 File Identifiers

PDF files may contain references to other PDF files (see Section 3.10, “File Speci-
fications”). Simply storing a file name, however, even in a platform-independent
format, does not guarantee that the file can be found. Even if the file still exists
and its name has not been changed, different server software applications may
identify it in different ways. For example, servers running on DOS platforms must
convert all file names to 8 characters and a 3-character extension. Different serv-
ers may use different strategies for converting longer file names to this format.

External file references can be made more reliable by including a file identifier
(PDF 1.1) in the file and using it in addition to the normal platform-based file
designation. Matching the identifier in the file reference with the one in the file
confirms whether the correct file was found.

File identifiers are defined by the optional ID entry in a PDF file’s trailer dic-
tionary (see Section 3.4.4, “File Trailer”; see also implementation note 162 in
Appendix H). The value of this entry is an array of two byte strings. The first byte
string is a permanent identifier based on the contents of the file at the time it was
originally created and does not change when the file is incrementally updated.
The second byte string is a changing identifier based on the file’s contents at the
time it was last updated. When a file is first written, both identifiers are set to the

Document InterchangeCHAPTER 10
848

same value. If both identifiers match when a file reference is resolved, it is very
likely that the correct file has been found. If only the first identifier matches, a
different version of the correct file has been found.

To help ensure the uniqueness of file identifiers, it is recommend that they be
computed by means of a message digest algorithm such as MD5 (described in In-
ternet RFC 1321, The MD5 Message-Digest Algorithm; see the Bibliography), us-
ing the following information (see implementation note 163 in Appendix H):

• The current time

• A string representation of the file’s location, usually a pathname

• The size of the file in bytes

• The values of all entries in the file’s document information dictionary (see
Section 10.2.1, “Document Information Dictionary”)

10.4 Page-Piece Dictionaries

A page-piece dictionary (PDF 1.3) can be used to hold private application data.
The data can be associated with a page or form XObject by means of the optional
PieceInfo entry in the page object (see Table 3.27 on page 145) or form dictionary
(see Table 4.45 on page 358). Beginning with PDF 1.4, private data may also be
associated with the PDF document by means of the PieceInfo entry in the docu-
ment catalog (see Table 3.25 on page 139).

Applications can use this dictionary as a place to store private data in connection
with that document, page, or form. Such private data can convey information
meaningful to the application that produces it (such as information on object
grouping for a graphics editor or the layer information used by Adobe Photo-
shop®) but is typically ignored by general-purpose PDF viewer applications.

As Table 10.5 shows, a page-piece dictionary may contain any number of entries,
each keyed by the name of a distinct application or of a well-known data type rec-
ognized by a family of applications. The value associated with each key is an ap-
plication data dictionary containing the private data to be used by the application.
The Private entry may have a value of any data type, but typically it is a dictionary
containing all of the private data needed by the application other than the actual
content of the document, page, or form.

Page-Piece DictionariesSECTION 10.4
849

TABLE 10.5 Entries in a page-piece dictionary

TABLE 10.6 Entries in an application data dictionary

The LastModified entry indicates when this application last altered the content of
the page or form. If the page-piece dictionary contains several application data
dictionaries, their modification dates can be compared with those in the corre-
sponding entry of the page object or form dictionary (see Table 3.27 on page 145
and Table 4.45 on page 358), or the ModDate entry of the document information
dictionary (see Table 10.2), to ascertain which application data dictionary corre-
sponds to the current content of the page or form. Because some platforms may
use only an approximate value for the date and time or may not deal correctly
with differing time zones, modification dates are compared only for equality and
not for sequential ordering.

Note: It is possible for two or more application data dictionaries to have the same
modification date. Applications can use this capability to define multiple or extend-
ed versions of the same data format. For example, suppose that earlier versions of an
application use an application data dictionary named PictureEdit, and later ver-
sions of the same application extend the data to include additional items not previ-
ously used. The original data could continue to be kept in the PictureEdit dictionary
and the additional items placed in a new dictionary named PictureEditExtended.
This allows the earlier versions of the application to continue to work as before, and
later versions are able to locate and use the extended data items.

KEY TYPE VALUE

any application name
or well-known data type

dictionary An application data dictionary (see Table 10.6).

KEY TYPE VALUE

LastModified date (Required) The date and time when the contents of the document,
page, or form were most recently modified by this application.

Private (any) (Optional) Any private data appropriate to the application, typically
in the form of a dictionary.

Document InterchangeCHAPTER 10
850

10.5 Marked Content

Marked-content operators (PDF 1.2) identify a portion of a PDF content stream as
a marked-content element of interest to a particular application or PDF plug-in
extension. Marked-content elements and the operators that mark them fall into
two categories:

• The MP and DP operators designate a single marked-content point in the con-
tent stream.

• The BMC, BDC, and EMC operators bracket a marked-content sequence of ob-
jects within the content stream. Note that this is a sequence not simply of bytes
in the content stream but of complete graphics objects. Each object is fully
qualified by the parameters of the graphics state in which it is rendered.

A graphics application, for example, might use marked content to identify a set of
related objects as a group to be processed as a single unit. A text-processing
application might use it to maintain a connection between a footnote marker in
the body of a document and the corresponding footnote text at the bottom of the
page. The PDF logical structure facilities use marked-content sequences to asso-
ciate graphical content with structure elements (see Section 10.6.3, “Structure
Content”). Table 10.7 summarizes the marked-content operators.

All marked-content operators except EMC take a tag operand indicating the role
or significance of the marked-content element to the processing application. All
such tags must be registered with Adobe Systems (see Appendix E) to avoid con-
flicts between different applications marking the same content stream. In addi-
tion to the tag operand, the DP and BDC operators specify a property list
containing further information associated with the marked content. Property lists
are discussed further in Section 10.5.1, “Property Lists.”

Marked-content operators may appear only between graphics objects in the con-
tent stream. They may not occur within a graphics object or between a graphics
state operator and its operands. Marked-content sequences may be nested one
within another, but each sequence must be entirely contained within a single con-
tent stream; it may not cross page boundaries, for example.

Note: The Contents entry of a page object (see “Page Objects” on page 144), which
may be either a single stream or an array of streams, is considered a single stream
with respect to marked-content sequences.

Marked ContentSECTION 10.5
851

TABLE 10.7 Marked-content operators

When the marked-content operators BMC, BDC, and EMC are combined with the
text object operators BT and ET (see Section 5.3, “Text Objects”), each pair of
matching operators (BMC … EMC, BDC … EMC, or BT … ET) must be properly (sep-
arately) nested. Therefore, the sequences

BMC BT
BT BMC

… and …
ET EMC

EMC ET

are valid, but

BMC BT
BT BMC

… and …
EMC ET

BT EMC

are not valid.

OPERANDS OPERATOR DESCRIPTION

tag MP Designate a marked-content point. tag is a name object indicating the role or
significance of the point.

tag properties DP Designate a marked-content point with an associated property list. tag is a name
object indicating the role or significance of the point. properties is either an in-
line dictionary containing the property list or a name object associated with it in
the Properties subdictionary of the current resource dictionary (see Section
10.5.1, “Property Lists”).

tag BMC Begin a marked-content sequence terminated by a balancing EMC operator. tag
is a name object indicating the role or significance of the sequence.

tag properties BDC Begin a marked-content sequence with an associated property list, terminated
by a balancing EMC operator. tag is a name object indicating the role or signifi-
cance of the sequence. properties is either an inline dictionary containing the
property list or a name object associated with it in the Properties subdictionary
of the current resource dictionary (see Section 10.5.1, “Property Lists”).

— EMC End a marked-content sequence begun by a BMC or BDC operator.

Document InterchangeCHAPTER 10
852

10.5.1 Property Lists

The marked-content operators DP and BDC associate a property list with a
marked-content element within a content stream. The property list is a dictionary
containing private information meaningful to the program (application or plug-
in extension) creating the marked content. It is suggested that programs use the
dictionary entries in a consistent way; for example, the values associated with a
given key should always be of the same type (or small set of types).

If all of the values in a property list dictionary are direct objects, the dictionary
may be written inline in the content stream as a direct object. If any of the values
are indirect references to objects outside the content stream, the property list
dictionary must instead be defined as a named resource in the Properties sub-
dictionary of the current resource dictionary (see Section 3.7.2, “Resource Dic-
tionaries”) and referenced by name as the properties operand of the DP or BDC
operator.

10.5.2 Marked Content and Clipping

Some PDF path and text objects are defined purely for their effect on the current
clipping path, without the objects actually being painted on the page. This occurs
when a path object is defined using the operator sequence W n or W* n (see
Section 4.4.3, “Clipping Path Operators”) or when a text object is painted in text
rendering mode 7 (see Section 5.2.5, “Text Rendering Mode”). Such clipped,
unpainted path or text objects are called clipping objects. When a clipping object
falls within a marked-content sequence, it is not considered part of the sequence
unless the entire sequence consists only of clipping objects. In Example 10.2, for
instance, the marked-content sequence tagged Clip includes the text string
(Clip me) but not the rectangular path that defines the clipping boundary.

Example 10.2

/Clip BMC
100 100 10 10 re W n % Clipping path
(Clip me) Tj % Object to be clipped

EMC

Only when a marked-content sequence consists entirely of clipping objects are
the clipping objects considered part of the sequence. In this case, the sequence is
known as a marked clipping sequence. Such sequences may be nested. In Example

Marked ContentSECTION 10.5
853

10.3, for instance, multiple lines of text are used to clip a subsequent graphics
object (in this case, a filled path). Each line of text is bracketed within a separate
marked clipping sequence, tagged Pgf. The entire series is bracketed in turn by an
outer marked clipping sequence, tagged Clip. Note, however, that the marked-
content sequence tagged ClippedText is not a marked clipping sequence, since it
contains a filled rectangular path that is not a clipping object. The clipping
objects belonging to the Clip and Pgf sequences are therefore not considered part
of the ClippedText sequence.

Example 10.3

/ClippedText BMC
/Clip << … >>

BDC
BT

7 Tr % Begin text clip mode
/Pgf BMC

(Line 1) Tj
EMC
/Pgf BMC

(Line) '
(2) Tj

EMC
ET % Set current text clip

EMC
100 100 10 10 re f % Filled path

EMC

The precise rules governing marked clipping sequences are as follows:

• A clipping object is a path object ended by the operator sequence W n or W* n or
a text object painted in text rendering mode 7.

• An invisible graphics object is a path object ended by the operator n only (with
no preceding W or W*) or a text object painted in text rendering mode 3.

• A visible graphics object is a path object ended by any operator other than n, a
text object painted in any text rendering mode other than 3 or 7, or any
XObject invoked by the Do operator.

• An empty marked-content element is a marked-content point or a marked-
content sequence that encloses no graphics objects.

Document InterchangeCHAPTER 10
854

• A marked clipping sequence is a marked-content sequence that contains at least
one clipping object and no visible graphics objects.

• Clipping objects and marked clipping sequences are considered part of an
enclosing marked-content sequence only if it is a marked clipping sequence.

• Invisible graphics objects and empty marked-content elements are always con-
sidered part of an enclosing marked-content sequence, regardless of whether it
is a marked clipping sequence.

• The q (save) and Q (restore) operators may not occur within a marked clipping
sequence.

Example 10.4 illustrates the application of these rules. Marked-content sequence
S4 is a marked clipping sequence because it contains a clipping object (clipping
path 2) and no visible graphics objects. Clipping path 2 is therefore considered
part of sequence S4. Marked-content sequences S1, S2, and S3 are not marked
clipping sequences, since they each include at least one visible graphics object.
Thus, clipping paths 1 and 2 are not part of any of these three sequences.

Example 10.4

/S1 BMC
/S2 BMC

/S3 BMC
0 0 m
100 100 l
0 100 l W n % Clipping path 1

0 0 m
200 200 l
0 100 l f % Filled path

EMC

/S4 BMC
0 0 m
300 300 l
0 100 l W n % Clipping path 2

EMC
EMC
100 100 10 10 re f % Filled path

EMC

In Example 10.5, marked-content sequence S1 is a marked clipping sequence
because the only graphics object it contains is a clipping path. Thus, the empty

Logical StructureSECTION 10.6
855

marked-content sequence S3 and the marked-content point P1 are both part of
sequence S2, and S2, S3, and P1 are all part of sequence S1.

Example 10.5

/S1 BMC
… Clipping path …
/S2 BMC

/S3 BMC
EMC
/P1 DP

EMC
EMC

In Example 10.6, marked-content sequences S1 and S4 are marked clipping
sequences because the only object they contain is a clipping path. Hence the
clipping path is part of sequences S1 and S4; S3 is part of S2; and S2, S3, and S4 are
all part of S1.

Example 10.6

/S1 BMC
/S2 BMC

/S3 BMC
EMC

EMC

/S4 BMC
… Clipping path …

EMC
EMC

10.6 Logical Structure

PDF’s logical structure facilities (PDF 1.3) provide a mechanism for incorporating
structural information about a document’s content into a PDF file. Such in-
formation might include, for example, the organization of the document into
chapters and sections or the identification of special elements such as figures,
tables, and footnotes. The logical structure facilities are extensible, allowing
applications that produce PDF files to choose what structural information to
include and how to represent it, while enabling PDF consumers to navigate a file
without knowing the producer’s structural conventions.

Document InterchangeCHAPTER 10
856

PDF logical structure shares basic features with standard document markup
languages such as HTML, SGML, and XML. A document’s logical structure is
expressed as a hierarchy of structure elements, each represented by a dictionary
object. Like their counterparts in other markup languages, PDF structure
elements can have content and attributes. In PDF, rendered document content
takes over the role occupied by text in HTML, SGML, and XML.

A PDF document’s logical structure is stored separately from its visible content,
with pointers from each to the other. This separation allows the ordering and
nesting of logical elements to be entirely independent of the order and location of
graphics objects on the document’s pages.

The MarkInfo entry in the document catalog (see Section 3.6.1, “Document Cata-
log”) specifies a mark information dictionary, whose entries are shown in
Table 10.8. It provides additional information relevant to specialized uses of
structured PDF documents.

TABLE 10.8 Entries in the mark information dictionary

10.6.1 Structure Hierarchy

The logical structure of a document is described by a hierarchy of objects called
the structure hierarchy or structure tree. At the root of the hierarchy is a dictionary
object called the structure tree root, located by means of the StructTreeRoot entry
in the document catalog (see Section 3.6.1, “Document Catalog”). Table 10.9
shows the entries in the structure tree root dictionary. The K entry specifies the
immediate children of the structure tree root, which are structure elements.

KEY TYPE VALUE

Marked boolean (Optional) A flag indicating whether the document conforms to Tagged PDF
conventions. Default value: false.

Note: If Suspects is true, the document may not completely conform to Tagged PDF
conventions.

UserProperties boolean (Optional; PDF 1.6) A flag indicating the presence of structure elements that
contain user properties attributes (see “User Properties” on page 876). Default
value: false.

Suspects boolean (Optional; PDF 1.6) A flag indicating the presence of tag suspects (see “Page
Content Order” on page 889). Default value: false.

Logical StructureSECTION 10.6
857

Structure elements are represented by a dictionary, whose entries are shown in
Table 10.10. The K entry specifies the children of the structure element, which
can be zero or more items of the following kinds:

• Other structure elements

• References to content items, which are either marked-content sequences (see
Section 10.5, “Marked Content”) or complete PDF objects such as XObjects
and annotations. These content items represent the graphical content, if any,
associated with a structure element. Content items are discussed in detail in
Section 10.6.3, “Structure Content.”

TABLE 10.9 Entries in the structure tree root

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
StructTreeRoot for a structure tree root.

K dictionary
or array

(Optional) The immediate child or children of the structure tree root in the
structure hierarchy. The value may be either a dictionary representing a sin-
gle structure element or an array of such dictionaries.

IDTree name tree (Required if any structure elements have element identifiers) A name tree that
maps element identifiers (see Table 10.10) to the structure elements they
denote.

ParentTree number tree (Required if any structure element contains content items) A number tree
(see Section 3.8.6, “Number Trees”) used in finding the structure elements
to which content items belong. Each integer key in the number tree corre-
sponds to a single page of the document or to an individual object (such as
an annotation or an XObject) that is a content item in its own right. The in-
teger key is given as the value of the StructParent or StructParents entry in
that object (see “Finding Structure Elements from Content Items” on page
868). The form of the associated value depends on the nature of the object:

• For an object that is a content item in its own right, the value is an indi-
rect reference to the object’s parent element (the structure element that
contains it as a content item).

• For a page object or content stream containing marked-content
sequences that are content items, the value is an array of references to the
parent elements of those marked-content sequences.

See “Finding Structure Elements from Content Items” on page 868 for fur-
ther discussion.

Document InterchangeCHAPTER 10
858

TABLE 10.10 Entries in a structure element dictionary

ParentTreeNextKey integer (Optional) An integer greater than any key in the parent tree, to be used as a
key for the next entry added to the tree.

RoleMap dictionary (Optional) A dictionary that maps the names of structure types used in the
document to their approximate equivalents in the set of standard structure
types (see Section 10.7.3, “Standard Structure Types”).

ClassMap dictionary (Optional) A dictionary that maps name objects designating attribute class-
es to the corresponding attribute objects or arrays of attribute objects (see
“Attribute Classes” on page 873).

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if
present, must be StructElem for a structure element.

S name (Required) The structure type, a name object identifying the nature of the
structure element and its role within the document, such as a chapter,
paragraph, or footnote (see Section 10.6.2, “Structure Types”). Names of
structure types must conform to the guidelines described in Appendix E.

P dictionary (Required; must be an indirect reference) The structure element that is the
immediate parent of this one in the structure hierarchy.

ID byte string (Optional) The element identifier, a byte string designating this structure
element. The string must be unique among all elements in the docu-
ment’s structure hierarchy. The IDTree entry in the structure tree root
(see Table 10.9) defines the correspondence between element identifiers
and the structure elements they denote.

Pg dictionary (Optional; must be an indirect reference) A page object representing a
page on which some or all of the content items designated by the K entry
are rendered.

KEY TYPE VALUE

Logical StructureSECTION 10.6
859

K (various) (Optional) The children of this structure element. The value of this entry
may be one of the following objects or an array consisting of one or more
of the following objects:

• A structure element dictionary denoting another structure element

• An integer marked-content identifier denoting a marked-content
sequence

• A marked-content reference dictionary denoting a marked-content
sequence

• An object reference dictionary denoting a PDF object

Each of these objects other than the first (structure element dictionary)
is considered to be a content item; see Section 10.6.3, “Structure Con-
tent” for further discussion of each of these forms of representation.

Note: If the value of K is a dictionary containing no Type entry, it is as-
sumed to be a structure element dictionary.

A (various) (Optional) A single attribute object or array of attribute objects associat-
ed with this structure element. Each attribute object is either a dictio-
nary or a stream. If the value of this entry is an array, each attribute
object in the array may be followed by an integer representing its revi-
sion number (see Section 10.6.4, “Structure Attributes,” and “Attribute
Revision Numbers” on page 874).

C name or array (Optional) An attribute class name or array of class names associated
with this structure element. If the value of this entry is an array, each
class name in the array may be followed by an integer representing its re-
vision number (see “Attribute Classes” on page 873 and “Attribute Revi-
sion Numbers” on page 874).

Note: If both the A and C entries are present and a given attribute is speci-
fied by both, the one specified by the A entry takes precedence.

R integer (Optional) The current revision number of this structure element (see
“Attribute Revision Numbers” on page 874). The value must be a non-
negative integer. Default value: 0.

T text string (Optional) The title of the structure element, a text string representing it
in human-readable form. The title should characterize the specific struc-
ture element, such as Chapter 1, rather than merely a generic element
type, such as Chapter.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
860

10.6.2 Structure Types

Every structure element has a structure type, a name object that identifies the
nature of the structure element and its role within the document (such as a chap-
ter, paragraph, or footnote). To facilitate the interchange of content among PDF
applications, Adobe has defined a set of standard structure types; see Section
10.7.3, “Standard Structure Types.” Applications are not required to adopt them,
however, and may use any names for their structure types.

Where names other than the standard ones are used, a role map may be provided
in the structure tree root, mapping the structure types used in the document to
their nearest equivalents in the standard set. For example, a structure type named
Section used in the document might be mapped to the standard type Sect. The
equivalence need not be exact; the role map merely indicates an approximate
analogy between types, allowing applications other than the one creating a docu-
ment to handle its nonstandard structure elements in a reasonable way.

Note: The same structure type may occur as both a key and a value in the role map,
and circular chains of association are explicitly permitted. A single role map can
thus define a bidirectional mapping. An application using the role map should fol-

Lang text string (Optional; PDF 1.4) A language identifier specifying the natural language
for all text in the structure element except where overridden by language
specifications for nested structure elements or marked content (see Sec-
tion 10.8.1, “Natural Language Specification”). If this entry is absent, the
language (if any) specified in the document catalog applies.

Alt text string (Optional) An alternate description of the structure element and its
children in human-readable form, which is useful when extracting the
document’s contents in support of accessibility to users with disabilities
or for other purposes (see Section 10.8.2, “Alternate Descriptions”).

E text string (Optional; PDF 1.5) The expanded form of an abbreviation.

ActualText text string (Optional; PDF 1.4) Text that is an exact replacement for the structure
element and its children. This replacement text (which should apply to
as small a piece of content as possible) is useful when extracting the doc-
ument’s contents in support of accessibility to users with disabilities or
for other purposes (see Section 10.8.3, “Replacement Text”).

KEY TYPE VALUE

Logical StructureSECTION 10.6
861

low the chain of associations until it either finds a structure type it recognizes or re-
turns to one it has already encountered.

Note: In PDF versions earlier than 1.5, standard element types were never
remapped. Beginning with PDF 1.5, an element name is always mapped to its corre-
sponding name in the role map, if there is one, even if the original name is one of the
standard types. This is done to allow the element, for example, to represent a tag
with the same name as a standard role, even though its use differs from the standard
role.

10.6.3 Structure Content

Any structure element may have associated graphical content, consisting of one
or more content items. Content items are graphical objects that exist in the docu-
ment independently of the structure tree but are associated with structure ele-
ments as described in the following sections. Content items are of two kinds:

• Marked-content sequences within content streams (see “Marked-Content Se-
quences as Content Items”)

• Complete PDF objects such as annotations and XObjects (see “PDF Objects as
Content Items”)

The K entry in a structure element dictionary (see Table 10.10) specifies the chil-
dren of the structure element, which can include any number of content items, as
well as child structure elements that may in turn have content items of their own.

Conceptually, content items must be leaf nodes of the structure tree; that is, they
cannot have other content items nested within them for purposes of logical struc-
ture. The hierarchical relationship among structure elements is represented en-
tirely by the K entries of the structure element dictionaries, not by nesting of the
associated content items. Therefore, the following restrictions apply:

• A marked-content sequence delimiting a structure content item may not have
another marked-content sequence for a content item nested within it (though
non-structural marked content is allowed).

• A structure content item may not invoke (with the Do operator) an XObject
that is itself a structure content item.

Document InterchangeCHAPTER 10
862

Marked-Content Sequences as Content Items

A sequence of graphics operators in a content stream can be specified as a con-
tent item of a structure element in the following way:

• The operators must be bracketed as a marked-content sequence between BDC
and EMC operators (see Section 10.5, “Marked Content”)

Note: Although the tag associated with a marked-content sequence is not directly
related to the document’s logical structure, it should be the same as the structure
type of the associated structure element.

• The marked-content sequence must have a property list (see Section 10.5.1,
“Property Lists”) containing an MCID entry, which is an integer marked-content
identifier that uniquely identifies the marked-content sequence within its con-
tent stream, as shown in the following example:

Example 10.7

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
…
(Here is some text) Tj
…

EMC % End of marked-content sequence
…

endstream
endobj

Note: This example and the following examples omit required StructParents entries
in the objects used as content items (see “Finding Structure Elements from Content
Items” on page 868).

Logical StructureSECTION 10.6
863

A structure element dictionary can include one or more marked-content se-
quences as content items by referring to them in its K entry (see Table 10.10). This
reference can have two forms:

• A dictionary object called a marked-content reference. Table 10.11 shows the
contents of this type of dictionary, which specifies the marked-content identifi-
er, as well other information identifying the stream in which the sequence is
contained. Example 10.8 illustrates the use of a marked-content reference to the
marked-content sequence shown in Example 10.7.

• An integer that specifies the marked-content identifier. This can be done in the
common case where the marked-content sequence is contained in the content
stream of the page that is specified in the Pg entry of the structure element dic-
tionary. Example 10.9 shows a structure element that has three children: a
marked-content sequence specified by a marked-content identifier, as well as
two other structure elements.

Example 10.8

1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier

>>
>>

endobj

TABLE 10.11 Entries in a marked-content reference dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be MCR
for a marked-content reference.

Pg dictionary (Optional; must be an indirect reference) The page object representing the page
on which the graphics objects in the marked-content sequence are rendered.
This entry overrides any Pg entry in the structure element containing the
marked-content reference; it is required if the structure element has no such en-
try.

Document InterchangeCHAPTER 10
864

Example 10.9

1 0 obj % Containing structure element
<< /Type /StructElem

 /S /MixedContainer % Structure type
 /P … % Parent in structure hierarchy
 /Pg 2 0 R % Page containing marked-content sequence
 /K [4 0 R % Three children: a structure element

 0 % a marked-content identifier
 5 0 R % another structure element
]

>>
endobj

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

Stm stream (Optional; must be an indirect reference) The content stream containing the
marked-content sequence. This entry should be present only if the marked-con-
tent sequence resides in a content stream other than the content stream for the
page—for example, in a form XObject (see Section 4.9, “Form XObjects”) or an
annotation’s appearance stream (Section 8.4.4, “Appearance Streams”). If this en-
try is absent, the marked-content sequence is contained in the content stream of
the page identified by Pg (either in the marked-content reference dictionary or
in the parent structure element).

StmOwn (any) (Optional; must be an indirect reference) The PDF object owning the stream
identified by Stm—for example, the annotation to which an appearance stream
belongs.

MCID integer (Required) The marked-content identifier of the marked-content sequence with-
in its content stream.

KEY TYPE VALUE

Logical StructureSECTION 10.6
865

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
(Here is some text) Tj
…

EMC % End of marked-content sequence
…

endstream
endobj

Content streams other than page contents can also contain marked content se-
quences that are content items of structure elements. The content of form XOb-
jects can be incorporated into structure elements in one of the following ways:

• A Do operator that paints a form XObject can be part of a marked-content se-
quence that is associated with a structure element (see Example 10.10). In this
case, the entire form XObject is considered to be part of the structure element’s
content, as if it were inserted into the marked-content sequence at the point of
the Do operator. The form XObject cannot in turn contain any marked-content
sequences associated with this or other structure elements.

• The content stream of a form XObject can contain one or more marked-con-
tent sequences that are associated with structure elements (see Example 10.11).
The form XObject can have arbitrary substructure, containing any number of
marked-content sequences associated with logical structure elements. Howev-
er, any Do operator that paints the form XObject should not be part of a logical
structure content item.

Note: A form XObject that is painted with multiple invocations of the Do operator
can be incorporated into the document’s logical structure only by the first method,
with each invocation of Do individually associated with a structure element.

Document InterchangeCHAPTER 10
866

Example 10.10

1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /Pg 2 0 R % Page containing marked-content sequence
 /K 0 % Marked-content identifier

>>
endobj

2 0 obj % Page object
<< /Type /Page

 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary
>> % containing form XObject

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
/Fm4 Do % Paint form XObject

EMC % End of marked-content sequence
…

endstream
endobj

4 0 obj % Form XObject
<< /Type /XObject

 /Subtype /Form
 /Length …

>>
stream

…
(Here is some text) Tj
…

endstream
endobj

Logical StructureSECTION 10.6
867

Example 10.11

1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /Stm 4 0 R % Stream containing marked-content sequence
 /MCID 0 % Marked-content identifier

>>
>>

endobj

2 0 obj % Page object
<< /Type /Page

 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary
>> % containing form XObject

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/Fm4 Do % Paint form XObject
…

endstream
endobj

4 0 obj % Form XObject
<< /Type /XObject

 /Subtype /Form
 /Length …

>>
stream

…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
…
(Here is some text) Tj
…

Document InterchangeCHAPTER 10
868

EMC % End of marked-content sequence
…

endstream
endobj

PDF Objects as Content Items

When a structure element’s content includes an entire PDF object, such as an
XObject or an annotation, that is associated with a page but not directly included
in the page’s content stream, the object is identified in the structure element’s K
entry by an object reference dictionary (see Table 10.12). Note that this form of
reference is used only for entire objects. If the referenced content forms only part
of the object’s content stream, it is instead handled as a marked-content sequence,
as described in the preceding section.

TABLE 10.12 Entries in an object reference dictionary

Note: If the referenced object is rendered on multiple pages, each rendering requires
a separate object reference. However, if it is rendered multiple times on the same
page, just a single object reference suffices to identify all of them. (If it is important
to distinguish between multiple renditions of the same XObject on the same page,
they should be accessed by means of marked-content sequences enclosing particular
invocations of the Do operator rather than through object references.)

Finding Structure Elements from Content Items

Because a stream cannot contain object references, there is no way for content
items that are marked-content sequences to refer directly back to their parent
structure elements (the ones to which they belong as content items). Instead, a

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be OBJR for an
object reference.

Pg dictionary (Optional; must be an indirect reference) The page object representing the page on
which the object is rendered. This entry overrides any Pg entry in the structure ele-
ment containing the object reference; it is required if the structure element has no such
entry.

Obj (any) (Required; must be an indirect reference) The referenced object.

Logical StructureSECTION 10.6
869

different mechanism, the structural parent tree, is provided for this purpose. For
consistency, content items that are entire PDF objects, such as XObjects, also use
the parent tree to refer to their parent structure elements.

The parent tree is a number tree (see Section 3.8.6, “Number Trees”), accessed
from the ParentTree entry in a document’s structure tree root (Table 10.9 on page
857). The tree contains an entry for each object that is a content item of at least
one structure element and for each content stream containing at least one
marked-content sequence that is a content item. The key for each entry is an inte-
ger given as the value of the StructParent or StructParents entry in the object (see
below). The values of these entries are as follows:

• For an object identified as a content item by means of an object reference (see
“PDF Objects as Content Items” on page 868), the value is an indirect reference
to the parent structure element.

• For a content stream containing marked-content sequences that are content
items, the value is an array of indirect references to the sequences’ parent struc-
ture elements. The array element corresponding to each sequence is found by
using the sequence’s marked-content identifier as a zero-based index into the
array.

Note: Because marked-content identifiers serve as indices into an array in the struc-
tural parent tree, their assigned values should be as small as possible to conserve
space in the array.

The ParentTreeNextKey entry in the structure tree root holds an integer value
greater than any that is currently in use as a key in the structural parent tree.
Whenever a new entry is added to the parent tree, it uses the current value of
ParentTreeNextKey as its key. The value is then incremented to prepare for the
next new entry to be added.

To locate the relevant parent tree entry, each object or content stream that is rep-
resented in the tree must contain a special dictionary entry, StructParent or
StructParents (see Table 10.13). Depending on the type of content item, this entry
may appear in the page object of a page containing marked-content sequences, in
the stream dictionary of a form or image XObject, in an annotation dictionary, or
in any other type of object dictionary that is included as a content item in a struc-
ture element. Its value is the integer key under which the entry corresponding to
the object is to be found in the structural parent tree.

Document InterchangeCHAPTER 10
870

TABLE 10.13 Additional dictionary entries for structure element access

For a content item identified by an object reference, the parent structure element
can thus be found by using the value of the StructParent entry in the item’s object
dictionary as a retrieval key in the structural parent tree (found in the ParentTree
entry of the structure tree root). The corresponding value retrieved from the
parent tree is a reference to the parent structure element (see Example 10.12).

Example 10.12

1 0 obj % Parent structure element
<< /Type /StructElem

 …
 /K << /Type /OBJR % Object reference

 /Pg 2 0 R % Page containing form XObject
 /Obj 4 0 R % Reference to form XObject

 >>
>>

endobj

2 0 obj % Page object
<< /Type /Page

 /Resources << /XObject << /Fm4 4 0 R >> % Resource dictionary
>> % containing form XObject

 /Contents 3 0 R % Content stream
 …

>>
endobj

KEY TYPE VALUE

StructParent integer (Required for all objects that are structural content items; PDF 1.3) The integer
key of this object’s entry in the structural parent tree.

StructParents integer (Required for all content streams containing marked-content sequences that are
structural content items; PDF 1.3) The integer key of this object’s entry in the
structural parent tree.

Note: At most one of these two entries may be present in a given object. An object
can be either a content item in its entirety or a container for marked-content
sequences that are content items, but not both.

Logical StructureSECTION 10.6
871

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/Fm4 Do % Paint form XObject
…

endstream
endobj

4 0 obj % Form XObject
<< /Type /XObject

 /Subtype /Form
 /Length …
 /StructParent 6 % Parent tree key

>>
stream

…
endstream
endobj

100 0 obj % Parent tree (accessed from structure tree root)
<< /Nums [0 101 0 R

 1 102 0 R
 …
 6 1 0 R % Entry for page object 2; points back
 … % to parent structure element

]
>>

endobj

For a content item that is a marked-content sequence, the retrieval method is
similar but slightly more complicated. Because a marked-content sequence is not
an object in its own right, its parent tree key is found in the StructParents entry of
the page object or other content stream in which the sequence resides. The value
retrieved from the parent tree is not a reference to the parent structure element
itself but to an array of such references—one for each marked-content sequence
contained within that content stream. The parent structure element for the given
sequence is found by using the sequence’s marked-content identifier as an index
into this array (see Example 10.13).

Document InterchangeCHAPTER 10
872

Example 10.13

1 0 obj % Parent structure element
<< /Type /StructElem

 …
 /Pg 2 0 R % Page containing marked-content sequence
 /K 0 % Marked-content identifier

>>
endobj

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 /StructParents 6 % Parent tree key
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
…
/P << /MCID 0 >> % Start of marked-content sequence

BDC
(Here is some text) TJ
…

EMC % End of marked-content sequence
…

endstream
endobj

100 0 obj % Parent tree (accessed from structure tree root)
<< /Nums [0 101 0 R

 1 102 0 R
 …
 6 [1 0 R] % Entry for page object 2; array element at index 0
 … % points back to parent structure element

]
>>

endobj

Logical StructureSECTION 10.6
873

10.6.4 Structure Attributes

An application or plug-in extension that processes logical structure can attach ad-
ditional information, called attributes, to any structure element. The attribute in-
formation is held in one or more attribute objects associated with the structure
element. An attribute object is a dictionary or stream that includes an O entry
(see Table 10.14) identifying the application or plug-in that owns the attribute
information. Other entries represent the attributes: the keys are attribute names,
and values are the corresponding attribute values. To facilitate the interchange of
content among PDF applications, Adobe has defined a set of standard structure
attributes identified by specific standard owners; see Section 10.7.4, “Standard
Structure Attributes.” In addition, PDF 1.6 introduces a use of attributes to repre-
sent user properties (see “User Properties” on page 876).

TABLE 10.14 Entry common to all attribute object dictionaries

Any application can attach attributes to any structure element, even one created
by another application. Multiple applications can attach attributes to the same
structure element. The A entry in the structure element dictionary (see Table
10.10 on page 858) can hold either a single attribute object or an array of such
objects, together with revision numbers for coordinating attributes created by dif-
ferent owners (see “Attribute Revision Numbers” on page 874). An application
creating or destroying the second attribute object for a structure element is re-
sponsible for converting the value of the A entry from a single object to an array
or vice versa, as well as for maintaining the integrity of the revision numbers. No
inherent order is defined for the attribute objects in an A array, but it is consid-
ered good practice to add new objects at the end of the array so that the first ar-
ray element is the one belonging to the application that originally created the
structure element.

Attribute Classes

If many structure elements share the same set of attribute values, they can be
defined as an attribute class sharing the identical attribute object. Structure
elements refer to the class by name. The association between class names and

KEY TYPE VALUE

O name (Required) The name of the application or plug-in extension owning the attribute data.
The name must conform to the guidelines described in Appendix E.

Document InterchangeCHAPTER 10
874

attribute objects is defined by a dictionary called the class map, kept in the
ClassMap entry of the structure tree root (see Table 10.9 on page 857). Each key
in the class map is a name object denoting the name of a class. The corresponding
value is an attribute object or an array of such objects.

Note: PDF attribute classes are unrelated to the concept of a class in object-oriented
programming languages such as Java and C++. Attribute classes are strictly a mech-
anism for storing attribute information in a more compact form; they have no in-
heritance properties like those of true object-oriented classes.

The C entry in a structure element dictionary (see Table 10.10 on page 858) con-
tains a class name or an array of class names (typically accompanied by revision
numbers as well; see “Attribute Revision Numbers,” below). For each class named
in the C entry, the corresponding attribute object or objects are considered to be
attached to the given structure element, along with those identified in the
element’s A entry. If both the A and C entries are present and a given attribute is
specified by both, the one specified by the A entry takes precedence.

Attribute Revision Numbers

When an application modifies a structure element or its contents, the change may
affect the validity of attribute information attached to that structure element by
other applications. A system of revision numbers allows applications to detect
such changes and update their own attribute information accordingly, as de-
scribed in this section.

A structure element has a revision number, stored in the R entry in the structure
element dictionary (see Table 10.10 on page 858). Initially, the revision number is
0 (the default value if no R entry is present). When an application modifies the
structure element or any of its content items, it may signal the change by
incrementing the revision number.

Note: The revision number is unrelated to the generation number associated with
an indirect object (see Section 3.2.9, “Indirect Objects”).

Logical StructureSECTION 10.6
875

Each attribute object attached to a structure element may have an associated revi-
sion number. The revision number is stored in the array that associates the
attribute object with the structure element:

• Each attribute object in a structure element’s A array is represented by a pair of
array elements, the first containing the attribute object itself and the second
containing the integer revision number associated with it in this structure
element.

• The structure element’s C array contains a pair of elements for each attribute
class, the first containing the class name and the second containing the associ-
ated revision number.

The revision numbers are optional in both the A and C arrays. An attribute object
or class name that is not followed by an integer array element is understood to
have a revision number of 0.

Note: The revision number is not stored directly in the attribute object because a
single attribute object may be associated with more than one structure element
(whose revision numbers may differ).

When an attribute object is created or modified, its revision number is set to the
current value of the structure element’s R entry. By comparing the attribute ob-
ject’s revision number with that of the structure element, an application can de-
termine whether the contents of the attribute object are still current or whether
they have been outdated by more recent changes in the underlying structure ele-
ment.

Note: Changes in an attribute object do not change the revision number of the asso-
ciated structure element, which changes only when the structure element itself or
any of its content items is modified.

Occasionally, an application may make extensive changes to a structure element
that are likely to invalidate all previous attribute information associated with it. In
this case, instead of incrementing the structure element’s revision number, the ap-
plication may choose to delete all unknown attribute objects from its A and C ar-
rays. These two actions are mutually exclusive: the application should either
increment the structure element’s revision number or remove its attribute objects,
but not both. Note that any application creating attribute objects must be pre-
pared for the possibility that they may be deleted at any time by another applica-
tion.

Document InterchangeCHAPTER 10
876

User Properties

Most structure attributes (see Section 10.7.4, “Standard Structure Attributes”)
specify information that is reflected in the element’s appearance; for example,
BackgroundColor or BorderStyle. However, some PDF producers, such as CAD
applications, may use objects that have a standardized appearance, each of which
contains non-graphical information that distinguishes the objects from one an-
other. For example, several transistors might have the same appearance but dif-
ferent attributes such as type and part number.

User properties (PDF 1.6) can be used to contain such information. Any graphical
object that corresponds to a structure element may have associated user proper-
ties, specified by means of an attribute object dictionary with a value of
UserProperties for the O entry (see Table 10.15).

TABLE 10.15 Additional entries in an attribute object dictionary for user properties

The P entry is an array specifying the user properties. Each element in the array is
a user property dictionary representing an individual property (see Table 10.16).
The order of the array elements is significant, allowing producers to specify at-
tributes in order of importance.

TABLE 10.16 Entries in a user property dictionary

KEY TYPE VALUE

O name (Required) The attribute owner. Must be UserProperties.

P array (Required) An array of dictionaries, each of which represents a user property (see
Table 10.16).

KEY TYPE VALUE

N text (Required) The name of the user property.

V any (Required) The value of the user property.

Note: While the value of this entry is allowed to be any type of PDF object, PDF producers
are strongly encouraged to use only text string, number, and boolean values. PDF consumers
are not required to display values of other types to users; however, they should tolerate other
values and not treat them as errors.

F text string (Optional) A formatted representation of the value of V, used when special formatting is
required; for example “($123.45)” for the number -123.45. If this entry is absent, applica-
tions should use a default format.

Logical StructureSECTION 10.6
877

PDF documents that contain user properties must provide a UserProperties entry
with a value of true in the document’s mark information dictionary (see
Table 10.8). This entry allows consumer applications to quickly determine
whether it is necessary to search the structure tree for elements containing user
properties.

Example 10.14 shows a structure element containing user properties called Part
Name, Part Number, Supplier, and Price.

Example 10.14

100 0 obj
<< /Type /StructElem

/S /Figure % Structure type
/P 50 0 R % Parent in structure tree
/A << /O /UserProperties % Attribute object

/P [% Array of user properties
<< /N (Part Name) /V (Framostat) >>
<< /N (Part Number) /V 11603 >>
<< /N (Supplier) /V (Just Framostats) /H true >> % Hidden attribute
<< /N (Price) /V -37.99 /F ($37.99) >> % Formatted value
]

>>
>>

endobj

10.6.5 Example of Logical Structure

Example 10.15 shows portions of a PDF file with a simple document structure.
The structure tree root (object 300) contains elements with structure types Chap
(object 301) and Para (object 304). The Chap element, titled Chapter 1, contains
elements with types Head1 (object 302) and Para (object 303).

These elements are mapped to the standard structure types specified in Tagged
PDF (see Section 10.7.3, “Standard Structure Types”) by means of the role map
specified in the structure tree root. Objects 302 through 304 have attached at-
tributes (see Section 10.6.4, “Structure Attributes”and Section 10.7.4, “Standard
Structure Attributes”).

H boolean (Optional) If true, the attribute is hidden; that is, it should not be shown in any user inter-
face element that presents the attributes of an object. Default value: false.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
878

The example also illustrates the structure of a parent tree (object 400) that maps
content items back to their parent structure elements and an ID tree (object 403)
that maps element identifiers to the structure elements they denote.

Example 10.15

1 0 obj % Document catalog
<< /Type /Catalog

 /Pages 100 0 R % Page tree
 /StructTreeRoot 300 0 R % Structure tree root

>>
endobj

100 0 obj % Page tree
<< /Type /Pages

 /Kids [101 1 R % First page object
 102 0 R % Second page object
]

 /Count 2 % Page count
>>

endobj

101 1 obj % First page object
<< /Type /Page

 /Parent 100 0 R % Parent is the page tree
 /Resources << /Font << /F1 6 0 R % Font resources

 /F12 7 0 R
 >>

 /ProcSet [/PDF /Text] % Procedure sets
>>

 /MediaBox [0 0 612 792] % Media box
 /Contents 201 0 R % Content stream
 /StructParents 0 % Parent tree key

>>
endobj

201 0 obj % Content stream for first page
<< /Length … >>

stream
1 1 1 rg
0 0 612 792 re f
BT % Start of text object

Logical StructureSECTION 10.6
879

/Head1 << /MCID 0 >> % Start of marked-content sequence 0
BDC

0 0 0 rg
/F1 1 Tf
30 0 0 30 18 732 Tm
(This is a first level heading . Hello world :) Tj
1.1333 TL
T*
(goodbye universe .) Tj

EMC % End of marked-content sequence 0

/Para << /MCID 1 >> % Start of marked-content sequence 1
BDC

/F12 1 Tf
14 0 0 14 18 660.8 Tm
(This is the first paragraph, which spans pages . It has four fairly short and \

concise sentences . This is the next to last) Tj
EMC % End of marked-content sequence 1

ET % End of text object
endstream
endobj

102 0 obj % Second page object
<< /Type /Page

 /Parent 100 0 R % Parent is the page tree
 /Resources << /Font << /F1 6 0 R % Font resources

 /F12 7 0 R
 >>

 /ProcSet [/PDF /Text] % Procedure sets
>>

 /MediaBox [0 0 612 792] % Media box
 /Contents 202 0 R % Content stream
 /StructParents 1 % Parent tree key

>>
endobj

202 0 obj % Content stream for second page
<< /Length … >>

stream
1 1 1 rg
0 0 612 792 re f
BT % Start of text object

Document InterchangeCHAPTER 10
880

/Para << /MCID 0 >> % Start of marked-content sequence 0
BDC

0 0 0 rg
/F12 1 Tf
14 0 0 14 18 732 Tm
(sentence . This is the very last sentence of the first paragraph .) Tj

EMC % End of marked-content sequence 0

/Para << /MCID 1 >> % Start of marked-content sequence 1
BDC

/F12 1 Tf
14 0 0 14 18 570.8 Tm
(This is the second paragraph . It has four fairly short and concise sentences . \

This is the next to last) Tj
EMC % End of marked-content sequence 1

/Para << /MCID 2 >> % Start of marked-content sequence 2
BDC

1.1429 TL
T*
(sentence . This is the very last sentence of the second paragraph .) Tj

EMC % End of marked-content sequence 2

ET % End of text object
endstream
endobj

300 0 obj % Structure tree root
<< /Type /StructTreeRoot

 /K [301 0 R % Two children: a chapter
 304 0 R % and a paragraph
]

 /RoleMap << /Chap /Sect % Mapping to standard structure types
 /Head1 /H
 /Para /P

 >>
/ClassMap << /Normal 305 0 R >> % Class map containing one attribute class
 /ParentTree 400 0 R % Number tree for parent elements
 /ParentTreeNextKey 2 % Next key to use in parent tree
 /IDTree 403 0 R % Name tree for element identifiers

>>
endobj

Logical StructureSECTION 10.6
881

301 0 obj % Structure element for a chapter
<< /Type /StructElem

 /S /Chap
 /ID (Chap1) % Element identifier
 /T (Chapter 1) % Human-readable title
 /P 300 0 R % Parent is the structure tree root
 /K [302 0 R % Two children: a section head

 303 0 R % and a paragraph
]

>>
endobj

302 0 obj % Structure element for a section head
<< /Type /StructElem

 /S /Head1
 /ID (Sec1.1) % Element identifier
 /T (Section 1.1) % Human-readable title
 /P 301 0 R % Parent is the chapter
 /Pg 101 1 R % Page containing content items
/A << /O /Layout % Attribute owned by Layout

/SpaceAfter 25
/SpaceBefore 0
/TextIndent 12.5

>>
 /K 0 % Marked-content sequence 0

>>
endobj

303 0 obj % Structure element for a paragraph
<< /Type /StructElem

 /S /Para
 /ID (Para1) % Element identifier
 /P 301 0 R % Parent is the chapter
 /Pg 101 1 R % Page containing first content item
/C /Normal % Class containing this element’s attributes
 /K [1 % Marked-content sequence 1

<< /Type /MCR % Marked-content reference to 2nd item
/Pg 102 0 R % Page containing second item
/MCID 0 % Marked-content sequence 0

>>
]

>>
endobj

Document InterchangeCHAPTER 10
882

304 0 obj % Structure element for another paragraph
<< /Type /StructElem

 /S /Para
 /ID (Para2) % Element identifier
 /P 300 0 R % Parent is the structure tree root
 /Pg 102 0 R % Page containing content items
/C /Normal % Class containing this element’s attributes
/A << /O /Layout

/TextAlign /Justify % Overrides attribute provided by classmap
>>

 /K [1 2] % Marked-content sequences 1 and 2
>>

endobj

305 0 obj % Attribute class

<< /O /Layout % Owned by Layout
/EndIndent 0
/StartIndent 0
/WritingMode /LrTb
/TextAlign /Start

>>
endobj

400 0 obj % Parent tree
<< /Nums [0 401 0 R % Parent elements for first page

 1 402 0 R % Parent elements for second page
]

>>
endobj

401 0 obj % Array of parent elements for first page
[302 0 R % Parent of marked-content sequence 0
 303 0 R % Parent of marked-content sequence 1
]

endobj

402 0 obj % Array of parent elements for second page
[303 0 R % Parent of marked-content sequence 0
 304 0 R % Parent of marked-content sequence 1
 304 0 R % Parent of marked-content sequence 2
]

endobj

403 0 obj % ID tree root node
<< /Kids [404 0 R] >> % Reference to leaf node

endobj

Tagged PDFSECTION 10.7
883

404 0 obj % ID tree leaf node
<< /Limits [(Chap1) (Sec1.3)] % Least and greatest keys in tree

 /Names [(Chap1) 301 0 R % Mapping from element identifiers
 (Sec1.1) 302 0 R % to structure elements
 (Sec1.2) 303 0 R
 (Sec1.3) 304 0 R
]

>>
endobj

10.7 Tagged PDF

Tagged PDF (PDF 1.4) is a stylized use of PDF that builds on the logical structure
framework described in Section 10.6, “Logical Structure.” It defines a set of stan-
dard structure types and attributes that allow page content (text, graphics, and
images) to be extracted and reused for other purposes. It is intended for use by
tools that perform the following types of operations:

• Simple extraction of text and graphics for pasting into other applications

• Automatic reflow of text and associated graphics to fit a page of a different size
than was assumed for the original layout

• Processing text for such purposes as searching, indexing, and spell-checking

• Conversion to other common file formats (such as HTML, XML, and RTF)
with document structure and basic styling information preserved

• Making content accessible to users with visual impairments (see Section 10.8,
“Accessibility Support)

A tagged PDF document conforms to the following conventions:

• Page content (Section 10.7.1, “Tagged PDF and Page Content”). Tagged PDF
defines a set of rules for representing text in the page content so that characters,
words, and text order can be determined reliably. All text is represented in a
form that can be converted to Unicode. Word breaks are represented explicitly.
Actual content is distinguished from artifacts of layout and pagination. Content
is given in an order related to its appearance on the page, as determined by the
authoring application.

• A basic layout model (Section 10.7.2, “Basic Layout Model”). A set of rules for
describing the arrangement of structure elements on the page.

Document InterchangeCHAPTER 10
884

• Structure types (Section 10.7.3, “Standard Structure Types”). A set of standard
structure types define the meaning of structure elements, such as paragraphs,
headings, articles, and tables.

• Structure attributes (Section 10.7.4, “Standard Structure Attributes”). Standard
structure attributes preserve styling information used by the authoring applica-
tion in laying out content on the page.

A Tagged PDF document must also contain a mark information dictionary (see
Table 10.8) with a value of true for the Marked entry.

Note: The types and attributes defined for Tagged PDF are intended to provide a set
of standard fallback roles and minimum guaranteed attributes to enable consumer
applications to perform operations such as those mentioned above. Producer appli-
cations are free to define additional structure types as long as they also provide a
role mapping to the nearest equivalent standard types, as described in Section
10.6.2, “Structure Types.” Likewise, producer applications can define additional
structure attributes using any of the available extension mechanisms.

10.7.1 Tagged PDF and Page Content

Like all PDF documents, a Tagged PDF document consists of a sequence of self-
contained pages, each of which is described by one or more page content streams
(including any subsidiary streams such as form XObjects and annotation appear-
ances). Tagged PDF defines some further conventions for organizing and mark-
ing content streams so that additional information can be derived from them:

• Distinguishing between the author’s original content and artifacts of the layout
process (see “Real Content and Artifacts” on page 885)

• Specifying a content order to guide the layout process if the page content must
be reflowed (see “Page Content Order” on page 889)

• Representing text in a form from which a Unicode representation and informa-
tion about font characteristics can be unambiguously derived (see “Extraction
of Character Properties” on page 891)

• Representing word breaks unambiguously (see “Identifying Word Breaks” on
page 894)

• Marking text with information for making it accessible to users with visual im-
pairments (see Section 10.8, “Accessibility Support)

Tagged PDFSECTION 10.7
885

Real Content and Artifacts

The graphics objects in a document can be divided into two classes:

• The real content of a document comprises objects representing material origi-
nally introduced by the document’s author.

• Artifacts are graphics objects that are typically not part of the author’s original
content but rather are generated by the PDF producer application in the course
of pagination, layout, or other strictly mechanical processes. Artifacts may also
be used to describe areas of the document where the author uses a graphical
background, with the goal of enhancing the visual experience. In such a case,
the background is not required for understanding the content.

The document’s logical structure encompasses all graphics objects making up the
real content and describes how those objects relate to one another. It does not in-
clude graphics objects that are mere artifacts of the layout and production pro-
cess.

A document’s real content includes not only the page content stream and subsid-
iary form XObjects but also associated annotations that meet all of the following
conditions:

• The annotation has an appearance stream (see Section 8.4.4, “Appearance
Streams”) containing a normal (N) appearance.

• The annotation’s Hidden flag (see Section 8.4.2, “Annotation Flags”) is not set.

• The annotation is included in the document’s logical structure (see Section
10.6, “Logical Structure”).

Specification of Artifacts

An artifact can be explicitly distinguished from real content by enclosing it in a
marked-content sequence with the tag Artifact:

/Artifact /Artifact propertyList
BMC BDC

… or …
EMC EMC

Document InterchangeCHAPTER 10
886

The first form is used to identify a generic artifact; the second is used for those
that have an associated property list. Table 10.17 shows the properties that can be
included in such a property list.

Note: To aid in text reflow, it is recommended that artifacts be defined with proper-
ty lists whenever possible. Artifacts lacking a specified bounding box are likely to be
discarded during reflow.

TABLE 10.17 Property list entries for artifacts

The following types of artifacts can be specified by the Type entry:

• Pagination artifacts. Ancillary page features such as running heads and folios
(page numbers).

• Layout artifacts. Purely cosmetic typographical or design elements such as
footnote rules or background screens.

KEY TYPE VALUE

Type name (Optional) The type of artifact that this property list describes; if present, must
be one of the names Pagination, Layout, Page, or (PDF 1.7) Background.

BBox rectangle (Optional; required for background artifacts) An array of four numbers in default
user space units giving the coordinates of the left, bottom, right, and top edges,
respectively, of the artifact’s bounding box (the rectangle that completely enclos-
es its visible extent).

Attached array (Optional; pagination and full-page background artifacts only) An array of name
objects containing one to four of the names Top, Bottom, Left, and Right, specify-
ing the edges of the page, if any, to which the artifact is logically attached. Page
edges are defined by the page’s crop box (see Section 10.10.1, “Page Bound-
aries”). The ordering of names within the array is immaterial. Including both
Left and Right or both Top and Bottom indicates a full-width or full-height arti-
fact, respectively.

Use of this entry for background artifacts is limited to full-page artifacts. Back-
ground artifacts that are not full-page take their dimensions from their parent
structural element. An example of such a background artifact is a colored back-
ground for a sidebar.

Subtype name (Optional; PDF 1.7) The subtype of the artifact. This entry applies only when the
Type entry has a value of Pagination. Valid values are Header, Footer, and
Watermark. Additional values can be defined for this entry, provided they com-
ply with the naming conventions described in Appendix E.

Tagged PDFSECTION 10.7
887

• Page artifacts. Production aids extraneous to the document itself, such as cut
marks and color bars.

• Background artifacts. Images, patterns or colored blocks that either run the en-
tire length and/or width of the page or the entire dimensions of a structural el-
ement. Background artifacts typically serve as a background for content shown
either on top of or placed adjacent to that background.

A background artifact can further be classified as visual content that serves to en-
hance the user experience, that lies under the actual content, and that is not re-
quired except to retain visual fidelity. Examples of this include a colored
background, pattern, blend, or image that resides under main body text. In the
case of white text on a black background, the black background is absolutely nec-
essary to be able to read the white text; however, the background itself is merely
there to enhance the visual experience. However, a draft or other identifying wa-
termark is classified as a pagination artifact because it does not serve to enhance
the experience; rather, it serves as a running artifact typically used on every page
in the document. As a further example, a Figure is distinguishable from a back-
ground artifact in that removal of the graphics objects from a Figure would de-
tract from the overall contextual understanding of the Figure as an entity.

Tagged PDF consumer applications may have their own ideas about what page
content to consider relevant. A text-to-speech engine, for instance, probably
should not speak running heads or page numbers when the page is turned. In
general, consumer applications can do any of the following:

• Disregard elements of page content (for example, specific types of artifacts)
that are not of interest

• Treat some page elements as terminals that are not to be examined further (for
example, to treat an illustration as a unit for reflow purposes)

• Replace an element with alternate text (see Section 10.8.2, “Alternate Descrip-
tions”)

Depending on their goals, different consumer applications can make different de-
cisions in this regard. The purpose of Tagged PDF is not to prescribe what the
consumer application should do, but to provide sufficient declarative and de-
scriptive information to allow it to make appropriate choices about how to pro-
cess the content.

Document InterchangeCHAPTER 10
888

Note: To support consumer applications in providing accessibility to users with dis-
abilities, Tagged PDF documents should use the natural language specification
(Lang), alternate description (Alt), replacement text (ActualText), and abbreviation
expansion text (E) facilities described in Section 10.8, “Accessibility Support.”

Incidental Artifacts

In addition to objects that are explicitly marked as artifacts and excluded from
the document’s logical structure, the running text of a page may contain other el-
ements and relationships that are not logically part of the document’s real con-
tent, but merely incidental results of the process of laying out that content into a
document. They may include the following elements:

• Hyphenation. Among the artifacts introduced by text layout is the hyphen
marking the incidental division of a word at the end of a line. In Tagged PDF,
such an incidental word division must be represented by a soft hyphen charac-
ter, which the Unicode mapping algorithm (see “Unicode Mapping in Tagged
PDF” on page 892) translates to the Unicode value U+00AD. (This character is
distinct from an ordinary hard hyphen, whose Unicode value is U+002D.) The
producer of a Tagged PDF document must distinguish explicitly between soft
and hard hyphens so that the consumer does not have to guess which type a
given character represents.

Note: In some languages, the situation is more complicated: there may be multiple
hyphen characters, and hyphenation may change the spelling of words. See Exam-
ple 10.24 on page 944.

• Text discontinuities. The running text of a page, as expressed in page content
order (see “Page Content Order,” below), may contain places where the normal
progression of text suffers a discontinuity. For example, the page may contain
the beginnings of two separate articles (see Section 8.3.2, “Articles”), each of
which is continued onto a later page of the document. The last words of the
first article appearing on the page should not be run together with the first
words of the second article. Consumer applications can recognize such discon-
tinuities by examining the document’s logical structure.

• Hidden page elements. For a variety of reasons, elements of a document’s logical
content may be invisible on the page: they may be clipped, their color may
match the background, or they may be obscured by other, overlapping objects.
Consumer applications must still be able to recognize and process such hidden
elements. For example, formerly invisible elements may become visible when a

Tagged PDFSECTION 10.7
889

page is reflowed, or a text-to-speech engine may choose to speak text that is not
visible to a sighted reader. For the purposes of Tagged PDF, page content is con-
sidered to include all text and illustrations in their entirety, regardless of wheth-
er they are visible when the document is displayed or printed.

Page Content Order

When dealing with material on a page-by-page basis, some Tagged PDF consum-
er applications may wish to process elements in page content order, determined by
the sequencing of graphics objects within a page’s content stream and of charac-
ters within a text object, rather than in the logical structure order defined by a
depth-first traversal of the page’s logical structure hierarchy. The two orderings
are logically distinct and may or may not coincide. In particular, any artifacts the
page may contain are included in the page content order but not in the logical
structure order, since they are not considered part of the document’s logical
structure. The creator of a Tagged PDF document is responsible for establishing
both an appropriate page content order for each page and an appropriate logical
structure hierarchy for the entire document.

Because the primary requirement for page content order is to enable reflow to
maintain elements in proper reading sequence, it should normally (for Western
writing systems) proceed from top to bottom (and, in a multiple-column layout,
from column to column), with artifacts in their correct relative places. In general,
all parts of an article that appear on a given page should be kept together, even if
it flows to scattered locations on the page. Illustrations or footnotes may be inter-
spersed with the text of the associated article or may appear at the end of its con-
tent (or, in the case of footnotes, at the end of the entire page’s logical content).

In some situations, a producer that intends to generate Tagged PDF may be un-
able to generate correct page content order for part of a document’s contents. This
can occur, for example, if content was extracted from another application, or if
there are ambiguities or missing information in text output. In such cases, tag sus-
pects (PDF 1.6) can be used. The producer can identify suspect content by using
marked content (see Section 10.5, “Marked Content”) with a tag of TagSuspect, as
shown in Example 10.16. The marked content must have a properties dictionary
with an entry whose name is TagSuspect and whose value is Ordering, which in-
dicates that the ordering of the enclosed marked content does not meet Tagged
PDF specifications.

Document InterchangeCHAPTER 10
890

Example 10.16

/TagSuspect <</TagSuspect /Ordering>>
BDC

.... % Problem page contents
EMC

Documents containing tag suspects must contain a Suspects entry with a value of
true in the mark information dictionary (see Table 10.8). Consumer applications
encountering this entry should process the TagSuspect marked content in an
manner appropriate to their use of Tagged PDF.

Sequencing of Annotations

Annotations associated with a page are not interleaved within the page’s content
stream but are placed in the Annots array in its page object (see “Page Objects” on
page 144). Consequently, the correct position of an annotation in the page con-
tent order is not readily apparent but is determined from the document’s logical
structure.

Both page content (marked-content sequences) and annotations can be treated as
content items that are referenced from structure elements (see Section 10.6.3,
“Structure Content”). Structure elements of type Annot (PDF 1.5), Link, or Form
(see “Inline-Level Structure Elements” on page 905 and “Illustration Elements”
on page 911) explicitly specify the association between a marked-content se-
quence and a corresponding annotation. In other cases, if the structure element
corresponding to an annotation immediately precedes or follows (in the logical
structure order) a structure element corresponding to a marked-content se-
quence, the annotation is considered to precede or follow the marked-content se-
quence, respectively, in the page content order.

Note: If necessary, a Tagged PDF producer may introduce an empty marked-content
sequence solely to serve as a structure element for the purpose of positioning adja-
cent annotations in the page content order.

Reverse-Order Show Strings

In writing systems that are read from right to left (such as Arabic or Hebrew), one
might expect that the glyphs in a font would have their origins at the lower right
and their widths (rightward horizontal displacements) specified as negative. For

Tagged PDFSECTION 10.7
891

various technical and historical reasons, however, many such fonts follow the
same conventions as those designed for Western writing systems, with glyph ori-
gins at the lower left and positive widths, as shown in Figure 5.4 on page 394.
Consequently, showing text in such right-to-left writing systems requires either
positioning each glyph individually (which is tedious and costly) or representing
text with show strings (see “Organization and Use of Fonts” on page 388) whose
character codes are given in reverse order. When the latter method is used, the
character codes’ correct page content order is the reverse of their order within the
show string.

The marked-content tag ReversedChars informs the Tagged PDF consumer appli-
cation that show strings within a marked-content sequence contain characters in
the reverse of page content order. If the sequence encompasses multiple show
strings, only the individual characters within each string are reversed; the strings
themselves are in natural reading order. For example, the sequence

/ReversedChars
BMC

(olleH) Tj
−200 0 Td
(. dlrow) Tj

EMC

represents the text

Hello world .

The show strings may have a space character at the beginning or end to indicate a
word break (see “Identifying Word Breaks” on page 894) but may not contain
interior spaces. This limitation is not serious, since a space provides an opportu-
nity to realign the typography without visible effect, and it serves the valuable
purpose of limiting the scope of reversals for word-processing consumer applica-
tions.

Extraction of Character Properties

It is a requirement of Tagged PDF that character codes can be unambiguously
converted to Unicode values representing the information content of the text.
There are several methods for doing this; a Tagged PDF document must conform
to at least one of them (see “Unicode Mapping in Tagged PDF,” below).

Document InterchangeCHAPTER 10
892

In addition, Tagged PDF documents must allow some characteristics of the asso-
ciated fonts to be deduced (see “Font Characteristics” on page 892). These Uni-
code values and font characteristics can then be used for such operations as cut-
and-paste editing, searching, text-to-speech conversion, and exporting to other
applications or file formats.

Unicode Mapping in Tagged PDF

Tagged PDF requires that every character code in a document can be mapped to
a corresponding Unicode value. Unicode defines scalar values for most of the
characters used in the world’s languages and writing systems, as well as providing
a private use area for application-specific characters. Information about Unicode
can be found in the Unicode Standard, by the Unicode Consortium (see the Bib-
liography).

The methods for mapping a character code to a Unicode value are described in
Section 5.9.1, “Mapping Character Codes to Unicode Values.” Tagged PDF pro-
ducers should ensure that the PDF file contains enough information to map all
character codes to Unicode by one of the methods described there.

An Alt, ActualText, or E entry specified in a structure element dictionary or a
marked-content property list (see Sections 10.8.2, “Alternate Descriptions,”
10.8.3, “Replacement Text,” and 10.8.4, “Expansion of Abbreviations and Acro-
nyms”) may affect the character stream that some Tagged PDF consumers actual-
ly use. For example, some consumers may choose to use the Alt or ActualText
value and ignore all text and other content associated with the structure element
and its descendants.

Some uses of Tagged PDF require characters that may not be available in all fonts,
such as the soft hyphen (see “Incidental Artifacts” on page 888). Such characters
can be represented either by adding them to the font’s encoding or CMap and
using ToUnicode to map them to appropriate Unicode values, or by using an
ActualText entry in the associated structure element to provide substitute charac-
ters.

Font Characteristics

In addition to a Unicode value, each character code in a content stream has an as-
sociated set of font characteristics. These characteristics are useful when export-

Tagged PDFSECTION 10.7
893

ing text to another application or file format that has a limited repertoire of
available fonts.

Table 10.18 lists a common set of font characteristics corresponding to those used
in CSS and XSL; the W3C document Extensible Stylesheet Language (XSL) 1.0
provides more information (see the Bibliography). Each of the characteristics can
be derived from information available in the font descriptor’s Flags entry (see
Section 5.7.1, “Font Descriptor Flags”).

TABLE 10.18 Derivation of font characteristics

Note: The characteristics shown in the table apply only to character codes con-
tained in show strings within content streams. They do not exist for alternate de-
scription text (Alt), replacement text (ActualText), or abbreviation expansion text
(E).

Note: For the standard 14 Type 1 fonts, the font descriptor may be missing; the well-
known values for those fonts are used.

Tagged PDF in PDF 1.5 defines a wider set of font characteristics, which provide
information needed when converting PDF to other files formats such as RTF,
HTML, XML, and OEB, and also improve accessibility and reflow of tables.
Table 10.19 lists these font selector attributes and shows how their values are de-
rived.

Note: If the FontFamily, FontWeight and FontStretch fields are not present in the font de-
scriptor, these values are derived from the font name in an implementation-defined
manner.

CHARACTERISTIC TYPE DERIVATION

Serifed boolean The value of the Serif flag in the font descriptor’s Flags entry

Proportional boolean The complement of the FixedPitch flag in the font descriptor’s Flags entry

Italic boolean The value of the Italic flag in the font descriptor’s Flags entry

Smallcap boolean The value of the SmallCap flag in the font descriptor’s Flags entry

Document InterchangeCHAPTER 10
894

TABLE 10.19 Font Selector Attributes

Identifying Word Breaks

A document’s text stream defines not only the characters in a page’s text but also
the words. Unlike a character, the notion of a word is not precisely defined but
depends on the purpose for which the text is being processed. A reflow tool needs
to determine where it can break the running text into lines; a text-to-speech en-
gine needs to identify the words to be vocalized; spelling checkers and other ap-

ATTRIBUTE DESCRIPTION

FontFamily A string specifying the preferred font family name. Derived from the FontFamily entry
in the font descriptor (see Table 5.19 on page 456).

GenericFontFamily A general font classification, used if FontFamily is not found. The following values are
supported; with two exceptions, they can be derived from the font descriptor’s Flags en-
try:

• Serif: Chosen if the Serif flag is set and the FixedPitch and Script flags are not set

• SansSerif: Chosen if the FixedPitch, Script and Serif flags are all not set

• Cursive: Chosen if the Script flag is set and the FixedPitch flag is not set

• Monospace: Chosen if the FixedPitch flag is set

• Decorative: Cannot be derived

• Symbol: Cannot be derived

FontSize The size of the font: a positive fixed-point number specifying the height of the typeface
in points. It is derived from the a, b, c, and d fields of the current text matrix.

FontStretch The stretch value of the font. It can be derived from FontStretch in the font descriptor
(see Table 5.19 on page 456).

FontStyle The italicization value of the font. It is set to Italic if the Italic flag is set in the Flags field
of the font descriptor. Otherwise, it is set to Normal.

FontVariant The small-caps value of the font. It is set to SmallCaps if the SmallCap flag is set in the
Flags field of the font descriptor. Otherwise, it is set to Normal.

FontWeight The weight (thickness) value of the font. It can be derived from FontWeight in the font
descriptor (see Table 5.19 on page 456).

The ForceBold flag and the StemV field should not be used to set this attribute.

Tagged PDFSECTION 10.7
895

plications all have their own ideas of what constitutes a word. It is not important
for a Tagged PDF document to identify the words within the text stream accord-
ing to a single, unambiguous definition that satisfies all of these clients. What is
important is that there be enough information available for each client to make
that determination for itself.

The consumer of a Tagged PDF document finds words by sequentially examining
the Unicode character stream, perhaps augmented by replacement text specified
with ActualText (see Section 10.8.3, “Replacement Text”). The consumer does not
need to guess about word breaks based on information such as glyph positioning
on the page, font changes, or glyph sizes. The main consideration is to ensure that
the spacing characters that would be present to separate words in a pure text rep-
resentation are also present in the Tagged PDF.

Note that the identification of what constitutes a word is unrelated to how the text
happens to be grouped into show strings. The division into show strings has no
semantic significance. In particular, a space or other word-breaking character is
still needed even if a word break happens to fall at the end of a show string.

Note: Some applications may identify words by simply separating them at every
space character. Others may be slightly more sophisticated and treat punctuation
marks such as hyphens or em dashes as word separators as well. Still other applica-
tions may identify possible line-break opportunities by using an algorithm similar to
the one in Unicode Standard Annex #29, Text Boundaries, available from the Uni-
code Consortium (see the Bibliography).

10.7.2 Basic Layout Model

Tagged PDF’s standard structure types and attributes are interpreted in the con-
text of a basic layout model that describes the arrangement of structure elements
on the page. This model is designed to capture the general intent of the docu-
ment’s underlying structure and does not necessarily correspond to the one actu-
ally used for page layout by the application creating the document. (The PDF
content stream specifies the exact appearance.) The goal is to provide sufficient
information for Tagged PDF consumers to make their own layout decisions while
preserving the authoring application’s intent as closely as their own layout models
allow.

Note: The Tagged PDF layout model resembles the ones used in markup languages
such as HTML, CSS, XSL, and RTF, but does not correspond exactly to any of them.

Document InterchangeCHAPTER 10
896

The model is deliberately defined loosely to allow reasonable latitude in the interpre-
tation of structure elements and attributes when converting to other document for-
mats. Some degree of variation in the resulting layout from one format to another is
to be expected.

The basic layout model begins with the notion of a reference area. This is a rect-
angular region used by the layout application as a frame or guide in which to
place the document’s content. Some of the standard structure attributes, such as
StartIndent and EndIndent (see “Layout Attributes for BLSEs” on page 922), are
measured from the boundaries of the reference area. Reference areas are not
specified explicitly but are inferred from context. Those of interest are generally
the column area or areas in a general text layout, the outer bounding box of a
table and those of its component cells, and the bounding box of an illustration or
other floating element.

The standard structure types are divided into four main categories according to
the roles they play in page layout:

• Grouping elements (see “Grouping Elements” on page 899) group other ele-
ments into sequences or hierarchies but hold no content directly and have no
direct effect on layout.

• Block-level structure elements (BLSEs) (see “Block-Level Structure Elements” on
page 901) describe the overall layout of content on the page, proceeding in the
block-progression direction.

• Inline-level structure elements (ILSEs) (see “Inline-Level Structure Elements” on
page 905) describe the layout of content within a BLSE, proceeding in the in-
line-progression direction.

• Illustration elements (see “Illustration Elements” on page 911) are compact se-
quences of content, in page content order, that are considered to be unitary ob-
jects with respect to page layout. An illustration can be treated as either a BLSE
or an ILSE.

The meaning of the terms block-progression direction and inline-progression
direction depends on the writing system in use, as specified by the standard
attribute WritingMode (see “General Layout Attributes” on page 917). In Western
writing systems, the block direction is from top to bottom and the inline direc-
tion is from left to right. Other writing systems use different directions for laying
out content.

Tagged PDFSECTION 10.7
897

Because the progression directions can vary depending on the writing system,
edges of areas and directions on the page must be identified by terms that are
neutral with respect to the progression order rather than by familiar terms such
as up, down, left, and right. Block layout proceeds from before to after, inline
from start to end. Thus, for example, in Western writing systems, the before and
after edges of a reference area are at the top and bottom, respectively, and the
start and end edges are at the left and right. Another term, shift direction (the
direction of shift for a superscript), refers to the direction opposite that for block
progression—that is, from after to before (in Western writing systems, from bot-
tom to top).

BLSEs are stacked within a reference area in block-progression order. In general,
the first BLSE is placed against the before edge of the reference area. Subsequent
BLSEs are stacked against preceding ones, progressing toward the after edge, until
no more BLSEs fit in the reference area. If the overflowing BLSE allows itself to be
split—such as a paragraph that can be split between lines of text—a portion of it
may be included in the current reference area and the remainder carried over to a
subsequent reference area (either elsewhere on the same page or on another page
of the document). Once the amount of content that fits in a reference area is de-
termined, the placements of the individual BLSEs may be adjusted to bias the
placement toward the before edge, the middle, or the after edge of the reference
area, or the spacing within or between BLSEs may be adjusted to fill the full ex-
tent of the reference area.

Note: BLSEs may be nested, with child BLSEs stacked within a parent BLSE in the
same manner as BLSEs within a reference area. Except in a few instances noted
below (the BlockAlign and InlineAlign elements), such nesting of BLSEs does not re-
sult in the nesting of reference areas; a single reference area prevails for all levels of
nested BLSEs.

Within a BLSE, child ILSEs are packed into lines. (Direct content items—those that
are immediate children of a BLSE rather than contained within a child ILSE—are
implicitly treated as ILSEs for packing purposes.) Each line is treated as a synthe-
sized BLSE and is stacked within the parent BLSE. Lines may be intermingled
with other BLSEs within the parent area. This line-building process is analogous
to the stacking of BLSEs within a reference area, except that it proceeds in the
inline-progression rather than the block-progression direction: a line is packed
with ILSEs beginning at the start edge of the containing BLSE and continuing
until the end edge is reached and the line is full. The overflowing ILSE may allow
itself to be broken at linguistically determined or explicitly marked break points

Document InterchangeCHAPTER 10
898

(such as hyphenation points within a word), and the remaining fragment is car-
ried over to the next line.

Note: Certain values of an element’s Placement attribute remove the element from
the normal stacking or packing process and allow it instead to float to a specified
edge of the enclosing reference area or parent BLSE; see “General Layout Attributes”
on page 917 for further discussion.

Two enclosing rectangles are associated with each BLSE and ILSE (including
direct content items that are treated implicitly as ILSEs):

• The content rectangle is derived from the shape of the enclosed content and
defines the bounds used for the layout of any included child elements.

• The allocation rectangle includes any additional borders or spacing surround-
ing the element, affecting how it is positioned with respect to adjacent elements
and the enclosing content rectangle or reference area.

The definitions of these rectangles are determined by layout attributes associated
with the structure element; see “Content and Allocation Rectangles” on page 930
for further discussion.

10.7.3 Standard Structure Types

Tagged PDF’s standard structure types characterize the role of a content element
within the document and, in conjunction with the standard structure attributes
(described in Section 10.7.4, “Standard Structure Attributes”), how that content is
laid out on the page. As discussed in Section 10.6.2, “Structure Types,” the struc-
ture type of a logical structure element is specified by the S entry in its structure
element dictionary. To be considered a standard structure type, this value must be
either:

• One of the standard structure type names described below.

• An arbitrary name that is mapped to one of the standard names by the docu-
ment’s role map (see Section 10.6.2, “Structure Types”), possibly through multi-
ple levels of mapping.

Note: Beginning with PDF 1.5, an element name is always mapped to its corre-
sponding name in the role map, if there is one, even if the original name is one of the
standard types. This is done to allow the element, for example, to represent a tag
with the same name as a standard role, even though its use differs from the standard
role.

Tagged PDFSECTION 10.7
899

Ordinarily, structure elements having standard structure types are processed the
same way whether the type is expressed directly or is determined indirectly from
the role map. However, some consumer applications may ascribe additional se-
mantics to nonstandard structure types, even though the role map associates
them with standard ones. For instance, the actual values of the S entries may be
used when exporting to a tagged representation such as XML, and the corre-
sponding role-mapped values are used when converting to presentation formats
such as HTML or RTF, or for purposes such as reflow or accessibility to users
with disabilities.

Note: Most of the standard element types are designed primarily for laying out text;
the terminology reflects this usage. However, a layout can in fact include any type of
content, such as path or image objects. The content items associated with a structure
element are laid out on the page as if they were blocks of text (for a BLSE) or charac-
ters within a line of text (for an ILSE).

Grouping Elements

Grouping elements are used solely to group other structure elements; they are not
directly associated with content items. Table 10.20 describes the standard struc-
ture types for elements in this category. Section G.7, “Structured Elements That
Describe Hierarchical Lists” provides an example of nested table of content items.

For most content extraction formats, the document must be a tree with a single
top-level element; the structure tree root (identified by the StructTreeRoot entry
in the document catalog) must have only one child in its K (kids) array. If the PDF
file contains a complete document, the structure type Document is recommended
for this top-level element in the logical structure hierarchy. If the file contains a
well-formed document fragment, one of the structure types Part, Art, Sect, or Div
may be used instead.

TABLE 10.20 Standard structure types for grouping elements

STRUCTURE TYPE DESCRIPTION

Document (Document) A complete document. This is the root element of any structure tree containing
multiple parts or multiple articles.

Part (Part) A large-scale division of a document. This type of element is appropriate for grouping
articles or sections.

Document InterchangeCHAPTER 10
900

Art (Article) A relatively self-contained body of text constituting a single narrative or exposition.
Articles should be disjoint; that is, they should not contain other articles as constituent ele-
ments.

Sect (Section) A container for grouping related content elements. For example, a section might
contain a heading, several introductory paragraphs, and two or more other sections nested
within it as subsections.

Div (Division) A generic block-level element or group of elements.

BlockQuote (Block quotation) A portion of text consisting of one or more paragraphs attributed to some-
one other than the author of the surrounding text.

Caption (Caption) A brief portion of text describing a table or figure.

TOC (Table of contents) A list made up of table of contents item entries (structure type TOCI; see
below) and/or other nested table of contents entries (TOC).

A TOC entry that includes only TOCI entries represents a flat hierarchy. A TOC entry that in-
cludes other nested TOC entries (and possibly TOCI entries) represents a more complex hier-
archy. Ideally, the hierarchy of a top level TOC entry reflects the structure of the main body of
the document.

Note: Lists of figures and tables, as well as bibliographies, can be treated as tables of contents for
purposes of the standard structure types.

TOCI (Table of contents item) An individual member of a table of contents. This entry’s children
can be any of the following structure types:

Lbl A label (see “List Elements” on page 902)

Reference A reference to the title and the page number (see “Inline-Level Structure
Elements” on page 905)

NonStruct Non-structure elements for wrapping a leader artifact (see “Grouping
Elements” on page 899).

P Descriptive text (see “Paragraphlike Elements” on page 902)

TOC Table of content elements for hierarchical tables of content, as described for
the TOC entry

Index (Index) A sequence of entries containing identifying text accompanied by reference ele-
ments (structure type Reference; see “Inline-Level Structure Elements” on page 905) that
point out occurrences of the specified text in the main body of a document.

STRUCTURE TYPE DESCRIPTION

Tagged PDFSECTION 10.7
901

Block-Level Structure Elements

A block-level structure element (BLSE) is any region of text or other content that is
laid out in the block-progression direction, such as a paragraph, heading, list
item, or footnote. A structure element is a BLSE if its structure type (after role
mapping, if any) is one of those listed in Table 10.21. All other standard structure
types are treated as ILSEs, with the following exceptions:

• TR (Table row), TH (Table header), TD (Table data), THead (Table head), TBody
(Table body), and TFoot (Table footer), which are used to group elements with-
in a table and are considered neither BLSEs nor ILSEs

• Elements with a Placement attribute (see “General Layout Attributes” on page
917) other than the default value of Inline

TABLE 10.21 Block-level structure elements

In many cases, a BLSE appears as one compact, contiguous piece of page content;
in other cases, it is discontiguous. Examples of the latter include a BLSE that
extends across a page boundary or is interrupted in the page content order by
another, nested BLSE or a directly included footnote. When necessary, Tagged

NonStruct (Nonstructural element) A grouping element having no inherent structural significance; it
serves solely for grouping purposes. This type of element differs from a division (structure
type Div; see above) in that it is not interpreted or exported to other document formats; how-
ever, its descendants are to be processed normally.

Private (Private element) A grouping element containing private content belonging to the applica-
tion producing it. The structural significance of this type of element is unspecified and is de-
termined entirely by the producer application. Neither the Private element nor any of its
descendants are to be interpreted or exported to other document formats.

CATEGORY STRUCTURE TYPES

Paragraphlike elements P H1 H4
H H2 H5

H3 H6

List elements L Lbl
LI LBody

Table element Table

STRUCTURE TYPE DESCRIPTION

Document InterchangeCHAPTER 10
902

PDF consumer applications can recognize such fragmented BLSEs from the logi-
cal structure and use this information to reassemble them and properly lay them
out.

Paragraphlike Elements

Table 10.22 describes structure types for paragraphlike elements that consist of
running text and other content laid out in the form of conventional paragraphs
(as opposed to more specialized layouts such as lists and tables).

TABLE 10.22 Standard structure types for paragraphlike elements

List Elements

The structure types described in Table 10.23 are used for organizing the content
of lists. Section G.7, “Structured Elements That Describe Hierarchical Lists” pro-
vides an example of nested list entries.

TABLE 10.23 Standard structure types for list elements

STRUCTURE TYPE DESCRIPTION

H (Heading) A label for a subdivision of a document’s content. It should be the first child of
the division that it heads.

H1–H6 Headings with specific levels, for use in applications that cannot hierarchically nest their
sections and thus cannot determine the level of a heading from its level of nesting.

P (Paragraph) A low-level division of text.

STRUCTURE TYPE DESCRIPTION

L (List) A sequence of items of like meaning and importance. Its immediate children should
be an optional caption (structure type Caption; see “Grouping Elements” on page 899) fol-
lowed by one or more list items (structure type LI; see below).

LI (List item) An individual member of a list. Its children may be one or more labels, list bod-
ies, or both (structure types Lbl or LBody; see below).

Lbl (Label) A name or number that distinguishes a given item from others in the same list or
other group of like items. In a dictionary list, for example, it contains the term being de-
fined; in a bulleted or numbered list, it contains the bullet character or the number of the
list item and associated punctuation.

Tagged PDFSECTION 10.7
903

Table Elements

The structure types described in Table 10.24 are used for organizing the content
of tables.

Note: Strictly speaking, the Table element is a BLSE; the others in this table are nei-
ther BLSEs or ILSEs.

TABLE 10.24 Standard structure types for table elements

LBody (List body) The descriptive content of a list item. In a dictionary list, for example, it con-
tains the definition of the term. It can either contain the content directly or have other
BLSEs, perhaps including nested lists, as children.

STRUCTURE TYPE DESCRIPTION

Table (Table) A two-dimensional layout of rectangular data cells, possibly having a complex sub-
structure. It contains either one or more table rows (structure type TR; see below) as chil-
dren; or an optional table head (structure type THead; see below) followed by one or more
table body elements (structure type TBody; see below) and an optional table footer (struc-
ture type TFoot; see below). In addition, a table may have an optional caption (structure
type Caption; see “Grouping Elements” on page 899) as its first or last child.

TR (Table row) A row of headings or data in a table. It may contain table header cells and table
data cells (structure types TH and TD; see below).

TH (Table header cell) A table cell containing header text describing one or more rows or col-
umns of the table.

TD (Table data cell) A table cell containing data that is part of the table’s content.

THead (Table header row group; PDF 1.5) A group of rows that constitute the header of a table. If
the table is split across multiple pages, these rows may be redrawn at the top of each table
fragment (although there is only one THead element).

TBody (Table body row group; PDF 1.5) A group of rows that constitute the main body portion of
a table. If the table is split across multiple pages, the body area may be broken apart on a
row boundary. A table may have multiple TBody elements to allow for the drawing of a
border or background for a set of rows.

TFoot
Note: (Table footer row group; PDF 1.5) A group of rows that constitute the footer of a ta-
ble. If the table is split across multiple pages, these rows may be redrawn at the bottom of
each table fragment (although there is only one TFoot element.)

STRUCTURE TYPE DESCRIPTION

Document InterchangeCHAPTER 10
904

Note: The association of headers with rows and columns of data is typically deter-
mined heuristically by applications. Such heuristics may fail for complex tables; the
standard attributes for tables shown in Table 10.36 can be used to make the associa-
tion explicit.

Usage Guidelines for Block-Level Structure

Because different consumer applications use PDF’s logical structure facilities in
different ways, Tagged PDF does not enforce any strict rules regarding the order
and nesting of elements using the standard structure types. Furthermore, each
export format has its own conventions for logical structure. However, adhering to
certain general guidelines helps to achieve the most consistent and predictable in-
terpretation among different Tagged PDF consumers.

As described under “Grouping Elements” on page 899, a Tagged PDF document
can have one or more levels of grouping elements, such as Document, Part, Art
(Article), Sect (Section), and Div (Division). The descendants of these are BLSEs,
such as H (Heading), P (Paragraph), and L (List), that hold the actual content.
Their descendants, in turn, are either content items or ILSEs that further describe
the content.

Note: As noted earlier, elements with structure types that would ordinarily be treat-
ed as ILSEs can have a Placement attribute (see “General Layout Attributes” on
page 917) that causes them to be treated as BLSEs instead. Such elements may be in-
cluded as BLSEs in the same manner as headings and paragraphs.

The block-level structure can follow one of two principal paradigms:

• Strongly structured. The grouping elements nest to as many levels as necessary
to reflect the organization of the material into articles, sections, subsections,
and so on. At each level, the children of the grouping element consist of a head-
ing (H), one or more paragraphs (P) for content at that level, and perhaps one or
more additional grouping elements for nested subsections.

• Weakly structured. The document is relatively flat, having perhaps only one or
two levels of grouping elements, with all the headings, paragraphs, and other
BLSEs as their immediate children. In this case, the organization of the material
is not reflected in the logical structure; however, it can be expressed by the use
of headings with specific levels (H1–H6).

Tagged PDFSECTION 10.7
905

The strongly structured paradigm is used by some rich document models based
on XML. The weakly structured paradigm is typical of documents represented in
HTML.

Lists and tables should be organized using the specific structure types described
under “List Elements” on page 902 and “Table Elements” on page 903. Likewise,
tables of contents and indexes should be structured as described for the TOC and
Index structure types under “Grouping Elements” on page 899.

Inline-Level Structure Elements

An inline-level structure element (ILSE) contains a portion of text or other content
having specific styling characteristics or playing a specific role in the document.
Within a paragraph or other block defined by a containing BLSE, consecutive
ILSEs—possibly intermixed with other content items that are direct children of
the parent BLSE—are laid out consecutively in the inline-progression direction
(left to right in Western writing systems). The resulting content may be broken
into multiple lines, which in turn are stacked in the block-progression direction.
It is possible for an ILSE in turn to contain a BLSE, which is treated as a unitary
item of layout in the inline direction. Table 10.25 lists the standard structure types
for ILSEs.

TABLE 10.25 Standard structure types for inline-level structure elements

STRUCTURE TYPE DESCRIPTION

Span (Span) A generic inline portion of text having no particular inherent characteristics. It can
be used, for example, to delimit a range of text with a given set of styling attributes.

Note: Not all inline style changes need to be identified as a span. Text color and font changes
(including modifiers such as bold, italic, and small caps) need not be so marked, since these
can be derived from the PDF content (see “Font Characteristics” on page 892). However, it is
necessary to use a span to apply explicit layout attributes such as LineHeight, BaselineShift, or
TextDecorationType (see “Layout Attributes for ILSEs” on page 926).

Note: Marked-content sequences having the tag Span are also used to carry certain accessibil-
ity properties (Alt, ActualText, Lang, and E; see Section 10.8, “Accessibility Support”). Such se-
quences lack an MCID property and are not associated with any structure element. This use of
the Span marked-content tag is distinct from its use as a structure type.

Document InterchangeCHAPTER 10
906

Quote (Quotation) An inline portion of text attributed to someone other than the author of the
surrounding text.

Note: The quoted text is contained inline within a single paragraph. This differs from the
block-level element BlockQuote (see “Grouping Elements” on page 899), which consists of one
or more complete paragraphs (or other elements presented as if they were complete para-
graphs).

Note (Note) An item of explanatory text, such as a footnote or an endnote, that is referred to
from within the body of the document. It may have a label (structure type Lbl; see “List El-
ements” on page 902) as a child. The note may be included as a child of the structure ele-
ment in the body text that refers to it, or it may be included elsewhere (such as in an
endnotes section) and accessed by means of a reference (structure type Reference; see be-
low).

Note: Tagged PDF does not prescribe the placement of footnotes in the page content order.
They can be either inline or at the end of the page, at the discretion of the producer applica-
tion.

Reference (Reference) A citation to content elsewhere in the document.

BibEntry (Bibliography entry) A reference identifying the external source of some cited content. It
may contain a label (structure type Lbl; see “List Elements” on page 902) as a child.

Note: Although a bibliography entry is likely to include component parts identifying the cited
content’s author, work, publisher, and so forth, no standard structure types are defined at this
level of detail at the time of publication.

Code (Code) A fragment of computer program text.

Link (Link) An association between a portion of the ILSE’s content and a corresponding link
annotation or annotations (see “Link Annotations” on page 622). Its children are one or
more content items or child ILSEs and one or more object references (see “PDF Objects as
Content Items” on page 868) identifying the associated link annotations. See “Link Ele-
ments,” below, for further discussion.

Annot (Annotation; PDF 1.5) An association between a portion of the ILSE’s content and a corre-
sponding PDF annotation (see Section 8.4, “Annotations”). Annot is used for all PDF an-
notations except link annotations (see the Link element, above) and widget annotations
(see the Form element in Table 10.27 on page 912). See “Annotation Elements” on page 909
for further discussion.

STRUCTURE TYPE DESCRIPTION

Tagged PDFSECTION 10.7
907

Link Elements

Link annotations (like all PDF annotations) are associated with a geometric
region of the page rather than with a particular object in its content stream. Any
connection between the link and the content is based solely on visual appearance
rather than on an explicitly specified association. For this reason, link annota-
tions alone are not useful to users with visual impairments or to applications
needing to determine which content can be activated to invoke a hypertext link.

Tagged PDF link elements (structure type Link) use PDF’s logical structure facili-
ties to establish the association between content items and link annotations, pro-
viding functionality comparable to HTML hypertext links. The following items
can be children of a link element:

• One or more content items or other ILSEs (except other links)

• Object references (see “PDF Objects as Content Items” on page 868) to one or
more link annotations associated with the content

A link element may contain several link annotations if the geometry of the
content requires it. For instance, if a span of text wraps from the end of one line to
the beginning of another, separate link annotations may be needed to cover the
two portions of text. All of the child link annotations must have the same target
and action. To maintain a geometric association between the content and the an-
notation that is consistent with the logical association, all of the link element’s
content must be covered by the union of its child link annotations.

Ruby (Ruby; PDF 1.5) A side-note (annotation) written in a smaller text size and placed adjacent
to the base text to which it refers. It is used in Japanese and Chinese to describe the pro-
nunciation of unusual words or to describe such items as abbreviations and logos. A Ruby
element may also contain the RB, RT, and RP elements. See “Ruby and Warichu Elements”
on page 910 for more details.

Warichu (Warichu; PDF 1.5) A comment or annotation in a smaller text size and formatted onto
two smaller lines within the height of the containing text line and placed following (inline)
the base text to which it refers. It is used in Japanese for descriptive comments and for ruby
annotation text that is too long to be aesthetically formatted as a ruby. A Warichu element
may also contain the WT and WP elements. See “Ruby and Warichu Elements” on page 910
for more details.

STRUCTURE TYPE DESCRIPTION

Document InterchangeCHAPTER 10
908

As an example, consider the following fragment of HTML code, which produces
a line of text containing a hypertext link:

< html >
< body >

< p >
Here is some text < a href = http : / / www . adobe . com >with a link< /a > inside .

< /body >
< /html >

Example 10.17 shows an equivalent fragment of PDF using a link element, whose
text it displays in blue and underlined. Example 10.18 shows an excerpt from the
associated logical structure hierarchy.

Example 10.17

/P << /MCID 0 >> % Marked-content sequence 0 (paragraph)
BDC % Begin marked-content sequence

BT % Begin text object
/T1_0 1 Tf % Set text font and size
14 0 0 14 10.000 753.976 Tm % Set text matrix
0.0 0.0 0.0 rg % Set nonstroking color to black
(Here is some text) Tj % Show text preceding link

ET % End text object
EMC % End marked-content sequence

/Link << /MCID 1 >> % Marked-content sequence 1 (link)
BDC % Begin marked-content sequence

0.7 w % Set line width
[] 0 d % Solid dash pattern
111.094 751.8587 m % Move to beginning of underline
174.486 751.8587 l % Draw underline
0.0 0.0 1.0 RG % Set stroking color to blue
S % Stroke underline
BT % Begin text object

14 0 0 14 111.094 753.976 Tm % Set text matrix
0.0 0.0 1.0 rg % Set nonstroking color to blue
(with a link) Tj % Show text of link

ET % End text object
EMC % End marked-content sequence

Tagged PDFSECTION 10.7
909

/P << /MCID 2 >> % Marked-content sequence 2 (paragraph)
BDC % Begin marked-content sequence

BT % Begin text object
14 0 0 14 174.486 753.976 Tm % Set text matrix
0.0 0.0 0.0 rg % Set nonstroking color to black
(inside .) Tj % Show text following link

ET % End text object
EMC % End marked-content sequence

Example 10.18

501 0 obj % Structure element for paragraph
<< /Type /StructElem

 /S /P
 . . .
 /K [0 % Three children: marked-content sequence 0

 502 0 R % Link
 2 % Marked-content sequence 2
]

>>
endobj

502 0 obj % Structure element for link
<< /Type /StructElem

 /S /Link
 . . .
 /K [1 % Two children: marked-content sequence 1

 503 0 R % Object reference to link annotation
]

>>
endobj

503 0 obj % Object reference to link annotation
<< /Type /OBJR

 /Obj 600 0 R % Link annotation (not shown)
>>

endobj

Annotation Elements

Tagged PDF annotation elements (structure type Annot; PDF 1.5) use PDF’s logi-
cal structure facilities to establish the association between content items and PDF
annotations. Annotation elements are used for all types of annotations other than
links (see “Link Elements” on page 907) and forms (see Table 10.27 on page 912).

Document InterchangeCHAPTER 10
910

The following items can be children of an annotation element:

• Object references (see “PDF Objects as Content Items” on page 868) to one or
more annotation dictionaries

• Optionally, one or more content items (such as marked-content sequences) or
other ILSEs (except other annotations) associated with the annotations

If an Annot element has no children other than object references, its rendering is
defined by the appearance of the referenced annotations, and its text content is
treated as if it were a Span element. It may have an optional BBox attribute; if sup-
plied, this attribute overrides the rectangle specified by the annotation dictio-
nary’s Rect entry.

If the Annot element has children that are content items, those children represent
the displayed form of the annotation, and the appearance of the associated anno-
tation may also be applied (for example, with a Highlight annotation).

There can be multiple children that are object references to different annotations,
subject to the constraint that the annotations must be the same except for their
Rect entry. This is much the same as is done for the Link element; it allows an an-
notation to be associated with discontiguous pieces of content, such as line-
wrapped text.

Ruby and Warichu Elements

Ruby text is a side note, written in a smaller text size and placed adjacent to the
base text to which it refers. It is used in Japanese and Chinese to describe the pro-
nunciation of unusual words or to describe such items as abbreviations and logos.

Warichu text is a comment or annotation, written in a smaller text size and for-
matted onto two smaller lines within the height of the containing text line and
placed following (inline) the base text to which it refers. It is used in Japanese for
descriptive comments and for ruby annotation text that is too long to be aestheti-
cally formatted as a ruby.

Tagged PDFSECTION 10.7
911

TABLE 10.26 Standard structure types for Ruby and Warichu elements (PDF 1.5)

Illustration Elements

Tagged PDF defines an illustration element as any structure element whose struc-
ture type (after role mapping, if any) is one of those listed in Table 10.27. The il-
lustration’s content must consist of one or more complete graphics objects. It may
not appear between the BT and ET operators delimiting a text object (see Section
5.3, “Text Objects”). It may include clipping only in the form of a contained
marked clipping sequence, as defined in Section 10.5.2, “Marked Content and
Clipping.” In Tagged PDF, all such marked clipping sequences must carry the
marked-content tag Clip.

STRUCTURE TYPE DESCRIPTION

Ruby (Ruby) The wrapper around the entire ruby assembly. It contains one RB element followed
by either an RT element or a three-element group consisting of RP, RT, and RP. Ruby ele-
ments and their content elements may not break across multiple lines.

RB (Ruby base text) The full-size text to which the ruby annotation is applied. RB can contain
text, other inline elements, or a mixture of both. It may have the RubyAlign attribute.

RT (Ruby annotation text) The smaller-size text that is placed adjacent to the ruby base text. It
can contain text, other inline elements, or a mixture of both. It may have the RubyAlign
and RubyPosition attributes.

RP (Ruby punctuation) Punctuation surrounding the ruby annotation text. It us used only
when a ruby annotation cannot be properly formatted in a ruby style and instead is for-
matted as a normal comment, or when it is formatted as a warichu. It contains text (usual-
ly a single open or close parenthesis or similar bracketing character).

Warichu (Warichu) The wrapper around the entire warichu assembly. It may contain a three-ele-
ment group consisting of WP, WT, and WP. Warichu elements (and their content elements)
may wrap across multiple lines, according to the warichu breaking rules described in the
Japanese Industrial Standard (JIS) X 4051-1995.

WT (Warichu text) The smaller-size text of a warichu comment that is formatted into two lines
and placed between surrounding WP elements.

WP (Warichu punctuation) The punctuation that surrounds the WT text. It contains text (usu-
ally a single open or close parenthesis or similar bracketing character). According to JIS X
4051-1995, the parentheses surrounding a warichu may be converted to a space (nominal-
ly 1/4 EM in width) at the discretion of the formatter.

Document InterchangeCHAPTER 10
912

TABLE 10.27 Standard structure types for illustration elements

An illustration may have logical substructure, including other illustrations. For
purposes of reflow, however, it is moved (and perhaps resized) as a unit, without
examining its internal contents. To be useful for reflow, it must have a BBox
attribute. It may also have Placement, Width, Height, and BaselineShift attributes
(see “Layout Attributes” on page 916).

Often an illustration is logically part of, or at least attached to, a paragraph or oth-
er element of a document. Any such containment or attachment is represented
through the use of the Figure structure type. The Figure element indicates the
point of attachment, and its Placement attribute describes the nature of the at-
tachment. An illustration element without a Placement attribute is treated as an
ILSE and laid out inline.

Note: For accessibility to users with disabilities and other text extraction purposes,
an illustration element should always have an Alt entry or an ActualText entry (or
both) in its structure element dictionary (see Sections 10.8.2, “Alternate Descrip-
tions,” and 10.8.3, “Replacement Text”). Alt is a description of the illustration,
whereas ActualText gives the exact text equivalent of a graphical illustration that
has the appearance of text.

STRUCTURE TYPE DESCRIPTION

Figure (Figure) An item of graphical content. Its placement may be specified with the Placement
layout attribute (see “General Layout Attributes” on page 917).

Formula (Formula) A mathematical formula.

Note: This structure type is useful only for identifying an entire content element as a formula.
No standard structure types are defined for identifying individual components within the for-
mula. From a formatting standpoint, the formula is treated similarly to a figure (structure
type Figure; see above).

Form (Form) A widget annotation representing an interactive form field (see Section 8.6, “Inter-
active Forms”). If the element contains a Role attribute, it may contain content items that
represent the value of the (non-interactive) form field. If the element omits a Role attribute
(see Table 10.35 on page 934), its only child is an object reference (see “PDF Objects as
Content Items” on page 868) identifying the widget annotation. The annotations’ appear-
ance stream (see “Appearance Streams” on page 612) defines the rendering of the form ele-
ment.

Tagged PDFSECTION 10.7
913

10.7.4 Standard Structure Attributes

In addition to the standard structure types, Tagged PDF defines standard layout
and styling attributes for structure elements of those types. These attributes en-
able predictable formatting to be applied during operations such as reflow and
export of PDF content to other document formats.

As discussed in Section 10.6.4, “Structure Attributes,” attributes are defined in
attribute objects, which are dictionaries or streams attached to a structure element
in either of two ways:

• The A entry in the structure element dictionary identifies an attribute object or
an array of such objects.

• The C entry in the structure element dictionary gives the name of an attribute
class or an array of such names. The class name is in turn looked up in the class
map, a dictionary identified by the ClassMap entry in the structure tree root,
yielding an attribute object or array of objects corresponding to the class.

In addition to the standard structure attributes described below, there are several
other optional entries—Lang, Alt, ActualText, and E—that are described in Sec-
tion 10.8, “Accessibility Support,” but are useful to other PDF consumers as well.
They appear in the following places in a PDF file (rather than in attribute dictio-
naries):

• As entries in the structure element dictionary (see Table 10.10 on page 858)

• As entries in property lists attached to marked-content sequences with a Span
tag (see Section 10.5, “Marked Content”)

Example 10.15 illustrates the use of standard structure attributes.

Standard Attribute Owners

Each attribute object has an owner, specified by the object’s O entry, which deter-
mines the interpretation of the attributes defined in the object’s dictionary. Multi-
ple owners may define like-named attributes with different value types or
interpretations. Tagged PDF defines a set of standard attribute owners, shown in
Table 10.28.

Document InterchangeCHAPTER 10
914

TABLE 10.28 Standard attribute owners

An attribute object owned by a specific export format, such as XML-1.00, is
applied only when exporting PDF content to that format. Such format-specific at-
tributes override any corresponding attributes owned by Layout, List, PrintField,
or Table. There may also be additional format-specific attributes; the set of possi-
ble attributes is open-ended and is not explicitly specified or limited by Tagged
PDF.

Attribute Values and Inheritance

Some attributes are defined as inheritable. Inheritable attributes propagate down
the structure tree; that is, an attribute that is specified for an element applies to all
the descendants of the element in the structure tree unless a descendent element
specifies an explicit value for the attribute.

OWNER DESCRIPTION

Layout Attributes governing the layout of content

List Attributes governing the numbering of lists

PrintField (PDF 1.7) Attributes governing Form structure elements for non-
interactive form fields

Table Attributes governing the organization of cells in tables

XML-1.00 Additional attributes governing translation to XML, version 1.00

HTML-3.20 Additional attributes governing translation to HTML, version 3.20

HTML-4.01 Additional attributes governing translation to HTML, version 4.01

OEB-1.00 Additional attributes governing translation to OEB, version 1.0

RTF-1.05 Additional attributes governing translation to Microsoft Rich Text
Format, version 1.05

CSS-1.00 Additional attributes governing translation to a format using CSS,
version 1.00

CSS-2.00 Additional attributes governing translation to a format using CSS,
version 2.00

Tagged PDFSECTION 10.7
915

Note: The description of each of the standard attributes in this section specifies
whether their values are inheritable.

It is permissible to specify an inheritable attribute on an element for the purpose
of propagating its value to child elements, even if the attribute is not meaningful
for the parent element. Non-inheritable attributes may be specified only for ele-
ments on which they would be meaningful.

The following list shows the priority for setting attribute values. A processing ap-
plication sets an attribute’s value to the first item in the list that applies:

1. The value of the attribute specified in the element’s A entry, owned by one of
the export formats (such as XML, HTML-3.20, HTML-4.01, OEB-1.0, CSS-1.00,
CSS-2.0, and RTF), if present, and if outputting to that format

2. The value of the attribute specified in the element’s A entry, owned by Layout,
PrintField, Table or List, if present

3. The value of the attribute specified in a class map associated with the element’s
C entry, if there is one

4. The resolved value of the parent structure element, if the attribute is inherita-
ble

5. The default value for the attribute, if there is one

Note: The attributes Lang, Alt, ActualText, and E do not appear in attribute dictio-
naries. The rules governing their application are discussed in Section 10.8, “Accessi-
bility Support.”

There is no semantic distinction between attributes that are specified explicitly
and ones that are inherited. Logically, the structure tree has attributes fully bound
to each element, even though some may be inherited from an ancestor element.
This is consistent with the behavior of properties (such as font characteristics)
that are not specified by structure attributes but are derived from the content.

Document InterchangeCHAPTER 10
916

Layout Attributes

Layout attributes specify parameters of the layout process used to produce the
appearance described by a document’s PDF content. Attributes in this category
are defined in attribute objects whose O (owner) entry has the value Layout (or is
one of the format-specific owner names listed in Table 10.28 on page 914). The
intent is that these parameters can be used to reflow the content or export it to
some other document format with at least basic styling preserved.

Table 10.32 summarizes the standard layout attributes and the structure elements
to which they apply. The following sections describe the meaning and usage of
these attributes.

Note: An asterisk (*) after the attribute name indicates that the attribute is inherit-
able. As described in “Attribute Values and Inheritance” on page 914, an inheritable
attribute may be specified for any element to propagate it to descendants, regardless
of whether it is meaningful for that element.

TABLE 10.29 Standard layout attributes

STRUCTURE ELEMENTS ATTRIBUTES

Any structure element Placement
WritingMode*
BackgroundColor
BorderColor*
BorderStyle
BorderThickness*
Color*
Padding

Any BLSE
ILSEs with Placement other than
Inline

SpaceBefore
SpaceAfter
StartIndent*
EndIndent*

BLSEs containing text TextIndent*
TextAlign*

Illustration elements (Figure,
Formula, Form)
Table

BBox
Width
Height

Tagged PDFSECTION 10.7
917

General Layout Attributes

The layout attributes described in Table 10.30 can apply to structure elements of
any of the standard types at the block level (BLSEs) or the inline level (ILSEs).

TABLE 10.30 Standard layout attributes common to all standard structure types

TH (Table header)
TD (Table data)

Width
Height
BlockAlign*
InlineAlign*
TBorderStyle*
TPadding*

Any ILSE
BLSEs containing ILSEs or
containing direct or nested content
items

LineHeight*
BaselineShift
TextDecorationType
TextDecorationColor*
TextDecorationThickness*

Grouping elements Art, Sect, and
Div

ColumnCount
ColumnWidths
ColumnGap

Vertical text GlyphOrientationVertical*

Ruby text RubyAlign*
RubyPosition*

KEY TYPE VALUE

Placement name (Optional; not inheritable) The positioning of the element with respect to the
enclosing reference area and other content:

Block Stacked in the block-progression direction within an
enclosing reference area or parent BLSE.

Inline Packed in the inline-progression direction within an
enclosing BLSE.

STRUCTURE ELEMENTS ATTRIBUTES

Document InterchangeCHAPTER 10
918

Before Placed so that the before edge of the element’s allocation
rectangle (see “Content and Allocation Rectangles” on page
930) coincides with that of the nearest enclosing reference
area. The element may float, if necessary, to achieve the
specified placement (see note below). The element is treated
as a block occupying the full extent of the enclosing reference
area in the inline direction. Other content is stacked so as to
begin at the after edge of the element’s allocation rectangle.

Start Placed so that the start edge of the element’s allocation
rectangle (see “Content and Allocation Rectangles” on page
930) coincides with that of the nearest enclosing reference
area. The element may float, if necessary, to achieve the
specified placement (see note below). Other content that
would intrude into the element’s allocation rectangle is laid
out as a runaround.

End Placed so that the end edge of the element’s allocation
rectangle (see “Content and Allocation Rectangles” on page
930) coincides with that of the nearest enclosing reference
area. The element may float, if necessary, to achieve the
specified placement (see note below). Other content that
would intrude into the element’s allocation rectangle is laid
out as a runaround.

When applied to an ILSE, any value except Inline causes the element to be
treated as a BLSE instead. Default value: Inline.

Note: Elements with Placement values of Before, Start, or End are removed from
the normal stacking or packing process and allowed to float to the specified edge
of the enclosing reference area or parent BLSE. Multiple such floating elements
may be positioned adjacent to one another against the specified edge of the ref-
erence area or placed serially against the edge, in the order encountered. Com-
plex cases such as floating elements that interfere with each other or do not fit
on the same page may be handled differently by different layout applications.
Tagged PDF merely identifies the elements as floating and indicates their de-
sired placement.

KEY TYPE VALUE

Tagged PDFSECTION 10.7
919

WritingMode name (Optional; inheritable) The directions of layout progression for packing of
ILSEs (inline progression) and stacking of BLSEs (block progression):

LrTb Inline progression from left to right; block progression from
top to bottom. This is the typical writing mode for Western
writing systems.

RlTb Inline progression from right to left; block progression from
top to bottom. This is the typical writing mode for Arabic
and Hebrew writing systems.

TbRl Inline progression from top to bottom; block progression
from right to left. This is the typical writing mode for
Chinese and Japanese writing systems.

The specified layout directions apply to the given structure element and all of
its descendants to any level of nesting. Default value: LrTb.

For elements that produce multiple columns, the writing mode defines the
direction of column progression within the reference area: the inline direc-
tion determines the stacking direction for columns and the default flow order
of text from column to column. For tables, the writing mode controls the lay-
out of rows and columns: table rows (structure type TR) are stacked in the
block direction, cells within a row (structure type TD) in the inline direction.

Note: The inline-progression direction specified by the writing mode is subject
to local override within the text being laid out, as described in Unicode Stan-
dard Annex #9, The Bidirectional Algorithm, available from the Unicode Con-
sortium (see the Bibliography).

BackgroundColor array (Optional; not inheritable; PDF 1.5) The color to be used to fill the back-
ground of a table cell or any element’s content rectangle (possibly adjusted by
the Padding attribute). The value is an array of three numbers in the range
0.0 to 1.0, representing the red, green, and blue values, respectively, of an
RGB color space. If this attribute is not specified, the element is treated as if it
were transparent.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
920

BorderColor array (Optional; inheritable; PDF 1.5) The color of the border drawn on the edges
of a table cell or any element’s content rectangle (possibly adjusted by the
Padding attribute). The value of each edge is an array of three numbers in the
range 0.0 to 1.0, representing the red, green, and blue values, respectively, of
an RGB color space. There are two forms:

• A single array of three numbers representing the RGB values to apply to all
four edges.

• An array of four arrays, each specifying the RGB values for one edge of the
border, in the order of the before, after, start, and end edges. A value of null
for any of the edges means that it is not to be drawn.

If this attribute is not specified, the border color for this element is the cur-
rent text fill color in effect at the start of its associated content.

BorderStyle array or
name

(Optional; not inheritable; PDF 1.5) The style of an element’s border. Specifies
the stroke pattern of each edge of a table cell or any element’s content rectan-
gle (possibly adjusted by the Padding attribute). There are two forms:

• A name from the list below representing the border style to apply to all
four edges.

• An array of four entries, each entry specifying the style for one edge of the
border in the order of the before, after, start, and end edges. A value of null
for any of the edges means that it is not to be drawn.

None No border. Forces the computed value of BorderThickness to
be 0.

Hidden Same as None, except in terms of border conflict resolution
for table elements.

Dotted The border is a series of dots.

Dashed The border is a series of short line segments.

Solid The border is a single line segment.

Double The border is two solid lines. The sum of the two lines and
the space between them equals the value of BorderThickness.

Groove The border looks as though it were carved into the canvas.

Ridge The border looks as though it were coming out of the canvas
(the opposite of Groove).

KEY TYPE VALUE

Tagged PDFSECTION 10.7
921

Inset The border makes the entire box look as though it were
embedded in the canvas.

Outset The border makes the entire box look as though it were
coming out of the canvas (the opposite of Inset).

Default value: None

Note: All borders are drawn on top of the box’s background. The color of bor-
ders drawn for values of Groove, Ridge, Inset, and Outset depends on the struc-
ture element’s BorderColor attribute and the color of the background over which
the border is being drawn.

Note: Conforming HTML applications may interpret Dotted, Dashed, Double,
Groove, Ridge, Inset, and Outset to be Solid.

BorderThickness number or
array

(Optional; inheritable; PDF 1.5) The thickness of the border drawn on the
edges of a table cell or any element’s content rectangle (possibly adjusted by
the Padding attribute). The value of each edge is a positive number in default
user space units representing the border’s thickness (a value of 0 indicates
that the border is not drawn). There are two forms:

• A number representing the border thickness for all four edges.

• An array of four entries, each entry specifying the thickness for one edge of
the border, in the order of the before, after, start, and end edges. A value of
null for any of the edges means that it is not to be drawn.

Padding number or
array

(Optional; not inheritable; PDF 1.5) Specifies an offset to account for the sep-
aration between the element’s content rectangle and the surrounding border
(see “Content and Allocation Rectangles” on page 930). A positive value en-
larges the background area; a negative value trims it, possibly allowing the
border to overlap the element’s text or graphic.

The value is either a single number representing the width of the padding, in
default user space units, that applies to all four sides or a 4-entry array repre-
senting the padding width for the before, after, start, and end edge, respec-
tively, of the content rectangle. Default value: 0.

Color array (Optional; inheritable; PDF 1.5) The color to be used for drawing text and the
default value for the color of table borders and text decorations. The value is
an array of three numbers in the range 0.0 to 1.0, representing the red, green,
and blue values, respectively, of an RGB color space. If this attribute is not
specified, the border color for this element is the current text fill color in ef-
fect at the start of its associated content.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
922

Layout Attributes for BLSEs

Table 10.31 describes layout attributes that apply only to block-level structure ele-
ments (BLSEs).

Note: Inline-level structure elements (ILSEs) with a Placement attribute other than
the default value of Inline are treated as BLSEs and hence are also subject to the
attributes described here.

TABLE 10.31 Additional standard layout attributes specific to block-level structure
elements

KEY TYPE VALUE

SpaceBefore number (Optional; not inheritable) The amount of extra space preceding the before
edge of the BLSE, measured in default user space units in the block-progres-
sion direction. This value is added to any adjustments induced by the
LineHeight attributes of ILSEs within the first line of the BLSE (see “Layout
Attributes for ILSEs” on page 926). If the preceding BLSE has a SpaceAfter at-
tribute, the greater of the two attribute values is used. Default value: 0.

Note: This attribute is disregarded for the first BLSE placed in a given reference
area.

SpaceAfter number (Optional; not inheritable) The amount of extra space following the after edge
of the BLSE, measured in default user space units in the block-progression
direction. This value is added to any adjustments induced by the LineHeight
attributes of ILSEs within the last line of the BLSE (see “Layout Attributes for
ILSEs” on page 926). If the following BLSE has a SpaceBefore attribute, the
greater of the two attribute values is used. Default value: 0.

Note: This attribute is disregarded for the last BLSE placed in a given reference
area.

Tagged PDFSECTION 10.7
923

StartIndent number (Optional; inheritable) The distance from the start edge of the reference area
to that of the BLSE, measured in default user space units in the inline-pro-
gression direction. This attribute applies only to structure elements with a
Placement attribute of Block or Start (see “General Layout Attributes” on page
917). The attribute is disregarded for elements with other Placement values.
Default value: 0.

Note: A negative value for this attribute places the start edge of the BLSE out-
side that of the reference area. The results are implementation-dependent and
may not be supported by all Tagged PDF consumer applications or export
formats.

Note: If a structure element with a StartIndent attribute is placed adjacent to a
floating element with a Placement attribute of Start, the actual value used for
the element’s starting indent is its own StartIndent attribute or the inline extent
of the adjacent floating element, whichever is greater. This value may be further
adjusted by the element’s TextIndent attribute, if any.

EndIndent number (Optional; inheritable) The distance from the end edge of the BLSE to that of
the reference area, measured in default user space units in the inline-progres-
sion direction. This attribute applies only to structure elements with a
Placement attribute of Block or End (see “General Layout Attributes” on page
917). The attribute is disregarded for elements with other Placement values.
Default value: 0.

Note: A negative value for this attribute places the end edge of the BLSE outside
that of the reference area. The results are implementation-dependent and may
not be supported by all Tagged PDF consumer applications or export formats.

Note: If a structure element with an EndIndent attribute is placed adjacent to a
floating element with a Placement attribute of End, the actual value used for the
element’s ending indent is its own EndIndent attribute or the inline extent of the
adjacent floating element, whichever is greater.

TextIndent number (Optional; inheritable; applies only to some BLSEs, as described below) The ad-
ditional distance, measured in default user space units in the inline-progres-
sion direction, from the start edge of the BLSE, as specified by StartIndent
(above), to that of the first line of text. A negative value indicates a hanging
indent. Default value: 0.

This attribute applies only to paragraphlike BLSEs and those of structure
types Lbl (Label), LBody (List body), TH (Table header), and TD (Table data),
provided that they contain content other than nested BLSEs.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
924

TextAlign name (Optional; inheritable; applies only to BLSEs containing text) The alignment,
in the inline-progression direction, of text and other content within lines of
the BLSE:

Start Aligned with the start edge.

Center Centered between the start and end edges.

End Aligned with the end edge.

Justify Aligned with both the start and end edges, with internal
spacing within each line expanded, if necessary, to achieve
such alignment. The last (or only) line is aligned with the
start edge only.

Default value: Start.

BBox rectangle (Optional for Annot; required for any figure or table appearing in its entirety on
a single page; not inheritable). An array of four numbers in default user space
units giving the coordinates of the left, bottom, right, and top edges, respec-
tively, of the element’s bounding box (the rectangle that completely encloses
its visible content). This attribute applies to any element that lies on a single
page and occupies a single rectangle.

Width number
or name

(Optional; not inheritable; illustrations, tables, table headers, and table cells
only; strongly recommended for table cells) The width of the element’s content
rectangle (see “Content and Allocation Rectangles” on page 930), measured
in default user space units in the inline-progression direction. This attribute
applies only to elements of structure type Figure, Formula, Form, Table, TH
(Table header), or TD (Table data).

The name Auto in place of a numeric value indicates that no specific width
constraint is to be imposed; the element’s width is determined by the intrinsic
width of its content. Default value: Auto.

Height number
or name

(Optional; not inheritable; illustrations, tables, table headers, and table cells
only) The height of the element’s content rectangle (see “Content and Alloca-
tion Rectangles” on page 930), measured in default user space units in the
block-progression direction. This attribute applies only to elements of struc-
ture type Figure, Formula, Form, Table, TH (Table header), or TD (Table data).

The name Auto in place of a numeric value indicates that no specific height
constraint is to be imposed; the element’s height is determined by the intrin-
sic height of its content. Default value: Auto.

KEY TYPE VALUE

Tagged PDFSECTION 10.7
925

BlockAlign name (Optional; inheritable; table cells only) The alignment, in the block-progres-
sion direction, of content within the table cell:

Before Before edge of the first child’s allocation rectangle aligned
with that of the table cell’s content rectangle.

Middle Children centered within the table cell. The distance between
the before edge of the first child’s allocation rectangle and
that of the table cell’s content rectangle is the same as the
distance between the after edge of the last child’s allocation
rectangle and that of the table cell’s content rectangle.

After After edge of the last child’s allocation rectangle aligned with
that of the table cell’s content rectangle.

Justify Children aligned with both the before and after edges of the
table cell’s content rectangle. The first child is placed as
described above for Before and the last child as described for
After, with equal spacing between the children. If there is only
one child, it is aligned with the before edge only, as for Before.

This attribute applies only to elements of structure type TH (Table header) or
TD (Table data) and controls the placement of all BLSEs that are children of
the given element. The table cell’s content rectangle (see “Content and Allo-
cation Rectangles” on page 930) becomes the reference area for all of its
descendants. Default value: Before.

InlineAlign name (Optional; inheritable; table cells only) The alignment, in the inline-progres-
sion direction, of content within the table cell:

Start Start edge of each child’s allocation rectangle aligned with
that of the table cell’s content rectangle.

Center Each child centered within the table cell. The distance
between the start edges of the child’s allocation rectangle and
the table cell’s content rectangle is the same as the distance
between their end edges.

End End edge of each child’s allocation rectangle aligned with that
of the table cell’s content rectangle.

This attribute applies only to elements of structure type TH (Table header) or
TD (Table data) and controls the placement of all BLSEs that are children of
the given element. The table cell’s content rectangle (see “Content and Allo-
cation Rectangles” on page 930) becomes the reference area for all of its
descendants. Default value: Start.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
926

Layout Attributes for ILSEs

The attributes described in Table 10.32 apply to inline-level structure elements
(ILSEs). They may also be specified for a block-level element (BLSE) and apply to
any content items that are its immediate children.

TABLE 10.32 Standard layout attributes specific to inline-level structure elements

TBorderStyle name or
array

(Optional; inheritable; PDF 1.5) The style of the border drawn on each edge of
a table cell. Possible values are the same as those specified for BorderStyle
(see Table 10.30). If both TBorderStyle and BorderStyle apply to a given table
cell, BorderStyle supersedes TBorderStyle. Default value: None.

TPadding integer or
array

(Optional; inheritable; PDF 1.5) Specifies an offset to account for the separa-
tion between the table cell’s content rectangle and the surrounding border
(see “Content and Allocation Rectangles” on page 930). If both TPadding and
Padding apply to a given table cell, Padding supersedes TPadding. A positive
value enlarges the background area; a negative value trims it, possibly allow-
ing the border to overlap the element’s text or graphic. The value is either a
single number representing the width of the padding, in default user space
units, that applies to all four edges of the table cell or a 4-entry array repre-
senting the padding width for the before edge, after edge, start edge, and end
edge, respectively, of the content rectangle. Default value: 0.

KEY TYPE VALUE

BaselineShift number (Optional; not inheritable) The distance, in default user space units, by
which the element’s baseline is shifted relative to that of its parent element.
The shift direction is the opposite of the block-progression direction spec-
ified by the prevailing WritingMode attribute (see “General Layout Attri-
butes” on page 917). Thus, positive values shift the baseline toward the
before edge and negative values toward the after edge of the reference area
(upward and downward, respectively, in Western writing systems). Default
value: 0.

The shifted element might be a superscript, a subscript, or an inline graph-
ic. The shift applies to the element, its content, and all of its descendants.
Any further baseline shift applied to a child of this element is measured
relative to the shifted baseline of this (parent) element.

KEY TYPE VALUE

Tagged PDFSECTION 10.7
927

LineHeight number
or name

(Optional; inheritable) The element’s preferred height, measured in default
user space units in the block-progression direction. The height of a line is
determined by the largest LineHeight value for any complete or partial
ILSE that it contains.

The name Normal or Auto in place of a numeric value indicates that no
specific height constraint is to be imposed. The element’s height is set to a
reasonable value based on the content’s font size:

Normal Adjust the line height to include any nonzero value
specified for BaselineShift (see below).

Auto Do not adjust for the value of BaselineShift.

Default value: Normal.

This attribute applies to all ILSEs (including implicit ones) that are chil-
dren of this element or of its nested ILSEs, if any. It does not apply to nest-
ed BLSEs.

Note: When translating to a specific export format, the values Normal and
Auto, if specified, are used directly if they are available in the target format.
The meaning of the term “reasonable value,” used above, is left to the con-
sumer application to determine. It can be assumed to be approximately 1.2
times the font size, but this value may vary depending on the export format.
In the absence of a numeric value for LineHeight or an explicit value for the
font size, a reasonable method of calculating the line height from the infor-
mation in a Tagged PDF file is to find the difference between the associated
font’s Ascent and Descent values (see Section 5.7, “Font Descriptors”), map it
from glyph space to default user space (see Section 5.3.3, “Text Space De-
tails”), and use the maximum resulting value for any character in the line.

TextDecorationColor array (Optional; inheritable; PDF 1.5) The color to be used for drawing text dec-
orations. The value is an array of three numbers in the range 0.0 to 1.0,
representing the red, green, and blue values, respectively, of an RGB color
space. If this attribute is not specified, the border color for this element is
the current fill color in effect at the start of its associated content.

TextDecorationThickness number (Optional; inheritable; PDF 1.5) The thickness of each line drawn as part of
the text decoration. The value is a non-negative number in default user
space units representing the thickness (0 is interpreted as the thinnest pos-
sible line). If this attribute is not specified, it is derived from the current
stroke thickness in effect at the start of the element’s associated content,
transformed into default user space units.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
928

TextDecorationType name (Optional; not inheritable) The text decoration, if any, to be applied to the
element’s text.

None No text decoration

Underline A line below the text

Overline A line above the text

LineThrough A line through the middle of the text

Default value: None.

This attribute applies to all text content items that are children of this ele-
ment or of its nested ILSEs, if any. The attribute does not apply to nested
BLSEs or to content items other than text.

Note: The color, position, and thickness of the decoration should be uniform
across all children, regardless of changes in color, font size, or other varia-
tions in the content’s text characteristics.

RubyAlign name (Optional; inheritable; PDF 1.5) The justification of the lines within a ruby
assembly:

Start The content is to be aligned on the start edge in the inline-
progression direction.

Center The content is to be centered in the inline-progression
direction.

End The content is to be aligned on the end edge in the inline-
progression direction.

Justify The content is to be expanded to fill the available width in
the inline-progression direction.

Distribute The content is to be expanded to fill the available width in
the inline-progression direction. However, some space is
also inserted at the start edge and end edge of the text.
Normally, the spacing is distributed using a 1:2:1
(start:infix:end) ratio. It is changed to a 0:1:1 ratio if the
ruby appears at the start of a text line or to a 1:1:0 ratio if
the ruby appears at the end of the text line.

Default value: Distribute.

This attribute may be specified on the RB and RT elements. When a ruby is
formatted, the attribute is applied to the shorter line of these two elements.
(If the RT element has a shorter width than the RB element, the RT element
is aligned as specified in its RubyAlign attribute.)

KEY TYPE VALUE

Tagged PDFSECTION 10.7
929

RubyPosition name (Optional; inheritable; PDF 1.5) The placement of the RT structure element
relative to the RB element in a ruby assembly:

Before The RT content is to be aligned along the before edge of
the element.

After The RT content is to be aligned along the after edge of the
element.

Warichu The RT and associated RP elements are to be formatted as a
warichu, following the RB element.

Inline The RT and associated RP elements are to be formatted as a
parenthesis comment, following the RB element.

Default value: Before.

GlyphOrientationVertical name (Optional; inheritable; PDF 1.5) Specifies the orientation of glyphs when
the inline-progression direction is top to bottom or bottom to top.

This attribute may take one of the following values:

angle A number representing the clockwise rotation in degrees of
the top of the glyphs relative to the top of the reference area.
Must be a multiple of 90 degrees between -180 and +360.

Auto Specifies a default orientation for text, depending on whether
it is fullwidth (as wide as it is high). Fullwidth Latin and
fullwidth ideographic text (excluding ideographic
punctuation) is set with an angle of 0. Ideographic
punctuation and other ideographic characters having
alternate horizontal and vertical forms use the vertical form
of the glyph. Non-fullwidth text is set with an angle of 90.

Default value: Auto.

This attribute is used most commonly to differentiate between the pre-
ferred orientation of alphabetic (non-ideographic) text in vertically writ-
ten Japanese documents (Auto or 90) and the orientation of the
ideographic characters and/or alphabetic (non-ideographic) text in west-
ern signage and advertising (90).

It affects both the alignment and width of the glyphs. If a glyph is perpen-
dicular to the vertical baseline, its horizontal alignment point is aligned
with the alignment baseline for the script to which the glyph belongs. The
width of the glyph area is determined from the horizontal width font char-
acteristic for the glyph.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
930

Content and Allocation Rectangles

As defined in Section 10.7.2, “Basic Layout Model,” an element’s content rectangle
is an enclosing rectangle derived from the shape of the element’s content, which
defines the bounds used for the layout of any included child elements. The
allocation rectangle includes any additional borders or spacing surrounding the
element, affecting how it is positioned with respect to adjacent elements and the
enclosing content rectangle or reference area.

The exact definition of the content rectangle depends on the element’s structure
type:

• For a table cell (structure type TH or TD), the content rectangle is determined
from the bounding box of all graphics objects in the cell’s content, taking into
account any explicit bounding boxes (such as the BBox entry in a form XOb-
ject). This implied size can be explicitly overridden by the cell’s Width and
Height attributes. The cell’s height is further adjusted to equal the maximum
height of any cell in its row; its width is adjusted to the maximum width of any
cell in its column.

• For any other BLSE, the height of the content rectangle is the sum of the heights
of all BLSEs it contains, plus any additional spacing adjustments between these
elements.

• For an ILSE that contains text, the height of the content rectangle is set by the
LineHeight attribute. The width is determined by summing the widths of the
contained characters, adjusted for any indents, letter spacing, word spacing, or
line-end conditions.

• For an ILSE that contains an illustration or table, the content rectangle is deter-
mined from the bounding box of all graphics objects in the content, taking into
account any explicit bounding boxes (such as the BBox entry in a form XOb-
ject). This implied size can be explicitly overridden by the element’s Width and
Height attributes.

• For an ILSE that contains a mixture of elements, the height of the content rect-
angle is determined by aligning the child objects relative to one another based
on their text baseline (for text ILSEs) or end edge (for non-text ILSEs), along
with any applicable BaselineShift attribute (for all ILSEs), and finding the ex-
treme top and bottom for all elements.

Note: Some applications may apply this process to all elements within the block;
others may apply it on a line-by-line basis.

Tagged PDFSECTION 10.7
931

The allocation rectangle is derived from the content rectangle in a way that also
depends on the structure type:

• For a BLSE, the allocation rectangle is equal to the content rectangle with its
before and after edges adjusted by the element’s SpaceBefore and SpaceAfter
attributes, if any, but with no changes to the start and end edges.

• For an ILSE, the allocation rectangle is the same as the content rectangle.

Note: Future versions of Tagged PDF are likely to include additional attributes that
can adjust all four edges of the allocation rectangle for both BLSEs and ILSEs.

Illustration Attributes

Certain additional restrictions arise in connection with particular uses of illustra-
tion elements (structure types Figure, Formula, or Form):

• When an illustration element has a Placement attribute of Block, it must have a
Height attribute with an explicitly specified numerical value (not Auto). This
value is the sole source of information about the illustration’s extent in the
block-progression direction.

• When an illustration element has a Placement attribute of Inline, it must have a
Width attribute with an explicitly specified numerical value (not Auto). This
value is the sole source of information about the illustration’s extent in the
inline-progression direction.

• When an illustration element has a Placement attribute of Inline, Start, or End,
the value of its BaselineShift attribute is used to determine the position of its af-
ter edge relative to the text baseline; BaselineShift is ignored for all other values
of Placement. (An illustration element with a Placement value of Start can be
used to create a dropped capital; one with a Placement value of Inline can be
used to create a raised capital.)

Document InterchangeCHAPTER 10
932

Column Attributes

The attributes described in Table 10.33 apply only to the grouping elements Art,
Sect, and Div (see “Grouping Elements” on page 899). They are used when the
content in the grouping element is divided into columns.

TABLE 10.33 Standard column attributes

List Attribute

The ListNumbering attribute, described in Table 10.34, is carried by an L (List)
element, but controls the interpretation of the Lbl (Label) elements within the
list’s LI (List item) elements (see “List Elements” on page 902). This attribute is de-
fined in attribute objects whose O (owner) entry has the value List (or is one of
the format-specific owner names listed in Table 10.28 on page 914).

KEY TYPE VALUE

ColumnCount integer (Optional; not inheritable; PDF 1.6) The number of columns in the content of the
grouping element. Default value: 1.

ColumnGap number or
array

(Optional; not inheritable; PDF 1.6) The desired space between adjacent col-
umns, measured in default user space units in the inline-progression direction.
If the value is a number, it specifies the space between all columns. If the value is
an array, it should contain ColumnCount - 1 numbers, representing the space be-
tween the first and second columns, the second and third columns, and so on,
respectively. If there are fewer than ColumnCount - 1 numbers, the last element
specifies all remaining spaces; excess array elements are ignored.

ColumnWidths number or
array

(Optional; not inheritable; PDF 1.6) The desired width of the columns, measured
in default user space units in the inline-progression direction. If the value is a
number, it specifies the width of all columns. If the value is an array, it should
contain ColumnCount numbers, representing the width of each column, in or-
der. If there are fewer than ColumnCount numbers, the last element specifies all
remaining widths; excess array elements are ignored.

Tagged PDFSECTION 10.7
933

TABLE 10.34 Standard list attribute

Note: This attribute is used to allow a content extraction tool to autonumber a list.
However, the Lbl elements within the table should nevertheless contain the resulting
numbers explicitly, so that the document can be reflowed or printed without the
need for autonumbering.

PrintField Attributes

(PDF 1.7) The attributes described in Table 10.35 identify the role of fields in
non-interactive PDF forms. Such forms may have originally contained interactive
fields such as text fields and radio buttons but were then converted into non-in-
teractive PDF files, or they may have been designed to be printed out and filled in
manually. Since the roles of the fields cannot be determined from interactive ele-
ments, the roles are defined using PrintField attributes.

KEY TYPE VALUE

ListNumbering name (Optional; inheritable) The numbering system used to generate the content of
the Lbl (Label) elements in an autonumbered list, or the symbol used to identify
each item in an unnumbered list:

None No autonumbering; Lbl elements (if present) contain arbitrary
text not subject to any numbering scheme

Disc Solid circular bullet

Circle Open circular bullet

Square Solid square bullet

Decimal Decimal arabic numerals (1–9, 10–99, …)

UpperRoman Uppercase roman numerals (I, II, III, IV, …)

LowerRoman Lowercase roman numerals (i, ii, iii, iv, …)

UpperAlpha Uppercase letters (A, B, C, …)

LowerAlpha Lowercase letters (a, b, c, …)

Default value: None.

Note: The alphabet used for UpperAlpha and LowerAlpha is determined by the pre-
vailing Lang entry (see Section 10.8.1, “Natural Language Specification”).

Note: The set of possible values may be expanded as Unicode identifies additional
numbering systems.

Document InterchangeCHAPTER 10
934

PrintField attributes enable screen readers to identify page content that represents
form fields (radio buttons, check boxes, push buttons, and text fields). These at-
tributes enable the controls in print form fields to be represented in the logical
structure tree and to be presented to assistive technology as if they were read-only
interactive fields.

TABLE 10.35 PrintField attributes

Table Attributes

Table attributes are defined as attribute objects whose O (owner) entry has the
value Table or is one of the format-specific owner names listed in Table 10.28 on
page 914. Table 10.36 lists the standard table attributes.

KEY TYPE VALUE

Role name (Optional; not inheritable) The type of form field represented by this graphic.
The following values are defined:

rb Radio button

cb Check box

pb Push button

tv Text-value field

The tv role is used for interactive fields whose values have been converted to text
in the non-interactive document. Examples include text edit fields, numeric
fields, password fields, digital signatures, and combo boxes. The text that is the
value of the field is the content of the Form element (see Table 10.27 on page
912).

Default value: None specified.

checked name (Optional; not inheritable) The state of a radio button or check box field. The val-
ue may be on, off (default), or neutral.

Note: Although the case (capitalization) used for this key is unusual, it is still cor-
rect.

Desc text string (Optional; not inheritable) The alternate name of the field, similar to the value
supplied in the TU entry of the field dictionary for interactive fields (see
Table 8.69).

Accessibility SupportSECTION 10.8
935

TABLE 10.36 Standard table attributes

10.8 Accessibility Support

PDF includes several facilities in support of accessibility of documents to users
with disabilities. In particular, many visually computer users with visual impair-
ments use screen readers to read documents aloud. To enable proper vocaliza-

KEY TYPE VALUE

RowSpan integer (Optional; not inheritable) The number of rows in the enclosing table that are
spanned by the cell. The cell expands by adding rows in the block-progression
direction specified by the table’s WritingMode attribute. Default value: 1.

This entry applies only to table cells that have structure types TH or TD or that
are role mapped to structure types TH or TD (see “Table Elements” on page 883).

ColSpan integer (Optional; not inheritable) The number of columns in the enclosing table that are
spanned by the cell. The cell expands by adding columns in the inline-progres-
sion direction specified by the table’s WritingMode attribute. Default value: 1.

This entry applies only to table cells that have structure types TH or TD or that
are role mapped to structure types TH or TD (see “Table Elements” on page 883).

Headers array (Optional; not inheritable; PDF 1.5) An array of byte strings, where each string is
the element identifier (see the ID entry in Table 10.10) for a TH structure element
that is a header associated with this cell.

This attribute may apply to header cells (TH) as well as data cells (TD) (see “Table
Elements” on page 883). Therefore, the headers associated with any cell are those
in its Headers array plus those in the Headers array of any TH cells in that array,
and so on recursively.

Scope name (Optional; not inheritable; PDF 1.5) A name with one of the values Row, Column,
or Both. This attribute applies only to TH elements (see “Table Elements” on page
883) and indicates whether the header cell applies to the rest of the cells in the
row that contains it, the column that contains it, or both the row and the column
that contain it.

Summary text string (Optional; not inheritable; PDF 1.7) A summary of the table’s purpose and struc-
ture, for use in non-visual rendering such as speech or braille. This entry applies
only to Table structure elements (see “Table Elements” on page 903).

Document InterchangeCHAPTER 10
936

tion, either through a screen reader or by some more direct invocation of a text-
to-speech engine, PDF supports the following features:

• Specifying the natural language used for text in a PDF document—for example,
as English or Spanish, or used to hide or reveal optional content (see Section
10.8.1, “Natural Language Specification”)

• Providing textual descriptions for images or other items that do not translate
naturally into text (Section 10.8.2, “Alternate Descriptions”), or replacement
text for content that does translate into text but is represented in a nonstandard
way (such as with a ligature or illuminated character; see Section 10.8.3,
“Replacement Text”)

• Specifying the expansion of abbreviations or acronyms (Section 10.8.4, “Ex-
pansion of Abbreviations and Acronyms”)

The core of this support lies in the ability to determine the logical order of con-
tent in a PDF document, independently of the content’s appearance or layout,
through logical structure and Tagged PDF, as described under “Page Content
Order” on page 889. An accessibility application can extract the content of a doc-
ument for presentation to users with disabilities by traversing the structure hier-
archy and presenting the contents of each node. For this reason, producers of
PDF files must ensure that all information in a document is reachable by means
of the structure hierarchy, and they are strongly encouraged to use the facilities
described in this section.

Note: Text can be extracted from Tagged PDF documents and examined or reused
for purposes other than accessibility; see Section 10.7, “Tagged PDF.”

Additional guidelines for accessibility support of content published on the Web
can be found in the W3C document Web Content Accessibility Guidelines and the
documents it points to (see the Bibliography).

10.8.1 Natural Language Specification

Natural language can be specified for text in a document or for optional content.

The natural language used for text in a document is determined in a hierarchical
fashion, based on whether an optional Lang entry (PDF 1.4) is present in any of
several possible locations. At the highest level, the document’s default language
(which applies to both text strings and text within content streams) can be speci-

Accessibility SupportSECTION 10.8
937

fied by a Lang entry in the document catalog (see Section 3.6.1, “Document Cat-
alog”). Below this, the language can be specified for the following items:

• Structure elements of any type (see Section 10.6.1, “Structure Hierarchy”),
through a Lang entry in the structure element dictionary.

• Marked-content sequences that are not in the structure hierarchy (see Section
10.5, “Marked Content”), through a Lang entry in a property list attached to the
marked-content sequence with a Span tag. (Although Span is also a standard
structure type, as described under “Inline-Level Structure Elements” on page
905, its use here is entirely independent of logical structure.)

The natural language used for optional content allows content to be hidden or re-
vealed, based on the Lang entry (PDF 1.5) in the Language dictionary of an op-
tional content usage dictionary.

The following sections provide details on the value of the Lang entry and the
hierarchical manner in which the language for text in a document is determined.

Note: Text strings encoded in Unicode may include an escape sequence or language
tag indicating the language of the text and overriding the prevailing Lang entry (see
Section , “Text String Type”).

Language Identifiers

Certain language-related dictionary entries are text strings that specify language
identifiers. Such text strings appear as Lang entries in the following structures or
dictionaries:

• Document catalog, structure element dictionary, or property list

• Optional content usage dictionary’s Language dictionary, although the hierar-
chical issues described in “Language Specification Hierarchy,” below do not ap-
ply to this entry

A language identifier can either be the empty text string, to indicate that the lan-
guage is unknown, or a Language-Tag as defined in RFC 3066, Tags for the Identi-
fication of Languages. This section provides an informal summary of RFC 3066.

This syntax, which is summarized below, is also used to identify languages in
XML, according to the W3C document Extensible Markup Language (XML) 1.1;
see the Bibliography for more information about these documents. An empty
string indicates that the language is unknown.

Document InterchangeCHAPTER 10
938

Language identifiers can be based on codes defined by the International Organi-
zation for Standardization in ISO 639 and ISO 3166 (see the Bibliography) or reg-
istered with the Internet Assigned Numbers Authority (IANA, whose Web site is
located at < http://iana.org/ >), or they can include codes created for private use. A
language identifier consists of a primary code optionally followed by one or more
subcodes (each preceded by a hyphen). The primary code can be any of the fol-
lowing:

• A 2-character ISO 639 language code—for example, en for English or es for
Spanish

• The letter i, designating an IANA-registered identifier

• The letter x, for private use

The first subcode can be a 2-character ISO 3166 country code, as in en-US, or a
3- to 8-character subcode registered with IANA, as in en-cockney or i-cherokee
(except in private identifiers, for which subcodes are not registered). Subcodes
beyond the first can be any that have been registered with IANA.

Although language codes are commonly represented using lowercase letters and
country codes are commonly represented using uppercase letters, all tags must be
treated as case insensitive.

Language Specification Hierarchy

The Lang entry in the document catalog specifies the natural language for all text
in the document except where overridden by language specifications for struc-
ture elements or for marked-content sequences that are not in the structure hier-
archy (for example, within an entirely unstructured document). Examples in this
section illustrate the hierarchical manner in which the language for text in a doc-
ument is determined.

Example 10.19 shows how a language specified for the document as a whole
could be overridden by one specified for a marked-content sequence within a
page’s content stream, independent of any logical structure. In this case, the Lang
entry in the document catalog (not shown) has the value en-US, meaning U.S. En-
glish, and it is overridden by the Lang property attached (with the Span tag) to
the marked-content sequence Hasta la vista. The Lang property identifies the lan-
guage for this marked content sequence with the value es-MX, meaning Mexican
Spanish.

http://www.iana.org/

Accessibility SupportSECTION 10.8
939

Example 10.19

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
BT

(See you later, or as Arnold would say,) Tj
/Span << /Lang (es-MX) >> % Start of marked-content sequence

BDC
(Hasta la vista .) Tj

EMC % End of marked-content sequence
ET

endstream
endobj

Where logical structure is described (by a structure hierarchy) within a docu-
ment, the Lang entry in the document catalog sets the default for the document.
Below that, any language specifications within the structure hierarchy apply in
this order:

• A structure element’s language specification

Note: If a structure element does not have a Lang entry, the element inherits its
language from any parent element that has one.

• Within a structure element, a language specification for a nested structure ele-
ment or marked-content sequence

In Example 10.20, the Lang entry in the structure element dictionary (specifying
English) applies to the marked-content sequence having an MCID (marked-
content identifier) value of 0 within the indicated page’s content stream. However,
nested within that marked-content sequence is another one in which the Lang
property attached with the Span tag (specifying Spanish) overrides the structure
element’s language specification.

Note: This example and the next one below omit required StructParents entries in
the objects used as content items (see “Finding Structure Elements from Content
Items” on page 868).

Document InterchangeCHAPTER 10
940

Example 10.20

1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier

>>
/Lang (en-US) % Language specification for this element

>>
endobj

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
BT

/P << /MCID 0 >> % Start of marked-content sequence
BDC

(See you later, or as Arnold would say,) Tj
/Span << /Lang (es-MX) >> % Start of nested marked-content sequence

BDC
(Hasta la vista .) Tj

EMC % End of nested marked-content sequence
EMC % End of marked-content sequence

ET
endstream
endobj

If only part of the page content is contained in the structure hierarchy, and the
structured content is nested within nonstructured content to which a different
language specification applies, the structure element’s language specification
takes precedence. In Example 10.21, the page’s content stream consists of a
marked-content sequence that specifies Spanish as its language by means of the
Span tag with a Lang property. Nested within it is content that is part of a struc-

Accessibility SupportSECTION 10.8
941

ture element (indicated by the MCID entry in that property list), and the language
specification that applies to the latter content is that of the structure element,
English.

Example 10.21

1 0 obj % Structure element
<< /Type /StructElem

 /S /P % Structure type
 /P … % Parent in structure hierarchy
 /K << /Type /MCR

 /Pg 2 0 R % Page containing marked-content sequence
 /MCID 0 % Marked-content identifier

>>
/Lang (en-US) % Language specification for this element

>>
endobj

2 0 obj % Page object
<< /Type /Page

 /Contents 3 0 R % Content stream
 …

>>
endobj

3 0 obj % Page's content stream
<< /Length … >>

stream
/Span << /Lang (es-MX) >> % Start of marked-content sequence

BDC
(Hasta la vista,) Tj
/P << /MCID 0 >> % Start of structured marked-content sequence,

BDC % to which structure element's language applies
(as Arnold would say .) Tj

EMC % End of structured marked-content sequence
EMC % End of marked-content sequence

endstream
endobj

In other words, a language identifier attached to a marked-content sequence with
the Span tag specifies the language for all text in the sequence except for nested
marked content that is contained in the structure hierarchy (in which case the
structure element’s language applies) and except where overridden by language
specifications for other nested marked content.

Document InterchangeCHAPTER 10
942

Multi-language Text Arrays

A multi-language text array (PDF 1.5) allows multiple text strings to be specified,
each in association with a language identifier. (See the Alt entry in Tables 9.9 and
9.12 for examples of its use.) The array contains pairs of strings:

• The first string in each pair is an ASCII string language identifier. A given lan-
guage identifier may not appear more than once in the array; any unrecognized
language identifier should be ignored. An empty string specifies default text to
be used when no matching language identifier is found in the array.

• The second byte string is text associated with the language.

Example 10.22

[(en-US) (My vacation) (fr) (mes vacances) () (default text)]

When a consumer application searches a multi-language text array to find text for
a given language, it should look for an exact (though case-insensitive) match be-
tween the given language’s identifier and the language identifiers in the array. If
no exact match is found, prefix matching is attempted in increasing array order: a
match is declared if the given identifier is a leading, case-insensitive, substring of
an identifier in the array, and the first post-substring character in the array iden-
tifier is a hyphen. For example, given identifier en matches array identifier en-US,
but given identifier en-US matches neither en nor en-GB. If no exact or prefix
match can be found, the default text (if any) should be used.

10.8.2 Alternate Descriptions

PDF documents can be enhanced by providing alternate descriptions for images,
formulas, or other items that do not translate naturally into text. Alternate de-
scriptions are human-readable text that could, for example, be vocalized by a
text-to-speech engine for the benefit of users with visual impairments.

An alternate description can be specified for the following items:

• A structure element (see Section 10.6.1, “Structure Hierarchy”), through an Alt
entry in the structure element dictionary

• (PDF 1.5) A marked-content sequence (see Section 10.5, “Marked Content”),
through an Alt entry in a property list attached to the marked-content sequence
with a Span tag.

Accessibility SupportSECTION 10.8
943

• Any type of annotation (see Section 8.4, “Annotations”) that does not already
have a text representation, through a Contents entry in the annotation dic-
tionary

For annotation types that normally display text, that text (specified in the
Contents entry of the annotation dictionary) is the natural source for vocalization
purposes. For annotation types that do not display text, a Contents entry (PDF
1.4) can optionally be included to specify an alternate description. Sound annota-
tions, which are vocalized by default and therefore need no alternate description
for that purpose, can include a Contents entry specifying a description to be dis-
played in a pop-up window for the benefit of users with hearing impairments.

In addition, an alternate name can be specified for an interactive form field (see
Section 8.6, “Interactive Forms”), to be used in place of the actual field name
wherever the field must be identified in the user interface (such as in error or sta-
tus messages referring to the field). This alternate name, specified in the optional
TU entry of the field dictionary, can be useful for vocalization purposes.

Alternate descriptions are text strings, which may be encoded in either
PDFDocEncoding or Unicode character encoding. As described in Section , “Text
String Type,” Unicode defines an escape sequence for indicating the language of
the text. This mechanism enables the alternate description to change from the
language specified by the prevailing Lang entry (as described in the preceding
section).

When applied to structure elements, the text is considered to be a word or phrase
substitution for the current element. For example, if each of two (or more) ele-
ments in a sequence has an Alt entry in its dictionary, they should be treated as if
a word break is present between them. The same would apply to consecutive
marked-content sequences.

Note: The Alt entry in property lists can be combined with other entries, as shown in
Example 10.23.

Example 10.23

/Span << /Lang (en-us) /Alt (six-point star) >> BDC (✡) Tj EMC

Document InterchangeCHAPTER 10
944

10.8.3 Replacement Text

Just as alternate descriptions can be provided for images and other items that do
not translate naturally into text (as described in the preceding section), replace-
ment text can be specified for content that does translate into text but that is rep-
resented in a nonstandard way. These nonstandard representations might
include, for example, glyphs for ligatures or custom characters, or inline graphics
corresponding to letters in an illuminated manuscript or to dropped capitals.

Replacement text can be specified for the following items:

• A structure element (see Section 10.6.1, “Structure Hierarchy”), by means of
the optional ActualText entry (PDF 1.4) of the structure element dictionary.

• (PDF 1.5) A marked-content sequence (see Section 10.5, “Marked Content”),
through an ActualText entry in a property list attached to the marked-content
sequence with a Span tag.

The ActualText value is not a description but a replacement for the content, pro-
viding text that is equivalent to what a reader with sight would see when viewing
the content. In contrast to the value of Alt, which is considered to be a word or
phrase substitution, the value of ActualText is considered to be a character substi-
tution for the structure element or marked-content sequence. Thus, if each of two
(or more) consecutive structure or marked-content sequences has an ActualText
entry, they should be treated as if no word break is present between them.

The following example shows the use of replacement text to indicate the correct
character content in a case where hyphenation changes the spelling of a word (in
German, up until recent spelling reforms, the word “Drucker” when hyphenated
was rendered as “Druk-” and “ker”).

Example 10.24

(Dru) Tj
/Span

<</Actual Text (c) >>
BDC

(k-) Tj
EMC

(ker) '

Like alternate descriptions (and other text strings), replacement text, if encoded
in Unicode, may include an escape sequence for indicating the language of the
text, overriding the prevailing Lang entry (see Section , “Text String Type”).

Accessibility SupportSECTION 10.8
945

10.8.4 Expansion of Abbreviations and Acronyms

Abbreviations and acronyms can pose a problem for text-to-speech engines.
Sometimes the full pronunciation for an abbreviation can be divined without aid.
For example, a dictionary search will probably reveal that “Blvd.” is pronounced
“boulevard” and that “Ave.” is pronounced “avenue.” However, some abbreviations
are difficult to resolve, as in the sentence “Dr. Healwell works at 123 Industrial
Dr.” For this reason, the expansion of an abbreviation or acronym can be speci-
fied for the following items:

• Marked-content sequences, through an E property (PDF 1.4) in a property list
attached to the sequence with a Span tag, as shown in Example 10.25

• Structure elements, through an E entry (PDF 1.5) in the structure element dic-
tionary

Example 10.25

BT
/Span << /E (Doctor) >>

BDC
(Dr.) Tj

EMC
(Healwell works at 123 Industrial) Tj
/Span << /E (Drive) >>

BDC
(Dr.) Tj

EMC
ET

The E value (a text string) is considered to be a word or phrase substitution for
the tagged text and therefore should be treated as if a word break separates it from
any surrounding text. Like other text strings, the expansion text, if encoded in
Unicode, may include an escape sequence for indicating the language of the text
(see Section , “Text String Type”).

Some abbreviations or acronyms are conventionally not expanded into words.
For the text “CBS,” for example, either no expansion should be supplied (leaving
its pronunciation up to the text-to-speech engine) or, to be safe, the expansion
“C B S” should be specified.

Document InterchangeCHAPTER 10
946

10.9 Web Capture

Web Capture is a PDF 1.3 feature that allows information from Internet-based or
locally resident HTML, PDF, GIF, JPEG, and ASCII text files to be imported into
a PDF file. This feature is implemented in Acrobat 4.0 and later viewers by a Web
Capture plug-in extension (sometimes called AcroSpider). The information in
the Web Capture data structures enables viewer applications to perform the fol-
lowing operations:

• Save locally and preserve the visual appearance of material from the Web

• Retrieve additional material from the Web and add it to an existing PDF file

• Update or modify existing material previously captured from the Web

• Find source information for material captured from the Web, such as the URL
(if any) from which it was captured

• Find all material in a PDF file that was generated from a given URL

• Find all material in a PDF file that matches a given digital identifier (MD5
hash)

The information needed to perform these operations is recorded in two data
structures in the PDF file:

• The Web Capture information dictionary holds document-level information
related to Web Capture.

• The Web Capture content database keeps track of the material retrieved by Web
Capture and where it came from, enabling Web Capture to avoid downloading
material that is already present in the file.

The following sections provide a detailed overview of these structures. See
Appendix C for information about implementation limits in Web Capture.

Note: The following discussion centers on HTML and GIF files, although Web Cap-
ture handles other file types as well.

10.9.1 Web Capture Information Dictionary

The optional SpiderInfo entry in the document catalog (see Section 3.6.1, “Docu-
ment Catalog”) holds an optional Web Capture information dictionary containing
document-level information related to Web Capture. Table 10.37 shows the con-
tents of this dictionary.

Web CaptureSECTION 10.9
947

TABLE 10.37 Entries in the Web Capture information dictionary

10.9.2 Content Database

Web Capture retrieves HTML files from URLs and converts them to PDF. The re-
sulting PDF file may contain the contents of multiple HTML pages. Conversely,
since HTML pages do not have a fixed size, a single HTML page may give rise to
multiple PDF pages. To keep track of the correspondences, Web Capture main-
tains a content database that maps URLs and digital identifiers to PDF objects
such as pages and XObjects. By looking up digital identifiers in the database, Web
Capture can determine whether newly downloaded content is identical to content
already retrieved from a different URL. Thus, it can perform optimizations such
as storing only one copy of an image that is referenced by multiple HTML pages.

Web Capture’s content database is organized into content sets. Each content set is
a dictionary holding information about a group of related PDF objects generated
from the same source data. Content sets are of two subtypes: page sets and image
sets. When Web Capture converts an HTML file to PDF pages, for example, it cre-
ates a page set to hold information about the pages. Similarly, when it converts a
GIF image to one or more image XObjects, it creates an image set describing
those XObjects.

The content set corresponding to a given data source can be accessed in either of
two ways:

• By the URLs from which it was retrieved

• By a digital identifier generated from the source data itself (see “Digital Identi-
fiers” on page 950)

The URLS and IDS entries in a PDF document’s name dictionary (see Section 3.6.3,
“Name Dictionary”) contain name trees mapping URLs and digital identifiers, re-
spectively, to Web Capture content sets. Figure 10.1 shows a simple example. An

KEY TYPE VALUE

V number (Required) The Web Capture version number. For PDF 1.3, the version number is 1.0.
Note: This value is a single real number, not a major and minor version number. Thus, for
example, a version number of 1.2 would be considered greater than 1.15.

C array (Optional) An array of indirect references to Web Capture command dictionaries (see
“Command Dictionaries” on page 957) describing commands that were used in building
the PDF file. The commands appear in the array in the order in which they were executed
in building the file.

Document InterchangeCHAPTER 10
948

HTML file retrieved from the URL < http://www.adobe.com/> has been converted
to three pages in the PDF file. The entry for that URL in the URLS name tree
points to a page set containing the three pages. Similarly, the IDS name tree con-
tains an entry pointing to the same page set, associated with the digital identifier
calculated from the HTML source (the string shown in the figure as 904B …1EA2).

FIGURE 10.1 Simple Web Capture file structure

Entries in the URLS and IDS name trees may refer to an array of content sets
instead of just a single content set. The content sets need not have the same sub-
type, but may include both page sets and image sets. In Figure 10.2, for example, a
GIF file has been retrieved from a URL (< http://www.adobe.com/getacro.gif >)

Name dictionary

URLS IDS

Page set

Name tree

Dictionary

Page Page Page

http://www.adobe.com/ 904B…1EA2

Document catalog

Web CaptureSECTION 10.9
949

and converted to a single PDF page. As in Figure 10.1, a page set has been created
to hold information about the new page. However, since the retrieval also
resulted in a new image XObject, an image set has also been created. Instead of
pointing directly to a single content set, the URLS and IDS entries point to an
array containing both the page set and the image set.

FIGURE 10.2 Complex Web Capture file structure

Names dictionary

URLS IDS

Page Image XObject

Content set array

Document catalog

http://www.adobe.com/getacro.gif

Page set Image set

Dictionary

Array

Name tree

BF70…14D8

Document InterchangeCHAPTER 10
950

URL Strings

URLs associated with Web Capture content sets must be reduced to a predictable,
canonical form before being used as keys in the URLS name tree. The following
steps describe how to perform this reduction, using terminology from Internet
RFCs 1738, Uniform Resource Locators, and 1808, Relative Uniform Resource Lo-
cators (see the Bibliography). This algorithm is relevant for HTTP, FTP, and file
URLs:

1. If the URL is relative, make it absolute.

2. If the URL contains one or more number sign characters (#), strip the leftmost
number sign and any characters after it.

3. Convert the scheme section to lowercase ASCII.

4. If there is a host section, convert it to lowercase ASCII.

5. If the scheme is file and the host is localhost, strip the host section.

6. If there is a port section and the port is the default port for the given protocol
(80 for HTTP or 21 for FTP), strip the port section.

7. If the path section contains dot (.) or double-dot (. .) subsequences, transform
the path as described in section 4 of RFC 1808.

Note: Because the percent character (%) is unsafe according to RFC 1738 and is
also the escape character for encoded characters, it is not possible in general to dis-
tinguish a URL with unencoded characters from one with encoded characters. For
example, it is impossible to decide whether the sequence %00 represents a single
encoded null character or a sequence of three unencoded characters. Hence, no
number of encoding or decoding passes on a URL can ever cause it to reach a stable
state. Empirically, URLs embedded in HTML files have unsafe characters encoded
with one encoding pass, and Web servers perform one decoding pass on received
paths (though CGI scripts can make their own decisions). Canonical URLs are thus
assumed to have undergone one and only one encoding pass. A URL whose initial
encoding state is known can be safely transformed into a URL that has undergone
only one encoding pass.

Digital Identifiers

Digital identifiers associated with Web Capture content sets by the IDS name tree
are generated using the MD5 message-digest algorithm (described in Internet

Web CaptureSECTION 10.9
951

RFC 1321, The MD5 Message-Digest Algorithm; see the Bibliography). The exact
data passed to the algorithm depends on the type of content set and the nature of
the identifier being calculated.

For a page set, the source data is passed to the MD5 algorithm first, followed by
strings representing the digital identifiers of any auxiliary data files (such as im-
ages) referenced in the source data, in the order in which they are first referenced.
(If an auxiliary file is referenced more than once, its identifier is passed only the
first time.) This produces a composite identifier representing the visual appear-
ance of the pages in the page set. Two HTML source files that are identical, but
for which the referenced images contain different data—for example, if they have
been generated by a script or are pointed to by relative URLs—do not produce the
same identifier.

Note: When the source data is taken from a PDF file, the identifier is generated sole-
ly from the contents of that file; there is no auxiliary data. (See also implementation
note 164 in Appendix H.)

A page set can also have a text identifier, calculated by applying the MD5 algo-
rithm to just the rendered text present in the source data. For an HTML file, for
example, the text identifier is based solely on the text between markup tags; no
images are used in the calculation.

For an image set, the digital identifier is calculated by passing the source data for
the original image to the MD5 algorithm. For example, the identifier for an image
set created from a GIF image is calculated from the contents of the GIF.

Unique Name Generation

In generating PDF pages from a data source, Web Capture converts items such as
hypertext links and HTML form fields into corresponding named destinations
and interactive form fields. These items must have names that do not conflict
with those of existing items in the file. Also, when updating the file, Web Capture
may need to locate all destinations and fields constructed for a given page set.
Accordingly, each destination or field is given a unique name that is derived from
its original name but constructed so that it avoids conflicts with similarly named
items in other page sets.

Note: As used here, the term name refers to a string, not a name object.

Document InterchangeCHAPTER 10
952

The unique name is formed by appending an encoded form of the page set’s digi-
tal identifier string to the original name of the destination or field. The identifier
string must be encoded to remove characters that have special meaning in desti-
nations and fields. For example, since the period character (.) is used as the field
separator in interactive form field names, it must not appear in the identifier por-
tion of the unique name; it is therefore encoded internally as two bytes, 92 and
112, corresponding to the ASCII characters \p . Note that since the backslash
character (\) has special meaning for the syntax of string objects, it must be pre-
ceded by another backslash when written in the PDF file. For example, if the orig-
inal digital identifier string were

alpha . beta

it would be encoded internally as

alpha \ pbeta

and written in the PDF file as

(alpha \ \ pbeta)

Similarly, the null character (character code 0) is encoded internally as the two
bytes 92 and 48, corresponding to the ASCII characters \0. If the original digital
identifier string were

alphaØbeta

(where Ø denotes the null character), it would be encoded internally as

alpha \ 0beta

and written in the PDF file as

(alpha \ \ 0beta)

Finally, the backslash character itself is encoded internally as the two bytes 92 and
92, corresponding to the characters \\. In written form, each of these in turn
requires a preceding backslash. Thus, the digital identifier string

alpha \ beta

would be encoded internally as

alpha \ \ beta

and written in the PDF file as

(alpha \ \ \ \ beta)

Web CaptureSECTION 10.9
953

If the name is used for an interactive form field, there is an additional encoding to
ensure uniqueness and compatibility with interactive forms. Each byte in the
source string, encoded as described above, is replaced by two bytes in the destina-
tion string. The first byte in each pair is 65 (corresponding to the ASCII character
A) plus the high-order 4 bits of the source byte; the second byte is 65 plus the low-
order 4 bits of the source byte.

10.9.3 Content Sets

A Web Capture content set is a dictionary describing a set of PDF objects gener-
ated from the same source data. It may include information common to all the
objects in the set as well as about the set itself. Table 10.38 shows the contents of
this type of dictionary.

Page Sets

A page set is a content set containing a group of PDF page objects generated from
a common source, such as an HTML file. The pages are listed in the O array (see
Table 10.38) in the same order in which they were initially added to the file. A
single page object may not belong to more than one page set. Table 10.39 shows
the content set dictionary entries specific to this type of content set.

The optional TID (text identifier) entry may be used to store an identifier gener-
ated from the text of the pages belonging to the page set (see “Digital Identifi-
ers” on page 950). This identifier may be used, for example, to determine
whether the text of a document has changed. A text identifier may not be
appropriate for some page sets (such as those with no text) and should be omit-
ted in these cases.

TABLE 10.38 Entries common to all Web Capture content sets

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
SpiderContentSet for a Web Capture content set.

S name (Required) The subtype of content set that this dictionary describes:

SPS (“Spider page set”) A page set
SIS (“Spider image set”) An image set

Document InterchangeCHAPTER 10
954

TABLE 10.39 Additional entries specific to a Web Capture page set

Image Sets

An image set is a content set containing a group of image XObjects generated
from a common source, such as multiple frames of an animated GIF image. (Web
Capture 4.0 always generates a single image XObject for a given image.) A single
XObject may not belong to more than one image set. Table 10.40 shows the con-
tent set dictionary entries specific to this type of content set.

ID byte string (Required) The digital identifier of the content set (see “Digital Identifiers” on page
950). If the content set has been located by means of the URLS name tree, this allows its
related entry in the IDS name tree to be found.

O array (Required) An array of indirect references to the objects belonging to the content set.
The order of objects in the array is undefined in general but may be restricted by spe-
cific content set subtypes.

SI dictionary
or array

(Req uired) A source information dictionary (see Section 10.9.4, “Source Information”)
or an array of such dictionaries, describing the sources from which the objects belong-
ing to the content set were created.

CT ASCII string (Optional) The content type, an ASCII string characterizing the source from which the
objects belonging to the content set were created. The string should conform to the
content type specification described in Internet RFC 2045, Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies (see the Bibliography).
For example, for a page set consisting of a group of PDF pages created from an HTML
file, the content type would be text / html.

TS date (Optional) A time stamp giving the date and time at which the content set was created.

KEY TYPE VALUE

S name (Required) The subtype of content set that this dictionary describes; must be SPS (“Spi-
der page set”) for a page set.

T text string (Optional) The title of the page set, a text string representing it in human-readable
form.

TID byte string (Optional) A text identifier generated from the text of the page set, as described in
“Digital Identifiers” on page 950.

KEY TYPE VALUE

Web CaptureSECTION 10.9
955

TABLE 10.40 Additional entries specific to a Web Capture image set

Each image XObject in an image set has a reference count indicating the number
of PDF pages referring to that XObject. The reference count is incremented
whenever Web Capture creates a new page referring to the XObject (including
copies of already existing pages) and decremented whenever such a page is
destroyed. (The reference count is incremented or decremented only once per
page, regardless of the number of times the XObject may be referenced by that
same page.) When the reference count reaches 0, it is assumed that there are no
remaining pages referring to the XObject and that it can be removed from the im-
age set’s O array. (See implementation note 165 in Appendix H.)

10.9.4 Source Information

The SI entry in a content set dictionary (see Table 10.38 on page 953) identifies
one or more source information dictionaries containing information about the lo-
cations from which the source data for the content set was retrieved. Table 10.41
shows the contents of this type of dictionary.

TABLE 10.41 Entries in a source information dictionary

KEY TYPE VALUE

S name (Required) The subtype of content set that this dictionary describes; must be SIS (“Spider
image set”) for an image set.

R integer
or array

(Required) The reference counts (see below) for the image XObjects belonging to the im-
age set. For an image set containing a single XObject, the value is simply the integer
reference count for that XObject. If the image set contains multiple XObjects, the value is
an array of reference counts parallel to the O array (see Table 10.38 on page 953); that is,
each element in the R array holds the reference count for the image XObject at the corre-
sponding position in the O array.

KEY TYPE VALUE

AU ASCII string
or dictionary

(Required) An ASCII string or URL alias dictionary (see “URL Alias Dictionaries,” be-
low) identifying the URLs from which the source data was retrieved.

TS date (Optional) A time stamp giving the most recent date and time at which the content set’s
contents were known to be up to date with the source data.

E date (Optional) An expiration stamp giving the date and time at which the content set’s con-
tents should be considered out of date with the source data.

Document InterchangeCHAPTER 10
956

In the simplest case, the content set’s SI entry just contains a single source infor-
mation dictionary. However, it is not uncommon for the same source data to be
accessible from two or more unrelated URLs. When Web Capture detects such a
condition (by comparing digital identifiers), it generates a single content set from
the source data, containing just one copy of the relevant PDF pages or image
XObjects, but creates multiple source information dictionaries describing the
separate ways in which the original source data can be accessed. It then stores an
array containing these multiple source information dictionaries as the value of
the SI entry in the content set dictionary.

A source information dictionary’s AU (aliased URLs) entry identifies the URLs
from which the source data was retrieved. If there is only one such URL, a simple
string suffices as the value of this entry. If multiple URLs map to the same loca-
tion through redirection, the AU value is a URL alias dictionary representing
them (see “URL Alias Dictionaries,” below).

Note: For file size efficiency, it is recommended that the entire URL alias dictionary
(excluding the URL strings) be represented as a direct object because its internal
structure should never be shared or externally referenced.

The TS (time stamp) entry allows each source location associated with a content
set to have its own time stamp. This is necessary because the time stamp in the
content set dictionary (see Table 10.38 on page 953) merely refers to the creation
date of the content set. A hypothetical “Update Content Set” command might re-
set the time stamp in the source information dictionary to the current time if it
found that the source data had not changed since the time stamp was last set.

S integer (Optional) A code indicating the type of form submission, if any, by which the source
data was accessed (see “Submit-Form Actions” on page 703):

0 Not accessed by means of a form submission
1 Accessed by means of an HTTP GET request
2 Accessed by means of an HTTP POST request

This entry should be present only in source information dictionaries associated with
page sets. Default value: 0.

C dictionary (Optional; must be an indirect reference) A command dictionary (see “Command Dic-
tionaries” on page 957) describing the command that caused the source data to be
retrieved. This entry should be present only in source information dictionaries associ-
ated with page sets.

KEY TYPE VALUE

Web CaptureSECTION 10.9
957

The E (expiration) entry specifies an expiration date for each source location
associated with a content set. If the current date and time are later than those
specified, the contents of the content set should be considered out of date with
the original source.

URL Alias Dictionaries

When a URL is accessed via HTTP, a response header may be returned indicating
that the requested data is at a different URL. This redirection process may be re-
peated in turn at the new URL and can potentially continue indefinitely. It is not
uncommon to find multiple URLs that all lead eventually to the same destination
through one or more redirections. A URL alias dictionary represents such a set of
URL chains leading to a common destination. Table 10.42 shows the contents of
this type of dictionary.

TABLE 10.42 Entries in a URL alias dictionary

The C (chains) entry should be omitted if the URL alias dictionary contains only
one URL. If C is present, its value is an array of arrays, each representing a chain
of URLs leading to the common destination. Within each chain, the URLs are
stored as ASCII strings in the order in which they occur in the redirection se-
quence. The common destination (the last URL in a chain) may be omitted, since
it is already identified by the U entry. (See implementation note 166 in Appendix
H.)

Command Dictionaries

A Web Capture command dictionary represents a command executed by Web
Capture to retrieve one or more pieces of source data that were used to create new
pages or modify existing pages. The entries in this dictionary represent
parameters that were originally specified interactively by the user who requested
that the Web content be captured. This information is recorded so that the com-

KEY TYPE VALUE

U ASCII
string

(Required) The destination URL to which all of the chains specified by the C entry lead.

C array (Optional) An array of one or more arrays of strings, each representing a chain of URLs
leading to the common destination specified by U.

Document InterchangeCHAPTER 10
958

mand can subsequently be repeated to update the captured content. Table 10.43
shows the contents of this type of dictionary.

TABLE 10.43 Entries in a Web Capture command dictionary

The URL entry specifies the initial URL for the retrieval command. The L (levels)
entry specifies the number of levels of pages requested to be retrieved from this
URL. If the L entry is omitted, its value is assumed to be 1, denoting retrieval of
the initial URL only.

The value of the command dictionary’s F entry is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the command. Bit positions
within the flag word are numbered from 1 (low-order) to 32 (high-order).
Table 10.44 shows the meanings of the flags; all undefined flag bits are reserved
and must be set to 0.

TABLE 10.44 Web Capture command flags

KEY TYPE VALUE

URL ASCII string (Required) The initial URL from which source data was requested.

L integer (Optional) The number of levels of pages retrieved from the initial URL. Default
value: 1.

F integer (Optional) A set of flags specifying various characteristics of the command (see
Table 10.44). Default value: 0.

P string or stream (Optional) Data that was posted to the URL.

CT ASCII string (Optional) A content type describing the data posted to the URL. Default value:
application / x−www−form−urlencoded.

H string (Optional) Additional HTTP request headers sent to the URL.

S dictionary (Optional) A command settings dictionary containing settings used in the con-
version process (see “Command Settings” on page 960).

BIT POSITION NAME MEANING

1 SameSite If set, pages were retrieved only from the host specified in the initial URL.

2 SamePath If set, pages were retrieved only from the path specified in the initial URL
(see below).

Web CaptureSECTION 10.9
959

The SamePath flag, if set, indicates that pages were retrieved only if they were in
the same path specified in the initial URL. A page is considered to be in the same
path if its scheme and network location components (as defined in Internet RFC
1808, Relative Uniform Resource Locators) match those of the initial URL and its
path component matches up to and including the last forward slash (/) character
in the initial URL. For example, the URL

http : / / www . adobe . com / fiddle / faddle / foo . html

is considered to be in the same path as the initial URL

http : / / www . adobe . com / fiddle / initial . html

The comparison is case-insensitive for the scheme and network location compo-
nents and case-sensitive for the path component.

If the Submit flag is set, the command represents a form submission. If no P
(posted data) entry is present, the submitted data is encoded in the URL (an
HTTP GET request). If P is present, the command represents an HTTP POST
request. In this case, the value of the Submit flag is ignored. If the posted data is
small enough, it may be represented by a string. For large amounts of data, a
stream is recommended because it can be compressed.

The CT (content type) entry is relevant only for POST requests. It describes the
content type of the posted data, as described in Internet RFC 2045, Multipurpose
Internet Mail Extensions (MIME), Part One: Format of Internet Message Bodies
(see the Bibliography).

The H (headers) entry specifies additional HTTP request headers that were sent
in the request for the URL. Each header line in the string is terminated with a car-
riage return and a line feed, as in this example:

(Referer : http : / / frumble . com \ 015 \ 012From : veeble @ frotz . com \ 015 \ 012)

The HTTP request header format is specified in Internet RFC 2616, Hypertext
Transfer Protocol—HTTP/1.1 (see the Bibliography).

3 Submit If set, the command represents a form submission (see below).

BIT POSITION NAME MEANING

Document InterchangeCHAPTER 10
960

The S (settings) entry specifies a command settings dictionary (see the next sec-
tion). Holding settings specific to the conversion engines. If this entry is omitted,
default values are assumed. It is recommended that command settings dictionar-
ies be shared by any command dictionaries that use the same settings.

Command Settings

The S (settings) entry in a command dictionary contains a command settings
dictionary, which holds settings for conversion engines used in converting the
results of the command to PDF. Table 10.45 shows the contents of this type of dic-
tionary.

TABLE 10.45 Entries in a Web Capture command settings dictionary

Each key in the C dictionary is the internal name of a conversion engine, which
should be a name object of the following form:

/ company : product : version : contentType

where

company is the name (or abbreviation) of the company that created the conver-
sion engine.

product is the name of the conversion engine. This field may be left blank, but
the trailing colon character (:) is still required.

version is the version of the conversion engine.

contentType is an identifier for the content type that the settings are associated
with. This is required because some converters may handle multiple content
types.

KEY TYPE VALUE

G dictionary (Optional) A dictionary containing global conversion engine settings relevant to all con-
version engines. If this entry is absent, default settings are used.

C dictionary (Optional) Settings for specific conversion engines. Each key in this dictionary is the
internal name of a conversion engine (see below). The associated value is a dictionary
containing the settings associated with that conversion engine. If the settings for a par-
ticular conversion engine are not found in the dictionary, default settings are used.

Web CaptureSECTION 10.9
961

For example:

/ ADBE : H2PDF : 1 . 0 : HTML

Note that all fields in the internal name are case-sensitive. The company field
must conform to the naming guidelines described in Appendix E. The values of
the other fields are unrestricted, except that they must not contain a colon.

Note: It must be possible to make a deep copy of a command settings dictionary
without explicit knowledge of the settings it may contain. To facilitate this operation,
the directed graph of PDF objects rooted by the command settings dictionary must
be entirely self-contained; that is, it must not contain any object referred to from
elsewhere in the PDF file.

10.9.5 Object Attributes Related to Web Capture

A given page object or image XObject can belong to at most one Web Capture
content set, called its parent content set. However, the object has no direct pointer
to its parent content set. Such a pointer might present problems for an application
that traces all pointers from an object to determine, for example, what resources
the object depends on. Instead, the object’s ID entry (see Table 3.27 on page 145
and Table 4.39 on page 340) contains the digital identifier of the parent content
set, which can be used to locate the parent content set via the IDS name tree in the
document’s name dictionary. (If the IDS entry for the identifier contains an array
of content sets, the parent can be found by searching the array for the content set
whose O entry includes the child object.)

In the course of creating PDF pages from HTML files, Web Capture frequently
scales the contents down to fit on fixed-sized pages. The PZ (preferred zoom)
entry in a page object (see “Page Objects” on page 144) specifies a magnification
factor by which the page can be scaled to undo the downscaling and view the
page at its original size. That is, when the page is viewed at the preferred magnifi-
cation factor, one unit in default user space corresponds to one original source
pixel.

Document InterchangeCHAPTER 10
962

10.10 Prepress Support

This section describes features of PDF that support prepress production work-
flows:

• The specification of page boundaries governing various aspects of the prepress
process, such as cropping, bleed, and trimming (Section 10.10.1, “Page Bound-
aries”)

• Facilities for including printer’s marks, such as registration targets, gray ramps,
color bars, and cut marks to assist in the production process (Section 10.10.2,
“Printer’s Marks”)

• Information for generating color separations for pages in a document (Section
10.10.3, “Separation Dictionaries”)

• Output intents for matching the color characteristics of a document with those
of a target output device or production environment in which it will be printed
(Section 10.10.4, “Output Intents”)

• Support for the generation of traps to minimize the visual effects of misregis-
tration between multiple colorants (Section 10.10.5, “Trapping Support”)

• The Open Prepress Interface (OPI) for creating low-resolution proxies for high-
resolution images (Section 10.10.6, “Open Prepress Interface (OPI)”)

10.10.1 Page Boundaries

A PDF page may be prepared either for a finished medium, such as a sheet of
paper, or as part of a prepress process in which the content of the page is placed
on an intermediate medium, such as film or an imposed reproduction plate. In
the latter case, it is important to distinguish between the intermediate page and
the finished page. The intermediate page may often include additional
production-related content, such as bleeds or printer marks, that falls outside the
boundaries of the finished page. To handle such cases, a PDF page can define as
many as five separate boundaries to control various aspects of the imaging
process:

• The media box defines the boundaries of the physical medium on which the
page is to be printed. It may include any extended area surrounding the
finished page for bleed, printing marks, or other such purposes. It may also

Prepress SupportSECTION 10.10
963

include areas close to the edges of the medium that cannot be marked because
of physical limitations of the output device. Content falling outside this bound-
ary can safely be discarded without affecting the meaning of the PDF file.

• The crop box defines the region to which the contents of the page are to be
clipped (cropped) when displayed or printed. Unlike the other boxes, the crop
box has no defined meaning in terms of physical page geometry or intended
use; it merely imposes clipping on the page contents. However, in the absence
of additional information (such as imposition instructions specified in a JDF or
PJTF job ticket), the crop box determines how the page’s contents are to be po-
sitioned on the output medium. The default value is the page’s media box.

• The bleed box (PDF 1.3) defines the region to which the contents of the page
should be clipped when output in a production environment. This may include
any extra bleed area needed to accommodate the physical limitations of cut-
ting, folding, and trimming equipment. The actual printed page may include
printing marks that fall outside the bleed box. The default value is the page’s
crop box.

• The trim box (PDF 1.3) defines the intended dimensions of the finished page
after trimming. It may be smaller than the media box to allow for production-
related content, such as printing instructions, cut marks, or color bars. The
default value is the page’s crop box.

• The art box (PDF 1.3) defines the extent of the page’s meaningful content
(including potential white space) as intended by the page’s creator. The default
value is the page’s crop box.

These boundaries are specified by the MediaBox, CropBox, BleedBox, TrimBox,
and ArtBox entries, respectively, in the page object dictionary (see Table 3.27 on
page 145). All of them are rectangles expressed in default user space units. The
crop, bleed, trim, and art boxes should not ordinarily extend beyond the boun-
daries of the media box. If they do, they are effectively reduced to their intersec-
tion with the media box. Figure 10.3 illustrates the relationships among these
boundaries. (The crop box is not shown in the figure because it has no defined re-
lationship with any of the other boundaries.)

Document InterchangeCHAPTER 10
964

FIGURE 10.3 Page boundaries

How the various boundaries are used depends on the purpose to which the page
is being put. The following are typical purposes:

• Placing the content of a page in another application. The art box determines the
boundary of the content that is to be placed in the application. Depending on

This might be a caption

Bleed box

Media box

Art box

Trim box

Bleed: 10.75x8.25

Trim: 10.5x8

Printer’s marks

Headline

Prepress SupportSECTION 10.10
965

the applicable usage conventions, the placed content may be clipped to either
the art box or the bleed box. (For example, a quarter-page advertisement to be
placed on a magazine page might be clipped to the art box on the two sides of
the ad that face into the middle of the page and to the bleed box on the two
sides that bleed over the edge of the page.) The media box and trim box are
ignored.

• Printing a finished page. This case is typical of desktop or shared page printers,
in which the page content is positioned directly on the final output medium.
The art box and bleed box are ignored. The media box may be used as advice
for selecting media of the appropriate size. The crop box and trim box, if
present, should be the same as the media box. (See implementation note 167 in
Appendix H.)

• Printing an intermediate page for use in a prepress process. The art box is
ignored. The bleed box defines the boundary of the content to be imaged. The
trim box specifies the positioning of the content on the medium; it may also be
used to generate cut or fold marks outside the bleed box. Content falling within
the media box but outside the bleed box may or may not be imaged, depending
on the specific production process being used.

• Building an imposition of multiple pages on a press sheet. The art box is ignored.
The bleed box defines the clipping boundary of the content to be imaged; con-
tent outside the bleed box is ignored. The trim box specifies the positioning of
the page’s content within the imposition. Cut and fold marks are typically gen-
erated for the imposition as a whole.

In the scenarios above, an application that interprets the bleed, trim, and art
boxes for some purpose typically alters the crop box so as to impose the clipping
that those boxes prescribe.

Display of Page Boundaries

For the user’s convenience, viewer applications may offer the ability to display
guidelines on the screen for the various page boundaries. The optional BoxCol-
orInfo entry in a page object (see “Page Objects” on page 144) holds a box color
information dictionary (PDF 1.4) specifying the colors and other visual character-
istics to be used for such display. Viewer applications typically provide a user in-
terface to allow the user to set these characteristics interactively. Note that this
information is page-specific and can vary from one page to another.

Document InterchangeCHAPTER 10
966

As shown in Table 10.46, the box color information dictionary contains an op-
tional entry for each of the possible page boundaries other than the media box.
The value of each entry is a box style dictionary, whose contents are shown in
Table 10.47. If a given entry is absent, the viewer application should use its own
current default settings instead.

10.10.2 Printer’s Marks

Printer’s marks are graphic symbols or text added to a page to assist production
personnel in identifying components of a multiple-plate job and maintaining
consistent output during production. Examples commonly used in the printing
industry include these:

• Registration targets for aligning plates

• Gray ramps and color bars for measuring colors and ink densities

• Cut marks showing where the output medium is to be trimmed

Although PDF producer applications traditionally include such marks in the con-
tent stream of a document, they are logically separate from the content of the page
itself and typically appear outside the boundaries (the crop box, trim box, and art
box) defining the extent of that content (see Section 10.10.1, “Page Boundaries”).

Printer’s mark annotations (PDF 1.4) provide a mechanism for incorporating
printer’s marks into the PDF representation of a page, while keeping them sepa-
rate from the actual page content. Each page in a PDF document may contain any
number of such annotations, each of which represents a single printer’s mark.

Note: Because printer’s marks typically fall outside the page’s content boundaries,
each mark must be represented as a separate annotation. Otherwise—if, for exam-
ple, the cut marks at the four corners of the page were defined in a single annota-
tion—the annotation rectangle would encompass the entire contents of the page and
could interfere with the user’s ability to select content or interact with other annota-
tions on the page. Defining printer’s marks in separate annotations also facilitates
the implementation of a drag-and-drop user interface for specifying them.

Prepress SupportSECTION 10.10
967

TABLE 10.46 Entries in a box color information dictionary

TABLE 10.47 Entries in a box style dictionary

KEY TYPE VALUE

CropBox dictionary (Optional) A box style dictionary (see Table 10.47) specifying the visual characteris-
tics for displaying guidelines for the page’s crop box. This entry is ignored if no crop
box is defined in the page object.

BleedBox dictionary (Optional) A box style dictionary (see Table 10.47) specifying the visual characteris-
tics for displaying guidelines for the page’s bleed box. This entry is ignored if no
bleed box is defined in the page object.

TrimBox dictionary (Optional) A box style dictionary (see Table 10.47) specifying the visual characteris-
tics for displaying guidelines for the page’s trim box. This entry is ignored if no trim
box is defined in the page object.

ArtBox dictionary (Optional) A box style dictionary (see Table 10.47) specifying the visual characteris-
tics for displaying guidelines for the page’s art box. This entry is ignored if no art
box is defined in the page object.

KEY TYPE VALUE

C array (Optional) An array of three numbers in the range 0.0 to 1.0, representing the com-
ponents in the DeviceRGB color space of the color to be used for displaying the
guidelines. Default value: [0.0 0.0 0.0].

W number (Optional) The guideline width in default user space units. Default value: 1.

S name (Optional) The guideline style:

S (Solid) A solid rectangle.

D (Dashed) A dashed rectangle. The dash pattern is specified by the D entry
(see below).

Other guideline styles may be defined in the future. Default value: S.

D array (Optional) A dash array defining a pattern of dashes and gaps to be used in drawing
dashed guidelines (guideline style D above). The dash array is specified in default
user space units, in the same format as in the line dash pattern parameter of the
graphics state (see “Line Dash Pattern” on page 217). The dash phase is not speci-
fied and is assumed to be 0. For example, a D entry of [3 2] specifies guidelines
drawn with 3-point dashes alternating with 2-point gaps. Default value: [3].

Document InterchangeCHAPTER 10
968

The visual presentation of a printer’s mark is defined by a form XObject specified
as an appearance stream in the N (normal) entry of the printer’s mark annota-
tion’s appearance dictionary (see Section 8.4.4, “Appearance Streams”). More
than one appearance may be defined for the same printer’s mark to meet the
requirements of different regions or production facilities. In this case, the
appearance dictionary’s N entry holds a subdictionary containing the alternate
appearances, each identified by an arbitrary key. The AS (appearance state) entry
in the annotation dictionary designates one of them to be displayed or printed.

Note: The printer’s mark annotation’s appearance dictionary may include R (roll-
over) or D (down) entries, but appearances defined in either of these entries are
never displayed or printed.

Like all annotations, a printer’s mark annotation is defined by an annotation dic-
tionary (see Section 8.4.1, “Annotation Dictionaries”); its annotation type is
PrinterMark. The AP (appearances) and F (flags) entries (which ordinarily are
optional) must be present, as must the AS (appearance state) entry if the appear-
ance dictionary AP contains more than one appearance stream. The Print and
ReadOnly flags in the F entry must be set and all others clear (see Section 8.4.2,
“Annotation Flags”). Table 10.48 shows an additional annotation dictionary entry
specific to this type of annotation.

TABLE 10.48 Additional entries specific to a printer’s mark annotation

The form dictionary defining a printer’s mark can contain the optional entries
shown in Table 10.49 in addition to the standard ones common to all form dictio-
naries (see Section 4.9.1, “Form Dictionaries”).

TABLE 10.49 Additional entries specific to a printer’s mark form dictionary

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
PrinterMark for a printer’s mark annotation.

MN name (Optional) An arbitrary name identifying the type of printer’s mark, such as
ColorBar or RegistrationTarget.

KEY TYPE VALUE

MarkStyle text string (Optional; PDF 1.4) A text string representing the printer’s mark in human-
readable form and suitable for presentation to the user on the screen.

Prepress SupportSECTION 10.10
969

10.10.3 Separation Dictionaries

In high-end printing workflows, pages are ultimately produced as sets of separa-
tions, one per colorant (see “Separation Color Spaces” on page 264). Ordinarily,
each page in a PDF file is treated as a composite page that paints graphics objects
using all the process colorants and perhaps some spot colorants as well. In other
words, all separations for a page are generated from a single PDF description of
that page.

In some workflows, however, pages are preseparated before generating the PDF
file. In a preseparated PDF file, the separations for a page are described as sepa-
rate page objects, each painting only a single colorant (usually specified in the
DeviceGray color space). When this is done, additional information is needed to
identify the actual colorant associated with each separation and to group together
the page objects representing all the separations for a given page. This informa-
tion is contained in a separation dictionary (PDF 1.3) in the SeparationInfo entry
of each page object (see “Page Objects” on page 144). Table 10.50 shows the con-
tents of this type of dictionary.

TABLE 10.50 Entries in a separation dictionary

Colorants dictionary (Optional; PDF 1.4) A dictionary identifying the individual colorants
associated with a printer’s mark, such as a color bar. For each entry in this
dictionary, the key is a colorant name and the value is an array defining a
Separation color space for that colorant (see “Separation Color Spaces” on
page 264). The key must match the colorant name given in that color space.

KEY TYPE VALUE

Pages array (Required) An array of indirect references to page objects representing separa-
tions of the same document page. One of the page objects in the array must be
the one with which this separation dictionary is associated, and all of them must
have separation dictionaries (SeparationInfo entries) containing Pages arrays
identical to this one.

DeviceColorant name or
string

(Required) The name of the device colorant to be used in rendering this separa-
tion, such as Cyan or PANTONE 35 CV.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
970

10.10.4 Output Intents

Output intents (PDF 1.4) provide a means for matching the color characteristics
of a PDF document with those of a target output device or production environ-
ment in which the document will be printed. The optional OutputIntents entry in
the document catalog (see Section 3.6.1, “Document Catalog”) holds an array of
output intent dictionaries, each describing the color reproduction characteristics
of a possible output device or production condition. The contents of these dictio-
naries can vary for different devices and conditions. The dictionary’s S entry
specifies an output intent subtype that determines the format and meaning of the
remaining entries.

This use of multiple output intents allows the production process to be custom-
ized to the expected workflow and the specific tools available. For example, one
production facility might process files conforming to a recognized format stan-
dard such as PDF/X-1, while another uses custom Acrobat plug-in extensions to
produce RGB output for document distribution on the Web. Each of these work-
flows would require different sets of output intent information. Multiple output
intents also allow the same PDF file to be distributed unmodified to multiple pro-
duction facilities. The choice of which output intent to use in a given production
environment is a matter for agreement between the purchaser and provider of
production services. PDF intentionally does not include a selector for choosing a
particular output intent from within the PDF file.

At the time of publication, only one output intent subtype, GTS_PDFX, has been
defined, corresponding to the PDF/X format standard specified in ISO 15930-
1:2001 (see the Bibliography). Table 10.51 shows the contents of this type of output

ColorSpace array (Optional) An array defining a Separation or DeviceN color space (see “Separa-
tion Color Spaces” on page 264 and “DeviceN Color Spaces” on page 268). It
provides additional information about the color specified by DeviceColorant—in
particular, the alternate color space and tint transformation function that would
be used to represent the colorant as a process color. This information enables a
viewer application to preview the separation in a color that approximates the de-
vice colorant.

The value of DeviceColorant must match the space’s colorant name (if it is a
Separation space) or be one of the space’s colorant names (if it is a DeviceN
space).

KEY TYPE VALUE

Prepress SupportSECTION 10.10
971

intent dictionary. Other subtypes may be added in the future; the names of any
such additional subtypes must conform to the naming guidelines described in
Appendix E.

TABLE 10.51 Entries in a PDF/X output intent dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes;
if present, must be OutputIntent for an output intent dictionary.

S name (Required) The output intent subtype; must be GTS_PDFX for a
PDF/X output intent.

OutputCondition ASCII string (Optional) An ASCII string concisely identifying the intended
output device or production condition in human-readable form.
This is the preferred method of defining such a string for pre-
sentation to the user.

OutputConditionIdentifier ASCII string (Required) An ASCII string identifying the intended output de-
vice or production condition in human- or machine-readable
form. If human-readable, this string may be used in lieu of an
OutputCondition string for presentation to the user.

A typical value for this entry would be the name of a production
condition maintained in an industry-standard registry such as
the ICC Characterization Data Registry (see the Bibliography). If
the designated condition matches that in effect at production
time, the production software is responsible for providing the
corresponding ICC profile as defined in the registry.

If the intended production condition is not a recognized
standard, the value of this entry may be Custom or an applica-
tion-specific, machine-readable name. The DestOutputProfile
entry defines the ICC profile, and the Info entry is used for fur-
ther human-readable identification.

RegistryName ASCII string (Optional) An ASCII string (conventionally a uniform resource
identifier, or URI) identifying the registry in which the condi-
tion designated by OutputConditionIdentifier is defined.

Info text string (Required if OutputConditionIdentifier does not specify a standard
production condition; optional otherwise) A human-readable text
string containing additional information or comments about the
intended target device or production condition.

Document InterchangeCHAPTER 10
972

Note: PDF/X is actually a family of standards representing varying levels of con-
formance. The standard for a given conformance level may prescribe further restric-
tions on the usage and meaning of entries in the output intent dictionary. Any such
restrictions take precedence over the descriptions given in Table 10.51.

The ICC profile information in an output intent dictionary supplements rather
than replaces that in an ICCBased or default color space (see “ICCBased Color
Spaces” on page 252 and “Default Color Spaces” on page 257). Those mechanisms
are specifically intended for describing the characteristics of source color compo-
nent values. An output intent can be used in conjunction with them to convert
source colors to those required for a specific production condition or to enable
the display or proofing of the intended output.

The data in an output intent dictionary is provided for informational purposes
only, and PDF consumer applications are free to disregard it. In particular, there
is no expectation that PDF production tools will automatically convert colors
expressed in the same source color space to the specified target space before gen-
erating output. (In some workflows, such conversion may, in fact, be undesirable.
For example, when working with CMYK source colors tagged with a source ICC
profile solely for purposes of characterization, converting such colors from four
components to three and back is unnecessary and will result in a loss of fidelity in
the values of the black component; see “Implicit Conversion of CIE-Based Color
Spaces” on page 259 for further discussion.) On the other hand, when source
colors are expressed in different base color spaces—for example, when combining
separately generated images on the same PDF page—it is possible (though not re-
quired) to use the destination profile specified in the output intent dictionary to

DestOutputProfile stream (Required if OutputConditionIdentifier does not specify a standard
production condition; optional otherwise) An ICC profile stream
defining the transformation from the PDF document’s source
colors to output device colorants.

The format of the profile stream is the same as that used in spec-
ifying an ICCBased color space (see “ICCBased Color Spaces” on
page 252). The output transformation uses the profile’s “from
CIE” information (BToA in ICC terminology); the “to CIE”
(AToB) information can optionally be used to remap source
color values to some other destination color space, such as for
screen preview or hardcopy proofing. (See implementation note
168 in Appendix H.)

KEY TYPE VALUE

Prepress SupportSECTION 10.10
973

convert source colors to the same target color space. (See implementation note
169 in Appendix H.)

Example 10.26 shows a PDF/X output intent dictionary based on an industry-
standard production condition (CGATS TR 001) from the ICC Characterization
Data Registry. Example 10.27 shows one for a custom production condition.

Example 10.26

<< /Type /OutputIntent % Output intent dictionary
 /S /GTS_PDFX
 /OutputCondition (CGATS TR 001 (SWOP))
 /OutputConditionIdentifier (CGATS TR 001)
 /RegistryName (http : / / www . color . org)
 /DestOutputProfile 100 0 R

>>

100 0 obj % ICC profile stream
<< /N 4

 /Length 1605
 /Filter /ASCIIHexDecode

>>
stream
00 00 02 0C 61 70 … >
endstream
endobj

Example 10.27

<< /Type /OutputIntent % Output intent dictionary
 /S /GTS_PDFX
 /OutputCondition (Coated)
 /OutputConditionIdentifier (Custom)
 /Info (Coated 150lpi)
 /DestOutputProfile 100 0 R

>>

100 0 obj % ICC profile stream
<< /N 4

 /Length 1605
 /Filter /ASCIIHexDecode

>>
stream
00 00 02 0C 61 70 … >
endstream
endobj

Document InterchangeCHAPTER 10
974

10.10.5 Trapping Support

On devices such as offset printing presses, which mark multiple colorants on a
single sheet of physical medium, mechanical limitations of the device can cause
imprecise alignment, or misregistration, between colorants. This can produce
unwanted visual artifacts such as brightly colored gaps or bands around the edges
of printed objects. In high-quality reproduction of color documents, such arti-
facts are commonly avoided by creating an overlap, called a trap, between areas of
adjacent color.

Figure 10.4 shows an example of trapping. The light and medium grays represent
two different colorants, which are used to paint the background and the glyph de-
noting the letter A. The first figure shows the intended result, with the two colo-
rants properly registered. The second figure shows what happens when the
colorants are misregistered. In the third figure, traps have been overprinted along
the boundaries, obscuring the artifacts caused by the misregistration. (For em-
phasis, the traps are shown here in dark gray; in actual practice, their color would
be similar to one of the adjoining colors.)

FIGURE 10.4 Trapping example

Trapping can be implemented by the application generating a PDF file, by some
intermediate application that adds traps to a PDF document, or by the raster
image processor (RIP) that produces final output. In the last two cases, the trap-
ping process is controlled by a set of trapping instructions, which define two kinds
of information:

• Trapping zones within which traps should be created

• Trapping parameters specifying the nature of the traps within each zone

Intended result Misregistration
with no trap

Misregistration
with trap

Prepress SupportSECTION 10.10
975

Trapping zones and trapping parameters are discussed fully in Sections 6.3.2 and
6.3.3, respectively, of the PostScript Language Reference, Third Edition. Trapping
instructions are not directly specified in a PDF file (as they are in a PostScript
file). Instead, they are specified in a job ticket that accompanies the PDF file or
can be embedded within it. Various standards exist for the format of job tickets;
two of them, JDF (Job Definition Format) and PJTF (Portable Job Ticket For-
mat), are described in the CIP4 document JDF Specification and in Adobe Tech-
nical Note #5620, Portable Job Ticket Format (see the Bibliography).

When trapping is performed before the production of final output, the resulting
traps are placed in the PDF file for subsequent use. The traps themselves are
described as a content stream in a trap network annotation (see below). The
stream dictionary can include additional entries describing the method that was
used to produce the traps and other information about their appearance.

Trap Network Annotations

A complete set of traps generated for a given page under a specified set of trap-
ping instructions is called a trap network (PDF 1.3). It is a form XObject contain-
ing graphics objects for painting the required traps on the page. A page may have
more than one trap network based on different trapping instructions, presumably
intended for different output devices. All of the trap networks for a given page are
contained in a single trap network annotation (see Section 8.4, “Annotations”).
There can be at most one trap network annotation per page, which must be the
last element in the page’s Annots array (see “Page Objects” on page 144). This en-
sures that the trap network is printed after all of the page’s other contents. (See
implementation note 170 in Appendix H.)

The form XObject defining a trap network is specified as an appearance stream in
the N (normal) entry of the trap network annotation’s appearance dictionary (see
Section 8.4.4, “Appearance Streams”). If more than one trap network is defined
for the same page, the N entry holds a subdictionary containing the alternate trap
networks, each identified by an arbitrary key. The AS (appearance state) entry in
the annotation dictionary designates one of them as the current trap network to
be displayed or printed.

Note: The trap network annotation’s appearance dictionary may include R (rollover)
or D (down) entries, but appearances defined in either of these entries are never
printed.

Document InterchangeCHAPTER 10
976

Like all annotations, a trap network annotation is defined by an annotation dic-
tionary (see Section 8.4.1, “Annotation Dictionaries”); its annotation type is
TrapNet. The AP (appearances), AS (appearance state), and F (flags) entries
(which ordinarily are optional) must be present, with the Print and ReadOnly
flags set and all others clear (see Section 8.4.2, “Annotation Flags”). Table 10.52
shows the additional annotation dictionary entries specific to this type of anno-
tation.

The Version and AnnotStates entries, if present, are used to detect changes in the
content of a page that might require regenerating its trap networks. The Version
array identifies elements of the page’s content that might be changed by an editing
application and thus invalidate its trap networks. Because there is at most one
Version array per trap network annotation (and thus per page), any application
generating a new trap network must also verify the validity of existing trap net-
works by enumerating the objects identified in the array and verifying that the
results exactly match the array’s current contents. Any trap networks found to be
invalid must be regenerated. (See implementation notes 171 and 172 in Appendix
H.)

Beginning with PDF 1.4, the LastModified entry can be used in place of the
Version array to track changes to a page’s trap network. (The trap network anno-
tation must include either a LastModified entry or the combination of Version
and AnnotStates, but not all three.) If the modification date in the LastModified
entry of the page object (see “Page Objects” on page 144) is more recent than the
one in the trap network annotation dictionary, the page’s trap networks are in-
valid and must be regenerated. Note, however, that not all editing applications
and plug-in extensions correctly maintain these modification dates. This method
of tracking trap network modifications can be used reliably only in a controlled
workflow environment where the integrity of the modification dates is assured.

TABLE 10.52 Additional entries specific to a trap network annotation

KEY TYPE VALUE

Subtype name (Required) The type of annotation that this dictionary describes; must be
TrapNet for a trap network annotation.

LastModified date (Required if Version and AnnotStates are absent; must be absent if Version and
AnnotStates are present; PDF 1.4) The date and time (see Section 3.8.3,
“Dates”) when the trap network was most recently modified.

Prepress SupportSECTION 10.10
977

Trap Network Appearances

Each entry in the N (normal) subdictionary of a trap network annotation’s
appearance dictionary holds an appearance stream defining a trap network asso-
ciated with the given page. Like all appearances, a trap network is a stream object
defining a form XObject (see Section 4.9, “Form XObjects”). The body of the
stream contains the graphics objects needed to paint the traps making up the trap
network. Its dictionary entries include, besides the standard entries for a form
dictionary, the additional entries shown in Table 10.53.

Version array (Required if AnnotStates is present; must be absent if LastModified is present)
An unordered array of all objects present in the page description at the time
the trap networks were generated and that, if changed, could affect the
appearance of the page. If present, the array must include the following
objects:

• All content streams identified in the page object’s Contents entry (see
“Page Objects” on page 144)

• All resource objects (other than procedure sets) in the page’s resource dic-
tionary (see Section 3.7.2, “Resource Dictionaries”)

• All resource objects (other than procedure sets) in the resource dictionar-
ies of any form XObjects on the page (see Section 4.9, “Form XObjects”)

• All OPI dictionaries associated with XObjects on the page (see Section
10.10.6, “Open Prepress Interface (OPI)”)

AnnotStates array (Required if Version is present; must be absent if LastModified is present) An
array of name objects representing the appearance states (value of the AS
entry) for annotations associated with the page. The appearance states must
be listed in the same order as the annotations in the page’s Annots array (see
“Page Objects” on page 144). For an annotation with no AS entry, the corre-
sponding array element should be null. No appearance state should be
included for the trap network annotation itself.

FontFauxing array (Optional) An array of font dictionaries representing fonts that were fauxed
(replaced by substitute fonts) during the generation of trap networks for the
page.

KEY TYPE VALUE

Document InterchangeCHAPTER 10
978

TABLE 10.53 Additional entries specific to a trap network appearance stream

Note: Preseparated PDF files (see Section 10.10.3, “Separation Dictionaries”) can-
not be trapped because traps are defined along the borders between different colors
and a preseparated file uses only one color. Preseparation must therefore occur after
trapping, not before. An application preseparating a trapped PDF file is responsible
for calculating new Version arrays for the separated trap networks.

10.10.6 Open Prepress Interface (OPI)

The workflow in a prepress environment often involves multiple applications in
areas such as graphic design, page layout, word processing, photo manipulation,
and document construction. As pieces of the final document are moved from one
application to another, it is useful to separate the data of high-resolution images,
which can be quite large—in some cases, many times the size of the rest of the
document combined—from that of the document itself. The Open Prepress Inter-
face (OPI) is a mechanism, originally developed by Aldus Corporation, for cre-

KEY TYPE VALUE

PCM name (Required) The name of the process color model that was assumed when
this trap network was created; equivalent to the PostScript page device
parameter ProcessColorModel (see Section 6.2.5 of the PostScript Lan-
guage Reference, Third Edition). Valid values are DeviceGray, DeviceRGB,
DeviceCMYK, DeviceCMY, DeviceRGBK, and DeviceN.

SeparationColorNames array (Optional) An array of names identifying the colorants that were assumed
when this network was created; equivalent to the PostScript page device
parameter of the same name (see Section 6.2.5 of the PostScript Language
Reference, Third Edition). Colorants implied by the process color model
PCM are available automatically and need not be explicitly declared. If this
entry is absent, the colorants implied by PCM are assumed.

TrapRegions array (Optional) An array of indirect references to TrapRegion objects defining
the page’s trapping zones and the associated trapping parameters, as de-
scribed in Adobe Technical Note #5620, Portable Job Ticket Format.
These references are to objects comprising portions of a PJTF job ticket
that is embedded in the PDF file. When the trapping zones and parame-
ters are defined by an external job ticket (or by some other means, such
as with JDF), this entry is absent.

TrapStyles text string (Optional) A human-readable text string that applications can use to de-
scribe this trap network to the user (for example, to allow switching be-
tween trap networks).

Prepress SupportSECTION 10.10
979

ating low-resolution placeholders, or proxies, for such high-resolution images.
The proxy typically consists of a downsampled version of the full-resolution
image, to be used for screen display and proofing. Before the document is print-
ed, it passes through a filter known as an OPI server, which replaces the proxies
with the original full-resolution images.

In PostScript programs, OPI proxies are defined by PostScript code surrounded
by special OPI comments, which specify such information as the placement and
cropping of the image and adjustments to its size, rotation, color, and other
attributes. In PDF, proxies are embedded in a document as image or form
XObjects with an associated OPI dictionary (PDF 1.2) containing the same infor-
mation conveyed in PostScript by the OPI comments. Two versions of OPI are
supported, versions 1.3 and 2.0. In OPI 1.3, a proxy consisting of a single image,
with no changes in the graphics state, may be represented as an image XObject;
otherwise it must be a form XObject. In OPI 2.0, the proxy always entails changes
in the graphics state and hence must be represented as a form XObject. (See
implementation notes 173 and 174 in Appendix H.)

An XObject representing an OPI proxy must contain an OPI entry in its image or
form dictionary (see Table 4.39 on page 340 and Table 4.45 on page 358). The val-
ue of this entry is an OPI version dictionary (Table 10.54) identifying the version
of OPI to which the proxy corresponds. This dictionary consists of a single entry,
whose key is the name 1.3 or 2.0 and whose value is the OPI dictionary defining
the proxy’s OPI attributes.

TABLE 10.54 Entry in an OPI version dictionary

Note: As in any other PDF dictionary, the key in an OPI version dictionary must be
a name object. The OPI version dictionary would thus be written in the PDF file in
either the form

<< /1 . 3 d 0 R >> % OPI 1 . 3 dictionary

or

<< /2 . 0 d 0 R >> % OPI 2 . 0 dictionary

where d is the object number of the corresponding OPI dictionary.

KEY TYPE VALUE

version number dictionary (Required; PDF 1.2) An OPI dictionary specifying the attributes of this proxy
(see Tables 10.55 and 10.56). The key for this entry must be the name 1.3 or
2.0, identifying the version of OPI to which the proxy corresponds.

Document InterchangeCHAPTER 10
980

Tables 10.55 and 10.56 describe the contents of the OPI dictionaries for OPI 1.3
and OPI 2.0, respectively, along with the corresponding PostScript OPI com-
ments. The dictionary entries are listed in the order in which the corresponding
OPI comments should appear in a PostScript program. Complete details on the
meanings of these entries and their effects on OPI servers can be found in OPI:
Open Prepress Interface Specification 1.3 (available from Adobe) and Adobe Tech-
nical Note #5660, Open Prepress Interface (OPI) Specification, Version 2.0.

TABLE 10.55 Entries in a version 1.3 OPI dictionary

KEY TYPE OPI COMMENT VALUE

Type name (Optional) The type of PDF object that this dic-
tionary describes; if present, must be OPI for an
OPI dictionary.

Version number (Required) The version of OPI to which this dic-
tionary refers; must be the number 1.3 (not the
name 1.3, as in an OPI version dictionary).

F file speci-
fication

%ALDImageFilename (Required) The external file containing the im-
age corresponding to this proxy. (See implemen-
tation note 175 in Appendix H.)

ID byte string %ALDImageID (Optional) An identifying string denoting the
image.

Comments text string %ALDObjectComments (Optional) A human-readable comment, typical-
ly containing instructions or suggestions to the
operator of the OPI server on how to handle the
image.

Size array %ALDImageDimensions (Required) An array of two integers of the form

[pixelsWide pixelsHigh]

specifying the dimensions of the image in pixels.

CropRect rectangle %ALDImageCropRect (Required) An array of four integers of the form

[left top right bottom]

specifying the portion of the image to be used.

Prepress SupportSECTION 10.10
981

CropFixed array %ALDImageCropFixed (Optional) An array with the same form and
meaning as CropRect, but expressed in real
numbers instead of integers. Default value: the
value of CropRect.

Position array %ALDImagePosition (Required) An array of eight numbers of the
form

[llx lly ulx uly urx ury lrx lry]

specifying the location on the page of the
cropped image, where (llx , lly) are the user space
coordinates of the lower-left corner, (ulx , uly) are
those of the upper-left corner, (urx , ury) are
those of the upper-right corner, and (lrx , lry) are
those of the lower-right corner. The specified
coordinates must define a parallelogram; that is,
they must satisfy the conditions

ulx − llx = urx − lrx

and

uly − lly = ury − lry

The combination of Position and CropRect de-
termines the image’s scaling, rotation, reflection,
and skew.

Resolution array %ALDImageResolution (Optional) An array of two numbers of the form

[horizRes vertRes]

specifying the resolution of the image in samples
per inch.

ColorType name %ALDImageColorType (Optional) The type of color specified by the
Color entry. Valid values are Process, Spot, and
Separation. Default value: Spot.

KEY TYPE OPI COMMENT VALUE

Document InterchangeCHAPTER 10
982

Color array %ALDImageColor (Optional) An array of four numbers and a byte
string of the form

[C M Y K colorName]

specifying the value and name of the color in
which the image is to be rendered. The values of
C, M, Y, and K must all be in the range 0.0 to 1.0.
Default value: [0.0 0.0 0.0 1.0 (Black)].

Tint number %ALDImageTint (Optional) A number in the range 0.0 to 1.0
specifying the concentration of the color speci-
fied by Color in which the image is to be ren-
dered. Default value: 1.0.

Overprint boolean %ALDImageOverprint (Optional) A flag specifying whether the image
is to overprint (true) or knock out (false) under-
lying marks on other separations. Default value:
false.

ImageType array %ALDImageType (Optional) An array of two integers of the form

[samples bits]

specifying the number of samples per pixel and
bits per sample in the image.

GrayMap array %ALDImageGrayMap (Optional) An array of 2n integers in the range 0
to 65,535 (where n is the number of bits per
sample) recording changes made to the bright-
ness or contrast of the image.

Transparency boolean %ALDImageTransparency (Optional) A flag specifying whether white pix-
els in the image are to be treated as transparent.
Default value: true.

Tags array %ALDImageAsciiTag< NNN > (Optional) An array of pairs of the form

[tagNum1 tagText1 … tagNumn tagTextn]

where each tagNum is an integer representing a
TIFF tag number and each tagText is an ASCII
string representing the corresponding ASCII tag
value.

KEY TYPE OPI COMMENT VALUE

Prepress SupportSECTION 10.10
983

TABLE 10.56 Entries in a version 2.0 OPI dictionary

KEY TYPE OPI COMMENT VALUE

Type name (Optional) The type of PDF object that this dic-
tionary describes; if present, must be OPI for an
OPI dictionary.

Version number (Required) The version of OPI to which this dic-
tionary refers; must be the number 2 or 2.0 (not
the name 2.0, as in an OPI version dictionary).

F file speci-
fication

%%ImageFilename (Required) The external file containing the low-
resolution proxy image. (See implementation
note 175 in Appendix H.)

MainImage byte string %%MainImage (Optional) The pathname of the file containing
the full-resolution image corresponding to this
proxy, or any other identifying string that
uniquely identifies the full-resolution image.

Tags array %%TIFFASCIITag (Optional) An array of pairs of the form

[tagNum1 tagText1 … tagNumn tagTextn]

where each tagNum is an integer representing a
TIFF tag number and each tagText is an ASCII
string or an array of ASCII strings representing
the corresponding ASCII tag value.

Size array %%ImageDimensions (Optional; see note below) An array of two num-
bers of the form

[width height]

specifying the dimensions of the image in pixels.

Document InterchangeCHAPTER 10
984

CropRect rectangle %%ImageCropRect (Optional; see note below) An array of four num-
bers of the form

[left top right bottom]

specifying the portion of the image to be used.

Note: The Size and CropRect entries should either
both be present or both be absent. If present, they
must satisfy the conditions

0 ≤ left < right ≤ width

and

0 ≤ top < bottom ≤ height

Note that in this coordinate space, the positive y
axis extends vertically downward; hence, the
requirement that top < bottom.

Overprint boolean %%ImageOverprint (Optional) A flag specifying whether the image
is to overprint (true) or knock out (false) under-
lying marks on other separations. Default value:
false.

Inks name or
array

%%ImageInks (Optional) A name object or array specifying the
colorants to be applied to the image. The value
may be the name full_color or registration or an
array of the form

[/monochrome name1 tint1 … namen tintn]

where each name is a string representing the
name of a colorant and each tint is a real number
in the range 0.0 to 1.0 specifying the concentra-
tion of that colorant to be applied.

IncludedImageDimensions

 array %%IncludedImageDimensions (Optional) An array of two integers of the form

[pixelsWide pixelsHigh]

specifying the dimensions of the included image
in pixels.

IncludedImageQuality

 number %%IncludedImageQuality (Optional) A number indicating the quality of
the included image. Valid values are 1, 2, and 3.

KEY TYPE OPI COMMENT VALUE

985

APPENDIX A

AOperator Summary

This appendix lists, in alphabetical order, all the operators used in PDF content
streams. Table A.1 lists each operator, its corresponding PostScript language op-
erators (when it is an exact or near-exact equivalent of the PDF operator), a de-
scription of the operator, and references to the table and page where each
operator is introduced.

TABLE A.1 PDF content stream operators

OPERATOR

POSTSCRIPT
EQUIVALENT

DESCRIPTION

TABLE

PAGE

b closepath, fill,
stroke

Close, fill, and stroke path using nonzero winding number
rule

4.10 230

B fill, stroke Fill and stroke path using nonzero winding number rule 4.10 230

b* closepath, eofill,
stroke

Close, fill, and stroke path using even-odd rule 4.10 230

B* eofill, stroke Fill and stroke path using even-odd rule 4.10 230

BDC (PDF 1.2) Begin marked-content sequence with property list 10.7 851

BI Begin inline image object 4.42 352

BMC (PDF 1.2) Begin marked-content sequence 10.7 851

BT Begin text object 5.4 405

BX (PDF 1.1) Begin compatibility section 3.29 152

c curveto Append curved segment to path (three control points) 4.9 226

cm concat Concatenate matrix to current transformation matrix 4.7 219

Operator SummaryAPPENDIX A
986

CS setcolorspace (PDF 1.1) Set color space for stroking operations 4.24 287

cs setcolorspace (PDF 1.1) Set color space for nonstroking operations 4.24 287

d setdash Set line dash pattern 4.7 219

d0 setcharwidth Set glyph width in Type 3 font 5.10 423

d1 setcachedevice Set glyph width and bounding box in Type 3 font 5.10 423

Do Invoke named XObject 4.37 332

DP (PDF 1.2) Define marked-content point with property list 10.7 851

EI End inline image object 4.42 352

EMC (PDF 1.2) End marked-content sequence 10.7 851

ET End text object 5.4 405

EX (PDF 1.1) End compatibility section 3.29 152

f fill Fill path using nonzero winding number rule 4.10 230

F fill Fill path using nonzero winding number rule (obsolete) 4.10 230

f* eofill Fill path using even-odd rule 4.10 230

G setgray Set gray level for stroking operations 4.24 288

g setgray Set gray level for nonstroking operations 4.24 288

gs (PDF 1.2) Set parameters from graphics state parameter
dictionary

4.7 219

h closepath Close subpath 4.9 227

i setflat Set flatness tolerance 4.7 219

ID Begin inline image data 4.42 352

j setlinejoin Set line join style 4.7 219

J setlinecap Set line cap style 4.7 219

K setcmykcolor Set CMYK color for stroking operations 4.24 288

OPERATOR

POSTSCRIPT
EQUIVALENT

DESCRIPTION

TABLE

PAGE

Operator SummaryAPPENDIX A
987

k setcmykcolor Set CMYK color for nonstroking operations 4.24 288

l lineto Append straight line segment to path 4.9 226

m moveto Begin new subpath 4.9 226

M setmiterlimit Set miter limit 4.7 219

MP (PDF 1.2) Define marked-content point 10.7 851

n End path without filling or stroking 4.10 230

q gsave Save graphics state 4.7 219

Q grestore Restore graphics state 4.7 219

re Append rectangle to path 4.9 227

RG setrgbcolor Set RGB color for stroking operations 4.24 288

rg setrgbcolor Set RGB color for nonstroking operations 4.24 288

ri Set color rendering intent 4.7 219

s closepath,
stroke

Close and stroke path 4.10 230

S stroke Stroke path 4.10 230

SC setcolor (PDF 1.1) Set color for stroking operations 4.24 287

sc setcolor (PDF 1.1) Set color for nonstroking operations 4.24 288

SCN setcolor (PDF 1.2) Set color for stroking operations (ICCBased and
special color spaces)

4.24 288

scn setcolor (PDF 1.2) Set color for nonstroking operations (ICCBased
and special color spaces)

4.24 288

sh shfill (PDF 1.3) Paint area defined by shading pattern 4.27 303

T* Move to start of next text line 5.5 406

Tc Set character spacing 5.2 398

Td Move text position 5.5 406

OPERATOR

POSTSCRIPT
EQUIVALENT

DESCRIPTION

TABLE

PAGE

Operator SummaryAPPENDIX A
988

TD Move text position and set leading 5.5 406

Tf selectfont Set text font and size 5.2 398

Tj show Show text 5.6 407

TJ Show text, allowing individual glyph positioning 5.6 408

TL Set text leading 5.2 398

Tm Set text matrix and text line matrix 5.5 406

Tr Set text rendering mode 5.2 398

Ts Set text rise 5.2 398

Tw Set word spacing 5.2 398

Tz Set horizontal text scaling 5.2 398

v curveto Append curved segment to path (initial point replicated) 4.9 226

w setlinewidth Set line width 4.7 219

W clip Set clipping path using nonzero winding number rule 4.11 235

W* eoclip Set clipping path using even-odd rule 4.11 235

y curveto Append curved segment to path (final point replicated) 4.9 226

' Move to next line and show text 5.6 407

" Set word and character spacing, move to next line, and
show text

5.6 407

OPERATOR

POSTSCRIPT
EQUIVALENT

DESCRIPTION

TABLE

PAGE

989

APPENDIX B

BOperators in Type 4
Functions

This appendix summarizes the PostScript operators that can appear in a type 4
function, as discussed in Section 3.9.4, “Type 4 (PostScript Calculator) Func-
tions.” For details on these operators, see the PostScript Language Reference, Third
Edition.

B.1 Arithmetic Operators

num1 num2 add sum Return num1 plus num2
num1 num2 sub difference Return num1 minus num2
num1 num2 mul product Return num1 times num2
num1 num2 div quotient Return num1 divided by num2

int1 int2 idiv quotient Return int1 divided by int2 as an integer
int1 int2 mod remainder Return remainder after dividing int1 by int2

num1 neg num2 Return negative of num1
num1 abs num2 Return absolute value of num1
num1 ceiling num2 Return ceiling of num1
num1 floor num2 Return floor of num1
num1 round num2 Round num1 to nearest integer
num1 truncate num2 Remove fractional part of num1

num sqrt real Return square root of num
angle sin real Return sine of angle degrees
angle cos real Return cosine of angle degrees

num den atan angle Return arc tangent of num/den in degrees
base exponent exp real Raise base to exponent power

num ln real Return natural logarithm (base e)
num log real Return common logarithm (base 10)
num cvi int Convert to integer
num cvr real Convert to real

Operators in Type 4 FunctionsAPPENDIX B
990

B.2 Relational, Boolean, and Bitwise Operators

any1 any2 eq bool Test equal
any1 any2 ne bool Test not equal

num1 num2 gt bool Test greater than
num1 num2 ge bool Test greater than or equal
num1 num2 lt bool Test less than
num1 num2 le bool Test less than or equal

bool1 | int1 bool2 | int2 and bool3 | int3 Perform logical | bitwise and
bool1 | int1 bool2 | int2 or bool3 | int3 Perform logical | bitwise inclusive or
bool1 | int1 bool2 | int2 xor bool3 | int3 Perform logical | bitwise exclusive or

bool1 | int1 not bool2 | int2 Perform logical | bitwise not
int1 shift bitshift int2 Perform bitwise shift of int1 (positive is left)

– true true Return boolean value true
– false false Return boolean value false

B.3 Conditional Operators

bool { expr } if – Execute expr if bool is true
bool { expr1 } { expr2 } ifelse – Execute expr1 if bool is true, expr2 if false

B.4 Stack Operators

any pop – Discard top element
any1 any2 exch any2 any1 Exchange top two elements

any dup any any Duplicate top element
any1 … anyn n copy any1 … anyn any1 … anyn Duplicate top n elements
anyn … any0 n index anyn … any0 anyn Duplicate arbitrary element

anyn−1 … any0 n j roll any(j−1) mod n … any0 anyn−1 … anyj mod n
Roll n elements up j times

991

APPENDIX C

CImplementation Limits

In general, PDF does not restrict the size or quantity of things described in the
file format, such as numbers, arrays, images, and so on. However, a PDF consum-
er application running on a particular processor and in a particular operating en-
vironment does have such limits. If an application attempts to perform an action
that exceeds one of the limits, it displays an error.

PostScript interpreters also have implementation limits, listed in Appendix B of
the PostScript Language Reference, Third Edition. It is possible to construct a PDF
file that does not violate application limits but does not print on a PostScript
printer. Keep in mind that these limits vary according to the PostScript Lan-
guageLevel, interpreter version, and the amount of memory available to the inter-
preter.

This appendix describes typical limits for Acrobat. These limits fall into two main
classes:

• Architectural limits. The hardware on which a viewer application executes im-
poses certain constraints. For example, an integer is usually represented in 32
bits, limiting the range of allowed integers. In addition, the design of the soft-
ware imposes other constraints, such as a limit to the number of elements in an
array or string.

• Memory limits. The amount of memory available to a viewer application limits
the number of memory-consuming objects that can be held simultaneously.

PDF itself has one architectural limit: Because ten digits are allocated to byte off-
sets, the size of a file is limited to 1010 bytes (approximately 10 gigabytes).

Table C.1 describes the architectural limits for Acrobat viewer applications run-
ning on 32-bit machines. Because Acrobat implementations are subject to these

Implementation LimitsAPPENDIX C
992

limits, applications producing PDF files are strongly advised to remain within
them. Note, however, that memory limits are often exceeded before architectural
limits (such as the limit on the number of indirect objects) are reached.

TABLE C.1 Architectural limits

QUANTITY LIMIT DESCRIPTION

integer 2,147,483,647 Largest integer value; equal to 231 − 1.

-2,147,483,648 Smallest integer value; equal to −231.

real ± 3.403 × 1038 Largest and smallest real values (approximate).

 ± 1.175 × 10 38 Nonzero real values closest to 0 (approximate). Values closer
than these are automatically converted to 0.

5 Number of significant decimal digits of precision in fractional
part (approximate).

Note: To represent real numbers, Acrobat 6 uses IEEE single-precision floating-point
numbers, as described in the IEEE Standard for Binary Floating-Point Arithmetic (see
the Bibliography). Previous versions used 32-bit fixed-point numbers (16 bits on either
side of the radix point), which have greater precision but a much smaller range than
IEEE floating-point numbers. (Acrobat 6 still converts floating-point numbers to fixed
point for some components, such as screen display and fonts.)

string (in content
stream)

32,767 Maximum length of a string, in bytes.

Note: This restriction applies only to strings in content streams.
There is no effective restriction on other strings in PDF files.

name 127 Maximum length of a name, in bytes.

indirect object 8,388,607 Maximum number of indirect objects in a PDF file.

q/Q nesting 28 Maximum depth of graphics state nesting by q and Q operators.
(This is not a limit of Acrobat as such, but arises from the fact
that q and Q are implemented by the PostScript gsave and gre-
store operators when generating PostScript output; see imple-
mentation note 176 in Appendix H.)

DeviceN components 32 Maximum number of colorants or tint components in a DeviceN
color space.

CID 65,535 Maximum value of a CID (character identifier).

Implementation LimitsAPPENDIX C
993

Acrobat has some additional architectural limits:

• Thumbnail images may be no larger than 106 by 106 samples, and should be
created at one-eighth scale for 8.5-by-11-inch and A4-size pages.

• The minimum allowed page size is 3 by 3 units in default user space; the maxi-
mum is 14,400 by 14,400 units. In versions of PDF earlier than 1.6 (Acrobat
7.0), the size of the default user space unit was fixed at 1 ⁄ 72 inch, yielding a
minimum of approximately 0.04 by 0.04 inch and a maximum of 200 by 200
inches. Beginning with PDF 1.6, the size of the unit may be set on a page-by-
page basis; the default remains at 1/72 inch. (See implementation note 177 in
Appendix H.)

• The magnification factor of a view is constrained to be between approximately
8 percent and 6400 percent. These limits are not fixed; they vary with the size of
the page being displayed, as well as with the size of the pages previously viewed
within the file.

• When Acrobat reads a PDF file with a damaged or missing cross-reference
table, it attempts to rebuild the table by scanning all the objects in the file.
However, the generation numbers of deleted entries are lost if the cross-
reference table is missing or severely damaged. Reconstruction fails if any ob-
ject identifiers do not appear at the start of a line or if the endobj keyword does
not appear at the start of a line. Also, reconstruction fails if a stream contains a
line beginning with the word endstream, aside from the required endstream
that delimits the end of the stream.

Memory limits cannot be characterized as precisely as architectural limits because
the amount of available memory and the ways in which it is allocated vary from
one product to another. Memory is automatically reallocated from one use to an-
other when necessary: when more memory is needed for a particular purpose, it
can be taken from memory allocated to another purpose if that memory is cur-
rently unused or its use is nonessential (a cache, for example). Also, data is often
saved to a temporary file when memory is limited. Because of this behavior, it is
not possible to state limits for such items as the number of pages in a document,
number of text annotations or hypertext links on a page, number of graphics ob-
jects on a page, or number of fonts on a page or in a document.

Implementation LimitsAPPENDIX C
994

995

APPENDIX D

DCharacter Sets and
Encodings

This appendix lists the character sets and encodings that are assumed to be pre-
defined in any PDF consumer application. Only simple fonts, encompassing
Latin text and some symbols, are described here. See “Predefined CMaps” on
page 442 for a list of predefined CMaps for CID-keyed fonts.

Section D.1, “Latin Character Set and Encodings,” describes the entire character
set for the Adobe standard Latin-text fonts. This character set is supported by the
Times, Helvetica, and Courier font families, which are among the standard 14
predefined fonts (see “Standard Type 1 Fonts (Standard 14 Fonts)” on page 416).
For each named character, an octal character code is given in four different en-
codings: StandardEncoding, MacRomanEncoding, WinAnsiEncoding, and PDF-
DocEncoding (see Table D.1). Unencoded characters are indicated by a dash (—).

Section D.2, “PDFDocEncoding Character Set,” describes the entire set of charac-
ters that can be represented using PDFDocEncoding. It presents these characters
in numerical order and it describes the Unicode representation of each character.
This table overlaps the information presented in Section D.1, “Latin Character
Set and Encodings,” in terms of its presentation of presenting octal character
codes.

Section D.3, “Expert Set and MacExpertEncoding,” describes the so-called
“expert” character set, which contains additional characters useful for sophisti-
cated typography, such as small capitals, ligatures, and fractions. For each named
character, an octal character code is given in MacExpertEncoding. Note that the
built-in encoding in an expert font program is usually different from MacEx-
pertEncoding.

Sections D.4, “Symbol Set and Encoding,” and D.5, “ZapfDingbats Set and Encod-
ing,” describe the character sets and built-in encodings for the Symbol and

Character Sets and EncodingsAPPENDIX D
996

ZapfDingbats (ITC Zapf Dingbats) font programs, which are among the standard
14 predefined fonts. These fonts have built-in encodings that are unique to each
font. (The characters for ZapfDingbats are ordered by code instead of by name,
since the names in that font are meaningless.)

TABLE D.1 Latin-text encodings

ENCODING DESCRIPTION

StandardEncoding Adobe standard Latin-text encoding. This is the built-in encoding
defined in Type 1 Latin-text font programs (but generally not in
TrueType font programs). PDF does not have a predefined encod-
ing named StandardEncoding. However, it is useful to describe
this encoding, since a font’s built-in encoding can be used as the
base encoding from which differences are specified in an encod-
ing dictionary.

MacRomanEncoding Mac OS standard encoding for Latin text in Western writing sys-
tems. PDF has a predefined encoding named MacRomanEncoding
that can be used with both Type 1 and TrueType fonts.

WinAnsiEncoding Windows Code Page 1252, often called the “Windows ANSI”
encoding. This is the standard Windows encoding for Latin text
in Western writing systems. PDF has a predefined encoding
named WinAnsiEncoding that can be used with both Type 1 and
TrueType fonts.

PDFDocEncoding Encoding for text strings in a PDF document outside the docu-
ment’s content streams. This is one of two encodings (the other
being Unicode) that can be used to represent text strings; see Sec-
tion , “Text String Type.” PDF does not have a predefined encod-
ing named PDFDocEncoding; it is not customary to use this
encoding to show text from fonts.

MacExpertEncoding An encoding for use with expert fonts—ones containing the
expert character set. PDF has a predefined encoding named
MacExpertEncoding. Despite its name, it is not a platform-specific
encoding; however, only certain fonts have the appropriate char-
acter set for use with this encoding. No such fonts are among the
standard 14 predefined fonts.

Latin Character Set and EncodingsSECTION D.1
997

D.1 Latin Character Set and Encodings

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

A A 101 101 101 101
Æ AE 341 256 306 306
Á Aacute — 347 301 301
Â Acircumflex — 345 302 302
Ä Adieresis — 200 304 304
À Agrave — 313 300 300
Å Aring — 201 305 305
Ã Atilde — 314 303 303
B B 102 102 102 102
C C 103 103 103 103
Ç Ccedilla — 202 307 307
D D 104 104 104 104
E E 105 105 105 105
É Eacute — 203 311 311
Ê Ecircumflex — 346 312 312
Ë Edieresis — 350 313 313
È Egrave — 351 310 310
Ð Eth — — 320 320
€ Euro1 — — 200 240
F F 106 106 106 106
G G 107 107 107 107
H H 110 110 110 110
I I 111 111 111 111
Í Iacute — 352 315 315
Î Icircumflex — 353 316 316
Ï Idieresis — 354 317 317
Ì Igrave — 355 314 314
J J 112 112 112 112
K K 113 113 113 113
L L 114 114 114 114
Ł Lslash 350 — — 225
M M 115 115 115 115
N N 116 116 116 116
Ñ Ntilde — 204 321 321
O O 117 117 117 117

Œ OE 352 316 214 226
Ó Oacute — 356 323 323
Ô Ocircumflex — 357 324 324
Ö Odieresis — 205 326 326
Ò Ograve — 361 322 322
Ø Oslash 351 257 330 330
Õ Otilde — 315 325 325
P P 120 120 120 120
Q Q 121 121 121 121
R R 122 122 122 122
S S 123 123 123 123
Š Scaron — — 212 227
T T 124 124 124 124
Þ Thorn — — 336 336
U U 125 125 125 125
Ú Uacute — 362 332 332
Û Ucircumflex — 363 333 333
Ü Udieresis — 206 334 334
Ù Ugrave — 364 331 331
V V 126 126 126 126
W W 127 127 127 127
X X 130 130 130 130
Y Y 131 131 131 131
Ý Yacute — — 335 335
Ÿ Ydieresis — 331 237 230
Z Z 132 132 132 132
Ž Zcaron2 — — 216 231
a a 141 141 141 141
á aacute — 207 341 341
â acircumflex — 211 342 342
´ acute 302 253 264 264
ä adieresis — 212 344 344
æ ae 361 276 346 346
à agrave — 210 340 340
& ampersand 046 046 046 046

Character Sets and EncodingsAPPENDIX D
998

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

å aring — 214 345 345
^ asciicircum 136 136 136 136
~ asciitilde 176 176 176 176
* asterisk 052 052 052 052
@ at 100 100 100 100
ã atilde — 213 343 343
b b 142 142 142 142
\ backslash 134 134 134 134
| bar 174 174 174 174
{ braceleft 173 173 173 173
} braceright 175 175 175 175
[bracketleft 133 133 133 133
] bracketright 135 135 135 135
˘ breve 306 371 — 030
¦ brokenbar — — 246 246
• bullet3 267 245 225 200
c c 143 143 143 143
ˇ caron 317 377 — 031
ç ccedilla — 215 347 347
¸ cedilla 313 374 270 270
¢ cent 242 242 242 242
ˆ circumflex 303 366 210 032
: colon 072 072 072 072
, comma 054 054 054 054
© copyright — 251 251 251
¤ currency1 250 333 244 244
d d 144 144 144 144
† dagger 262 240 206 201
‡ daggerdbl 263 340 207 202
° degree — 241 260 260
¨ dieresis 310 254 250 250
÷ divide — 326 367 367
$ dollar 044 044 044 044
˙ dotaccent 307 372 — 033
ı dotlessi 365 365 — 232
e e 145 145 145 145
é eacute — 216 351 351

ê ecircumflex — 220 352 352
ë edieresis — 221 353 353
è egrave — 217 350 350
8 eight 070 070 070 070
… ellipsis 274 311 205 203
— emdash 320 321 227 204
– endash 261 320 226 205
= equal 075 075 075 075
ð eth — — 360 360
! exclam 041 041 041 041
¡ exclamdown 241 301 241 241
f f 146 146 146 146
fi fi 256 336 — 223
5 five 065 065 065 065
fl fl 257 337 — 224
ƒ florin 246 304 203 206
4 four 064 064 064 064
⁄ fraction 244 332 — 207
g g 147 147 147 147
ß germandbls 373 247 337 337
` grave 301 140 140 140
> greater 076 076 076 076
« guillemotleft4 253 307 253 253
» guillemotright4 273 310 273 273
‹ guilsinglleft 254 334 213 210
› guilsinglright 255 335 233 211
h h 150 150 150 150
˝ hungarumlaut 315 375 — 034
- hyphen5 055 055 055 055
i i 151 151 151 151
í iacute — 222 355 355
î icircumflex — 224 356 356
ï idieresis — 225 357 357
ì igrave — 223 354 354
j j 152 152 152 152
k k 153 153 153 153
l l 154 154 154 154

Latin Character Set and EncodingsSECTION D.1
999

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

< less 074 074 074 074
¬ logicalnot — 302 254 254
ł lslash 370 — — 233
m m 155 155 155 155
¯ macron 305 370 257 257
− minus — — — 212
μ mu — 265 265 265
× multiply — — 327 327
n n 156 156 156 156
9 nine 071 071 071 071
ñ ntilde — 226 361 361
numbersign 043 043 043 043
o o 157 157 157 157
ó oacute — 227 363 363
ô ocircumflex — 231 364 364
ö odieresis — 232 366 366
œ oe 372 317 234 234
˛ ogonek 316 376 — 035
ò ograve — 230 362 362
1 one 061 061 061 061
½ onehalf — — 275 275
¼ onequarter — — 274 274
¹ onesuperior — — 271 271
ª ordfeminine 343 273 252 252
º ordmasculine 353 274 272 272
ø oslash 371 277 370 370
õ otilde — 233 365 365
p p 160 160 160 160
¶ paragraph 266 246 266 266
(parenleft 050 050 050 050
) parenright 051 051 051 051
% percent 045 045 045 045
. period 056 056 056 056
· periodcentered 264 341 267 267
‰ perthousand 275 344 211 213
+ plus 053 053 053 053
± plusminus — 261 261 261

q q 161 161 161 161
? question 077 077 077 077
¿ questiondown 277 300 277 277
" quotedbl 042 042 042 042
„ quotedblbase 271 343 204 214
“ quotedblleft 252 322 223 215
” quotedblright 272 323 224 216
‘ quoteleft 140 324 221 217
’ quoteright 047 325 222 220
‚ quotesinglbase 270 342 202 221
' quotesingle 251 047 047 047
r r 162 162 162 162
® registered — 250 256 256
˚ ring 312 373 — 036
s s 163 163 163 163
š scaron — — 232 235
§ section 247 244 247 247
; semicolon 073 073 073 073
7 seven 067 067 067 067
6 six 066 066 066 066
/ slash 057 057 057 057
 space6 040 040 040 040
£ sterling 243 243 243 243
t t 164 164 164 164
þ thorn — — 376 376
3 three 063 063 063 063
¾ threequarters — — 276 276
³ threesuperior — — 263 263
˜ tilde 304 367 230 037
™ trademark — 252 231 222
2 two 062 062 062 062
² twosuperior — — 262 262
u u 165 165 165 165
ú uacute — 234 372 372
û ucircumflex — 236 373 373
ü udieresis — 237 374 374
ù ugrave — 235 371 371

Character Sets and EncodingsAPPENDIX D
1000

1. In PDF 1.3, the euro character was added to the Adobe standard Latin character set. It
is encoded as 200 in WinAnsiEncoding and 240 in PDFDocEncoding, assigning codes
that were previously unused. Apple changed the Mac OS Latin-text encoding for code
333 from the currency character to the euro character. However, this incompatible
change has not been reflected in PDF’s MacRomanEncoding, which continues to map
code 333 to currency. If the euro character is desired, an encoding dictionary can be
used to specify this single difference from MacRomanEncoding.

2. In PDF 1.3, the existing Zcaron and zcaron characters were added to WinAnsiEncoding
as the previously unused codes 216 and 236.

3. In WinAnsiEncoding, all unused codes greater than 40 map to the bullet character.
However, only code 225 is specifically assigned to the bullet character; other codes are
subject to future reassignment.

4. The character names guillemotleft and guillemotright are misspelled. The correct spell-
ing for this punctuation character is guillemet. However, the misspelled names are the
ones actually used in the fonts and encodings containing these characters.

5. The hyphen character is also encoded as 255 in WinAnsiEncoding. The meaning of this
duplicate code is “soft hyphen,” but it is typographically the same as hyphen.

6. The space character is also encoded as 312 in MacRomanEncoding and as 240 in
WinAnsiEncoding. This duplicate code signifies a nonbreaking space; it is typographi-
cally the same as space.

CHAR CODE (OCTAL) CHAR CODE (OCTAL)
CHAR NAME STD MAC WIN PDF CHAR NAME STD MAC WIN PDF

_ underscore 137 137 137 137
v v 166 166 166 166
w w 167 167 167 167
x x 170 170 170 170
y y 171 171 171 171
ý yacute — — 375 375

ÿ ydieresis — 330 377 377
¥ yen 245 264 245 245
z z 172 172 172 172
ž zcaron2 — — 236 236
0 zero 060 060 060 060

PDFDocEncoding Character SetSECTION D.2
1001

D.2 PDFDocEncoding Character Set

The column titled NOTES uses the following abbreviations:

U Undefined code point in PDFDocEncoding

SR Unicode codepoint that may require special representation in XML in
some contexts.

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

^@ 0 0x00 0000 U+0000 (NULL) U
^A 1 0x01 0001 U+0001 (START OF HEADING) U
^B 2 0x02 0002 U+0002 (START OF TEXT) U
^C 3 0x03 0003 U+0003 (END OF TEXT) U
^D 4 0x04 0004 U+0004 (END OF TEXT) U
^E 5 0x05 0005 U+0005 (END OF TRANSMISSION) U
^F 6 0x06 0006 U+0006 (ACKNOWLEDGE) U
^G 7 0x07 0007 U+0007 (BELL) U
^H 8 0x08 0010 U+0008 (BACKSPACE) U
^I 9 0x09 0011 U+0009 (CHARACTER TABULATION) SR
^J 10 0x0a 0012 U+000A (LINE FEED) SR

^K 11 0x0b 0013 U+000B (LINE TABULATION) U
^L 12 0x0c 0014 U+000C (FORM FEED) U

^M 13 0x0d 0015 U+000D (CARRIAGE RETURN) SR
^N 14 0x0e 0016 U+000E (SHIFT OUT) U
^O 15 0x0f 0017 U+000F (SHIFT IN) U
^P 16 0x10 0020 U+0010 (DATA LINK ESCAPE) U
^Q 17 0x11 0021 U+0011 (DEVICE CONTROL ONE) U
^R 18 0x12 0022 U+0012 (DEVICE CONTROL TWO) U
^S 19 0x13 0023 U+0013 (DEVICE CONTROL THREE) U
^T 20 0x14 0024 U+0014 (DEVICE CONTROL FOUR) U
^U 21 0x15 0025 U+0015 (NEGATIVE ACKNOWLEDGE) U
^V 22 0x16 0026 U+0017 (SYNCRONOUS IDLE) U

^W 23 0x17 0027 U+0017 (END OF TRANSMISSION BLOCK) U
u 24 0x18 0030 U+02D8 BREVE
v 25 0x19 0031 U+02C7 CARON

Character Sets and EncodingsAPPENDIX D
1002

^ 26 0x1a 0032 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT
· 27 0x1b 0033 U+02D9 DOT ABOVE
” 28 0x1c 0034 U+02DD DOUBLE ACUTE ACCENT
, 29 0x1d 0035 U+02DB OGONEK
° 30 0x1e 0036 U+02DA RING ABOVE

~ 31 0x1f 0037 U+02DC SMALL TILDE
32 0x20 0040 U+0020 SPACE ()

! 33 0x21 0041 U+0021 EXCLAMATION MARK SR
" 34 0x22 0042 U+0022 QUOTATION MARK (") SR
35 0x23 0043 U+0023 NUMBER SIGN
$ 36 0x24 0044 U+0024 DOLLAR SIGN

% 37 0x25 0045 U+0025 PERCENT SIGN
& 38 0x26 0046 U+0026 AMPERSAND (&)

' 39 0x27 0047 U+0027 APOSTROPHE (')
(40 0x28 0050 U+0028 LEFT PARENTHESIS
) 41 0x29 0051 U+0029 RIGHT PARENTHESIS
* 42 0x2a 0052 U+002A ASTERISK
+ 43 0x2b 0053 U+002B PLUS SIGN
, 44 0x2c 0054 U+002C COMMA
- 45 0x2d 0055 U+002D HYPHEN-MINUS
. 46 0x2e 0056 U+002E FULL STOP (period)
/ 47 0x2f 0057 U+002F SOLIDUS (slash)
0 48 0x30 0060 U+0030 DIGIT ZERO
1 49 0x31 0061 U+0031 DIGIT ONE
2 50 0x32 0062 U+0032 DIGIT TWO
3 51 0x33 0063 U+0033 DIGIT THREE
4 52 0x34 0064 U+0034 DIGIT FOUR
5 53 0x35 0065 U+0035 DIGIT FIVE
6 54 0x36 0066 U+0036 DIGIT SIX
7 55 0x37 0067 U+0037 DIGIT SEVEN
8 56 0x38 0070 U+0038 DIGIT EIGJT
9 57 0x39 0071 U+0039 DIGIT NINE

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

PDFDocEncoding Character SetSECTION D.2
1003

: 58 0x3a 0072 U+003A COLON
; 59 0x3b 0073 U+003B SEMICOLON

< 60 0x3c 0074 U+003C LESS THAN SIGN (<) SR
= 61 0x3d 0075 U+003D EQUALS SIGN
> 62 0x3e 0076 U+003E GREATER THAN SIGN (>)
? 63 0x3f 0077 U+003F QUESTION MARK

@ 64 0x40 0100 U+0040 COMMERCIAL AT
A 65 0x41 0101 U+0041
B 66 0x42 0102 U+0042
C 67 0x43 0103 U+0043
D 68 0x44 0104 U+0044
E 69 0x45 0105 U+0045
F 70 0x46 0106 U+0046
G 71 0x47 0107 U+0047
H 72 0x48 0110 U+0048
I 73 0x49 0111 U+0049
J 74 0x4a 0112 U+004A

K 75 0x4b 0113 U+004B
L 76 0x4c 0114 U+004C

M 77 0x4d 0115 U+004D
N 78 0x4e 0116 U+004E
O 79 0x4f 0117 U+004F
P 80 0x50 0120 U+0050
Q 81 0x51 0121 U+0051
R 82 0x52 0122 U+0052
S 83 0x53 0123 U+0053
T 84 0x54 0124 U+0054
U 85 0x55 0125 U+0055
V 86 0x56 0126 U+0056

W 87 0x57 0127 U+0057
X 88 0x58 0130 U+0058
Y 89 0x59 0131 U+0059

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

Character Sets and EncodingsAPPENDIX D
1004

Z 90 0x5a 0132 U+005A
[91 0x5b 0133 U+005B LEFT SQUARE BRACKET
\ 92 0x5c 0134 U+005C REVERSE SOLIDUS (backslash)
] 93 0x5d 0135 U+005D RIGHT SQUARE BRACKET
^ 94 0x5e 0136 U+005E CIRCUMFLEX ACCENT (hat)
_ 95 0x5f 0137 U+005F LOW LINE (SPACING UNDERSCORE)
` 96 0x60 0140 U+0060 GRAVE ACCENT
a 97 0x61 0141 U+0061
b 98 0x62 0142 U+0062
c 99 0x63 0143 U+0063
d 100 0x64 0144 U+0064
e 101 0x65 0145 U+0065
f 102 0x66 0146 U+0066
g 103 0x67 0147 U+0067
h 104 0x68 0150 U+0068
i 105 0x69 0151 U+0069
j 106 0x6a 0152 U+006A

k 107 0x6b 0153 U+006B
l 108 0x6c 0154 U+006C

m 109 0x6d 0155 U+006D
n 110 0x6e 0156 U+006E
o 111 0x6f 0157 U+006F
p 112 0x70 0160 U+0070
q 113 0x71 0161 U+0071
r 114 0x72 0162 U+0072
s 115 0x73 0163 U+0073
t 116 0x74 0164 U+0074
u 117 0x75 0165 U+0075
v 118 0x76 0166 U+0076
w 119 0x77 0167 U+0077
x 120 0x78 0170 U+0078
y 121 0x79 0171 U+0079

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

PDFDocEncoding Character SetSECTION D.2
1005

z 122 0x7a 0172 U+007A
{ 123 0x7b 0173 U+007B LEFT CURLY BRACKET
| 124 0x7c 0174 U+007C VERTICAL LINE
} 125 0x7d 0175 U+007D RIGHT CURLY BRACKET

~ 126 0x7e 0176 U+007E TILDE
127 0x7f 0177 Undefined U

• 128 0x80 0200 U+2022 BULLET
† 129 0x81 0201 U+2020 DAGGER
‡ 130 0x82 0202 U+2021 DOUBLE DAGGER

… 131 0x83 0203 U+2026 HORIZONTAL ELLIPSIS
— 132 0x84 0204 U+2014 EM DASH
– 133 0x85 0205 U+2013 EN DASH
ƒ 134 0x86 0206 U+0192

135 0x87 0207 U+2044 FRACTION SLASH (solidus)
‹ 136 0x88 0210 U+2039 SINGLE LEFT-POINTING ANGLE

QUOTATION MARK
› 137 0x89 0211 U+203A SINGLE RIGHT-POINTING ANGLE

QUOTATION MARK
Š 138 0x8a 0212 U+2212

‰ 139 0x8b 0213 U+2030 PER MILLE SIGN
„ 140 0x8c 0214 U+201E DOUBLE LOW-9 QUOTATION MARK

(quotedblbase)
“ 141 0x8d 0215 U+201C LEFT DOUBLE QUOTATION MARK (double

quote left)
” 142 0x8e 0216 U+201D RIGHT DOUBLE QUOTATION MARK

(quotedblright)
‘ 143 0x8f 0217 U+2018 LEFT SINGLE QUOTATION MARK (quoteleft)
’ 144 0x90 0220 U+2019 RIGHT SINGLE QUOTATION MARK

(quoteright)
‚ 145 0x91 0221 U+201A SINGLE LOW-9 QUOTATION MARK

(quotesinglbase)
™ 146 0x92 0222 U+2122 TRADE MARK SIGN
fi 147 0x93 0223 U+FB01 LATIN SMALL LIGATURE FI

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

Character Sets and EncodingsAPPENDIX D
1006

fl 148 0x94 0224 U+FB02 LATIN SMALL LIGATURE FL
149 0x95 0225 U+0141 LATIN CAPITAL LETTER L WITH STROKE

OE 150 0x96 0226 U+0152 LATIN CAPITAL LIGATURE OE
Š 151 0x97 0227 U+0160 LATIN CAPITAL LETTER S WITH CARON
Ÿ 152 0x98 0230 U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS

Z hat 153 0x99 0231 U+017D LATIN CAPITAL LETTER Z WITH CARON
i 154 0x9a 0232 U+0131 LATIN SMALL LETTER DOTLESS I

l/ 155 0x9b 0233 U+0142 LATIN SMALL LETTER L WITH STROKE
œ 156 0x9c 0234 U+0153 LATIN SMALL LIGATURE OE
š 157 0x9d 0235 U+0161 LATIN SMALL LETTER S WITH CARON
ž 158 0x9e 0236 U+017E LATIN SMALL LETTER Z WITH CARON

159 0x9f 0237 Undefined U
€ 160 0xa0 0240 U+20AC EURO SIGN
¡ 161 0xa1 0241 U+00A1 INVERTED EXCLAMATION MARK
¢ 162 0xa2 0242 U+00A2 CENT SIGN
£ 163 0xa3 0243 U+00A3 POUND SIGN (sterling)
¤ 164 0xa4 0244 U+00A4 CURRENCY SIGN
¥ 165 0xa5 0245 U+00A5 YEN SIGN
¦ 166 0xa6 0246 U+00A6 BROKEN BAR
§ 167 0xa7 0247 U+00A7 SECTION SIGN
¨ 168 0xa8 0250 U+00A8 DIAERESIS

© 169 0xa9 0251 U+00A9 COPYRIGHT SIGN
ª 170 0xaa 0252 U+00AA FEMININE ORDINAL INDICATOR
« 171 0xab 0253 U+00AB LEFT-POINTING DOUBLE ANGLE

QUOTATION MARK
¬ 172 0xac 0254 U+00AC NOT SIGN

173 0xad 0255 Undefined U
® 174 0xae 0256 U+00AE REGISTERED SIGN
¯ 175 0xaf 0257 U+00AF MACRON
° 176 0xb0 0260 U+00B0 DEGREE SIGN

± 177 0xb1 0261 U+00B1 PLUS-MINUS SIGN
2 178 0xb2 0262 U+00B2 SUPERSCRIPT TWO

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

PDFDocEncoding Character SetSECTION D.2
1007

3 179 0xb3 0263 U+00B3 SUPERSCRIPT THREE
´ 180 0xb4 0264 U+00B4 ACUTE ACCENT
μ 181 0xb5 0265 U+00B5 MICRO SIGN
¶ 182 0xb6 0266 U+00B6 PILCROW SIGN
· 183 0xb7 0267 U+00B7 MIDDLE DOT
¸ 184 0xb8 0270 U+00B8 CEDILLA
1 185 0xb9 0271 U+00B9 SUPERSCRIPT ONE
º 186 0xba 0272 U+00BA MASCULINE ORDINAL INDICATOR
» 187 0xbb 0273 U+00BB RIGHT-POINTING DOUBLE ANGLE

QUOTATION MARK
¼ 188 0xbc 0274 U+00BC VULGAR FRACTION ONE QUARTER
½ 189 0xbd 0275 U+00BD VULGAR FRACTION ONE HALF
¾ 190 0xbe 0276 U+00BE VULGAR FRACTION THREE QUARTERS
¿ 191 0xbf 0277 U+00BF INVERTED QUESTION MARK

À 192 0xc0 0300 U+00C0
Á 193 0xc1 0301 U+00C1
Â 194 0xc2 0302 U+00C2
Ã 195 0xc3 0303 U+00C3
Ä 196 0xc4 0304 U+00C4
Å 197 0xc5 0305 U+00C5
Æ 198 0xc6 0306 U+00C6
Ç 199 0xc7 0307 U+00C7
È 200 0xc8 0310 U+00C8
É 201 0xc9 0311 U+00C9
Ê 202 0xca 0312 U+00CA
Ë 203 0xcb 0313 U+00CB
Ì 204 0xcc 0314 U+00CC
Í 205 0xcd 0315 U+00CD
Î 206 0xce 0316 U+00CE
Ï 207 0xcf 0317 U+00CF

Ð 208 0xd0 0320 U+00D0
Ñ 209 0xd1 0321 U+00D1

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

Character Sets and EncodingsAPPENDIX D
1008

Ò 210 0xd2 0322 U+00D2
Ó 211 0xd3 0323 U+00D3
Ô 212 0xd4 0324 U+00D4
Õ 213 0xd5 0325 U+00D5
Ö 214 0xd6 0326 U+00D6
× 215 0xd7 0327 U+00D7
Ø 216 0xd8 0330 U+00D8
Ù 217 0xd9 0331 U+00D9
Ú 218 0xda 0332 U+00DA
Û 219 0xdb 0333 U+00DB
Ü 220 0xdc 0334 U+00DC
Ý 221 0xdd 0335 U+00DD
Þ 222 0xde 0336 U+00DE
ß 223 0xdf 0337 U+00DF
à 224 0xe0 0340 U+00E0
á 225 0xe1 0341 U+00E1
â 226 0xe2 0342 U+00E2
ã 227 0xe3 0343 U+00E3
ä 228 0xe4 0344 U+00E4
å 229 0xe5 0345 U+00E5

æ 230 0xe6 0346 U+00E6
ç 231 0xe7 0347 U+00E7
è 232 0xe8 0350 U+00E8
é 233 0xe9 0351 U+00E9
ê 234 0xea 0352 U+00EA
ë 235 0xeb 0353 U+00EB
ì 236 0xec 0354 U+00EC
í 237 0xed 0355 U+00ED
î 238 0xee 0356 U+00EE
ï 239 0xef 0357 U+00EF

ð 240 0xf0 0360 U+00F0
ñ 241 0xf1 0361 U+00F1

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

PDFDocEncoding Character SetSECTION D.2
1009

ò 242 0xf2 0362 U+00F2
ó 243 0xf3 0363 U+00F3
ô 244 0xf4 0364 U+00F4
õ 245 0xf5 0365 U+00F5
ö 246 0xf6 0366 U+00F6
÷ 247 0xf7 0367 U+00F7
ø 248 0xf8 0370 U+00F8
ù 249 0xf9 0371 U+00F9
ú 250 0xfa 0372 U+00FA
û 251 0xfb 0373 U+00FB
ü 252 0xfc 0374 U+00FC
ý 253 0xfd 0375 U+00FD
þ 254 0xfe 0376 U+00FE
ÿ 255 0xff 0377 U+00FF

CHAR-
ACTER

DEC HEX OCTAL UNICODE UNICODE CHARACTER NAME OR (ALTERNATIVE
ALIAS)

NOTES

Character Sets and EncodingsAPPENDIX D
1010

D.3 Expert Set and MacExpertEncodingp p g

CHAR NAME CODE CHAR NAME CODE

æ AEsmall 276
á Aacutesmall 207
â Acircumflexsmall 211
´ Acutesmall 047
ä Adieresissmall 212
à Agravesmall 210
å Aringsmall 214
a Asmall 141
ã Atildesmall 213
˘ Brevesmall 363
b Bsmall 142
ˇ Caronsmall 256
ç Ccedillasmall 215
¸ Cedillasmall 311
ˆ Circumflexsmall 136
c Csmall 143
¨ Dieresissmall 254
˙ Dotaccentsmall 372
d Dsmall 144
é Eacutesmall 216
ê Ecircumflexsmall 220
ë Edieresissmall 221
è Egravesmall 217
e Esmall 145
ð Ethsmall 104
f Fsmall 146
` Gravesmall 140
g Gsmall 147
h Hsmall 150
˝ Hungarumlautsmall 042
í Iacutesmall 222
î Icircumflexsmall 224
ï Idieresissmall 225
ì Igravesmall 223
i Ismall 151

j Jsmall 152
k Ksmall 153
ł Lslashsmall 302
l Lsmall 154
¯ Macronsmall 364
m Msmall 155
n Nsmall 156
ñ Ntildesmall 226
œ OEsmall 317
ó Oacutesmall 227
ô Ocircumflexsmall 231
ö Odieresissmall 232
˛ Ogoneksmall 362
ò Ogravesmall 230
ø Oslashsmall 277
o Osmall 157
õ Otildesmall 233
p Psmall 160
q Qsmall 161
˚ Ringsmall 373
r Rsmall 162
š Scaronsmall 247
s Ssmall 163
þ Thornsmall 271
˜ Tildesmall 176
t Tsmall 164
ú Uacutesmall 234
û Ucircumflexsmall 236
ü Udieresissmall 237
ù Ugravesmall 235
u Usmall 165
v Vsmall 166
w Wsmall 167
x Xsmall 170
ý Yacutesmall 264

Expert Set and MacExpertEncodingSECTION D.3
1011

CHAR NAME CODE CHAR NAME CODE

ÿ Ydieresissmall 330
y Ysmall 171
ž Zcaronsmall 275
z Zsmall 172
& ampersandsmall 046
a asuperior 201
b bsuperior 365
¢ centinferior 251
¢ centoldstyle 043
¢ centsuperior 202
: colon 072
₡ colonmonetary 173
, comma 054
, commainferior 262
, commasuperior 370
$ dollarinferior 266
$ dollaroldstyle 044
$ dollarsuperior 045
d dsuperior 353
₈ eightinferior 245
8 eightoldstyle 070
⁸ eightsuperior 241
e esuperior 344
¡ exclamdownsmall 326
! exclamsmall 041
ff ff 126
ffi ffi 131
ffl ffl 132
fi fi 127
‒ figuredash 320
⅝ fiveeighths 114
₅ fiveinferior 260
5 fiveoldstyle 065
⁵ fivesuperior 336
fl fl 130
₄ fourinferior 242

4 fouroldstyle 064
⁴ foursuperior 335
⁄ fraction 057
- hyphen 055
- hypheninferior 137
- hyphensuperior 321
i isuperior 351
l lsuperior 361
m msuperior 367
₉ nineinferior 273
9 nineoldstyle 071
⁹ ninesuperior 341
ⁿ nsuperior 366
․ onedotenleader 053
⅛ oneeighth 112
1 onefitted 174
½ onehalf 110
₁ oneinferior 301
1 oneoldstyle 061
¼ onequarter 107
¹ onesuperior 332
⅓ onethird 116
o osuperior 257
₍ parenleftinferior 133
⁽ parenleftsuperior 050
₎ parenrightinferior 135
⁾ parenrightsuperior 051
. period 056
. periodinferior 263
. periodsuperior 371
¿ questiondownsmall 300
? questionsmall 077
r rsuperior 345
Rp rupiah 175
; semicolon 073
⅞ seveneighths 115

Character Sets and EncodingsAPPENDIX D
1012

CHAR NAME CODE CHAR NAME CODE

₇ seveninferior 246
7 sevenoldstyle 067
⁷ sevensuperior 340
₆ sixinferior 244
6 sixoldstyle 066
⁶ sixsuperior 337
 space 040
s ssuperior 352
⅜ threeeighths 113
₃ threeinferior 243
3 threeoldstyle 063
¾ threequarters 111

— threequartersemdash 075
³ threesuperior 334
t tsuperior 346
‥ twodotenleader 052
₂ twoinferior 252
2 twooldstyle 062
² twosuperior 333
⅔ twothirds 117
₀ zeroinferior 274
0 zerooldstyle 060
⁰ zerosuperior 342

Symbol Set and EncodingSECTION D.4
1013

D.4 Symbol Set and Encoding

CHAR NAME CODE CHAR NAME CODE

Alpha 101
Beta 102
Chi 103
Delta 104
Epsilon 105
Eta 110

€ Euro 240
Gamma 107
Ifraktur 301
Iota 111
Kappa 113
Lambda 114
Mu 115
Nu 116
Omega 127
Omicron 117
Phi 106
Pi 120
Psi 131
Rfraktur 302
Rho 122
Sigma 123
Tau 124
Theta 121
Upsilon 125
Upsilon1 241
Xi 130
Zeta 132
aleph 300
alpha 141

& ampersand 046
angle 320
angleleft 341
angleright 361
approxequal 273

arrowboth 253
arrowdblboth 333
arrowdbldown 337
arrowdblleft 334
arrowdblright 336
arrowdblup 335
arrowdown 257
arrowhorizex 276
arrowleft 254
arrowright 256
arrowup 255
arrowvertex 275
asteriskmath 052

| bar 174
beta 142

{ braceleft 173
} braceright 175

bracelefttp 354
braceleftmid 355
braceleftbt 356
bracerighttp 374
bracerightmid 375
bracerightbt 376
braceex 357

[bracketleft 133
] bracketright 135

bracketlefttp 351
bracketleftex 352
bracketleftbt 353
bracketrighttp 371
bracketrightex 372
bracketrightbt 373

• bullet 267
carriagereturn 277
chi 143

Character Sets and EncodingsAPPENDIX D
1014

CHAR NAME CODE CHAR NAME CODE

circlemultiply 304
circleplus 305
club 247

: colon 072
, comma 054

congruent 100
© copyrightsans 343
© copyrightserif 323
° degree 260

delta 144
diamond 250

÷ divide 270
dotmath 327

8 eight 070
element 316

… ellipsis 274
emptyset 306
epsilon 145

= equal 075
equivalence 272
eta 150

! exclam 041
existential 044

5 five 065
ƒ florin 246
4 four 064
⁄ fraction 244

gamma 147
gradient 321

> greater 076
greaterequal 263
heart 251
infinity 245
integral 362
integraltp 363
integralex 364

integralbt 365
intersection 307
iota 151
kappa 153
lambda 154

< less 074
lessequal 243
logicaland 331

¬ logicalnot 330
logicalor 332
lozenge 340
minus 055
minute 242

μ mu 155
× multiply 264
9 nine 071

notelement 317
notequal 271
notsubset 313
nu 156

numbersign 043
omega 167
omega1 166
omicron 157

1 one 061
(parenleft 050
) parenright 051

parenlefttp 346
parenleftex 347
parenleftbt 350
parenrighttp 366
parenrightex 367
parenrightbt 370
partialdiff 266

% percent 045
. period 056

Symbol Set and EncodingSECTION D.4
1015

CHAR NAME CODE CHAR NAME CODE

perpendicular 136
phi 146
phi1 152
pi 160

+ plus 053
± plusminus 261

product 325
propersubset 314
propersuperset 311
proportional 265
psi 171

? question 077
radical 326
radicalex 140
reflexsubset 315
reflexsuperset 312

® registersans 342
® registerserif 322

rho 162
second 262

; semicolon 073
7 seven 067

sigma 163
sigma1 126

similar 176
6 six 066
/ slash 057

space 040
spade 252
suchthat 047
summation 345
tau 164
therefore 134
theta 161
theta1 112

3 three 063
™ trademarksans 344
™ trademarkserif 324
2 two 062
_ underscore 137

union 310
universal 042
upsilon 165
weierstrass 303
xi 170

0 zero 060
zeta 172

Character Sets and EncodingsAPPENDIX D
1016

D.5 ZapfDingbats Set and Encoding

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

 space 040
✁ a1 041
✂ a2 042
✃ a202 043
✄ a3 044
☎ a4 045
✆ a5 046
✇ a119 047
✈ a118 050
✉ a117 051
☛ a11 052
☞ a12 053
✌ a13 054
✍ a14 055
✎ a15 056
✏ a16 057
✐ a105 060
✑ a17 061
✒ a18 062
✓ a19 063
✔ a20 064
✕ a21 065
✖ a22 066
✗ a23 067
✘ a24 070
✙ a25 071
✚ a26 072
✛ a27 073
✜ a28 074
✝ a6 075
✞ a7 076
✟ a8 077
✠ a9 100
✡ a10 101
✢ a29 102

✣ a30 103
✤ a31 104
✥ a32 105
✦ a33 106
✧ a34 107
★ a35 110
✩ a36 111
✪ a37 112
✫ a38 113
✬ a39 114
✭ a40 115
✮ a41 116
✯ a42 117
✰ a43 120
✱ a44 121
✲ a45 122
✳ a46 123
✴ a47 124
✵ a48 125
✶ a49 126
✷ a50 127
✸ a51 130
✹ a52 131
✺ a53 132
✻ a54 133
✼ a55 134
✽ a56 135
✾ a57 136
✿ a58 137
❀ a59 140
❁ a60 141
❂ a61 142
❃ a62 143
❄ a63 144
❅ a64 145

❆ a65 146
❇ a66 147
❈ a67 150
❉ a68 151
❊ a69 152
❋ a70 153
● a71 154
❍ a72 155
■ a73 156
❏ a74 157
❐ a203 160
❑ a75 161
❒ a204 162
▲ a76 163
▼ a77 164
◆ a78 165
❖ a79 166
◗ a81 167
❘ a82 170
❙ a83 171
❚ a84 172
❛ a97 173
❜ a98 174
❝ a99 175
❞ a100 176
❡ a101 241
❢ a102 242
❣ a103 243
❤ a104 244
❥ a106 245
❦ a107 246
❧ a108 247
♣ a112 250
♦ a111 251
♥ a110 252

♠ a109 253
① a120 254
② a121 255
③ a122 256
④ a123 257
⑤ a124 260
⑥ a125 261
⑦ a126 262
⑧ a127 263
⑨ a128 264
⑩ a129 265
❶ a130 266
❷ a131 267
❸ a132 270
❹ a133 271
❺ a134 272
❻ a135 273
❼ a136 274
❽ a137 275
❾ a138 276
❿ a139 277
➀ a140 300
➁ a141 301
➂ a142 302
➃ a143 303
➄ a144 304
➅ a145 305
➆ a146 306
➇ a147 307
➈ a148 310
➉ a149 311
➊ a150 312
➋ a151 313
➌ a152 314
➍ a153 315

ZapfDingbats Set and Encod ingSECTION D.5
1017

CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE CHAR NAME CODE

➎ a154 316
➏ a155 317
➐ a156 320
➑ a157 321
➒ a158 322
➓ a159 323
➔ a160 324
→ a161 325
↔ a163 326
↕ a164 327
➘ a196 330
➙ a165 331

➚ a192 332
➛ a166 333
➜ a167 334
➝ a168 335
➞ a169 336
➟ a170 337
➠ a171 340
➡ a172 341
➢ a173 342
➣ a162 343
➤ a174 344
➥ a175 345

➦ a176 346
➧ a177 347
➨ a178 350
➩ a179 351
➪ a193 352
➫ a180 353
➬ a199 354
➭ a181 355
➮ a200 356
➯ a182 357
➱ a201 361
➲ a183 362

➳ a184 363
➴ a197 364
➵ a185 365
➶ a194 366
➷ a198 367
➸ a186 370
➹ a195 371
➺ a187 372
➻ a188 373
➼ a189 374
➽ a190 375
➾ a191 376

Character Sets and EncodingsAPPENDIX D
1018

1019

APPENDIX E

EPDF Name Registry

This appendix discusses a registry, maintained by Adobe for developers, that con-
tains private names and formats used by PDF producers or Acrobat plug-in ex-
tensions.

Acrobat enables third parties to add private data to PDF documents and to add
plug-in extensions that change viewer behavior based on this data. However,
Acrobat users have certain expectations when opening a PDF document, no mat-
ter what plug-ins are available. PDF enforces certain restrictions on private data
in order to meet these expectations.

A PDF producer or Acrobat viewer plug-in extension may define new types of
actions, destinations, annotations, security, and file system handlers. If a user
opens a PDF document and the plug-in that implements the new type of object is
unavailable, the viewer behaves as described in Appendix H, “Compatibility and
Implementation Notes.”

A PDF producer or Acrobat plug-in extension may also add keys to any PDF
object that is implemented as a dictionary, except the file trailer dictionary (see
Section 3.4.4, “File Trailer”). In addition, a PDF producer or Acrobat plug-in may
create tags that indicate the role of marked-content operators (PDF 1.2), as
described in Section 10.5, “Marked Content.”

To avoid conflicts with third-party names and with future versions of PDF, Adobe
maintains a registry for certain private names and formats. Developers must only
add private data that conforms to the registry rules. The registry includes three
classes:

• First class. Names and data formats that are of value to a wide range of de-
velopers. All names defined in any version of the PDF specification are first-

PDF Name RegistryAPPENDIX E
1020

class names. Plug-in extensions that are publicly available should often use
first-class names for their private data. First-class names and data formats must
be registered with Adobe and are made available for all developers to use. To
submit a private name and format for consideration as first-class, see the link
on registering a private PDF extension, at the following Web page:

< http://adobe.com/go/acrobat_developer >

• Second class. Names that are applicable to a specific developer. (Adobe does not
register second-class data formats.) Adobe distributes second-class names by
registering developer-specific prefixes, which must be used as the first char-
acters in the names of all private data added by the developer. Adobe will not
register the same prefix to two different developers, thereby ensuring that dif-
ferent developers’ second-class names do not conflict. It is the responsibility of
the developer not to use the same name in conflicting ways. To register a devel-
oper-specific prefix, use the Acrobat SDK feedback form accessible through the
following Web page:

< http://adobe.com/go/acrobat_developer >

• Third class. Names that can be used only in files that other third parties will
never see because they may conflict with third-class names defined by others.
Third-class names all begin with a specific prefix reserved by Adobe for private
plug-in extensions. This prefix, which is XX, must be used as the first characters
in the names of all private data added by the developer. It is not necessary to
contact Adobe to register third-class names.

Note: New keys for the document information dictionary (see Section 10.2.1, “Doc-
ument Information Dictionary”) or a thread information dictionary (in the I entry
of a thread dictionary; see Section 8.3.2, “Articles”) need not be registered.

http://adobe.com/go/acrobat_developer
http://adobe.com/go/acrobat_developer

1021

APPENDIX F

FLinearized PDF

A Linearized PDF file is a file that has been organized in a special way to enable
efficient incremental access in a network environment. The file is valid PDF in all
respects, and is compatible with all existing viewers and other PDF applications.
Enhanced viewer applications can recognize that a PDF file has been linearized
and can take advantage of that organization (as well as added hint information) to
enhance viewing performance.

The Linearized PDF file organization is an optional feature available beginning in
PDF 1.2. Its primary goal is to achieve the following behavior:

• When a document is opened, display the first page as quickly as possible. The
first page to be viewed can be an arbitrary page of the document, not neces-
sarily page 0 (though opening at page 0 is most common).

• When the user requests another page of an open document (for example, by
going to the next page or by following a link to an arbitrary page), display that
page as quickly as possible.

• When data for a page is delivered over a slow channel, display the page incre-
mentally as it arrives. To the extent possible, display the most useful data first.

• Permit user interaction, such as following a link, to be performed even before
the entire page has been received and displayed.

This behavior should be achieved for documents of arbitrary size. The total num-
ber of pages in the document should have little or no effect on the user-perceived
performance of viewing any particular page.

The primary focus of Linearized PDF is optimized viewing of read-only PDF
documents. It is intended that the Linearized PDF be generated once and read
many times. Incremental update is still permitted, but the resulting PDF is no

Linearized PDFAPPENDIX F
1022

longer linearized and subsequently is treated as ordinary PDF. Linearizing it
again may require reprocessing the entire file; see Section F.4.6, “Accessing an Up-
dated File,” for details.

Linearized PDF requires two additions to the PDF specification:

• Rules for the ordering of objects in the PDF file

• Additional data structures, called hint tables, that enable efficient navigation
within the document

Both of these additions are relatively simple to describe; however, using them
effectively requires a deeper understanding of their purpose. Consequently, this
appendix goes considerably beyond a simple specification of these PDF exten-
sions to include background, motivation, and strategies.

• Section F.1, “Background and Assumptions,” provides background information
about the properties of the Web that are relevant to the design of Linearized
PDF.

• Section F.2, “Linearized PDF Document Structure,” specifies the file format and
object-ordering requirements of Linearized PDF.

• Section F.3, “Hint Tables,” specifies the detailed representation of the hint
tables.

• Section F.4, “Access Strategies,” outlines strategies for accessing Linearized PDF
over a network, which in turn determine the optimal way to organize the PDF
file.

The reader is assumed to be familiar with the basic architecture of the Web, in-
cluding terms such as URL, HTTP, and MIME.

F.1 Background and Assumptions

The principal problem addressed by the Linearized PDF design is the access of
PDF documents through the Web. This environment has the following important
properties:

• The access protocol (HTTP) is a transaction consisting of a request and a re-
sponse. The client presents a request in the form of a URL, and the server sends
a response consisting of one or more MIME-tagged data blocks.

Background and AssumptionsSECTION F.1
1023

• After a transaction has completed, obtaining more data requires a new request-
response transaction. The connection between client and server does not ordi-
narily persist beyond the end of a transaction, although some implementations
may attempt to cache the open connection to expedite subsequent transactions
with the same server.

• Round-trip delay can be significant. A request-response transaction can take
up to several seconds, independent of the amount of data requested.

• The data rate may be limited. A typical bottleneck is a slow modem link be-
tween the client and the Internet service provider.

These properties are generally shared by other wide-area network architectures
besides the Web. Also, CD-ROMs share some of these properties, since they have
relatively slow seek times and limited data rates compared to magnetic media.
The remainder of this appendix focuses on the Web.

Some additional properties of the HTTP protocol are relevant to the problem of
accessing PDF files efficiently. These properties may not all be shared by other
protocols or network environments.

• When a PDF file is initially accessed (such as by following a URL hyperlink
from some other document), the file type is not known to the client. Therefore,
the client initiates a transaction to retrieve the entire document and then in-
spects the MIME tag of the response as it arrives. Only at that point is the doc-
ument known to be PDF. Additionally, with a properly configured server
environment, the length of the document becomes known at that time.

• The client can abort a response while the transaction is still in progress if it
decides that the remainder of the data is not of immediate interest. In HTTP,
aborting the transaction requires closing the connection, which interferes with
the strategy of caching the open connection between transactions.

• The client can request retrieval of portions of a document by specifying one or
more byte ranges (by offset and count) in the HTTP request headers. Each
range can be relative to either the beginning or the end of the file. The client
can specify as many ranges as it wants in the request, and the response consists
of multiple blocks, each properly tagged.

• The client can initiate multiple concurrent transactions in an attempt to ob-
tain multiple responses in parallel. This is commonly done, for instance, to re-
trieve inline images referenced from an HTML document. This strategy is not

Linearized PDFAPPENDIX F
1024

always reliable and may backfire if the transactions interfere with each other
by competing for scarce resources in the server or the communication chan-
nel.

Note: Extensive experimentation has determined that having multiple concurrent
transactions does not work very well for PDF in some important environments.
Therefore, Linearized PDF is designed to enable good performance to be achieved
using only one transaction at a time. In particular, this means that the client must
have sufficient information to determine the byte ranges for all the objects re-
quired to display a given page of the PDF file so that it can specify all those byte
ranges in a single request.

The following additional assumptions are made about the PDF viewer application
and its local environment:

• The viewer application has plenty of local temporary storage available. It
should rarely need to retrieve a given portion of a PDF document more than
once from the server.

• The viewer application is able to display PDF data quickly once it has been
received. The performance bottleneck is assumed to be in the transport sys-
tem (throughput or round-trip delay), not in the processing of data after it ar-
rives.

The consequence of these assumptions is that it may be advantageous for the cli-
ent to do considerable extra work to minimize delays due to communications.
Such work includes maintaining local caches and reordering actions according to
when the needed data becomes available.

F.2 Linearized PDF Document Structure

Except as noted below, all elements of a Linearized PDF file are as specified in
Section 3.4, “File Structure,” and all indirect objects in the file are numbered
sequentially in two groups, based on their order of appearance in the file.

• The first group consists of the document catalog, certain other document-level
objects, and all objects belonging to the first page of the document. These ob-
jects are numbered sequentially, starting at the first object number after the last
number of the second group. (The stream containing the hint tables, called a

Linearized PDF Document StructureSECTION F.2
1025

hint stream, may be numbered out of sequence; see Section F.2.5, “Hint Streams
(Parts 5 and 10).”)

• The second group consists of all remaining objects in the document, including
all pages after the first, all shared objects (objects referenced from more than
one page, not counting objects referenced from the first page), and so forth.
These objects are numbered sequentially starting at 1.

These groups of objects are indexed by exactly two cross-reference table sections,
located as shown in Example F.1. The composition of these groups is discussed in
more detail in the sections that follow (ordered by the part number as shown in
this example, with one section for parts 5 and 10). All objects have a generation
number of 0.

Beginning with PDF 1.5, PDF files may contain object streams (see Section 3.4.6,
“Object Streams”). In linearized files containing object streams, the following
conditions apply:

• Certain additional objects cannot be contained in an object stream: the linear-
ization dictionary, the document catalog, and page objects.

• Objects stored within object streams are given the highest range of object num-
bers within the main and first-page cross-reference sections.

• For files containing object streams, hint data can specify the location and size
of the object streams only (or uncompressed objects), not the individual com-
pressed objects. Similarly, shared object references should be made to the ob-
ject stream containing a compressed object, not to the compressed object itself.

• Cross-reference streams (Section 3.4.7, “Cross-Reference Streams”) can be
used in place of traditional cross-reference tables. The logic described in this
chapter still applies, with the appropriate syntactic changes.

Example F.1

Part 1: Header

% PDF−1 . 1 % … Binary characters …

Linearized PDFAPPENDIX F
1026

Part 2: Linearization parameter dictionary

43 0 obj
<< /Linearized 1.0 % Version

 /L 54567 % File length
 /H [475 598] % Primary hint stream offset and length (part 5)
 /O 45 % Object number of first page’s page object (part 6)
 /E 5437 % Offset of end of first page
 /N 11 % Number of pages in document
 /T 52786 % Offset of first entry in main cross-reference table (part 11)

>>
endobj

Part 3: First-page cross-reference table and trailer

xref
43 14
0000000052 00000 n
0000000392 00000 n
0000001073 00000 n
… Cross-reference entries for remaining objects in the first page …
0000000475 00000 n
trailer

<< /Size 57 % Total number of cross-reference table entries in document
 /Prev 52776 % Offset of main cross-reference table (part 11)
 /Root 44 0 R % Indirect reference to catalog (part 4)
 … Any other entries, such as Info and Encrypt … % (part 9)

>>
startxref
0 % Dummy cross-reference table offset
% % EOF

Part 4: Document catalog and other required document-level objects

44 0 obj
<< /Type /Catalog

 /Pages 42 0 R
>>

endobj

… Other objects …

Linearized PDF Document StructureSECTION F.2
1027

Part 5: Primary hint stream (may precede or follow part 6)

56 0 obj
<< /Length 457

 … Possibly other stream attributes, such as Filter …
 /S 221 % Position of shared object hint table
 … Possibly entries for other hint tables …

>>
stream

… Page offset hint table …
… Shared object hint table …
… Possibly other hint tables …

endstream
endobj

Part 6: First-page section (may precede or follow part 5)

45 0 obj
<< /Type /Page

…
>>

endobj

… Outline hierarchy (if the PageMode value in the document catalog is UseOutlines) …

… Objects for first page, including both shared and nonshared objects …

Part 7: Remaining pages

1 0 obj
<< /Type /Page

 … Other page attributes, such as MediaBox, Parent, and Contents …
>>

endobj

… Nonshared objects for this page …

… Each successive page followed by its nonshared objects …

… Last page followed by its nonshared objects …

Part 8: Shared objects for all pages except the first

… Shared objects …

Part 9: Objects not associated with pages, if any

… Other objects …

Linearized PDFAPPENDIX F
1028

Part 10: Overflow hint stream (optional)

… Overflow hint stream …

Part 11: Main cross-reference table and trailer

xref
0 43
0000000000 65535 f
… Cross-reference entries for all except first page’s objects …
trailer

<< /Size 43 >> % Trailer need not contain other entries; in particular,
startxref % it should not have a Prev entry
257 % Offset of first-page cross-reference table (part 3)
% % EOF

F.2.1 Header (Part 1)

The Linearized PDF file begins with the standard header line (see Section 3.4.1,
“File Header”). Linearization is independent of PDF version number and can be
applied to any PDF file of version 1.1 or greater.

The binary characters following the percent sign on the second line are characters
with codes 128 or greater, as recommended in Section 3.4.1, “File Header.”

F.2.2 Linearization Parameter Dictionary (Part 2)

Following the header, the first object in the body of the file (part 2) must be an in-
direct dictionary object, the linearization parameter dictionary, containing the pa-
rameters listed in Table F.1. All values in this dictionary must be direct objects.
There are no references to this dictionary anywhere in the document; however,
the first-page cross-reference table (Part 3) contains a normal entry for it.

The linearization parameter dictionary must be entirely contained within the first
1024 bytes of the PDF file. This limits the amount of data a viewer application
must read before deciding whether the file is linearized.

Linearized PDF Document StructureSECTION F.2
1029

TABLE F.1 Entries in the linearization parameter dictionary

PARAMETER TYPE VALUE

Linearized number (Required) A version identification for the linearized format. As usual, a
change in the integer part indicates an incompatible change in the linearized
format, while a change in the fractional part indicates a backward-compatible
change. The current version is 1.0.

L integer (Required) The length of the entire file in bytes. It must be exactly equal to the
actual length of the PDF file. A mismatch indicates that the file is not
linearized and must be treated as ordinary PDF, ignoring linearization in-
formation. (If the mismatch resulted from appending an update, the linear-
ization information may still be correct but requires validation; see Section
F.4.6, “Accessing an Updated File,” for details.)

H array (Required) An array of two or four integers, [offset1 length1] or
[offset1 length1 offset2 length2]. offset1 is the offset of the primary hint
stream from the beginning of the file. (This is the beginning of the stream ob-
ject, not the beginning of the stream data.) length1 is the length of this stream,
including stream object overhead.

If the value of the primary hint stream dictionary’s Length entry is an indirect
reference, the object it refers to must immediately follow the stream object,
and length1 also includes the length of the indirect length object, including
object overhead. (See implementation note 178 in Appendix H.)

If there is an overflow hint stream, offset2 and length2 specify its offset and
length. (See implementation note 179 in Appendix H.)

O integer (Required) The object number of the first page’s page object.

E integer (Required) The offset of the end of the first page (the end of part 6 in Example
F.1), relative to the beginning of the file. (See implementation note 180 in
Appendix H.)

N integer (Required) The number of pages in the document.

Linearized PDFAPPENDIX F
1030

F.2.3 First-Page Cross-Reference Table and Trailer (Part 3)

Part 3 contains the cross-reference table for objects belonging to the first page
(discussed in Section F.2.6, “First-Page Section (Part 6)”) as well as for the docu-
ment catalog and document-level objects appearing before the first page (dis-
cussed in Section F.2.4, “Document Catalog and Document-Level Objects (Part
4)”). Additionally, this cross-reference table contains entries for the linearization
parameter dictionary (at the beginning) and the primary hint stream (at the end).
This table is a valid cross-reference table as defined in Section 3.4.3, “Cross-
Reference Table,” although its position in the file is unconventional. It consists of
a single cross-reference subsection that has no free entries.

Note: In PDF 1.5 and later, cross-reference streams (see Section 3.4.7, “Cross-Refer-
ence Streams”) may be used in linearized files in place of traditional cross-reference
tables. The logic described in this section, along with the appropriate syntactic
changes for cross-reference streams, still applies.

Below the table is the first-page trailer. The trailer’s Prev entry gives the offset of
the main cross-reference table near the end of the file. This is valid PDF syntax,
although the trailers are linked in an unusual order. A PDF viewer application
that is unaware of linearization interprets the first-page cross-reference table as
an update to an original document that is indexed by the main cross-reference ta-
ble.

T integer (Required) In documents that use standard main cross-reference tables (in-
cluding hybrid-reference files; see “Compatibility with Applications That Do
Not Support PDF 1.5” on page 109), this entry represents the offset of the
white-space character preceding the first entry of the main cross-reference
table (the entry for object number 0), relative to the beginning of the file.
Note that this differs from the Prev entry in the first-page trailer, which gives
the location of the xref line that precedes the table.

In PDF 1.5 and later documents that use cross-reference streams exclusively
(see Section 3.4.7, “Cross-Reference Streams”), this entry represents the off-
set of the main cross-reference stream object.

P integer (Optional) The page number of the first page (see Section F.2.6, “First-Page
Section (Part 6)”). Default value: 0.

PARAMETER TYPE VALUE

Linearized PDF Document StructureSECTION F.2
1031

The first-page trailer must contain valid Size and Root entries, as well as any
other entries needed to display the document. The Size value must be the com-
bined number of entries in both the first-page cross-reference table and the main
cross-reference table.

The first-page trailer may optionally end with startxref, an integer, and %%EOF,
just as in an ordinary trailer. This information is ignored.

F.2.4 Document Catalog and Document-Level Objects (Part 4)

Following the first-page cross-reference table and trailer are the catalog dictio-
nary and other objects that are required when the document is opened. These
additional objects (constituting part 4) include the values of the following entries
if they are present and are indirect objects:

• The ViewerPreferences entry in the catalog.

• The PageMode entry in the catalog. Note that if the value of PageMode is
UseOutlines, the outline hierarchy is located in part 6; otherwise, the outline
hierarchy, if any, is located in part 9. See Section F.2.9, “Other Objects (Part 9)”
for details.

• The Threads entry in the catalog, along with all thread dictionaries it refers to.
This does not include the threads’ information dictionaries or the individual
bead dictionaries belonging to the threads.

• The OpenAction entry in the catalog.

• The AcroForm entry in the catalog. Only the top-level interactive form dictio-
nary is needed, not the objects that it refers to.

• The Encrypt entry in the first-page trailer dictionary. All values in the encryp-
tion dictionary must also be located here.

Objects that are not ordinarily needed when the document is opened should not
be located here but instead should be at the end of the file; see Section F.2.9, “Oth-
er Objects (Part 9).” This includes objects such as page tree nodes, the document
information dictionary, and the definitions for named destinations.

Note that the objects located here are indexed by the first-page cross-reference
table, even though they are not logically part of the first page.

Linearized PDFAPPENDIX F
1032

F.2.5 Hint Streams (Parts 5 and 10)

The core of the linearization information is stored in data structures known as
hint tables, whose format is described in Section F.3, “Hint Tables.” They provide
indexing information that enables the client to construct a single request for all
the objects that are needed to display any page of the document or to retrieve cer-
tain other information efficiently. The hint tables may contain additional infor-
mation to optimize access by plug-in extensions to application-specific data.

The hint tables are not logically part of the information content of the document;
they can be derived from the document. Any action that changes the document—
for instance, appending an incremental update—invalidates the hint tables. The
document remains a valid PDF file but is no longer linearized; see Section F.4.6,
“Accessing an Updated File,” for details.

The hint tables are binary data structures that are enclosed in a stream object.
Syntactically, this stream is a normal PDF indirect object. However, there are no
references to the stream anywhere in the document. Therefore, it is not logically
part of the document, and an operation that regenerates the document may re-
move the stream.

Usually, all the hint tables are contained in a single stream, known as the primary
hint stream. Optionally, there may be an additional stream containing more hints,
known as the overflow hint stream. The contents of the two hint streams are to be
concatenated and treated as if they were a single unbroken stream.

The primary hint stream, which is required, is shown as part 5 in Example F.1.
The order of this part and the first-page section, shown as part 6, may be re-
versed; see Section F.4, “Access Strategies,” for considerations on the choice of
placement. The overflow hint stream, part 10, is optional. (See implementation
note 179 in Appendix H.)

The location and length of the primary hint stream, and of the overflow hint
stream if present, are given in the linearization parameter dictionary at the begin-
ning of the file.

The hint streams are assigned the last object numbers in the file—that is, after the
object number for the last object in the first page. Their cross-reference table
entries are at the end of the first-page cross-reference table. This object number
assignment is independent of the physical locations of the hint streams in the file.

Linearized PDF Document StructureSECTION F.2
1033

(This convention keeps their object numbers from conflicting with the number-
ing of the linearized objects.)

With one exception, the values of all entries in the hint streams’ dictionaries must
be direct objects and can contain no indirect object references. The exception is
the stream dictionary’s Length entry (see the discussion of the H entry in Table
F.1).

In addition to the standard stream attributes, the dictionary of the primary hint
stream contains entries giving the position of the beginning of each hint table in
the stream. These positions are given in bytes relative to the beginning of the
stream data (after decoding filters, if any, are applied) and with the overflow
hint stream concatenated if present. The dictionary of the overflow hint stream
should not contain these entries. The keys designating the standard hint tables
in the primary hint stream’s dictionary are listed in Table F.2; Section F.3, “Hint
Tables,” documents the format of these hint tables. Additionally, there is a re-
quired page offset hint table, which must be the first table in the stream and
must start at offset 0.

TABLE F.2 Standard hint tables

KEY HINT TABLE

S (Required) Shared object hint table (see Section F.3.2, “Shared Object Hint Ta-
ble”)

T (Present only if thumbnail images exist) Thumbnail hint table (see Section F.3.3,
“Thumbnail Hint Table”)

O (Present only if a document outline exists) Outline hint table (see Section F.3.4,
“Generic Hint Tables”)

A (Present only if article threads exist) Thread information hint table (see Section
F.3.4, “Generic Hint Tables”)

E (Present only if named destinations exist) Named destination hint table (see
Section F.3.4, “Generic Hint Tables”)

V (Present only if an interactive form dictionary exists) Interactive form hint table
(see Section F.3.5, “Extended Generic Hint Tables”)

I (Present only if a document information dictionary exists) Information dictio-
nary hint table (see Section F.3.4, “Generic Hint Tables”)

Linearized PDFAPPENDIX F
1034

New keys may be registered for additional hint tables required for new PDF
features or for application-specific data accessed by plug-in extensions. See
Appendix E for further information.

F.2.6 First-Page Section (Part 6)

As mentioned earlier, the section containing objects belonging to the first page of
the document may either precede or follow the primary hint stream. The starting
file offset and length of this section can be determined from the hint tables. In
addition, the E entry in the linearization parameter dictionary specifies the end of
the first page (as an offset relative to the beginning of the file), and the O entry
gives the object number of the first page’s page object.

This part of the file contains all the objects needed to display the first page of the
document. Ordinarily, the first page is page 0—that is, the leftmost leaf page node
in the page tree. However, if the document catalog contains an OpenAction entry
that specifies opening at some page other than page 0, that page is considered the
first page and should be located here. The page number of the first page is given
in the P entry of the linearization parameter dictionary. (See also implementation
note 181 in Appendix H.)

The following objects should be contained in the first-page section:

• The page object for the first page. This object must be the first one in this part
of the file. Its object number is given in the linearization parameter dictionary.
This page object must explicitly specify all required attributes, such as

C (Present only if a logical structure hierarchy exists; PDF 1.3) Logical structure
hint table (see Section F.3.5, “Extended Generic Hint Tables”)

L (PDF 1.3) Page label hint table (see Section F.3.4, “Generic Hint Tables”)

R (Present only if a renditions name tree exists; PDF 1.5) Renditions name tree
hint table (see Section F.3.5, “Extended Generic Hint Tables”)

B (Present only if embedded file streams exist; PDF 1.5) Embedded file stream hint
table (see Section F.3.6, “Embedded File Stream Hint Tables”)

KEY HINT TABLE

Linearized PDF Document StructureSECTION F.2
1035

Resources and MediaBox; the attributes cannot be inherited from ancestor page
tree nodes.

• The entire outline hierarchy, if the value of the PageMode entry in the catalog
is UseOutlines. (If the PageMode entry is omitted or has some other value and
the document has an outline hierarchy, the outline hierarchy appears in part 9;
see Section F.2.9, “Other Objects (Part 9)” for details.)

• All objects that the page object refers to, to an arbitrary depth, except page tree
nodes or other page objects. This includes objects referred to by its Contents,
Resources, Annots, and B entries, but not the Thumb entry.

The order of objects referenced from the page object should facilitate early user
interaction and incremental display of the page data as it arrives. The following
order is recommended:

1. The Annots array and all annotation dictionaries, to a depth sufficient for
those annotations to be activated. Information required to draw the annota-
tion can be deferred until later since annotations are always drawn on top of
(hence after) the contents.

2. The B (beads) array and all bead dictionaries, if any, for this page. If any beads
exist for this page, the B array is required to be present in the page dictionary.
Additionally, each bead in the thread (not just the first bead) must contain a T
entry referring to the associated thread dictionary.

3. The resource dictionary, but not the resource objects contained in the dic-
tionary.

4. Resource objects, other than the types listed below, in the order that they are
first referenced (directly or indirectly) from the content stream. If the contents
are represented as an array of streams, each resource object should precede the
stream in which it is first referenced. Note that Font, FontDescriptor, and
Encoding resources should be included here, but not substitutable font files
referenced from font descriptors (see item 7 below).

5. The page contents (Contents). If large, this should be represented as an array
of indirect references to content streams, which in turn are interleaved with
the resources they require. If small, the entire contents should be a single con-
tent stream preceding the resources.

6. Image XObjects, in the order that they are first referenced. Images are assumed
to be large and slow to transfer; therefore, the viewer application defers ren-
dering images until all the other contents have been displayed.

Linearized PDFAPPENDIX F
1036

7. FontFile streams, which contain the actual definitions of embedded fonts.
These are assumed to be large and slow to transfer; therefore, the viewer appli-
cation uses substitute fonts until the real ones have arrived. Only those fonts
for which substitution is possible can be deferred in this way. (Currently, this
includes any Type 1 or TrueType font that has a font descriptor with the
Nonsymbolic flag set, indicating the Adobe standard Latin character set).

See Section F.4, “Access Strategies,” for additional discussion about object order
and incremental drawing strategies.

F.2.7 Remaining Pages (Part 7)

Part 7 of the Linearized PDF file contains the page objects and nonshared objects
for all remaining pages of the file, with the objects for each page grouped togeth-
er. The pages are contiguous and are ordered by page number. If the first page of
the file is not page 0, this section starts with page 0 and skips over the first page
when its position in the sequence is reached.

For each page, the objects required to display that page are grouped together,
except for resources and other objects that are shared with other pages. Shared
objects are located in the shared objects section (part 8). The starting file offset
and length of any page can be determined from the hint tables.

The recommended order of objects within a page is essentially the same as in the
first page. In particular, the page object must be the first object in each section.

In most cases, unlike for the first page, little benefit is gained from interleaving
contents with resources because most resources other than images—fonts in par-
ticular—are shared among multiple pages and therefore reside in the shared ob-
jects section. Image XObjects usually are not shared, but they should appear at
the end of the page’s section of the file, since rendering of images is deferred.

F.2.8 Shared Objects (Part 8)

Part 8 of the file contains objects, primarily named resources, that are referenced
from more than one page but that are not referenced (directly or indirectly) from
the first page. The hint tables contain an index of these objects. For more infor-
mation on named resources, see Section 3.7.2, “Resource Dictionaries.”

Linearized PDF Document StructureSECTION F.2
1037

The order of these objects is essentially arbitrary. However, wherever a resource
consists of a multiple-level structure, all components of the structure should be
grouped together. If only the top-level object is referenced from outside the
group, the entire group can be described by a single entry in the shared object
hint table. This helps to minimize the size of the shared object hint table and the
number of individual references from entries in the page offset hint table. (See
also implementation note 182 in Appendix H.)

F.2.9 Other Objects (Part 9)

Following the shared objects are any other objects that are part of the document
but are not required for displaying pages. These objects are divided into function-
al categories. Objects within each of these categories should be grouped together;
the relative order of the categories is unimportant.

• The page tree. This object can be located in this section because the viewer ap-
plication never needs to consult it. Note that all Resources attributes and other
inheritable attributes of the page objects must be pushed down and replicated
in each of the leaf page objects (but they may contain indirect references to
shared objects).

• Thumbnail images. These objects should simply be ordered by page number.
(The thumbnail image for page 0 should be first, even if the first page of the
document is some page other than 0.) Each thumbnail image consists of one or
more objects, which may refer to objects in the thumbnail shared objects sec-
tion (see the next item).

• Thumbnail shared objects. These are objects that are shared among some or all
thumbnail images and are not referenced from any other objects.

• The outline hierarchy, if not located in part 6. The order of objects should be the
same as the order in which they are displayed by the viewer application. This is
a preorder traversal of the outline tree, skipping over any subtree that is closed
(that is, whose parent’s Count value is negative). Following that should be the
subtrees that were skipped over, in the order in which they would have ap-
peared if they were all open.

• Thread information dictionaries, referenced from the I entries of thread dictio-
naries. Note that the thread dictionaries themselves are located with the docu-
ment catalog and the bead dictionaries with the individual pages.

Linearized PDFAPPENDIX F
1038

• Named destinations. These objects include the value of the Dests or Names
entry in the document catalog and all the destination objects that it refers to.
See Section F.4.2, “Opening at an Arbitrary Page.”

• The document information dictionary and the objects contained within it.

• The interactive form field hierarchy. This group of objects does not include the
top-level interactive form dictionary, which is located with the document cata-
log.

• Other entries in the document catalog that are not referenced from any page.

• (PDF 1.3) The logical structure hierarchy.

• (PDF 1.5) The renditions name tree hierarchy.

• (PDF 1.5) Embedded file streams.

F.2.10 Main Cross-Reference and Trailer (Part 11)

Part 11 is the cross-reference table for all objects in the PDF file except those
listed in the first-page cross-reference table (part 3). As indicated earlier, this
cross-reference table plays the role of the original cross-reference table for the file
(before any updates are appended) and must conform to the following rules:

• It consists of a single cross-reference subsection, beginning at object number 0.

• The first entry (for object number 0) must be a free entry.

• The remaining entries are for in-use objects, which are numbered consecutive-
ly, starting at 1.

The startxref line gives the offset of the first-page cross-reference table. The Prev
entry of the first-page trailer gives the offset of the main cross-reference table.
The main trailer has no Prev entry and in fact does not need to contain any en-
tries other than Size.

Note: In PDF 1.5 and later, cross-reference streams (see Section 3.4.7, “Cross-Refer-
ence Streams”) may be used in linearized files in place of traditional cross-reference
tables. The logic described in this chapter, along with the appropriate syntactic
changes for cross-reference streams, still applies.

Hint TablesSECTION F.3
1039

F.3 Hint Tables

The core of the linearization information is stored in two or more hint tables, as
indicated by the attributes of the primary hint stream (see Section F.2.5, “Hint
Streams (Parts 5 and 10)”). The format of the standard hint tables is described in
this section.

There can be additional hint tables for application-specific data that is accessed
by plug-in extensions. A generic format for such hint tables is defined; see Section
F.3.4, “Generic Hint Tables.” Alternatively, the format of a hint table can be private
to the application; see Appendix E for further information.

Each hint table consists of a portion of the stream, beginning at the position in
the stream indicated by the corresponding stream attribute. Additionally, there is
a required page offset hint table, which must be the first table in the stream and
must start at offset 0. (If there is an overflow hint stream, its contents are to be ap-
pended seamlessly to the primary hint stream; hint table positions are relative to
the beginning of this combined stream.) In general, this byte stream is treated as a
bit stream, high-order bit first, which is then subdivided into fields of arbitrary
width without regard to byte boundaries. However, each hint table begins at a
byte boundary.

The hint tables are designed to encode the required information as compactly as
possible. Interpreting the hint tables requires reading them sequentially; they are
not designed for random access. The client is expected to read and decode the
tables once and retain the information for as long as the document remains open.

A hint table encodes the positions of various objects in the file. The representa-
tion is either explicit (an offset from the beginning of the file) or implicit (accu-
mulated lengths of preceding objects). Regardless of the representation, the
resulting positions must be interpreted as if the primary hint stream itself were
not present. That is, a position greater than the hint stream offset must have the
hint stream length added to it to determine the actual offset relative to the begin-
ning of the file. (The hint stream offset and hint stream length are the values
offset1 and length1 in the H array in the linearization parameter dictionary at the
beginning of the file.)

The reason for this rule is that the length of the primary hint stream depends on
the information contained within the hint tables, which is not known until after

Linearized PDFAPPENDIX F
1040

they have been generated. Any information contained in the hint tables must not
depend on knowing the primary hint stream’s length in advance.

Note that this rule applies only to offsets given in the hint tables and not to offsets
given in the cross-reference tables or linearization parameter dictionary. Also, the
offset and length of the overflow hint stream, if present, need not be taken into
account, since this object follows all other objects in the file.

Note: In linearized files that use object streams (Section 3.4.6, “Object Streams), the
position specified in a hint table for a compressed object is to be interpreted as a byte
range in which the object can be found, not as a precise offset. Viewer applications
should locate the object via a cross-reference stream, as it would if the hint table
were not present.

F.3.1 Page Offset Hint Table

The page offset hint table provides information required for locating each page.
Additionally, for each page except the first, it also enumerates all shared objects
that the page references, directly or indirectly.

This table begins with a header section, described in Table F.3, followed by one or
more per-page entries, described in Table F.4. Note that the items making up each
per-page entry are not contiguous; they are broken up with items from entries for
other pages. The order of items making up the per-page entries is as follows:

1. Item 1 for all pages, in page order starting with the first page

2. Item 2 for all pages, in page order starting with the first page

3. Item 3 for all pages, in page order starting with the first page

4. Item 4 for all shared objects in the second page, followed by item 4 for all
shared objects in the third page, and so on

5. Item 5 for all shared objects in the second page, followed by item 5 for all
shared objects in the third page, and so on

6. Item 6 for all pages, in page order starting with the first page

7. Item 7 for all pages, in page order starting with the first page

Hint TablesSECTION F.3
1041

Note: All the items in Table F.3 that specify a number of bits needed, such as item 3,
can have values in the range 0 through 32. Although that range requires only 6 bits,
16-bit numbers are used.

TABLE F.3 Page offset hint table, header section

ITEM SIZE (BITS) DESCRIPTION

1 32 The least number of objects in a page (including the page object itself).

2 32 The location of the first page’s page object.

3 16 The number of bits needed to represent the difference between the greatest
and least number of objects in a page.

4 32 The least length of a page in bytes. This is the least length from the beginning
of a page object to the last byte of the last object used by that page.

5 16 The number of bits needed to represent the difference between the greatest
and least length of a page, in bytes.

6 32 The least offset of the start of any content stream, relative to the beginning of
its page. (See implementation note 183 in Appendix H.)

7 16 The number of bits needed to represent the difference between the greatest
and least offset to the start of the content stream. (See implementation note
183 in Appendix H.)

8 32 The least content stream length. (See implementation note 184 in Appendix
H.)

9 16 The number of bits needed to represent the difference between the greatest
and least content stream length. (See implementation note 184 in Appendix
H.)

10 16 The number of bits needed to represent the greatest number of shared object
references.

11 16 The number of bits needed to represent the numerically greatest shared ob-
ject identifier used by the pages (discussed further in Table F.4, item 4).

Linearized PDFAPPENDIX F
1042

TABLE F.4 Page offset hint table, per-page entry

12 16 The number of bits needed to represent the numerator of the fractional posi-
tion for each shared object reference. For each shared object referenced from
a page, there is an indication of where in the page’s content stream the object
is first referenced. That position is given as the numerator of a fraction,
whose denominator is specified once for the entire document (in the next
item in this table). The fraction is explained in more detail in Table F.4,
item 5.

13 16 The denominator of the fractional position for each shared object reference.

ITEM SIZE (BITS) DESCRIPTION

1 See Table F.3, item 3 A number that, when added to the least number of objects in a page (Table
F.3, item 1), gives the number of objects in the page. The first object of the
first page has an object number that is the value of the O entry in the
linearization parameter dictionary at the beginning of the file. The first
object of the second page has an object number of 1. Object numbers for sub-
sequent pages can be determined by accumulating the number of objects in
all previous pages.

2 See Table F.3, item 5 A number that, when added to the least page length (Table F.3, item 4), gives
the length of the page in bytes. The location of the first object of the first page
can be determined from its object number (the O entry in the linearization
parameter dictionary) and the cross-reference table entry for that object (see
Section F.2.3, “First-Page Cross-Reference Table and Trailer (Part 3)”). The
locations of subsequent pages can be determined by accumulating the lengths
of all previous pages. Note that it is necessary to skip over the primary hint
stream, wherever it is located.

3 See Table F.3, item 10 The number of shared objects referenced from the page. For the first page,
this number must be 0; the next two items start with the second page.

4 See Table F.3, item 11 (One item for each shared object referenced from the page) A shared object
identifier—that is, an index into the shared object hint table (described in
Section F.3.2, “Shared Object Hint Table”). Note that a single entry in the
shared object hint table can designate a group of shared objects, only one of
which is referenced from outside the group. That is, shared object identifiers
are not directly related to object numbers.

This identifier combines with the numerators provided in item 5 to form a
shared object reference.

ITEM SIZE (BITS) DESCRIPTION

Hint TablesSECTION F.3
1043

F.3.2 Shared Object Hint Table

The shared object hint table gives information required to locate shared objects
(see Section F.2.8, “Shared Objects (Part 8)”). Shared objects can be physically
located in either of two places: objects that are referenced from the first page are
located with the first-page objects (part 6); all other shared objects are located in
the shared objects section (part 8).

5 See Table F.3, item 12 (One item for each shared object referenced from the page) The numerator of
the fractional position for each shared object reference, in the same order as
the preceding item. The fraction indicates where in the page’s content stream
the shared object is first referenced. This item is interpreted as the numerator
of a fraction whose denominator is specified once for the entire document
(Table F.3, item 13).

If the denominator is d, a numerator ranging from 0 to d − 1 indicates the
corresponding portion of the page’s content stream. For example, if the
denominator is 4, a numerator of 0, 1, 2, or 3 indicates that the first reference
lies in the first, second, third, or fourth quarter of the content stream, respec-
tively.

There are two (or more) other possible values for the numerator, which indi-
cate that the shared object is not referenced from the content stream but is
needed by annotations or other objects that are drawn after the contents. The
value d indicates that the shared object is needed before image XObjects and
other nonshared objects that are at the end of the page. A value of d + 1 or
greater indicates that the shared object is needed after those objects.

This method of dividing the page into fractions is only approximate. Deter-
mining the first reference to a shared object entails inspecting the unencoded
content stream. The relationship between positions in the unencoded and
encoded streams is not necessarily linear.

6 See Table F.3, item 7 A number that, when added to the least offset to the start of the content
stream (Table F.3, item 6), gives the offset in bytes of the start of the page’s
content stream (the stream object, not the stream data), relative to the begin-
ning of the page. (See implementation note 183 in Appendix H.)

7 See Table F.3, item 9 A number that, when added to the least content stream length (Table F.3,
item 8), gives the length of the page’s content stream in bytes. This length in-
cludes object overhead preceding and following the stream data. (See imple-
mentation note 184 in Appendix H.)

ITEM SIZE (BITS) DESCRIPTION

Linearized PDFAPPENDIX F
1044

A single entry in the shared object hint table can actually describe a group of ad-
jacent objects under the following condition: Only the first object in the group is
referenced from outside the group; the remaining objects in the group are refer-
enced only from other objects in the same group. The objects in a group must
have adjacent object numbers.

The page offset hint table, interactive form hint table, and logical structure hint
table refer to an entry in the shared object hint table by a simple index that is its
sequential position in the table, counting from 0.

The shared object hint table consists of a header section (Table F.5) followed by
one or more shared object group entries (Table F.6). There are two sequences of
shared object group entries: the ones for objects located in the first page, followed
by the ones for objects located in the shared objects section. The entries have the
same format in both cases. Note that the items making up each shared object
group entry are not contiguous; they are broken up with items from entries for
other shared object groups. The order of items in each sequence is as follows:

1. Item 1 for the first group, item 1 for the second group, and so on

2. Item 2 for the first group, item 2 for the second group, and so on

3. Item 3 for the first group, item 3 for the second group, and so on

4. Item 4 for the first group, item 4 for the second group, and so on

All objects associated with the first page (part 6) have entries in the shared object
hint table, regardless of whether they are actually shared. The first entry refers to
the beginning of the first page and has an object count and length that span all
the initial nonshared objects. The next entry refers to a group of shared objects.
Subsequent entries span additional groups of either shared or nonshared objects
consecutively until all shared objects in the first page have been enumerated.
(The entries that refer to nonshared objects are never used.)

TABLE F.5 Shared object hint table, header section

ITEM SIZE (BITS) DESCRIPTION

1 32 The object number of the first object in the shared objects section (part 8).

2 32 The location of the first object in the shared objects section.

3 32 The number of shared object entries for the first page (including nonshared
objects, as noted above).

Hint TablesSECTION F.3
1045

TABLE F.6 Shared object hint table, shared object group entry

4 32 The number of shared object entries for the shared objects section, including
the number of shared object entries for the first page (that is, the value of
item 3).

5 16 The number of bits needed to represent the greatest number of objects in a
shared object group. (See also implementation note 185 in Appendix H.)

6 32 The least length of a shared object group in bytes.

7 16 The number of bits needed to represent the difference between the greatest
and least length of a shared object group, in bytes.

ITEM SIZE (BITS) DESCRIPTION

1 See Table F.5, item 7 A number that, when added to the least shared object group length (Table F.5,
item 6), gives the length of the object group in bytes. The location of the first
object of the first page is given in the page offset hint table, header section
(Table F.3, item 4). The locations of subsequent object groups can be deter-
mined by accumulating the lengths of all previous object groups until all
shared objects in the first page have been enumerated. Following that, the
location of the first object in the shared objects section can be obtained from
the header section of the shared object hint table (Table F.5, item 2).

2 1 A flag indicating whether the shared object signature (item 3) is present; its
value is 1 if the signature is present and 0 if it is absent. (See also implementa-
tion note 186 in Appendix H.)

3 128 (Only if item 2 is 1) The shared object signature, a 16-byte MD5 hash that
uniquely identifies the resource that the group of objects represents. It is in-
tended to enable the client to substitute a locally cached copy of the resource
instead of reading it from the PDF file. Note that this signature is unrelated to
signature fields in interactive forms, as defined in the section “Signature
Fields” on page 695.

ITEM SIZE (BITS) DESCRIPTION

Linearized PDFAPPENDIX F
1046

Note: In a document consisting of only one page, all of that page’s objects are never-
theless treated as if they were shared; the shared object hint table reflects this. (See
implementation note 188 in Appendix H.)

F.3.3 Thumbnail Hint Table

The thumbnail hint table consists of a header section (Table F.7) followed by the
thumbnails section, which includes one or more per-page entries (Table F.8), each
of which describes the thumbnail image for a single page. The entries are in page
number order starting with page 0, even if the document catalog contains an
OpenAction entry that specifies opening at some page other than page 0. Thumb-
nail images may exist for some pages and not for others.

TABLE F.7 Thumbnail hint table, header section

4 See Table F.5, item 5 A number equal to 1 less than the number of objects in the group. The first
object of the first page is the one whose object number is given by the O entry
in the linearization parameter dictionary at the beginning of the file. Object
numbers for subsequent entries can be determined by accumulating the
number of objects in all previous entries until all shared objects in the first
page have been enumerated. Following that, the first object in the shared
objects section has a number that can be obtained from the header section of
the shared object hint table (Table F.5, item 1). (See also implementation note
187 in Appendix H.)

ITEM SIZE (BITS) DESCRIPTION

1 32 The object number of the first thumbnail image (that is, the thumbnail image
that is described by the first entry in the thumbnails section).

2 32 The location of the first thumbnail image.

3 32 The number of pages that have thumbnail images.

4 16 The number of bits needed to represent the greatest number of consecutive
pages that do not have a thumbnail image.

5 32 The least length of a thumbnail image in bytes.

6 16 The number of bits needed to represent the difference between the greatest
and least length of a thumbnail image.

ITEM SIZE (BITS) DESCRIPTION

Hint TablesSECTION F.3
1047

TABLE F.8 Thumbnail hint table, per-page entry

The order of items in Table F.8 is as follows:

1. Item 1 for all pages, in page order starting with the first page

2. Item 2 for all pages, in page order starting with the first page

3. Item 3 for all pages, in page order starting with the first page

7 32 The least number of objects in a thumbnail image.

8 16 The number of bits needed to represent the difference between the greatest
and least number of objects in a thumbnail image.

9 32 The object number of the first object in the thumbnail shared objects section
(a subsection of part 9). This section includes objects (color spaces, for exam-
ple) that are referenced from some or all thumbnail objects and are not refer-
enced from any other objects. The thumbnail shared objects are
undifferentiated; there is no indication of which shared objects are referenced
from any given page’s thumbnail image.

10 32 The location of the first object in the thumbnail shared objects section.

11 32 The number of thumbnail shared objects.

12 32 The length of the thumbnail shared objects section in bytes.

ITEM SIZE (BITS) DESCRIPTION

1 See Table F.7, item 4 (Optional) The number of preceding pages lacking a thumbnail image. This
number indicates how many pages without a thumbnail image lie between
the previous entry’s page and this page.

2 See Table F.7, item 8 A number that, when added to the least number of objects in a thumbnail
image (Table F.7, item 7), gives the number of objects in this page’s thumbnail
image.

3 See Table F.7, item 6 A number that, when added to the least length of a thumbnail image (Table
F.7, item 5), gives the length of this page’s thumbnail image in bytes.

ITEM SIZE (BITS) DESCRIPTION

Linearized PDFAPPENDIX F
1048

F.3.4 Generic Hint Tables

Certain categories of objects are associated with the document as a whole rather
than with individual pages (see Section F.2.9, “Other Objects (Part 9)”), and it is
sometimes useful to provide hints for accessing those objects efficiently. For each
category of hints, there is a separate entry in the primary hint stream giving the
starting position of the table within the stream (see Section F.2.5, “Hint Streams
(Parts 5 and 10)”).

Such hints may be represented by a generic hint table, which describes a single
group of objects that are located together in the PDF file. The entries in this table
are listed in Table F.9. This representation is used for the following hint tables, if
needed:

• Outline hint table

• Thread information hint table

• Named destination hint table

• Information dictionary hint table

• Page label hint table

Generic hint tables may also be useful for application-specific objects accessed by
plug-in extensions. It is considerably more convenient for a plug-in to use the ge-
neric hint representation than to specify custom hints.

TABLE F.9 Generic hint table

F.3.5 Extended Generic Hint Tables

An extended generic hint table begins with the same entries as in a generic hint
table, followed by three additional entries, as shown in Table F.10. This table is

ITEM SIZE (BITS) DESCRIPTION

1 32 The object number of the first object in the group.

2 32 The location of the first object in the group.

3 32 The number of objects in the group.

4 32 The length of the object group in bytes.

Hint TablesSECTION F.3
1049

used to provide hints for accessing objects that reference shared objects. As of
PDF 1.5, the following hint tables, if needed, use the extended generic format:

• Interactive form hint table

• Logical structure hint table

• Renditions name tree hint table

Note: Embedded file streams should not be referred to by this hint table, even if
they are reachable from nodes in the renditions name tree; instead they should use
the hint table described in Section F.3.6, “Embedded File Stream Hint Tables.”

TABLE F.10 Extended generic hint table

F.3.6 Embedded File Stream Hint Tables

The embedded file streams hint table allows a viewer application to locate all byte
ranges of a PDF file needed to access its embedded file streams. An embedded file
stream may be grouped with other objects that it references; all objects in such a
group must have adjacent object numbers. (A group may contain no objects at all
if it contains shared object references.)

This hint table has a header section (see Table F.11), which has general informa-
tion about the embedded file stream groups. The header section is followed by
the entries in Table F.12. Each of the items in Table F.12 is repeated for each em-

ITEM SIZE (BITS) DESCRIPTION

1 32 The object number of the first object in the group.

2 32 The location of the first object in the group.

3 32 The number of objects in the group.

4 32 The length of the object group in bytes.

5 32 The number of shared object references.

6 16 The number of bits needed to represent the numerically greatest shared ob-
ject identifier used by the objects in the group.

7 … See Table F.3, item 11 Starting with item 7, each of the remaining items in this table is a shared ob-
ject identifier—that is, an index into the shared object hint table (described in
Section F.3.2, “Shared Object Hint Table”).

Linearized PDFAPPENDIX F
1050

bedded file stream group (the number of groups being represented by item 3 in
Table F.11). That is, the order of items in Table F.12 is item 1 for the first group,
item 1 for the second group, and so on; item 2 for the first group, item 2 for the
second group, and so on; repeated for the 5 items.

TABLE F.11 Embedded file stream hint table, header section

TABLE F.12 Embedded file stream hint table, per-embedded file stream group entries

ITEM SIZE (BITS) DESCRIPTION

1 32 The object number of the first object in the first embedded file stream group.

2 32 The location of the first object in the first embedded file stream group.

3 32 The number of embedded file stream groups referenced by this hint table.

4 16 The number of bits needed to represent the highest object number corresponding to an
embedded file stream object.

5 16 The number of bits needed to represent the greatest number of objects in an embedded
file stream group.

6 16 The number of bits needed to represent the greatest length of an embedded file stream
group, in bytes.

7 16 The number of bits needed to represent the greatest number of shared object references
in any embedded file stream group.

ITEM SIZE (BITS) DESCRIPTION

1 See Table F.11, item 4 The object number of the embedded file stream that this entry is associated
with.

2 See Table F.11, item 5 The number of objects in this embedded file streams group. This item may be
0, meaning that there are only shared object references. In this case, item 4 for
this group must be greater than zero and item 3 must be zero.

3 See Table F.11, item 6 The length of this embedded file stream group, in bytes. This item may be 0,
meaning that there are only shared object references. In this case, item 4 for
this group must be greater than zero and item 2 must be zero.

4 See Table F.11, item 7 The number of shared objects referenced by this embedded file stream group.

Access StrategiesSECTION F.4
1051

F.4 Access Strategies

This section outlines how the client can take advantage of the structure of a
Linearized PDF file to retrieve and display it efficiently. This material is not for-
mally a part of the Linearized PDF specification, but it may help explain the ratio-
nale for the organization.

F.4.1 Opening at the First Page

As described earlier, when a document is initially accessed, a request is issued to
retrieve the entire file, starting at the beginning. Consequently, Linearized PDF is
organized so that all the data required to display the first page is at the beginning
of the file. This includes all resources that are referenced from the first page, re-
gardless of whether they are also referenced from other pages.

The first page is usually but not necessarily page 0. If the document catalog con-
tains an OpenAction entry that specifies opening at some page other than page 0,
that page is the one physically located at the beginning of the document. Thus,
opening a document at the default place (rather than a specific destination) re-
quires simply waiting for the first-page data to arrive; no additional transactions
are required.

In an ordinary PDF viewer application, opening a document requires first posi-
tioning to the end to obtain the startxref line. Since a Linearized PDF file has the
first page’s cross-reference table at the beginning, reading the startxref line is not
necessary. All that is required is to verify that the file length given in the lineari-
zation parameter dictionary at the beginning of the file matches the actual length
of the file, indicating that no updates have been appended to the PDF file.

The primary hint stream is located either before or after the first-page section,
which means that it is also retrieved as part of the initial sequential read of the
file. The client is expected to interpret and retain all the information in the hint

5 See Table F.3, item 11 A bit-packed list of shared object identifiers; that is, indices into the shared
object hint table (see Section F.3.2, “Shared Object Hint Table”). Item 4 for
this group specifies how many shared object identifiers are associated with
the group.

ITEM SIZE (BITS) DESCRIPTION

Linearized PDFAPPENDIX F
1052

tables. The tables are reasonably compact and are not designed to be obtained
from the file in random pieces.

The client must now decide whether to continue reading the remainder of the
document sequentially or to abort the initial transaction and access subsequent
pages by using separate transactions requesting byte ranges. This decision is a
function of the size of the file, the data rate of the channel, and the overhead cost
of a transaction.

F.4.2 Opening at an Arbitrary Page

The viewer application may be requested to open a PDF file at an arbitrary page.
The page can be specified in one of three ways:

• By page number (remote go-to action, integer page specifier)

• By named destination (remote go-to action, name or string page specifier)

• By article thread (thread action)

Additionally, an indexed search results in opening a document by page number.
Handling this case efficiently is especially important.

As indicated above, when the document is initially opened, it is retrieved sequen-
tially starting at the beginning. As soon as the hint tables have been received, the
client has sufficient information to request retrieval of any page of the document
given its page number. Therefore, the client can abort the initial transaction and
issue a new transaction for the target page, as described in Section F.4.3, “Going
to Another Page of an Open Document.”

The position of the primary hint stream (part 5) with respect to the first-page
section (part 6) determines how quickly this can be done. If the primary hint
stream precedes the first-page section, the initial transaction can be aborted very
quickly; however, this is at the cost of increased delay when opening the docu-
ment at the first page. On the other hand, if the primary hint stream follows the
first-page section, displaying the first page is quicker (since the hint tables are not
needed for that), but opening at an arbitrary page is delayed by the time required
to receive the first page. The decision whether to favor opening at the first page or
opening at an arbitrary page must be made at the time a PDF file is linearized.

Access StrategiesSECTION F.4
1053

If an overflow hint stream exists, obtaining it requires issuing an additional trans-
action. For this reason, inclusion of an overflow hint stream in Linearized PDF,
although permitted, is not recommended. The feature exists to allow the lineariz-
er to write the PDF file with space reserved for a primary hint stream of an esti-
mated size and then go back and fill in the hint tables. If the estimate is too small,
the linearizer can append an overflow stream containing the remaining hint table
data. Thus, the PDF file can be written in one pass, which may be an advantage if
the performance of writing PDF is considered important.

Opening at a named destination requires the viewer application first to read the
entire Dests or Names dictionary, for which a hint is present. Using this informa-
tion, it is possible to determine the page containing the specific destination iden-
tified by the name.

Opening to an article requires the viewer application first to read the entire
Threads array, which is located with the document catalog at the beginning of the
document. Using this information, it is possible to determine the page containing
the first bead of any thread. Opening at other than the first bead of a thread re-
quires chaining through all the beads until the desired one is reached; there are
no hints to accelerate this.

F.4.3 Going to Another Page of an Open Document

Given a page number and the information in the hint tables, it is now straight-
forward for the client to construct a single request to retrieve any arbitrary page
of the document. The request should include the following items:

• The objects of the page itself, whose byte range can be determined from the
entry in the page offset hint table.

• The portion of the main cross-reference table referring to those objects. This
can be computed from main cross-reference table location (the T entry in the
linearization parameter dictionary) and the cumulative object number in the
page offset hint table.

• The shared objects referenced from the page, whose byte ranges can be deter-
mined from information in the shared object hint table.

• The portion or portions of the main cross-reference table referring to those ob-
jects, as described above.

Linearized PDFAPPENDIX F
1054

The purpose of the fractions in the page offset hint table is to enable the client to
schedule retrieval of the page in a way that allows incremental display of the data
as it arrives. It accomplishes this by constructing a request that interleaves pieces
of the page contents with the shared resources that the contents refer to. This
serves much the same purpose as the physical interleaving that is done for the
first page.

F.4.4 Drawing a Page Incrementally

The ordering of objects in pages and the organization of the hint tables are in-
tended to allow progressive update of the display and early opportunities for user
interaction when the data is arriving slowly. The viewer application must recog-
nize instances in which the targets of indirect object references have not yet
arrived and, where possible, rearrange the order in which it acts on the objects in
the page.

The following sequence of actions is recommended:

1. Activate the annotations, but do not draw them yet. Also activate the cursor
feedback for any article threads in the page.

2. Begin drawing the contents. Whenever there is a reference to an image
XObject that has not yet arrived, skip over it. Whenever there is a reference to
a font whose definition is an embedded font file that has not yet arrived, draw
the text using a substitute font (if that is possible).

3. Draw the annotations.

4. Draw the images as they arrive, together with anything that overlaps them.

5. Once the embedded font definitions have arrived, redraw the text using the
correct fonts, together with anything that overlaps the text.

The last two steps should be done using an off-screen buffer, if possible, to avoid
objectionable flashing during the redraw process.

On encountering a reference XObject (see Section 4.9.3, “Reference XObjects”),
the viewer application may choose to initially display the object as a proxy and
defer the retrieval and rendering of the imported content. Note that, since all
XObjects in a Linearized PDF file follow the content stream of the page on which
they appear, their retrieval is already deferred; the use of a reference XObject re-
sults in an additional level of deferral.

Access StrategiesSECTION F.4
1055

F.4.5 Following an Article Thread

As indicated earlier, the bead dictionaries for any article thread that visits a given
page are located with that page. This enables the bead rectangles to be activated
and proper cursor feedback to be shown.

If the user follows a thread, the viewer application can obtain the object number
from the N or P entry of the bead dictionary. This identifies a target bead, which
is located with the page to which it belongs. Given this object number, the viewer
application can go to that page, as discussed in Section F.4.3, “Going to Another
Page of an Open Document.”

F.4.6 Accessing an Updated File

As stated earlier, if a Linearized PDF file subsequently has an incremental update
appended to it, the linearization and hints are no longer valid. Actually, this is not
necessarily true, but the viewer application must do some additional work to val-
idate the information.

When the viewer application sees that the file is longer than the length given in
the linearization parameter dictionary, it must issue an additional transaction to
read everything that was appended. It must then analyze the objects in that up-
date to see whether any of them modify objects that are in the first page or that
are the targets of hints. If so, it must augment its internal data structures as neces-
sary to take the updates into account.

For a PDF file that has received only a small update, this approach may be worth-
while. Accessing the file this way is quicker than accessing it without hints or re-
trieving the entire file before displaying any of it.

Linearized PDFAPPENDIX F
1056

1057

APPENDIX G

GExample PDF Files

This appendix presents several examples showing the structure of actual PDF
files:

• A minimal file that can serve as a starting point for creating other PDF files
(and that is the basis of later examples)

• A simple example that shows a text string—the classic “Hello World”—and a
simple graphics example that draws lines and shapes

• A fragment of a PDF file that illustrates the structure of the page tree for a large
document and, similarly, two fragments that illustrate the structure of an out-
line hierarchy

• An example showing the structure of a PDF file as it is updated several times,
illustrating multiple body sections, cross-reference sections, and trailers

Note: The Length values of stream objects in the examples and the byte addresses in
cross-reference tables are not necessarily accurate.

G.1 Minimal PDF File

Example G.1 is a PDF file that does not draw anything; it is almost the minimum
acceptable PDF file. It is not strictly the minimum acceptable because it contains
an outline dictionary (Outlines in the document catalog) with a zero count (in
which case this object would normally be omitted); a page content stream
(Contents in the page object); and a resource dictionary (Resources in the page
object) containing a ProcSet array. These objects were included to make this file
useful as a starting point for creating other, more realistic PDF files.

Table G.1 lists the objects in this example.

Example PDF FilesAPPENDIX G
1058

TABLE G.1 Objects in minimal example

Note: When using Example G.1 as a starting point for creating other files, remem-
ber to update the ProcSet array as needed (see Section 10.1, “Procedure Sets”). Also,
remember that the cross-reference table entries may need to have a trailing space
(see Section 3.4.3, “Cross-Reference Table”).

Example G.1

%PDF−1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj
<< /Type Outlines

 /Count 0
>>

endobj

3 0 obj
<< /Type /Pages

 /Kids [4 0 R]
 /Count 1

>>
endobj

OBJECT NUMBER OBJECT TYPE

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

Minimal PDF FileSECTION G.1
1059

4 0 obj
<< /Type /Page

 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R >>

>>
endobj

5 0 obj
<< /Length 35 >>

stream
… Page-marking operators …
endstream
endobj

6 0 obj
[/PDF]

endobj

xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000300 00000 n
0000000384 00000 n

trailer
<< /Size 7

 /Root 1 0 R
>>

startxref
408
%%EOF

Example PDF FilesAPPENDIX G
1060

G.2 Simple Text String Example

Example G.2 is the classic “Hello World” example built from the preceding exam-
ple. It shows a single line of text consisting of the string Hello World, illustrating
the use of fonts and several text-related PDF operators. The string is displayed in
24-point Helvetica. Because Helvetica is one of the standard 14 fonts, no font
descriptor is needed.

Table G.2 lists the objects in this example.

TABLE G.2 Objects in simple text string example

Example G.2

%PDF−1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj
<< /Type /Outlines

 /Count 0
>>

endobj

OBJECT NUMBER OBJECT TYPE

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

7 Font (Type 1 font)

Simple Text String ExampleSECTION G.2
1061

3 0 obj
<< /Type /Pages

 /Kids [4 0 R]
 /Count 1

>>
endobj

4 0 obj
<< /Type /Page

 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R

 /Font << /F1 7 0 R >>
>>

>>
endobj

5 0 obj
<< /Length 73 >>

stream
BT

/F1 24 Tf
100 100 Td
(Hello World) Tj

ET
endstream
endobj

6 0 obj
[/PDF /Text]

endobj

7 0 obj
<< /Type /Font

 /Subtype /Type1
 /Name /F1
 /BaseFont /Helvetica
 /Encoding /MacRomanEncoding

>>
endobj

Example PDF FilesAPPENDIX G
1062

xref
0 8
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000364 00000 n
0000000466 00000 n
0000000496 00000 n

trailer
<< /Size 8

 /Root 1 0 R
>>

startxref
625
%%EOF

G.3 Simple Graphics Example

Example G.3 draws a thin black line segment, a thick black dashed line segment, a
filled and stroked rectangle, and a filled and stroked cubic Bézier curve. Table G.3
lists the objects in this example, and Figure G.1 shows the resulting output. (Each
shape has a red border, and the rectangle is filled with light blue.)

TABLE G.3 Objects in simple graphics example

OBJECT NUMBER OBJECT TYPE

1 Catalog (document catalog)

2 Outlines (outline dictionary)

3 Pages (page tree node)

4 Page (page object)

5 Content stream

6 Procedure set array

Simple Graphics ExampleSECTION G.3
1063

FIGURE G.1 Output of Example G.3

Example G.3

%PDF−1. 4
1 0 obj

<< /Type /Catalog
 /Outlines 2 0 R
 /Pages 3 0 R

>>
endobj

2 0 obj
<< /Type /Outlines

 /Count 0
>>

endobj

3 0 obj
<< /Type /Pages

 /Kids [4 0 R]
 /Count 1

>>
endobj

4 0 obj
<< /Type /Page

 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R

Example PDF FilesAPPENDIX G
1064

 /Resources << /ProcSet 6 0 R >>
>>

endobj

5 0 obj
<< /Length 883 >>

stream
% Draw a black line segment, using the default line width .
150 250 m
150 350 l
S

% Draw a thicker, dashed line segment .
4 w % Set line width to 4 points
[4 6] 0 d % Set dash pattern to 4 units on, 6 units off
150 250 m
400 250 l
S

[] 0 d % Reset dash pattern to a solid line
1 w % Reset line width to 1 unit

% Draw a rectangle with a 1−unit red border, filled with light blue .
1.0 0.0 0.0 RG % Red for stroke color
0.5 0.75 1.0 rg % Light blue for fill color
200 300 50 75 re
B

% Draw a curve filled with gray and with a colored border .
0.5 0.1 0.2 RG
0.7 g
300 300 m
300 400 400 400 400 300 c
b

endstream
endobj

6 0 obj
[/PDF]

endobj

xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n

Page Tree ExampleSECTION G.4
1065

0000000179 00000 n
0000000300 00000 n
0000001532 00000 n

trailer
<< /Size 7

 /Root 1 0 R
>>

startxref
1556
%%EOF

G.4 Page Tree Example

Example G.4 is a fragment of a PDF file illustrating the structure of the page tree
for a large document. It contains the page tree nodes for a 62-page document.
Figure G.2 shows the structure of this page tree. Numbers in the figure are object
numbers corresponding to the objects in the example.

FIGURE G.2 Page tree for Example G.4

337

335 336

4 43 77 108 139 170 201 232 263 294 325

3

16

21

26

31

37

42

48

53

58

63

70

76

82

87

92

97

102

107

113

118

123

128

133

138

144

149

154

159

164

169

175

180

185

190

195

200

206

211

216

221

226

231

237

242

247

252

257

262

268

273

278

283

288

293

299

304

309

314

319

324

330

Example PDF FilesAPPENDIX G
1066

Example G.4

337 0 obj
<< /Type /Pages

 /Kids [335 0 R
336 0 R

]
 /Count 62

>>
endobj

335 0 obj
<< /Type /Pages

 /Parent 337 0 R
 /Kids [4 0 R

43 0 R
77 0 R
108 0 R
139 0 R
170 0 R

]
 /Count 36

>>
endobj

336 0 obj
<< /Type /Pages

 /Parent 337 0 R
 /Kids [201 0 R

232 0 R
263 0 R
294 0 R
325 0 R

]
 /Count 26

>>
endobj

Page Tree ExampleSECTION G.4
1067

4 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [3 0 R

16 0 R
21 0 R
26 0 R
31 0 R
37 0 R

]
 /Count 6

>>
endobj

43 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [42 0 R

48 0 R
53 0 R
58 0 R
63 0 R
70 0 R

]
 /Count 6

>>
endobj

77 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [76 0 R

82 0 R
87 0 R
92 0 R
97 0 R
102 0 R

]
 /Count 6

>>
endobj

Example PDF FilesAPPENDIX G
1068

108 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [107 0 R

113 0 R
118 0 R
123 0 R
128 0 R
133 0 R

]
 /Count 6

>>
endobj

139 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [138 0 R

144 0 R
149 0 R
154 0 R
159 0 R
164 0 R

]
 /Count 6

>>
endobj

170 0 obj
<< /Type /Pages

 /Parent 335 0 R
 /Kids [169 0 R

175 0 R
180 0 R
185 0 R
190 0 R
195 0 R

]
 /Count 6

>>
endobj

Page Tree ExampleSECTION G.4
1069

201 0 obj
<< /Type /Pages

 /Parent 336 0 R
 /Kids [200 0 R

206 0 R
211 0 R
216 0 R
221 0 R
226 0 R

]
 /Count 6

>>
endobj

232 0 obj
<< /Type /Pages

 /Parent 336 0 R
 /Kids [231 0 R

237 0 R
242 0 R
247 0 R
252 0 R
257 0 R

]
 /Count 6

>>
endobj

263 0 obj
<< /Type /Pages

 /Parent 336 0 R
 /Kids [262 0 R

268 0 R
273 0 R
278 0 R
283 0 R
288 0 R

]
 /Count 6

>>
endobj

Example PDF FilesAPPENDIX G
1070

294 0 obj
<< /Type /Pages

 /Parent 336 0 R
 /Kids [293 0 R

299 0 R
304 0 R
309 0 R
314 0 R
319 0 R

]
 /Count 6

>>
endobj

325 0 obj
<< /Type /Pages

 /Parent 336 0 R
 /Kids [324 0 R

330 0 R
]

 /Count 2
>>

endobj

G.5 Outline Hierarchy Example

This section from a PDF file illustrates the structure of an outline hierarchy with
six items. Example G.5 shows the outline with all items open, as illustrated in
Figure G.3.

FIGURE G.3 Document outline as displayed in Example G.5

Document

Section 1

Section 2

Subsection 1

Section 3

Summary

On-screen appearance
Object

number
Count

22

25

26

27

28

29

4

0

1

0

0

0

621

Outline Hierarchy ExampleSECTION G.5
1071

Example G.5

21 0 obj
<< /Type /Outlines

 /First 22 0 R
 /Last 29 0 R
 /Count 6

>>
endobj

22 0 obj
<< /Title (Document)

 /Parent 21 0 R
 /Next 29 0 R
 /First 25 0 R
 /Last 28 0 R
 /Count 4
 /Dest [3 0 R /XYZ 0 792 0]

>>
endobj

25 0 obj
<< /Title (Section 1)

 /Parent 22 0 R
 /Next 26 0 R
 /Dest [3 0 R /XYZ null 701 null]

>>
endobj

26 0 obj
<< /Title (Section 2)

 /Parent 22 0 R
 /Prev 25 0 R
 /Next 28 0 R
 /First 27 0 R
 /Last 27 0 R
 /Count 1
 /Dest [3 0 R /XYZ null 680 null]

>>
endobj

Example PDF FilesAPPENDIX G
1072

27 0 obj
<< /Title (Subsection 1)

 /Parent 26 0 R
 /Dest [3 0 R /XYZ null 670 null]

>>
endobj

28 0 obj
<< /Title (Section 3)

 /Parent 22 0 R
 /Prev 26 0 R
 /Dest [7 0 R /XYZ null 500 null]

>>
endobj

29 0 obj
<< /Title (Summary)

 /Parent 21 0 R
 /Prev 22 0 R
 /Dest [8 0 R /XYZ null 199 null]

>>
endobj

Example G.6 is the same as Example G.5, except that one of the outline items has
been closed in the display. The outline appears as shown in Figure G.4.

FIGURE G.4 Document outline as displayed in Example G.6

On-screen appearance
Object

number
Count

Document

Section 1

Section 2

Section 3

Summary

22

25

26

28

29

3

0

–1

0

0

521

Outline Hierarchy ExampleSECTION G.5
1073

Example G.6

21 0 obj
<< /Type /Outlines

 /First 22 0 R
 /Last 29 0 R
 /Count 5

>>
endobj

22 0 obj
<< /Title (Document)

 /Parent 21 0 R
 /Next 29 0 R
 /First 25 0 R
 /Last 28 0 R
 /Count 3
 /Dest [3 0 R /XYZ 0 792 0]

>>
endobj

25 0 obj
<< /Title (Section 1)

 /Parent 22 0 R
 /Next 26 0 R
 /Dest [3 0 R /XYZ null 701 null]

>>
endobj

26 0 obj
<< /Title (Section 2)

 /Parent 22 0 R
 /Prev 25 0 R
 /Next 28 0 R
 /First 27 0 R
 /Last 27 0 R
 /Count −1
 /Dest [3 0 R /XYZ null 680 null]

>>
endobj

Example PDF FilesAPPENDIX G
1074

27 0 obj
<< /Title (Subsection 1)

 /Parent 26 0 R
 /Dest [3 0 R /XYZ null 670 null]

>>
endobj

28 0 obj
<< /Title (Section 3)

 /Parent 22 0 R
 /Prev 26 0 R
 /Dest [7 0 R /XYZ null 500 null]

>>
endobj

29 0 obj
<< /Title (Summary)

 /Parent 21 0 R
 /Prev 22 0 R
 /Dest [8 0 R /XYZ null 199 null]

>>
endobj

G.6 Updating Example

This example shows the structure of a PDF file as it is updated several times; it
illustrates multiple body sections, cross-reference sections, and trailers. In addi-
tion, it shows that once an object has been assigned an object identifier, it keeps
that identifier until the object is deleted, even if the object is altered. Finally, the
example illustrates the reuse of cross-reference entries for objects that have been
deleted, along with the incrementing of the generation number after an object has
been deleted.

The original file is the one shown in Example G.1 on page 1058. The updates are
divided into four stages, with the file saved after each stage:

1. Four text annotations are added.

2. The text of one of the annotations is altered.

3. Two of the text annotations are deleted.

4. Three text annotations are added.

Up dating ExampleSECTION G.6
1075

The sections following show the segments added to the file at each stage.
Throughout this example, objects are referred to by their object identifiers, which
are made up of the object number and the generation number, rather than simply
by their object numbers as in earlier examples. This is necessary because the ex-
ample reuses object numbers; therefore, the objects they denote are not unique.

Note: The tables in these sections show only those objects that are modified during
the updating process. Objects from Example G.1 that are not altered during the up-
date are not shown.

G.6.1 Stage 1: Add Four Text Annotations

Four text annotations are added to the initial file and the file is saved. Table G.4
lists the objects involved in this update.

TABLE G.4 Object usage after adding four text annotations

Example G.7 shows the lines added to the file by this update. The page object is
updated because an Annots entry has been added to it. Note that the file’s trailer
now contains a Prev entry, which points to the original cross-reference section in
the file, while the startxref value at the end of the trailer points to the cross-
reference section added by the update.

OBJECT IDENTIFIER OBJECT TYPE

4 0 Page (page object)

7 0 Annotation array

8 0 Annot (annotation dictionary)

9 0 Annot (annotation dictionary)

10 0 Annot (annotation dictionary)

11 0 Annot (annotation dictionary)

Example PDF FilesAPPENDIX G
1076

Example G.7

4 0 obj
<< /Type /Page

 /Parent 3 0 R
 /MediaBox [0 0 612 792]
 /Contents 5 0 R
 /Resources << /ProcSet 6 0 R >>
 /Annots 7 0 R

>>
endobj

7 0 obj
[8 0 R
 9 0 R
 10 0 R
 11 0 R
]

endobj

8 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [44 616 162 735]
 /Contents (Text #1)
 /Open true

>>
endobj

9 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [224 668 457 735]
 /Contents (Text #2)
 /Open false

>>
endobj

10 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [239 393 328 622]
 /Contents (Text #3)
 /Open true

>>
endobj

Up dating ExampleSECTION G.6
1077

11 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [34 398 225 575]
 /Contents (Text #4)
 /Open false

>>
endobj

xref
0 1
0000000000 65535 f
4 1
0000000632 00000 n
7 5
0000000810 00000 n
0000000883 00000 n
0000001024 00000 n
0000001167 00000 n
0000001309 00000 n

trailer
<< /Size 12

 /Root 1 0 R
 /Prev 408

>>
startxref
1452
%%EOF

G.6.2 Stage 2: Modify Text of One Annotation

One text annotation is modified and the file is saved. Example G.8 shows the lines
added to the file by this update. Note that the file now contains two copies of the
object with identifier 10 0 (the text annotation that was modified) and that the
added cross-reference section points to the more recent version of the object.
This added cross-reference section contains one subsection, which contains only
an entry for the object that was modified. In addition, the Prev entry in the file’s
trailer has been updated to point to the cross-reference section added in the pre-
vious stage, while the startxref value at the end of the trailer points to the newly
added cross-reference section.

Example PDF FilesAPPENDIX G
1078

Example G.8

10 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [239 393 328 622]
 /Contents (Modified Text #3)
 /Open true

>>
endobj

xref
0 1
0000000000 65535 f
10 1
0000001703 00000 n

trailer
<< /Size 12

 /Root 1 0 R
 /Prev 1452

>>
startxref
1855
%%EOF

G.6.3 Stage 3: Delete Two Annotations

Two text annotation are deleted and the file is saved. Table G.5 lists the objects
updated.

TABLE G.5 Object usage after deleting two text annotations

The Annots array is the only object that is written in this update. It is updated be-
cause it now contains two annotations fewer.

OBJECT IDENTIFIER OBJECT TYPE

7 0 Annotation array

8 0 Free

9 0 Free

Up dating ExampleSECTION G.6
1079

Example G.9 shows the lines added when the file was saved. Note that objects
with identifiers 8 0 and 9 0 have been deleted, as can be seen from the fact that
their entries in the cross-reference section end with the keyword f.

Example G.9

7 0 obj
[10 0 R
 11 0 R
]

endobj

xref
0 1
0000000008 65535 f
7 3
0000001978 00000 n
0000000009 00001 f
0000000000 00001 f

trailer
<< /Size 12

 /Root 1 0 R
 /Prev 1855

>>
startxref
2027
%%EOF

The cross-reference section added at this stage contains four entries, representing
object number 0, the Annots array, and the two deleted text annotations.

• The cross-reference entry for object number 0 is updated because it is the head
of the linked list of free entries and must now point to the entry for the newly
freed object number 8. The entry for object number 8 points to the entry for
object number 9 (the next free entry), while the entry for object number 9 is the
last free entry in the cross-reference table, indicated by the fact that it points
back to object number 0.

• The entries for the two deleted text annotations are marked as free and as
having generation numbers of 1, which are used for any objects that reuse these
cross-reference entries. Keep in mind that, although the two objects have been
deleted, they are still present in the file. It is the cross-reference table that
records the fact that they have been deleted.

Example PDF FilesAPPENDIX G
1080

The Prev entry in the trailer has again been updated so that it points to the cross-
reference section added at the previous stage, and the startxref value points to the
newly added cross-reference section.

G.6.4 Stage 4: Add Three Annotations

Finally, three new text annotations are added to the file. Table G.6 lists the objects
involved in this update.

TABLE G.6 Object usage after adding three text annotations

Object numbers 8 and 9, which were used for the two annotations deleted in the
previous stage, have been reused; however, the new objects have been given a
generation number of 1. In addition, the third text annotation added has been
assigned the previously unused object identifier of 12 0.

Example G.10 shows the lines added to the file by this update. The added cross-
reference section contains five entries, corresponding to object number 0, the
Annots array, and the three annotations added. The entry for object number 0 is
updated because the previously free entries for object numbers 8 and 9 have been
reused. The entry for object number 0 now shows that the cross-reference table
has no free entries. The Annots array is updated to reflect the addition of the
three text annotations.

Example G.10

7 0 obj
[10 0 R
 11 0 R
 8 1 R
 9 1 R
 12 0 R
]

endobj

OBJECT IDENTIFIER OBJECT TYPE

7 0 Annotation array

8 1 Annot (annotation dictionary)

9 1 Annot (annotation dictionary)

12 0 Annot (annotation dictionary)

Up dating ExampleSECTION G.6
1081

8 1 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [58 657 172 742]
 /Contents (New Text #1)
 /Open true

>>
endobj

9 1 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [389 459 570 537]
 /Contents (New Text #2)
 /Open false

>>
endobj

12 0 obj
<< /Type /Annot

 /Subtype /Text
 /Rect [44 253 473 337]
 /Contents (New Text #3\203a longer text annotation which we will continue \

onto a second line)
 /Open true

>>
endobj

xref
0 1
0000000000 65535 f
7 3
0000002216 00000 n
0000002302 00001 n
0000002447 00001 n
12 1
0000002594 00000 n

trailer
<< /Size 13

 /Root 1 0 R
 /Prev 2027

>>
startxref
2814
%%EOF

Example PDF FilesAPPENDIX G
1082

The annotation with object identifier 12 0 illustrates splitting a long text string
across multiple lines, as well as the technique for including nonstandard charac-
ters in a string. In this case, the character is an ellipsis (…), which is character
code 203 (octal) in PDFDocEncoding, the encoding used for text annotations.

As in previous updates, the trailer’s Prev entry and startxref value have been
updated.

G.7 Structured Elements That Describe Hierarchical Lists

This section presents examples that illustrate how structured elements are used to
described hierarchical lists, such as a table of contents or an index.

G.7.1 Table of Contents

The structured element’s structure type entry (S) can have values that establish
hierarchical relationships between entries in a table of content. The TOCI value
specifies an individual member of a table of contents. The TOC value specifies a
list made up of other table of contents items that are individual members of the
table of contents and/or lists of table of contents items. (The trailing character in
TOCI is an upper case “I”.)

Figure G.5 shows the table of contents described by Example G.11 on page 1084.

FIGURE G.5 Table of contents

TABLE OF CONTENTS

1. Chapter One 3

1.1 Section A 4

1.2 Section B 5

2. Chapter Two 6

3. Chapter Three 7

3.1 Section A 8

Structured Elements That Describe SECTION G.7
1083

Figure G.6 illustrates the association between marked content identifiers (MCID)
and content. This illustration includes part of the stream object so you can see
how the MCID entries are associated with the content in the table of contents.

FIGURE G.6 Association between content and marked content identifiers

Figure G.7 shows how the relationships of the structure elements and their use of
the TOC and TOCI structure types represent the structure of a table of contents.
This figure also shows the relationship between the structured content elements
and the marked content in the stream. Gray text indicates marked content identi-
fiers (MCID).

TABLE OF CONTENTS

1. Chapter One 3

1.1 Section A 4

1.2 Section B 5

2. Chapter Two 6

3. Chapter Three 7

3.1 Section A 8

/P <</MCID 1>> BDC
BT T* (TABLE OF CONTENTS) Tj ET EMC

/Lbl <</MCID 11>> BDC

BT T* (1.) Tj ET EMC

/Reference <</MCID 12>> BDC

BT (Chapter One) Tj ET EMC

/NonStruct <</MCID 13>> BDC

BT (.) Tj ET EMC

/Reference <</MCID 14>> /BDC

BT (3) Tj ET EMC

/Lbl <</MCID 21>> BDC

BT T* (1.1) Tj ET EMC

/Reference <</MCID 22>> BDC

BT (Section A) Tj ET EMC

/NonStruct <</MCID 23>> BDC

BT (.) Tj ET EMC

/Reference <</MCID 24>> /BDC

BT (4) Tj ET EMC

1

11 12 13 14

21 22 23 24

Contents of the stream object (partial)Association of marked content identifiers
(at right) to content

Example PDF FilesAPPENDIX G
1084

FIGURE G.7 Hierarchy of structure elements and relationship with marked content

Example G.11
4 0 obj

<< /Type /Page
/Contents 5 0 R

>>

5 0 obj
<< /Length 6 0 R >>

101 ->1

201
/S /Caption

211
/S /TOCI

301
/S /TOC

214
/S /TOCI

215
/S /TOCI

302
/S /TOC

400
/S /TOC

212
/S /TOCI

213
/S /TOCI

216
/S /TOCI

113 ->13

114 ->14

111 ->11

112 ->12

123 ->23

124 ->24

121 ->21

122 ->22

133 ->33

134 ->34

131 ->31

132 ->32

143 ->43

144 ->44

141 ->41

142 ->42

153 ->53

154 ->54

151 ->51

152 ->52

163 ->63

164 ->64

161 ->61

162 ->62

TA
BL

E
O

F
CO

N
TE

N
TS

1.
 C

ha
pt

er
 O

ne
 .

. .
 .

. .
 .

. .
 3

1.
1

Se
ct

io
n

A
 .

. .
 .

. .
 .

. 4

1.
2

Se
ct

io
n

B
. .

 .
. .

 .
. .

 5

2.
 C

ha
pt

er
 T

w
o

. .
 .

. .
 .

. .
 .

6

3.
 C

ha
pt

er
 T

hr
ee

 .
. .

 .
. .

 .
. 7

3.
1

Se
ct

io
n

A
 .

. .
 .

. .
 .

. 8

1

11
13

12
14

21
23

22
24

31
33

32
34

41
43

42
44

51
53

52
54

61
63

62
64

Structure elements

Marked content

Structured Elements That Describe SECTION G.7
1085

stream
/P <</MCID 1>> BDC

BT T* (TABLE OF CONTENTS) Tj ET EMC

/Lbl <</MCID 11>> BDC
BT T* (1.) Tj ET EMC

/Reference <</MCID 12>> BDC
BT (Chapter One) Tj ET EMC

/NonStruct <</MCID 13>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 14>> /BDC
BT (3) Tj ET EMC

/Lbl <</MCID 21>> BDC
BT T* (1.1) Tj ET EMC

/Reference <</MCID 22>> BDC
BT (Section A) Tj ET EMC

/NonStruct <</MCID 23>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 24>> /BDC
BT (4) Tj ET EMC

/Lbl <</MCID 31>> BDC
BT T* (1.2) Tj ET EMC

/Reference <</MCID 32>> BDC
 BT (Section B) Tj ET EMC

/NonStruct <</MCID 33>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 34>> /BDC
BT (5) Tj ET EMC

/Lbl <</MCID 41>> BDC
BT T* (2.) Tj ET EMC

/Reference <</MCID 42>> BDC
 BT (Chapter Two) Tj ET EMC

/NonStruct <</MCID 43>> BDC
BT (.) Tj ET EMC

/Reference <</MCID 44>> /BDC
 BT (6) Tj ET EMC

/Lbl <</MCID 51>> BDC
BT T* (3.) Tj ET EMC

/Reference <</MCID 52>> BDC

Example PDF FilesAPPENDIX G
1086

BT (Chapter Three) Tj ET EMC
/NonStruct <</MCID 53>> BDC

BT (.) Tj ET EMC
/Reference <</MCID 54>> /BDC

BT (7) Tj ET EMC

/Lbl <</MCID 61>> BDC
BT T* (3.1) Tj ET EM

/Reference <</MCID 62>> BDC
BT (Section A) Tj ET EM

/NonStruct <</MCID 63>> BDC
BT (.) Tj ET EM

/Reference <</MCID 64>> /BDC
BT (8) Tj ET EMC

endstream
endobj

101 0 obj
<< /Type /StructElem

/S /P
/P 201 0 R
/Pg 4 0 R
/K 1

>>
endobj
111 0 obj

<< /Type /StructElem
/S /Lbl
/P 211 0 R
/Pg 4 0 R
 /K 11

>>
endobj

112 0 obj
<< /Type /StructElem

/S /Reference
/P 211 0 R
/Pg 4 0 R
/K 12

>>
endobj

Structured Elements That Describe SECTION G.7
1087

113 0 obj
<< /Type /StructElem

/S /NonStruct
/P 211 0 R
/Pg 4 0 R
 /K 13

>>
endobj

114 0 obj
<< /Type /StructElem

/S /Reference
/P 211 0 R
/Pg 4 0 R
/K 14

 >>
endobj

objects 121-124, 131-134, 141-144, 151-154 and 161-164 referencing MCIDs 21-24, 31-34, 41-
44, 51-54, and 61-64 are omitted in the interest of space.

201 0 obj
<< /Type /StructElem

/S /Caption
/P 400 0 R
/K [101 0 R]

>>
endobj

211 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [111 0 R 112 0 R 113 0 R 114 0 R]

>>
endobj

212 0 obj
<< /Type /StructElem

/S /TOCI
/P 301 0 R
/K [121 0 R 122 0 R 123 0 R 124 0 R]

>>

Example PDF FilesAPPENDIX G
1088

endobj

213 0 obj
<< /Type /StructElem

/S /TOCI
/P 301 0 R
/K [131 0 R 132 0 R 133 0 R 134 0 R]

>>
endobj

214 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [141 0 R 142 0 R 143 0 R 144 0 R]

>>
endobj

215 0 obj
<< /Type /StructElem

/S /TOCI
/P 400 0 R
/K [151 0 R 152 0 R 153 0 R 154 0 R]

>>
endobj

216 0 obj
<< /Type /StructElem

/S /TOCI
/P 302 0 R
/K [161 0 R 162 0 R 163 0 R 164 0 R]

>>
endobj

301 0 obj
<< /Type /StructElem

/S /TOC
/P 400 0 R
/K [212 0 R 213 0 R]

>>
endobj

302 0 obj

Structured Elements That Describe SECTION G.7
1089

<< /Type /StructElem
/S /TOC
/P 400 0 R
/K [216 0 R]

>>
endobj

400 0 obj
<< /Type /StructElem

/S TOC
/K [201 0 R 211 0 R 301 0 R 214 0 R 215 0 R 302 0 R]

>>
endobj

G.7.2 Nested Lists

The structured element’s structure type entry (S) can have values that establish
hierarchical relationships between entries in an index. The LI value specifies an
individual index entry. The L value specifies a list made up of individual index en-
tries and/or lists of index entries. (The trailing character in LI is an upper case “I”.)

Figure G.8 shows the index described by Example G.12 on page 1090.

FIGURE G.8 Index

INDEX

1. Cats

 a. Lions

 b. Tigers

2. Bears

3. Canines

 a. Wolves

Example PDF FilesAPPENDIX G
1090

Figure G.9 shows how the relationships of the structure elements and their use of
the L and LI structure types defines the structure of an index. This figure also
shows the relationship between the structured content elements and the marked
content in the stream. Gray text indicates marked content identifiers (MCID).

FIGURE G.9 Hierarchy of structure elements and relationship with marked content

Example G.12
4 0 obj

<< /Type /Page
/Contents 5 0 R

>>
endobj

5 0 obj
<< /Length 6 0 R >>
stream

/P <</MCID 1>> BDC

101 ->1

201
/S /Caption

211
/S /LI

301
/S /L

214
/S /LI

215
/S /LI

302
/S /L

400
/S /L

212
/S /LI

213
/S /LI

216
/S /LI

111 ->11

112 ->12

121 ->21

122 ->22

131 ->31

132 ->32

141 ->41

142 ->42

151 ->51

152 ->52

161 ->61

162 ->62

IN
D

EX 1.
 C

at
s

a.
 L

io
ns

b.
 T

ig
er

s

2.
 B

ea
rs

3.
 C

an
in

es

a.
 W

ol
ve

s

1 11
12 21

22

31
32

41
42

51
52

61
62

Structure elements

Marked content

Structured Elements That Describe SECTION G.7
1091

BT T* (INDEX) Tj ET EMC

/Lbl <</MCID 11>> BDC
BT T* (1.) Tj ET EMC

/LBody <</MCID 12>> /BDC
BT (Cats) Tj ET EMC

/Lbl <</MCID 21>> BDC
BT T* (a.) Tj ET EMC

/LBody <</MCID 22>> /BDC
BT (Lions) Tj ET EMC

/Lbl <</MCID 31>> BDC
BT T* (b.) Tj ET EMC

/LBody <</MCID 32>> /BDC
BT (Tigers) Tj ET EMC

/Lbl <</MCID 41>> BDC
BT T* (2.) Tj ET EMC

/LBody <</MCID 42>> /BDC
BT (Bears) Tj ET EMC

/Lbl <</MCID 51>> BDC
BT T* (3.) Tj ET EM

/LBody <</MCID 52>> /BDC
BT (Canines) Tj ET EMC

/Lbl <</MCID 61>> BDC
BT T* (a.) Tj ET EM

/LBody <</MCID 62>> /BDC
BT (Wolves) Tj ET EMC

endstream
endobj

101 0 obj
<< /Type /StructElem

/S /P
/P 201 0 R
/Pg 4 0 R
/K 1

>>
endobj

Example PDF FilesAPPENDIX G
1092

111 0 obj
<< /Type /StructElem

/S /Lbl
/P 211 0 R
/Pg 4 0 R
/K 11

>>
endobj

112 0 obj
<< /Type /StructElem

/S /LBody
/P 211 0 R
/Pg 4 0 R
/K 12

>>
endobj

objects 121-122, 131-132, 141-142, 151-152 and 161-162 referencing MCIDs 21-22, 31-32, 41-
42, 51-52, and 61-62 are omitted in the interest of space.

201 0 obj
<< /Type /StructElem

/S /Caption
/P 400 0 R
/K [101 0 R]

>>
endobj

211 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [111 0 R 112 0 R]

>>
endobj

212 0 obj
<< /Type /StructElem

/S /LI
/P 301 0 R
/K [121 0 R 122 0 R]

>>

Structured Elements That Describe SECTION G.7
1093

endobj

213 0 obj
<< /Type /StructElem

/S /LI
/P 301 0 R
/K [131 0 R 132 0 R]

>>
endobj

214 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [141 0 R 142 0 R]

>>
endobj

215 0 obj
<< /Type /StructElem

/S /LI
/P 400 0 R
/K [151 0 R 152 0 R]

>>
endobj

216 0 obj
<< /Type /StructElem

/S /LI
/P 302 0 R
/K [161 0 R 162 0 R]

>>
endobj

301 0 obj
<< /Type /StructElem

/S /L
/P 400 0 R
/K [212 0 R 213 0 R]

>>

302 0 obj
<< /Type /StructElem

Example PDF FilesAPPENDIX G
1094

/S /L
/P 400 0 R
/K [216 0 R]

>>
endobj

400 0 obj
<< /Type /StructElem

/S /L
/K [201 0 R 211 0 R 301 0 R 214 0 R 215 0 R 302 0 R]

>>
endobj

1095

APPENDIX H

HCompatibility and
Implementation Notes

The goal of the Acrobat family of products is to enable people to exchange and
view electronic documents easily and reliably. Ideally, this means that any Acro-
bat viewer application should be able to display the contents of any PDF file, even
if the PDF file was created long before or long after the viewer application. Of
course, new versions of viewer applications are introduced to provide additional
capabilities not present before. Furthermore, beginning with Acrobat 2.0, viewer
applications may accept plug-in extensions, making some Acrobat viewers more
capable than others, depending on what extensions are present.

Both viewer applications and PDF have been designed to enable users to view ev-
erything in the document that the viewer application understands and to ignore
or inform the user about objects not understood. The decision whether to ignore
or inform the user is made on a feature-by-feature basis.

The original PDF specification did not define how a viewer application should
behave when it reads a file that does not conform to the specification. This ap-
pendix provides that information. The PDF version associated with a file deter-
mines how it should be treated when a viewer application encounters a problem.

In addition, this appendix includes notes on the Acrobat implementation for de-
tails that are not strictly defined by the PDF specifications.

H.1 PDF Version Numbers

PDF version numbers take the form M . m, where M is the major and m the minor
version number. Adobe increments the major version number when the PDF
specification changes in such a way that existing viewer applications are unlikely
to read a document without serious errors that prevent pages from being viewed.

Compatibility and Implementation NotesAPPENDIX H
1096

The minor version number is incremented if the changes do not prevent existing
viewer applications from continuing to work, such as the addition of new page
description operators. The version number does not change at all if PDF changes
in a way that existing viewer applications are unlikely to detect. Such changes
might include the addition of private data, such as additional entries in the docu-
ment catalog, that can be gracefully ignored by applications that do not under-
stand it.

The header in the first line of a PDF file specifies a PDF version (see Section 3.4.1,
“File Header”). In PDF 1.4, a PDF version can also be specified in the Version en-
try of the document catalog, essentially updating the version associated with the
file by overriding the one specified in the file header (see Section 3.6.1, “Docu-
ment Catalog”). As described in the following paragraphs, the viewer applica-
tion’s behavior upon opening or saving a document depends on what it perceives
to be the document’s PDF version (compared to the viewer’s native file format—
for example, PDF 1.3 for Acrobat 4.0—which is also referred to as the viewer’s
PDF version). Viewers that are not PDF 1.4–aware may perceive the document’s
version incorrectly, because they look for it only in the PDF file’s header and do
not see the version (if any) specified in the document catalog.

An Acrobat viewer attempts to read any PDF file, even if the file’s version is more
recent than that of the viewer. It reads without errors any file that does not re-
quire a plug-in extension, even if the file’s version is older than the viewer’s. Some
documents may require a plug-in to display an annotation, follow a link, or exe-
cute an action. Viewer behavior in this situation is described in Section H.3, “Im-
plementation Notes.” However, a plug-in is never required to display the contents
of a page.

If a viewer application opens a document with a major version number newer
than it expects, it warns the user that it is unlikely to be able to read the document
successfully and that the user cannot change or save the document. At the first er-
ror related to document processing, the viewer notifies the user that an error has
occurred but that no further errors will be reported. (Some errors are always re-
ported, including file I/O errors, extension loading errors, out-of-memory errors,
and notifications that a command has failed.) Processing continues if possible.
Acrobat does not permit a document that has a newer-than-expected major ver-
sion number to be inserted into another document.

If a viewer application opens a document that has a minor version number newer
than it expects, it notifies the user that the document may contain information

PDF Version NumbersSECTION H.1
1097

the viewer does not understand. (This describes the behavior in Acrobat 5.0 and
later; earlier versions do not notify the user.) If the viewer encounters an error, it
notifies the user that the document version is newer than expected, an error has
occurred, and no further errors will be reported. Acrobat permits a document
with a newer minor version to be inserted into another document.

Whether and how the version of a document changes when the document is
modified and saved depends on several factors. If the document has a newer ver-
sion than expected, the viewer does not alter the version—that is, a document’s
version is never changed to an older version. If the document has an older version
than expected, the viewer updates the document’s version to match the viewer’s
version. If a user modifies a document by inserting another document into it, the
saved document’s version is the most recent of the viewer’s version, the docu-
ment’s original version, and the inserted document’s version.

If the version of a document changes, viewers that are not PDF 1.4–aware cannot
save the document by using an incremental update because updating the header
requires rewriting the entire file. Among other disadvantages, rewriting the file
can cause existing digital signatures to become invalid. Since viewers that are
PDF 1.4–aware can use the Version entry in the document catalog to update the
document’s version, they can incrementally save the document (and will do so if
necessary to preserve existing signatures). For example, if an Acrobat 5.0 user
modifies a document that has a PDF version earlier than 1.4, the document can
be updated incrementally when saved (with the updated version of 1.4 in the doc-
ument catalog). However, if an Acrobat 4.0 user modifies a document that has a
PDF version earlier than 1.3, the entire file is rewritten when saved (with a new
header indicating version 1.3).

Again, the preceding discussion of viewer behavior applies to what the viewer
perceives to be a document’s PDF version, which may be different from the doc-
ument’s actual version if the viewer does not look for the Version entry in the
document’s catalog (a PDF 1.4 feature). One consequence is that a file may be re-
written when it could have been incrementally updated. For example, suppose an
Acrobat 4.0 user opens a document that has a version of 1.4 (newer than expect-
ed) specified in the catalog’s Version entry. Acrobat 4.0 determines the version by
looking only at the document’s header. There are two cases to consider:

• The header specifies version 1.2 or earlier. If the user alters and saves the docu-
ment, the viewer updates the document’s version to match its own by rewriting
the file with a new header indicating version 1.3.

Compatibility and Implementation NotesAPPENDIX H
1098

• The header specifies version 1.3 or later. If the user alters and saves the docu-
ment, the viewer allows the file to be incrementally updated, since it does not
believe the version needs updating.

In both cases, the version number in the document catalog is maintained at 1.4,
and later versions of Acrobat will recognize the correct version number.

H.2 Feature Compatibility

Many PDF features are introduced simply by adding new entries to existing dic-
tionaries. Earlier versions of viewer applications do not notice the existence of
such entries and behave as if they were not there. Such new features are therefore
both forward- and backward-compatible. Likewise, adding entries not described
in the PDF specification to dictionary objects does not affect the viewers’ behav-
ior. (See Appendix E for information on how to choose key names that are com-
patible with future versions of PDF.)

In some cases, a new feature is impossible to ignore, because doing so would pre-
clude some vital operation such as viewing or printing a page. For instance, if a
page’s content stream is encoded with some new type of filter, there is no way to
view or print the page, even though the content stream (if decoded) would be
perfectly understood by the viewer. There is little choice but to give an error in
cases like these. Such new features are forward-compatible but not backward-
compatible.

In a few cases, new features are defined in a way that earlier viewer versions will
ignore, but the output will be degraded in some way without any error indication.
The most significant example of this is transparency. All of the transparency fea-
tures introduced in PDF 1.4 are defined as new entries in existing dictionaries
(including the graphics state parameter dictionary). A viewer that does not un-
derstand transparency treats transparency group XObjects as if they were opaque
form XObjects. This is a significant enough deviation from the intended behavior
that it is worth pointing out as a compatibility issue (and so is covered in imple-
mentation notes in this appendix).

If a PDF document undergoes editing by an application that does not understand
some of the features that the document uses, the occurrences of those features
may or may not survive. If a dictionary object such as an annotation is copied
into another document during a page insertion (or, beginning with Acrobat 2.0,
during a page extraction), all entries are copied. If a value is an indirect reference
to another object, that object may be copied as well, depending on the entry.

Implementation NotesSECTION H.3
1099

H.3 Implementation Notes

This section gives notes on the implementation of Acrobat and on compatibility
between different versions of PDF. The notes are listed in the order of the sections
to which they refer in the main text.

1.2, “Introduction to PDF 1.7 Features”

1. The native file formats of Acrobat products are PDF 1.2 for Acrobat 3.0,
PDF 1.3 for Acrobat 4.0, PDF 1.4 for Acrobat 5.0, PDF 1.5 for Acrobat 6.0,
PDF 1.6 for Acrobat 7.0, and PDF 1.7 for Acrobat 8.0.

3.1.2, “Comments”

2. Acrobat viewers do not preserve comments when saving a file.

3.2.4, “Name Objects”

3. In PDF 1.1, the number sign character (#) could be used as part of a name
(for example, /A#B), and the specifications did not specifically prohibit
embedded spaces (although Adobe producer applications did not provide
a way to write names containing them). In PDF 1.2, the number sign be-
came an escape character, preceding two hexadecimal digits. Thus, a
3-character name A-space-B can now be written as /A#20B (since 20 is the
hexadecimal code for the space character). This means that the name /A#B
is no longer valid, since the number sign is not followed by two hexadeci-
mal digits. A name object with this value must be written as /A#23B, since
23 is the hexadecimal code for the character #.

4. In cases where a PostScript name must be preserved or where a string is
permitted in PostScript but not in PDF, the Acrobat Distiller application
uses the # convention as necessary. When an Acrobat viewer generates
PostScript, it inverts the convention by writing a string where permitted
or a name otherwise. For example, if the string (Adobe Green) were used
as a key in a dictionary, Distiller would use the name /Adobe#20Green and
the viewer would generate (Adobe Green).

5. In Acrobat 4.0 and earlier versions, a name object being treated as text is
typically interpreted in a host platform encoding, which depends on the
operating system and the local language. For Asian languages, this
encoding may be something like Shift-JIS or Big Five. Consequently, it is
necessary to distinguish between names encoded this way and ones

Compatibility and Implementation NotesAPPENDIX H
1100

encoded as UTF-8. Fortunately, UTF-8 encoding is very stylized and its
use can usually be recognized. A name that does not conform to UTF-8
encoding rules can instead be interpreted according to host platform en-
coding.

3.2.7, “Stream Objects”

6. When a stream specifies an external file, PDF 1.1 parsers ignore the file
and always use the bytes between stream and endstream.

7. Acrobat viewers accept the name DP as an abbreviation for the
DecodeParms key in any stream dictionary. If both DP and DecodeParms
entries are present, DecodeParms takes precedence.

3.2.9, “Indirect Objects”

8. Acrobat viewers require that the name object used as a key in a dictionary
entry be a direct object; an indirect object reference to a name is not ac-
cepted.

3.3, “Filters”

9. Acrobat viewers accept the abbreviated filter names shown in Table H.1 in
addition to the standard ones. Although the abbreviated names are
intended for use only in the context of inline images (see Section 4.8.6, “In-
line Images”), they are also accepted as filter names in any stream object.

TABLE H.1 Abbreviations for standard filter names

STANDARD FILTER NAME ABBREVIATION

ASCIIHexDecode AHx

ASCII85Decode A85

LZWDecode LZW

FlateDecode (PDF 1.2) Fl (uppercase F, lowercase L)

RunLengthDecode RL

CCITTFaxDecode CCF

DCTDecode DCT

Implementation NotesSECTION H.3
1101

10. If an unrecognized filter is encountered, Acrobat viewers report the con-
text in which the filter was found. If errors occur while a page is being dis-
played, only the first error is reported. The subsequent behavior depends
on the context, as described in Table H.2. Acrobat operations that process
pages, such as the Find command and the Create Thumbnails command,
stop as soon as an error occurs.

TABLE H.2 Acrobat behavior with unknown filters

3.3.7, “DCTDecode Filter”

11. Acrobat 4.0 and later viewers do not support the combination of the
DCTDecode filter with any other filter if the encoded data uses the pro-
gressive JPEG format. If a version of the Acrobat viewer earlier than 4.0
encounters DCTDecode data encoded in progressive JPEG format, an er-
ror occurs that is handled according to Table H.2.

3.4, “File Structure”

12. Acrobat viewers do not enforce the restriction on line length.

CONTEXT BEHAVIOR

Content stream Page processing stops.

Indexed color space The image does not appear, but page processing continues.

Image resource The image does not appear, but page processing continues.

Inline image Page processing stops.

Thumbnail image An error is reported and no more thumbnail images are dis-
played, but the thumbnails can be deleted and created
again.

Form XObject The form does not appear, but page processing continues.

Type 3 glyph description The glyph does not appear, but page processing continues.
The text position is adjusted based on the glyph width.

Embedded font The viewer behaves as if the font is not embedded.

Compatibility and Implementation NotesAPPENDIX H
1102

3.4.1, “File Header”

13. Acrobat viewers require only that the header appear somewhere within
the first 1024 bytes of the file.

14. Acrobat viewers also accept a header of the form

%!PS−Adobe−N . n PDF−M . m

3.4.3, “Cross-Reference Table”

15. Acrobat viewers do not enforce the restriction on object numbers existing
in more than one subsection; they use the entry in the first subsection
where the object number is encountered. However, overlap is explicitly
prohibited in cross-reference streams in PDF 1.5.

16. Acrobat 6.0 and later do not use the free list to recycle object numbers;
new objects are assigned new numbers.

17. Acrobat viewers do not raise an error in cases where there are gaps in the
sequence of object numbers between cross-reference subsections. The
missing object numbers are treated as free objects.

3.4.4, “File Trailer”

18. Acrobat viewers require only that the %%EOF marker appear somewhere
within the last 1024 bytes of the file.

3.4.6, “Object Streams”

19. When creating or saving PDF files, Acrobat 6.0 limits the number of ob-
jects in individual object streams to 100 for linearized files and 200 for
non-linearized files.

3.4.7, “Cross-Reference Streams” (Cross-Reference Stream Dictionary)

20. FlateDecode is the only filter supported by Acrobat 6.0 and later viewers
for cross-reference streams. These viewers also support unencoded cross-
reference streams.

3.4.7, “Cross-Reference Streams” (Compatibility with PDF 1.4)

21. Byte addresses can be as large as needed to address an arbitrarily large PDF
file, regardless of the implementation limit for PDF integers in general.

Implementation NotesSECTION H.3
1103

3.5, “Encryption”

22. An option to use an unpublished algorithm was needed because of an ex-
port requirement of the U.S. Department of Commerce. This requirement
no longer exists. Acrobat 7.0 does not use this algorithm to encrypt docu-
ments, although it can decrypt files that are encrypted with the algorithm.

23. Acrobat viewers will fail to open a document encrypted with a V value de-
fined in a version of PDF that the viewer does not understand.

24. Security handlers are responsible for protecting the value of EFF from
tampering if needed. Acrobat security handlers do not provide this pro-
tection.

3.5.2, “Standard Security Handler” (Standard Encryption Dictionary)

25. Acrobat viewers implement this limited mode of printing as “Print As Im-
age,” except on UNIX systems, where this feature is not available.

3.5.2, “Standard Security Handler” (Encryption Key Algorithm)

26. The first element of the ID array generally remains the same for a given
document. However, in some situations, Acrobat may regenerate the ID
array if a new generation of a document is created. Security handlers are
encouraged not to rely on the ID in the encryption key computation.

3.5.2, “Standard Security Handler” (Password Algorithms)

27. In Acrobat 2.0 and 2.1 viewers, the standard security handler uses the
empty string if there is no owner password in step 1 of Algorithm 3.3.

3.5.4, “Crypt Filters”

28. In Acrobat 6.0, crypt filter usage is limited to allowing document-level
metadata streams to be left as plaintext in an otherwise encrypted docu-
ment. In Acrobat 7.0, crypt filter usage also includes the ability to encrypt
embedded files while leaving the remainder of the document as plaintext.

29. In Acrobat 6.0 and later, when strings and streams in an encrypted docu-
ment are edited, those streams and strings are encrypted with the StmF
and StrF filters, respectively. In Acrobat 7.0, if the EFF entry in the encryp-
tion dictionary is set, embedded files are encrypted with the crypt filter

Compatibility and Implementation NotesAPPENDIX H
1104

specified by the EFF entry. In both Acrobat 6.0 and 7.0, if the security han-
dler indicates that document-level metadata is to be in plaintext, the meta-
data will not be encrypted. It is up to individual security handlers to store
their own flags that indicate whether document-level metadata should be
in plaintext.

30. Acrobat viewers do not support the ability for third-party security han-
dlers to specify None as a value for CFM.

31. In the file specification dictionary (see Section 3.10.2, “File Specification
Dictionaries”), related files (RF) must use the same crypt filter as the em-
bedded file (EF).

32. The value of the EncryptMetadata entry is set by the security handler
rather than the Acrobat viewer application.

3.6.1, “Document Catalog”

33. Acrobat 5.0 and Acrobat 6.0 avoid adding a Version entry to the document
catalog and do so only if necessary. Once they have added this entry, they
behave in this way:

• Acrobat 5.0 never removes the Version entry. For documents containing
a Version entry, Acrobat 5.0 attempts to ensure that the version specified
in the header matches the version specified in the Version entry; if this
is not possible, it at least ensures that the latter is later than (and there-
fore overrides) the version specified in the header.

• Acrobat 6.0 removes the Version entry when doing a full (non-incre-
mental) save of the document.

34. In PDF 1.2, an additional entry in the document catalog, named AA, was
defined but was never implemented. The AA entry that is newly intro-
duced in PDF 1.4 is entirely different from the one that was contemplated
for PDF 1.2.

3.6.2, “Page Tree” (Page Objects)

35. In PDF 1.2, an additional entry in the page object, named Hid, was defined
but was never implemented. Beginning with PDF 1.3, this entry is obso-
lete and should be ignored.

36. Acrobat 5.0 and later viewers do not accept a Contents array containing
no elements.

Implementation NotesSECTION H.3
1105

37. In a document containing articles, if the first page that has an article bead
does not have a B entry, Acrobat viewers rebuild the B array for all pages of
the document.

38. In PDF 1.2, additional-actions dictionaries were inheritable; beginning
with PDF 1.3, they are not inheritable.

3.7.1, “Content Streams”

39. Acrobat viewers report an error the first time they find an unknown oper-
ator or an operator with too few operands, but continue processing the
content stream. No further errors are reported.

3.9.1, “Type 0 (Sampled) Functions”

40. When printing, Acrobat performs only linear interpolation, regardless of
the value of the Order entry.

3.9.2, “Type 2 (Exponential Interpolation) Functions”

41. Since Type 2 functions are not defined in PDF 1.2 or earlier versions,
Acrobat 3.0 (whose native file format is PDF 1.2) reports an Invalid Func-
tion Resource error if it encounters a function of this type.

3.9.3, “Type 3 (Stitching) Functions”

42. Since Type 3 functions are not defined in PDF 1.2 or earlier versions,
Acrobat 3.0 (whose native file format is PDF 1.2) reports an error, “Invalid
Function Resource,” if it encounters a function of this type.

3.9.4, “Type 4 (PostScript Calculator) Functions”

43. Since Type 4 functions are not defined in PDF 1.2 or earlier versions,
Acrobat 3.0 (whose native file format is PDF 1.2) reports an error, “Invalid
Function Resource,” if it encounters a function of this type.

44. Acrobat uses single-precision floating-point numbers for all real-number
operations in a type 4 function.

Compatibility and Implementation NotesAPPENDIX H
1106

3.10.2, “File Specification Dictionaries”

45. In Acrobat 5.0, file specifications accessed through EmbeddedFiles have a
Type entry whose value is F instead of the correct Filespec. Acrobat 6.0
and later accept a file specification whose Type entry is either Filespec or F.

46. In certain situations, Acrobat 3.0 and greater do not correctly interpret file
specifications referenced by the F entry in Form or Image XObjects. Spe-
cifically, Acrobat ignores the file specification EF entry when that file spec-
ification is referenced from the XObject F entry.

Example H.1 shows an example of an Image XObject F entry referencing a
file specification that in turn references an embedded file. Acrobat does
not correctly interpret such file specifications.

Example H.1

13 0 obj <<

/Type /XObject

/Subtype /Image

/F 12 0 R

…

>> stream endstream endobj

12 0 obj <<

/Type /Filespec

/EF <</F 10 0 R>>

>> endobj

10 0 obj <<

/Type /EmbeddedFile

…

>> stream … endstream endobj

4.5.2, “Color Space Families”

47. If an Acrobat viewer encounters an unknown color space family name, it
displays an error specifying the name, but reports no further errors there-
after.

Implementation NotesSECTION H.3
1107

4.5.5, “Special Color Spaces” (DeviceN Color Spaces)

48. Acrobat viewers support the special meaning of None only when a
DeviceN color space is used as a base color for an indexed color space. For
all other uses of DeviceN, None is treated as a regular spot color name.

4.5.5, “Special Color Spaces” (Multitone Examples)

49. This method of representing multitones is used by Adobe Photoshop 5.0.2
and subsequent versions when exporting EPS files. Beginning with ver-
sion 4.0, Acrobat exports Level 3 EPS files using this method, and can also
export Level 1 EPS files that use the “Level 1 separation” conventions of
Adobe Technical Note #5044, Color Separation Conventions for PostScript
Language Programs. These conventions are used to emit multitone images
as calls to “customcolorimage” with overprinting, which can then be
placed in page layout applications such as Adobe PageMaker®, Adobe
In-Design, and QuarkXPress.

4.6, “Patterns”

50. Acrobat viewers earlier than version 4.0 do not display patterns on the
screen, although they do print them to PostScript output devices.

4.7, “External Objects”

51. Acrobat viewers that encounter an XObject of an unknown type display
an error specifying the type of XObject but report no further errors there-
after.

4.8.4, “Image Dictionaries”

52. Image XObjects in PDF 1.2 and earlier versions are all implicitly un-
masked images. A PDF consumer that does not recognize the Mask entry
treats the image as unmasked without raising an error.

53. All Acrobat viewers ignore the Name entry in an image dictionary.

4.8.5, “Masked Images”

54. Explicit masking and color key masking are features of PostScript Lan-
guageLevel 3. Acrobat 4.0 and later versions do not attempt to emulate the

Compatibility and Implementation NotesAPPENDIX H
1108

effect of masked images when printing to LanguageLevel 1 or Lan-
guageLevel 2 output devices; they print the base image without the mask.

The Acrobat 4.0 viewer displays masked images, but only when the
amount of data in the mask is below a certain limit. Above that, the viewer
displays the base image without the mask.

4.9.1, “Form Dictionaries”

55. All Acrobat viewers ignore the Name entry in a form dictionary.

4.9.3, “Reference XObjects

56. Acrobat 6.0 and earlier viewers do not implement reference XObjects. The
proxy is always used for viewing and printing.

5.2.5, “Text Rendering Mode”

57. In Acrobat 4.05 and earlier versions, text-showing operators such as Tj
first perform the fills for all the glyphs in the string being shown, followed
by the strokes for all the glyphs. This produces incorrect results if glyphs
overlap.

5.3.2, “Text-Showing Operators”

58. In versions of Acrobat earlier than 3.0, the horizontal coordinate of the
text position after the TJ operator paints a character glyph and moves by
any specified offset must not be less than it was before the glyph was
painted.

59. In Acrobat 4.0 and earlier viewers, position adjustments specified by num-
bers in a TJ array are performed incorrectly if the horizontal scaling pa-
rameter, Th , is different from its default value of 100.

5.5.1, “Type 1 Fonts”

60. All Acrobat viewers ignore the Name entry in a font dictionary.

61. Acrobat 5.0 and later viewers use the glyph widths stored in the font dic-
tionary to override the widths of glyphs in the font program itself, which
improves the consistency of the display and printing of the document.
This addresses the situation in which the font program used by the viewer

Implementation NotesSECTION H.3
1109

application is different from the one used by the application that produced
the document.

The font program with the altered glyph widths may or may not be em-
bedded. If it is embedded, its widths should exactly match the widths in
the font dictionary. If the font program is not embedded, Acrobat over-
rides the widths in the font program on the viewer application’s system
with the widths specified in the font dictionary.

It is important that the widths in the font dictionary match the actual
glyph widths of the font program that was used to produce the document.
Consumers of PDF files depend on these widths in many different con-
texts, including viewing, printing, fauxing (font substitution), reflow, and
word search. These operations may malfunction if arbitrary adjustments
are made to the widths so that they do not represent the glyph widths in-
tended by the PDF producer.

It is recommended that diagnostic and preflight tools check the glyph
widths in the font dictionary against those in an embedded font program
and flag any inconsistencies. It would also be helpful if the tools could op-
tionally check for consistency with the widths in font programs that are
not embedded. This is useful for checking a PDF file immediately after it
is produced, when the original font programs are still available.

Note: This implementation note is also referred to in Section 5.6.3, “CIDFonts”
(Glyph Metrics in CIDFonts).

5.5.1, “Type 1 Fonts” (Standard Type 1 Fonts (Standard 14 Fonts))

62. Acrobat 3.0 and earlier viewers may ignore attempts to override the stan-
dard fonts.

TABLE H.3 Names of standard fonts

STANDARD NAME ALTERNATIVE

Courier CourierNew

Courier−Oblique CourierNew,Italic

Courier−Bold CourierNew,Bold

Courier−BoldOblique CourierNew,BoldItalic

Helvetica Arial

Compatibility and Implementation NotesAPPENDIX H
1110

Also, Acrobat 4.0 and earlier viewers incorrectly allow substitution fonts,
such as TimesNewRoman and ArialMT, to be specified without FirstChar,
LastChar, Widths, and FontDescriptor entries.

Table H.3 shows the complete list of font names that are accepted as the
names of standard fonts. The first column shows the proper one (for ex-
ample, Helvetica); the second column shows the alternative if one exists
(for example, Arial).

5.5.3, “Font Subsets”

63. For Acrobat 3.0 and earlier viewers, all font subsets whose BaseFont
names differ only in their tags should have the same font descriptor values
and should map character names to glyphs in the same way; otherwise,
glyphs may be shown unpredictably. This restriction is eliminated in
Acrobat 4.0.

5.5.4, “Type 3 Fonts”

64. In principle, the value of the Encoding entry could also be the name of a
predefined encoding or an encoding dictionary whose BaseEncoding
entry is a predefined encoding. However, Acrobat 4.0 and earlier viewers
do not implement this correctly.

Helvetica−Oblique Arial,Italic

Helvetica−Bold Arial,Bold

Helvetica−BoldOblique Arial,BoldItalic

Times−Roman TimesNewRoman

Times−Italic TimesNewRoman,Italic

Times−Bold TimesNewRoman,Bold

Times−BoldItalic TimesNewRoman,BoldItalic

Symbol

ZapfDingbats

STANDARD NAME ALTERNATIVE

Implementation NotesSECTION H.3
1111

65. For compatibility with Acrobat 2.0 and 2.1, the names of resources in a
Type 3 font’s resource dictionary must match those in the page object’s re-
source dictionary for all pages in which the font is referenced. If backward
compatibility is not required, any valid names may be used.

5.6.4, “CMaps”

66. Embedded CMap files, other than ToUnicode CMaps, do not work prop-
erly in Acrobat 4.0 viewers; this has been corrected in Acrobat 4.05.

67. Japanese fonts included with Acrobat 6.0 contain only glyphs from the
Adobe Japan1-4 character collection. Documents that use fonts contain-
ing additional glyphs from the Adobe-Japan1-5 collection must embed
those fonts to ensure proper display and printing.

5.7, “Font Descriptors”

68. Acrobat viewers earlier than version 3.0 ignore the FontFile3 entry. If a
font uses the Adobe standard Latin character set (as defined in Section
D.1, “Latin Character Set and Encodings”), Acrobat creates a substitute
font. Otherwise, Acrobat displays an error message (once per document)
and substitutes any characters in the font with the bullet character.

5.8, “Embedded Font Programs”

69. For simple fonts, font substitution is performed using multiple master
Type 1 fonts. This substitution can be performed only for fonts that use
the Adobe standard Latin character set (as defined in Section D.1, “Latin
Character Set and Encodings”). In Acrobat 3.0.1 and later, Type 0 fonts
that use a CMap whose CIDSystemInfo dictionary defines the Adobe-GB1,
Adobe-CNS1 Adobe-Japan1, or Adobe-Korea1 character collection can
also be substituted. To make a document portable, fonts that cannot be
substituted must be embedded. The only exceptions are the Symbol and
ZapfDingbats fonts, which are assumed to be present.

6.4.2, “Spot Functions”

70. When Distiller encounters a call to the PostScript setscreen or sethalftone
operator that includes a spot function, it compares the PostScript code de-
fining the spot function with that of the predefined spot functions shown
in Table 6.1. If the code matches one of the predefined functions, Distiller

Compatibility and Implementation NotesAPPENDIX H
1112

puts the name of that function into the halftone dictionary; Acrobat uses
that function when printing the PDF document to a PostScript output de-
vice. If the code does not match any of the predefined spot functions, Dis-
tiller samples the specified spot function and generates a function for the
halftone dictionary; when printing to a PostScript device, Acrobat gener-
ates a spot function that interpolates values from that function.

When producing PDF version 1.3 or later, Distiller represents the spot
function by using a Type 4 (PostScript calculator) function whenever pos-
sible (see Section 3.9.4, “Type 4 (PostScript Calculator) Functions”). In
this case, Acrobat uses this function directly when printing the document.

6.5.4, “Automatic Stroke Adjustment”

71. When drawing to the screen, Acrobat 6.0 always performs automatic
stroke adjustment, regardless of the value of the SA entry in the graphics
state parameter dictionary.

7.5.2, “Specifying Blending Color Space and Blend Mode”

72. PDF 1.3 or earlier viewers ignore all transparency-related graphics state
parameters (blend mode, soft mask, alpha constant, and alpha source). All
graphics objects are painted opaquely.

Note: This implementation note is also referred to in Sections 7.5.3, “Specifying
Shape and Opacity” (Mask Shape and Opacity, Constant Shape and Opacity)
and 7.5.4, “Specifying Soft Masks” (Soft-Mask Dictionaries).

7.5.3, “Specifying Shape and Opacity” (Mask Shape and Opacity)

73. PDF 1.3 or earlier viewers ignore the SMask entry in an image dictionary.
All images are painted opaquely.

Note: This implementation note is also referred to in Section 7.5.4, “Specifying
Soft Masks” (Soft-Mask Images).

8.2.2, “Document Outline”

74. In PDF 1.2, an additional entry in the outline item dictionary, named AA,
was defined but was never implemented. Beginning with PDF 1.3, this
entry is obsolete and should be ignored.

Implementation NotesSECTION H.3
1113

75. Acrobat viewers report an error when a user activates an outline item
whose destination is of an unknown type.

8.3.1, “Page Labels”

76. Acrobat viewers up to version 3.0 ignore the PageLabels entry and label
pages with decimal numbers starting at 1.

8.4, “Annotations”

77. In PDF 1.5, the order of moving the keyboard focus between annotations
on a page by using the tab key can be made explicit by means of the page’s
Tabs entry (see Table 3.27). In earlier versions, the tab order was not ex-
plicitly specified and depended on the viewer. In Acrobat 4.0, the order in-
cludes only widget annotations and is determined by their order in the
page’s Annots array. In Acrobat 5.0, the order includes all annotations:
widgets come first and are ordered as in Acrobat 4.0; other annotations
come after widgets and are ordered by rows. Acrobat 6.0 has the same be-
havior as Acrobat 5.0 for documents that do not contain a Tabs entry. For
documents that have a Tabs entry, Acrobat 6.0 reorders widgets in the
Annots array to match the specified order (row, column, or structure) so
that the tab order for widgets is preserved when the document is opened
by earlier viewers.

8.4.1, “Annotation Dictionaries”

78. Acrobat viewers update the annotation dictionary’s M entry only for text
annotations.

79. Acrobat 2.0 and 2.1 viewers ignore the annotation dictionary’s AP and AS
entries.

80. All versions of Acrobat through 6.0 ignore the AP entry when drawing the
appearance of link annotations.

81. Acrobat viewers ignore the horizontal and vertical corner radii in the an-
notation dictionary’s Border entry; the border is always drawn with square
corners.

82. Acrobat viewers support a maximum of ten elements in the dash array of
the annotation dictionary’s Border entry.

Compatibility and Implementation NotesAPPENDIX H
1114

8.4.2, “Annotation Flags”

83. Acrobat viewers earlier than version 3.0 ignore an annotation’s Hidden
and Print flags. Annotations that should be hidden are shown; annota-
tions that should be printed are not printed. Acrobat 3.0 ignores the Print
flag for text and link annotations.

84. Acrobat 5.0 obeys the Locked flag only for widget annotations. In Acrobat
6.0, markup annotations support it as well.

85. In Acrobat 6.0, the ToggleNoView flag is applicable to mouse-over and se-
lection events.

8.4.3, “Border Styles”

86. If an Acrobat viewer encounters a border style it does not recognize, the
border style defaults to S (Solid).

8.4.4, “Appearance Streams”

87. Acrobat 5.0 treats the annotation appearance as an isolated group, regard-
less of whether a Group entry is present. This behavior is corrected in Ac-
robat 6.0.

8.4.5, “Annotation Types”

88. Acrobat viewers display annotations whose types they do not recognize in
closed form, with an icon containing a question mark. Such an annotation
can be selected, moved, or deleted, but if the user attempts to activate it, an
alert appears giving the annotation type and reporting that a required
plug-in is unavailable.

8.4.5, “Annotation Types” (Link Annotations)

89. Acrobat viewers report an error when a user activates a link annotation
whose destination is of an unknown type.

90. When a link annotation specifies a value of P for the H entry (highlighting
mode), Acrobat viewers display the link appearance with a beveled border,
ignoring any down appearance that is defined (see Section 8.4.4, “Appear-
ance Streams”).

Implementation NotesSECTION H.3
1115

8.4.5, “Annotation Types” (Polygon and Polyline Annotations)

91. The PDF Reference fifth edition (PDF 1.6) erroneously omitted the IT en-
try from the additional entries specific to a polygon or polyline annota-
tion. This entry specifies the intent of the annotation. (see Table 8.29).

8.4.5, “Annotation Types” (Text Markup Annotations)

92. In Acrobat 4.0 and later versions, the text is oriented with respect to the
vertex with the smallest y value (or the leftmost of those, if there are two
such vertices) and the next vertex in a counterclockwise direction, regard-
less of whether these are the first two points in the QuadPoints array.

8.4.5, “Annotation Types” (Ink Annotations)

93. Acrobat viewers always use straight lines to connect the points along each
path.

8.4.5, “Annotation Types” (File Attachment Annotations)

94. Acrobat 7.0 and earlier viewers only support file attachment annotations
whose referenced file is embedded in the PDF document.

95. Acrobat 7.0 does not include a Desc entry in file specifications for file at-
tachment annotations and ignores them if they are present.

96. PDF 1.7 added the ability to apply markup annotations to 3D views. Al-
though Acrobat 7.0 officially supports PDF 1.6, Acrobat 7.0.7 also sup-
ports this feature.

8.4.5, “Annotation Types” (Watermark Annotations)

97. Watermark annotations are handled correctly only when Acrobat n-up
printing is selected. Selecting n-up from within the printer driver does not
produce correct results.

8.5.2, “Trigger Events”

98. In PDF 1.2, the additional-actions dictionary could contain entries named
NP (next page), PP (previous page), FP (first page), and LP (last page). The
actions associated with these entries were never implemented; beginning
with PDF 1.3, these entries are obsolete and should be ignored.

Compatibility and Implementation NotesAPPENDIX H
1116

99. In PDF 1.2, additional-actions dictionaries were inheritable; beginning
with PDF 1.3, they are not inheritable.

100. In Acrobat 3.0, the O and C events in a page object’s additional-actions
dictionary are ignored if the document is not being displayed in a page-
oriented layout mode. Beginning with Acrobat 4.0, the actions associated
with these events are executed if the document is in a page-oriented or
single-column layout and are ignored if the document is in a multiple-col-
umn layout.

8.5.3, “Action Types” (Launch Actions)

101. The Acrobat viewer for the Windows platform uses the Windows function
ShellExecute to launch an application. The Win dictionary entries corre-
spond to the parameters of ShellExecute.

8.5.3, “Action Types” (URI Actions)

102. URI actions are resolved by the Acrobat WebLink plug-in extension.

103. If the appropriate plug-in extension (WebLink) is not present, Acrobat
viewers report the following error when a link annotation that uses a URI
action is activated: “The plug-in required by this URI action is not avail-
able.”

8.5.3, “Action Types” (Sound Actions)

104. In PDF 1.2, the value of the Sound entry was allowed to be a file specifica-
tion. Beginning with PDF 1.3, this is not supported, but the same effect
can be achieved by using an external stream.

105. Acrobat viewers mute the sound if the value of Volume is negative; other-
wise, this entry is ignored.

106. Acrobat 6.0 does not support the Synchronous entry.

107. Acrobat 5.0 and earlier viewers do not support the Mix entry.

8.5.3, “Action Types” (Movie Actions)

108. Acrobat viewers earlier than version 3.0 report an error when they en-
counter an action of type Movie.

Implementation NotesSECTION H.3
1117

8.5.3, “Action Types” (Hide Actions)

109. Acrobat viewers earlier than version 3.0 report the following error when
encountering an action of type Hide: “The plug-in needed for this Hide ac-
tion is not available.”

110. In Acrobat viewers, the change in an annotation’s Hidden flag as a result of
a hide action is temporary in that the user can subsequently close the doc-
ument without being prompted to save changes and the effect of the hide
action is lost. However, if the user explicitly saves the document before
closing, such changes are saved and thus become permanent.

8.5.3, “Action Types” (Named Actions)

111. Acrobat viewers earlier than version 3.0 report the following error when
encountering an action of type Named: “The plug-in needed for this
Named action is not available.”

112. Acrobat viewers extend the list of named actions in Table 8.61 to include
most of the menu item names available in the viewer.

8.6.1, “Interactive Form Dictionary”

113. Acrobat viewers may insert additional entries in the DR resource dictio-
nary, such as Encoding, as a convenience for keeping track of objects being
used to construct form fields. Such objects are not actually resources and
are not referenced from the appearance stream.

114. In Acrobat, markup annotations can also make use of the resources in the
DR dictionary.

115. Acrobat 6.0 recognizes only the stream value of the XFA entry; Acrobat
6.02 and later recognize both stream and array values.

8.6.2, “Field Dictionaries” (Field Names)

116. Beginning in Acrobat 3.0, partial field names cannot contain a period.

117. Acrobat 6.0 and later support Unicode encoding of field names. Versions
earlier than Acrobat 6.0 do not support Unicode encoding of field names.

Compatibility and Implementation NotesAPPENDIX H
1118

8.6.2, “Field Dictionaries” (Variable Text)

118. In PDF 1.2, an additional entry in the field dictionary, DR, was defined but
was never implemented. Beginning with PDF 1.5, this entry is obsolete
and should be ignored.

119. If the MK entry is present in the field’s widget annotation dictionary (see
Table 8.39), Acrobat viewers regenerate the entire XObject appearance
stream. If MK is not present, the contents of the stream outside /Tx BMC ...
EMC are preserved.

8.6.2, “Field Dictionaries” (Rich Text Strings)

120. To select a font specified by attributes in a rich text string, Acrobat 6.0 fol-
lows this sequence, choosing the first appropriate font it finds:

a. A font in the default resource dictionary (specified by the document’s DR
entry; see Table 8.67) whose font descriptor information matches the font
specification in the rich text string. “Font Characteristics” on page 892 de-
scribes how this matching is done.

b. A matching font installed on the user’s system, ignoring generic font fami-
lies.

c. A font on the user’s system that matches the generic font family, if speci-
fied.

d. A standard font (see implementation note 62) that most closely matches
the other font specification properties and is appropriate for the current
input locale.

8.6.2, “Field Dictionaries” (Button Fields)

121. The behavior of Acrobat has changed in the situation where a check box
or radio button field have multiple children that have the same export val-
ue. In Acrobat 4.0, such buttons always turned off and on in unison. In
Acrobat 5.0, the behavior of radio buttons was changed to mimic HTML
so that turning on a radio button always turned off its siblings regardless
of export value. In Acrobat 6.0, the RadiosInUnison flag allows the docu-
ment author to choose between these behaviors.

Implementation NotesSECTION H.3
1119

8.6.3, “Field Types” (Choice Fields)

122. In Acrobat 3.0, the Opt array must be homogenous: its elements must be
either all text strings or all arrays.

8.6.4, “Form Actions” (Submit-Form Actions)

123. In Acrobat viewers, if the response to a submit-form action uses Forms
Data Format (FDF), the URL must end in #FDF so that it can be recog-
nized as such by the Acrobat software and handled properly. Conversely, if
the response is in any other format, the URL should not end in #FDF.

8.6.4, “Form Actions” (Import-Data Actions)

124. Acrobat viewers set the F entry to a relative file specification locating the
FDF file with respect to the current PDF document file. If the designated
FDF file is not found when the import-data action is performed, Acrobat
tries to locate the file in a few well-known locations, depending on the
host platform. On the Windows platform, for example, Acrobat searches
in the directory from which Acrobat was loaded, the current directory, the
System directory, the Windows directory, and any directories listed in the
PATH environment variable. On Mac OS, Acrobat searches in the Prefer-
ences folder and the Acrobat folder.

125. When performing an import-data action, Acrobat viewers import the
contents of the FDF file into the current document’s interactive form,
ignoring the F and ID entries in the FDF dictionary of the FDF file.

8.6.4, “Form Actions” (JavaScript Actions)

126. Because JavaScript 1.2 is not Unicode-compatible, PDFDocEncoding and
the Unicode encoding are translated to a platform-specific encoding be-
fore interpretation by the JavaScript engine.

8.6.6, “Forms Data Format” (FDF Header)

127. Because Acrobat viewers earlier than 5.0 cannot accept any other version
number because of a bug, the FDF file header is permanently frozen at
version 1.2. All further updates to the version number will be made via the
Version entry in the FDF catalog dictionary instead.

Compatibility and Implementation NotesAPPENDIX H
1120

8.6.6, “Forms Data Format” (FDF Catalog)

128. The Acrobat implementation of interactive forms displays the value of the
Status entry, if any, in an alert note when importing an FDF file.

129. The only Encoding value supported by Acrobat 4.0 is Shift−JIS. Acrobat 5.0
supports Shift−JIS, UHC, GBK, and BigFive. If any other value is specified,
the default, PDFDocEncoding, is used.

8.6.6, “Forms Data Format” (FDF Fields)

130. Of all the possible entries shown in Table 8.96 on page 717, Acrobat 3.0
exports only the V entry when generating FDF, and Acrobat 4.0 and later
versions export only the V and AP entries. Acrobat does, however, import
FDF files containing fields that have any of the described entries.

131. If the FDF dictionary in an FDF file received as a result of a submit-form
action contains an F entry specifying a form other than the one currently
being displayed, Acrobat fetches the specified form before importing the
FDF file.

132. When exporting a form to an FDF file, Acrobat sets the F entry in the FDF
dictionary to a relative file specification giving the location of the FDF file
relative to that of the file from which it was exported.

133. If an FDF file being imported contains fields whose fully qualified names
are not in the form, Acrobat discards those fields. This feature can be use-
ful, for example, if an FDF file containing commonly used fields (such as
name and address) is used to populate various types of forms, not all of
which necessarily include all of the fields available in the FDF file.

134. As shown in Table 8.96 on page 717, the only required entry in the field
dictionary is T. One possible use for exporting FDF with fields containing
T entries but no V entries is to indicate to a server which fields are desired
in the FDF files returned in response. For example, a server accessing a
database might use this information to decide whether to transmit all
fields in a record or just some selected ones. As noted in implementation
note 133, the Acrobat implementation of interactive forms ignores fields
in the imported FDF file that do not exist in the form.

135. The Acrobat implementation of forms allows the option of submitting the
data in a submit-form action in HTML Form format for the benefit of ex-
isting server scripts written to process such forms. Note, however, that any
such existing scripts that generate new HTML forms in response need to
be modified to generate FDF instead.

Implementation NotesSECTION H.3
1121

136. When scaling a button’s appearance to the bounds of an annotation, ver-
sions of Acrobat earlier than 6.0 always took into account the line width
used to draw the border, even when no border was being drawn. Begin-
ning with Acrobat 6.0, the FB entry in the icon fit dictionary (see Table
8.97 on page 719) allows the option of ignoring the line width.

8.6.6, “Forms Data Format” (FDF Pages)

137. Acrobat renames fields by prepending a page number, a template name,
and an ordinal number to the field name. The ordinal number cor-
responds to the order in which the template is applied to a page, with 0
being the first template specified for the page. For example, if the first
template used on the fifth page has the name Template and has the
Rename flag set to true, fields defined in that template are renamed by
prepending the character string P5 . Template_0 . to their field names.

138. Adobe Extreme® printing systems require that the Rename flag be true.

8.7, “Digital Signatures”

139. Acrobat 6.0 computes a byte range digest only when the signature dictio-
nary is referenced from a signature field. There is no byte range signature
(that is, there is only an object signature) for FDF file signatures and usage
rights signatures referenced from the UR entry of a permissions dictio-
nary. In Acrobat 7.0, byte range digests are also computed for usage rights
signatures referenced from the UR3 entry of a permissions dictionary.

140. Acrobat 6.0 and later do not provide the Changes entry.

8.7.1, “Transform Methods”

141. Acrobat 6.0 and 7.0 always generate DigestValue when creating MDP sig-
natures. Acrobat 6.0 requires the presence of DigestValue in order to vali-
date MDP signatures. Acrobat 7.0 does not use DigestValue but compares
the current and signed versions of the document.

142. Acrobat 6.0 requires a usage rights signature dictionary that is referenced
from the UR entry of the permissions dictionary in order to validate the
usage rights. Acrobat 7.0 supports both UR and UR3; it uses the UR3 dic-
tionary if both are present. Adobe PDF generating applications that sup-
port PDF 1.6 and greater generate UR only for backwards compatibility
with Acrobat Reader 6.0.

Compatibility and Implementation NotesAPPENDIX H
1122

143. In Adobe Reader 6.0, any usage right that permits the document to be
modified implicitly enables the FullSave right.

Adobe Reader 7.0 and 8.0 mimic Reader 6.0 behavior if the PDF docu-
ment contains a UR dictionary but omits a UR3 dictionary. If the PDF doc-
ument contains a UR3 dictionary, only rights specified by the Annots entry
that permit the document to be modified implicitly enable the FullSave
right. For all other rights, FullSave must be explicitly enabled in order to
save the document. (Signature rights permit saving as part of the signing
process but not otherwise).

If the P entry in the UR transform parameters dictionary is true, Acrobat
7.0 and greater viewer applications permit only those rights that are en-
abled by the entries in the dictionary. However, viewers permit saving the
document as long as any rights that permit modifying the document are
enabled.

144. In Acrobat 6.0 and greater, the DigestMethod entry in the signature refer-
ence dictionary is required, even though this specification indicates that
entry is optional.

145. In Acrobat 6.0 and greater, the V entry in the various transform parame-
ters dictionaries are required, even though this specification indicates oth-
erwise. Those dictionaries include the DocMDP transform parameters
dictionary, the UR transform parameters dictionary, and the FieldMDP
transform parameters dictionary.

8.7.2, “Signature Interoperability”

146. In versions earlier than Acrobat 6.0, it was a requirement that the signer’s
signature be the first certificate in the PKCS#7 object. Acrobat 6.0 re-
moved this restriction, but for maximum compatibility with earlier ver-
sions, this practice should be followed.

8.9, “Document Requirements”

147. PDF 1.7 added the ability to specify requirements the PDF consumer ap-
plication must satisfy before it can process or display a PDF document.
Although Acrobat 7.0 officially supports PDF 1.6, Acrobat 7.0.5 also sup-
ports this document requirements feature.

Implementation NotesSECTION H.3
1123

9.1, “Multimedia”

148. The following media formats are recommended for use in authoring
cross-platform PDF files intended for consumption by Acrobat 6.0.

TABLE H.4 Recommended media types

149. If the CT entry is not present, Acrobat requires a PL entry to be present
that specifies at least one player that can be used.

9.2, “Sounds”

150. Acrobat supports a maximum of two sound channels.

9.3, “Movies”

151. Acrobat viewers do not support the value of Aspect.

152. Acrobat viewers support only the DeviceRGB and DeviceGray color spaces
for poster image XObjects. For indexed color spaces with a base color
space of DeviceRGB (see “Indexed Color Spaces” on page 262”), Acrobat
5.0 viewers incorrectly treat hival as the number of colors rather than the

COMMON EXTENSION COMMON MIME TYPE DESCRIPTION

.aiff audio/aiff Audio Interchange File Format

.au audio/basic NeXT/Sun™ Audio Format

.avi video/avi AVI (Audio/Video Interleaved)

.mid audio/midi MIDI (Musical Instrument Digital Interface)

.mov video/quicktime QuickTime

.mp3 audio/x-mp3 MPEG Audio Layer-3

.mp4 audio/mp4 MPEG-4 Audio

.mp4 video/mp4 MPEG-4 Video

.mpeg video/mpeg MPEG-2 Video

.smil application/smil Synchronized Multimedia Integration Language

.swf application/x-shockwave-flash Macromedia Flash

Compatibility and Implementation NotesAPPENDIX H
1124

number of colors - 1. Acrobat 6.0 can handle this case properly, as well as
the correct value of hival; for compatibility with 5.0 viewers, it is necessary
to specify hival as the number of colors.

Also, Acrobat viewers do not support authoring or rendering posters
when the value of Poster is true.

153. Acrobat viewers treat a FWScale value of [999 1] as full screen.

154. Acrobat viewers never allow any portion of a floating window to be off-
screen.

9.4, “Alternate Presentations”

155. The PDF language contains no direct method of initiating an alternate
presentation-defined slideshow. Instead, a slideshow is invoked by a
JavaScript call that is typically triggered by an interactive form element
(see Section 8.6, “Interactive Forms”). Refer to the JavaScript for Acrobat
API Reference (see the Bibliography) for information on starting and stop-
ping a slideshow using JavaScript.

156. The only type of slideshow supported in Acrobat 5.1 and later is an SVG
slideshow (MIME content type image/svg+xml). Acrobat supports the
Scalable Vector Graphics (SVG) 1.0 Specification defined by the W3C (see
the Bibliography). Implementation notes on support of SVG by Adobe
products are available at <http://www.adobe.com/svg/>.

All resources must be either image XObjects (see Section 4.8.4, “Image
Dictionaries”) or embedded file streams (see Section 3.10.3, “Embedded
File Streams”).

• Image XObjects used for slideshows must use the DCTDecode filter and
an RGB color space. Color profile information must be specified in the
image XObject dictionary as well as embedded within the JPEG stream.

• Embedded audio files must be of type .wav (supported on Windows
only, MIME type audio/x-wav) or .mp3 (MIME type audio/mpeg, docu-
mented at <http://www.chiariglione.org/mpeg/index.htm>).

• Embedded video must be QuickTime-compatible files of type .avi
(MIME type video/ms-video) or .mov (MIME type video/quicktime,
documented on Apple’s Developer Connection site at <http://develop-
er.apple.com>. To play video, a QuickTime player (version 3 or later)
must be installed.

http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://www.adobe.com/svg/
http://www.chiariglione.org/mpeg/index.htm

Implementation NotesSECTION H.3
1125

9.5, “3D Artwork”

157. Acrobat viewers earlier than version 7.0.7 did not honor the U3DPath en-
try of a 3D view dictionary. Acrobat 7.0.7 supports text string values for
this entry and deprecates the use of an array for its value.

158. PDF 1.7 introduced several new dictionaries for controlling the appear-
ance and behavior of 3D artwork and for enabling markup annotations on
3D views. Although Acrobat 7.0 officially supports PDF 1.6, Acrobat 7.0.7
also supports these new dictionaries.

10.1, “Procedure Sets”

159. Acrobat viewers earlier than version 5.0 respond to requests for unknown
procedure sets by warning the user that a required procedure set is un-
available and canceling the printing operation. Acrobat 5.0 ignores proce-
dure sets.

10.2, “Metadata”

160. Acrobat viewers display the document’s metadata in the Document Prop-
erties dialog box and impose a limit of 255 bytes on any string represent-
ing one of those values.

10.2.2, “Metadata Streams”

161. For backward compatibility, applications that create PDF 1.4 documents
should include the metadata for a document in the document information
dictionary as well as in the document’s metadata stream. Applications that
support PDF 1.4 should check for the existence of a metadata stream and
synchronize the information in it with that in the document information
dictionary. The Adobe metadata framework provides a date stamp for
metadata expressed in the framework. If this date stamp is equal to or later
than the document modification date recorded in the document informa-
tion dictionary, the metadata stream can be taken as authoritative. If, how-
ever, the document modification date recorded in the document
information dictionary is later than the metadata stream’s date stamp, the
document has likely been saved by an application that is not aware of PDF
1.4 metadata streams. In this case, information stored in the document in-
formation dictionary should be taken to override any semantically equiva-
lent items in the metadata stream.

Compatibility and Implementation NotesAPPENDIX H
1126

10.3, “File Identifiers”

162. Although the ID entry is not required, all Adobe applications that produce
PDF files include this entry. Acrobat adds this entry when saving a file if it
is not already present.

163. Adobe applications pass the suggested information to the MD5 message
digest algorithm to calculate file identifiers. Note that the calculation of
the file identifier need not be reproducible; all that matters is that the
identifier is likely to be unique. For example, two implementations of this
algorithm might use different formats for the current time, causing them
to produce different file identifiers for the same file created at the same
time, but the uniqueness of the identifier is not affected.

10.9.2, “Content Database” (Digital Identifiers)

164. The Acrobat Web Capture plug-in treats external streams referenced with-
in a PDF file as auxiliary data. Such streams are not used in generating the
digital identifier.

10.9.3, “Content Sets” (Image Sets)

165. In Acrobat 4.0 and later versions, if the indirect reference to an image
XObject is not removed from the O array when its reference count reaches
0, the XObject is never garbage-collected during a save operation. The im-
age set’s reference to the XObject may thus be considered a weak one that
is relevant only for caching purposes; when the last strong reference goes
away, so does the weak one.

10.9.4, “Source Information” (URL Alias Dictionaries)

166. Acrobat viewers use an indirect object reference to a shared string for each
URL in a URL alias dictionary. These strings can be shared among the
chains and with other data structures. It is recommended that other PDF
viewer applications adopt this same implementation.

10.10.1, “Page Boundaries”

167. Acrobat provides various user-specified options for determining how the
region specified by the crop box is to be imposed on the output medium

Implementation NotesSECTION H.3
1127

during printing. Although these options have varied from one Acrobat
version to another, the default behavior is as follows:

1. Select the media size and orientation according to the operating sys-
tem’s Print Setup dialog. (Acrobat has no direct control over this pro-
cess.)

2. Compute an effective crop box by clipping it with the media box and
rotating the page according to the page object’s Rotate entry, if speci-
fied.

3. Center the crop box on the medium, rotating it if necessary to enable
it to fit in both dimensions.

4. Optionally, scale the page up or down so that the crop box coincides
with the edges of the medium in the more restrictive dimension.

The description above applies only in simple printing workflows that lack
any other information about how PDF pages are to be imposed on the
output medium. In some workflows, there is additional information, ei-
ther in the PDF file (BleedBox, TrimBox, or ArtBox) or in a separate job
ticket (such as JDF or PJTF). In these circumstances, other rules apply,
which depend on the details of the workflow.

Consequently, it is recommended that PDF files initially be created with
the crop box the same as the media box (or equivalently, with the crop box
omitted). This ensures that if the page is printed on that size medium, the
crop box coincides with the edges of the medium, producing predictable
and dependable positioning of the page contents. On the other hand, if the
page is printed on a different size medium, the page may be repositioned
or scaled in implementation-defined or user-specified ways.

10.10.4, “Output Intents”

168. Acrobat viewers do not make use of the “to CIE” (AToB) information in an
output intent’s ICC profile.

169. Acrobat 5.0 does not make direct use of the destination profile in the out-
put intent dictionary, but third-party plug-in extensions might do so. Ac-
robat 6.0 does make use of this profile.

Compatibility and Implementation NotesAPPENDIX H
1128

10.10.5, “Trapping Support” (Trap Network Annotations)

170. Older viewers may fail to maintain the trap network annotation’s required
position at the end of the Annots array.

171. Older viewers may fail to validate trap networks before printing.

172. In Acrobat 4.0, saving a PDF file with the Optimize option selected causes
a page’s trap networks to be incorrectly invalidated even if the contents of
the page has not been changed. This occurs because the new, optimized
content stream generated for the page differs from the original content
stream still referenced by the trap network annotation’s Version array. This
problem has been corrected in later versions of Acrobat.

10.10.6, “Open Prepress Interface (OPI)”

173. The Acrobat 3.0 Distiller application converts OPI comments into OPI
dictionaries. When the Acrobat 3.0 viewer prints a PDF file to a PostScript
file or printer, it converts the OPI dictionary back to OPI comments.
However, the OPI information has no effect on the displayed image or
form XObject.

174. Acrobat viewer and Distiller applications earlier than version 4.0 do not
support OPI 2.0.

175. In Acrobat 3.0, the value of the F entry in an OPI dictionary must be a
string.

Appendix C, “Implementation Limits”

176. Acrobat viewers earlier than 5.0 use the PostScript save and restore opera-
tors rather than gsave and grestore to implement q and Q, and are subject
to a nesting limit of 12 levels.

177. In PDF versions earlier than PDF 1.6, the size of the default user space
unit is fixed at 1 ⁄ 72 inch. In Acrobat viewers earlier than version 4.0, the
minimum allowed page size is 72 by 72 units in default user space (1 by 1
inch); the maximum is 3240 by 3240 units (45 by 45 inches). In Acrobat
versions 5.0 and later, the minimum allowed page size is 3 by 3 units (ap-
proximately 0.04 by 0.04 inch); the maximum is 14,400 by 14,400 units
(200 by 200 inches).

Beginning with PDF 1.6, the size of the default user space unit may be set
with the UserUnit entry of the page dictionary. Acrobat 7.0 supports a

Implementation NotesSECTION H.3
1129

maximum UserUnit value of 75,000, which gives a maximum page dimen-
sion of 15,000,000 inches (14,400 * 75,000 * 1 ⁄ 72). The minimum
UserUnit value is 1.0 (the default).

F.2.2, “Linearization Parameter Dictionary (Part 2)“

178. Acrobat requires a white-space character to follow the left bracket ([)
character that begins the H array.

179. Acrobat does not currently support reading or writing files that have an
overflow hint stream.

Note: This implementation note is also referred to in Section F.2.5, “Hint Streams
(Parts 5 and 10).”

180. Acrobat generates a value for the E parameter that incorrectly includes an
object beyond the end of the first page as if it were part of the first page.

F.2.6, “First-Page Section (Part 6)”

181. Acrobat always treats page 0 as the first page for linearization, regardless
of the value of OpenAction.

F.2.8, “Shared Objects (Part 8)”

182. Acrobat does not generate shared object groups containing more than one
object.

F.3.1, “Page Offset Hint Table”

183. In Acrobat, items 6 and 7 in the header section of the page offset hint table
are set to 0. As a result, item 6 of the per-page entry effectively does not
exist; its value is taken to be 0. That is, the sequence of bytes constituting
the content stream for a page is described as if the content stream were the
first object in the page, even though it is not.

184. Acrobat 4.0 and later versions always set item 8 equal to 0. They also set
item 9 equal to the value of item 5, and set item 7 of each per-page hint ta-
ble entry (Table F.4) to be the same as item 2 of the per-page entry. Acro-
bat ignores all of these entries when reading the file.

Compatibility and Implementation NotesAPPENDIX H
1130

F.3.2, “Shared Object Hint Table”

185. In Acrobat, item 5 in the header section of the shared objects hint table is
unused and is always set to 0.

186. MD5 signatures are not implemented in Acrobat; item 2 in a shared object
group entry must be 0.

187. Acrobat does not support more than one shared object in a group; item 4
in a shared object group entry should always be 0.

188. In a document consisting of only one page, items 1 and 2 in the shared ob-
ject hint table are not meaningful; Acrobat writes unpredictable values for
these items.

1131

APPENDIX I

IComputation of Object
Digests

This appendix describes the algorithm for computing object digests (discussed in
Section 8.7, “Digital Signatures”). The computation uses a hashing method, spec-
ified by the DigestMethod entry of the signature reference dictionary (see Table
8.103). Its value can be SHA1 for the Secure Hash Algorithm 1 (SHA-1) or MD5
for the MD5 message-digest algorithm; see the Bibliography. Both algorithms op-
erate on an arbitrary-length stream of bytes to produce a digest of fixed length (16
bytes for MD5, 20 bytes for SHA-1).

The following sections describe how the stream of bytes to be digested is generat-
ed, starting with a specific object within a PDF file. A PDF object is digested by re-
cursively traversing the object hierarchy beginning with the given object. Objects
encountered during the traversal are categorized as basic PDF types, described in
Section I.1, “Basic Object Types,” or more complex types, described in Section I.2,
“Selective Computation.” Each object is digested as it is processed. Not all objects
may be included, depending on the transform method and parameters (see Sec-
tion 8.7.1, “Transform Methods”) that are being used.

I.1 Basic Object Types

The basic PDF object types are listed in Table I.1. For each type, the following
data is digested:

• a single-byte type identifier

• other bytes representing the value of the data, as described in Table I.1

Dictionaries and arrays can contain indirect references to other objects; therefore,
the data can be recursive. To prevent infinite recursions, the algorithm keeps
track of all indirect objects visited during a recursive descent into a given object.

Computation of Object DigestsAPPENDIX I
1132

When it encounters an object that has already been visited, it adds the type iden-
tifier followed by a 4-byte value for the number -1 (0xFFFFFFFF).

TABLE I.1 Data added to object digest for basic object types

OBJECT TYPE TYPE IDENTIFIER REMAINING VALUES ADDED TO DIGEST

Null 0 Nothing.

Integer 1 The unsigned 4-byte value of this integer (most significant byte first).

Real 2 The 4-byte integer corresponding to the integral part of the rounded value of the
object.

Boolean 3 0x01 for true; 0x00 for false.

Name 4 An unsigned 4-byte integer (most significant byte first) representing the length of
the name, followed by byte array containing the string representing the name
(following expansion of any escape characters, and excluding the leading “/”
character).

String 5 An unsigned 4-byte integer (most significant byte first) representing the length of
the string, followed by the sequence of bytes corresponding to the string.

Dictionary 6 An unsigned 4-byte value (most significant byte first) specifying the number of
entries in the dictionary, followed by the key-value pairs of the dictionary, sorted
by lexicographic order of the keys (for comparison purposes, the key names are
treated as binary byte sequences). The values may involve recursion; see above.

Special treatment is given to certain dictionaries when the transform method is
anything but Identity (see Section 8.7.1, “Transform Methods”). For these dictio-
naries (which include catalog, page, named page, form field, annotation, action
and additional-actions dictionaries), all key-value pairs are not digested. Instead,
only the values of specified entries are digested; see Section I.2, “Selective Com-
putation,” for details.

Array 7 An unsigned 4-byte value (most significant byte first) specifying the number of
entries in the array, followed by the individual entries, in order. Individual entries
may involve recursion. Specific entries may be excluded when dictated by the
transform method and parameters (for example, annotation dictionaries in a
page’s Annots array).

Selective ComputationSECTION I .2
1133

I.2 Selective Computation

There is a set of special objects that, when encountered in an object calculation,
are not treated as described in the previous section. These objects are described
in the following sections. For each of them, a selective list of entries is chosen,
and only the value of the entry is digested; the key is not included.

When the transform method is DocMDP (see “DocMDP” on page 731)or UR (see
“UR” on page 733), the object digest is computed over the entire document (see
Section I.2.1, “Document”). The calculation varies depending on the transform
parameters, which may specify, for example, whether form fields or annotations
are included.

When the transform method is FieldMDP (see “FieldMDP” on page 736), the
transform parameters indicate specific form fields over which the object digest
should be computed. For each form field, the digest calculation is performed as
specified in Section I.2.6, “Form Fields.”

When the transform method is Identity, selective computation is not used. All
objects are processed as basic object types as described in Section I.1, “Basic Ob-
ject Types.”

Stream 8 The following values, in order:

• An unsigned 4-byte value (most significant byte first) specifying the number of
entries in the stream dictionary

• The following key-value pairs in the stream dictionary, if present, sorted as fol-
lows: DecodeParms, F, FDecodeParms, FFilter, Filter and Length

• An unsigned 4-byte value (most significant byte first) specifying the length of
the stream

• The stream data

OBJECT TYPE TYPE IDENTIFIER REMAINING VALUES ADDED TO DIGEST

Computation of Object DigestsAPPENDIX I
1134

I.2.1 Document

When calculating a digest for the document, the following items are included, in
order:

• The values of the following entries in the document catalog (see Table 3.25), if
present: AA, Legal; and Perms

• The values of the following entries in the document information dictionary
(see Table 10.2), if present: Title, Author, Keywords, and Subject

• All page objects in the document, in page order, as described in Section I.2.2,
“Page Objects”

• All named pages specified in the Pages name tree, sorted by name, as described
in Section I.2.3, “Named Pages”

• All embedded files specified in the EmbeddedFiles name tree, sorted by name,
as described in Section I.2.4, “Embedded Files”

I.2.2 Page Objects

For page objects (see Table 3.27), the digest includes the values of the following
entries, in order, if present. For entries listed as inheritable, their values may be
inherited from ancestor nodes in the page tree if not specified explicitly.

• MediaBox (inheritable)

• CropBox (inheritable)

• Resources (inheritable)
• Contents

• Rotate (inheritable)

• AA

• Annots. This entry consists of an array of dictionaries for annotations on the
page. They are sorted by the value of the NM entry; if NM is not present, a glo-
bally unique ID (GUID) is supplied as NM.

For each annotation, if it is a widget, the values added to the digest are those
specified in Section I.2.6, “Form Fields.” If it is any other type of annotation, the
values added to the digest are those specified in Section I.2.5, “Annotation Dic-
tionaries.” However, when the transform parameters specify that annotations

Selective ComputationSECTION I .2
1135

may be modified (for example, when the value of P is 3 for the DocMDP trans-
form method), annotation dictionaries other than widgets are not included.

Note: Pages that have a TemplateInstantiated entry are not included in the digest
when the transform method indicates that page template instantiation is permitted.
Instead, a separate calculation is performed to compare instantiated pages with
their associated named pages; see Section I.2.9, “Page Template Verification.”

I.2.3 Named Pages

For named pages (see Section 8.6.5, “Named Pages”), only the Contents and
Annots entries are digested, as shown in Section I.2.2, “Page Objects,” above.

I.2.4 Embedded Files

The document’s embedded files (as specified in the EmbeddedFiles name tree)
are sorted by name. For each embedded file, the following values are digested, in
order:

• The name of the embedded file

• The stream corresponding to the file

I.2.5 Annotation Dictionaries

For annotation dictionaries (see Table 8.44), the values of the following entries
are digested, in order, if present:

• Contents

Note: A string of the form “()” (empty parentheses) is considered nonexistent con-
tent and is not included.

• T

• F
• A

• AA
• Dest

• QuadPoints

Computation of Object DigestsAPPENDIX I
1136

• Inklist

• Name

• FS (If FS refers to the contents of a remote file, the contents of that file are not
digested)

• Sound

• If Movie is present, the value of its F and Poster entries

• For stamp annotations only, the value of the AP entry

I.2.6 Form Fields

For form fields (see Table 8.69), the values of the following entries are digested, in
order, if present:

Note: The A, AA, and F entries are from the annotation dictionary (see Table 8.15);
all others are from the form field dictionary (see Tables 8.69 and 8.81).

• T (the unqualified name)

• FT (inheritable)

• DV (inheritable)

• V (included only in the cases where the transform method and parameters
specify that form field fill-in is not allowed or that this particular field is
locked)

• A (inheritable)

• AA (inheritable)

• F (annotation flags, whose values, if necessary, are obtained by traveling the in-
heritance hierarchy)

• Lock (signature fields only)

• SV (signature fields only)

Selective ComputationSECTION I .2
1137

I.2.7 Actions

For most actions (see Section 8.5, “Actions”), the values of the following entries in
the action dictionary are digested, in order, if present: S (required), D, F,
NewWindow, O, P, B, Base, Sound, Vol, Annot, T, H, N, JS and URI.

Rendition actions (see “Rendition Actions” on page 668) are treated differently
than the other types. The data that is digested is media data that is nested in sev-
eral levels of objects, as follows:

• The rendition action’s R entry, if present, specifies a rendition object (see Sec-
tion 9.1.2, “Renditions”) whose S entry determines whether it is a media rendi-
tion or a selector rendition.

• Selector renditions have an R entry specifying an array of renditions, which
may themselves be selector renditions. This array is searched recursively for all
media renditions, which are then processed as specified below.

• Media renditions have a C entry that refers to a media clip dictionary. If the S
entry of the media clip is MCD (media clip data), the D entry specifies the data
that is digested (see Table 9.9).

I.2.8 Additional-Actions

Additional-actions dictionaries (see Section 8.5.2, “Trigger Events”) can be the
value of the AA entry of a catalog, page, annotation or field dictionary. If the addi-
tional action is valid, the values of the following entries in the additional-actions
dictionary are digested, in order, if present: E, X, D, U, Fo, Bl, O, C, K, F, V, C, WC,
WS, DS, WP, and DP.

I.2.9 Page Template Verification

In some cases, the permissions granted allow page template instantiation; this oc-
curs when the value of P in the DocMDP transform parameters dictionary is 2 or 3
(see Table 8.104) or the value of Form in the UR transform parameters is
SpawnTemplate (see Table 8.105). In such cases, object digest must be computed
in such a way that its value changes when new pages have been added to the doc-
ument but not when pages have been instantiated from named pages (templates).

Computation of Object DigestsAPPENDIX I
1138

To accomplish this, the document object digest does not include pages that have a
value for the TemplateInstantiated entry (see Table 3.27), indicating that they are
instantiated from a named page. At the time the signature is verified, the follow-
ing occurs:

• An object digest is computed for every named page in the document.

• Using the same method, an object digest is computed for every page in the doc-
ument that has a TemplateInstantiated entry and matched against the digest for
the corresponding named page.

• Verification succeeds only if the digests match for all instantiated pages in the
document.

Color Plates

Additive Subtractive

PLATE 1 Additive and subtractive color (Section 4.5.3, “Device Color Spaces,” page 241)

PLATE 2 Uncalibrated color (Section 4.5.4, “CIE-Based Color Spaces,” page 244)

L* = 100
white

L* = 0
black

b* = 100
yellow

b* = -100
blue

a* = 100
red

a* = -100
green

PLATE 3 Lab color space (“Lab Color Spaces,” page 250)

RGB

CMYK

L*a*b*

PLATE 4 Color gamuts (“Lab Color Spaces,” page 250)

AbsoluteColorimetric RelativeColorimetric

PerceptualSaturation

PLATE 5 Rendering intents (“Rendering Intents,” page 260)

Grayscale Black Magenta Result

PLATE 6 Duotone image (“DeviceN Color Spaces,” page 269)

Single-component (grayscale) image Quadtone image

PLATE 7 Quadtone image (“DeviceN Color Spaces,” page 269)

♠♥
♦♣

PLATE 8 Colored tiling pattern (“Colored Tiling Patterns,” page 295)

♠♥
♦♣

PLATE 9 Uncolored tiling pattern (“Uncolored Tiling Patterns,” page 299)

ABCDE FGHIJKLM
Extend = [false false], Background not specified

ABCDE FGHIJKLM
Extend = [true true], Background not specified

AB E FGHIJKLMCDCD KL
Extend = [true true], Background not specified

PLATE 10 Axial shading (“Type 2 (Axial) Shadings,” page 310)

Starting from
smaller circle

Starting from
larger circle

Neither circle extended Starting circle extended

PLATE 11 Radial shadings depicting a cone (“Type 3 (Radial) Shadings,” page 312)

Starting from inner circle;
no background color specified

Starting from outer circle;
background color specified

PLATE 12 Radial shadings depicting a sphere (“Type 3 (Radial) Shadings,” page 313)

No background color specified Background color specified

PLATE 13 Radial shadings with extension (“Type 3 (Radial) Shadings,” page 313)

PLATE 14 Radial shading effect (“Type 3 (Radial) Shadings,” page 313)

Unit square

Nonlinear (control points altered)

PLATE 15 Coons patch mesh (“Type 6 Shadings (Coons Patch Meshes),” page 321)

Ungrouped objects
Object opacity = 1.0

Ungrouped objects
Object opacity = 0.5

Transparency group
Object opacity = 1.0
Group opacity = 0.5

Blend mode = Normal

Transparency group
Object opacity = 0.5
Group opacity = 1.0

Blend mode = HardLight

PLATE 16 Transparency groups (Section 7.1, “Overview of Transparency,” page 515)

Isolated

Non-isolated

Knockout Non-knockout

PLATE 17 Isolated and knockout groups (Sections 7.3.4, “Isolated Groups,” page 539
and 7.3.5, “Knockout Groups,” page 540)

Duck in foreground, rainbow in background

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

Rainbow in foreground, duck in background

Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge

PLATE 18 RGB blend modes (Section 7.2.4, “Blend Mode,” page 520)

Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge

Rainbow in foreground, duck in background

ColorBurn

HardLight

SoftLight

Overlay

Screen

Multiply

Normal

ColorDodge Color

Luminosity

Saturation

Hue

Exclusion

Difference

Lighten

Darken

Duck in foreground, rainbow in background

PLATE 19 CMYK blend modes (Section 7.2.4, “Blend Mode,” page 520)

Overprint enabled

and blend mode = Screen

 Blend mode = Screen

Axial shading from [0.0 0.0 1.0 0.0]

 to [0.0 1.0 0.0 0.0]

Overprint enabled

Opacity = 0.5

Color = [0.5 0.0 0.5 0.0]

Overprint enabled and

blend mode = Screen

Blend mode = Screen

Axial shading from [0.0 0.0 1.0 0.0]

 to [0.0 1.0 0.0 0.0]

Overprint enabled

Opacity = 1.0

Color = [0.5 0.0 0.5 0.0]

PLATE 20 Blending and overprinting (“Compatibility with Opaque Overprinting,” page 569)

1151

Bibliography

This Bibliography provides details on books and documents, from both Adobe
Systems and other sources, that are referred to in this book.

Resources from Adobe Systems Incorporated

All of these resources from Adobe are available on the Adobe Solutions Network
(ASN) Web site. They can be accessed from this location:

< http://adobe.com/go/pdf_ref_bibliography>

The ASN can also be contacted as follows:

Adobe Solutions Network
Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

(800) 685-3510 (from North America)
(206) 675-6145 (from other areas)

Note: Document version numbers and dates given in this Bibliography are the latest
at the time of publication; more recent versions may be found on the Web site.

JavaScript for Acrobat API Reference, Version 8.0

Adobe Glyph List, Version 2.0

Adobe Type 1 Font Format. Explains the internal organization of a PostScript Type
1 font program. Also see Adobe Technical Note #5015, Type 1 Font Format
Supplement.

Digital Signature Appearances

http://adobe.com/go/pdf_ref_bibliography

Bibliography
1152

OPI: Open Prepress Interface Specification 1.3. Also see Adobe Technical Note
#5660, Open Prepress Interface (OPI) Specification, Version 2.0.

OpenType Font Specification

PDF Signature Build Dictionary Specification

PostScript Language Reference, Third Edition, Addison-Wesley, Reading, MA,
1999

XML Architecture, XML Forms Architecture (XFA) Specification, version 2.4

Adobe XML Architecture, Forms Architecture (XFA) Specification, version 2.2

Note: Beginning with XFA 2.2, the XFA specification includes the Template Specifi-
cation, the Config Specification, the XDP Specification, and all other XML specifica-
tions unique to the XML Forms Architecture (XFA).

Adobe XML Architecture, XML Data Package (XDP) Specification, version 2.0

Adobe XML Architecture, Template Specification, version 2.0

Adobe XML Architecture, XML Forms Data Format Specification, version 2.0
(Draft)

XMP: Extensible Metadata Platform

Numbered Technical Notes:

• Technical Note #5001, PostScript Language Document Structuring Conventions
Specification, Version 3.0

• Technical Note #5004, Adobe Font Metrics File Format Specification, Version 4.1

Adobe font metrics (AFM) files are available through the Type section of the
ASN Web site.

• Technical Note #5014, Adobe CMap and CID Font Files Specification, Version
1.0

• Technical Note #5015, Type 1 Font Format Supplement

Bibliography
1153

• Technical Note #5044, Color Separation Conventions for PostScript Language
Programs

• Technical Note #5078, Adobe-Japan1-4 Character Collection for CID-Keyed
Fonts

• Technical Note #5079, Adobe-GB1-4 Character Collection for CID-Keyed Fonts

• Technical Note #5080, Adobe-CNS1-4 Character Collection for CID-Keyed Fonts

• Technical Note #5088, Font Naming Issues

• Technical Note #5092, CID-Keyed Font Technology Overview

• Technical Note #5093, Adobe-Korea1-2 Character Collection for CID-Keyed
Fonts

• Technical Note #5094, Adobe CJKV Character Collections and CMaps for CID-
Keyed Fonts

• Technical Note #5097, Adobe-Japan2-0 Character Collection for CID-Keyed
Fonts

• Technical Note #5116, Supporting the DCT Filters in PostScript Level 2

• Technical Note #5146, Adobe-Japan1-5 Character Collection for CID-Keyed
Fonts (Addendum)

• Technical Note #5176, The Compact Font Format Specification

• Technical Note #5177, The Type 2 Charstring Format

• Technical Note #5411, ToUnicode Mapping File Tutorial

• Technical Note #5620, Portable Job Ticket Format, Version 1.1

• Technical Note #5660, Open Prepress Interface (OPI) Specification, Version 2.0

Other Resources

Aho, A. V., Hopcroft, J. E., and Ullman, J. D., Data Structures and Algorithms,
Addison-Wesley, Reading, MA, 1983. Includes a discussion of balanced trees.

Apple Computer, Inc., TrueType Reference Manual. Available on Apple’s Web site
at < http://developer.apple.com/fonts/TTRefMan/>.

http://developer.apple.com/fonts/TTRefMan/

Bibliography
1154

Arvo, J. (ed.), Graphics Gems II, Academic Press, 1994. The section “Geometric-
ally Continuous Cubic Bézier Curves” by Hans-Peter Seidel describes the mathe-
matics used to smoothly join two cubic Bézier curves.

CIP4. See International Cooperation for the Integration of Processes in Prepress,
Press and Postpress.

Ecma International, Standard ECMA-363, Universal 3D File Format. This docu-
ment is available at <http://www.ecma-international.org/>

Fairchild, M. D., Color Appearance Models, Addison-Wesley, Reading, MA, 1997.
Covers color vision, basic colorimetry, color appearance models, cross-media
color reproduction, and the current CIE standards activities. Updates, software,
and color appearance data are available at < http://www.cis.rit.edu/people/faculty/
fairchild/CAM.html >.

Federal Information Processing Standards Publications:

• FIPS PUB 186-2, Digital Signature Standard, describes DSA signatures. It is
available at
<http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf>

• FIPS PUB 197, Advanced Encryption Standard (AES)

Foley, J. D. et al., Computer Graphics: Principles and Practice, Addison-Wesley,
Reading, MA, 1996. (First edition was Foley, J. D. and van Dam, A., Fundamentals
of Interactive Computer Graphics, Addison-Wesley, Reading, MA, 1982.) Covers
many graphics-related topics, including a thorough treatment of the mathematics
of Bézier cubics and Gouraud shadings.

Glassner, A. S. (ed.), Graphics Gems, Academic Press, 1993. The section “An Al-
gorithm for Automatically Fitting Digitized Curves” by Philip J. Schneider de-
scribes an algorithm for determining the set of Bézier curves approximating an
arbitrary set of user-provided points. Appendix 2 contains an implementation of
the algorithm, written in the C programming language. Other sections relevant to
the mathematics of Bézier curves include “Solving the Nearest-Point-On-Curve
Problem” and “A Bézier Curve-Based Root-Finder,” both by Philip J. Schneider,
and “Some Properties of Bézier Curves” by Ronald Goldman. The source code
appearing in the appendix is available via anonymous FTP, as described in the
preface to Graphics Gems III (edited by D. Kirk; see its entry below).

http://www.cis.rit.edu/people/faculty/fairchild/CAM.html
http://www.cis.rit.edu/people/faculty/fairchild/CAM.html
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://www.ecma-international.org/

Bibliography
1155

Hewlett-Packard Corporation, PANOSE Classification Metrics Guide. Available
on the Agfa Monotype Web site at < http://www.agfamonotype.com/printer/
pan1.asp >.

Hunt, R. W. G., The Reproduction of Colour, 5th ed., Fisher Books, England, 1996.
A comprehensive general reference on color reproduction; includes an introduc-
tion to the CIE system.

Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Float-
ing-Point Arithmetic (IEEE 754-1985).

International Color Consortium (ICC). The following are available with related
documents at < http://www.color.org >:

• Specification ICC.1:2004-10, File Format for Color Profiles

• ICC Characterization Data Registry

International Cooperation for the Integration of Processes in Prepress, Press and
Postpress (CIP4), JDF Specification, Version 1.2. Available through the CIP4 Web
site at < http://www.cip4.org >.

International Electrotechnical Commission (IEC), IEC/3WD 61966-2.1, Colour
Measurement and Management in Multimedia Systems and Equipment, Part 2.1:
Default RGB Colour Space—sRGB. Available through the International Electro-
technical Commission (IEC) at <http://www.iec.ch>.

International Organization for Standardization (ISO). The following standards
are available through < http://www.iso.org />:

• ISO 639-1:2002 Codes for the representation of names of languages -- Part 1: Al-
pha-2 code

• ISO 639-2:1998 Codes for the representation of names of languages -- Part 2: Al-
pha-3 code

• ISO 3166-1:1997 , Codes for the representation of names of countries and their
subdivisions -- Part 1: Country codes

• ISO 3166-2:1998 , Codes for the representation of names of countries and their
subdivisions -- Part 2: Country subdivision code

• ISO/IEC 8824-1:2002, Abstract Syntax Notation One (ASN.1): Specification of
basic notation

http://www.agfamonotype.com/printer/pan1.asp
http://www.agfamonotype.com/printer/pan1.asp
http://www.color.org
http://www.cip4.org
http://www.iec.ch
http://www.iso.org/

Bibliography
1156

• ISO/IEC 10918-1:1994, Digital Compression and Coding of Continuous-Tone
Still Images (informally known as the JPEG standard, for the Joint Photograph-
ic Experts Group, the ISO group that developed the standard)

• ISO/IEC 15444-2:2004, Information Technology—JPEG 2000 Image Coding Sys-
tem: Extensions

• ISO 15930-1:2001, Graphic technology -- Prepress digital data exchange -- Use of
PDF -- Part 1: Complete exchange using CMYK data (PDF/X-1 and PDF/X-1a)

International Telecommunication Union (ITU). The following can be ordered
from ITU at < http://www.itu.int />

• Recommendations T.4 and T.6. These standards for Group 3 and Group 4 fac-
simile encoding replace those formerly provided in the CCITT Blue Book, Vol.
VII.3.

• Recommendation X.509 (1997): Information Technology—Open Systems Inter-
connection—The Directory: Authentication Framework.

Internet Engineering Task Force (IETF) Requests for Comments (RFCs). The
following RFCs are available through < http://www.rfc-editor.org >:

• RFC 1321, The MD5 Message-Digest Algorithm

• RFC 1738, Uniform Resource Locators

• RFC 1808, Relative Uniform Resource Locators

• RFC 1950, ZLIB Compressed Data Format Specification, Version 3.3

• RFC 1951, DEFLATE Compressed Data Format Specification, Version 1.3

• RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies

• RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types

• RFC 2083, PNG (Portable Network Graphics) Specification, Version 1.0

• RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5

• RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax

• RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol—OCSP

http://www.itu.int/
http://www.rfc-editor.org

Bibliography
1157

• RFC 2616, Hypertext Transfer Protocol—HTTP/1.1

• RFC 2898, PKCS #5: Password-Based Cryptography Specification Version 2.0

• RFC 3066, Tags for the Identification of Languages

• RFC 3161, Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)

• RFC 3174, US Secure Hash Algorithm 1 (SHA1)

• RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate
Revocation List (CRL) Profile

Internet Engineering Task Force (IETF) Public Key Infrastructure (PKIX) work-
ing group: <http://www.ietf.org/html.charters/pkix-charter.html>

Kirk, D. (ed.), Graphics Gems III, Academic Press, 1994. The section “Interpola-
tion Using Bézier Curves” by Gershon Elber contains an algorithm for calculating
a Bézier curve that passes through a user-specified set of points. The algorithm
uses not only cubic Bézier curves, which are supported in PDF, but also higher-
order Bézier curves. The appendix contains an implementation of the algorithm,
written in the C programming language. The source code appearing in the
appendix is available via anonymous FTP, as described in the book’s preface.

Lunde, K., CJKV Information Processing, O’Reilly & Associates, Sebastopol, CA,
1999. Excellent background material on CMaps, character sets, encodings, and
the like.

Microsoft Corporation, TrueType 1.0 Font Files Technical Specification. Available
at < http://www.microsoft.com/typography/tt/tt.htm >.

Netscape Communications Corporation, Client-Side JavaScript Reference and
other JavaScript documents are available through the Adobe Web page
 <http://partners.adobe.com/NSjscript/>.

Pennebaker, W. B. and Mitchell, J. L., JPEG: Still Image Data Compression Stan-
dard, Van Nostrand Reinhold, New York, 1992.

Porter, T. and Duff, T., “Compositing Digital Images,” Computer Graphics, Vol. 18
No. 3, July 1984. Computer Graphics is the newsletter of the ACM’s special interest
group SIGGRAPH; for more information, see < http://www.acm.org >.

http://www.ietf.org/html.charters/pkix-charter.html
http://www.microsoft.com/typography/tt/tt.htm
http://partners.adobe.com/NSjscript/
http://www.acm.org

Bibliography
1158

 RSA Security, Inc. The following document, among others related to encryption
and digital signatures, is available at < http://www.rsasecurity.com >:
PKCS #1 - RSA Cryptography Standard
<http://www.rsasecurity.com/rsalabs/node.asp?id=2125>

Unicode Consortium publications:

• The Unicode Standard, Version 4.0, Addison-Wesley, Boston, MA, 2003. The
latest information is available at < http://www.unicode.org >.

• Unicode Standard Annex #9, The Bidirectional Algorithm, Version 4.0.0, Uni-
code Standard Annex #14, Line Breaking Properties, Version 4.0.0, and Unicode
Standard Annex #29, Text Boundaries, Version 4.0.0. These technical reports
are available at < http://www.unicode.org >.

World Wide Web Consortium (W3C). The following publications are available
through the W3C Web site at < http://www.w3.org/ >:

• Cascading Style Sheets, level 2 (CSS2) Specification
<http://www.w3.org/TR/REC-CSS2/>

• Extensible Markup Language (XML) 1.1
<http://www.w3.org/TR/xml11/>

• Extensible Stylesheet Language (XSL) 1.0
<http://www.w3.org/TR/xsl/>

• HTML 4.01 Specification
<http://www.w3.org/TR/html401/>

• Scalable Vector Graphics (SVG) 1.0 Specification
<http://www.w3.org/TR/2001/REC-SVG-20010904/>

• Synchronized Multimedia Integration Language (SMIL 2.0)
<http//:www.w3.org/TR/smil20/>

• Web Content Accessibility Guidelines 1.0
 <http://www.w3.org/TR/WAI-WEBCONTENT/>

• XHTML 1.0: The Extensible HyperText Markup Language
 <http://www.w3.org/TR/xhtml1/>

http://www.rsasecurity.com
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.unicode.org
http://www.unicode.org
http://www.w3.org/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/html401/
http://www.w3.org/TR/2001/REC-SVG-20010904/
http://www.w3.org/TR/smil20/
http://www.w3.org/TR/WAI-WEBCONTENT/
http://www.w3.org/TR/xhtml1/

1159

Index
Page references in boldface mark principal or defining occurrences of a topic.

Special Characters
' (apostrophe) character

in dates 160
as text-showing operator 196
as text-showing operator. See ' (apostrophe) operator

' (apostrophe) operator 196, 398, 400, 407, 988
'(apostrophe) operator 398
\ (backslash) character 53

as DOS (Windows) file name delimiter 180, 660
as escape character 54-56, 179, 182, 409
escape sequence for 54, 409
in unique names (Web Capture) 952

: (colon) character
in conversion engine names 960-961
as DOS file name delimiter 180
as Mac OS file name delimiter 181

$ (dollar sign) character 442
… (ellipsis) character 1082
! (exclamation point) character

in ASCII base-85 encoding 69-70
< (left angle bracket) character 50

double, as dictionary delimiter 59, 97, 713
as hexadecimal string delimiter 53, 56, 59, 182

{ (left brace) character 50
as delimiter in PostScript calculator functions 176

[(left bracket) character 50
as array delimiter 58, 1129

((left parenthesis) character 50
escape sequence for 54, 409
as literal string delimiter 53

− (minus sign) character
in dates 161

(number sign) character
as hexadecimal escape character in names 57-58, 419,

1099
in uniform resource locators (URLs) 950

% (percent sign) character 50
as comment delimiter 51
in uniform resource locators, “unsafe” 950

. (period) character
double, in relative file specifications 180

double, in uniform resource locators (URLs) 950
in field names 677, 1117
in file names 181
in handler names 725
in uniform resource locators (URLs) 950
in unique names (Web Capture) 952

+ (plus sign) character
in dates 161
in font subset names 419

" (quotation mark) character
as text-showing operator. See " (quotation mark)

operator
" (quotation mark) operator 196, 398, 400, 407, 988
> (right angle bracket) character 50

double, as dictionary delimiter 59, 97, 713
as EOD marker 69
as hexadecimal string delimiter 53, 56, 59, 182

} (right brace) character 50
as delimiter in PostScript calculator functions 176

] (right bracket) character 50
as array delimiter 58

) (right parenthesis) character 50
escape sequence for 54, 409
as literal string delimiter 53

/ (slash) character 50, 151
as file specification delimiter 179, 182
as name delimiter 56, 58, 139, 458, 714
in uniform resource locators (URLs) 959
as UNIX file name delimiter 181

(standard RGB) color space
group color space, unsuitable as 562

~> (tilde, right angle bracket) character sequence
as EOD marker 69-70

_ (underscore) character
in file specifications 181
in multiple master font names 417

¥ (yuan symbol) character 442

Numbers
1.3 entry (OPI version dictionary) 979
2.0 entry (OPI version dictionary) 979

Index
1160

3D activation dictionaries 791, 794-796
A entry 794
AIS entry 794
D entry 795
DIS entry 795
NP entry 795
TB entry 795

3D animation style dictionaries 799-800
PC entry 799
Subtype entry 799
TM entry 799
Type entry 799

3D animation styles
Linear 800
None 800
Oscillating 800

3D annotation dictionaries 791-792
3DA entry 791, 793
3DB entry 792, 813
3DD entry 791-792, 801
3DI entry 792
3DV entry 791, 793
Subtype entry 791

3D annotation type 616, 791
3D annotations 616, 791-796

activation 793-795
coordinate systems 832-835
normal appearance 791
target coordinate system 792, 804-805, 808-810, 834
See also

3D annotation dictionaries
3D artwork 789-840

clipping 808-811
cross sections 819
instantiation 795-796
keyframe animation 799
lighting schemes 817
render modes 813
transformation matrices 804, 832-835

3D background dictionaries 812-813
C entry 813
CS entry 812
EA entry 813
Subtype entry 812

3D cross section dictionaries 819-828
C entry 820
IC entry 820
IV entry 820
O entry 820
PC entry 820
PO entry 820
Type entry 819

3D graphics. See 3D artwork

3D keyframe animation 799
3D lighting scheme dictionaries 817-819

Subtype entry 817
Type entry 817

3D lighting styles
Artwork 817
Blue 818
CAD 819
Cube 818
Day 818
Hard 818
Headlamp 819
Night 818
None 817
Primary 818
Red 818
White 817

3D markup 835-839
3D models 789
3D node dictionaries 828-832

M entry 829
N entry 829
O entry 829
Type entry 829
V entry 829

3D object type 797
3D reference dictionaries 791-792, 801-803

3DD entry 801
Type entry 801

3D render mode dictionaries 813-816
AC entry 814
CV entry 814
FC entry 814
O entry 814
Subtype entry 813
Type entry 813

3D render modes
BoundingBox 815
HiddenWireframe 816
Illustration 816
ShadedIllustration 816
ShadedVertices 816
ShadedWireframe 816
Solid 815
SolidOutline 816
SolidWireframe 815
Transparent 815
TransparentBoundingBox 815
TransparentBoundingBoxOutline 816
TransparentWireframe 815
Vertices 816
Wireframe 816

3D stream dictionaries 797-798

Index
1161

AN entry 798
DV entry 797
OnInstantiate entry 797-798
Resources entry 797-798
Subtype entry 797-798
Type entry 797
VA entry 671, 791, 793, 797-798, 804

3D streams 791-792, 797-803
See also

3D stream dictionaries
3D view box 792, 809, 811, 813
3D view dictionaries 671, 797, 804-807

BG entry 805
C2W entry 805
CO entry 805
IN entry 671, 791, 797, 804
LS entry 806
MS entry 804
NA entry 806
NR entry 806
O entry 805-806
P entry 805, 808
RM entry 806
SA entry 806
Type entry 804
U3DPath entry 805
XN entry 804

3D views 804-832
3DA entry (3D annotation dictionary) 791, 793
3DA entry (external data dictionary, 3D markup) 835
3DB entry (3D annotation dictionary) 792, 813
3DBG object type 812
3DD entry

3D annotation dictionary 791-792, 801
3D reference dictionary 801

3DI entry (3D annotation dictionary) 792
3DRef object type 801
3DV entry (3D annotation dictionary) 791, 793
3DV entry (external data dictionary, 3D markup) 835
3DView object type 804
83pv-RKSJ-H predefined CMap 444, 446
90ms-RKSJ-H predefined CMap 444, 446
90ms-RKSJ-V predefined CMap 444, 446
90msp-RKSJ-H predefined CMap 444, 446
90msp-RKSJ-V predefined CMap 444, 446
90pv-RKSJ-H predefined CMap 444, 446

A
A entry

3D activation dictionary 794

annotation dictionary 622, 647, 649, 654, 724
collection sort dictionary 592
FDF field dictionary 719
hint stream dictionary 1033
icon fit dictionary 720
media criteria dictionary 760
media play parameters MH/BE dictionaries 770
media players dictionary 762, 777-778
movie annotation dictionary 639, 784
outline item dictionary 586, 647, 654
rectilinear measure dictionary 747
screen annotation dictionary 640
structure element dictionary 859, 873-875, 913, 915
target dictionary 657
widget annotation dictionary 641

A85 filter abbreviation 354, 1100
AA entry

annotation dictionary 648, 676, 724
document catalog 141, 649, 1104
document catalog (obsolete) 1104
FDF field dictionary 719
field dictionary 648, 676
outline item dictionary (obsolete) 1112
page object 147, 648
screen annotation dictionary 640
widget annotation dictionary 641

abbreviations and acronyms, expansion of 936, 945
font characteristics unavailable for 893
for marked-content sequences 945
for structure elements 860
in Tagged PDF 888
and Unicode natural language escape 945

abs operator (PostScript) 176, 989
absolute file specifications 179-180
AbsoluteColorimetric rendering intent 261
Abstract Syntax Notation One (ASN.1): Specification of

Basic Notation (ISO/IEC 8824-1) 160, 1155
AC entry (3D render mode dictionary) 814
AC entry (appearance characteristics dictionary) 642
accented characters 425, 457
Accepted annotation state 620
access flags 123-124
access permissions

document 741
flags 123-124
operations 121-122
public-key security handlers 128
standard security handler 120

accessibility to users with disabilities 841, 935-945
access permissions 121, 124
alternate descriptions 606, 616, 860
annotation contents 617

Index
1162

content extraction for 936
field contents 675
replacement text 860
Span marked-content tag 905
standard structure types 899
Tagged PDF and 883-884, 888, 912
See also

abbreviations and acronyms, expansion of
alternate descriptions
natural language specification
replacement text

accurate screens algorithm 498
AccurateScreens entry (type 1 halftone dictionary) 497-

498
ACFM (Adobe Composite Font Metrics) file format 396
achromatic highlight, diffuse 248
achromatic shadow, diffuse 248
Acrobat® PDF viewer application 23, 25

Create Thumbnails command 1101, 1128
Document Properties dialog box 1125
error reporting 1096-1098, 1101, 1105-1107, 1111,

1113-1114, 1116-1117, 1125
Find command 1101
implementation limits 25, 991-993
implementation notes 1099-1130
indirect processing of PDF 43-44
JPEG implementation 86
native file formats 1099, 1105
plug-in extensions 970, 1019
Print As Image feature 121, 1103
RC4 encryption algorithm 118
scan conversion 508
TrueType font encodings, treatment of 430-432
Type 0 fonts, naming of 453
version compatibility 25, 453, 1095-1130
Web Capture plug-in extension 141
WebLink plug-in extension 1116

Acrobat Distiller® PDF producer application 44, 844
balanced trees 143
OPI comments 1128
PostScript names, compatibility with 1099
spot functions 1111-1112

AcroForm entry (document catalog) 141, 672, 1031
AcroForms

See interactive forms
acronyms

See abbreviations and acronyms, expansion of
AcroSpider

See Web Capture plug-in extension
action dictionaries 140, 647-648

Next entry 648, 670
S entry 648
Type entry 648

See also
embedded go-to action dictionaries
go-to-3D-view action dictionaries
go-to action dictionaries
hide action dictionaries
import-data action dictionaries
JavaScript action dictionaries
launch action dictionaries
movie action dictionaries
named-action dictionaries
remote go-to action dictionaries
rendition action dictionaries
reset-form action dictionaries
set-OCG-state action dictionaries
sound action dictionaries
submit-form action dictionaries
thread action dictionaries
transition action dictionaries
URI action dictionaries

Action entry
FieldMDP transform parameters dictionary 736
signature field lock dictionary 697

action handlers 1019
Action object type 648
action types 647-648, 652-671, 702-709

FirstPage 666
GoTo 653-654
GoTo3DView 653, 670
GoToE 653, 656
GoToR 653, 655
Hide 653, 666, 1117
ImportData 653, 708
JavaScript 653, 709
LastPage 666
Launch 653, 660
Movie 653, 665, 1116
Named 653, 667, 1117
NextPage 666
PrevPage 666
Rendition 653, 669
ResetForm 653, 707
SetOCGState 386, 653, 667
Sound 653, 664
SubmitForm 653, 703
Thread 653, 661
Trans 653, 670
URI 653, 662

actions 33, 140, 647-671
for annotations 622, 647
chaining of 648
destinations for 581-582
for FDF fields 719
handlers 1019
and named destinations 584

Index
1163

for outline items 585-586, 647
plug-in extensions for 1019, 1096
type. See action types
See also

action dictionaries
additional-actions dictionaries
FirstPage named action
go-to actions
go-to-3D-view actions
hide actions
import-data actions
JavaScript actions
LastPage named action
launch actions
movie actions
named actions
NextPage named action
PrevPage named action
remote go-to actions
rendition actions
reset-form actions
set-OCG-state actions
sound actions
submit-form actions
thread actions
transition actions
trigger events
URI actions

activating
annotations 604, 622, 637-640, 647, 719, 1035, 1054,

1114
outline items 585-586, 647, 1113
sound annotations 782

activation of 3D annotations 793-795
ActualText entry

property list 892, 905, 944
structure element dictionary 470, 860, 888, 913, 915,

944
Alt entry, compared with 944
and font characteristics 893
for illustrations 912
and Unicode mapping 892
and word breaks 895

adbe.pkcs7.detached (PKCS#7 signature) 727, 738
adbe.pkcs7.s3 public-key encryption format 129, 131
adbe.pkcs7.s4 public-key encryption format 129, 131
adbe.pkcs7.s5 public-key encryption format 129, 131
adbe.pkcs7.sha1 (PKCS#7 signature) 727, 738
adbe.x509.rsa_sha1 (PKCS#1 signature) 727, 738
add operator (PostScript) 176, 989
Add-RKSJ-H predefined CMap 444, 447
Add-RKSJ-V predefined CMap 444, 447

additional-actions dictionaries 141, 147, 648-651, 665,
1105

Bl entry (widget annotation) 650
C entry

form field 651, 673
page object 649-650, 1116

D entry (annotation) 649
DP entry (document catalog) 651
DS entry (document catalog) 651
E entry (annotation) 649
F entry (form field) 651
for FDF fields 719
Fo entry (widget annotation) 649
for form fields 676
FP entry (obsolete) 1115
inheritability of 1116
K entry (form field) 651
LP entry (obsolete) 1115
NP entry (obsolete) 1115
O entry (page object) 649-650, 1116
PC entry (annotation) 649-650
PI entry (annotation) 649-650
PO entry (annotation) 649-650
PP entry (obsolete) 1115
PV entry (annotation) 649-650
U entry (annotation) 649
V entry (form field) 651
WC entry (document catalog) 651
WP entry (document catalog) 651
WS entry (document catalog) 651
X entry (annotation) 649, 652

additive color representation 241
for blend modes 520, 572
in blending color space 519, 557
and default color spaces 258
DeviceRGB color space 242
and halftones 487
overprinting, not typically subject to 572
primary color components 241, 243
in soft-mask images 554
transfer functions, input to 485
transfer functions, output from 485, 488

additive colorants 264
See also

blue colorant
green colorant
red colorant

additive output devices 264, 266, 487
AddRevInfo entry

signature field seed value dictionary 699
Adobe CJKV Character Collections and CMaps for CID-

Keyed Fonts (Adobe Technical Note #5094) 1153
Adobe CMap and CID Font Files Specification (Adobe Tech-

nical Note #5014) 434-435, 448-449, 452, 472, 1152

Index
1164

Adobe-CNS1 character collection 443, 446, 463, 471, 1111
Adobe-CNS1-4 Character Collection for CID-Keyed Fonts

(Adobe Technical Note #5080) 1153
Adobe Composite Font Metrics (ACFM) file format 396
Adobe Font Metrics (AFM) file format 396, 1152
Adobe Font Metrics File Format Specification (Adobe Tech-

nical Note #5004) 396, 1152
Adobe Garamond® typeface 415
Adobe-GB1 character collection 443, 446, 463, 471, 1111
Adobe-GB1-4 Character Collection for CID-Keyed Fonts

(Adobe Technical Note #5079) 1153
Adobe Glyph List 431, 471, 1151
Adobe-Identity character collection 447
Adobe imaging model 23, 34-36

and indirect generation of PDF 43-44
memory representation, independent of 37
and PostScript 31, 333
rendering 477
and transparent annotations 613, 618

Adobe-Japan1 character collection 444, 446-447, 462-463,
471, 1111

Adobe-Japan1-4 Character Collection for CID-Keyed Fonts
(Adobe Technical Note #5078) 1153

Adobe-Japan1-5 Character Collection for CID-Keyed Fonts
(Addendum) (Adobe Technical Note #5146) 1153

Adobe-Japan2 character collection 462-463
Adobe-Japan2-0 Character Collection for CID-Keyed Fonts

(Adobe Technical Note #5097) 1153
Adobe-Korea1 character collection 445, 447, 462, 464,

471, 1111
Adobe-Korea1-2 Character Collection for CID-Keyed Fonts

(Adobe Technical Note #5093) 1153
Adobe PDF printer 43
Adobe.PPKLite signature handler 727
Adobe products

See
Acrobat® PDF viewer application
Acrobat Distiller® PDF producer application
Adobe Garamond® typeface
Adobe Reader® PDF viewer application
Extreme® printing systems
FrameMaker® document publishing software
Illustrator® graphics software
InDesign® page layout software
PageMaker® page layout software
Photoshop® image editing software
Poetica® typeface
XMP (Extensible Metadata Platform) framework

Adobe Reader® PDF viewer application 23, 25, 733, 741
Adobe Solutions Network (ASN) 435

contact addresses 1151

telephone numbers 1151
Web site 396, 435, 448, 471, 1151-1152

Adobe standard encoding
See StandardEncoding standard character encoding

Adobe Technical Notes 448, 1152
#5001 (PostScript Language Document Structuring Con-

ventions Specification) 1152
#5004 (Adobe Font Metrics File Format Specification)

396, 1152
#5014 (Adobe CMap and CID Font Files Specification)

434-435, 448-449, 452, 472, 1152
#5015 (Type 1 Font Format Supplement) 416, 1151-

1152
#5044 (Color Separation Conventions for PostScript

Language Programs) 1107, 1153
#5078 (Adobe-Japan1-4 Character Collection for CID-

Keyed Fonts) 1153
#5079 (Adobe-GB1-4 Character Collection for CID-

Keyed Fonts) 1153
#5080 (Adobe-CNS1-4 Character Collection for CID-

Keyed Fonts) 1153
#5088 (Font Naming Issues) 417, 1153
#5092 (CID-Keyed Font Technology Overview) 434,

1153
#5093 (Adobe-Korea1-2 Character Collection for CID-

Keyed Fonts) 1153
#5094 (Adobe CJKV Character Collections and CMaps

for CID-Keyed Fonts) 1153
#5097 (Adobe-Japan2-0 Character Collection for CID-

Keyed Fonts) 1153
#5116 (Supporting the DCT Filters in PostScript Level

2) 1153
#5146 (Adobe-Japan1-5 Character Collection for CID-

Keyed Fonts (Addendum)) 1153
#5176 (The Compact Font Format Specification) 413,

466, 1153
#5177 (The Type 2 Charstring Format) 1153
#5411 (ToUnicode Mapping File Tutorial) 472, 1153
#5620 (Portable Job Ticket Format) 48, 478, 975, 978,

1153
#5660 (Open Prepress Interface (OPI) Specification)

980, 1152-1153
Digital Signature Appearances 696, 1151
OpenType Font Specification 466, 468, 1152
PDF Signature Build Dictionary Specification for Acro-

bat 6.0 729, 1152
XFA Specification 724
XML Data Package (XDP) Specification 673, 1152
XML Data Package Specification 722
XML Forms Architecture (XFA) Specification 1152
XML Forms Data (XFDF) Format Specification, Version

2.0 1152
XML Forms Data Format Specification, Version 2.0 706
XML Template Specification 1152

Index
1165

Adobe Type 1 Font Format 412-413, 465, 467-468, 1151
Adobe® Intelligent Document Platform 23-24
Adobe.PPKLite public-key security handler 129
Adobe.PubSec public-key security handler 129
advance timing

See display duration
Advanced Encryption Standard (FIPS PUB 197) 119, 1154
Advanced Encryption Standard. See AES
AES encryption algorithm 118-120, 133
AESV2 decryption method (crypt filters) 122, 133-134
AFM (Adobe Font Metrics) file format 396, 1152
After block alignment 925
after edge 897

of allocation rectangle 931
border color 920
border style 920
border thickness 921
in layout 897, 918, 922, 925-926, 931
padding width 921, 926
ruby text position 929

After entry (JavaScript dictionary) 716
After ruby text position 929
AfterPermsReady entry (JavaScript dictionary) 717
AHx filter abbreviation 354, 1100
AIFF (Audio Interchange File Format) 782, 1123
AIFF-C (Audio Interchange File Format, Compressed)

782
AIS entry

3D activation dictionary 794
graphics state parameter dictionary 223, 550

ALaw sound encoding format 783
%ALDImageAsciiTag OPI comment (PostScript) 982
%ALDImageColor OPI comment (PostScript) 982
%ALDImageColorType OPI comment (PostScript) 981
%ALDImageCropFixed OPI comment (PostScript) 981
%ALDImageCropRect OPI comment (PostScript) 980
%ALDImageDimensions OPI comment (PostScript) 980
%ALDImageFilename OPI comment (PostScript) 980
%ALDImageGrayMap OPI comment (PostScript) 982
%ALDImageID OPI comment (PostScript) 980
%ALDImageOverprint OPI comment (PostScript) 982
%ALDImagePosition OPI comment (PostScript) 981
%ALDImageResolution OPI comment (PostScript) 981
%ALDImageTint OPI comment (PostScript) 982
%ALDImageTransparency OPI comment (PostScript) 982
%ALDImageType OPI comment (PostScript) 982
%ALDObjectComments OPI comment (PostScript) 980
Aldus Corporation 978

“Algorithm for Automatically Fitting Digitized Curves, An”
(Schneider) 1154

algorithm tags (PNG predictor functions) 76
All action

FieldMDP transform parameters 736
signature field lock dictionary 697

all-cap fonts 459
All colorant name

DeviceN color spaces, prohibited in 270
in Separation color spaces 266

All intent (optional content) 376
AllCap font flag 459
allocation rectangle 898, 930-931

in layout 918, 925
AllOff visibility policy (optional content membership

dictionary) 366-367, 372
AllOn visibility policy (optional content membership

dictionary) 366-367
AllPages list mode (optional content configuration

dictionary) 377
alpha 515

alpha source parameter 212, 223, 341, 550-551
backdrop. See backdrop alpha
in basic compositing formula 517-518
current alpha constant 212, 222, 341
group backdrop 535
group. See group alpha
interpretation of 525-526
notation for 517
object 535-537, 539
premultiplied. See preblending of soft-mask image data
result. See result alpha
shape and opacity, product of 517, 526, 529, 535, 541
source. See source alpha

alpha constant, current
See current alpha constant

alpha mask
See soft masks

Alpha soft-mask subtype 552-553
alpha source parameter 212

AIS entry (graphics state parameter dictionary) 223
constant opacity 551
constant shape 551
ignored by older viewer applications 1112
mask opacity 550
mask shape 550
soft-mask images 341

Alphabetic glyph class 463-464
AlphaNum glyph class 463
Alt entry

media clip data dictionary 764
media clip section dictionary 767

Index
1166

property list 892, 905, 942-943
structure element dictionary 860, 888, 913, 915, 942-

943
ActualText entry, compared with 944
and font characteristics 893
for illustrations 912
and Unicode mapping 892

alternate color space
and color separations 970
for DeviceN color spaces 175, 258, 270-272, 286, 307
and flattening of transparent content 576
for ICCBased color spaces 253-254
and overprinting 267, 271
for Separation color spaces 258, 266-267, 307
in soft masks 552
and spot color components 564-565
and transparent imaging model 267, 271, 519
and transparent overprinting 568

alternate descriptions 936, 942-943
for annotations 606, 616, 943
font characteristics unavailable for 893
for marked-content sequences 942
for sound annotations 943
for structure elements 860, 887, 942-943
in Tagged PDF 888
and Unicode natural language escape 943

Alternate entry (ICC profile stream dictionary) 253-254
alternate field names 675, 943
alternate image dictionaries 347

DefaultForPrinting entry 347
Image entry 347
OC entry 347, 349

alternate images 335, 339, 341, 347-348
optional content 347, 349
printing 347
See also

alternate image dictionaries
alternate presentations 150, 786-789

slideshows 787, 1124
AlternateImages entry (legal attestation dictionary) 743
AlternatePresentations entry (name dictionary) 150, 786
Alternates entry (image dictionary) 341, 349, 555
AN entry (3D stream dictionary) 798
AN entry (rendition action dictionary) 669
anamorphic scaling 720
and operator (PostScript) 176, 990
angle (halftone screen) 488

type 1 halftones 496-498
type 10 halftones 496, 499-500, 502
type 16 halftones 496, 503

angle brackets (< >) 50
double, as dictionary delimiters 59, 97, 713

as hexadecimal string delimiters 53, 56, 59, 182
Angle entry (type 1 halftone dictionary) 497
animation timeline 799
Annot object type 606, 1075, 1080
Annot standard structure type 890, 906, 909-910
annotation dictionaries 147, 605-608, 1075, 1080, 1113

A entry 622, 647, 649, 654, 724
AA entry 648, 676, 724
AP entry 606, 613, 621, 624-626, 631-632, 634, 636,

638-641, 678, 688, 696, 707, 791, 968, 976, 1113
AS entry 607, 614-615, 968, 975-977
Border entry 607, 610-611, 1113
BS entry 607, 611-612, 631, 641
C entry 607, 637
Contents entry 606, 615-617, 627, 637, 683, 943
F entry 606, 608, 649, 718, 968, 976
and hide actions 666
in Linearized PDF 1035
M entry 606, 637, 1113
NM entry 606, 618
OC entry 608
P entry 606, 640, 670
Page entry (FDF files) 722
Rect entry 606, 610, 612, 623, 625, 630-632, 635, 645,

663, 679, 696, 792, 910
StructParent entry 608, 869
Subtype entry 606, 615
Type entry 606
See also

3D annotation dictionaries
caret annotation dictionaries
circle annotation dictionaries
FDF annotation dictionaries
file attachment annotation dictionaries
free text annotation dictionaries
ink annotation dictionaries
line annotation dictionaries
link annotation dictionaries
markup annotation dictionaries
movie annotation dictionaries
polygon annotation dictionaries
polyline annotation dictionaries
pop-up annotation dictionaries
printer’s mark annotation dictionaries
rubber stamp annotation dictionaries
screen annotation dictionaries
sound annotation dictionaries
square annotation dictionaries
text annotation dictionaries
text markup annotation dictionaries
trap network annotation dictionaries
watermark annotation dictionaries
widget annotation dictionaries

annotation elements (Tagged PDF) 909-910

Index
1167

Annotation entry (movie action dictionary) 665
annotation flags 606, 608-610, 718, 1114

Hidden 608, 665, 670, 885, 1114, 1117
Invisible 608
Locked 609, 1114
LockedContents 609
NoRotate 609-610, 621
NoView 609, 670
NoZoom 609, 621
Print 608, 968, 976, 1114
ReadOnly 609, 968, 976
ToggleNoView 609, 1114

annotation handlers 605, 608, 1019
annotation icons 604, 1114

Approved 636
AsIs 636
background color 607
for button fields 719-720
Comment 621
Confidential 636
Departmental 636
Draft 636
Experimental 636
Expired 636
for file attachment annotations 638
Final 636
ForComment 636
ForPublicRelease 636
Graph 638
Help 621
Insert 621
Key 621
Mic 639
NewParagraph 621
NotApproved 636
Note 621
NotForPublicRelease 636
Paperclip 638
Paragraph 621
PushPin 638
for rubber stamp annotations 636
scaling 719-720
Sold 636
for sound annotations 639
Speaker 639
Tag 638
for text annotations 621
TopSecret 636
for widget annotations 642-643, 719-720

annotation rectangle 606
and appearance streams 612, 643, 679
border style 610-611
for circle annotations 630
coordinate system 612

highlighting 622, 641
for movie annotations 664, 786
for printer’s mark annotations 966
rotation 609-610
scaling 609-610
for signature fields 696
for square annotations 630
and submit-form actions 704
for text fields 691
and URI actions 662-663
for widget annotations 719-720

annotation states 620-621
Accepted 620
Cancelled 620
Completed 620
Marked 620
None 620
Rejected 620
state models 620-621
Unmarked 620

annotation types 604, 606, 615-616, 1114-1115
3D 616, 791
Caret 616, 635
Circle 615, 631
dictionary entries for 605
FileAttachment 616, 638
FreeText 615, 624
handlers for 605
and Hidden flag 608
Highlight 616, 634, 910
Ink 616, 636
Line 615, 626
Link 615, 617, 622, 715
markup 616-619
Movie 616-617, 639, 715
plug-in extensions for 605, 614
Polygon 615, 632-633
PolyLine 615, 632
Popup 616, 637
PrinterMark 616-617, 715, 968
Screen 616, 640, 715
Sound 616, 638
Square 615, 631
Squiggly 616, 634
Stamp 616, 635
StrikeOut 616, 634
Text 615, 621
text markup 633-634
TrapNet 616-617, 644, 715, 976
Underline 616, 634
unknown 608, 614
Watermark 616, 644
Widget 616-617, 641, 715

annotations 33, 47, 604-647, 791-796

Index
1168

actions for 622, 647
activating 604, 622, 637-640, 647, 719, 1035, 1054,

1114
active area 613, 622, 641-643, 649, 652, 665
alternate description 606, 616, 943
annotation rectangle. See annotation rectangle
appearance dictionary 606, 608, 613-614
appearance state 607, 614, 647, 686, 689
appearances. See appearance streams
blend mode 613, 618
border style. See border styles
border width 607, 611, 625, 631-632, 636
color 607
corner radii 607
dash pattern 607, 611, 625, 631, 636
destinations for 581-582, 584, 622, 1114
in FDF 710-711, 715
flags. See annotation flags
handlers 605, 608, 1019
hiding and showing 608-609, 665-666
highlighting 613, 622, 641
icon. See annotation icons
label 618, 705
in Linearized PDF 1035, 1043, 1054
as logical structure content items 890
in logical structure elements 868
marked-content sequences, association with 890
modification date 606
name 606
optional content and 374, 608
in page content order, sequencing of 890
and page objects 137
plug-in extensions for 605, 1019, 1096
pop-up window 607, 618, 705
PostScript conversion to 46
printing 608-609, 613, 1114
as real content 885
and reference XObjects 363
replies 618-619, 621
rotating 609, 621
scaling 609, 621, 719-720
states 620
in structural parent tree 857
and submit-form actions 705
tab order 604-605, 1113
and trap networks 977
trigger events for 649-650
type. See annotation types
in updating example 1074-1075, 1077-1080, 1082
URI actions for 662
user interaction 608-609, 612-613, 640
version compatibility 1098
See also

annotation dictionaries
3D annotations

circle annotations
file attachment annotations
free text annotations
ink annotations
line annotations
link annotations
markup annotations
movie annotations
caret annotations
polygon annotations
polyline annotations
pop-up annotations
printer’s mark annotations
rubber stamp annotations
screen annotations
sound annotations
square annotations
text annotations
text markup annotations
trap network annotations
widget annotations

Annotations entry (legal attestation dictionary) 743
Annots entry

FDF dictionary 715
page object 147, 605, 640, 644, 670, 890, 975, 977,

1035, 1075, 1078-1080, 1128
UR transform parameters dictionary 735

AnnotStates entry (trap network annotation dictionary)
976-977

AntiAlias entry (shading dictionary) 305
anti-aliasing

shading patterns 305
transparency 515, 527

AnyOff visibility policy (optional content membership
dictionary) 366-367

AnyOn visibility policy (optional content membership
dictionary) 366-367

AP entry
annotation dictionary 606, 613, 621, 624-626, 631-632,

634, 636, 638-641, 678, 688, 696, 707, 791, 968, 976,
1113

FDF field dictionary 718, 1120
name dictionary 150, 615

API. See application programming interface
apostrophe (') character

in dates 160
as text-showing operator 196, 398, 400, 407, 988

AppDefault page scaling 580
appearance characteristics dictionaries

AC entry 642
BC entry 642
BG entry 642
CA entry 642

Index
1169

I entry 642
IF entry 643
IX entry 643
R entry 642
RC entry 642
RI entry 643
TP entry 643
for widget annotations 642-643

appearance dictionaries 606, 613-614
D entry 614, 718, 968, 975
N entry 614, 678, 718, 791, 885, 968, 975, 977
for pushbutton fields 718
R entry 614, 718, 968, 975
subdictionaries 607, 614, 968, 975
and unknown annotation types 608
for widget annotations 672, 686

appearance states 607, 614, 647
for check box fields 686, 689
for printer’s marks 968
in trap networks 975, 977

appearance streams 612-615
appearance states, selected by 607
backdrop 613
for button fields 710
as content streams 151, 884
coordinate system 612
default font 673
down appearance 613, 641
dynamic 641, 672
and form fields 672, 677
marked-content sequences in 864
named 150, 615
normal appearance 613-614, 885
opacity 618
pop-up annotations, inapplicable to 637
and pop-up help systems 608, 665
for printer’s mark annotations 968
and reference XObjects 363
resources 153, 1117
rollover appearance 613
soft mask 613
and transparency 613
transparency groups as 557
for trap network annotations. See trap network appear-

ances
and unknown annotation types 608
for widget annotations 672, 678, 686

appearances, annotation
See appearance streams

AppendOnly signature flag 674
Apple Computer, Inc.

Mac® OS operating system 43, 425, 1000
TrueType® font format 418
TrueType Reference Manual 418, 1153

application data dictionaries 359, 848-849
LastModified entry 849
Private entry 849

application / pdf content type (MIME) 705
application programming interface (API) 43
application-specific data 42
application / vnd . fdf content type (MIME) 711
application / x-www-form-urlencoded content type

(MIME) 958
applications

launching 647, 659-661
See also

consumer applications, PDF
consumer applications, Tagged PDF
producer applications, PDF
producer applications, Tagged PDF

Approved annotation icon 636
APRef entry (FDF field dictionary) 718
Arabic writing systems 890, 919
Arial standard font name 1109
Arial,Bold standard font name 1110
Arial,BoldItalic standard font name 1110
Arial,Italic standard font name 1110
array objects 50-51, 58

capacity limit 58
null elements 52
syntax 58

arrays
color space. See color space arrays
explicit destinations, defining 582, 584
multi-language text 942
related files 184, 186-188, 190
See also

array objects
art box 963

and bounding box 362
clipping to 965
display of 967
imposition of pages, ignored in 965
in page object 146
page placement in another document 964
printer’s marks excluded from 966
printing, ignored in 965

Art standard structure type 899-900, 904
ArtBox entry

box color information dictionary 967
page object 146, 963, 1127

articles 594, 596-598
in document catalog 137, 140
in Linearized PDF 1053, 1055
and page content order 889
in page objects 146, 1105

Index
1170

as structure elements (Tagged PDF) 900
and text discontinuities 888
See also

beads
threads

Artifact marked-content tag 885
artifact types 886

Background 886
Layout 886
Page 886
Pagination 886

artifacts (Tagged PDF) 883, 885-889
attached 886
background 887
bounding box 886
incidental 888-889
layout 886
logical structure order, excluded from 889
page 887
page content order, included in 889
pagination 886
property list 886
specification 885-886
See also

artifact types
Artwork 3D lighting styles 817
AS entry

annotation dictionary 607, 614-615, 968, 975-977
optional content configuration dictionary 377, 379,

382-383, 386
Ascent entry (font descriptor) 457, 927
ASCII (American Standard Code for Information

Interchange) 48-49
base-85 encoding 39, 65-67, 69-70
character set 49-50, 55
compression 66
in file specifications 179, 181-182
filters 66
hexadecimal encoding 65, 67, 69, 82, 120
LZW encoding 72
nonprinting characters 54
for PDF representation 39
for portability 65
strings and streams 49
text files 842, 946
TIFF tags 983
in uniform resource locators (URLs) 188, 950
in unique names (Web Capture) 952-953
UTF-8 character encoding 58

ASCII85Decode filter 67, 69-70
A85 abbreviation 354, 1100
in inline images 352

ASCIIHexDecode filter 65, 67, 69

AHx abbreviation 354, 1100
in inline images 352

Asian writing systems 395, 433
AsIs annotation icon 636
ASN. See Adobe Solutions Network
ASN.1 (Abstract Syntax Notation One) 160
Aspect entry (movie dictionary) 784, 786, 1123
atan operator (PostScript) 176, 989
AToB transformation (ICC color profile) 972, 1127
Attached entry (property list, Tagged PDF artifact) 886
Attestation entry (legal attestation dictionary) 742-743
attribute classes 873-874

class map 858
name 858-859, 873-875, 913
revision number 859, 874-875
and standard attribute owners 913
structure elements belonging to 859, 874

attribute objects 873
for attribute classes 873-874
O entry 873, 876, 913, 916, 932, 934
owner 873, 913
P entry 876
revision number 875
role map 858
standard attribute owners 913-914, 916
structure elements, associated with 859

attribute owners, standard
See standard attribute owners

attribute revision numbers 859, 873-875
generation numbers, distinguished from 874

attributes dictionary (DeviceN color spaces). See DeviceN
color space attributes dictionaries

AU (NeXT/Sun Audio Format) file format 1123
AU entry (source information dictionary) 955
authenticity of documents, certifying 42
AuthEvent entry (crypt filter dictionary) 122, 132-133
Author entry (document information dictionary) 844
author signature. See MDP signatures 726
Auto glyph orientation 929
Auto height attribute 924, 931
Auto line height 927
Auto width attribute 924, 931
automatic stroke adjustment 1112

See stroke adjustment, automatic
Average predictor function (LZW and Flate encoding) 75-

76
AvgWidth entry (font descriptor) 457
AVI (Audio/Video Interleaved) file format 1123
axial shadings

See type 2 shadings

Index
1171

B
B border style (beveled) 611
B entry

hint stream dictionary 1034
media clip section MH/BE dictionaries 767-768
media screen parameters MH/BE dictionaries 772
page object 146, 596, 710, 1035, 1105
sound object 783-784
thread action dictionary 662
transition dictionary 600

B operator 196, 230, 985
and transparent overprinting 569

b operator 196, 225, 230, 985
and transparent overprinting 569

< b > XHTML element (rich text strings) 681
B* operator 196, 230, 985

and transparent overprinting 569
b* operator 196, 230, 985

and transparent overprinting 569
B5pc-H predefined CMap 443, 446
B5pc-V predefined CMap 443, 446
backdrop 514

for annotation appearances 613
compositing with 195, 234, 516
and fully opaque objects 574
group. See group backdrop
immediate (transparency group element). See immedi-

ate backdrop
initial (transparency group). See initial backdrop
for page group 516, 539, 542-543
for patterns 559-561
and transparent overprinting 569-570
See also

backdrop alpha
backdrop color
backdrop opacity
backdrop shape

backdrop alpha
in compositing 525-526
notation 518, 535

backdrop color 517
backdrop fraction 538
blending color space, conversion to 518
and CompatibleOverprint blend mode 568
in compositing 515, 525-526
and nonseparable blend modes 524
notation 518, 535, 543
and overprinting 566
for page group 542
removal from compositing computations 538
and separable blend modes 520-522
and soft masks 545-547, 553

specifying 548
spot color components 564
in transparency groups 537

backdrop fraction 538
backdrop opacity 515, 529

notation 529
and overprinting 566

backdrop shape 529
notation 529

Background artifact type 886
background artifacts 887
background color (Tagged PDF) 919
background dictionaries 805
Background entry (shading dictionary) 303, 305, 309-310,

560
BackgroundColor standard structure attribute 916, 919
backslash (\) character 53

as DOS (Windows) file name delimiter 180, 660
as escape character 54-56, 179, 182, 409
escape sequence for 54, 409
in unique names (Web Capture) 952

backspace (BS) character
escape sequence for 54

balanced trees 143, 1153
BarcodePlainText form usage rights 735
< BASE > body element (universal resource identifier) 663
base color space (Indexed color space) 258, 263, 307, 563,

568
base encoding 427, 459, 996
Base entry (URI dictionary) 663
base images 339, 347, 351, 1108
base URI (URI action) 663
base URL (media clip data) 766
BaseEncoding entry (encoding dictionary) 427, 429, 431,

1110
BaseFont entry

CIDFont dictionary 436, 453, 456
font dictionary 456
font subset 419, 1110
multiple master font dictionary 417
TrueType font dictionary 418-419
Type 0 font dictionary 453
Type 1 font dictionary 58, 333, 413

baseline shift (ILSEs) 926
BaselineShift standard structure attribute 905, 912, 917,

926, 930-931
BaseState entry (optional content configuration

dictionary) 376, 385
basic compositing formula

See compositing computations

Index
1172

BBox entry
property list (Tagged PDF artifact) 886
shading dictionary 305, 308, 312
type 1 form dictionary 357, 612, 678, 930
type 1 pattern dictionary 293
viewport dictionary 744-745

BBox standard structure attribute 910, 912, 916, 924
BC entry

appearance characteristics dictionary 642
soft-mask dictionary 552-553

BDC operator 196, 370-371, 850-851, 862, 985
property list 850, 852

BE dictionaries (multimedia objects) 757-758
BE entry

circle annotation dictionary 611, 631
free text annotation dictionary 624
media clip data dictionary 765
media clip section dictionary 767
media play parameters dictionary 769
media player info dictionary 779
media screen parameters dictionary 772
polygon annotation dictionary 611, 633
rendition dictionary 759-760
square annotation dictionary 611, 631

bead dictionaries 596-597
in Linearized PDF 1031, 1035, 1037, 1055
N entry 597, 1055
P entry 597, 1055
R entry 597
T entry 597, 1035
thread actions, target of 662
Type entry 597
V entry 597

Bead object type 597
beads, article 596

in Linearized PDF 1035, 1053, 1055
in page objects 146, 1105
and thread actions 661
See also

articles
bead dictionaries
threads

Before block alignment 925
before edge 897

of allocation rectangle 931
border color 920
border style 920
border thickness 921
in layout 897, 918, 922, 925-926
padding width 921, 926
ruby text position 929

Before entry (JavaScript dictionary) 716
Before placement attribute 918

Before ruby text position 929
beginbfchar operator (PostScript) 452, 454, 472, 474
beginbfrange operator (PostScript) 452, 472, 474-475
begincidchar operator (PostScript) 452, 454
begincidrange operator (PostScript) 452
begincmap operator (PostScript) 451
begincodespacerange operator (PostScript) 451, 454, 472,

474
beginnotdefchar operator (PostScript) 452, 454
beginnotdefrange operator (PostScript) 452, 454
beginrearrangedfont operator (PostScript) 452
beginusematrix operator (PostScript) 452
Bernstein polynomials 329
best effort

See BE dictionaries (multimedia objects)
bevel line join style 216-217, 231
“Bézier Curve-Based Root-Finder, A” (Schneider) 1154
Bézier curves, cubic

See cubic Bézier curves
BG entry

3D view dictionary 805
appearance characteristics dictionary 642
graphics state parameter dictionary 221, 289, 483, 743

BG2 entry (graphics state parameter dictionary) 221, 289,
483

BI operator 196, 352, 985
BibEntry standard structure type 906
bibliographies 906
bicubic tensor-product patches 327-330
Bidirectional Algorithm, The (Unicode Standard Annex

#9) 919, 1158
Big Five character encoding 443, 1099, 1120
Big Five character set 443
bilevel output devices 36, 38

halftone screens 487, 494
bilinear interpolation 321-322
binary data 49
binary files 39, 49
biometric authentication 725
bitshift operator (PostScript) 176, 990
BitsPerComponent entry

FlateDecode filter parameter dictionary 74
image dictionary 340, 344-345, 350-351, 555, 588
inline image object 353
LZWDecode filter parameter dictionary 74
type 4 shading dictionary 315, 318
type 5 shading dictionary 320
type 6 shading dictionary 324

BitsPerCoordinate entry
type 4 shading dictionary 315, 318

Index
1173

type 5 shading dictionary 320
type 6 shading dictionary 324

BitsPerFlag entry
type 4 shading dictionary 315, 318
type 6 shading dictionary 324

BitsPerSample entry (type 0 function dictionary) 170-171
Bl entry (additional-actions dictionary) 650
Bl trigger event (annotation) 650
black color component

black-generation function 213, 482-483
DeviceCMYK color space 241, 243
DeviceN color spaces 268
gray, complement of 481
grayscale conversion 481
halftones for 506
initialization 243
in multitones 269
overprinting 570-571
RGB conversion 482, 484
transfer function 484-485
transparent overprinting 571

black colorant
overprinting 570-571
PANTONE Hexachrome system 269
printing ink 264
process colorant 241, 243
transparent overprinting 571

black-generation function 213, 482-484
BG entry (graphics state parameter dictionary) 221
BG2 entry (graphics state parameter dictionary) 221
and transparency 573-575

black point, diffuse 246, 248, 251
BlackIs1 entry (CCITTFaxDecode filter parameter

dictionary) 79
BlackPoint entry

CalGray color space dictionary 246
CalRGB color space dictionary 248
Lab color space dictionary 251

bleed box 963
clipping to 965
display of 967
in page object 145
printing of finished pages, ignored in 965
in printing of intermediate pages 965

BleedBox entry
box color information dictionary 967
page object 145, 963, 1127

blend circles (type 3 shading) 311-313
blend functions 519-520

in basic compositing formula 517
blending color space, assumptions about 519
in compositing 525-526

linear 562
notation 518, 533, 537
and overprinting 566, 568
and subtractive color components 572
white-preserving blend modes 567
See also

blend modes
blend modes 514, 520-525

additive color representation 520, 572
for annotations 613, 618
in basic compositing formula 518
blending color space, assumptions about 519
Color 524
ColorBurn 521
ColorDodge 521
Compatible 525, 567, 574
CompatibleOverprint 567-569, 572, 574
in compositing 525-526
current. See current blend mode
Darken 521, 566-567, 572
Difference 522, 567
Exclusion 522, 567
HardLight 516, 522
Hue 524
in isolated groups 539
in knockout groups 540
Lighten 521
Luminosity 524
Multiply 520, 539
nonseparable 522-525, 567
non-white-preserving 567
Normal 404, 516, 520, 525, 538-539, 543, 548, 558,

561, 566-569, 572, 574, 613, 618
Overlay 521
and overprinting 566-567, 569
Saturation 524
Screen 521, 569
separable 520-522, 567
SoftLight 522
specifying 548
standard 520-525, 548
in subtractive color spaces 519
in transparency groups 515, 531, 537
white-preserving 567
See also

blend functions
blending color space 255, 259, 518-519

for isolated groups 531, 539, 557
for page group 548
process colors 519
specifying 548, 1112
spot colors 519
for transparency groups 548, 557, 561

Blinds transition style 599-600

Index
1174

block alignment 925
After 925
Before 925
Justify 925
Middle 925

block-level structure, Tagged PDF 904-905
strong 904
weak 904

block-level structure elements (BLSEs) 896, 901-905
bounding box 924
content items in 899
direct content items in 897, 905
general layout attributes 917
illustrations as 896
ILSEs contained in 896, 905
ILSEs, nested within 905, 927-928
list elements 902-903

L 901-902, 932
Lbl 901-902, 906, 923, 932-933
LBody 901, 903, 923
LI 901-902, 932

list elements, nested within 903
nesting of 897
packing of ILSEs within 897-898, 917-918
paragraphlike elements 902, 923

H 901-902, 904
H1–H6 901-902, 904
P 901-902, 904

stacking 897, 905, 917-919
standard layout attributes for 916-917, 922-926

BBox 916, 924
BlockAlign 897, 917, 925
EndIndent 916, 923
Height 916-917, 924
InlineAlign 897, 917, 925
LineHeight 917
SpaceAfter 916, 922
SpaceBefore 916, 922
StartIndent 916, 923
TBorderStyle 917, 926
TextAlign 916, 924
TextIndent 916, 923
TPadding 917, 926
Width 917, 924

table element 903
Table 901, 903, 916, 924

usage guidelines 904-905
Block placement attribute 917, 923, 931
block-progression direction 896

illustrations, height of 931
in layout 897, 901, 905, 917, 922, 924-925, 927
shift direction, opposite to 897, 926
table expansion 935
writing mode 919

block quotations 900
BlockAlign standard structure attribute 897, 917, 925
BlockQuote standard structure type 900

Quote, distinguished from 906
BLSEs. See block-level structure elements
Blue 3D lighting styles 818
blue color component

CMYK conversion 481, 484
DeviceRGB color space 241-242
grayscale conversion 481
halftones for 506
in Indexed color table 263
initialization 243
and threshold arrays 495
transfer function 485
yellow, complement of 482

blue colorant
additive primary 241-243
display phosphor 264

BM entry (graphics state parameter dictionary) 222, 548
BMC operator 196, 679, 850-851, 985
body, file

See file body
< body > XHTML element (rich text strings) 681

xfa:APIVersion attribute 681
xfa:contentType attribute 681
xfa:spec attribute 681
xmlns attribute 681

Bold outline item flag 587
bookmarks

access permission 121, 124
PostScript conversion 46
See also

outline items
boolean objects 51-52
boolean operators 52
border color (Tagged PDF) 920
border effect dictionaries 631

I entry 612
S entry 612

Border entry (annotation dictionary) 607, 610-611, 1113
Border object type 611
border style dictionaries 611, 625, 631-632, 636

D entry 611
S entry 611
Type entry 611
W entry 611

border styles 610-611, 625, 631-632, 636, 1114
B (beveled) 611
D (dashed) 611
I (inset) 611

Index
1175

S (solid) 611, 1114
U (underline) 611

border styles (Tagged PDF)
Dashed 920
Dotted 920
Double 920
Groove 920
Hidden 920
Inset 921
None 920
Outset 921
Ridge 920
Solid 920

border thickness (Tagged PDF) 921
BorderColor standard structure attribute 916, 920-921
BorderStyle standard structure attribute 916, 920, 926
BorderThickness standard structure attribute 916, 921
Both table scope attribute 935
bounding box

artifact 886
BLSE 924
font 420, 422-423, 456, 986
form XObject 358, 678
glyph 395
illustration 896, 930
imported page 362
movie 784
non-isolated group 558
page 582
pattern cell 293
reference XObject 362
shading object 305, 308-309, 312
soft mask 552
table 896, 930
table cell 930
transparency group 559

BoundingBox 3D render modes 815
Bounds entry (type 3 function dictionary) 174
box color information dictionaries 146, 965-967

ArtBox entry 967
BleedBox entry 967
CropBox entry 967
TrimBox entry 967

box style dictionaries 966-967
C entry 967
D entry 967
S entry 967
W entry 967

Box transition style 599-600
BoxColorInfo entry (page object) 146, 965
BPC entry (inline image object) 353
braces ({ }) 50

as delimiters in PostScript calculator functions 176
brackets ([]) 50

as array delimiters 58
BS entry

annotation dictionary 607, 611-612, 631, 641
circle annotation dictionary 631
free text annotation dictionary 625
ink annotation dictionary 636
line annotation dictionary 626
polygon annotation dictionary 632
polyline annotation dictionary 632
square annotation dictionary 631

BT operator 196, 390, 401, 405, 679, 851, 911, 985
Btn field type 675, 686, 689
BToA transformation (ICC color profile) 255
BToA transformation (ICC color profile) 519, 972
BU entry (media clip data MH/BE dictionaries) 766-767
built-in character encodings 425

embedded fonts 427
expert fonts 995
overriding 426
simple fonts 412
Symbol font 995, 1013-1015
symbolic fonts 426-427, 996
TrueType fonts 429
Type 1 fonts 414, 429, 996
ZapfDingbats font 996, 1016-1017

bullet character 1000, 1111
butt line cap style 216, 231
Butt line ending style 630
button field flags 685-686

NoToggleToOff 686, 689
Pushbutton 686, 689
Radio 686, 689
RadiosInUnison 686, 688-689, 1118

button fields 675, 685-691
alternate (down) caption 642
alternate (down) icon 643
appearances 710
flags. See button field flags
icon 719-720
icon fit dictionary 643
normal caption 642
normal icon 642
rollover caption 642
rollover icon 643
scaling 719-720
trigger events inapplicable to 652
See also

check box fields
pushbutton fields
radio button fields

Index
1176

BX operator 152, 196, 369, 985
byte range digests 725
ByteRange entry (signature dictionary) 725-729, 732, 734,

740-741

C
C entry

3D background dictionary 813
additional-actions dictionary

form field 651, 673
page 649-650, 1116

annotation dictionary 607, 637
box style dictionary 967
hint stream dictionary 1034
media criteria dictionary 760
media play parameters MH/BE dictionaries 769
media rendition dictionary 762
number format dictionary 748
outline item dictionary 586
rendition MH/BE dictionary 759-760
sound object 783-784
source information dictionary 956
structure element dictionary 859, 874-875, 913, 915
URL alias dictionary 957
Web Capture command settings dictionary 960
Web Capture information dictionary 947

C entry (3D cross section dictionary) 820
c operator 196, 226, 228, 985
C programming language 1154, 1157
C++ programming language 874
C tab order (annotations) 147, 605
C trigger event

form field 651-652
page 650

C0 entry (type 2 function dictionary) 173
C1 entry (type 2 function dictionary) 173
C2W entry (3D view dictionary) 805
CA entry

appearance characteristics dictionary 642
graphics state parameter dictionary 222, 551
markup annotation dictionary 618

ca entry (graphics state parameter dictionary) 222, 551
CAD 3D lighting styles 819
CalCMYK color spaces 244
calculator functions, PostScript

See type 4 functions
CalGray color space dictionaries 246

BlackPoint entry 246
Gamma entry 246-247
WhitePoint entry 246-247

CalGray color spaces 237, 244-247, 345
as blending color space 519
color values 246
gamma correction 246
and ICCBased color spaces, compared 252, 255
initial color value 287
rendering 478
setting color values in 287
See also

CalGray color space dictionaries
calibrated color 244

CalGray color spaces 246-247
CalRGB color spaces 247
CMYK, as blending color space 519
device profiles 479
implicit conversion 259-260
multitones 281, 284

callouts (free text annotations) 624
CalRGB color space dictionaries 248-249

BlackPoint entry 248
Gamma entry 248-249, 547
Matrix entry 248-250, 547
WhitePoint entry 248, 250

CalRGB color spaces 237, 244, 247-250, 345
as base color space 263
as blending color space 519
color space, approximating 256
color values 247
gamma correction 248
and ICCBased color spaces, compared 252, 255
initial color value 287
process colors, conversion to 563
rendering 478
setting color values in 287
for soft masks 547
transfer functions 484
and transparent overprinting 568, 572
See also

CalRGB color space dictionaries
camera, virtual (3D annotations) 790, 793, 804-805, 807-

808, 833
Cancelled annotation state 620
CanonicalFormat field flag (submit-form field) 705
Cap entry (line annotation dictionary) 627
CapHeight entry (font descriptor) 457
Caption standard structure type 900, 902-903
captions 900, 902-903
caret annotation dictionaries

RD entry 635
Subtype entry 635
Sy entry 635

Caret annotation type 616, 635

Index
1177

caret annotations 616, 634-635
carriage return (CR) character 50

in cross-reference tables 94
as end-of-line marker 50, 55, 61, 91, 94
escape sequence for 54
in HTTP requests 959
in stream objects 60-61
as white space 48, 56

Cascading Style Sheets, level 2 (CSS2) Specification (World
Wide Web Consortium) 1158

catalog
document. See document catalog
FDF (Forms Data Format). See FDF catalog

Catalog object type 139, 1058, 1060
Category entry (usage application dictionary) 382
CCF filter abbreviation 354, 1100
CCITT (Comité Consultatif International Téléphonique et

Télégraphique)
compression 86
encoding standard 77, 80
facsimile compression 39, 67, 77-80, 1156

CCITTFaxDecode filter 67, 77-80
CCF abbreviation 354, 1100
end-of-facsimile-block (EOFB) pattern 79
parameters. See CCITTFaxDecode filter parameter dic-

tionaries
return-to-control (RTC) pattern 79
in sampled images 340

CCITTFaxDecode filter parameter dictionaries 78-79
BlackIs1 entry 79
Columns entry 79
DamagedRowsBeforeError entry 78-79
EncodedByteAlign entry 78-79
EndOfBlock entry 79
EndOfLine entry 79
K entry 78-79
Rows entry 79

ceiling operator (PostScript) 176, 989
cells, halftone 487

coordinate system 488
frequency 488, 498
predefined spot functions 489
and spot function 488, 497
and threshold array 494
type 10 halftones 496, 500, 502
type 16 halftones 496

Center inline alignment 925
center of orbit (3D views) 805, 807
Center ruby text alignment 928
Center text alignment 924
CenterWindow entry (viewer preferences dictionary) 578
Cert entry

signature dictionary 727, 738
signature field seed value dictionary 698

certificate revocation lists (CRLs) 739
certificate seed value dictionaries 698, 700

Ff entry 702
Issuer entry 701
KeyUsage entry 701
OID entry 701
Subject entry 700
SubjectDN entry 700
Type entry 700
URL entry 702
URLType entry 702

certifying signature. See MDP signatures 726
CF entry (encryption dictionary) 90, 117, 129, 132
CFF (Compact Font Format) 32, 438, 466, 468
“CFF” table (OpenType font) 466, 468-469
CFM entry (crypt filter dictionary) 122, 132-134
CGI (Common Gateway Interface) file format 950
Ch field type 675
Changes entry (signature dictionary) 728
character codes

7-bit ASCII 39
character encodings, mapped by 420, 425
in CIDFonts 436
and CMaps 434, 441-442, 448, 452-454
codespace ranges 451, 454-455, 472
Differences array 427-428
in font dictionaries 413-414, 421
hexadecimal, in name objects 57, 185
mapping operators 451-452
mapping to Unicode values 470-471
multiple-byte 182, 399, 408-409, 419, 433-434
notdef mappings 452, 454-455
octal, in literal strings 54-55
and predefined CMaps 447
Shift-JIS encoding 449
showing text 388
single-byte 399, 409, 412
and standard encodings 995
in text objects 387
and text-showing operators 408
and Tj operator 390
in TrueType fonts 429-431, 468
in Type 0 fonts 453
in Type 1 fonts 428-429
in Type 3 fonts 422, 429
undefined characters 454
undefined widths 457
Unicode, mapping to 415, 421, 453, 472-475, 892
and word spacing 399

character collections 434
Adobe-CNS1 443, 446, 463, 471, 1111

Index
1178

Adobe-GB1 443, 446, 463, 471, 1111
Adobe-Identity 447
Adobe-Japan1 444, 446-447, 462-463, 471, 1111
Adobe-Japan2 462-463
Adobe-Korea1 445, 447, 462, 464, 471, 1111
Chinese (simplified) 446
Chinese (traditional) 446
for CIDFonts 437-438, 461-462
CIDSystemInfo dictionaries 435, 448
CJK (Chinese, Japanese, and Korean) 446-447
for CMaps 434, 442
Generic 447
and Identity-H predefined CMap 445
and Identity-V predefined CMap 445
Japanese 446-447
Korean 447
ordering 435, 447, 471
for predefined CMaps 446-448, 471
registry 471
registry identifier 435, 447
supplement number 436, 447-448, 471

character encodings 410, 412, 425-432, 1157
base 427, 459, 996
Big Five 443, 1099, 1120
built-in. See built-in character encodings
CJK (Chinese, Japanese, and Korean) 419
and CMaps, compared 434, 441
for composite fonts. See CMaps
content extraction 40
EUC-CN 442
EUC-JP 444
EUC-KR 445
EUC-TW 443
for FDF fields 715
GBK 442, 1120
glyph selection 408
Hong Kong SCS 443
ISO-2022-JP 444
ISO Latin 1 158
Microsoft Unicode 431
for name objects 1099
named 470
natural language 461
predefined. See predefined character encodings
Shift-JIS 434, 444, 449, 1099, 1120
for simple fonts 425-432
and ToUnicode CMaps 472
for TrueType fonts 429-432, 468, 996
for Type 1 fonts 414, 428-429, 996
for Type 3 fonts 420, 429
UCS-2 442-445
UHC (Unified Hangul Code) 445, 1120
Unicode, mapping to 892
UTF-8 58, 1100

UTF-16BE 158
UTF-16BE. See Unicode character encoding

character identifiers (CIDs) 434
and character collections 434-435, 447
CID 0 439, 455
and CIDFonts 434-436, 438-441, 461, 471
and CMaps 434, 441-442, 452-453
and Identity-H predefined CMap 445
and Identity-V predefined CMap 445
mapping to glyph indices 437-438
maximum value 434, 992
notdef mappings 452, 454-455
and Type 0 fonts 453
undefined characters 454-455
Unicode conversion 470-471

character names
CharProcs dictionary 421-422
CID-keyed fonts, unused in 434
and CMaps 434, 441, 452
Differences array 427
in font subsets 458, 1110
glyph descriptions, Type 1 428-429
glyph descriptions, Type 3 420, 429
. notdef 428, 439, 454, 458
and standard encodings 995
in Type 3 fonts 422
Unicode conversion 470-471

character selectors 434
in CIDFonts 436
and CMaps 441, 448, 453-454
undefined characters 454

character sequences
double left angle bracket (<<) 59, 97, 713
double period (. .) 180, 950
double right angle bracket (>>) 59, 97, 713
tilde, right angle bracket (~>) 69-70

character sets 39, 388, 1157
ASCII 49-50, 55
Big Five 443
and character collections 434
CJK (Chinese, Japanese, and Korean) 433
CNS 11643-1992 443
encodings for 425-426
ETen 443
for font subsets 458
Fujitsu FMR 444
GB 2312-80 442
GB 18030-2000 442
GBK 442
Hong Kong SCS 443
JIS C 6226 444
JIS X 0208 444
JIS78 444
KanjiTalk6 444

Index
1179

KanjiTalk7 444
KS X 1001:1992 445
Latin. See Latin character set, standard
Mac OS KH 445
non-Latin 426, 691
PDF 49-50
Unicode, conversion to 470

character spacing (Tc) parameter
Tc operator 987-988

character spacing parameter
and horizontal scaling 400
and quotation mark (") operator 407

 394, 397-399
Tc operator 398
text matrix, updating of 410

characters 388
accented 425, 457
apostrophe (') 160, 196, 398, 400, 407, 988
backslash (\) 53-56, 179-180, 182, 409, 660, 952
backspace (BS) 54
bullet 1000, 1111
and bytes 49
carriage return (CR) 48, 50, 54-56, 60-61, 91, 94, 959
codes. See character codes
colon (:) 180-181, 960-961
currency 1000
Cyrillic 463-464
delimiter 49-51, 57
dollar sign ($) 442
ellipsis (…) 1082
em dash 895
encodings. See character encodings
escape 54
euro 1000
exclamation point (!) 69-70
form feed (FF) 50, 54, 56
glyphs. See glyphs, character
Greek 463-464
hangul 464
hanzi (kanji, hanja) 462-464
horizontal tab (HT) 48, 50-51, 54, 56
hyphen (-) 888, 895, 1000
illuminated 936, 944
jamo 464
kana (katakana, hiragana) 463-464
Latin 462-464
left angle bracket (<) 50, 53, 56, 59, 97, 182, 713
left brace ({) 50, 176
left bracket ([) 50, 58, 1129
left parenthesis (() 50, 53-54, 409
ligatures 425, 474, 936, 944, 995
line feed (LF) 48, 50, 54-56, 60-61, 91, 94, 959
line-drawing 463-464
minus sign (−) 161

names. See character names
newline 50, 54
nonbreaking space 1000
nonprinting 54-55
null (NUL) 50, 952
number sign (#) 57-58, 419, 950, 1099
numeric 463
percent sign (%) 50-51, 950
period (.) 180-181, 677, 725, 950, 952, 1117
plus sign (+) 161, 419
quotation mark (") 196, 398, 400, 407, 988
regular 49-51, 57
right angle bracket (>) 50, 53, 56, 59, 69, 97, 182, 713
right brace (}) 50, 176
right bracket (]) 50, 58
right parenthesis ()) 50, 53-54, 409
ruby 463
selectors. See character selectors
sets. See character sets
slash (/) 50, 56, 58, 139, 151, 179, 181-182, 458, 714,

959
space (SP) 48, 50-51, 56, 94, 399, 402, 417-418, 704,

891, 895, 1058, 1099
special symbols 463-464
tab. See horizontal tab (HT)
underscore (_) 181, 417
white-space 48-50, 56-57, 69, 352, 1129
yuan symbol (¥) 442

CharProcs entry (Type 3 font dictionary) 370, 421-423,
429

CharSet entry (font descriptor) 458, 469
check box field dictionaries

Opt entry 688
check box fields 685-688

normal caption 642
Off appearance state 686
value 686
Yes appearance state 686
See also

check box field dictionaries
checked PrintField attribute 934
CheckSum entry (embedded file parameter dictionary)

186
Chinese

character collections (simplified) 446
character collections (traditional) 446
character sets 433
CMaps (simplified) 442-443
CMaps (traditional) 443
fonts 419
glyph widths 439
hanzi (kanji, hanja) characters 462-464
R2L reading order 578

Index
1180

writing systems 919
choice field dictionaries 694

I entry 694
Opt entry 694-695, 1119
TI entry 694

choice field flags 693-694
Combo 693
CommitOnSelChange 694
DoNotSpellCheck 694
Edit 693
MultiSelect 694-695
Sort 694

choice fields 675, 685, 693-695, 1119
flags. See choice field flags
multiple selection 694-695
value 693-695
See also

choice field dictionaries
combo box fields
list box fields

chroma-key 351
chromaticity 249-250, 519, 557
chrominance 85
CI entry (file specification dictionary) 184
CICI.SignIt signature handler 727
CID-Keyed Font Technology Overview (Adobe Technical

Note #5092) 434, 1153
CID-keyed fonts 32, 433-435, 995

character collections 434
DescendantFonts array 435
embedded 40
Encoding entry 435
glyph descriptions 434-435
as Type 0 fonts 435
See also

CIDFonts
CMaps

CIDFont dictionaries 411, 436-437
BaseFont entry 436, 453, 456
in CID-keyed fonts 435
CIDSystemInfo entry 435, 437-438, 449
CIDToGIDMap entry 437, 445
DW entry 437, 439
DW2 entry 437, 440, 468
FontDescriptor entry 437
Subtype entry 436
and TrueType fonts 468
Type entry 436
W entry 437, 439-440
W2 entry 437, 440-441, 468

CIDFont FD dictionaries 462-465
CIDFont files 434

CIDFont font descriptors 437, 460-465
CIDSet entry 461, 469
FD entry 461
Lang entry 461
Style entry 461
See also

CIDFont FD dictionaries
CIDFont Style dictionaries

CIDFont Style dictionaries 461-462
Panose entry 461

CIDFont subtypes
See CIDFont types

CIDFont types 436
CIDFontType0 411, 436, 466
CIDFontType2 411, 436, 466

CIDFontName entry (CIDFont program) 436
CIDFonts 411-412, 433, 436-441

base font 436
character collection 437-438, 461-462
CIDFont files 434
and CMaps 436, 441-442, 448-449, 452, 454
embedded 435, 438
font descriptors. See CIDFont font descriptors
and fonts, compared 436
glyph classes 462-465
glyph descriptions 436, 438
glyph indices, mapping from CIDs to 437-438
glyph metrics 437, 439-441, 462, 1109
glyph selection 437-439
glyph widths 437
and Identity-H predefined CMap 445
and Identity-V predefined CMap 445
PostScript name 436
subsets 461
Tf operator inapplicable to 436
Type 0 436, 438, 453
Type 0 fonts, descendants of 436, 453-455, 471
Type 2 436, 438-439, 445, 453
Unicode mapping 471
vertical writing 437, 440-441, 463-464
writing mode 441
See also

CIDFont dictionaries
CIDFont FD dictionaries
CIDFont Style dictionaries
CIDFont types

CIDFontType0 CIDFont type 411, 436, 466
CIDFontType0C embedded font subtype 438, 466-467
CIDFontType2 CIDFont type 411, 436, 466
CIDs. See character identifiers
CIDSet entry (CIDFont font descriptor) 461, 469
CIDSystemInfo dictionaries 435, 438, 448, 461-462, 471,

1111

Index
1181

Ordering entry 435, 445, 462
Registry entry 435, 445, 462
Supplement entry 436, 445, 462

CIDSystemInfo entry
CIDFont dictionary 435, 437-438, 449
CMap dictionary 435, 448, 1111

CIDToGIDMap entry (CIDFont dictionary) 437, 445
CIE (Commission Internationale de l’Éclairage) 237
CIE 1931 XYZ color space

and CalGray color spaces 245-247
and CalRGB color spaces 248
CIE-based color spaces, semantics of 244
implicit conversion, bypassed in 259
and Lab color spaces 251

CIE 1931 XYZ color space
soft masks, derivation of 547

CIE 1976 L*a*b* color space 85, 250, 252
CIE-based A color spaces 245-246

color values 245
decoding functions 246-247

CIE-based ABC color spaces 244-245, 247, 250, 263
color values 244
decoding functions 244, 247, 249, 251

CIE-based color spaces 237, 244-262
as alternate color space 267, 270
as base color space 263
blending in 519, 562
CalCMYK 244
CIE 1931 XYZ. See CIE 1931 XYZ color space
CIE 1976 L*a*b* 85, 250, 252
CIE-based A 245-246
CIE-based ABC 244-245, 247, 250, 263
color conversion, control of 480
color mapping mapping function 479
and color specification 235
decoding functions 244, 246-247, 249, 251
default 241, 257-258, 563, 972
device spaces, conversion to 307, 477-479
diffuse achromatic highlight 248
diffuse achromatic shadow 248
diffuse white point 246-248, 251
and flattening of transparent content 576
gamut mapping function 248, 479, 484
as group color space 562-563
implicit conversion to device colors 259-260
initial color value 245
inline images, prohibited in 354
and overprinting 284
for page group 543
parameters 245
process colors, rendered as 480
rendering intents. See rendering intents
setting color values in 287

for shadings 305, 307
for soft masks 547
specification 245
specular highlight 248
(standard RGB) 256, 562
for transparency groups 241, 557
See also

CalGray color spaces
CalRGB color spaces
ICCBased color spaces
Lab color spaces

CIE colorimetric system 244, 1155
CIP4 (International Cooperation for the Integration of

Processes in Prepress, Press and Postpress)
JDF Specification 478, 975, 1155

circle annotation dictionaries 625, 631-632
BE entry 611, 631
BS entry 631
IC entry 631
RD entry 625, 632
Subtype entry 631

Circle annotation type 615, 631
circle annotations 615, 630-632

border style 611
border width 631
dash pattern 631
interior color 631
See also

circle annotation dictionaries
Circle line ending style 630
Circle list numbering style 933
CJK (Chinese, Japanese, and Korean)

character collections 446-447
character sets 433
CMaps 442-445
fonts 419
glyph widths 439
See also

Chinese
Japanese
Korean

CJKV Information Processing (Lunde) 448, 1157
CL entry (free text annotation dictionary) 624
class map 858, 874, 913
ClassMap entry (structure tree root) 858, 874, 913
clear-table marker (LZW compression) 72-73
cleartomark operator (PostScript) 467
Client-Side JavaScript Reference (Netscape Communica-

tions Corporation) 709, 1157
Clip marked-content tag 911
clip operator (PostScript) 988
clipping 35-36, 234-235, 401-402

Index
1182

3D artwork 808-811
to art box 965
to bleed box 145, 963, 965
to crop box 145, 963, 965
even-odd rule 235, 988
to form bounding box 357-358
to function domain 168, 170, 345
to function range 168, 171
to function sample table 171
to glyph outlines 392, 401
in illustration elements (Tagged PDF) 911
and marked content 852-855
nonzero winding number rule 235, 402, 988
to page boundaries 145, 579, 963, 965
paths 193-194, 234-235, 401-402
pattern cells 293
to reference XObject bounding box 362
scan conversion 511
shadings 305
soft 222, 516, 527, 545, 550
text rendering mode 401-402
to transparency group bounding box 559
See also

clipping path operators
current clipping path

clipping objects 852-854
clipping path, current

See current clipping path
clipping path operators 196, 225, 234-235

W 196, 232, 234-235, 852-853, 988
W* 196, 232, 234-235, 852-853, 988

ClosedArrow line ending style 630
closepath operator (PostScript) 985-987
ClrF entry (FDF field dictionary) 718
ClrFf entry (FDF field dictionary) 718
cm operator 196, 202, 210, 219, 338, 985
CMap dictionaries 448-449

in CID-keyed fonts 435
CIDSystemInfo entry 435, 448, 1111
CMapName entry 448, 453
for ToUnicode CMaps 472
Type entry 448
UseCMap entry 449, 451, 472
WMode entry 440, 449

CMap files 434, 442
CIDSystemInfo dictionary 448
example 449-451
name 448
ToUnicode CMaps 415, 421, 453, 472
writing mode 449

CMap object type 448
“cmap” table (OpenType font) 469
“cmap” table (TrueType font) 429-432, 438-439, 468

platform-specific subtables 429-432
CMapName entry (CMap dictionary) 448, 453
CMaps 408, 411-412, 433, 441-452, 1111, 1157

base CMap 449
and character collections 434, 442
and character encodings, compared 434, 441
Chinese (simplified) 442-443
Chinese (traditional) 443
and CIDFonts 436, 441-442, 448-449, 452, 454
CJK (Chinese, Japanese, and Korean) 442-445
embedded 435, 448, 1111
example 449-451
files. See CMap files
font numbers 434, 441, 448, 452-454
Identity-H 445, 471
Identity-V 445, 471
Japanese 444
Korean 445
mapping operators 451-452
notdef mappings 452, 454-455
PostScript name 448, 453
predefined. See predefined CMaps
for Type 0 fonts 453, 1111
undefined characters 454-455
Unicode mapping 471, 892
writing mode 441, 449
See also

CMap dictionaries
CMS. See color management system
CMYK color representation

calibrated, as blending color space 519
DCTDecode filter, transformation by 85
DeviceCMYK color space 237, 243
and grayscale, conversion between 481, 486
in halftones 487
and high-fidelity color, compared 268
in output devices 235, 480
and output intents 972
RGB, conversion from 213, 481-483, 575
RGB, conversion to 484
for subtractive color 241
in transfer functions 484

CMYK color space abbreviation (inline image object) 353
CNS 11643-1992 character set 443
CNS-EUC-H predefined CMap 443, 446
CNS-EUC-V predefined CMap 443, 446
CO entry

3D view dictionary 805
interactive form dictionary 651, 673
line annotation dictionary 628
sound object 783

code, computer program 906
Code standard structure type 906

ClassMap entry (structure tree root) 880, 896, 938
clear-table marker (LZW compression) 70, 71
cleartomark operator (PostScript) 478, 479
Client-Side JavaScript Reference (Netscape Communica-

tions Corporation) 727, 1189
Clip marked-content tag 937
clip operator (PostScript) 1016
clipping 33, 34, 237-238, 411-412

3D artwork 828-831
to art box 993
to bleed box 144, 991, 993
to crop box 144, 991, 993
even-odd rule 238, 1016
to form bounding box 366, 367
to function domain 170, 172, 353
to function range 170, 173
to function sample table 172
to glyph outlines 402, 411
in illustration elements (Tagged PDF) 937
and marked content 874-878
nonzero winding number rule 238, 412, 1016
to page boundaries 144, 593, 991, 993
paths 195, 196, 237-238, 411, 412
pattern cells 299
to reference XObject bounding box 371
scan conversion 523
shadings 311
soft 225, 528, 539, 557, 562
text rendering mode 411-412
to transparency group bounding box 571
See also

clipping path operators
current clipping path

clipping objects 874-876
clipping path, current

See current clipping path
clipping path operators 198, 228, 237-238

W 198, 235, 237, 238, 874, 876, 1016
W* 198, 235, 237, 238, 874, 876, 1016

ClosedArrow line ending style 646
closepath operator (PostScript) 1013, 1014, 1015
ClrF entry (FDF field dictionary) 737
ClrFf entry (FDF field dictionary) 736
cm operator 198, 204, 213, 222, 346, 1013
CMap dictionaries 459, 460

in CID-keyed fonts 446
CIDSystemInfo entry 446, 460, 1142
CMapName entry 460, 464
for ToUnicode CMaps 484
Type entry 460
UseCMap entry 460, 463, 484
WMode entry 451, 460

CMap files 445-446, 453
CIDSystemInfo dictionary 460
example 460-461, 461-462
name 460
ToUnicode CMaps 425, 432, 464, 484
writing mode 460

CMap object type 460
“cmap” table (OpenType font) 480
“cmap” table (TrueType font) 440-443, 450, 480

platform-specific subtables 440-444
CMapName entry (CMap dictionary) 460, 464
CMaps 418, 421, 422, 444, 452-463, 1141, 1189

base CMap 460
and character collections 445-446, 453
and character encodings, compared 445, 452
Chinese (simplified) 453-454
Chinese (traditional) 454-455
and CIDFonts 447, 452, 453, 460, 463, 465
CJK (Chinese, Japanese, and Korean) 453-456
embedded 446, 459, 459-460, 1141
example 460-461, 461-462
files. See CMap files
font numbers 445, 453, 459, 463, 464, 465
Identity-H 457, 483
Identity-V 457, 483
Japanese 455-456
Korean 456
mapping operators 462-463
notdef mappings 463, 465, 466
PostScript name 460, 464
predefined. See predefined CMaps
for Type 0 fonts 464, 1142
undefined characters 466
Unicode mapping 483, 915
writing mode 453, 460
See also

CMap dictionaries
CMS. See color management system
CMYK color representation

calibrated, as blending color space 531
DCTDecode filter, transformation by 83
DeviceCMYK color space 240, 246
and grayscale, conversion between 493, 498
in halftones 499
and high-fidelity color, compared 274
in output devices 238, 492
and output intents 1000
RGB, conversion from 216, 493-495, 588
RGB, conversion to 496
for subtractive color 244
in transfer functions 496

CMYK color space abbreviation (inline image object) 362
CNS 11643-1992 character set 454

Index
1183

Codes for the Representation of Names of Countries and
Their Subdivisions (ISO 3166) 159, 938, 1155

Codes for the Representation of Names of Languages (ISO
639) 159, 938, 1155

codespace ranges 451, 454-455
for ToUnicode CMaps 472

collaborative editing 705
collection dictionaries

D entry 589
Schema entry 589
Sort entry 590
Type entry 589
View entry 590

Collection entry (document catalog) 142
collection field dictionaries

E entry 592
N entry 591
O entry 591
Subtype entry 591
Type entry 591
V entry 592

collection items dictionaries
D entry 189
Type entry 189

collection schema dictionaries
Type entry 590

collection sort dictionaries
A entry 592
S entry 592
Type entry 592

collections 588-593
colon (:) character

in conversion engine names 960-961
as DOS file name delimiter 180
as Mac OS file name delimiter 181

color
annotations 607
backdrop. See backdrop color
background, dynamic appearance stream 642
border, dynamic appearance stream 642
calibrated. See calibrated color
conversion between spaces. See color conversion
current. See current color
duotone 269, 279-282
glyph descriptions 423
gradient fills 213
group. See group color
group backdrop 535
high-fidelity 235, 237, 268-269
ICC profiles 244, 252-255
interior

annotations 626, 631
line endings 630

inversion 346, 485
mapping 235, 237, 262
masking. See color key masking
multitone 235, 237, 269, 279-284, 1107
object (transparent imaging model) 536
outline items 586
overprint control 284-286
page boundaries 967
process. See process colors
quadtone 269, 282-284
remapping 241, 257-258, 480, 557, 563, 972
rendering 236, 477-478
result (transparent imaging model). See result color
separations. See separations, color
smoothness tolerance 509-510
source (transparent imaging model). See source color
specification 235
tints. See tints
YUV 85
YUVK 85
See also

color components
color operators
color representation
color spaces
color values
colorants

Color Appearance Models (Fairchild) 1154
color bars 962-963, 966, 969

as page artifacts 887
as printer’s mark annotations 643

Color blend mode 524
color components 236

additive 242, 258, 265, 270, 485, 487
alternate color space 267, 271
DeviceCMYK 266, 270
DeviceGray 266, 270
DeviceN (tints) 268-271, 992
DeviceRGB 266, 270
halftones for 486-488, 496, 505-506
in JPEG2000 images 86
linear 562
nonprimary 485, 498-499, 502, 504-506
nonstandard 498-499, 502, 504, 506
and output intents 972
and overprinting 570-572
primary 242, 506
range 519
and separable blend modes 520
Separation (tints) 265
smoothness tolerance 509
in soft-mask images 554-556
spot 269, 485, 552, 563-565
subtractive 243, 258, 265, 270, 485, 487

Index
1184

transfer functions 477, 485
and transparent overprinting 565-568, 571-572
See also

black color component
blue color component
cyan color component
gray color component
green color component
magenta color component
red color component
yellow color component

color conversion 478-484
to alternate color space 307, 565
to base color space 307
CIE-based to device 307, 563
CMYK to RGB 484
device color spaces, among 307, 477, 480-484
device to CIE-based not generally possible 562-563
grayscale and CMYK, between 481, 486
grayscale and RGB, between 481
to group color space 557, 559, 561-563
to page color space 561-562
in rendering 236, 573
RGB to CMYK 213, 481-483, 575
in shading patterns 307, 565
soft-mask images, preblending of 556
See also

black-generation function
undercolor-removal function

color CSS2 style attribute (rich text strings) 682
Color entry (version 1.3 OPI dictionary) 981-982
color functions 306

type 1 (function-based) shadings 308
type 2 (axial) shadings 309-310
type 3 (radial) shadings 311-312
type 4 shadings (free-form Gouraud-shaded triangle

meshes) 315, 318
type 5 shadings (lattice-form Gouraud-shaded triangle

meshes) 320
type 6 shadings (Coons patch meshes) 324, 326

color key masking 341, 349, 351, 1107
and object shape 549
and soft masks 550

color management system (CMS) 479
color mapping (Indexed color spaces) 235, 237, 262
color mapping functions, CIE-based 479
color operators 196, 218, 286-289

CS 196, 236, 240, 242-243, 270, 287, 289, 291, 986
cs 196, 236, 240, 242-243, 287, 289, 291, 986
G 196, 236, 240-242, 288-289, 986
g 196, 236, 240-242, 288-289, 336, 391, 986
in glyph descriptions 423
K 196, 236, 240-241, 243, 288, 986

k 196, 236, 240-241, 243, 288, 987
restrictions on 288-289
RG 196, 236, 240-241, 243, 288-289, 987
rg 196, 236, 240-241, 243, 288-289, 563, 568, 987
SC 196, 236, 240, 242-243, 264, 287, 289, 987
sc 196, 236, 240, 242-243, 264, 288-289, 318, 336, 987
SCN 196, 240, 264, 266, 270, 288-289, 291, 294-295,

298, 987
scn 196, 240, 264, 266, 270, 288-289, 291, 294-295,

298-299, 987
text, showing 391
in text objects 405

color patches
bicubic tensor-product 327-330
Coons 321-323, 327-328, 330

color plates
Plate 1, Additive and subtractive color 241
Plate 2, Uncalibrated color 244
Plate 3, Lab color space 250
Plate 4, Color gamuts 250
Plate 5, Rendering intents 260
Plate 6, Duotone image 269
Plate 7, Quadtone image 269, 282
Plate 8, Colored tiling pattern 295
Plate 9, Uncolored tiling pattern 299
Plate 10, Axial shading 310
Plate 11, Radial shadings depicting a cone 312-313
Plate 12, Radial shadings depicting a sphere 313
Plate 13, Radial shadings with extension 313
Plate 14, Radial shading effect 313
Plate 15, Coons patch mesh 321
Plate 16, Transparency groups 515
Plate 17, Isolated and knockout groups 539-540
Plate 18, RGB blend modes 520
Plate 19, CMYK blend modes 520
Plate 20, Blending and overprinting 569

color profiles, ICC
See ICC color profiles

color representation
ICC profiles 244, 252-255
YUV 85
YUVK 85
See also

additive color representation
CMYK color representation
grayscale color representation
RGB color representation
subtractive color representation

Color Separation Conventions for PostScript Language Pro-
grams (Adobe Technical Note #5044) 1107, 1153

color separations
See separations, color

color space arrays 240

Index
1185

for CIE-based color spaces 245
as ColorSpace resources 240, 287
content streams, prohibited in 240
for DeviceN color spaces 270
for ICCBased color spaces 252
for Indexed color spaces 262
for Pattern color spaces 298
in PDF objects 240
for Separation color spaces 265, 272

color spaces 235-289
(standard RGB) 562
abbreviations for, in inline images 353
additive. See additive color representation
alternate. See alternate color space
for appearance streams 673
arrays. See color space arrays
blending. See blending color space
CalCMYK 244
CIE 1931 XYZ. See CIE 1931 XYZ color space
CIE 1976 L*a*b* 85, 250, 252
CIE-based A 245-246
CIE-based ABC 244-245, 247, 250, 263
conversion between. See color conversion
current. See current color space
Decode arrays, default 345-346
DeviceRGB 772
diffuse achromatic highlight 248
diffuse achromatic shadow 248
diffuse black point 246, 248, 251
diffuse white point 246-248, 251
families 237-240, 1106
gamma correction 246, 248
gamut 250, 268, 479, 574-575
group. See group color space
for image XObjects 240, 257, 588
implicit conversion 259-260
for inline images 257, 354
in JPEG2000 images 88
JPEG2000 formats and 340
in Linearized PDF 1047
as named resources 154
native (output device). See native color space
and overprinting 570-572
for page group 543, 559, 561, 572
rendering intents. See rendering intents
for sampled images 334-337, 340-341, 344-345, 351
for separable blend modes 520
for shadings 257, 305-309, 311, 315, 318, 320, 324
for soft masks 547, 553-556
specification 240
specular highlight 248
standard RGB 256
subtractive. See subtractive color representation
for thumbnail images 588

for transparency groups. See group color space
and transparent overprinting 565, 571-572
See also

CalGray color spaces
CalRGB color spaces
CIE-based color spaces
default color spaces
device color spaces
DeviceCMYK color space
DeviceGray color space
DeviceN color spaces
DeviceRGB color space
ICCBased color spaces
Indexed color spaces
Lab color spaces
Pattern color spaces
Separation color spaces
special color spaces

Color standard structure attribute 916, 921
color table (Indexed color space) 262-263, 556
color values 210, 236

background (shadings) 305, 309-310, 313
CalGray 246
CalRGB 247
CIE-based A 245
CIE-based ABC 244
CIE-based color mapping 479
components 236, 477
DeviceCMYK 243
DeviceGray 242
DeviceN 270
DeviceRGB 242
Indexed 262
interpolation (shadings) 306-307
Lab 250
Pattern 291
remapping 258
Separation 265-266
transfer functions, produced by 488
in transparent imaging model 516
for uncolored tiling patterns 298

colorants
additive 264
device 241, 284-285, 565, 572, 969
DeviceN 270, 272, 992
halftones for 486, 496, 505-506
misregistration 643, 962, 974
for OPI proxies 984
primary 264, 267, 487, 496
for printer’s marks 969
process. See process colorants
and separations 265-267, 271, 969
spot. See spot colorants
subtractive 264, 267

Index
1186

and transparent overprinting 565
for trap networks 978
See also

black colorant
blue colorant
cyan colorant
green colorant
magenta colorant
orange colorant
red colorant
yellow colorant

colorants dictionary (DeviceN color spaces) 272
Colorants entry

DeviceN color space attributes dictionary 272, 275-
276

printer’s mark form dictionary 969
ColorBurn blend mode 521
ColorDodge blend mode 521
colored tiling patterns 292, 294-298

in transparent imaging model 561
Colors entry

FlateDecode filter parameter dictionary 74
LZWDecode filter parameter dictionary 74

ColorSpace entry
DeviceN process dictionary 274
image dictionary 89, 240, 340-341, 344, 350, 555-556,

568, 588
inline image object 353-354
resource dictionary 154, 240, 258, 287, 354, 557
separation dictionary 970
shading dictionary 303, 305-307

ColorSpace resource type 154, 240, 258, 287, 354, 557
ColorTransform entry (DCTDecode filter parameter

dictionary) 85
ColorType entry (version 1.3 OPI dictionary) 981
Colour Measurement and Management in Multimedia Sys-

tems and Equipment (International Electrotechnical
Commission) 256, 1155

ColSpan standard structure attribute 935
column attributes, standard

See standard column attributes
Column table scope attribute 935
ColumnCount standard structure attribute 917, 932
ColumnGap standard structure attribute 917, 932
Columns entry

CCITTFaxDecode filter parameter dictionary 79
FlateDecode filter parameter dictionary 74
LZWDecode filter parameter dictionary 74

ColumnWidths standard structure attribute 917, 932
Comb field flag (text field) 691
combo box fields 685, 693

trigger events for 651
Combo field flag (choice field) 693
command dictionaries, Web Capture

See Web Capture command dictionaries
command settings dictionaries, Web Capture

See Web Capture command settings dictionaries
Comment annotation icon 621
comments 49-51, 1099

OPI. See OPI comments
Comments entry (version 1.3 OPI dictionary) 980
Commission Internationale de l’Éclairage (International

Commission on Illumination) 237
CommitOnSelChange field flag (choice field) 694
Compact Font Format (CFF) 32, 438, 466, 468
Compact Font Format Specification, The (Adobe Technical

Note #5176) 413, 1153
compact font programs

embedded 466, 468
subtypes 465

compatibility
blend modes for 525, 567
of file names 181
object streams and cross-reference streams 109-115
with other applications 91
of PDF versions. See version compatibility, PDF
sections 152, 985-986
transparency 576

compatibility operators 152, 196
BX 152, 196, 369, 985
EX 152, 196, 369, 986

compatibility sections 152, 985-986
Compatible blend mode 525, 567

and fully opaque objects 574
CompatibleOverprint blend mode 567-569, 572

and halftones 574
overprint mode ignored by 572
overprint parameter ignored by 572
and transfer functions 574
and transparency groups 572

Completed annotation state 620
Components entry

DeviceN process dictionary 274, 278
Composite (group compositing) function 534

backdrop, compositing with 535
backdrop removal 537
in group compositing computations 535
for page group 542-543
recursive application 536
soft masks, derivation of 546
summary 544

composite fonts 410, 433-455

Index
1187

encoding. See CMaps
glyph selection 408
PostScript and PDF, compared 433
Tj operator 390
Unicode mapping 471
word spacing 399
writing mode 395
See also

CID-keyed fonts
Type 0 fonts

composite pages 264
separations, generation of 969
spot colorants in 563

compositing 35, 195, 513-515
of annotation appearances 613
blending color space 518-519, 548, 1112
computations. See compositing computations
in isolated groups 538-539, 558
of isolated groups 539
in knockout groups 540-541, 558
in non-isolated groups 558
in non-knockout groups 540
and overprinting 566
in page group 516, 543
of page group 542-543
pattern cells 559
shading patterns 560
of spot color components 564
text knockout parameter 403-404
tiling patterns 559
in transparency groups 515-516, 530-531, 533-534,

546, 557, 559, 561
of transparency groups 515-516, 530-531, 533-535,

552, 557-559, 561, 569
See also

alpha
blend modes
opacity
shape

compositing computations
basic 516-530

formula 517-518
notation 516-517
summary 530

group 532-538
general groups 532-533
isolated groups 539
knockout groups 540-541
non-isolated groups 542
non-isolated, non-knockout groups 535-536
notation 531-532
page group 542-543
summary 544-545

linear 562

for patterns 560
and preblending of soft-mask image data 556
simplification of 545

“Compositing Digital Images” (Porter and Duff) 518,
1157

compressed objects 100
compression, data 39, 65-66

CCITT facsimile 39, 67, 77-80, 86, 1156
DCT (discrete cosine transform) 67, 84-86
filters 39, 46, 71-86, 783
Flate (zlib/deflate) 39, 67, 71-77
JBIG2 (Joint Bi-Level Image Experts Group) 39, 67,

80-84
JPEG (Joint Photographic Experts Group) 39, 67, 84,

86
JPEG2000 67, 86-87
lossless 66, 80, 256
lossy 66, 80, 84
LZW (Lempel-Ziv-Welch) 39, 65-67, 71-77
run-length encoding 67, 77
sounds 783

computation order 651, 673
Computer Graphics: Principles and Practice (Foley et al.)

1154
concat operator (PostScript) 985
Condensed font stretch 456
Confidential annotation icon 636
Configs entry (optional content properties dictionary)

375
configuration dictionaries (optional content)

See optional content configuration dictionaries
configuration information (XFA forms) 722
constant opacity 212, 222, 527, 549

for annotations 618
notation 528, 533, 537
specifying 551, 1112
in transparency groups 531

constant shape 212, 222, 527, 549
notation 528, 533, 537
specifying 551, 1112
in transparency groups 531

consumer applications, PDF 25-26, 412
alternate color space, handling of 253, 266
blend modes 548
character encodings, standard 995
character sets, standard 995
characters, identification of 470
color mapping function 479
compatibility, version 26, 42, 92
content extraction 40, 469
content streams, processing of 35
cross-reference table, processing of 99, 110

Index
1188

decoding of data 65
device profiles 479
embedded file streams, processing of 184
embedded fonts, copyright restrictions on 465
encrypted documents, handling of 120, 122
file content, processing of 41
file identifiers, use of 183, 362
file systems, platform-specific 182
font management 40, 388, 412-413, 417
font substitution 455, 459
form XObjects, caching of 355, 559
gamut mapping function 479
glyph selection, TrueType fonts 429-430, 439
glyph widths, use of 1109
glyphs, positioning of 393
graphics state, maintenance of 210
ICC profile rendering intents ignored 255
image data, handling of 336
images, rendering of 335
implicit color conversion 259
Indexed color spaces, use of 262
logical structure, navigation of 855
logical structure, usage of 904
masked images, treatment of 1107
metadata, use of 843
numbers, range and precision of 52
output intents, use of 972
page tree, handling of 143
predefined CMaps, support for 447
procedure sets, compatibility with 842
reference XObjects, handling of 361
reference XObjects, printing of 363
rendering intents, handling of 260
resolution of output device, adjusting for 201
role map, processing of 860
shading patterns, interpolation of color values in 306
standard fonts 40
standard security handler 115
tint transformation functions, use of 267
transparency, representing in PostScript 576
transparent objects, rasterization of 514
TrueType fonts, treatment of 468
Type 3 fonts, showing of text with 422-423
volatile files, handling of 183

consumer applications, Tagged PDF
artifacts, treatment of 887-888
fragmented BLSEs, recognition of 902
hidden page elements, recognition of 888
hyphenation 888
ILSEs, line height for 927
layout 895
nonstandard structure types 899
page content order 889
placement attributes, treatment of negative values 923

reverse-order show strings 891
standard structure elements, processing of 884
text discontinuities, recognition of 888
Unicode mapping 892
word breaks, recognition of 895

ContactInfo entry (signature dictionary) 728
containing document (reference XObject) 361
content

extraction. See content extraction
importing 361-364
interchange 33, 860, 873
reflow. See reflow of content

content database, Web Capture
See Web Capture content database

content extraction 34, 841
access permission for 121, 124
for accessibility to users with disabilities 936
from annotations 606, 616-617
character encodings and 40
of character properties 891-893
of fonts 465
from form fields 675
of graphics 121, 124, 198
lists, autonumbering of 933
in PostScript conversion 46
from structure elements 860
in Tagged PDF 883, 899, 912
of text 40, 121, 124, 409, 469-475, 912

content items (logical structure) 861-872
annotations as 890
direct 897-898, 905
finding structure elements from 857, 868-872, 939
link annotations, association with 907, 909-910
marked-content sequences as 359, 857, 859, 862-871,

890
PDF objects as 857, 859, 861, 868-869
structural parent tree 342, 359
structure elements, associated with 858, 861
in Tagged PDF 899, 904

content, optional
See optional content

content rectangle 898, 930
and allocation rectangle 931
in layout 924-925

content set subtypes (Web Capture) 953-955
SIS 953, 955
SPS 953-954

content sets, Web Capture
See Web Capture content sets

content streams 33, 151-155, 1105
annotation appearances, defining 151, 884
application-specific data in 42
and basic layout model (Tagged PDF) 895

Index
1189

color space arrays prohibited in 240
color space, selection of 236
common programming language features, lack of 45
compatibility sections 152, 985-986
as component of PDF syntax 47-48
data syntax 354
external objects (XObjects) 332
filters, decoding with 151, 1098
font characteristics 893
fonts 151, 389
form XObjects 151, 195, 355-357, 884-885
glyph descriptions 421, 423
glyphs, painting 388
images, painting 335
and Indexed color spaces 262
indirect object references prohibited in 64
inline images 335, 352
in Linearized PDF 1035, 1041-1043, 1054, 1129
and marked content. See marked content
marked-content sequences confined within 850
named resources in 153
natural language specification 938-940
operands in 35, 151, 194
operators in 35, 151, 194, 985
optional content in 370-373
at page description level 196
pages, describing contents of 146, 151, 884-885, 1057-

1058, 1060, 1062, 1098, 1128
parent, of patterns 291-292, 294
and Pattern color spaces 262
patterns, defining 151, 292-294, 298, 302
PostScript, conversion to 46
PostScript language fragments 333
printer’s marks in 966
procedure sets 842
q and Q operators in 215
and resources 151, 153-155, 358
as self-describing graphics objects 193, 332
shading patterns in 303
in structural parent tree 857, 869
text operators 405
text state parameters 397
transparency group XObjects 552, 558-559
trap network annotations 975
and trap networks 977
type 2 (shading) patterns, absent in 220
uncolored tiling patterns 289
unrecognized filters in 1101

content types (Web Capture) 954, 958-960
Contents entry

annotation dictionary 606, 615-617, 627, 637, 683, 943
free text annotation dictionary 617
markup annotation dictionary 617

page object 146, 153, 215, 370, 850, 977, 1035, 1057,
1104

pop-up annotation dictionary 617
signature dictionary 91, 725, 727-729, 738, 740
sound annotation dictionary 617

continuous-tone reproduction 75, 84, 477, 480, 486
controller bars (movies) 786
conversion engines (Web Capture) 960
Coons patch meshes

See type 6 shadings
Coons patches 321-323, 327-328, 330
coordinate spaces

See coordinate systems
coordinate systems 199-209

3D annotations 832-835
for appearance streams 612
coordinate spaces 199-204
rectilinear (measurement properties) 745
relationships among 204
for soft masks 552
for type 1 (function-based) shadings 308
See also

device space
form space
glyph space
image space
pattern space
target coordinate space
text space
transformation matrices
user space

coordinate transformations 202, 204-207
cm operator 202
combining 206-209
on glyphs 387
inverting 209
reflection 199, 339, 981
rotation. See rotation
on sampled images 337
scaling. See scaling
skewing. See skewing
translation. See translation

Coords entry
type 2 shading dictionary 309
type 3 shading dictionary 311

Copy annotation usage rights 735
copy operator (PostScript) 176, 990
copyrights 32
cos operator (PostScript) 176, 989
CosineDot predefined spot function 490
Count entry

outline dictionary 585

Index
1190

outline item dictionary 586, 1037
page tree node 143

country codes (ISO 3166) 159, 938
Courier standard font 416, 1109
Courier typeface 40, 995
Courier-Bold standard font 416, 1109
Courier-BoldOblique standard font 416, 1109
Courier-Oblique standard font 416, 1109
CourierNew standard font name 1109
CourierNew,Bold standard font name 1109
CourierNew,BoldItalic standard font name 1109
CourierNew,Italic standard font name 1109
Cover transition style 599-600
CP entry

line annotation dictionary 627
CP entry (sound object) 783
Create annotation usage rights 735
Create embedded files usage rights 736
Create Thumbnails command (Acrobat) 1101, 1128
creation date

document 841, 843-844
Web Capture content set 954, 956

CreationDate entry
document information dictionary 844
embedded file parameter dictionary 186
markup annotation dictionary 618

Creator entry
CreatorInfo subdictionary, optional content usage

dictionary 380
document information dictionary 844
Mac OS file information dictionary 186
optional content configuration dictionary 376

creator signature (Mac OS) 186
CreatorInfo entry (optional content usage dictionary) 380
crop box 963

and attached artifacts 886
and bounding box 362, 582
clipping to 965
display of 967
in page imposition 1126-1127
in page object 145
printer’s marks excluded from 966
in printing 965

CropBox entry
box color information dictionary 967
page object 145-146, 201, 579-580, 963

CropFixed entry (version 1.3 OPI dictionary) 981
CropRect entry

version 1.3 OPI dictionary 980
version 2.0 OPI dictionary 984

Cross predefined spot function 493
cross-reference sections 93

byte offset 97, 99, 1080
example 1057, 1074-1075, 1077, 1079-1080
in hybrid-reference files 110
and incremental updates 93, 95, 99
length count 97
in Linearized PDF 1025
object numbers in 95

cross-reference stream dictionaries 107-108
Index entry 107-108
Prev entry 108
Size entry 107
Type entry 107
W entry 107-108

cross-reference streams 93, 106-115
compatibility with PDF 1.4 109-115
entries 108-109
in Linearized PDF 1025, 1030
object stream entries 103
restrictions on 107
See also cross-reference stream dictionaries

cross-reference table 41, 91, 93-96, 1079-1080
entries 94-95, 97, 99, 1058, 1074, 1079-1080
in FDF files 711
and file trailer 96-97
free entries 95, 1038, 1078-1079
in hybrid-reference files 109
incremental updates 42
in-use entries 94, 1038
in Linearized PDF 1025-1026, 1030-1032, 1038, 1040
reconstruction 993
sections. See cross-reference sections
subsections 93-94, 1038, 1077

Crypt filter 67, 90, 117, 131-132
cross-reference stream dictionaries and 107
parameters. See Crypt filter parameter dictionaries

crypt filter dictionaries 117, 131-136
AuthEvent entry 122, 132-133
CFM entry 122, 132-134
EncryptMetadata entry 135, 1104
Length entry 134
Recipients entry 134
Type entry 132

Crypt filter parameter dictionary 90, 134
Name entry 90, 132
Type entry 90

crypt filters 90, 116-117, 122, 129, 131-136, 1103-1104
authorization event 133
decryption method 133
encryption of embedded files 118
Identity 90, 117, 122, 132, 134-135
key length 134

Index
1191

stream encryption 117
string encryption 117
See also crypt filter dictionaries

CryptFilter object type 132
CryptFilterDecodeParms object type 90
CS entry

3D background dictionary 812
inline image object 353-354
projection dictionary 808-809
transparency group attributes dictionary 553, 557, 559

CS operator 196, 240, 270, 287, 289, 986
in content streams 236, 240
for DeviceCMYK color space 243
for DeviceGray color space 242
for DeviceRGB color space 243
for Pattern color space 291

cs operator 196, 240, 270, 287, 289, 986
in content streams 236, 240
for DeviceCMYK color space 243
for DeviceGray color space 242
for DeviceRGB color space 243
for Pattern color space 291

CSS (Cascading Style Sheets) file format 893, 895
standard attribute owner 914

CSS-1.00 standard attribute owner 914-915
CSS2 style attributes (rich text strings) 680, 682

color 682
font 682
font-family 682
font-size 682
font-stretch 682
font-style 682
font-weight 682
text-align 682
text-decoration 682
vertical-align 682

CSS-2.00 standard attribute owner 914-915
CSV/TSV (text) format, importing 735
CT entry

media clip data dictionary 764-765, 1123
Web Capture command dictionary 958-959
Web Capture content set 954

CTM. See current transformation matrix
Cube 3D lighting styles 818
cubic Bézier curves 227-229, 1154, 1157

control points 229, 304, 324-325, 327-330
example 1062
path construction 226, 985, 988
in path objects 194
type 6 shadings (Coons patch meshes) 304, 321, 325
type 7 shadings (tensor-product patch meshes) 328-

330

cubic spline interpolation 170, 173
currency character 1000
current alpha constant 212, 551

and alpha source parameter 223
for annotations 613
CA entry (graphics state parameter dictionary) 222
ca entry (graphics state parameter dictionary) 222
current color, analogous to 551
and fully opaque objects 573
ignored by older viewer applications 1112
initialization 558, 560
multiple objects, applied to 551
nonstroking. See nonstroking alpha constant
and overprinting 569-570
setting 551
soft-mask images, unaffected by 341
stroking. See stroking alpha constant
and transparency groups 551

current blend mode 211, 548
BM entry (graphics state parameter dictionary) 222,

548
and CompatibleOverprint 568
and fully opaque objects 574
ignored by older viewer applications 1112
initialization 558, 560
and overprinting 567
and process colorants 548
soft-mask images, unaffected by 341
and spot colorants 548

current clipping path 36, 193, 210, 224
clipping path operators 234
even-odd rule 232
explicit masks, simulating 349
glyph outlines 392
as “hard clip” 545
initialization 224
and marked content 852
n operator 230
nonzero winding number rule 232
object shape 234, 545
sh operator 303
shading patterns 305
and soft clipping, compared 222, 516, 545
text rendering mode 402
transparency groups 234
W operator 232, 235, 988
W* operator 232, 235, 988
See also

clipping path operators
current color 36, 193, 210, 214

B operator 230
for colored tiling patterns 292
current alpha constant, analogous to 551
“current opacity,” analogous to 527

Index
1192

f operator 210, 236
forced into valid range 214
initializing 242-243, 245, 262
nonzero overprint mode 286
path objects, used by 198
Pattern color spaces 291
S operator 236
Separation color spaces 265
setting 213, 240, 242-243, 266, 270, 287-288, 986-987
sh operator, ignored by 303
shading patterns 303
as source color (transparent imaging model) 548
stencil masking 350
stroking and nonstroking 214, 230
text, showing 391
text objects, nesting of 405
tiling patterns as 294
tints 265
and transparent overprinting 565
Type 3 glyph descriptions 422-423
for uncolored tiling patterns 292
See also

nonstroking color, current
stroking color, current

current color space 210
All colorant name 266
color values interpreted in 236
and current color 210
and image dictionaries 339
nonzero overprint mode 286
and overprinting 284
Pattern color spaces 294
remapping 257
Separation color spaces 265
setting 240, 242-243, 245, 262, 287-288, 986-987
stroking and nonstroking 214
and transparent overprinting 565, 568
See also

nonstroking color space, current
stroking color space, current

current font 36, 390
composite fonts 433
setting 389
See also

text font parameter
text font size parameter

current halftone 213, 485, 495, 506
HT entry (graphics state parameter dictionary) 222
setting 213
and transparency 573

current line (text) 406
current line width 36, 211, 215

forced into valid range 214
LW entry (graphics state parameter dictionary) 220

and miter length 217
and projecting square line cap style 216
and round line cap style 216
and round line join style 216
and S operator 210, 231
setting 213
stroke adjustment 211, 215, 511-512
and text rendering mode 401
and Type 3 glyph descriptions 422
w operator 219, 988

current navigation node 602-603
current page 35, 200, 202, 516, 531
current path 226, 231, 235
current point 226-228
current rendering intent 211

Intent entry (image dictionary) 340
shading patterns, compositing of 560
and transparency 573, 575

current resource dictionary 154
ColorSpace subdictionary 240, 258, 287, 354, 557
ExtGState subdictionary 219-220
Font subdictionary 333, 389, 398, 413
Pattern subdictionary 288, 294
Properties subdictionary 851-852
Shading subdictionary 303
XObject subdictionary 332, 339, 342, 356, 360

current soft mask 212, 550-552
alpha source parameter 223
and fully opaque objects 574
ignored by older viewer applications 1112
initialization 558, 560
SMask entry (graphics state parameter dictionary) 222
soft-mask images, overridden by 341

current text position 390, 393
current transfer function 213, 485, 498-499, 502, 504

TR operator 222
TR2 operator 222
and transparency 573

current transformation matrix (CTM) 193, 201, 210
cm operator 219, 985
form XObjects, positioning 356-357
halftones unaffected by 487
sampled images, positioning 203, 338
shading patterns, compositing of 560
and soft masks 552
stroking, effect on 215
and text rendering matrix 404, 409
text size 391
and tiling patterns 294
in Type 3 glyph descriptions 422

current trap network 975
Cursive font classification (Tagged PDF) 894
curves, cubic Bézier

Index
1193

See cubic Bézier curves
curveto operator (PostScript) 985, 988
Custom production condition 971
cut marks 643, 962-963, 965-966

as page artifacts 887
CV entry (3D render mode dictionary) 814
cvi operator (PostScript) 176, 989
cvr operator (PostScript) 176, 989
“cvt ” table (TrueType font) 468-469
cyan color component

DeviceCMYK color space 241, 243
DeviceN color spaces 268
grayscale conversion 481, 486
halftones for 506
initialization 243
overprinting 570-571
red, complement of 482
RGB conversion 481-482
transfer function 484-485
transparent overprinting 571
undercolor removal 213, 482-483

cyan colorant
overprinting 570-571
PANTONE Hexachrome system 269
printing ink 264
process colorant 241, 243
subtractive primary 241, 243
transparent overprinting 571

Cyrillic characters 463-464
CYX entry (rectilinear measure dictionary) 748

D
D border style (dashed) 611
D entry

3D activation dictionary 795
additional-actions dictionary 649
appearance dictionary 614, 718, 968, 975
border style dictionary 611
box style dictionary 967
collection dictionary 589
collection items dictionary 189
floating window parameters dictionary 774
go-to action dictionary 654
graphics state parameter dictionary 220
inline image object 353
media clip data dictionary 764-765
media clip section dictionary 767
media criteria dictionary 761
media play parameters dictionary 765
media play parameters MH/BE dictionaries 770
named destination dictionary 584

number format dictionary 749
optional content properties dictionary 375, 385
rectilinear measure dictionary 747
remote go-to action dictionary 655
thread action dictionary 661
transition dictionary 600
Windows launch parameter dictionary 661

D guideline style (page boundaries) 967
d operator 196, 219, 986
D trigger event (annotation) 649, 651-652
d0 operator 196, 421, 423, 986
d1 operator 196, 289, 421, 423, 986
DA entry

field dictionary 673, 678-679, 683, 692
free text annotation dictionary 624, 683
interactive form dictionary 673

DamagedRowsBeforeError entry (CCITTFaxDecode filter
parameter dictionary) 78-79

Darken blend mode 521
and overprinting 566-567, 572

dash array 217-218, 220
annotation borders 607, 611, 1113
page boundaries 967

dash phase 217-218, 220
annotation borders, unspecified for 607, 611
page boundaries, unspecified for 967

Dashed border style 920
data

binary 49
types for dictionary entries 155-156

Data entry (signature reference dictionary) 714, 730, 737
data structures 155-166

See also
dates
multi-language text arrays
name trees
number trees
rectangles
text streams
text strings

Data Structures and Algorithms (Aho, Hopcroft, and
Ullman) 143, 1153

dates 160-161
creation

document 841, 843-844
Web Capture content set 954, 956

expiration (Web Capture content set) 955, 957
modification

annotation 606
document 841, 843-844, 849, 1125
form XObject 359, 849
page 145, 849

Index
1194

trap network 976
Web Capture content set 955-956

in submit-form actions 705
Day 3D lighting styles 818
DCS (Desktop Color Separation) images 186-187
DCT (discrete cosine transform) compression 67, 84-86
DCT filter abbreviation 354, 1100
DCTDecode filter 67, 84-86, 1101

color key masking, not recommended with 351
DCT abbreviation 354, 1100
parameters. See DCTDecode filter parameter dictio-

naries
in sampled images 340

DCTDecode filter parameter dictionaries 84-85
ColorTransform entry 85

Decimal list numbering style 933
Decode arrays

color inversion with 346
image masks 340, 350
sampled images 336, 341, 344-346, 351
shadings 315, 318, 320, 324

Decode entry
image dictionary 89, 336, 341, 350, 554-555, 588
inline image object 353
type 0 function dictionary 170, 172-173
type 4 shading dictionary 315, 318
type 5 shading dictionary 320
type 6 shading dictionary 324

decode parameters dictionary 90
DecodeParms entry

inline image object 353
stream dictionary 62, 66, 107, 132

DP abbreviation 1100
decoding filters 65-86, 120, 1033, 1100-1101

See also
ASCII85Decode filter
ASCIIHexDecode filter
CCITTFaxDecode filter
Crypt filter
DCTDecode filter
FlateDecode filter
JBIG2Decode filter
JPXDecode filter
LZWDecode filter
RunLengthDecode filter

decoding functions 244, 246-247, 249, 251
Decorative font classification (Tagged PDF) 894
default appearance strings

FDF field 719
form field 678-680
free text annotation 624

default color spaces 241, 257-258, 563, 972

DefaultCMYK 258, 260, 288, 479, 557
DefaultGray 258, 288, 479, 557
DefaultRGB 258, 288, 479, 557

Default entry (type 5 halftone dictionary) 505
Default graphics state parameter value

black-generation function 221
halftone parameter 222
transfer function 222
undercolor-removal function 221

default user space 201
for annotations 606-607, 610, 623, 626, 634
BLSEs, layout of 922-924, 926-927
current transformation matrix (CTM) 210
in destinations 582
glyph space, mapping from 927
glyphs, scaling of 390
halftone angles 497
for page boundaries 145-146, 963
page size limits 993, 1128
pattern matrix 291
unit size 148, 201, 390, 993, 1128
for Web Capture pages 961

DefaultCMYK default color space 258, 260, 288, 479, 557
DefaultForPrinting entry (alternate image dictionary) 347
DefaultGray default color space 258, 288, 479, 557
DefaultRGB default color space 258, 288, 479, 557
DEFLATE Compressed Data Format Specification (Internet

RFC 1951) 71, 1156
Delete annotation usage rights 735
Delete embedded files usage rights 736
delimiter characters 49-51, 57
Department of Commerce, U.S. 1103
Departmental annotation icon 636
Desc entry (file specification dictionary) 184-185, 637,

1115
Desc PrintField attribute 934
descendant fonts (Type 0 font) 433, 453
DescendantFonts entry

CID-keyed font dictionary 435
Type 0 font dictionary 435, 453-454

Descent entry (font descriptor) 457, 927
Design intent (optional content) 365, 368, 376, 380
Dest entry

link annotation dictionary 622, 654
outline item dictionary 586, 654

destination handlers 1019
destination profile (PDF/X output intent dictionary) 972,

1127
destinations 140, 581-584, 647

explicit 582-583, 655
for go-to actions 581-582, 654

Index
1195

handlers 1019
for link annotations 581-582, 584, 622, 1114
magnification (zoom) factor 581-583
named. See named destinations
for outline items 581-582, 584-586, 1113
plug-in extensions for 1019
for remote go-to actions 581-582, 655

DestOutputProfile entry (PDF/X output intent
dictionary) 971-972

Dests entry
document catalog 139, 584, 1038, 1053
name dictionary 150, 584

DevDepGS_BG entry (legal attestation dictionary) 743
DevDepGS_FL entry (legal attestation dictionary) 743
DevDepGS_HT entry (legal attestation dictionary) 743
DevDepGS_OP entry (legal attestation dictionary) 743
DevDepGS_TR entry (legal attestation dictionary) 743
DevDepGS_UCR entry (legal attestation dictionary) 743
device color spaces 237, 241-243

as alternate color space 267, 270
as base color space 263
blending in 519, 562
CIE-based spaces, conversion from 307, 477-479
and color specification 235
conversion among 307, 477, 480-484
and DeviceN spaces 268
flattening of transparent content to 576
implicit conversion of CIE-based colors to 259-260
in inline images 354
and overprinting 284
for page group 543, 561
process colors, rendered as 480
and rendering intents 211
and separations 265
setting color values in 287
for shadings 305, 307
for soft masks 547
in transparency groups 241, 557, 563
See also

DeviceCMYK color space
DeviceGray color space
DeviceRGB color space

device colorants 241
and overprinting 284-285, 572
for preseparated pages 969
and transparent overprinting 565

device-dependent graphics state parameters 210, 212-213,
294, 478

device gamut 260-261, 479
device-independent graphics state parameters 210-212,

215
device profiles 479

device space 199-200
current transformation matrix (CTM) 193, 204, 210
form space, mapping from 357
halftone cells, orientation relative to 487-488, 497-498,

500, 503
halftones defined in 487
resolution 487
scan conversion in 510-511
stroke adjustment in 511-512
text space, relationship with 409
threshold arrays defined in 494, 499, 503-504
type 6 shadings (Coons patch meshes) 322-323
URI actions, mouse position for 662

DeviceCMY process color model 978
DeviceCMYK color space 237, 241, 243, 268, 345

as alternate color space 253
as blending color space 519
CMYK abbreviation 353
color values 243
and DeviceGray, conversion between 481, 486
and DeviceN color spaces, compared 270
DeviceRGB, conversion from 481-483, 575
DeviceRGB, conversion to 484
in dynamic appearance streams 642
halftones for 506
implicit conversion from CIE-based 259
initial color value 243, 287
in inline image objects 354
as native color space 478, 480
overprint mode 212
and overprinting 285-286, 570-571
for page group 543
process colors, specification of 563
remapping to alternate color space 257-258
in sampled images 334
and Separation color spaces, compared 266
setting 240, 287
setting color values in 287-288
for soft masks 547
specification 243
spot color components, effect on in transparency

groups 564
substituted for CalCMYK 244
tint transformation function 175
transfer functions 486
in transparency groups 563
and transparent overprinting 565, 568-569, 571

DeviceCMYK process color model 978
DeviceColorant entry (separation dictionary) 969
DeviceGray color space 237, 241-242, 345

as alternate color space 253
and DeviceRGB, conversion between 481
as blending color space 519
color values 242

Index
1196

and DeviceCMYK, conversion between 481, 486
and DeviceN color spaces, compared 270
in dynamic appearance streams 642
G abbreviation 353
halftones for 506
initial color value 242, 287
in inline image objects 354
as native color space 478, 480
and overprinting 572
for preseparated pages 969
remapping to alternate color space 257-258
in sampled images 334
and Separation color spaces, compared 266
setting 240, 287
setting color values in 287-288
for soft masks 547
specification 242
for thumbnail images 588
transfer functions 486
in transparency groups 563

DeviceGray process color model 978
DeviceN color space attributes dictionaries 271-272

Colorants entry 272, 275-276
MixingHints entry 272-273
Process entry 272
Subtype entry 269, 271-273

DeviceN color spaces 237, 262, 268-279, 346
All colorant name prohibited in 270
alternate color space for 175, 270-272, 286, 307
alternate color space, prohibited as 267, 270
attributes. See DeviceN color space attributes dictionar-

ies
as base color space 263
blending color space, prohibited as 557
color values 270
colorant names 270-271
colorants dictionaries 272
DeviceN subtype 272
halftones for 506
initial color value 270, 287
NChannel subtype 272
None colorant name 270-271
nonzero overprint mode 285
number of components 270, 992
and overprinting 284-571
parameters 270-271
for preseparated pages 970
remapping of alternate color space 258
in sampled images 334
and Separation color spaces, compared 269
setting color values in 288
for shadings 307
in soft masks 552
specification 270

spot color components in 564
for spot colorants 480, 519
tint transformation function 175, 271-272, 286, 307
tints 270-271, 287
in transparency groups 259
and transparent overprinting 568, 571

DeviceN mixing hints dictionaries 278
DotGain entry 275
PrintingOrder entry 274
Solidities entry 274

DeviceN process color model 978
DeviceN process dictionaries 272

ColorSpace entry 274
Components entry 274, 278

DeviceN subtype (DeviceN color spaces) 272
DeviceRGB color space 237, 241-243, 345, 772, 812

as alternate color space 253
and DeviceGray, conversion between 481
as base color space 263
as blending color space 519
color values 242
DeviceCMYK, conversion from 484
DeviceCMYK, conversion to 481-483, 575
and DeviceN color spaces, compared 270
in dynamic appearance streams 642
halftones for 506
initial color value 243, 287
in inline image objects 354
as native color space 478, 480
for outline items 586
and overprinting 572
for page boundaries 967
for page group 543
remapping to alternate color space 257-258
RGB abbreviation 353
in sampled images 334
and Separation color spaces, compared 266
setting 240, 287
setting color values in 287-288
for soft masks 547
specification 242
for thumbnail images 588
transfer functions 484
in transparency groups 563

DeviceRGB process color model 978
DeviceRGBK process color model 978
devices, output

See output devices
Di entry (transition dictionary) 599-600
Diamond line ending style 630
Diamond predefined spot function 493
dictionaries

See dictionary objects

Index
1197

See also
3D activation dictionaries
3D annotation dictionaries
3D background dictionaries
3D stream dictionaries
3D view dictionaries
action dictionaries
additional-actions dictionaries
alternate image dictionaries
annotation dictionaries
appearance characteristics dictionaries
appearance dictionaries
application data dictionaries
attribute objects
bead dictionaries
border effect dictionaries
border style dictionaries
box color information dictionaries
box style dictionaries
button field dictionaries
CalGray color space dictionaries
CalRGB color space dictionaries
caret annotation dictionaries
CCITTFaxDecode filter parameter dictionaries
certificate seed value dictionaries
check box field dictionaries
choice field dictionaries
CIDFont dictionaries
CIDFont FD dictionaries
CIDFont Style dictionaries
CIDSystemInfo dictionaries
circle annotation dictionaries
class map
CMap dictionaries
cross-reference stream dictionaries
Crypt filter parameter dictionaries
crypt filter dictionaries
DCTDecode filter parameter dictionaries
decode parameters dictionary
DeviceN color space attributes dictionaries
DeviceN mixing hints dictionaries
DeviceN process dictionaries
DocMDP transform parameters dictionaries
document catalog
document information dictionary
embedded file parameter dictionaries
embedded file stream dictionaries
embedded font stream dictionaries
embedded go-to action dictionaries
encoding dictionaries
encryption dictionaries
FDF annotation dictionaries
FDF catalog
FDF dictionary
FDF field dictionaries

FDF named page reference dictionaries
FDF page dictionaries
FDF page information dictionaries
FDF template dictionaries
FDF trailer dictionary
field dictionaries
FieldMDP transform parameters dictionaries
file attachment annotation dictionaries
file specification dictionaries
file trailer dictionary
filter parameter dictionaries
fixed print dictionaries
FlateDecode filter parameter dictionaries
floating window parameters dictionaries
font descriptors
font dictionaries
form dictionaries
free text annotation dictionaries
function dictionaries
go-to-3D-view action dictionaries
go-to action dictionaries
graphics state parameter dictionaries
group attributes dictionaries
halftone dictionaries
hide action dictionaries
hint stream dictionaries
ICC profile stream dictionaries
icon fit dictionaries
image dictionaries
import-data action dictionaries
ink annotation dictionaries
interactive form dictionary
JavaScript action dictionaries
JavaScript dictionary
JBIG2Decode filter parameter dictionaries
Lab color space dictionaries
launch action dictionaries
legal attestation dictionaries
line annotation dictionaries
linearization parameter dictionary
link annotation dictionaries
LZWDecode filter parameter dictionaries
Mac OS file information dictionaries
mark information dictionary
marked-content reference dictionaries
markup annotation dictionaries
media clip dictionaries
media clip data dictionaries
media clip data MH/BE dictionaries
media clip section dictionaries
media clip section MH/BE dictionaries
media criteria dictionaries
media duration dictionaries
media offset dictionaries
media permissions dictionaries

Index
1198

media play parameters dictionaries
media players dictionaries
media screen parameters dictionaries
metadata stream dictionaries
minimum bit depth dictionary
minimum screen size dictionaries
movie action dictionaries
movie activation dictionaries
movie annotation dictionaries
movie dictionaries
multiple master font dictionaries
name dictionary
name tree nodes
named-action dictionaries
named destination dictionaries
navigation node dictionaries
number tree nodes
object reference dictionaries
OPI dictionaries
OPI version dictionaries
optional content configuration dictionaries
optional content group dictionaries
optional content membership dictionaries
optional content properties dictionary
optional content usage dictionaries
outline dictionary
outline item dictionaries
output intent dictionaries
page label dictionaries
page objects
page-piece dictionaries
page tree nodes
pattern dictionaries
PDF/X output intent dictionaries
permissions dictionaries
polygon annotation dictionaries
polyline annotation dictionaries
pop-up annotation dictionaries
PostScript XObject dictionaries
printer’s mark annotation dictionaries
printer’s mark form dictionaries
projection dictionaries
property lists
reference dictionaries
remote go-to action dictionaries
rendition action dictionaries
rendition dictionaries
rendition MH/BE dictionaries
reset-form action dictionaries
resource dictionaries
role map
rubber stamp annotation dictionaries
screen annotation dictionaries
selector rendition dictionaries
separation dictionaries

set-OCG-state action dictionaries
shading dictionaries
signature dictionaries
signature field dictionaries
signature field lock dictionaries
signature field seed value dictionaries
signature reference dictionaries
slideshow dictionaries
soft-mask dictionaries
soft-mask image dictionaries
sound action dictionaries
sound annotation dictionaries
source information dictionaries
square annotation dictionaries
stream dictionaries
structure element dictionaries
structure tree root
submit-form action dictionaries
target dictionaries
text annotation dictionaries
text field dictionaries
text markup annotation dictionaries
thread action dictionaries
thread dictionaries
thread information dictionaries
timespan dictionaries
transition dictionaries
transition action dictionaries
transparency group attributes dictionaries
trap network annotation dictionaries
trap network appearance stream dictionaries
TrueType font dictionaries
Type 0 font dictionaries
Type 0 function dictionaries (sampled)
Type 1 font dictionaries
type 1 form dictionaries
type 1 halftone dictionaries
type 1 pattern dictionaries (tiling)
type 1 shading dictionaries (function-based)
type 2 function dictionaries (exponential interpola-

tion)
type 2 pattern dictionaries (shading)
type 2 shading dictionaries (axial)
Type 3 font dictionaries
type 3 function dictionaries (stitching)
type 3 shading dictionaries (radial)
type 4 shading dictionaries (free-form Gouraud-

shaded triangle mesh)
type 5 halftone dictionaries
type 5 shading dictionaries (lattice-form Gouraud-

shaded triangle mesh)
type 6 halftone dictionaries
type 6 shading dictionaries (Coons patch mesh)
type 7 shading dictionaries (tensor-product patch

mesh)

Index
1199

type 10 halftone dictionaries
type 16 halftone dictionaries
UR transform parameters dictionaries
URI action dictionaries
URI dictionaries
URL alias dictionaries
usage application dictionaries
user property dictionaries
viewer preferences dictionary
viewport dictionaries
watermark annotation dictionaries
Web Capture command dictionaries
Web Capture command settings dictionaries
Web Capture content sets
Web Capture image sets
Web Capture information dictionary
Web Capture page sets
widget annotation dictionaries
Windows launch parameter dictionaries

dictionary objects 59-60
adding new entries to 1019, 1098
as attribute objects 873
capacity limit 59, 162
duplicate keys 59
entries 59
keys 49, 59, 1098
metadata associated with 846-847
null entries 52
as operands 151
syntax 59-60
values 59
version compatibility 1098

Difference blend mode 522
not white-preserving 567

Differences entry
encoding dictionary 421, 427, 470-471
FDF dictionary 705, 715

differencing (image compression) 74
diffuse achromatic highlight 248
diffuse achromatic shadow 248
diffuse black point 246, 248, 251
diffuse white point 246-248, 251
DigestLocation entry (signature reference dictionary) 731
DigestMethod entry

signature field seed value dictionary 698-699
DigestMethod entry (signature reference dictionary) 730,

1131
digests (digital signatures) 725-726

See also
byte-range digests
object digests

DigestValue entry (signature reference dictionary) 731-
732

Digital Compression and Coding of Continuous-Tone Still
Images (ISO/IEC 10918-1) 1156

digital identifiers (Web Capture) 946, 950-951, 1126
in content database 947, 954, 956
for image 342, 961
in name dictionary 150, 947-948
for page 147, 961
in unique name generation 952

Digital Signature Appearances (Adobe Technical Note)
696, 1151

Digital Signature Standard (FIPS PUB 186-2) 1154
digital signatures

See signatures, digital
Dingbats glyph class 463-464
Dingbats typeface

See ITC Zapf Dingbats® typeface
DingbatsRot glyph class 463
direct content items 897, 905

allocation rectangle 898
content rectangle 898

direct objects
in FDF files 712
in name trees 162
stream dictionaries 60

Direction entry (viewer preferences dictionary) 578, 605
DIS entry

3D activation dictionary 795
Disc list numbering style 933
displacement vector (glyph) 395

DW2 entry (CIDFont) 440
horizontal scaling 400
W2 entry (CIDFont) 440-441
See also

glyph displacement
display duration 147, 598, 600-601
DisplayDocTitle entry (viewer preferences dictionary)

578
displays, raster-scan 36

and halftones 486-487, 495
primary colorants 264
resolution 37
scan conversion for 508
and Separation color spaces 266
stroke adjustment for 511

Dissolve transition style 599
Distiller®, Acrobat

See Acrobat Distiller®

Distribute ruby text alignment 928
div operator (PostScript) 176, 989
Div standard structure type 899-901, 904
DL entry (stream dictionary) 63

Index
1200

Dm entry (transition dictionary) 599-600
Do operator 196, 332, 558-559, 986

base images 339
and black-generation functions 575
colored tiling patterns 295
form XObjects 291, 343, 356-357, 360, 374
and fully opaque objects 574
image XObjects 335
and logical structure elements 865, 868
and marked content 853
PostScript XObjects 333
and rendering intents 575
shading patterns 303
uncolored tiling patterns 299
and undercolor-removal functions 575

Doc entry (JavaScript dictionary) 717
DocMDP entry (permissions dictionary) 731-732, 741
DocMDP transform method 730-733, 741-742
DocMDP transform parameters dictionaries 732, 737

P entry 732-733, 737
Type entry 733
V entry 733

DocOpen authorization event (crypt filters) 122, 132-133
document catalog 137-142, 1104

AA entry 141, 649, 1104
AA entry (obsolete) 1104
AcroForm entry 141, 672, 1031
Collection entry 142
Dests entry 139, 584, 1038, 1053
example 1058, 1060, 1062
in file trailer 97
Lang entry 141, 937-939
Legal entry 142, 742
in Linearized PDF 1024, 1026, 1030-1031, 1038, 1053
MarkInfo entry 141, 856
Metadata entry 141, 846
Names entry 139, 150, 1038, 1053
NeedsRendering entry 142
OCProperties entry 141, 375, 385
OpenAction entry 140, 582, 647, 650, 662, 1031, 1034,

1046, 1051, 1129
Outlines entry 111, 140, 585, 1057
OutputIntents entry 141, 970
PageLabels entry 139, 594, 1113
PageLayout entry 140
PageMode entry 140, 578, 1027, 1031, 1035
Pages entry 139
Perms entry 142, 741
PieceInfo entry 141, 844, 848
private data in 843, 1096
Requirements entry 142
SpiderInfo entry 141, 946
StructTreeRoot entry 141, 856, 899

Threads entry 140, 596, 661, 1031, 1053
Type entry 139
URI entry 141, 663, 766
Version entry 92, 99, 139, 761, 1096-1097, 1104
ViewerPreferences entry 139, 577, 1031

Document entry (UR transform parameters dictionary)
734

document information dictionary 97, 596, 843-845
Author entry 844
CreationDate entry 844
Creator entry 844
and file identifiers 848
keys in 843
Keywords entry 844
in Linearized PDF 1031, 1038
metadata streams, compared with 845
ModDate entry 844, 849
Producer entry 844
registered names not required in 1020
Subject entry 844
Title entry 844
Trapped entry 844
version compatibility, use for 1125

document interchange 45, 194, 841-984
pdfmark language extension (PostScript) 44
version compatibility 1095
See also

accessibility to users with disabilities
file identifiers
logical structure
marked content
metadata
page-piece dictionaries
prepress production
procedure sets
Tagged PDF
Web Capture plug-in extension

document outline 137, 140, 581, 584-587, 1112-1113
hiding and showing 140, 578
hierarchy. See outline hierarchy
items. See outline items
outline dictionary 140, 1057-1058, 1060, 1062

Document Properties dialog box (Acrobat) 1125
document requirements 751-753
Document standard structure type 899, 904
document structuring conventions, PostScript (DSC) 51
document windows

centering on screen 578
and destinations 581-583
fitting to document 578
and remote go-to actions 655
title bar 578

documents 33, 48

Index
1201

additional-actions dictionary 141, 648-651
application-specific data 42
article threads 137, 140
authenticity, certification of 42
author 841, 843-844
catalog. See document catalog
closing 651
collaborative editing 705
creation date 841, 843-844
creator application 844
encryption 41, 55, 115-128, 1103
extensibility 42
extraction of content. See content extraction
incremental updates. See incremental updates
information dictionary 97, 596, 843-845
interactive form dictionary 141, 1031
interchange. See document interchange
keywords 844
language identifier 141, 860
logical structure. See logical structure
mark information dictionary 141, 856
metadata 141, 841, 843-847, 1125
modification date 841, 843-844, 849, 1125
name dictionary 139, 150
named halftones 496
natural language specification 936, 938-939
open action 140, 582, 647
opening 647, 659-661
outline. See document outline
output intent dictionaries 141
page labels 139
page layout 140, 1116
page mode 140, 578
page objects. See page objects
page tree 137, 139, 143-149, 710, 1057, 1065
page tree root 139
printing 121, 465, 478, 651, 659-661
private data associated with 848
producer application 844
reading order 578
saving 651
scan conversion 508
security 41-42
structure 47, 137-150
structure tree root 141
subject 844
title 841, 843-844
trapping status 844
trigger events for 651
undoing changes 42
URI dictionary 141, 663
viewer preferences 139
Web Capture information dictionary 141

dollar sign ($) character 442

domain
function 167-170, 174-175, 308-309, 311, 315, 320, 324
shading 175, 308-312

Domain entry
function dictionary 168-170, 173-174, 177
type 1 shading dictionary 308
type 2 shading dictionary 309
type 3 shading dictionary 311-312

DoNotScroll field flag (text field) 691
DoNotSpellCheck field flag

choice field 694
text field 691

DOS (Disk Operating System) 44, 180
file names 181, 847

DOS entry (file specification dictionary) 183
DotGain entry

DeviceN mixing hints dictionary 275
dot-matrix printers 36

resolution 37
Dotted border style 920
double angle brackets (<< >>)

as dictionary delimiters 59, 97, 713
Double border style 920
double left angle bracket (<<) character sequence

as dictionary delimiter 59, 97, 713
double period (. .) character sequence

in relative file specifications 180
in uniform resource locators (URLs) 950

Double predefined spot function 490
double right angle bracket (>>) character sequence

as dictionary delimiter 59, 97, 713
DoubleDot predefined spot function 489
down appearance (annotation) 613, 641
DP entry

additional-actions dictionary 651
inline image object 353
stream dictionary (abbreviation for DecodeParms)

1100
DP operator 196, 370, 850-851, 986

property list 850, 852
DP trigger event (document) 651
DR entry

interactive form dictionary 673, 679-680, 684, 1117
Draft annotation icon 636
drag-and-drop 966
driver, printer 43-44
dropped capitals 931, 944
DS entry

additional-actions dictionary 651
field dictionary 678, 684
free text annotation dictionary 624, 683

Index
1202

DS trigger event (document) 651
DSC. See document structuring conventions, PostScript
duotone color 269

examples 279-282
dup operator (PostScript) 176, 990
Duplex entry (viewer preferences dictionary) 580
Dur entry

navigation node dictionary 602
page object 147, 598, 600

Duration entry (movie activation dictionary) 785
DV entry

3D stream dictionary 797
field dictionary 676-677, 686, 707

DVI (Device Independent) file format 43
DW entry (CIDFont dictionary) 437, 439
DW2 entry (CIDFont dictionary) 437, 440, 468
dynamic appearance streams 641, 672

alternate (down) caption 642
alternate (down) icon 643
background color 642
border color 642
for choice fields 719
icon fit dictionary 643
normal caption 642
normal icon 642
rollover caption 642
rollover icon 643
for text fields 692

E
E entry

additional-actions dictionary 649
collection field dictionary 592
hint stream dictionary 1033
linearization parameter dictionary 1029, 1034, 1129
media clip section MH/BE dictionaries 767-768
property list 888, 892-893, 905, 945
sound object 783
source information dictionary 955, 957
structure element dictionary 860, 913, 915, 945

E trigger event (annotation) 649, 651-652, 665
EA entry (3D background dictionary) 813
EarlyChange entry (LZWDecode filter parameter

dictionary) 74
ECMA-363, Universal 3D file Format 1154
edge flags 315-318, 325-327, 330-331
Edit field flag (choice field) 693
editing, collaborative 705
EF entry

file specification dictionary 184-185, 190-191

UR transform parameters dictionary 736
EFF entry (encryption dictionary) 118, 1103
EFOpen authorization event (crypt filters) 132-133
EI operator 196, 352, 354, 986
element identifiers (logical structure) 857-858
Ellipse predefined spot function 491
EllipseA predefined spot function 492
EllipseB predefined spot function 492
EllipseC predefined spot function 492
ellipsis (…) character 1082
em dash character, as word separator 895
embedded CIDFonts 435, 438
embedded CMaps 435, 448, 1111
embedded file parameter dictionaries 185-186

CheckSum entry 186
CreationDate entry 186
Mac entry 186
ModDate entry 186
Size entry 186

embedded file stream dictionaries 185, 716
EncryptionRevision entry 716
Params entry 185
Subtype entry 185, 765
Type entry 185

embedded file stream hint table (Linearized PDF) 1034
embedded file streams 184-188

checksum 186
embedded go-to-actions 655
encryption 115, 118, 716
FDF 715
and file attachment annotations 637
hint table (Linearized PDF) 1049-1051
in Linearized PDF 1038, 1049
maintenance of file specifications 190
named 150
platform-specific 184
and reference XObjects 361
related files arrays 184, 186-188, 190
See also

embedded file stream dictionaries
embedded font programs 40, 387-388, 411-412, 458, 465-

469, 1111
base encoding 427
built-in encoding 427
compact 466, 468
filters in 466-467
font descriptors and 455
in Linearized PDF 1036, 1054
OpenType 466-469
organization, by font type 465-466
overriding standard fonts 416
PaintType entry ignored 468

Index
1203

for portability 1111
snapshots (multiple master) 417
TrueType 418, 430, 438, 445, 457, 466, 468
Type 0 compact CIDFonts 466-468
Type 1 457, 465-467, 1109
Type 1 compact fonts 466-468
unrecognized filters in 1101

embedded font stream dictionaries 458, 466-467
Length1 entry 466, 468
Length2 entry 467-468
Length3 entry 467-468
Metadata entry 467
Subtype entry 458, 465, 467

embedded font subsets 40, 469
embedded font subtypes 467

CIDFontType0C 438, 466-467
OpenType 438, 466-467
Type1C 466-467

embedded go-to action dictionaries 656
D entry 656
F entry 656
NewWindow entry 656
S entry 656
T entry 657

embedded go-to actions 653, 655-659
See also

embedded go-to action dictionaries
Embedded object subtype 787
EmbeddedFDFs entry (FDF dictionary) 715
EmbeddedFile object type 185
EmbeddedFiles entry (name dictionary) 150, 184-185,

655
EmbedForm field flag (submit-form field) 706
EMC operator 196, 370-371, 679, 850-851, 862, 986
Encapsulated PostScript (EPS) 516
Encode entry

type 0 function dictionary 169-170
type 3 function dictionary 174

EncodedByteAlign entry (CCITTFaxDecode filter param-
eter dictionary) 78-79

Encoding array (Type 1 font program) 429
encoding dictionaries 414, 421, 427, 996, 1000

BaseEncoding entry 427, 429, 431, 1110
Differences entry 421, 427, 470-471
Type entry 427

Encoding entry 426, 441
CID-keyed font dictionary 435
CIDFonts, absent in 436
FDF dictionary 715, 1120
TrueType font dictionary 418, 429-432
Type 0 font dictionary 435, 445, 448, 452-453
Type 1 font dictionary 414, 429

Type 3 font dictionary 421, 429, 1110
encoding filters 120
encoding formats, sound 783

ALaw 783
muLaw 783
Raw 783
Signed 783

Encoding object type 427
Encoding resource type 1035
encodings

ASCII base-85 39, 65-67, 69-70
ASCII hexadecimal 67, 69, 82, 120
character. See character encodings

Encrypt entry (file trailer dictionary) 97, 115, 1031
encryption 41, 55, 115-128, 1103

AES algorithm 118-120, 133
algorithm revision number (FDF) 716
algorithms 117, 130-131
ASCII filters not useful with 66
crypt filters 131-136
dictionary. See encryption dictionary
in FDF files 716
general algorithm 118-120
key algorithm 124-125
keys. See encryption keys
metadata streams, not recommended for 845
password algorithms 126-128, 716, 1103
passwords 126-128, 716, 1103
public-key security handlers 130-131
security handlers 67, 115-116, 120-128, 1019
signature fields 725

encryption dictionary 97, 115-117, 120-121
CF entry 90, 117, 129, 132
EFF entry 118, 1103
encrypting contents of 118
EncryptMetadata entry 123
Filter entry 115-116, 126, 129
Length entry 116-117, 119, 125-126
in Linearized PDF 1031
O entry 122, 125-126, 128
P entry 123, 125-126
for public-key security handlers 129
R entry 122, 126
Recipients entry 129, 131
for standard security handler 122-123, 126
standard 122-124, 1103
StmF entry 117, 129, 131-135
StrF entry 117, 129, 131-134
SubFilter entry 116, 129, 131
U entry 123, 126-127
V entry 116-117, 119, 122, 126, 132, 1103

encryption keys 119
computing 122, 124-125

Index
1204

and encryption revision number 117
for FDF files 716
length 116-117
owner password, authenticating 128
owner password, computing 126
public-key security handlers 129-130
user password, computing 126-127
using 119-120

EncryptionRevision entry (embedded file stream
dictionary) 716

EncryptMetadata entry
crypt filter dictionary 135, 1104
encryption dictionary 123

end edge 897
of allocation rectangle 931
border color 920
border style 920
border thickness 921
and content rectangle 930
in layout 897, 918, 923-925
padding width 921, 926
ruby text alignment 928

End inline alignment 925
end-of-data (EOD) marker 61, 72-73, 78

for ASCII85Decode (~>) 69-70
for ASCIIHexDecode (>) 69
for RunLengthDecode 77

end-of-facsimile-block (EOFB) pattern (CCITTFaxDe-
code filter) 79

end-of-file (EOF) marker (%%EOF) 97, 99, 713, 1031,
1102

end-of-line (EOL)
conventions 39, 49
markers 38, 50, 55, 60-62, 91, 94-95

End placement attribute 918, 923, 931
End ruby text alignment 928
End text alignment 924
endbfchar operator (PostScript) 452, 454, 472
endbfrange operator (PostScript) 452, 472
endcidchar operator (PostScript) 452, 454
endcidrange operator (PostScript) 452
endcmap operator (PostScript) 451
endcodespacerange operator (PostScript) 451, 454, 472,

474
EndIndent standard structure attribute 896, 916, 923
endnotdefchar operator (PostScript) 452, 454
endnotdefrange operator (PostScript) 452, 454
endobj keyword 64, 102, 993
EndOfBlock entry (CCITTFaxDecode filter parameter

dictionary) 79

EndOfLine entry (CCITTFaxDecode filter parameter
dictionary) 79

endrearrangedfont operator (PostScript) 452
endstream keyword 60-62, 993, 1100
endusematrix operator (PostScript) 452
entries, dictionary 59
Entrust.PPKEF signature handler 727
Entrust.PPKEF public-key security handler 129
enumerated color spaces (JPEG2000) 88
enveloped data (PKCS#7) 130
eoclip operator (PostScript) 988
EOD. See end-of-data
EOF. See end-of-file
eofill operator (PostScript) 985-986
EOL. See end-of-line
EPS. See Encapsulated PostScript
eq operator (PostScript) 176, 990
error reporting (Acrobat) 1096-1098, 1101, 1105-1107,

1111, 1113-1114, 1116-1117, 1125
escape character 54
escape sequences 54-56, 120

backslash (\) 54, 409
backspace (BS) 54
carriage return (CR) 54
form feed (FF) 54
horizontal tab (HT) 54
left parenthesis (() 54, 409
line feed (LF) 54
octal character code 54-55
right parenthesis ()) 54, 409
Unicode natural language escape 159, 937, 943-945

ET operator 196, 401, 405, 679, 851, 911, 986
ETen character set 443
ETen-B5-H predefined CMap 443, 446
ETen-B5-V predefined CMap 443, 446
ETenms-B5-H predefined CMap 443, 446
ETenms-B5-V predefined CMap 443, 446
EUC-CN character encoding 442
EUC-H predefined CMap 444, 447
EUC-JP character encoding 444
EUC-KR character encoding 445
EUC-V predefined CMap 444, 447
EUC-TW character encoding 443
euro character 1000
even-odd rule 233-234

clipping 235, 988
filling 230, 232, 985-986

Event entry (usage application dictionary) 382-383, 386
event types

Index
1205

Export 382-383, 386
Print 382-383, 386
View 382-384, 386

events, trigger
See trigger events

EX operator 152, 196, 369, 986
examples

abbreviation expansion 945
alternate image 347-348
appearance dictionary 614
article 597-598
CalGray color spaces 247
CalRGB color space 249
character encoding 427-428
check box field 686-687
choice field 695
CIDFont FD dictionary 464-465
CIDFont, W entry 440
CIDFont, W2 entry 441
CMap 449-451
conversion engine, internal name 961
cross-reference sections 95-96
cross-reference streams 103-106, 111-115
crypt filters 135
DeviceCMYK color space, color specification 243
DeviceGray color space, color specification 242
DeviceN color space 276-279
DeviceRGB color space, color specification 242
dictionary syntax 59
document catalog 142
document information dictionary 845
document outline 587
duotone color spaces (DeviceN) 279-282
embedded font program 467
embedded go-to actions 658-659
file specification string 179
file trailer 98
filter pipeline 65
font definition 389-390
font descriptor, Style entry 462
form XObject 360
glyph positioning 394-395
go-to action 654
graphics state parameter dictionaries 223-224
hybrid-reference files 111-115
ICCBased color space 256-257
image coordinate system, transformation of 339
incremental updates 1074-1082
Indexed color space 263-264
indirect object reference 64
indirect object specification 64
inline image 354-355
JBIG2 encoding 82-84
Lab color space 252

language specification hierarchy 938-941
Linearized PDF 1025-1028
link annotation 623
link element (Tagged PDF) 908-909
logical structure 877-883
LZW (Lempel-Ziv-Welch) encoding 72-73
marked content and clipping 852-855
marked-content reference 863
marked-content identifiers 862, 864
measure dictionary 750-751
multiple master font 417
name tree 163-165
NChannel color space 277-279
nonzero overprint mode 285-286
object streams 103-105, 111-115
optional content 371-372
optional content membership dictionaries 368
outline hierarchy 1070-1074
output intent dictionary 973
page labels 595
page object 148
page tree 144, 1065-1070
partial field name 677
PDF files

graphics 1062-1065
minimal 1057-1059
text 1060-1062

presentation parameters 601
quadtone color space (DeviceN) 282-284
radio button field 689-690
related files array 187-188
relative file specifications 180
replacement text 944
resource dictionary 154-155
reverse-order show string 891
sampled image 343-344
Separation color space 267-268
showing of text 389
stream, encoded 66-68
stream, indirect length specification 64-65
stream, unencoded 66-69
structure elements

finding from content items 870-872
form XObjects in 865-868

structured elements and heirarchical lists 1082-1094
text annotation 622
text field 692-693
text, special graphical effects for 391-393
thumbnail image 588
tiling pattern, colored 295-298
tiling pattern, uncolored 299-301
tint transformation function 281-282
ToUnicode CMap 472-474
transfer function 485
TrueType font 418-419

Index
1206

Type 0 font 452-453
type 0 (sampled) function 171-172
Type 1 font 415
type 1 halftone 498
Type 3 font 424-425
type 3 (radial) shading 313-314
type 4 (PostScript calculator) function 177
type 5 halftone 506-508
unencrypted metadata 135
unique name specification (Web Capture) 952
URL specification 188
URLs, same path 959
user properties 877
watermark annotations 646

exch operator (PostScript) 176, 990
exclamation point (!) character

in ASCII base-85 encoding 69-70
ExclFKey field flag (submit-form field) 706
ExclNonUserAnnots field flag (submit-form field) 705
Exclude action

FieldMDP transform parameters 736
signature field lock dictionary 697

Exclusion blend mode 522
not white-preserving 567

ExData entry
markup annotation dictionary 619

exp operator (PostScript) 176, 989
Experimental annotation icon 636
expert character set, standard 995-996, 1010-1012
expert fonts 426, 996
expiration date (Web Capture content set) 955, 957
Expired annotation icon 636
explicit destinations 582-583

for remote go-to actions 655
syntax 582-583

explicit masking 349, 351, 1107
and object shape 526, 549
simulation of 349
and soft masks 550
See also

image masks
exponential interpolation functions

See type 2 functions
Export annotation usage rights 735
Export entry (optional content usage dictionary) 381, 383
Export event type (usage application dictionary) 382-383,

386
Export form usage rights 735
ExportFormat field flag (submit-form field) 704-706
exporting

FDF fields 710-711, 714, 1120

interactive form fields 33, 671, 675-676, 694, 696
Tagged PDF 913-914, 916, 927
text 469, 892, 901

ExportState entry (Export subdictionary, optional content
usage dictionary) 381, 383

Ext-RKSJ-H predefined CMap 444, 447
Ext-RKSJ-V predefined CMap 444, 447
Extend entry

type 2 shading dictionary 309-310
type 3 shading dictionary 311-312

Extends entry (object stream dictionary) 101-102
extensibility of documents 42
Extensible Markup Language (XML) 1.1 (World Wide Web

Consortium) 706, 937, 1158
Extensible Stylesheet Language (XSL) 1.0 (World Wide Web

Consortium) 893, 1158
extent, stream 61
external data dictionaries, 3D markup

3DA entry 835
3DV entry 835
MD5 entry 835
Subtype entry 835
Type entry 835

external objects (XObjects) 195, 332, 1107
in logical structure elements 868
and marked content 853
as named resources 154, 195
painting 332, 986
in structural parent tree 857
subtypes. See XObject subtypes
in Web Capture content database 947
See also

form XObjects
group XObjects
image XObjects
PostScript XObjects
reference XObjects
transparency group XObjects
XObject operator

external streams 61-62, 65, 1100
digital identifiers, not used in 1126

ExternalOPIdicts entry (legal attestation dictionary) 743
ExternalRefXobjects entry (legal attestation dictionary)

743
ExternalStreams entry (legal attestation dictionary) 743
ExtGState entry

resource dictionary 154, 219-220
type 2 pattern dictionary 302, 560

ExtGState object type 220
ExtGState resource type 154, 219-220
extraction of document content

See content extraction

Index
1207

Extreme® printing systems 1121

F
F entry

additional-actions dictionary 651
annotation dictionary 606, 608, 649, 718, 968, 976
FDF dictionary 706, 714, 1119-1120
FDF field dictionary 718
FDF named page reference dictionary 721
file specification dictionary 183, 188
import-data action dictionary 708, 1119
inline image object 353
launch action dictionary 660
media offset frame dictionary 776
media play parameters dictionary 765
media play parameters MH/BE dictionaries 770
media screen parameters MH/BE dictionaries 773
movie dictionary 784
number format dictionary 748
outline item dictionary 586
projection dictionary 808-809
reference dictionary 362
remote go-to action dictionary 584, 655
stream dictionary 62, 782
submit-form action dictionary 703
thread action dictionary 584, 661
thread dictionary 596
user property dictionary 876
version 1.3 OPI dictionary 980, 1128
version 2.0 OPI dictionary 983, 1128
Web Capture command dictionary 958
Windows launch parameter dictionary 660

f keyword 94, 1079
F operator 196, 230, 986
f operator 36, 196, 229-230, 232, 986

and current color 236
ending path 225
and graphics state parameters 210
and patterns 289, 292, 295, 299, 303
and subpaths 232

F trigger event (form field) 651-652
f* operator 196, 230, 232, 986
facsimile compression, CCITT

See compression, CCITT facsimile
Fade transition style 599
false (boolean object) 52
false operator (PostScript) 176, 990
fauxing of fonts 977, 1109
fax compression, CCITT

See compression, CCITT facsimile
FB entry (icon fit dictionary) 720, 1121

FC entry (3D render mode dictionary) 814
FD dictionaries

See CIDFont FD dictionaries
FD entry

CIDFont font descriptor 461
number format dictionary 749

FDecodeParms entry (stream dictionary) 62, 66
FDF. See Forms Data Format
FDF annotation dictionaries 715, 722
FDF catalog 712-717, 1120

FDF entry 714
Sig entry 714, 726
Version entry 712, 714, 1119

FDF dictionary 713-716, 1120
Annots entry 715
Differences entry 705, 715
EmbeddedFDFs entry 715
Encoding entry 715, 1120
F entry 706, 714, 1119-1120
Fields entry 714-715
ID entry 714, 1119
JavaScript entry 716
Pages entry 715, 720
Status entry 714, 1120
Target entry 715

FDF entry (FDF catalog) 714
FDF field dictionaries 714, 717-719

A entry 719
AA entry 719
AP entry 718, 1120
APRef entry 718
ClrF entry 718
ClrFf entry 718
F entry 718
Ff entry 718
field dictionaries, compared with 717
IF entry 719
Kids entry 717
Opt entry 715, 719
RV entry 719
SetF entry 718
SetFf entry 718
T entry 717, 1120
in template pages 721
V entry 692, 715, 717, 1120
widget annotation dictionaries, compared with 717

FDF fields
See fields, FDF

FDF files
body 711-712
cross-reference table 711
document structure 711
file name extension (Windows and Unix) 711

Index
1208

file type (Mac OS) 711
generation numbers in 711
header 711-712, 714, 1119
in import-data actions 708, 1119-1120
incremental updates not permitted in 711
object numbers in 711
source file 714
structure 711-713
in submit-form actions 1120
target file 714
trailer 711, 713
version specification 711-712, 714, 1119

FDF named page reference dictionaries 718, 721
F entry 721
Name entry 721

FDF page dictionaries 715, 720
Info entry 720
Templates entry 720

FDF page information dictionaries 720
FDF template dictionaries 721

Fields entry 721
Rename entry 721, 1121
TRef entry 721

FDF trailer dictionary 713
Root entry 713

Federal Information Processing Standards Publications
1154

Ff entry
certificate seed value dictionary 702
FDF field dictionary 718
field dictionary 675-676, 685, 691, 694, 706, 718
signature field seed value dictionary 696, 699
time stamp dictionary 699

FFilter entry (stream dictionary) 62, 65
field dictionaries 672, 674-684

AA entry 648, 676
DA entry 673, 678-679, 683, 692
DS entry 678, 684
DV entry 676-677, 686, 707
FDF field dictionaries, compared with 717
Ff entry 675-676, 685, 691, 694, 706, 718
FT entry 675, 677, 695
Kids entry 675, 688-689, 691
Parent entry 675
Q entry 673, 678-679, 683
in reset-form actions 708
RV entry 678, 683-684, 691
in submit-form actions 703, 706
T entry 675-677, 696
TM entry 675, 704
TU entry 675, 943
V entry 676-677, 683, 686, 689, 692, 694-696, 704, 707,

724, 726

for variable-text fields 678
widget annotation dictionaries, merged with 640, 672,

696
field flags 676, 718

NoExport 676, 703-704, 706
ReadOnly 609, 676
Required 676
See also

button field flags
choice field flags
reset-form field flag
signature flags
submit-form field flags
text field flags

field hierarchy 674-675
FDF 714, 721
inheritance of attributes 672, 674
in Linearized PDF 1038
and reset-form actions 708
and submit-form actions 704, 706

field names 676-677, 1117
alternate 675, 943
fully qualified. See fully qualified field names
mapping name 675, 704
partial 675-677, 717, 1117
renaming 721, 1121
in submit-form actions 704-707

field types 685-702
Btn 675, 686, 689
Ch 675
Sig 675, 695
Tx 675, 680

field values 676, 717
for check box fields 686
for choice fields 693-695
and default appearance strings 679
and dynamic appearance streams 680
for FDF fields 715
for radio button fields 689
for signature fields 695
in submit-form actions 704-707
for text fields 691-692

FieldMDP transform method 726, 730-731, 736-737
FieldMDP transform parameters dictionaries

Action entry 736
Fields entry 736
Type entry 736
V entry 736

fields, FDF 717-720, 1120
actions for 719
additional-actions dictionary 719
default appearance strings 719
exporting 710-711, 714, 1120

Index
1209

hierarchy. See field hierarchy
importing 710-711, 714, 716-718, 721, 1120
name. See field names
renaming 721, 1121
root 714
value. See field values

fields, interactive form 33, 671-672
access permissions for 121, 124
additional-actions dictionary 676
computation order 651, 673
default appearance string 678-680
default value 676, 707
dynamic appearance streams 641, 672
exporting 33, 671, 675-676, 694, 696
file-select controls 691-692
flags. See field flags
Form standard structure type 912
formatting 651-652
and hide actions 666
hierarchy. See field hierarchy
importing 33, 671
inheritance of attributes 672, 674
and JavaScript actions 709
mapping name 675, 704
name. See field names
nonterminal 675
quadding 678-679
read-only 676
recalculation 651-652, 673
root 672, 721
terminal 672, 675
trigger events for 651-652, 676
type. See field types
unique name (Web Capture) 951-953
validation 651-652
value. See field values
variable text. See variable text
See also

button fields
check box fields
choice fields
combo box fields
field dictionaries
list box fields
pushbutton fields
radio button fields
signature fields
text fields
widget annotations

Fields entry
FDF dictionary 714-715
FDF template dictionary 721
FieldMDP transform parameters dictionary 736
interactive form dictionary 672

reset-form action dictionary 708
signature field lock dictionary 697
submit-form action dictionary 703, 706-707

Figure standard structure type 912
standard layout attributes for 916, 924, 931

file attachment annotation dictionaries 638
FS entry 638
Name entry 638
Subtype entry 638

file attachment annotations 33, 185, 616, 637-638
See also

file attachment annotation dictionaries
file body

FDF 711-712
PDF 90, 93, 1057, 1074

File Format for Color Profiles (International Color
Consortium) 1155

file formats
ACFM (Adobe Composite Font Metrics) 396
Acrobat® products, native 1099, 1105
Adobe Type 1. See Type 1 fonts
AFM (Adobe Font Metrics) 396, 1152
AIFF (Audio Interchange File Format) 782, 1123
AIFF-C (Audio Interchange File Format,

Compressed) 782
ASCII (American Standard Code for Information

Interchange). See ASCII
AU (NeXT/Sun Audio Format) 1123
AVI (Audio/Video Interleaved) 1123
CFF (Compact Font Format) 32, 466, 468
CGI (Common Gateway Interface) 950
CSS (Cascading Style Sheets) 893, 895, 914
DVI (Device Independent) 43
FDF (Forms Data Format). See Forms Data Format
GIF (Graphics Interchange Format) 842, 946-948, 951
HPGL (Hewlett-Packard Graphics Language) 43
HTML (Hypertext Markup Language)

See
 HTML
 HTML Form format

JDF (Job Definition Format) 478, 963, 975, 978, 1127
JPEG (Joint Photographic Experts Group) 842, 946
MIDI (Musical Instrument Digital Interface) 1123
MOV (QuickTime) 1123
MP3 (MPEG Audio Layer-3) 1123
MP4 (MPEG-4) 1123
MPEG (MPEG-2 Video) 1123
OEB (Open eBook) 893, 914
OpenType. See OpenType fonts
PCL (Printer Command Language) 43
PDF/X (Portable Document Format, Exchange) 970-

972
PJTF (Portable Job Ticket Format) 48, 478, 963, 975,

978, 1127

Index
1210

PostScript. See PostScript® page description language
RIFF (Resource Interchange File Format) 782
RTF (Rich Text Format) 883, 893, 895, 899, 914-915
SGML (Standard Generalized Markup Language) 856
SMIL (Synchronized Multimedia Integration

Language) 1123
snd 782
SWF (Macromedia Flash) 1123
TIFF (Tag Image File Format) 71, 75, 982-983
TrueType. See TrueType fonts
XSL (Extensible Stylesheet Language) 893, 895

file header
FDF 711-712, 714, 1119
PDF 90, 92-93, 99, 139, 1096-1098, 1102, 1104

file identifiers 841, 847-848, 1126
encryption 125, 127
FDF 714
file specifications 183
file trailer 98
reference XObjects 362

file names
compatibility 181
DOS/Windows 181
drive identifier 180
empty 179
extension 181, 186, 711
and file identifiers 847
in file-select controls 691-692
in file specifications 179
Mac OS 181
network resource name 180
platform-dependent 179-181
server name 180
volume name 180

file-select controls 691-692
file specification dictionaries 182-184, 190

CI entry 184
Desc entry 184-185, 637, 1115
DOS entry 183
EF entry 184-185, 190-191
F entry 183, 188
FS entry 182, 188
ID entry 183
Mac entry 183
RF entry 184, 187, 190
Type entry 182, 184, 190
UF entry 183
Unix entry 183
V entry 183

file specification strings 179-182
DOS 183
Mac OS 183
UNIX 183

file specifications 178-191
absolute 179-180
collection items 189
conversion to platform-dependent file names 180-181
dictionaries. See file specification dictionaries
embedded file streams 184-188, 715
in file-select controls 692
full 178
maintenance 190-191
for movie files 784
multiple-byte strings in 182
related files arrays 184, 186-188, 190
relative 179-180, 1119-1120
simple 178
for sound files 782, 1116
strings. See file specification strings
URL 179, 188, 703
volatile files 183

file streams, embedded
See embedded file streams

file structure
FDF 711-713
PDF 90-99, 1101-1102

file systems 182
CD-ROM 181
handlers 1019
hierarchy 180
local 178
naming conventions 178, 181
plug-in extensions for 1019
URL 182
URL-based 179

file trailer
FDF 711, 713
hybrid-reference files 110
Linearized PDF 1026, 1030-1031, 1038
PDF 91, 96-99, 1102

example 1057, 1074-1075, 1077, 1080, 1082
See also

file trailer dictionary
file trailer dictionary 97-98, 110

custom data prohibited in 1019
Encrypt entry 97, 115, 1031
ID entry 98, 125, 127, 714, 847, 1103, 1126
Info entry 97, 843
Prev entry 97, 99, 108, 110-111, 1030, 1038, 1075,

1077, 1080, 1082
Root entry 92, 97, 107, 137, 1031
Size entry 97, 107, 110, 1031, 1038
XRefStm entry, hybrid-reference file 98, 110-111

file type (Mac OS) 186, 711
FileAttachment annotation type 616, 638
files

Index
1211

attached. See file attachment annotations
binary 39, 49
CIDFont 434
CMap. See CMap files
creator signature (Mac OS) 186
FDF. See FDF files
file type (Mac OS) 186, 711
file-select controls. See file-select controls
font. See font files
formats. See file formats
hybrid-reference 109
movie 784-785
related 186-188, 190
remote go-to action, target of 655
resource fork (Mac OS) 186
sampled image 980, 983
sound 782
specifications 178-191, 692
text 39, 49
thread action, target of 661
URL specifications 179, 188, 703
volatile 183

FileSelect field flag (text field) 691-692
Filespec object type 182, 190
fill operator (PostScript) 985-986
FillIn form usage rights 735
filling

color. See nonstroking color, current
color space. See nonstroking color space, current
even-odd rule 230, 232-234, 985-986
glyphs 401, 468, 1108
nonzero winding number rule 230, 232-233, 985-986
paths 36, 193-194, 214, 230, 232-234, 985-987, 1062
scan conversion 510-511
text 36, 194, 401
text rendering mode 401, 468, 1108
and transparent overprinting 567, 569-570, 572

Filter entry
encryption dictionary 115-116, 126, 129
inline image object 353
signature dictionary 727, 738
signature field seed value dictionary 697, 699
stream dictionary 62, 65, 107, 466-467, 554, 783

filter parameter dictionaries 62, 66
See also

CCITTFaxDecode filter parameter dictionaries
Crypt filter parameter dictionaries
DCTDecode filter parameter dictionaries
FlateDecode filter parameter dictionaries
JBIG2Decode filter parameter dictionaries
LZWDecode filter parameter dictionaries

filters 61-62, 65-86, 1100-1101
abbreviations for 353-354, 1100

ASCII 66, 69-70
compression 39, 46, 783
in content streams 151, 1098, 1101
decoding 65-86, 120, 1033, 1100-1101
decompression 66, 71-86
in embedded font programs 466-467, 1101
encoding 120
in form XObjects 1101
in image streams 340, 1101
in inline images 354, 1101
metadata streams, not recommended for 845
parameters. See filter parameter dictionaries
pipeline 65
standard 67
in thumbnail images 1101
in Type 3 glyph descriptions 1101
unrecognized 1101
See also

ASCII85Decode filter
ASCIIHexDecode filter
CCITTFaxDecode filter
Crypt filter
DCTDecode filter
FlateDecode filter
JBIG2Decode filter
JPXDecode filter
LZWDecode filter
RunLengthDecode filter

Final annotation icon 636
Find command (Acrobat) 1101
findfont operator (PostScript) 333
Fingerprint authentication method (digital signatures)

729
fingerprints (user authentication) 725
first-class names 185, 1019-1020
First entry

object stream dictionary 101
outline dictionary 585
outline item dictionary 586

FirstChar entry
Type 1 font dictionary 413-414, 1110
Type 3 font dictionary 421

first-page cross-reference table (Linearized PDF) 1026,
1030-1031, 1042

document-level objects indexed by 1031
hint streams in 1032
linearization parameter dictionary in 1028
and main cross-reference table 1038
startxref line and 1038, 1051

FirstPage named action 666
See also named-action dictionaries

first-page section (Linearized PDF) 1027, 1034-1036,
1043, 1129

Index
1212

and primary hint stream, ordering of 1032, 1034,
1051-1052

first-page trailer (Linearized PDF) 1026, 1030-1031
fit attribute (SMIL) 770
FitWindow entry (viewer preferences dictionary) 578
fixed-pitch fonts 393, 458
fixed print dictionaries 644-645

H entry 645
Matrix entry 645
Type entry 645
V entry 645

FixedPitch font flag 458, 893-894
FixedPrint entry (watermark annotation dictionary) 644-

645
FixedPrint object type 645
FL entry (graphics state parameter dictionary) 222, 508,

743
Fl filter abbreviation 354, 1100
flags

See
access flags
annotation flags
button field flags
choice field flags
edge flags
field flags
font flags
outline item flags
reset-form field flag
signature flags
submit-form field flags
text field flags
Web Capture command flags

Flags entry
font descriptor 456, 458-460, 893-894
reset-form action dictionary 707-708
submit-form action dictionary 703, 706

Flate (zlib/deflate) compression 39, 67, 71-77
predictor functions 71, 74-77, 340

FlateDecode filter 67, 71-77, 256, 1102
Fl abbreviation 354, 1100
parameters. See FlateDecode filter parameter dictionar-

ies
predictor functions 75-77
in sampled images 340

FlateDecode filter parameter dictionaries 73-74
BitsPerComponent entry 74
Colors entry 74
Columns entry 74
Predictor entry 74-76

flatness tolerance 213, 508-509

FL entry (graphics state parameter dictionary) 222,
508

i operator 219, 508, 986
and smoothness tolerance, compared 510

floating elements 898, 918, 923
bounding box 896

floating window parameters dictionaries 774-775
D entry 774
O entry 773-774
P entry 773-774
R entry 773, 775
RT entry 774
T entry 774
TT entry 775
Type entry 774
UC entry 775

floating windows
movies 664, 786
multimedia 773-775, 1124

floor operator (PostScript) 176, 989
Fly transition style 599-600
Fo entry (additional-actions dictionary) 649
Fo trigger event (annotation) 649
focus, input

See input focus
fold marks 965
folios 886
FOND resource (Mac OS) 418
font characteristics 884, 892-893

Italic 893
Proportional 893
Serifed 893
Smallcap 893

font CSS2 style attribute (rich text strings) 682
font descriptors 40, 412, 455-465, 1060, 1111

Ascent entry 457, 927
AvgWidth entry 457
CapHeight entry 457
CharSet entry 458, 469
for CIDFonts. See CIDFont font descriptors
Descent entry 457, 927
embedded font programs 457-458, 465
FD dictionary. See CIDFont FD dictionaries
Flags entry 456, 458-460, 893-894
flags. See font flags
for font subsets 419, 1110
FontBBox entry 456
FontFamily entry 456, 894
FontFile entry 457, 465, 467, 1036
FontFile2 entry 457, 466
FontFile3 entry 438, 458, 466-467, 1111
FontName entry 419, 456, 458, 461

Index
1213

FontStretch entry 456, 894
FontWeight entry 456, 894
ItalicAngle entry 457
Leading entry 457
in Linearized PDF 1035-1036
MaxWidth entry 457
MissingWidth entry 414, 457
StemH entry 457
StemV entry 457, 894
Style dictionary. See CIDFont Style dictionaries
for TrueType fonts 457
Type 0 fonts, lacking in 455
for Type 1 fonts 414, 457
Type 3 fonts, lacking in 455
Type entry 456
XHeight entry 457

font dictionaries 60, 387-388, 410-412
BaseFont entry 456
compact fonts 468
encoding 425-426
font matrix 203
glyph metrics in 393-394
metadata inapplicable to 847
as named resources 154, 389
in PostScript 411
Subtype entry 60, 388, 410
text font parameter 221
ToUnicode entry 470
in trap networks 977
Type entry 60
Widths entry 457
See also

CIDFont dictionaries
multiple master font dictionaries
TrueType font dictionaries
Type 0 font dictionaries
Type 1 font dictionaries
Type 3 font dictionaries

Font entry
graphics state parameter dictionary 221
resource dictionary 154, 333, 389, 398, 413, 436, 673,

679
font files 388, 465

embedded 388
external 387-388
in font descriptors 412, 1035
metadata 847

font flags 426, 456, 458-460
AllCap 459
FixedPitch 458, 893-894
ForceBold 459-460, 894
Italic 458, 893-894
Nonsymbolic 458
Script 458, 894

Serif 458, 893-894
SmallCap 459, 893-894
Symbolic 458

font management 412
font matrix 203, 394, 420

rotation 421
and Type 3 glyph descriptions 422

font names 389
conventions 412
font subsets 419
multiple master 417
PostScript 410, 413, 417-419, 453, 456
Type 0 fonts 453
Type 1 fonts 413
Type 3 fonts 420

Font Naming Issues (Adobe Technical Note #5088) 417,
1153

font numbers 434, 441, 448, 452-454
Font object type 60, 413, 420, 436, 452, 1060
font programs 387-388, 411-412, 420

compact 466, 468
copyright permissions 465
embedded. See embedded font programs
encoding 412
external 411-412
font dictionaries, defined in 389
glyph metrics in 393-394, 414
hints 412, 420
multiple master 416
in PostScript 411
TrueType 418
Type 1 412-413, 417, 1108-1109

Font resource type 154, 333, 389, 398, 413, 436, 673, 679,
1035

font selector attributes (Tagged PDF) 893-894
FontFamily 894
FontSize 894
FontStretch 894
FontStyle 894
FontVariant 894
FontWeight 893-894
GenericFontFamily 894

font stretch
Condensed 456
Normal 456

font subsets 419, 1110
BaseFont entry 419, 1110
character set 458
embedded 40, 469
font descriptors for 419, 1110
merging 419
name 419
PostScript name 419, 436

Index
1214

tag 419, 458, 461, 1110
font subtypes

See font types
font types 388, 411

MMType1 411, 417, 465-466
TrueType 60, 411, 418, 466
Type0 411, 433, 452
Type1 60, 411, 413, 465-466
Type3 411, 420
See also

CIDFont types
FontBBox entry

font descriptor 456
Type 3 font dictionary 420

FontDescriptor entry
CIDFont dictionary 437
Type 1 font dictionary 414, 1110
Type 3 font dictionary 421

FontDescriptor object type 456
FontDescriptor resource type 1035
font-family CSS2 style attribute (rich text strings) 682
FontFamily entry (font descriptor) 456, 894
FontFamily font selector attribute 894
FontFauxing entry (trap network annotation dictionary)

977
FontFile entry (font descriptor) 457, 465, 467, 1036
FontFile2 entry (font descriptor) 457, 466
FontFile3 entry (font descriptor) 438, 458, 466-467, 1111
FontMatrix entry (Type 3 font dictionary) 394, 420, 422
FontName entry

font descriptor 419, 456, 458, 461
Type 1 font program 413

fonts 36, 47, 387-388, 410-469, 1060
all-cap 459
for appearance streams 673
ascent 457
availability 412
average glyph width 457
bounding box 420, 422-423, 456, 986
cap height 457
CFF (Compact Font Format) 32, 466, 468
character collections 434
character sets 388, 425-426, 434
characteristics. See font characteristics
CJK (Chinese, Japanese, and Korean) 419
content streams 151
current 36, 389-390, 433
data structures 387, 410-412
descent 457
descriptor 40, 412
encoding. See character encodings
expert 426, 996

family 456
fauxing 977
files. See font files
fixed-pitch 393, 458
flags. See font flags
formats 40
glyph selection 412
glyph space 203, 394, 420, 456
glyphs in 49
in Linearized PDF 1036, 1054
interpreter 411, 413
italic 458
italic angle 457
kerning information 396
leading 457
management 39-40
matrix 203, 394, 420, 422
maximum glyph width 457
metadata for 847
metrics 39-40, 45-46, 393-396, 412, 414, 455
monospaced 393
multiple master 416-417, 1111
name. See font names
nonsymbolic 426-427, 430, 458, 460
number 434, 441, 448, 452-454
organization and use 388
PostScript files 46
proportional 393, 458
resources 389, 398
sans serif 458
scaling 390, 398
script 458
selection 387, 390
serifed 458
size 390
small-cap 459
stem height 457
stem width 457
stretch 456
style information 40
subsets 40, 419, 469, 1110
substitution 39-40, 46, 412, 455, 462, 1035-1036, 1054,

1109, 1111
subtype. See font types
symbolic 426-427, 458, 460
Tagged PDF, determination of characteristics in 892-

894
and text operators 193
type. See font types
variable-pitch 393, 458
weight 456
x height 457
See also

CID-keyed fonts
composite fonts

Index
1215

font descriptors
font dictionaries
font programs
simple fonts
TrueType® fonts
Type 0 fonts
Type 1 fonts
Type 3 fonts
Type 42 fonts

font-size CSS2 style attribute (rich text strings) 682
FontSize font selector attribute 894
font-stretch CSS2 style attribute (rich text strings) 682
FontStretch entry (font descriptor) 456, 894
FontStretch font selector attribute 894
font-style CSS2 style attribute (rich text strings) 682
FontStyle font selector attribute 894
FontVariant font selector attribute 894
font-weight CSS2 style attribute (rich text strings) 682
FontWeight entry (font descriptor) 456, 894
FontWeight font selector attribute 893-894
footnotes

as BLSEs 901
marked content 850
Note standard structure type 906
and page content order 889
placement of 906
as structure elements 858, 860
Tagged PDF 855

ForceBold font flag 459-460, 894
ForComment annotation icon 636
form actions

See
import-data actions
JavaScript actions
reset-form actions
submit-form actions

form data (XFA forms) 722
form dictionaries 356-360, 1108

for dynamic appearance streams 678-679
See also

printer’s mark form dictionaries
type 1 form dictionaries

Form entry (UR transform parameters dictionary) 735
form feed (FF) character 50, 56

escape sequence for 54
form fields

See fields, interactive form
form matrix 203, 357-358
form space 203, 291, 357

and dynamic appearance streams 678
Form standard structure type 890, 906, 912

standard layout attributes for 916, 924, 931
form template (XFA forms) 722
form types 357

type 1 357-360
Form XObject subtype 332, 358
form XObjects 195, 332, 355-364, 556

and 3D artwork 805-807
annotation appearances 356, 612, 678, 968
annotation icons 642-643
bounding box 358, 678
clipping to bounding box 357-358
content stream 151, 355-357, 884-885
defining 356
dictionaries. See form dictionaries
form matrix 203, 357-358
form space 203, 291, 357, 678
form type 357
for importing content 356
and interactive forms, distinguished 355, 671
in logical structure elements 865-868
marked-content sequences in 864
metadata 359
modification date 359, 849
name 360
as OPI proxies 979, 1128
OPI version dictionary 359
optional content in 360, 374
page-piece dictionary 359
as page templates 356
painting 356-357, 558-559
patterns and 291
private data associated with 848-849
for repeated graphical elements 356
resource dictionary 358, 977
resources 153, 358
soft masks 356
transparency groups 356, 1098
trap networks 975, 977
unrecognized filters in 1101
uses 356
See also

group XObjects
reference XObjects
transparency group XObjects

FormEx entry (UR transform parameters dictionary) 735
forms

See
form XObjects
interactive forms

Forms Data Format (FDF) 710-722
annotations in 710-711, 715
catalog. See FDF catalog
differences stream 715

Index
1216

digital signatures 715
encryption 716
exporting 710-711, 714, 735, 1120
fields. See fields, FDF
in file-select controls 692
files. See FDF files
in import-data actions 702, 708, 710
importing 710-711, 714, 716-718, 721, 735, 1120
objects 711
options 715, 719
pages 720-721, 1121
PDF, compared with 711
PDF syntax 48, 711
in submit-form actions 704-706, 715, 1119
template pages 721, 1121
trailer. See FDF trailer dictionary
and trigger events 652
version specification 711-712, 714, 1119
See also

FDF annotation dictionaries
FDF dictionary
FDF field dictionaries
FDF named page reference dictionaries
FDF page dictionaries
FDF template dictionaries

FormType entry (form dictionary) 358
Formula standard structure type 912

standard layout attributes for 916, 924, 931
ForPublicRelease annotation icon 636
FOV entry (projection dictionary) 809-810
FP entry (additional-actions dictionary, obsolete) 1115
“fpgm” table (TrueType font) 468-469
FrameMaker® document publishing software 844
free-form Gouraud-shaded triangle meshes

See type 4 shadings
free text annotation dictionaries 624

BE entry 624
BS entry 625
CL entry 624
Contents entry 617
DA entry 624, 683
DS entry 624, 683
IT entry 624
LE entry 625
Q entry 624
RC entry 624
Subtype entry 624

free text annotations 615, 617, 623-624
callouts 624
contents 617
default appearance string 624
intent 624
quadding 624

rich text 624
and text annotations, compared 623
See also

free text annotation dictionaries
FreeText annotation type 615, 624
FreeTextCallout annotation intent 624
FreeTextTypeWriter annotation intent 624
frequency (halftone screen) 488, 496-498, 500, 502
Frequency entry (type 1 halftone dictionary) 497
“from CIE” information (ICC color profile) 255, 972
FS entry

file attachment annotation dictionary 638
file specification dictionary 182, 188

FT entry (field dictionary) 675, 677, 695
FTP (File Transfer Protocol) 950
Fujitsu FMR character set 444
full file specifications 178
FullSave document usage rights 734
FullScreen page mode 140, 578
fully opaque objects 573-574
fully qualified field names 676-677

for FDF fields 717, 1120
in hide actions 666
in reset-form actions 708
in submit-form actions 703, 706-707

function-based shadings
See type 1 shadings

function dictionaries 167-169
Domain entry 168-170, 173-174, 177
FunctionType entry 168
Range entry 168, 170-171, 173, 177
See also

type 0 function dictionaries (sampled)
type 2 function dictionaries (exponential interpola-

tion)
type 3 function dictionaries (stitching)
type 4 function dictionaries (PostScript calculator)

Function entry
shading dictionary 306-307
type 1 shading dictionary 308
type 2 shading dictionary 309-310
type 3 shading dictionary 311-312
type 4 shading dictionary 315-316, 318
type 5 shading dictionary 320
type 6 shading dictionary 324, 326

function objects 166-167, 306, 485
function types 168

type 0 (sampled) 168-173, 1105
type 2 (exponential interpolation) 168, 173-174, 1105
type 3 (stitching) 168, 174-175, 1105
type 4 (PostScript calculator) 168-169, 175-178, 1105

Index
1217

functions 166-178
black-generation 483
clipping to domain 168, 170
clipping to range 168, 171
color (shadings). See color functions
color mapping 479
decoding 244, 246-247, 249, 251
dictionaries. See function dictionaries
dimensionality 169
domain 167-170, 174-175, 308-309, 311, 315, 320, 324
function objects 166-167, 306, 485
gamma 246-247, 249, 562
gamut mapping 248, 479, 484
interpolation 314
range 167-171
spot. See spot functions
tint transformation. See tint transformation functions
transfer. See transfer functions
type. See function types
undercolor-removal 483
See also

type 0 functions (sampled)
type 2 functions (exponential interpolation)
type 3 functions (stitching)
type 4 functions (PostScript calculator)

Functions entry (type 3 function dictionary) 174
FunctionType entry (function dictionary) 168
Fundamentals of Interactive Computer Graphics (Foley and

van Dam) 1154
FWParams object type 774
FWPosition entry (movie activation dictionary) 786
FWScale entry (movie activation dictionary) 786, 1124

G
G color space abbreviation (inline image object) 353
G entry

soft-mask dictionary 553, 557
Web Capture command settings dictionary 960

G operator 196, 236, 240-242, 288-289, 986
g operator 196, 236, 240-242, 288-289, 336, 391, 986
gamma correction 236, 477, 484-486

CalGray color spaces 246
CalRGB color spaces 248
gamut mapping functions, distinguished from 484

Gamma entry
CalGray color space dictionary 246-247
CalRGB color space dictionary 248-249, 547

gamma functions 246-247, 249, 562
gamut

color space 250, 268, 479, 574-575
device 260-261, 479

source (page) 479
gamut mapping functions 248, 479

gamma correction, distinguished from 484
garbage collection 1126
GB 2312-80 character set 442
GB 18030-2000 character set 442
GB-EUC-H predefined CMap 442, 446
GB-EUC-V predefined CMap 442, 446
GB18030-2000 character set 443
GBK character encoding 442, 1120
GBK character set 442
GBK-EUC-H predefined CMap 442, 446
GBK-EUC-V predefined CMap 442, 446
GBKp-EUC-H predefined CMap 442, 446
GBKp-EUC-V predefined CMap 442, 446
GBK2K-H predefined CMap 442, 446
GBK2K-V predefined CMap 443, 446
GBpc-EUC-H predefined CMap 442, 446
GBpc-EUC-V predefined CMap 442, 446
GDI (Graphics Device Interface) imaging model 43-44
ge operator (PostScript) 176, 990
general graphics state operators 196

d 196, 219, 986
gs 196, 219, 222, 289, 397, 403, 478, 552, 986
i 196, 219, 508, 986
J 196, 219, 986
j 196, 219, 986
M 196, 219, 987
ri 196, 219, 260, 286, 289, 987
in text objects 405
w 196, 213, 219, 392, 988

general layout attributes 917-919
BackgroundColor 916, 919
BorderColor 916, 920-921
BorderStyle 916, 920, 926
BorderThickness 916, 921
Color 916, 921
Padding 916, 919-921, 926
Placement 898, 901, 904, 912, 916-917, 922-923, 931
WritingMode 896, 916, 919, 926, 935

generation numbers 63
attribute revision numbers, distinguished from 874
in cross-reference table 94-95, 993
and encryption 119
in FDF files 711
and incremental updates 99
in Linearized PDF 1025
in updating example 1074-1075, 1079-1080

Generic character collections 447
Generic glyph class 463-464
generic hint tables (Linearized PDF) 1039, 1048

Index
1218

generic hint tables, extended (Linearized PDF) 1048-1049
GenericFontFamily font selector attribute 894
GenericRot glyph class 463
“Geometrically Continuous Cubic Bézier Curves” (Seidel)

1154
Geschke, Chuck 24
GET request (HTTP) 704, 956, 959
GetMethod field flag (submit-form field) 704-705
GIF (Graphics Interchange Format) file format 842, 946-

948, 951
Glitter transition style 599-600
“glyf ” table (TrueType font) 466, 468-469
glyph classes (CIDFonts) 462-465

Alphabetic 463-464
AlphaNum 463
Dingbats 463-464
DingbatsRot 463
Generic 463-464
GenericRot 463
Hangul 464
Hanja 464
Hanzi 463
HKana 463
HKanaRot 463
HojoKanji 463
HRoman 463-464
HRomanRot 463-464
Kana 463-464
Kanji 463
Proportional 463-464
ProportionalRot 463-464
Ruby 463

glyph coordinate system
See glyph space

glyph descriptions 387-388
for character collections 434-435
and character encodings 425
in CID-keyed fonts 434-435
in CIDFonts 436, 438
color 423
in font subsets 40
and graphics state 422
restrictions on 289
text objects in 405
and Tj operator 390
in TrueType fonts 429-431, 438, 445, 468
in Type 1 fonts 412
in Type 3 fonts 420-422, 1101

glyph displacement 393, 395, 439
character spacing 398
in CIDFonts 440
displacement vector 395, 400
DW2 entry (CIDFont) 440

horizontal scaling 400
in right-to-left writing systems 890
simple fonts 412
text matrix, updating of 410
and text-positioning operators 407
text space 409
in Type 3 fonts 423
W2 entry (CIDFont) 440-441
word spacing 399

glyph indices 438, 445
glyph names

glyph descriptions, TrueType 429, 431
. notdef 429

glyph orientation
Auto 929

glyph origin 394
positioning 406, 440
in right-to-left writing systems 890-891
and writing mode 395, 439

glyph space 203, 394, 420, 456
displacement vector 395
font descriptors expressed in 456
glyph widths 421
origin 394-395, 406, 439-440, 890-891
text space, relationship with 394, 409, 420
and Type 3 glyph descriptions 422-423
units 390, 394, 420
user space, mapping to 422, 927

glyph widths 393, 395
in CIDFonts 437, 439-440
CJK (Chinese, Japanese, and Korean) 439
d0 operator 423, 986
d1 operator 423, 986
default 437, 439
and horizontal scaling 400
in printing 1109
in reflow of content 1109
in right-to-left writing systems 890-891
in searching of text 1109
in simple fonts 412
in Type 1 fonts 414, 1108-1109
in Type 3 fonts 421-423, 986
undefined 457
in viewing of documents 1109

GlyphOrientationVertical standard structure attribute
917, 929

glyphs, character 387-388
Adobe imaging model 35
bold 460
bounding box 395
and characters, contrasted 49, 388
as clipping path 392, 401
descriptions. See glyph descriptions

Index
1219

displacement. See glyph displacement
emulating tiling patterns with 290
filling 401, 468, 1108
fixed-pitch 458
font management 40
in font subsets 1110
font substitution 39-40
in fonts 388, 411
indices 438, 445
italic 458
metrics 393-396, 412, 441
object shape 549
origin 394-395, 406, 439-440, 890-891
painting 389-390, 401-402, 569, 1108
position vector 395, 440-441
positioning 393-396, 406-407
in right-to-left writing systems 890
scaling 387, 398, 988
scan conversion 37-38, 511
script 458
selection 412
serifs 458
shading patterns, painting with 303
size 390
small capitals 459
stencil masking 350
stroking 392, 401, 468, 1108
text knockout flag 223
text knockout parameter 403
in text objects 36
text operators 193
width. See glyph widths

go-to action dictionaries 654
D entry 654
S entry 654

go-to actions 653-654
destination 581-582, 654
named destinations, targets of 584
and URI actions 623
See also

go-to action dictionaries
remote go-to actions

GoTo action type 653-654
go-to-3D-view action dictionaries 670-671

S entry 670
TA entry 671
V entry 671

GoTo3DView action type 653, 670
go-to-3D-view actions 653, 670-671, 804

See also
go-to-3D-view action dictionaries

GoToE action type 653, 656
GoToR action type 653, 655

GoToRemote entry (legal attestation dictionary) 743
Gouraud interpolation 314, 318, 326, 1154
Gouraud-shaded triangle meshes

free-form. See type 4 shadings
lattice-form. See type 5 shadings

gradient fills 290
color conversion in 307
geometry independent of object painted 303
interpolation algorithms 306
sh operator 303
shading dictionaries 304
shading objects, defined by 302
smoothness tolerance 213
streams, defined by 306
in tiling patterns 303

Graph annotation icon 638
Graphic technology -- Prepress digital data exchange -- Use

of PDF -- Part 1: Complete exchange using CMYK
data (PDF/X-1 and PDF/X-1a) (ISO 15930) 1156

graphics 193-334, 1057
and rendering, distinguished 194, 477
special text effects 391-393
three-dimensional. See 3D artwork
See also

clipping
color spaces
color values
coordinate systems
coordinate transformations
cubic Bézier curves
device space
external objects (XObjects)
graphics objects
graphics operators
graphics state
images, sampled
optional content
paths
patterns
rendering
text
transformation matrices
transparent imaging model
user space

Graphics Gems (Glassner, ed.) 1154
Graphics Gems II (Arvo, ed.) 1154
graphics objects 33, 35-36, 42, 194-198

artifacts 885
clipping of 225, 235
color spaces for 257
colors of 235, 255
in composite pages 969
compositing of 548, 559

Index
1220

coordinate spaces for 199-200
coordinate transformations, unaffected by subsequent

207
in form XObjects 332, 355-357
in glyph descriptions 405, 421
in illustration elements (Tagged PDF) 911
in ILSEs (Tagged PDF) 930
invisible 853
logical structure, independent of 856
marked-content operators prohibited within 850
in marked-content sequences 850, 863
page content order 889
in pattern coordinate space 291, 293
rendering of 209, 478
shape (transparent imaging model) 234
in table cells (Tagged PDF) 930
in tiling patterns 290, 294, 559
in transparency groups 558
in transparent imaging model 566
and transparent overprinting 567
in trap networks 975, 977
types 194-195
visible 853-854

graphics operators 193-194
in glyph descriptions 420
in logical structure content 862
See also

clipping path operators
color operators
graphics state operators
inline image operators
path construction operators
path-painting operators
shading operator
text object operators
text-positioning operators
text-showing operators
text state operators
Type 3 font operators
XObject operator

graphics state 36, 193, 210-224
compatibility operators 152
and form XObjects 355, 357, 559
initialization 210, 558, 560
and marked-content sequences 850
and OPI proxies 979
page description level 196
parameter dictionaries 154
saving and restoring 214-215, 219, 226, 235, 294, 338,

357, 422, 559, 987
and shading patterns 302
stack 214-215, 219
and transparent patterns 560
and Type 3 glyph descriptions 422

See also
graphics state operators
graphics state parameter dictionaries
graphics state parameters
text state

graphics state operators 45, 193, 213-214, 218-219
cm 196, 202, 210, 219, 338, 985
d 196, 219, 986
in default appearance strings 678-679
general 196, 405
gs 196, 219, 222, 289, 397, 403, 478, 552, 986
i 196, 219, 508, 986
J 196, 219, 986
j 196, 219, 986
M 196, 219, 987
and marked-content operators 850
Q 196, 214-215, 219, 235, 294, 338, 357, 392, 402, 679,

854, 987, 992, 1128
q 196, 214-215, 219, 235, 294, 338, 357, 679, 854, 987,

992, 1128
ri 196, 219, 260, 286, 289, 987
special 196
w 196, 213, 219, 392, 988

graphics state parameter dictionaries 213, 219-224, 302,
986, 1098

AIS entry 223, 550
BG entry 221, 289, 483, 743
BG2 entry 221, 289, 483
BM entry 222, 548
CA entry 222, 551
ca entry 222, 551
D entry 220
FL entry 222, 508, 743
Font entry 221
HT entry 222, 289, 495, 743
LC entry 220
LJ entry 220
LW entry 213, 220
ML entry 220
as named resources 154
OP entry 221, 284, 743
op entry 221, 284
OPM entry 221, 285
RI entry 220, 260
SA entry 222, 512, 1112
SM entry 222, 509
SMask entry 222, 550
TK entry 223, 397, 403
TR entry 222, 289, 485, 743
TR2 entry 222, 289, 485
Type entry 220
UCR entry 221, 289, 483, 743
UCR2 entry 221, 289, 483

graphics state parameters 198, 210-213

Index
1221

and B operator 230
details 215-218
device-dependent 210, 212-213, 294, 478
device-independent 210-212, 215
dictionaries. See graphics state parameter dictionaries
for filling 230
initialization 210, 558, 560
and S operator 231
and sampled images 337
setting 219-220, 986-988
for shading patterns 302
for stroking 230-231
transparency-related 560, 1112
See also

alpha source parameter
black-generation function
character spacing parameter
current alpha constant
current blend mode
current clipping path
current color
current color space
current halftone
current line width
current rendering intent
current soft mask
current transfer function
current transformation matrix (CTM)
flatness tolerance
horizontal scaling parameter
leading parameter
line cap style
line dash pattern
line join style
miter limit
overprint mode
overprint parameter
smoothness tolerance
stroke adjustment parameter
text font parameter
text font size parameter
text knockout parameter
text line matrix
text matrix
text rendering matrix
text rendering mode
text rise parameter
text state parameters
undercolor-removal function
word spacing parameter

graphics state stack 214-215, 219
depth limit 992, 1128

gray color component 242
black, complement of 481

CMYK conversion 481
halftones for 506
RGB conversion 481
transfer function 485, 506

gray levels
CMYK conversion 481
color values 236
DeviceGray color space 242
G operator 288, 986
g operator 288, 986
halftones, approximation with 486-489, 494-495, 497
pixel depth 37
RGB conversion 481

gray ramps 962, 966
GrayMap entry (version 1.3 OPI dictionary) 982
grayscale color representation

and CMYK, conversion between 481, 486
DeviceGray color space 237, 242
in halftones 487
multitone components, specifying 269
in output devices 235, 480
rendering 38
and RGB, conversion between 481

Greek characters 463-464
green color component

CMYK conversion 481, 484
DeviceRGB color space 241-242
grayscale conversion 481
halftones for 506
in Indexed color table 263
initialization 243
magenta, complement of 482
and threshold arrays 495
transfer function 485

green colorant
additive primary 241-243
display phosphor 264
PANTONE Hexachrome system 269

grestore operator (PostScript) 987, 992, 1128
Groove border style 920
group alpha

group backdrop, removal of 538
in isolated groups 539
notation 535, 537, 543
and overprinting 569
in page group 543
soft masks, deriving from 546, 552-553

group attributes dictionaries 361
form XObject 359
page 146, 556, 576
S entry 361, 556, 559
transparency group XObject 556, 559
Type entry 361

Index
1222

See also
transparency group attributes dictionaries

group backdrop 515, 534
blending color space 531
compositing with 531, 533, 535, 551, 557, 559, 561
isolated groups, unused in 538-539
in knockout groups 541
in non-isolated groups 558
removal from compositing computations 537-538, 546
for soft masks 546, 552

group color
in compositing 530-531, 533, 558-559
group backdrop, removal of 538
in isolated groups 539
in knockout groups 540
notation 535, 543
in page group 543
for soft masks 546-547

group color space 241, 255, 260, 556-557, 559, 561-563
CIE-based 562-563
and CompatibleOverprint blend mode 568
in isolated groups 562
in non-isolated groups 562
and overprinting 566, 572
in page group 562
process colors, conversion to and from 563
rendering intents, target of 574
spot colors not converted to 564

group compositing function (Composite)
See Composite function

Group entry
page object 146, 556, 576
type 1 form dictionary 359-360, 362, 556, 559, 613

group hierarchy 515, 530
group luminosity

soft masks, deriving from 516, 546-547, 552-553
Group object type 361
group opacity 527

in compositing 515, 530-531, 533, 558-559
in knockout groups 540
for soft masks 546
and spot color components 564

group shape 234, 527
in compositing 515, 530-531, 533, 558-559
group backdrop, removal of 538
in isolated groups 539
notation 535, 537, 543
for soft masks 546-547
and spot color components 564

group stack 530, 533-534
in isolated groups 539
in knockout groups 539

group subtypes 361, 556

Transparency 361, 556, 559
group XObjects 195, 332, 359-361, 556

subtype 361, 556
See also

transparency group XObjects
grouped markup annotations 619
grouping elements

standard layout attributes for 917
grouping elements, standard

See standard grouping elements
groups, optional content

See optional content groups
groups, transparency

See transparency groups
gs operator 196, 219, 222, 289, 397, 403, 478, 552, 986
gsave operator (PostScript) 987, 992, 1128
gt operator (PostScript) 176, 990
GTS_PDFX output intent subtype 971
guideline styles (page boundaries)

D 967
S 967

guillemotleft character name, misspelled 1000
guillemotright character name, misspelled 1000

H
H entry

fixed print dictionary 645
hide action dictionary 666
inline image object 353
linearization parameter dictionary 1029, 1039, 1129
link annotation dictionary 622, 1114
software identifier dictionary 779-781
user property dictionary 877
Web Capture command dictionary 958-959
widget annotation dictionary 641

h operator 196, 225, 227, 231, 986
H predefined CMap 444, 447
H standard structure type 901-902, 904
H1–H6 standard structure types 901-902, 904
halftone dictionaries 213, 222, 485, 495-508, 1112

HalftoneName entry 496-497
HalftoneType entry 495-496
Type entry 496
See also

type 1 halftone dictionaries
type 5 halftone dictionaries
type 6 halftone dictionaries
type 10 halftone dictionaries
type 16 halftone dictionaries

Halftone object type 496-497, 499, 502, 504-505

Index
1223

halftone screens 38, 487-488
accurate screens algorithm 498
angle 488, 496-500, 502-503
cells. See cells, halftone
current transformation matrix (CTM), unaffected by

487
device space, defined in 487
frequency 488, 496-498, 500, 502
spot function 488-494, 496-497, 1111-1112

See also predefined spot functions
threshold array 494-496, 499-500, 503-504
transfer functions for 498-499, 502, 504-505
in type 5 halftones 496, 505

halftone streams 213, 222
halftone types

threshold arrays for 494
type 1 496-498
type 5 496, 498-499, 502, 505-508
type 6 496, 499, 502
type 10 496, 499-503
type 16 496, 503-504

HalftoneName entry 496-497
type 1 halftone dictionary 497
type 5 halftone dictionary 505
type 6 halftone dictionary 499
type 10 halftone dictionary 502
type 16 halftone dictionary 504

halftones 38, 236, 477, 480, 486-508
accurate screens algorithm 498
cells. See cells, halftone
current transformation matrix (CTM), unaffected by

487
device space, defined in 487
name 496-497, 499, 502, 504-505
proprietary 497
spot function 176, 488-494, 496-497, 1111-1112

See also predefined spot functions
threshold array 494-496, 499-500, 503-504
transfer functions, applied after 484-486
and transparency 573-574
See also

current halftone
halftone dictionaries
halftone screens
halftone types
type 1 halftones
type 5 halftones
type 6 halftones
type 10 halftones
type 16 halftones

HalftoneType entry 495-496
type 1 halftone dictionary 497
type 5 halftone dictionary 505
type 6 halftone dictionary 499

type 10 halftone dictionary 502
type 16 halftone dictionary 504

handlers
action 1019
annotation 605, 608, 1019
destination 1019
file system 1019
security 115-116, 120-128, 1019
signature 725, 727

hanging indent 923
hangul characters 464
Hangul glyph class 464
hanja (hanzi, kanji) characters 462-464
Hanja glyph class 464
hanzi (kanji, hanja) characters 462-464
Hanzi glyph class 463
Hard 3D lighting styles 818
hard hyphen character (Unicode) 888
HardLight blend mode 516, 522
“head” table (TrueType font) 468-469
header, file

See file header
Headers standard structure attribute 935
headings 902
Headlamp 3D lighting styles 819
Hebrew writing systems 890, 919
Height entry

image dictionary 89, 340, 351, 555, 588
inline image object 353
type 6 halftone dictionary 499, 502
type 16 halftone dictionary 503-504

Height standard structure attribute 912, 916-917, 924,
930-931

Height2 entry (type 16 halftone dictionary) 503-504
Help annotation icon 621
help systems 608, 665
Helvetica* typeface 40, 388-390, 995, 1060
Helvetica standard font 416, 1109
Helvetica-Bold standard font 416, 1110
Helvetica-BoldOblique standard font 416, 1110
Helvetica-Oblique standard font 416, 1110
Hewlett-Packard Company

PANOSE Classification Metrics Guide 461, 1155
Hexachrome color system, PANTONE 269
hexadecimal strings 53, 56
“hhea” table (TrueType font) 468-469
HI entry (software identifier dictionary) 780-781
Hid entry (obsolete page object) 1104
Hidden annotation flag 608, 665, 670, 1114, 1117

Index
1224

and real content 885
Hidden border style 920
hidden page elements 888-889
HiddenWireframe 3D render modes 816
hide action dictionaries 666

H entry 666
S entry 666
T entry 666

Hide action type 653, 666, 1117
hide actions 653, 665-666, 1117

and pop-up help systems 665
See also

hide action dictionaries
HideAnnotationActions entry (legal attestation

dictionary) 742
HideMenubar entry (viewer preferences dictionary) 578
HideToolbar entry (viewer preferences dictionary) 578
HideWindowUI entry (viewer preferences dictionary) 578
hiding and showing

annotations 608, 665-666
document outline 140, 578
menu bar 578
navigation controls 578
optional content group panel 140, 578
scroll bars 578
thumbnail images 140, 578
tool bars 578

high-fidelity color 235, 237, 268-269
highlight

diffuse achromatic 248
specular 248

highlight annotation dictionaries
See text markup annotation dictionaries

Highlight annotation type 616, 634, 910
highlight annotations

See text markup annotations
highlighting mode (annotation) 622, 641

I (invert) 622, 641
N (none) 622, 641
O (outline) 622, 641
P (push) 622, 641
T (toggle) 641

hint stream dictionaries 1033-1034
A entry 1033
B entry 1034
C entry 1034
E entry 1033
I entry 1033
L entry 1034
O entry 1033
S entry 1033
T entry 1033

V entry 1033
hint streams (Linearized PDF) 1025, 1032-1034

length 1029, 1039-1040
offset 1029, 1039-1040
See also

hint stream dictionaries
overflow hint stream
primary hint stream

hint tables (Linearized PDF) 1022, 1039-1051
and document retrieval 1051-1053
embedded file streams 1034, 1049-1051
extended generic 1048-1049
generic 1039, 1048
in hint streams 1024, 1032, 1039
information dictionary 1033, 1048
interactive form 1033, 1044, 1049
logical structure 1034, 1044, 1049
named destination 1033, 1048
and one-pass file generation 1053
outline 1033, 1048
page label 1034, 1048
page offset 1033, 1037, 1039-1043, 1045, 1053-1054,

1129
pages, locating from 1034, 1036
renditions name tree 1034, 1049
shared object 1033, 1037, 1042-1046, 1049, 1053,

1129-1130
standard 1033-1034
thread information 1033, 1048
thumbnail 1033, 1046-1047

hints
in font programs 412, 420
in Linearized PDF

See
 hint streams
 hint tables

scan conversion 511
hiragana characters 463-464
HKana glyph class 463
HKanaRot glyph class 463
HKscs-B5-H predefined CMap 443, 446
HKscs-B5-V predefined CMap 443, 446
HKSCS-2001 character set 443
“hmtx” table (TrueType font) 468-469
HojoKanji glyph class 463
Hong Kong SCS character encoding 443
Hong Kong SCS character set 443
horizontal scaling parameter 397, 400

text matrix, updating of 410
text space 406
TJ operator 1108
Tz operator 398, 988

Index
1225

horizontal tab (HT) character 50
in comments 51
escape sequence for 54
as white space 48, 56

HPGL (Hewlett-Packard Graphics Language) file format
43

< href > tag (HTML) 715
HRoman glyph class 463-464
HRomanRot glyph class 463-464
HSL (hue-saturation-luminosity) color representation

for nonseparable blend modes 522
HSV (hue-saturation-value) color representation

blending color space, prohibited for 519
HT entry (graphics state parameter dictionary) 222, 289,

495, 743
HTML (Hypertext Markup Language)

digital identifiers 951
< href > tag 715
hypertext links 907-908
importation of 842
layout model 895
and Linearized PDF 1023
PDF logical structure compared with 856
standard attribute owners 914
Tagged PDF, conversion from 883, 893, 899
target attribute 715
“unsafe” characters in 950
weakly structured document organization 905
Web Capture 946-948, 953, 961

HTML-3.20 standard attribute owner 914-915
HTML 4.01 Specification (World Wide Web Consortium)

663, 1158
HTML-4.01 standard attribute owner 914-915
HTML Form format

in file-select controls 692
interactive form fields, converted to (Web Capture)

951
in submit-form actions 704, 706, 1120

HTTP (Hypertext Transfer Protocol) 98, 950, 957
GET request 704, 956, 959
and Linearized PDF 1022-1024
POST request 704, 956, 959
request headers 958-959

Hue blend mode 524
Huffman coding 71
hybrid-reference files 109-115

hidden and visible objects 110
hypertext links 45

link annotations 33, 622
link elements (Tagged PDF) 907-908
named destinations, converted to (Web Capture) 951
pdfmark language extension (PostScript) 44

plug-in extensions for 1096
PostScript conversion 46
uniform resource identifiers (URIs) 662

Hypertext Transfer Protocol—HTTP/1.1 (Internet RFC
2616) 959, 1157

hyphen character (-)
hard 888
soft 888, 1000
as word separator 895

hyphenation 888
and packing of ILSEs 898

I
I border style (inset) 611
I color space abbreviation (inline image object) 353
I entry

appearance characteristics dictionary 642
border effect dictionary 612
choice field dictionary 694
hint stream dictionary 1033
inline image object 353
thread dictionary 596, 1020, 1037
transparency group attributes dictionary 557-558

I highlighting mode (invert) 622, 641
i operator 196, 219, 508, 986
< i > XHTML element (rich text strings) 681
IANA (Internet Assigned Numbers Authority) 938
IC entry

circle annotation dictionary 631
line annotation dictionary 626
polygon annotation dictionary 633
polyline annotation dictionary 633
square annotation dictionary 631

IC entry (3D cross section dictionary) 820
ICC. See International Color Consortium
ICC Characterization Data Registry (International Color

Consortium) 973, 1155
ICC color profiles 252-255

AToB transformation 972, 1127
for blending color spaces 255
BToA transformation 255
BToA transformation 519, 972
color spaces 254-255
device classes 254
“from CIE” information 255, 972
for ICCBased color spaces 244, 252-255
in JPEG2000 88
metadata 253, 847
for output devices 479
for output intents 255, 971-972, 1127
profile types 254

Index
1226

rendering intents 255
“to CIE” information 255, 972, 1127
transformation 255, 519
versions 253-254

ICC profile stream dictionaries 253
Alternate entry 253-254
Metadata entry 253
N entry 253
Range entry 253, 287, 346

ICCBased color spaces 237, 244, 252-257, 346, 972
(standard RGB) 562
alternate color space for 253-254
bidirectional 519
as blending color space 519, 557
CIE-based A color spaces, representing 245
CIE-based ABC color spaces, representing 245
color profile 252-255, 479
as default color space 258
as group color space 565
implicit conversion 259-260
initial color value 287
metadata for 847
process colors, conversion to 563
rendering 478
setting color values in 288, 987
specification 252
spot color components, effect on in transparency

groups 564
standard RGB 256
and transparent overprinting 572

icon fit dictionaries 719-720
A entry 720
for dynamic appearance streams 643
FB entry 720, 1121
S entry 720
SW entry 719

icons, annotation
See annotation icons

icSigCmykData ('CMYK') ICC profile color space 254
icSigColorSpaceClass ('spac') ICC profile device class 254
icSigDisplayClass ('mntr') ICC profile device class 254
icSigGrayData ('GRAY') ICC profile color space 254
icSigInputClass ('scnr') ICC profile device class 254
icSigLabData ('Lab ') ICC profile color space 254
icSigOutputClass ('prtr') ICC profile device class 254
icSigRgbData ('RGB ') ICC profile color space 254
ID entry

FDF dictionary 714, 1119
file specification dictionary 183
file trailer dictionary 98, 125, 127, 714, 847, 1103, 1126
image dictionary 342, 555, 961
page object 147, 961
reference dictionary 362

structure element dictionary 858, 935
version 1.3 OPI dictionary 980
Web Capture content set 954

ID operator 196, 352, 354, 986
Identity crypt filter 90, 117, 122, 132, 134-135
Identity mapping (CIDToGIDMap) 437, 445
Identity transfer function 222, 498-499, 502, 504, 553
Identity transform method 714, 730, 737
Identity-H predefined CMap 445, 447-448, 471
Identity-V predefined CMap 445, 447-448, 471
idiv operator (PostScript) 176, 989
IDS entry (name dictionary) 150, 947-950, 954, 961
IDTree entry (structure tree root) 857-858
IEC. See International Electrotechnical Commission
IETF

See Internet Engineering Task Force (IETF)
IF entry

appearance characteristics dictionary 643
FDF field dictionary 719

if operator (PostScript) 52, 176, 990
ifelse operator (PostScript) 52, 176, 990
illuminated characters 936, 944
Illustration 3D render modes 816
illustration elements, standard

See standard illustration elements
illustrations

bounding box 896, 930
and page content order 889

Illustrator® graphics software 515-516, 542
ILSEs. See inline-level structure elements
IM entry (inline image object) 353
image coordinate system 337-339
image dictionaries 336, 339-348, 353, 1107

Alternates entry 341, 349, 555
BitsPerComponent entry 340, 344-345, 350-351, 555,

588
ColorSpace entry 89, 240, 340-341, 344, 350, 555-556,

568, 588
Decode entry 89, 341, 350, 554-555, 588
decoding of sample data 315, 318, 320, 324
Height entry 89, 340, 351, 555, 588
ID entry 342, 555, 961
ImageMask entry 89, 337, 340-342, 349-350, 555
Intent entry 260, 340, 555
Interpolate entry 341, 346, 555
Mask entry 341, 349, 351, 550, 555, 1107
Metadata entry 88, 342
Name entry 342, 555, 1107
OC entry 343, 349, 374
OPI entry 342, 555, 979

Index
1227

SMask entry 89, 212, 341-342, 350, 550, 553, 555, 574,
1112

SMaskInData entry 89, 342, 550
StructParent entry 342, 555, 869
Subtype entry 340, 353, 554, 588
for thumbnail images 588
Type entry 340, 353, 554
Width entry 89, 340, 351, 555, 588

Image entry (alternate image dictionary) 347
image masks

color operators, exception to limitations on 289, 292
with colored tiling patterns 295
Decode array 340, 350
explicit masking 351, 526
image dictionaries for 339
image XObjects as 335
ImageMask entry (image dictionary) 341
Mask entry (image dictionary) 341
object shape 549
and sampled images, compared 350
with shading patterns 303
stencil masking 350-351
in Type 3 glyph descriptions 423
with uncolored tiling patterns 298-299
See also

explicit masking
soft-mask images
stencil masking

image objects
See image XObjects

image sets, Web Capture
See Web Capture image sets

image space 203, 335, 337, 499, 503-504
image streams 60, 335-336, 340

filters in 340, 1101
Image XObject subtype 332, 340, 554, 588
image XObjects 36, 195, 332, 335

as alternate images 335, 339, 347-348
alternate images for 341
color space 240, 257, 588
fully opaque 574
in glyph descriptions 421
as image masks 335
and JBIG2Decode filter 81-83
JPXDecode filter and 86
in Linearized PDF 1035-1036, 1043, 1054
name 342
as OPI proxies 979, 1128
optional content in 343, 374
painting 335
parameters 335
parent content set 342, 961
as poster images (movies) 785

reference counts (Web Capture) 955, 1126
and slideshows 788
as soft-mask images 553-556, 1112
in Tagged PDF 899
as thumbnail images 335, 339, 588
in Web Capture content database 947, 949, 954-956,

1126
See also

image dictionaries
images, sampled

ImageB procedure set 842
ImageC procedure set 842
%%ImageCropRect OPI comment (PostScript) 984
%%ImageDimensions OPI comment (PostScript) 983
%%ImageFilename OPI comment (PostScript) 983
ImageI procedure set 842
%%ImageInks OPI comment (PostScript) 984
ImageMask entry

image dictionary 89, 337, 340-342, 349-350, 555
inline image object 353

%%ImageOverprint OPI comment (PostScript) 984
images, sampled 35, 49, 193, 334-355

alternate images 335, 339, 341, 347-348
base images 339, 347, 351
color inversion 346
color space 334-337, 340-341, 344-345, 351
color specification 236, 262
compression 65-67, 73, 77, 80-81, 84
coordinate system 337-339
data format 335-337
DCS 186-187
Decode array 336, 341, 344-346, 351
dictionaries. See image dictionaries
embedded file streams 184
encoding 65
fully opaque 574
height 340
image masks. See image masks
image space 203, 335, 337, 499, 503-504
image streams 60, 335-336, 340
inline 81, 195, 335, 352-355, 985-986
interpolation 341, 346-347, 351
JPEG2000 86
in Linearized PDF 1035-1036
masking 349-351, 526, 1107-1108
metadata 342
and multitone color 269
nonzero overprint mode, unaffected by 286
object shape 549
objects. See image XObjects
OPI proxies 979
OPI version dictionary 342
painting 335

Index
1228

parameters 335-336
in pattern cells 292, 294
poster (movie) 785
rendering intents 340
restrictions on painting 289
sample values. See sample values
scan conversion 511
soft-mask 341, 550-551, 553-556, 1112
specification 335
threshold arrays compared to 494
thumbnail. See thumbnail images
tint values, source of 266, 270
and transparent overprinting 567, 572
Type 3 glyph descriptions, prohibited in 423
Web Capture content set 342
width 340
See also

image XObjects
imagesetters 36, 200, 264, 266
ImageType entry (version 1.3 OPI dictionary) 982
imaging model 34-38

See also
Adobe imaging model
opaque imaging model
transparent imaging model

immediate backdrop (transparency group element) 514,
532, 534

in knockout groups 540-541
in non-isolated groups 542

implementation limits 991-993
architectural 991-993
array capacity 58
character identifier (CID) value 434, 992
clipping paths, complexity of 349
DeviceN tint components 270, 992
dictionary capacity 59, 162
file size 991
graphics state nesting depth 992, 1128
indirect objects, number of 992
magnification (zoom) factor 993
memory 991-993
name length 57-58, 992
numeric range and precision 52, 177, 454, 785, 992
page size 993, 1128-1129
sampled functions, dimensionality of 169
string length 53, 60, 992
thumbnail image samples 993
Web Capture 946

implicit color conversion 259-260
Import annotation usage rights 735
import-data action dictionaries 708

F entry 708, 1119
S entry 708

import-data actions 653, 702, 708, 1119
and named pages 710
See also

import-data action dictionaries
Import embedded files usage rights 736
Import form usage rights 735
ImportData action type 653, 708
importing

content 361-364
FDF fields 710-711, 714, 716-718, 721, 1120
interactive form fields 33, 671
pages 359, 362

IN entry
3D view dictionary 671, 791, 797, 804

incidental artifacts 888-889
hidden page elements 888-889
hyphenation 888
text discontinuities 888

Include action
FieldMDP transform parameters 736
signature field lock dictionary 697

Include/Exclude field flag
reset-form field 708
submit-form field 704, 706

IncludeAnnotations field flag (submit-form field) 705
IncludeAppendSaves field flag (submit-form field) 705,

715
IncludedImageDimensions entry (version 2.0 OPI

dictionary) 984
%%IncludedImageDimensions OPI comment

(PostScript) 984
IncludedImageQuality entry (version 2.0 OPI dictionary)

984
%%IncludedImageQuality OPI comment (PostScript) 984
IncludeNoValueFields field flag (submit-form field) 704,

706-707
incremental updates 42, 98-99, 1057

cross-reference sections 93
cross-reference subsections 93
and digital signatures 99, 715, 1097
FDF files, not permitted in 711
and file identifiers 847
file structure for 90-91
generation numbers 63, 99
and Linearized PDF 1021-1022, 1032, 1051, 1055
and submit-form actions 705
and version numbers 92, 139, 1097-1098

independent software vendors (ISVs) 118
InDesign page layout software 542, 1107
Index entry (cross-reference stream dictionary) 107-108
index operator (PostScript) 176, 990

Index
1229

Index standard structure type 900, 905
Indexed color spaces 237, 262-264, 345-346

alternate color space, prohibited as 267, 270
base color space of 258, 263, 307, 563, 568
base color space, prohibited as 263
blending color space, prohibited as 557
color table 262-263, 556
color values 262
default color space, prohibited as 258
I abbreviation 353
initial color value 262, 287
in inline image objects 354
maximum index value 263
parameters 262-263
remapping of base color space 258
setting color values in 287
for shadings 307
for soft-mask images 556
specification 262-264
for thumbnail images 588
type 1, 2, and 3 shadings, prohibited in 308-309, 311
unrecognized filters and 1101

indexes 900, 905
indexing of text 469, 883
indices, page

See page indices
indirect object references 64

to compressed objects 101
generation numbers in 64
hint stream dictionaries (Linearized PDF), prohibited

in 1033
in name trees 162
to nonexistent object 63
operands, prohibited as 151, 153
and progressive document retrieval (Linearized PDF)

1054
version compatibility 1098

indirect objects 51, 63-65, 93
cross-reference table 91
definition 64
in FDF files 712
generation number. See generation numbers
number, limit on 992
object identifier. See object identifiers
object number. See object numbers
in object streams 64, 101
operands, not permitted as 151, 153
random access 93
references. See indirect object references
for stream lengths, not permitted in FDF files 711
streams 60

Info entry
FDF page dictionary 720

file trailer dictionary 97, 843
PDF/X output intent dictionary 971

information dictionary, document
See document information dictionary

information dictionary hint table (Linearized PDF) 1033,
1048

Information Technology—JPEG 2000 Image Coding System:
Extensions (ISO/IEC 15444-2) 87, 1156

inheritable standard structure attributes 914
inheritance

field attributes 672, 674
page attributes 144-145, 149, 153
standard structure attributes 914-915

initial backdrop (transparency group) 534
compositing with 530-531, 533, 537
in isolated groups 534, 538-539, 558
in knockout groups 539-541, 558
in non-isolated groups 534, 542
notation 531

ink annotation dictionaries 636
BS entry 636
InkList entry 636
Subtype entry 636

Ink annotation type 616, 636
ink annotations 616, 636, 1115

border style 611
border width 625, 636
dash pattern 625, 636
ink list 636
See also

ink annotation dictionaries
ink-jet printers 36

resolution 37
InkList entry (ink annotation dictionary) 636
Inks entry (version 2.0 OPI dictionary) 984
inline alignment 925

Center 925
End 925
Start 925

inline image objects 352-354
BitsPerComponent entry 353
color spaces, abbreviations for 353

CMYK (DeviceCMYK) 353
G (DeviceGray) 353
I (Indexed) 353
RGB (DeviceRGB) 353

ColorSpace entry 353-354
Decode entry 353
DecodeParms entry 353
dictionary entries, abbreviations for 353

BPC (BitsPerComponent) 353
CS (ColorSpace) 353-354

Index
1230

D (Decode) 353
DP (DecodeParms) 353
F (Filter) 353
H (Height) 353
I (Interpolate) 353
IM (ImageMask) 353
W (Width) 353

Filter entry 353
filters, abbreviations for 353-354, 1100

A85 (ASCII85Decode) 354
AHx (ASCIIHexDecode) 354
CCF (CCITTFaxDecode) 354
DCT (DCTDecode) 354
Fl (FlateDecode) 354
LZW (LZWDecode) 354
RL (RunLengthDecode) 354

Height entry 353
image data 352, 354
ImageMask entry 353
Intent entry 353
Interpolate entry 353
Width entry 353
See also

inline images
inline image operators 196, 352

BI 196, 352, 985
EI 196, 352, 354, 986
ID 196, 352, 354, 986

inline images 81, 195, 335, 352-355, 985-986
color space 257, 354
filters in 354, 1101
in Linearized PDF 1023
parameters 335
See also

inline image objects
inline-level structure elements (ILSEs) 896, 901, 905-909

Annot 890, 906, 909-910
annotation elements 909-910
baseline shift 926
BibEntry 906
BLSEs, contained in 896, 905
BLSEs nested within 905, 927-928
BLSEs, treated as 904, 918, 922
Code 906
content items in 899
general layout attributes for 917
illustrations as 896
Link 890, 906, 910
link annotations, association with 907, 910
link elements 907-909
Note 906
packing 897-898, 917
Quote 906
Reference 900, 906

Ruby 907
ruby elements 910
Span 905, 910, 937
standard layout attributes for 916-917

BaselineShift 917, 926
GlyphOrientationVertical 929
LineHeight 917, 927
RubyAlign 928
RubyPosition 929
TextDecorationColor 917, 927
TextDecorationThickness 917, 927
TextDecorationType 917, 928

usage guidelines 904
Warichu 907
warichu elements 910

Inline placement attribute 901, 916-917, 922, 931
inline-progression direction 896

illustrations, width of 931
in layout 897, 905, 917-918, 923-925
local override 919
table expansion 935
writing mode 919

Inline ruby text position 929
InlineAlign standard structure attribute 897, 917, 925
inline-progression direction 929
input focus 649-650, 652
Insert annotation icon 621
Inset border style 921
insideness 232-234

even-odd rule 233-234
nonzero winding number rule 232-233
and object shape 515, 541
and scan conversion 510

instantiation of 3D artwork 795-796
integer objects 51

as number tree keys 166
range limits 52, 992
syntax 52

intellectual property 32
intent (markup annotations) 619
intent (optional content)

All 376
Design 365, 368, 376, 380
View 365, 368, 376

Intent entry
image dictionary 260, 340, 555
inline image object 353
optional content configuration dictionary 376, 380
optional content group dictionary 365, 368-369

interactive features 33, 45, 47, 577-743
pdfmark language extension (PostScript) 44
See

Index
1231

actions
annotations
articles
destinations
document outline
interactive forms
page labels
presentations
thumbnail images
viewer preferences

interactive form dictionary 141, 672-674
CO entry 651, 673
DA entry 673
DR entry 673, 679-680, 684, 1117
Fields entry 672
in Linearized PDF 1031
NeedAppearances entry 652, 672
Q entry 673
SigFlags entry 672
signature flags. See signature flags
XFA entry 673, 722, 724, 1117

interactive form fields
See fields, interactive form

interactive form hint table (Linearized PDF) 1033, 1044,
1049

interactive forms 33, 671-722
computation order 651, 673
default resource dictionary 1117
FDF (Forms Data Format). See Forms Data Format
fields. See fields, interactive form
and form XObjects, distinguished 355, 671
and import-data actions 1119
interactive form dictionary 141, 1031
named pages 150, 710
template pages 150, 721, 1121

interchange
of content 33, 860, 873
of documents. See document interchange

interior color
annotations 626, 631
line endings 630

International Color Consortium (ICC) 252, 260, 1155
International Commission on Illumination 237
International Electrotechnical Commission (IEC) 256,

1155
International Organization for Standardization (ISO) 80-

81, 84, 159, 938
ISO 639 (Codes for the Representation of Names of

Languages) 159, 938, 1155
ISO 15930 (Graphic technology -- Prepress digital data

exchange -- Use of PDF -- Part 1
Complete exchange using CMYK data (PDF/X-1

and PDF/X-1a)) 1156

ISO 3166 (Codes for the Representation of Names of
Countries and Their Subdivisions) 159, 938, 1155

ISO/IEC 8824-1 (Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation) 160, 1155

ISO/IEC 10918-1 (Digital Compression and Coding of
Continuous-Tone Still Images) 1156

ISO/IEC 15444-2 (Information Technology—JPEG 2000
Image Coding System: Extensions) 1156

International Telecommunications Union (ITU) 77, 1156
Internet

uniform resource identifiers (URIs) 662
Web Capture plug-in extension 842, 946

Internet Assigned Numbers Authority (IANA) 938
Internet Engineering Task Force (IETF) 1156

Public Key Infrastructure (PKIX) working group 738,
1157

See also
Internet RFCs (Requests for Comments)

Internet RFCs (Requests for Comments) 1156
1321 (The MD5 Message-Digest Algorithm) 119, 186,

848, 951, 1156
1738 (Uniform Resource Locators) 179, 188, 950, 1156
1808 (Relative Uniform Resource Locators) 179, 950,

959, 1156
1950 (ZLIB Compressed Data Format Specification) 71,

1156
1951 (DEFLATE Compressed Data Format

Specification) 71, 1156
2045 (Multipurpose Internet Mail Extensions (MIME),

Part One: Format of Internet Message Bodies) 692,
705, 764, 954, 959, 1156

2046 (Multipurpose Internet Mail Extensions (MIME),
Part Two: Media Types) 185, 1156

2083 (PNG (Portable Network Graphics) Specification)
75, 1156

2315 (PKCS #7
Cryptographic Message Syntax, Version 1.5) 128,

131, 738
Cryptographic Message Syntax, Version 3.15) 1156

2396 (Uniform Resource Identifiers (URI)
Generic Syntax) 662, 780, 1156

2560 X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol—OCSP 739, 1156

2616 (Hypertext Transfer Protocol—HTTP/1.1) 959,
1157

2898 (PKCS #5
Password-Based Cryptography Specification Ver-

sion 2.0) 119, 1157
3066 (Tags for the Identification of Languages) 461, 937,

1157
3161 (Internet X.509 Public Key Infrastructure Time-

Stamp Protocol (TSP)) 699, 1157
3174 (US Secure Hash Algorithm 1 (SHA1)) 1157

Index
1232

3280 (Internet X.509 Public Key Infrastructure, Certifi-
cate and Certificate Revocation List (CRL) Profile)
700-701, 739, 1157

Internet X.509 Public Key Infrastructure, Certificate and
Certificate Revocation List (CRL) Profile (Internet
RFC 3280) 700-701, 739, 1157

Internet X.509 Public Key Infrastructure Time-Stamp Proto-
col (TSP) (Internet RFC 3161) 699, 1157

Interpolate entry
image dictionary 341, 346, 555
inline image object 353

Interpolate function 170-171, 175, 344
interpolation

bilinear 321-322
cubic spline 170, 173
Gouraud 314, 318, 326, 1154
linear 170, 322, 1105
in sampled images 341, 346-347, 351

interpolation functions 314
“Interpolation Using Bézier Curves” (Elber) 1157
intrinsic duration (multimedia) 770
InvertedDouble predefined spot function 490
InvertedDoubleDot predefined spot function 489
InvertedEllipseA predefined spot function 492
InvertedEllipseC predefined spot function 492
InvertedSimpleDot predefined spot function 489
Invisible annotation flag 608
IRT entry (markup annotation dictionary) 618-620
IsMap entry (URI action dictionary) 662
ISO. See International Organization for Standardization
ISO-2022-JP character encoding 444
ISO Latin 1 character encoding 158
isolated groups 531, 537-539, 558

blend mode 539
blending color space 531, 539, 557
compositing in 538-539, 558
compositing of 539
group alpha 539
group backdrop unused in 538-539
group color 539
group color space, explicit 562
group compositing formulas 539, 544
group shape 539
group stack 539
initial backdrop 534, 538-539, 558
knockout 541
object alpha 539
object shape 539
page group as 542-543, 557
pattern cells as 561
for soft masks 547

source color 538
and white-preserving blend modes 567

Issuer entry (certificate seed value dictionary) 701
IT entry

free text annotation dictionary 624
line annotation dictionary 627
markup annotation dictionary 619
polygon annotation dictionary 633

Italic font characteristic 893
Italic font flag 458, 893-894
italic fonts 458
Italic outline item flag 587
ItalicAngle entry (font descriptor) 457
ITC Zapf Dingbats® typeface 40, 295, 996
items, outline. See outline items
ITU (International Telecommunications Union)

Recommendation X.509 (1997) 1156
Recommendations T.4 and T.6 77, 1156

IV entry (3D cross section dictionary) 820
IX entry (appearance characteristics dictionary) 643

J
J operator 196, 219, 986
j operator 196, 219, 986
jamo characters 464
Japanese

character collections 446-447
character sets 433
CMaps 444
fonts 419
glyph widths 439
kana (katakana, hiragana) characters 463-464
kanji (Chinese) characters 462-464
R2L reading order 578
ruby characters 463
Shift-JIS character encoding 434, 449
writing systems 919

Japanese Industrial Standard (JIS) X 4051-1995 911
Java programming language 874
JavaScript action dictionaries 709

JS entry 709
S entry 709

JavaScript action type 653, 709
JavaScript actions 653, 703, 709, 1119

document-level 150, 185, 709
invoking slideshows 787, 1124
and named pages 710
trigger events for 651-652
See also

JavaScript action dictionaries

Index
1233

JavaScript dictionary 716-717
After entry 716
AfterPermsReady entry 717
Before entry 716
Doc entry 717

JavaScript entry
FDF dictionary 716
name dictionary 150, 709, 717

JavaScript for Acrobat API Reference 709, 790, 798, 1124,
1151

JavaScript scripting language
and 3D artwork 790, 792, 796-798
functions 709, 716-717
interpreter 703, 709
in rendition actions 669
scripts 703, 705, 709-710, 716-717
Unicode, incompatible with 1119
See also

JavaScript actions
JavaScript dictionary

JavaScriptActions entry (legal attestation dictionary) 742
JBIG (Joint Bi-Level Image Experts Group) 39, 80
JBIG2 compression 39, 67, 80-84
JBIG2Decode filter 67, 80-84

inline images, prohibited in 353
parameters. See JBIG2Decode filter parameter dictio-

naries
in sampled images 340

JBIG2Decode filter parameter dictionaries 82
JBIG2Globals entry 82-84

JBIG2Globals entry (JBIG2Decode filter parameter
dictionary) 82-84

JDF (Job Definition Format) 478, 963, 975, 978, 1127
JDF Specification (CIP4) 478, 975, 1155
JIS C 6226 character set 444
JIS X 0208 character set 444
JIS X 0213:1000 character set 444
JIS X 4051-1995 (Japanese Industrial Standard) 911
JIS78 character set 444
job tickets 478, 975, 978, 1127

JDF 478, 963, 975, 978, 1127
PJTF 48, 478, 963, 975, 978, 1127

JP2 format (JPEG2000 compression) 87
JPEG (Joint Photographic Experts Group) 84

baseline format 84, 86
compression 39, 67, 84, 86
file format 842, 946
progressive extension 86, 1101

JPEG: Still Image Data Compression Standard (Pennebaker
and Mitchell) 84, 1157

JPEG2000 86-89

channels 87-88
color spaces 88
compression 39, 67, 86-89
enumerated color spaces 88
JP2 format 87
JPX baseline 87
JPX format 87
opacity 88
resolution progression 86-87
soft-mask images 89

JPX baseline (JPEG2000 compression) 87
JPX format (JPEG2000 compression) 87-88
JPXDecode filter 67, 86-89, 334, 336, 340, 342, 550

color spaces 88
image dictionary entries 89
inline images, prohibited in 353

JS entry
JavaScript action dictionary 709
rendition action dictionary 669

Justify block alignment 925
Justify ruby text alignment 928
Justify text alignment 924

K
K entry

additional-actions dictionary 651
CCITTFaxDecode filter parameter dictionary 78-79
structure element dictionary 857, 859, 861, 868
structure tree root 856-857, 899
transparency group attributes dictionary 558-559

K operator 196, 236, 240-241, 243, 288, 986
k operator 196, 236, 240-241, 243, 288, 987
K trigger event (form field) 651-652
kana (katakana, hiragana) characters 463-464
Kana glyph class 463-464
kanji (hanzi, hanja) characters 462-464
Kanji glyph class 463
KanjiTalk6 character set 444
KanjiTalk7 character set 444
katakana characters 463-464
kerning 396
Key annotation icon 621
keyboard 33

annotations 604
check box fields 686
text fields 677, 685, 691
trigger events 651

keyframe animation 799
keys

dictionary 49, 59, 1098

Index
1234

encryption. See encryption keys
name tree 161-163
number tree 166

KeyUsage entry (certificate seed value dictionary) 701
keywords

endobj 64, 102, 993
endstream 60-62, 993, 1100
f 94, 1079
false 52, 58
n 94
null 63
obj 58, 64, 102
operators 151
R 64
startxref 97, 106, 1031, 1038, 1051, 1075, 1077, 1080,

1082
stream 60-62, 1100
trailer 97, 107, 713
true 52, 58
xref 93, 97, 106, 1030

Keywords entry (document information dictionary) 844
Kids entry

FDF field dictionary 717
field dictionary 675, 688-689, 691
name tree node 162
number tree node 166
page tree node 143

knockout groups 531, 539-542, 558
and backdrop color removal 538
blend mode 540
compositing in 540-541, 558
group backdrop 534, 541
group color 540
group compositing formulas 540-541, 544
group opacity 540
group stack 539
immediate backdrop (group elements) 540-541
initial backdrop 539-541, 558
isolated 541
non-isolated 541
non-isolated group, parent of 558
non-isolated groups nested within 542
object opacity 540
object shape 540
and overprinting 569
result alpha 540-541
result color 540-541
result opacity 541
shading patterns implicitly enclosed in 560
soft clipping 550
for soft masks 547
source alpha 541
source opacity 541
source shape 540-541

text knockout parameter equivalent to 404
Korean

character collections 447
character sets 433
CMaps 445
fonts 419
glyph widths 439
hangul characters 464
jamo characters 464
R2L reading order 578

KS X 1001:1992 character set 445
KSC-EUC-H predefined CMap 445, 447
KSC-EUC-V predefined CMap 445, 447
KSCms-UHC-H predefined CMap 445, 447
KSCms-UHC-HW-H predefined CMap 445, 447
KSCms-UHC-HW-V predefined CMap 445, 447
KSCms-UHC-V predefined CMap 445, 447
KSCpc-EUC-H predefined CMap 445, 447

L
L entry

hint stream dictionary 1034
line annotation dictionary 626-627
linearization parameter dictionary 1029
media criteria dictionary 761
software identifier dictionary 780-781
Web Capture command dictionary 958

l operator 196, 226, 231, 987
L standard structure type 901-902, 932
L2R reading order 578
L*a*b* color representation 254

blending color space, prohibited for 519
Lab color space dictionaries 251

BlackPoint entry 251
Range entry 250-251, 287, 345
WhitePoint entry 251

Lab color spaces 237, 244, 250-252, 345
as base color space 263
blending color space, prohibited as 519, 557
color values 250
default color space, prohibited as 258
and ICCBased color spaces, compared 252, 255
initial color value 287
rendering 478
setting color values in 287
See also

Lab color space dictionaries
labeling ranges, page 139, 594-596
labels, page

See page labels

Index
1235

Lang entry 888, 933, 936-937, 943-944
CIDFont font descriptor 461
document catalog 141, 937-939
Language subdictionary, optional content usage

dictionary 380, 383
property list 905, 937-940
structure element dictionary 860, 913, 915, 937, 939

language, natural
See natural language specification

language codes
IANA 938
ISO 639 159, 938

Language entry (optional content usage dictionary) 380,
383

language identifiers 141, 761, 860, 937-938
multi-language text arrays 942

laser printers 36
resolution 37

Last entry
outline dictionary 585
outline item dictionary 586

LastChar entry
Type 1 font dictionary 414, 1110
Type 3 font dictionary 421

LastModified entry
application data dictionary 849
page object 145, 976
trap network annotation dictionary 976
type 1 form dictionary 359

LastPage named action 666
See also

named-action dictionaries
Latin character set, standard 995-1000, 1111

character names 428-429, 471
encodings 426
glyph displacements 395
nonsymbolic fonts 426, 458-460, 1036
standard fonts 40, 388
Tj operator 390

Latin characters 462-464
metrics 462

Latin writing systems 425, 460
lattice-form Gouraud-shaded triangle meshes

See type 5 shadings
lattices, pseudorectangular 319
launch action dictionaries 660

F entry 660
Mac entry 660
NewWindow entry 660
S entry 660
Unix entry 660
Win entry 660, 1116

Launch action type 653, 660
launch actions 653, 659-661, 1116

See also
launch action dictionaries
Windows launch parameter dictionaries

LaunchActions entry (legal attestation dictionary) 742
layers

See optional content
layout, page 140, 1116
Layout artifact type 886
layout artifacts 886
layout attributes, standard

See standard layout attributes
Layout standard attribute owner 914-916
Lbl standard structure type 901-902, 906, 932-933

standard layout attributes for 923
LBody standard structure type 901, 903

standard layout attributes for 923
LC entry (graphics state parameter dictionary) 220
LE entry

free text annotation dictionary 625
line annotation dictionary 626
polyline annotation dictionary 632

le operator (PostScript) 176, 990
leader lines (line annotations) 627-628
Leading entry (font descriptor) 457
leading (Tl) parameter

TD operator 988
TL operator 988

leading parameter 397, 400
T* operator 406
TD operator 406
TL operator 398

left angle bracket (<) character 50
double, as dictionary delimiter 59, 97, 713
as hexadecimal string delimiter 53, 56, 59, 182

left brace ({) character 50
as delimiter in PostScript calculator functions 176

left bracket ([) character 50
as array delimiter 58, 1129

left parenthesis (() character 50
escape sequence for 54, 409
as literal string delimiter 53

legal attestation dictionaries 699, 732, 742
AlternateImages entry 743
Annotations entry 743
Attestation entry 742-743
DevDepGS_BG entry 743
DevDepGS_FL entry 743
DevDepGS_HT entry 743
DevDepGS_OP entry 743

Index
1236

DevDepGS_TR entry 743
DevDepGS_UCR entry 743
ExternalOPIdicts entry 743
ExternalRefXobjects entry 743
ExternalStreams entry 743
GoToRemote entry 743
HideAnnotationActions entry 742
JavaScriptActions entry 742
LaunchActions entry 742
MovieActions entry 742
NonEmbeddedFonts entry 743
OptionalContent entry 743
SoundActions entry 742
TrueTypeFonts entry 743
URIActions entry 742

Legal entry (document catalog) 142, 742
LegalAttestation entry (signature field seed value

dictionary) 699
Length entry

crypt filter dictionary 134
encryption dictionary 116-117, 119, 125-126
object stream dictionary 101
stream dictionary 61-62, 64, 120, 306, 353, 466, 1033,

1057
Length1 entry (embedded font stream dictionary) 466,

468
Length2 entry (embedded font stream dictionary) 467-

468
Length3 entry (embedded font stream dictionary) 467-

468
Level1 entry (PostScript XObject dictionary) 333
lexical conventions 48-51
LI entry (software identifier dictionary) 779-781
LI standard structure type 901-902, 932
ligatures 425, 474, 936, 944, 995
Lighten blend mode 521
lightness 519, 557
limits, implementation

See implementation limits
Limits entry

name tree node 162
number tree node 166

line annotation dictionaries 626
BS entry 626
Cap entry 627
CO entry 628
CP entry 627
IC entry 626
IT entry 627
L entry 626-627
LE entry 626
LL entry 627

LLE entry 627
LLO entry 627
Measure entry 627
Subtype entry 626

Line annotation type 615, 626
line annotations 615, 626-630

border style 611
interior color (line endings) 626, 630
leader lines 627-628
line ending style. See line ending styles
line width 632
See also

line annotation dictionaries
Line Breaking Properties (Unicode Standard Annex #14)

1158
line cap style 211, 216

butt 216, 231
and dash pattern 218
J operator 219, 986
LC entry (graphics state parameter dictionary) 220
projecting square 216, 231
round 216, 231
and S operator 231
and Type 3 glyph descriptions 422

line dash pattern 211, 217-218
for annotation borders 607, 611
for circle annotations 631
D entry (graphics state parameter dictionary) 220
d operator 219, 986
dash array 217-218, 220, 607, 611, 967, 1113
dash phase 217-218, 220, 607, 611, 967
for ink annotations 625, 636
for page boundaries 967
and S operator 231-232
for square annotations 631
and Type 3 glyph descriptions 422

line ending styles 630
Butt 630
Circle 630
ClosedArrow 630
Diamond 630
None 630
OpenArrow 630
RClosedArrow 630
ROpenArrow 630
Slash 630
Square 630

line feed (LF) character 50
in cross-reference tables 94
as end-of-line marker 50, 55, 61, 91, 94
escape sequence for 54
in HTTP requests 959
in stream objects 60-61

Index
1237

as white space 48, 56
line height 927

Auto 927
Normal 927

line join style 211, 216
bevel 216-217, 231
and dash pattern 218
j operator 219, 986
LJ entry (graphics state parameter dictionary) 220
miter 216, 231
round 216, 231
and S operator 231
and Type 3 glyph descriptions 422

Line predefined spot function 488, 490
line width, current

See current line width
Linear 3D animation styles 800
linear interpolation 170, 322, 1105
linearization parameter dictionary 1026, 1028-1030, 1129

E entry 1029, 1034, 1129
file length in 1051, 1055
first-page object number in 1029, 1034
H entry 1029, 1039, 1129
hint stream offsets in 1032, 1040
L entry 1029
Linearized entry 1029
N entry 1029
O entry 1029, 1034, 1042, 1046
P entry 1030, 1034
T entry 1030, 1053

Linearized entry (linearization parameter dictionary)
1029

Linearized PDF 41, 92-93, 149, 1021-1055
access strategies 1051-1055
background and assumptions 1022-1024
cross-reference streams in 1025, 1030
cross-reference tables 1025, 1040

first-page 1026, 1030-1032, 1038, 1042, 1051
main 1028, 1030-1031, 1038

document catalog 1024, 1026, 1030-1031, 1038, 1053
document structure 1024-1038
first-page section 1027, 1032, 1034-1036, 1043, 1051-

1052, 1129
generation numbers 1025
header 1028
hint streams. See hint streams
hint tables. See hint tables
HTML (Hypertext Markup Language) 1023
HTTP (Hypertext Transfer Protocol) 1022-1024
incremental updates and 1021-1022, 1032, 1051, 1055
indirect objects, numbering of 1024-1025, 1032
inline images, retrieval of 1023

linearization parameter dictionary 1026, 1028-1030,
1032, 1034, 1040, 1051, 1055, 1129

MIME (Multipurpose Internet Mail Extensions) 1022-
1023

object streams in 1025
shared object signatures 1045, 1130
shared objects section 1036-1037, 1043, 1045-1046,

1129
thumbnail shared objects section 1037, 1047
trailer

first-page 1026, 1030-1031
main 1038

URLs (uniform resource locators) 1022-1023
version identification 1029
and World Wide Web 1022

LineHeight standard structure attribute 905, 917, 922,
927, 930

lines (text) 897
stacking within parent BLSE 897, 905

LineThrough text decoration type 928
lineto operator (PostScript) 46, 987
LineX predefined spot function 490
LineY predefined spot function 491
link annotation dictionaries 622-623

Dest entry 622, 654
H entry 622, 1114
PA entry 623
QuadPoints entry 623
Subtype entry 622

Link annotation type 615, 617, 622, 715
link annotations 33, 615, 622-623, 648, 1114

border color 607
destination 581-582, 584, 622, 1114
and go-to actions 654
highlighting mode 622
and link elements (Tagged PDF) 907-909
Link standard structure type 906
movie actions associated with 664
and trigger events 650
and URI actions 623, 1116
and Web Capture 623
See also

link annotation dictionaries
link elements (Tagged PDF) 907-909
Link standard structure type 890, 906, 910
links, hypertext

See hypertext links
list attribute, standard

See standard list attribute
list box fields 685, 693-694

trigger events for 651
variable text in 677

Index
1238

list elements, standard
See standard list elements

list numbering style 933
Circle 933
Decimal 933
Disc 933
LowerAlpha 933
LowerRoman 933
None 933
Square 933
UpperAlpha 933
UpperRoman 933

List standard attribute owner 914-915, 932
ListMode entry (optional content configuration

dictionary) 377
ListNumbering standard structure attribute 932-933
literal strings 53-56

continuation lines 54-55
escape sequences 54-56
octal character codes in 54-55

LJ entry (graphics state parameter dictionary) 220
LL entry (line annotation dictionary) 627
LLE entry (line annotation dictionary) 627
LLO entry

line annotation dictionary 627
ln operator (PostScript) 176, 989
“loca” table (TrueType font) 468-469
Location entry (signature dictionary) 728-729
Lock entry (signature field dictionary) 696
Locked annotation flag 609, 1114
Locked entry (optional content configuration dictionary)

378
LockedContents annotation flag 609
log operator (PostScript) 176, 989
LOGFONT structure (Windows) 418
logical structure 33, 45, 47, 841, 855-883

annotation elements (Tagged PDF) 909
annotations, sequencing of 890
content 861-872
example 877-883
fragmented BLSEs, recognition of 902
link elements (Tagged PDF) 907
and page content order 936
page tree, distinguished from 143
pdfmark language extension (PostScript) 44
and real content 885
and reference XObjects 363-364
structural parent tree 147, 342, 359, 608
Tagged PDF and 841, 883-885
text discontinuities, recognition of 888
visible content, separation from 856
See also

content items
structure attributes
structure elements
structure hierarchy
structure tree root
structure types

logical structure hint table (Linearized PDF) 1034, 1044,
1049

logical structure order 889
annotations, sequencing of 890
artifacts 889

lossless filters 66, 80, 86, 256
lossy filters 66, 80, 84, 86, 351
LowerAlpha list numbering style 933
LowerRoman list numbering style 933
LP entry (additional-actions dictionary, obsolete) 1115
LrTb writing mode 919
LS entry

3D view dictionary 806
lt operator (PostScript) 176, 990
luminance 85
Luminosity blend mode 524
Luminosity soft-mask subtype 553, 557
required color representation

blending color space, prohibited for 519
LW entry (graphics state parameter dictionary) 213, 220
LZW (Lempel-Ziv-Welch) compression 39, 65-67, 71-77

clear-table marker 72-73
predictor functions 71, 74-77, 340

LZW filter abbreviation 354, 1100
LZWDecode filter 67, 71-77

LZW abbreviation 354, 1100
parameters. See LZWDecode filter parameter dictio-

naries
predictor functions 75-77
in sampled images 340

LZWDecode filter parameter dictionaries 73-74
BitsPerComponent entry 74
Colors entry 74
Columns entry 74
EarlyChange entry 74
Predictor entry 74-76

M
M entry

annotation dictionary 606, 637, 1113
media offset marker dictionary 776
media screen parameters MH/BE dictionaries 773-774
minimum bit depth dictionary 761
minimum screen size dictionary 762

Index
1239

signature dictionary 728-729
transition dictionary 599-600

M entry (3D node dictionary) 829
M operator 196, 219, 987
m operator 196, 226, 232, 987
Mac entry

embedded file parameter dictionary 186
file specification dictionary 183
launch action dictionary 660

Mac OS file information dictionaries 186
Mac OS KH character set 445
Mac® OS operating system

Adobe PDF printer 43
application launch parameters 660
character encoding 425-426, 996, 1000
file information 186
file names 181
FOND resource 418
font names 418
Preferences folder 1119
QuickDraw imaging model 43
Script Manager 442-445
TrueType® font format 429

MacExpertEncoding predefined character encoding 426,
995-996

as base encoding 427
for Type 1 fonts 414
and Unicode mapping 470

MacRomanEncoding predefined character encoding 426,
995-996, 1000

as base encoding 427
differences from Mac OS Roman encoding 431
for TrueType fonts 430
for Type 1 fonts 414
and Unicode mapping 470

magenta color component
DeviceCMYK color space 241, 243
DeviceN color spaces 268
grayscale conversion 481, 486
green, complement of 482
halftones for 506
initialization 243
in multitones 269
overprinting 570-571
RGB conversion 481-482
transfer function 484-485
transparent overprinting 571
undercolor removal 213, 482-483

magenta colorant
overprinting 570-571
PANTONE Hexachrome system 269
printing ink 264
process colorant 241, 243

subtractive primary 241, 243
transparent overprinting 571

magnification (zoom) factor 140, 147, 609, 961
in destinations 581-583
implementation limits 993
for movies 786

main cross-reference table (Linearized PDF) 1028, 1030-
1031, 1038

and page retrieval 1053
main trailer (Linearized PDF) 1038
MainImage entry (version 2.0 OPI dictionary) 983
%%MainImage OPI comment (PostScript) 983
mapping name (form field) 675, 704
mark information dictionary 141, 856

Marked entry 856, 884
Suspects entry 856, 890
UserProperties entry 856, 877

Marked annotation state 620
marked clipping sequences 852-855

in illustration elements (Tagged PDF) 911
marked content 42, 198, 841, 850-855

and clipping 852-855
in dynamic appearance streams 680
elements. See marked content elements
language identifiers 141, 860
metadata for 847
operators. See marked-content operators
property lists 850-852, 985-986
and Tagged PDF 841

Marked entry (mark information dictionary) 856, 884
marked-content elements 850

empty 853-854
tags 850
See also

marked-content points
marked-content sequences

marked-content identifiers 862
and natural language specification 939
parent structure element, finding from 869, 871
small values recommended for 869
in structure elements 859, 863

marked-content operators 194, 196, 841, 850-851
BDC 196, 370-371, 850-852, 862, 985
BMC 196, 679, 850-851, 985
DP 196, 370, 850-852, 986
EMC 196, 370-371, 679, 850-851, 862, 986
MP 196, 850-851, 987
for optional content 370-373
tags 850
text object operators, combined with 851
in text objects 405

marked-content points 850-851, 986-987

Index
1240

and clipping 855
empty 853

marked-content reference dictionaries 859, 863-864
MCID entry 864
Pg entry 863
Stm entry 864
StmOwn entry 864
Type entry 863

marked-content sequences 359, 850-851, 985-986
abbreviation expansion 945
alternate descriptions 942
annotations, association with 890
annotations, sequencing of 890
in appearance streams 864
for artifact specification 885
and clipping 852-854
empty 853
in form XObjects 864
identifiers. See marked-content identifiers
as logical structure content items 359, 857, 859, 862-

871, 890
marked clipping sequences 852-855, 911
natural language specification 937-941
nesting of 850
reference dictionaries 859
replacement text 944
for reverse-order show strings 891
Span tag 905

marked-content tags 850-851, 1019
Artifact 885
Clip 911
OC 370-371
ReversedChars 891
Span 905, 913, 937-942, 944-945
and structure types 862
TagSuspect 889-890

MarkInfo entry (document catalog) 141, 856
MarkStyle entry (printer’s mark form dictionary) 968
markup annotation dictionaries 616-619

CA entry 618
Contents entry 617
CreationDate entry 618
ExData entry 619
IRT entry 618-619
IT entry 619
Popup entry 618, 637
RC entry 618, 627, 683
RT entry 618-619
Subj entry 619
T entry 618, 620, 637, 705

markup annotations 33, 616-619
grouped 619
intent 619

rich text strings 680
See also markup annotation dictionaries

Mask entry (image dictionary) 341, 349, 351, 550, 555,
1107

Mask object type 553
mask opacity 212, 222, 341, 527, 549

notation 528, 533, 537
soft masks 545
specifying 550-551, 1112
in transparency groups 531

mask shape 212, 222, 341, 527, 549
notation 528, 532, 536
soft masks 545
specifying 550-551, 1112
in transparency groups 531

masked images 349-351, 1107-1108
shape (transparent imaging model) 526
See also

color key masking
explicit masking
soft masks
stencil masking

matrices, transformation
See transformation matrices

Matrix entry
CalRGB color space dictionary 248-250, 547
fixed print dictionary 645
type 1 form dictionary 357-358, 362, 552, 612
type 1 pattern dictionary 293, 357
type 1 shading dictionary 308
type 2 pattern dictionary 302, 357

matte color (soft-mask image) 554-555
Matte entry (soft-mask image dictionary) 342, 554-555
max entry (Zoom subdictionary, optional content usage

dictionary) 381, 383
MaxLen entry (text field dictionary) 691-692
“maxp” table (TrueType font) 468-469
MaxWidth entry (font descriptor) 457
MCD subtype (media clip object) 763-764
MCID entry

marked-content reference dictionary 864
property list 862, 905, 939, 941

MCR object type 863
MCS subtype (media clip object) 763-764
MD5 entry (external data dictionary, 3D markup) 835
MD5 message-digest algorithm 119, 730, 1131

checksum, embedded files 186
for digital identifiers (Web Capture) 950-951
for file identifiers 848, 1126
hash function 119-120, 125-127, 716, 946, 1045
for shared object signatures (Linearized PDF) 1045,

1130

Index
1241

MD5 Message-Digest Algorithm, The (Internet RFC 1321)
119, 186, 848, 951, 1156

MDP (modification detection and prevention) signatures
726, 731

See also DocMDP transform method
validating 732

MDP entry (signature field seed value dictionary) 698
measure dictionaries 744-751

Subtype entry 745-746
Type entry 746
See also

rectilinear measure dictionaries
Measure entry

line annotation dictionary 627
polygon annotation dictionary 633

Measure entry (viewport dictionary) 744-745
Measure object type 746
measurement properties 744-751
media box 962-963

inheritance of 149
for media selection 965
in page imposition 1127
in page object 145
page placement, ignored in 965
in printing 965
in rendering 478

media clip data dictionaries 764-765, 778
Alt entry 764
BE entry 765
CT entry 764-765, 1123
D entry 764-765
MH entry 765
P entry 764-765
PL entry 764-765, 1123
See also

media clip data MH/BE dictionaries
media clip data MH/BE dictionaries 767

BU entry 766-767
media clip data objects 764-766

See also
media clip data dictionaries

media clip dictionaries 762, 764
N entry 764
S entry 763-764
Type entry 764
See also

media clip data dictionaries
media clip data MH/BE dictionaries
media clip section dictionaries
media clip section MH/BE dictionaries

media clip objects 763-768
MCD subtype 763-764
MCS subtype 763-764

media clip section 767-768
next-level 767-768
See also

media clip dictionaries
media clip section dictionaries 767

Alt entry 767
BE entry 767
D entry 767
MH entry 767
See also

media clip section MH/BE dictionaries
media clip section MH/BE dictionaries 768

B entry 767-768
E entry 767-768

media clip section objects 767-768
beginning and ending offsets 767-768
See also

media clip section dictionaries
media criteria dictionaries 760-761

A entry 760
C entry 760
D entry 761
L entry 761
O entry 760
P entry 761
R entry 760
renditions 759
S entry 760
Type entry 760
V entry 761
Z entry 761

media duration dictionaries 770-771
S entry 771
T entry 771
Type entry 771

media offset dictionaries 768, 775-776
S entry 775
Type entry 775
See also

media offset frame dictionaries
media offset marker dictionaries
media offset time dictionaries

media offset frame dictionaries 776
F entry 776

media offset marker dictionaries 776
M entry 776

media offset time dictionaries 776
T entry 776

media permissions dictionaries 764-766
TF entry 766
Type entry 766

media play parameters 769-771
See also

Index
1242

media play parameters dictionaries
media play parameters dictionaries 762, 769, 778

BE entry 769
D entry 765
F entry 765
MH entry 769
PL entry 762, 769
playback volume 757
Type entry 769
See also

media play parameters MH/BE dictionaries
media play parameters MH/BE dictionaries 769-770

A entry 770
C entry 769
D entry 770
F entry 770
RC entry 770
V entry 757, 769

media player info dictionaries 777-779
BE entry 779
MH entry 779
PID entry 779
Type entry 779

media players dictionaries 764, 769, 777-779
A entry 762, 777-778
MU entry 762, 777-778
NU entry 777-778
Type entry 777
See also

media player info dictionaries
media rendition dictionaries 762-763

C entry 762
P entry 762
SP entry 762-763

media renditions 758, 762-763, 769
See also

 media rendition dictionaries
media screen parameters 771-776

See also
media screen parameters dictionaries

media screen parameters dictionaries 763, 772
BE entry 772
MH entry 772
Type entry 772
See also

media screen parameters MH/BE dictionaries
media screen parameters MH/BE dictionaries 772-773

B entry 772
F entry 773
M entry 773-774
O entry 773
W entry 772

media types (multimedia) 755, 1123

MediaBox entry (page object) 145, 149, 644-645, 963,
1035

MediaClip object type 764
MediaDuration object type 771
MediaOffset object type 775
MediaPermissions object type 766
MediaPlayerInfo object type 779
MediaPlayers object type 777
MediaPlayParams object type 769
MediaScreenParams object type 772
medium, output

See output medium
membership dictionaries, optional content

See optional content membership dictionaries
menu bar, hiding and showing 578
menu items 674

as named actions 1117
meshes

Coons patch. See type 6 shadings
free-form Gouraud-shaded triangle. See type 4 shad-

ings
lattice-form Gouraud-shaded triangle. See type 5 shad-

ings
tensor-product patch. See type 7 shadings

metadata 841, 843-847, 1125
date stamp 1125
document information dictionary 843-845
for documents 141
encryption of 123, 135
for form XObjects 359
for ICCBased color spaces 253
for marked content 847
for pages 147
for sampled images 342
unencrypted 125, 131-132
version compatibility 1125
See also

document information dictionary
metadata streams

Metadata entry 846-847
document catalog 141, 846
embedded font stream dictionary 467
ICC profile stream dictionary 253
image dictionary 88, 342
page object 147
property list 847
type 1 form dictionary 359

Metadata object type 846
metadata stream dictionaries 846

in property lists 847
Subtype entry 846
Type entry 846

Index
1243

metadata streams 843, 845-847, 1125
document information dictionary, compared with 845
for documents 141
for embedded font programs 467
encryption not recommended for 845
filters not recommended for 845
for form XObjects 359
for ICCBased color spaces 253
for pages 147
for sampled images 342
See also

metadata stream dictionaries
metadata subtypes

XML 846
MH dictionaries (multimedia objects) 757-758
MH entry

media clip data dictionary 765
media clip section dictionary 767
media play parameters dictionary 769
media player info dictionary 779
media screen parameters dictionary 772
rendition dictionary 759-760

Mic annotation icon 639
Microsoft Corporation

TrueType 1.0 Font Files Technical Specification 418, 461,
1157

Windows® operating system 43, 418, 425
Microsoft Unicode character encoding 431
Middle block alignment 925
MIDI (Musical Instrument Digital Interface) file format

1123
MIME (Multipurpose Internet Mail Extensions)

application / pdf content type 705
application / vnd . fdf content type 711
application / x-www-form-urlencoded content type

958
and Linearized PDF 1022-1023
media type name 185
multipart / form-data content type 692

min entry (Zoom subdictionary, optional content usage
dictionary) 381, 383

MinBitDepth object type 761
minimum bit depth dictionaries 761

M entry 761
Type entry 761
V entry 761

minimum screen size dictionaries 761-762
M entry 762
Type entry 762
V entry 762

MinScreenSize object type 762
minus sign (−) character 161

misregistration of colorants 643, 962, 974
MissingWidth entry (font descriptor) 414, 457
miter limit 211, 217

forced into valid range 214
M operator 219, 987
ML entry (graphics state parameter dictionary) 220
and S operator 231

miter line join style 216, 231
Mix entry (sound action dictionary) 664, 1116
mixing hints. See DeviceN mixing hints dictionary
MixingHints entry

DeviceN color space attributes dictionary 272-273
MK entry

screen annotation dictionary 640
widget annotation dictionary 641, 1118

ML entry (graphics state parameter dictionary) 220
MMType1 font type 411, 417, 465-466
MN entry (printer’s mark annotation dictionary) 968
mod operator (PostScript) 176, 989
ModDate entry

document information dictionary 844, 849
embedded file parameter dictionary 186

Mode entry
movie action dictionary 665
movie activation dictionary 786

modification date
annotation 606
document 841, 843-844, 849, 1125
form XObject 359, 849
page 145, 849
page-piece dictionaries and 145, 359, 849
trap network 976
Web Capture content set 955-956

modification detection and prevention. See MDP
Modify annotation usage rights 735
Modify embedded files usage rights 736
Modify signatures usage rights 736
monitor specifiers 781
Monospace font classification (Tagged PDF) 894
monospaced fonts 393
mouse 33, 613, 651-652

annotations 604, 609, 613, 622, 641, 648
button fields 685
check box fields 686
document-level navigation 581
outline items 585
pop-up help labels 665
read-only form fields unresponsive to 676
submit-form actions, tracking in 704
trigger events related to 649, 652
URI actions, tracking in 662-663

Index
1244

widget annotations 642-643
MOV (QuickTime) file format 1123
moveto operator (PostScript) 46, 987
movie action dictionaries 664-665

Annotation entry 665
Mode entry 665
and movie activation dictionaries, compared 664
Operation entry 665
S entry 665
Start entry 665
T entry 665

Movie action type 653, 665, 1116
movie actions 653, 664-665, 1116

and movie annotations 664-665
operations. See movie operations
See also

movie action dictionaries
movie annotations
movies

movie activation dictionaries 784-786
Duration entry 785
FWPosition entry 786
FWScale entry 786, 1124
Mode entry 786
and movie action dictionaries, compared 664
in movie annotations 639
Rate entry 785
ShowControls entry 786
Start entry 785
Synchronous entry 786
Volume entry 785

movie annotation dictionaries 639
A entry 639, 784
Movie entry 639, 784
Subtype entry 639
T entry 639

Movie annotation type 616-617, 639, 715
movie annotations 33, 616, 639, 784

annotation rectangle 664, 786
and file specifications 183
and movie actions 664-665
plug-in extensions 614
title 665
See also

movie actions
movie annotation dictionaries
movies

movie dictionaries 784-785
Aspect entry 784, 786, 1123
F entry 784
in movie annotations 639
Poster entry 785
Rotate entry 785

Movie entry (movie annotation dictionary) 639, 784
movie files 784-785
movie operations 665

Pause 665
Play 665
Resume 665
Stop 665

MovieActions entry (legal attestation dictionary) 742
movies 33, 604, 784-786

asynchronous 786
bounding box 784
controller bar 786
and file specifications 183
magnification (zoom) factor 786
and movie actions 648, 664
and movie annotations 639
operations. See movie operations
play mode 786
poster image 785
rotation 785
synchronous 786
time scale 785
See also

movie actions
movie activation dictionaries
movie annotations
movie dictionaries

MP operator 196, 850-851, 987
MP3 (MPEG Audio Layer-3) file format 1123
MP4 (MPEG-4) file format 1123
MPEG (MPEG-2 Video) file format 1123
MR rendition type 759
MS entry (3D view dictionary) 804
Msg entry (UR transform parameters dictionary) 734
MU entry (media players dictionary) 762, 777-778
mul operator (PostScript) 176, 989
muLaw sound encoding format 783
multi-language text array 942
Multiline field flag (text field) 691
multimedia 755-782

floating windows 773-775, 1124
recommended media types 755, 1123
trigger events related to 649
viability of objects 757-758
See also

rendition actions
screen annotations

multimedia features 755-840
See

alternate presentations
movies
multimedia

Index
1245

sounds
multimedia objects

MH/BE dictionaries 757-758
playing specifications 769
viability 757-758
See also

rendition objects
multipart / form-data content type (MIME) 692
multiple-byte character codes

in CID-keyed fonts 433-434
in file specifications 182
in font names 419
and text-showing operators 408-409
and word spacing 399

multiple master font dictionaries 417
BaseFont entry 417
Subtype entry 417

multiple master fonts 416-417
instances 416-417
naming conventions 417
PostScript name 417
snapshots 417
substitution 1111
See also

multiple master font dictionaries
Multiply blend mode 520, 539
Multipurpose Internet Mail Extensions (MIME), Part One:

Format of Internet Message Bodies (Internet RFC
2045) 692, 705, 764, 954, 959, 1156

Multipurpose Internet Mail Extensions (MIME), Part Two:
Media Types (Internet RFC 2046) 185, 1156

MultiSelect field flag (choice field) 694-695
multitone color 235, 237, 269

duotone 269, 279-282
examples 279-284
quadtone 269, 282-284

must honor
See MH dictionaries (multimedia objects)

N
N entry

appearance dictionary 614, 678, 718, 791, 885, 968,
975, 977

bead dictionary 597, 1055
collection field dictionary 591
ICC profile stream dictionary 253
linearization parameter dictionary 1029
media clip dictionary 764
named-action dictionary 667
object stream dictionary 101
projection dictionary 809

rendition dictionary 759
target dictionary 657
type 2 function dictionary 173
user property dictionary 876

N entry (3D node dictionary) 829
N highlighting mode (none) 622, 641
n keyword 94
n operator 196, 230, 235, 852-853, 987
NA entry

3D view dictionary 806
NA entry (navigation node dictionary) 602-603
name dictionary 139, 150

AlternatePresentations entry 150, 786
AP entry 150, 615
Dests entry 150, 584
EmbeddedFiles entry 150, 184-185, 655
IDS entry 150, 947-950, 954, 961
JavaScript entry 150, 709, 717
in Linearized PDF 1053
Pages entry 150, 710
Renditions entry 150
Templates entry 150, 710
URLS entry 150, 947-950, 954

Name entry
Crypt filter parameter dictionary 90, 132
FDF named page reference dictionary 721
file attachment annotation dictionary 638
image dictionary 342, 555, 1107
optional content configuration dictionary 376-377
optional content group dictionary 364-365
rubber stamp annotation dictionary 636
signature dictionary 728-729
sound annotation dictionary 639
text annotation dictionary 621
Type 1 font dictionary 413, 1108
type 1 form dictionary 360, 1108
Type 3 font dictionary 420
User subdictionary, optional content usage dictionary

381, 383
viewport dictionary 745

name objects 50-51, 56-58, 1099-1100
character encodings for 1099
for destinations 583-584
as dictionary keys 59, 496, 505
hexadecimal character codes in 57, 185
length limit 57-58, 992
syntax 56-58, 1099-1100
UTF-8 encoding 58
for version specifications 714

name registry, PDF 1019-1020
“name” table (TrueType font) 418
name tree nodes 162-163

intermediate 162-163

Index
1246

Kids entry 162
leaf 162-163
Limits entry 162
Names entry 162
root 162

name trees 161-165
for appearance streams 150, 615
for destinations 150, 584
dictionaries, compared with 161-162
for element identifiers 857
for embedded file streams 150, 185
for JavaScript actions 150, 185, 709
keys in 161-163
in name dictionary 150
for named pages 150, 710
nodes. See name tree nodes
number trees, compared with 166
for template pages 150, 710
values in 161-162
for Web Capture content sets 150, 947, 950, 954, 961

named-action dictionaries 667
N entry 667
S entry 667

Named action type 653, 667, 1117
named actions 653, 666-667, 1117

FirstPage 666
LastPage 666
NextPage 666
PrevPage 666
See also

named-action dictionaries
named destination dictionaries 584

D entry 584
named destination hint table (Linearized PDF) 1033, 1048
named destinations 582-584

in document catalog 137, 139
go-to actions as targets of 584
in Linearized PDF 1031, 1038, 1052-1053
in name dictionary 150
unique name (Web Capture) 951-952
See also

named destination dictionaries
named page reference dictionaries

See FDF named page reference dictionaries
named pages 148, 150, 710

in import-data actions 710
invisible. See template pages
in JavaScript actions 710

named resources 153
color spaces as 154
external objects (XObjects) as 154, 195
font dictionaries as 154, 389
in form XObjects 358

graphics state parameter dictionaries as 154
in Linearized PDF 1036
patterns as 154
procedure sets as 154, 842
property lists as 154, 847, 851-852
shading dictionaries as 154
in type 3 fonts 421

names
appearance states 686, 689, 977
attribute classes 858-859, 873-875, 913
attribute owners 873
blend modes 520, 548
character encodings 414, 426-427, 430, 470
characters. See character names
CMaps, predefined 442-445, 449, 452-453
color space families 240, 245, 262, 265, 270
color spaces 240, 263, 267, 270, 287, 354
colorants 266-267, 270-272, 496, 505, 984
conversion engines (Web Capture) 960
destinations 583-584
dictionary 139, 150
embedded spaces in 1099
first-class 185, 1019-1020
fonts. See font names
form XObjects 356, 360
glyph classes 462
graphics state parameter dictionaries 219-220
halftones 496-497, 499, 502, 504-505
images 342
marked-content tags 851
object subtypes 60
object types 60
patterns 288, 294, 298-299
registered 60, 116, 725, 850, 961, 971, 1098

See also name registry, PDF
rendering intents 220, 260, 340
resources 358, 421, 1111
second-class 1020
shadings 303
spot functions, predefined 488, 1112
structure types 58, 858, 860
third-class 1020
XX prefix 1020
See also

name objects
Names entry

document catalog 139, 150, 1038, 1053
name tree node 162

native color space (output device) 307, 477-478, 480
CIE-based color mapping 479
and flattening of transparent content 576
and halftones 486, 506
and overprinting 572
page group, inherited by 543, 548, 559

Index
1247

process colors, specification of 563, 565
rendering intents, target of 574-575
transfer functions 484-486
and transparent overprinting 566

natural language specification 841, 936-942
for CIDFont character encodings 461
for documents 936, 938-939
hierarchy 938-941
language identifiers 141, 860, 937-938
for marked-content sequences 937-941
for structure elements 937-941
in Tagged PDF 888
in Unicode 159, 937, 943-945

navigation 581-601
document-level 581-593

See also
 destinations
 document outline
 thumbnail images

page-level 594-601
See also
 articles
 page labels
 presentations

sub-page 601-603
navigation controls, hiding and showing 578
navigation node dictionaries 602

Dur entry 602
NA entry 602-603
Next entry 602-603
PA entry 602-603
Prev entry 602-603
Type entry 602

navigation nodes 148, 601-603
current 602-603

NavNode object type 602
NChannel color spaces 269-275, 277-279
NChannel subtype (DeviceN color spaces) 272
ne operator (PostScript) 176, 990
NeedAppearances entry (interactive form dictionary) 652,

672
NeedsRendering entry (document catalog) 142
neg operator (PostScript) 176, 989
Netscape Communications Corporation

Client-Side JavaScript Reference 709, 1157
network access 92, 1021-1023, 1051-1055

See also Forms Data Format (FDF)
new features

PDF 1.7 28-31
New York typeface 418
newline characters 50, 54
NewParagraph annotation icon 621

NewWindow entry
launch action dictionary 660
remote go-to action dictionary 655

Next entry
action dictionary 648, 670
navigation node dictionary 602-603
outline item dictionary 585-586

next-level media clip objects 767
next-level media object 768
NextPage named action 666

See also
named-action dictionaries

Night 3D lighting styles 818
NM entry (annotation dictionary) 606, 618
no-op actions (obsolete) 653
NoExport field flag 676, 703-704, 706
nonbreaking space character 1000
None 3D animation styles 800
None 3D lighting styles 817
None annotation state 620
None border style 920
None colorant name

DeviceN color spaces 270-271
in Separation color spaces 266

None decryption method (crypt filters) 133
None line ending style 630
None list numbering style 933
None page scaling 580
None predictor function (LZW and Flate encoding) 75-76
None text decoration type 928
NonEmbeddedFonts entry (legal attestation dictionary)

743
NonFullScreenPageMode entry (viewer preferences

dictionary) 578
non-isolated groups 531, 537, 540

and backdrop color removal 538
bounding box 558
and CompatibleOverprint blend mode 568-569
compositing in 558
group backdrop 558
group color space, inherited from parent group 562
group compositing formulas 542
immediate backdrop (group elements) 542
initial backdrop 534, 542
knockout 541
knockout groups, nested within 542
and overprinting 568-569
page group as 542, 557
painting 558
patterns implicitly enclosed in 560

non-knockout groups 531

Index
1248

and CompatibleOverprint blend mode 568-569
compositing in 540
and overprinting 568-569
tiling patterns implicitly enclosed in 560

non-Latin character sets 426
in check box fields 691

non-Latin writing systems 426
in check box fields 688

nonprinting characters 54-55
nonseparable blend modes 522-525

spot colors, inapplicable to 567
nonstroking alpha constant, current 212, 222, 551

and fully opaque objects 573
initialization 558
and overprinting 569-570
setting 551
and transparency groups 551

nonstroking color, current 210, 214
DeviceCMYK color space 243, 288, 987
DeviceGray color space 242, 288, 986
DeviceN color spaces 270
DeviceRGB color space 243, 288, 987
f operator 232
Pattern color spaces 295, 299
sampled images 341
Separation color spaces 266
setting 236, 240, 288, 986-987
stencil masking 337
text, showing 391

nonstroking color space, current 210
CIE-based color spaces 245
DeviceCMYK color space 243, 288, 987
DeviceGray color space 242, 288, 986
DeviceRGB color space 243, 288, 987
Indexed color spaces 262
Pattern color spaces 299
setting 236, 240, 287-288, 986

NonStruct standard structure type 901
Nonsymbolic font flag 458
nonsymbolic fonts 426, 430, 458, 460

base encoding 427
nonterminal fields 675
non-white-preserving blend modes

spot colors, inapplicable to 567
nonzero overprint mode 259, 285-286

and transparency 568
nonzero winding number rule 232-233

clipping 235, 402, 988
filling 230, 232, 985-986

normal appearance (annotation) 613
and real content 885
for unknown annotation types 614

Normal blend mode 404, 516, 520
for annotations 613, 618
and backdrop color removal 538
blend function 525
Compatible blend mode equivalent to 525, 567
and CompatibleOverprint 568, 572
current blend mode initialized to 558
as default blend mode 548
and fully opaque objects 574
in isolated groups 539
and overprinting 566-567, 569
in page group 543
patterns, painting of 561
for spot colors 567

Normal font stretch 456
Normal line height 927
NoRotate annotation flag 609-610, 621
not operator (PostScript) 176, 990
NotApproved annotation icon 636
. notdef character name 428, 439, 454, 458
. notdef glyph name 429
notdef mappings 452, 454-455
Note annotation icon 621
Note standard structure type 906
NotForPublicRelease annotation icon 636
NoToggleToOff field flag (button field) 686, 689
NoView annotation flag 609, 670
NoZoom annotation flag 609, 621
NP entry

3D activation dictionary 795
NP entry (additional-actions dictionary, obsolete) 1115
NR entry

3D view dictionary 806
NTSC (National Television Standards Committee) video

standard 481
NU entry (media players dictionary) 777-778
null (NUL) character 50

in unique names (Web Capture) 952
null object (null) 51, 62-63

in AnnotStates arrays (trap networks) 977
as choice field value 695
as dictionary value 59, 63
as indirect reference to nonexistent object 63-64

number format arrays 746-750
number format dictionaries 746-749

C entry 748
D entry 749
F entry 748
FD entry 749
O entry 749
PS entry 749

Index
1249

RD entry 749
RT entry 749
SS entry 749
Type entry 748
U entry 748

number sign (#) character
as hexadecimal escape character in names 57-58, 419,

1099
in uniform resource locators (URLs) 950

number tree nodes 166
intermediate 166
Kids entry 166
leaf 166
Limits entry 166
Nums entry 166
root 166

number trees 166
keys 166
name trees, compared with 166
nodes. See number tree nodes
for page labeling ranges 139, 595
structural parent tree 857, 869
values 166

numbers 53
See also numeric objects

NumCopies entry (viewer preferences dictionary) 581
numeric characters 463
numeric objects 52-53

integer 52
range and precision 52
real 52

Nums entry (number tree node) 166

O
O entry

3D view dictionary 805-806
additional-actions dictionary 649-650, 1116
attribute object 873, 876, 913, 916, 932, 934
collection field dictionary 591
encryption dictionary 122, 125-126, 128
floating window parameters dictionary 773-774
hint stream dictionary 1033
linearization parameter dictionary 1029, 1034, 1042,

1046
media criteria dictionary 760
media screen parameters MH/BE dictionaries 773
number format dictionary 749
rectilinear measure dictionary 747
Web Capture content set 953-955, 961, 1126
Windows launch parameter dictionary 661

O entry (3D cross section dictionary) 820

O entry (3D node dictionary) 829
O entry (3D render mode dictionary) 814
O highlighting mode (outline) 622, 641
O trigger event (page) 650
OB entry

projection dictionary 809
Obj entry (object reference dictionary) 868
obj keyword 58, 64, 102
object alpha 535-536

in isolated groups 539
notation 537

object collections (object streams) 102
object color 536

and rendering intents 575
and soft masks 545

object digests 725
calculation of 1131-1138
See also

transform methods
transform parameters

object hierarchy
FDF 713
PDF 137

object identifiers 63
cross-reference table, reconstruction of 993
and encryption 119
and incremental updates 99
shared (Linearized PDF) 1041-1042, 1049
in updating example 1074-1075, 1077, 1079-1080,

1082
object numbers 63

in cross-reference table 94-95, 97, 99
and encryption 119
in FDF files 711
in indirect object references 64
subsection entry constraints 94
in updating example 1075, 1079-1080

object opacity 527, 549
in knockout groups 540
notation 528, 533
and overprinting 566
patterns 560
specifying 550
and tiling patterns 528

object reference dictionaries 859, 868
Obj entry 868
Pg entry 868
Type entry 868

object references (logical structure) 869-870
and link elements (Tagged PDF) 906-907, 910
See also

object reference dictionaries

Index
1250

object shape 526-527, 536, 549
current clipping path 545
glyphs 549
image masks 549
in isolated groups 539
in knockout groups 540
notation 528, 532, 536
path objects 549
patterns 549, 560
sample images 549
sh operator 549
shading patterns 549
specifying 549
tiling patterns 528, 549
and topmost object 573
in transparency groups 535

object signatures
See object digests

object stream dictionaries 101
Extends entry 101-102
First entry 101
Length entry 101
N entry 101
Type entry 101

object streams 93, 100-105
compatibility with PDF 1.4 109-115
indirect objects in 64
in Linearized PDF 1025
object collections 102
performance 102
stream data 102
See also

object stream dictionaries
object subtypes 59-60

Embedded 787
embedded files 185
external objects (XObjects) 332-333

object types 59-60
3D 797
3DBG 812
3DRef 801
3DView 804
Action 648
Annot 606, 1075, 1080
Bead 597
Border 611
Catalog 139, 1058, 1060
CMap 448
CryptFilter 132
CryptFilterDecodeParms 90
EmbeddedFile 185
Encoding 427
ExtGState 220
Filespec 182, 190

FixedPrint 645
Font 60, 413, 420, 436, 452, 1060
FontDescriptor 456
FWParams 774
Group 361
Halftone 496-497, 499, 502, 504-505
Mask 553
MCR 863
Measure 746
MediaClip 764
MediaDuration 771
MediaOffset 775
MediaPermissions 766
MediaPlayerInfo 779
MediaPlayers 777
MediaPlayParams 769
MediaScreenParams 772
Metadata 846
MinBitDepth 761
MinScreenSize 762
NavNode 602
OBJR 868
ObjStm 101
OCG 364
OCMD 366
OPI 980, 983
Outlines 585, 1058, 1060
OutputIntent 971
Page 145, 710, 1058, 1060, 1075
PageLabel 595
Pages 143, 1058, 1060
Pattern 292, 302
Rendition 759
Sig 727
SigFieldLock 697
SigRef 730
SlideShow 787
SoftwareIdentifier 780
Sound 783
SpiderContentSet 953
StructElem 858
StructTreeRoot 857
SVCert 700
Template 710
Thread 596
Timespan 776
Trans 599
TransformParams 733-734, 736
Viewport 745
XObject 332-333, 340, 358, 554
XRef 107

objects 33, 47-48
compressed 100
in FDF 711

Index
1251

fully opaque 573-574
generation number. See generation numbers
hierarchy 137, 713
identifier. See object identifiers
indirect references. See indirect object references
length 40
as logical structure content items 857, 859, 861, 868-

869
number. See object numbers
processing 41
subtype. See object subtypes
syntax 51-65
topmost 573
type. See object types
See also

array objects
boolean objects
compressed objects
dictionary objects
direct objects
external objects (XObjects)
form XObjects
function objects
graphics objects
group XObjects
image XObjects
indirect objects
inline image objects
integer objects
multimedia objects
null object (null)
numeric objects
page objects
path objects
PostScript XObjects
real objects
reference XObjects
shading objects
stream objects
string objects
text objects
transparency group XObjects

OBJR object type 868
ObjStm object type 101
OC entry

alternate image dictionary 347, 349
annotation dictionary 608
image dictionary 343, 349, 374
type 1 form dictionary 360

OC marked-content tag 370-371
OCG object type 364
OCGs entry

optional content membership dictionary 366-367, 372
optional content properties dictionary 375

usage application dictionary 382-383, 386
OCMD object type 366
OCProperties entry (document catalog) 141, 375, 385
OEB (Open eBook) file format

standard attribute owner 914
Tagged PDF 893

OEB-1.00 standard attribute owner 914-915
Off appearance state

check box field 686
radio button field 689

OFF entry (optional content configuration dictionary)
376

OFF state (optional content groups) 365-367, 371, 376,
378, 382-383, 385, 667-668

offset printing presses 974
OID entry (certificate seed value dictionary) 701
OLE (Object Linking and Embedding) 98
ON entry (optional content configuration dictionary) 376
ON state (optional content groups) 365-367, 371, 376, 378,

382-383, 385, 667-668
Once play mode (movie) 786
OneColumn page layout 140
OnInstantiate entry (3D stream dictionary) 797-798
Online annotation usage rights 735
Online form usage rights 735
OP entry

graphics state parameter dictionary 221, 284, 743
rendition action dictionary 669

op entry (graphics state parameter dictionary) 221, 284
opacity 35, 195, 514-515

alpha source parameter 212, 223, 341
anti-aliasing 527
backdrop 529
in basic compositing formula 518
computation 526-529
current alpha constant 212, 222, 341
fully opaque objects 573-574
in JPEG2000 images 88
notation for 517
soft masks 516, 527, 550
specifying 549-551
See also

constant opacity
group opacity
mask opacity
object opacity
result opacity
source opacity

opacity constant 527
opaque imaging model 35, 514, 1112

clipping 516, 545

Index
1252

graphics objects, painting of 195
graphics state, initialization for patterns 560
knockout groups compared to 540
masked images 349
overprinting 284, 565-566, 570-572
page group, flattening of 543, 576
shading patterns 305
spot colors 564

Open entry
pop-up annotation dictionary 637
text annotation dictionary 621

open paths 225
Open play mode (movie) 786
Open Prepress Interface (OPI) 962, 978-984, 1128

proxies 363, 842, 962, 979-984
server 979-980
versions 979-980, 983

1.3 979-982
2.0 979, 983-984, 1128

See also
OPI comments
OPI dictionaries
OPI version dictionaries

Open Prepress Interface (OPI) Specification (Adobe Techni-
cal Note #5660) 980, 1152-1153

OpenAction entry (document catalog) 140, 582, 647, 650,
1031, 1034, 1046, 1051, 1129

URI actions ignored for 662
OpenArrow line ending style 630
OpenType embedded font subtype 438, 466-467
OpenType font programs

“CFF” table 466, 468-469
“cmap” table 469
embedded 40

OpenType Font Specification (Adobe Technical Note) 466,
468, 1152

OpenType fonts 32, 466-469
operands 35, 151, 194
Operation entry (movie action dictionary) 665
operators, PDF 35, 194, 985-988

' (apostrophe) 196, 398, 400, 407, 988
'(apostrophe) 398
" (quotation mark) 196, 398, 400, 407, 988
B 196, 230, 569, 985
b 196, 225, 230, 569, 985
B* 196, 230, 569, 985
b* 196, 230, 569, 985
BDC 196, 370-371, 850-852, 862, 985
BI 196, 352, 985
BMC 196, 679, 850-851, 985
boolean 52
BT 196, 390, 401, 405, 679, 851, 911, 985

BX 152, 196, 369, 985
c 196, 226, 228, 985
categories 196
cm 196, 202, 210, 219, 338, 985
CS 196, 236, 240, 242-243, 270, 287, 289, 291, 986
cs 196, 236, 240, 242-243, 270, 287, 289, 291, 986
d 196, 219, 986
d0 196, 421, 423, 986
d1 196, 289, 421, 423, 986
defined 151
Do 196, 291, 295, 299, 303, 332-333, 335, 339, 343,

356-357, 360, 374, 558-559, 574-575, 853, 865, 868,
986

DP 196, 370, 850-852, 986
EI 196, 352, 354, 986
EMC 196, 370-371, 679, 850-851, 862, 986
ET 196, 401, 405, 679, 851, 911, 986
EX 152, 196, 369, 986
F 196, 230, 986
f 36, 196, 210, 225, 229-230, 232, 236, 289, 292, 295,

299, 303, 986
f* 196, 230, 232, 986
G 196, 236, 240-242, 288-289, 986
g 196, 236, 240-242, 288-289, 336, 391, 986
gs 196, 219, 222, 289, 397, 403, 478, 552, 986
h 196, 225, 227, 231, 986
i 196, 219, 508, 986
ID 196, 352, 354, 986
implementations of 842
J 196, 219, 986
j 196, 219, 986
K 196, 236, 240-241, 243, 288, 986
k 196, 236, 240-241, 243, 288, 987
l 196, 226, 231, 987
M 196, 219, 987
m 196, 226, 232, 987
MP 196, 850-851, 987
n 196, 230, 235, 852-853, 987
ordering rules 196-198
painting 35-36, 45, 214, 234, 266-267, 271, 284, 286,

292-294, 303
postfix notation 151, 194
procedure sets 841-842, 1125
Q 196, 214-215, 219, 235, 294, 338, 357, 392, 402, 679,

854, 987, 992, 1128
q 196, 214-215, 219, 235, 294, 338, 357, 679, 854, 987,

992, 1128
re 196, 225-227, 987
relational 52
RG 196, 236, 240-241, 243, 288-289, 987
rg 196, 236, 240-241, 243, 288-289, 563, 568, 987
ri 196, 219, 260, 286, 289, 987
S 36, 196, 210, 225, 229-231, 236, 289, 292, 303, 422,

987
s 196, 230, 987

Index
1253

SC 196, 236, 240, 242-243, 264, 287, 289, 987
sc 196, 236, 240, 242-243, 264, 288-289, 318, 336, 987
SCN 196, 240, 264, 266, 270, 288-289, 291, 294-295,

298, 987
scn 196, 240, 264, 266, 270, 288-289, 291, 294-295,

298-299, 987
sh 196, 289, 303-305, 509, 549, 560, 987
T* 196, 398, 400, 406, 987
Tc 196, 398, 987
TD 196, 400, 406, 988
Td 196, 390, 406, 987
Tf 60, 196, 221, 389-390, 398, 436, 679, 988
TJ 196, 394, 398, 400, 408, 410, 988, 1108
Tj 196, 289-290, 295, 299, 303, 390-394, 398, 407, 409,

453, 988, 1108
TL 196, 398, 988
Tm 196, 406, 679, 988
Tr 196, 392, 398, 988
Ts 196, 398, 988
Tw 196, 398, 988
Tz 196, 398, 988
v 196, 226, 229, 988
W 196, 225, 232, 234-235, 852-853, 988
w 196, 213, 219, 392, 988
W* 196, 225, 232, 234-235, 852-853, 988
y 196, 226, 229, 988
See also

clipping path operators
color operators
compatibility operators
graphics operators
graphics state operators
inline image operators
marked-content operators
path construction operators
path-painting operators
shading operator
text object operators
text-positioning operators
text-showing operators
text state operators
Type 3 font operators
XObject operator

operators, PostScript 388, 985-988
abs 176, 989
add 176, 989
and 176, 990
atan 176, 989
beginbfchar 452, 454, 472, 474
beginbfrange 452, 472, 474-475
begincidchar 452, 454
begincidrange 452
begincmap 451
begincodespacerange 451, 454, 472, 474

beginnotdefchar 452, 454
beginnotdefrange 452, 454
beginrearrangedfont 452
beginusematrix 452
bitshift 176, 990
ceiling 176, 989
cleartomark 467
clip 988
closepath 985-987
concat 985
copy 176, 990
cos 176, 989
curveto 985, 988
cvi 176, 989
cvr 176, 989
div 176, 989
dup 176, 990
endbfchar 452, 454, 472
endbfrange 452, 472
endcidchar 452, 454
endcidrange 452
endcmap 451
endcodespacerange 451, 454, 472, 474
endnotdefchar 452, 454
endnotdefrange 452, 454
endrearrangedfont 452
endusematrix 452
eoclip 988
eofill 985-986
eq 176, 990
exch 176, 990
exp 176, 989
false 176, 990
fill 985-986
findfont 333
floor 176, 989
ge 176, 990
grestore 987, 992, 1128
gsave 987, 992, 1128
gt 176, 990
idiv 176, 989
if 52, 176, 990
ifelse 52, 176, 990
index 176, 990
le 176, 990
lineto 46, 987
ln 176, 989
log 176, 989
lt 176, 990
mod 176, 989
moveto 46, 987
mul 176, 989
ne 176, 990
neg 176, 989
not 176, 990

Index
1254

or 176, 990
pop 176, 990
restore 1128
roll 176, 990
round 176, 989
save 1128
selectfont 988
setcachedevice 423, 986
setcharwidth 423, 986
setcmykcolor 986-987
setcolor 987
setcolorspace 986
setdash 986
setflat 986
setgray 986
sethalftone 1111
setlinecap 986
setlinejoin 986
setlinewidth 988
setmiterlimit 987
setrgbcolor 987
setscreen 1111
shfill 987
show 988
sin 176, 989
sqrt 176, 989
stroke 985, 987
sub 176, 989
true 176, 990
truncate 176, 989
in type 4 (PostScript calculator) functions 176, 989-

990
usecmap 451
usefont 452
xor 176, 990

OPI. See Open Prepress Interface
OPI color types 981

Process 981
Separation 981
Spot 981

OPI comments (PostScript) 363, 979-984, 1128
%ALDImageAsciiTag 982
%ALDImageColor 982
%ALDImageColorType 981
%ALDImageCropFixed 981
%ALDImageCropRect 980
%ALDImageDimensions 980
%ALDImageFilename 980
%ALDImageGrayMap 982
%ALDImageID 980
%ALDImageOverprint 982
%ALDImagePosition 981
%ALDImageResolution 981
%ALDImageTint 982

%ALDImageTransparency 982
%ALDImageType 982
%ALDObjectComments 980
%%ImageCropRect 984
%%ImageDimensions 983
%%ImageFilename 983
%%ImageInks 984
%%ImageOverprint 984
%%IncludedImageDimensions 984
%%IncludedImageQuality 984
%%MainImage 983
%%TIFFASCIITag 983

OPI dictionaries 184, 363, 979-984, 1128
and trap networks 977
version 1.3 980-982

Color entry 981-982
ColorType entry 981
Comments entry 980
CropFixed entry 981
CropRect entry 980
F entry 980, 1128
GrayMap entry 982
ID entry 980
ImageType entry 982
Overprint entry 982
Position entry 981
Resolution entry 981
Size entry 980
Tags entry 982
Tint entry 982
Transparency entry 982
Type entry 980
Version entry 980

version 2.0 983-984
CropRect entry 984
F entry 983, 1128
IncludedImageDimensions entry 984
IncludedImageQuality entry 984
Inks entry 984
MainImage entry 983
Overprint entry 984
Size entry 983-984
Tags entry 983
Type entry 983
Version entry 983

OPI entry
image dictionary 342, 555, 979
type 1 form dictionary 359, 979

OPI object type 980, 983
OPI: Open Prepress Interface Specification (Adobe Systems

Incorporated) 980, 1152
OPI version dictionaries 342, 359, 979, 983

1.3 entry 979
2.0 entry 979

Index
1255

OPM entry (graphics state parameter dictionary) 221, 285
Opt entry

check box field dictionary 688
choice field dictionary 694-695, 1119
FDF field dictionary 715, 719
radio button field dictionary 690-691

optimization of PDF files 41
optional content 364-386

with alternate images 347, 349
and annotations 374
configuring 374-386
in content streams 370-373
in form XObjects 360, 374
hiding 369
in image XObjects 374
intent 368, 376
visibility 366

optional content configuration dictionaries 375-379
AllPages list mode 377
alternate 375
AS entry 377, 379, 382-383, 386
BaseState entry 376, 385
Creator entry 376
default 375
Intent entry 376, 380
ListMode entry 377
Locked entry 378
Name entry 376-377
OFF entry 376
ON entry 376
Order entry 377-378
RBGroups entry 378, 667
VisiblePages list mode 377

optional content group dictionaries 364-365
Intent entry 365, 368-369
Name entry 364-365
Type entry 364-365
Usage entry 365, 380

optional content group panel, hiding and showing 140,
578

optional content groups 364-369, 374-375
determining state 385-386
initialization 365
locking 378
OFF state 365-367, 371, 376, 378, 382-383, 385, 667-

668
ON state 365-367, 371, 376, 378, 382-383, 385, 667-

668
setting state 667
Toggle state 667-668
Unchanged state 376
See also

optional content group dictionaries

optional content membership dictionaries 360, 365-368,
374

OCGs entry 366-367, 372
P entry 366-367, 372, 374
Type entry 366
VE entry 366-367, 374
visibility policy 365-366

optional content properties dictionary 375
Configs entry 375
D entry 375, 385
OCGs entry 375

optional content usage dictionaries 380-385
CreatorInfo entry 380
Export entry 381, 383
Language entry 380, 383
PageElement entry 381
Print entry 381, 383
User entry 381, 383
View entry 381, 383
Zoom entry 381, 383, 385

OptionalContent entry (legal attestation dictionary) 743
or operator (PostScript) 176, 990
orange colorant

PANTONE Hexachrome system 269
Order entry

optional content configuration dictionary 377-378
type 0 function dictionary 170, 173, 1105

Ordering entry (CIDSystemInfo dictionary) 435, 445, 462
orthographic projection (3D artwork) 808, 810
OS entry

projection dictionary 809
software identifier dictionary 779-780

“OS/2” table (TrueType font) 461
Oscillating 3D animation styles 800
outline, document

See document outline
outline dictionary 140, 585, 1057-1058, 1060, 1062

Count entry 585
First entry 585
Last entry 585
Type entry 585

outline hierarchy 140, 584-586
example 1057, 1070
in Linearized PDF 1027, 1031, 1035, 1037
root 585

outline hint table (Linearized PDF) 1033, 1048
outline item dictionaries 585-586

A entry 586, 647, 654
AA entry (obsolete) 1112
C entry 586
Count entry 586, 1037
Dest entry 586, 654

Index
1256

F entry 586
First entry 586
Last entry 586
Next entry 585-586
Parent entry 585
Prev entry 585-586
SE entry 586
Title entry 585

outline item flags 586-587
Bold 587
Italic 587

outline items 584-586, 1070, 1072
actions for 585-586, 647
activating 585-586, 647, 1113
closed 585-586, 1072
color 586
destinations for 581-582, 584-586, 1113
flags 586-587
and go-to actions 654
movie actions associated with 664
open 585-586, 1070
structure elements associated with 586
and trigger events 650
URI actions ignored for 662

Outlines entry (document catalog) 111, 140, 585, 1057
Outlines object type 585, 1058, 1060
output devices

additive 264, 266, 487
bilevel 36, 38, 487, 494
black-generation function 483
CMYK 259, 485
color 38, 241, 487, 495
continuous-tone 480, 486
default halftone 487
device space 199-200, 204
displays. See displays, raster-scan
gamut 260-261, 479
halftones 486-487, 496
high-resolution 498
ICC profile 479
monochrome 480, 485-486, 495
native color space. See native color space
output intents 970-973, 1127
overprinting 284-285
paper-based 243
physical limitations 963
PostScript 45, 333, 413, 576, 842, 1107, 1112, 1128
printers. See printers
process color model 284, 477, 480
raster 36-37, 199, 214, 335, 477-478
rendering intents 260
resolution 37, 200, 211, 214, 305, 346, 498, 500
RGB 485
smoothness tolerance, limits on 509

subtractive 264-266, 488
transfer functions 484
undercolor-removal function 483

output intent dictionaries 141, 259, 970-973
See also PDF/X output intent dictionaries

output intent subtypes 970-971
GTS_PDFX 971

output intents 479, 842, 962, 970-973, 1127
ICC color profiles for 255
output intent dictionaries 141, 259
subtype 970-971

output medium 265, 962, 965
backdrop color for compositing 542-543
crop box 145, 963, 1127
film 265, 962
imposition of pages on 542-543, 557-558, 965, 1126-

1127
media box 145, 962-963
paper 962
plates 962
properties of 478

OutputCondition entry (PDF/X output intent dictionary)
971

OutputConditionIdentifier entry (PDF/X output intent
dictionary) 971-972

OutputIntent object type 971
OutputIntents entry (document catalog) 141, 970
Outset border style 921
over operator (Porter and Duff) 518
overflow hint stream (Linearized PDF) 1028, 1032

hint table offsets in 1033
in linearization parameter dictionary 1029, 1129
object offsets unaffected by 1040
and one-pass file generation 1053
primary hint stream, concatenated with 1032, 1039
use discouraged 1053

Overlay blend mode 521
Overline text decoration type 928
overprint control 284-286

See also
overprint mode
overprint parameter

Overprint entry
version 1.3 OPI dictionary 982
version 2.0 OPI dictionary 984

overprint mode 212, 285-286
CompatibleOverprint blend mode, ignored by 572
K operator 288
k operator 288
nonzero 259, 285-286, 568
OPM entry (graphics state parameter dictionary) 221
summary 570-572

Index
1257

and transparency 565, 568-569
overprint parameter 212, 214, 284-285

CompatibleOverprint blend mode, ignored by 572
and halftones 574
nonstroking 212, 221, 574
OP entry (graphics state parameter dictionary) 221
op entry (graphics state parameter dictionary) 221
stroking 212, 221, 574
summary 570-572
and transfer functions 574
and transparency 565-567, 569-570

overprinting 35
and alternate color space 267, 271
and blend modes 566-567, 569
in EPS files 1107
opaque and transparent, compatibility between 567-

569
OPI proxies 982, 984
summary 570-572
and transparency 565-572

owner password 120, 122-123, 1103
authenticating (algorithm) 128
computing (algorithm) 126

P
P entry

3D view dictionary 805, 808
annotation dictionary 606, 640, 670
attribute object for user properties 876
bead dictionary 597, 1055
DocMDP transform parameters dictionary 732-733,

737
encryption dictionary 123, 125-126
floating window parameters dictionary 773-774
linearization parameter dictionary 1030, 1034
media clip data dictionary 764-765
media criteria dictionary 761
media rendition dictionary 762
optional content membership dictionary 366-367, 372,

374
page label dictionary 595-596
structure element dictionary 858
target dictionary 657
UR transform parameters dictionary 736
Web Capture command dictionary 958-959
Windows launch parameter dictionary 661

P highlighting mode (push) 622, 641
P standard structure type 901-902, 904
< p > XHTML element (rich text strings) 681, 683
PA entry

link annotation dictionary 623
navigation node dictionary 602-603

packing of ILSEs 897-898, 917
floating elements exempt from 898

padding (Tagged PDF) 921
Padding standard structure attribute 916, 919-921, 926
Paeth predictor function (LZW and Flate encoding) 75-76
Page artifact type 886
page artifacts 887
page boundaries 842, 962-966, 1126-1127

and bounding box 362
box colors 146
clipping to 579
color 967
dash pattern 967
display of 965-966
in printing 201, 579-580, 965
in viewing of documents 201, 579
See also

art box
bleed box
crop box
media box
trim box

page content order 883-884, 889-891, 936
annotations, sequencing of 890
artifacts 889
illustration elements 896
and nested BLSEs 901
for reverse-order show strings 891
and text discontinuities 888

page description languages 34
See also PostScript® page description language

page description level 196, 198, 286
page descriptions 38, 47, 60
page device parameters (PostScript) 978

ProcessColorModel 978
Page entry

annotation dictionary (FDF files) 722
reference dictionary 362

page group 146, 516, 542-543, 556
backdrop 516, 539, 542-543
backdrop color 542
and black-generation functions 575
color space 543, 548, 559, 561, 572
compositing in 516, 543
compositing of 542-543
group alpha 543
group color 543
group color space, explicit 562
group compositing formula 542-543
isolated 542-543, 557
non-isolated 542, 557
notation 543
and overprinting 572

Index
1258

and rendering intents 575
transparency stack 516, 573
and undercolor-removal functions 575

page indices 139, 594
in reference XObjects 362
See also

page labels
page label dictionaries 139, 595-596

P entry 595-596
S entry 595
St entry 596
Type entry 595

page label hint table (Linearized PDF) 1034, 1048
page labels 139, 594-596, 1113

label prefix 594-596
labeling ranges 139, 594-596
numbering style 595
in reference XObjects 362
See also

page indices
page label dictionaries

page layout 140, 1116
page mode 140, 578
Page object type 145, 710, 1058, 1060, 1075
page objects 137, 143-148, 1058, 1060, 1062, 1075, 1104-

1105
AA entry 147, 648
and annotations 606
Annots entry 147, 605, 640, 644, 670, 890, 975, 977,

1035, 1075, 1078-1080, 1128
ArtBox entry 146, 963, 1127
article beads 596-597
B entry 146, 596, 710, 1035, 1105
BleedBox entry 145, 963, 1127
BoxColorInfo entry 146, 965
Contents entry 146, 153, 215, 370, 850, 977, 1035,

1057, 1104
CropBox entry 145-146, 201, 579-580, 963
in destinations 582
Dur entry 147, 598, 600
Group entry 146, 556, 576
Hid entry (obsolete) 1104
ID entry 147, 961
inheritance of attributes 144-145, 149, 153
LastModified entry 145, 976
in Linearized PDF 1034-1036, 1040-1043
MediaBox entry 145, 149, 644-645, 963, 1035
Metadata entry 147
parent content set 147, 961
Parent entry 145, 710
PieceInfo entry 145, 147, 848
for preseparated pages 969
PresSteps entry 148, 602-603

PZ entry 147, 961
Resources entry 145, 153, 1035, 1037, 1057
Rotate entry 146, 201, 600, 605, 609, 1127
SeparationInfo entry 147, 969
StructParents entry 147, 869, 871
in structural parent tree 857
Tabs entry 147, 605
TemplateInstantiated entry 148, 1138
Thumb entry 146, 588, 1035
Trans entry 147, 598, 603
TrimBox entry 146, 963, 1127
Type entry 145
UserUnit entry 148, 201, 390, 1128
VP entry 148, 744
in Web Capture content database 947-949, 953, 956

page offset hint table (Linearized PDF) 1040-1043, 1129
header 1041-1042, 1045, 1129
and page retrieval 1053-1054
per-page entries 1040-1043, 1129
primary hint stream, first table in 1033, 1039
shared object hint table, references to 1037

page-piece dictionaries 841, 848-849
for form Xobjects 359
and modification dates 145, 359, 849
for page objects 147
See also

application data dictionaries
page scaling 580
page sets, Web Capture

See Web Capture page sets
page tree 137, 143-149, 1057, 1065

in Linearized PDF 1034, 1037
named pages in 710
nodes. See page tree nodes
page objects. See page objects
root 139

page tree nodes 143-145, 149, 1058, 1060, 1062, 1065
Count entry 143
Kids entry 143
in Linearized PDF 1031, 1034-1035
Parent entry 143
root 139
Type entry 143

PageElement entry (optional content usage dictionary)
381

PageLabel object type 595
PageLabels entry (document catalog) 139, 594, 1113
PageLayout entry (document catalog) 140
PageMaker® page layout software 1107
PageMode entry (document catalog) 140, 578, 1027, 1031,

1035
pages 33, 47

additional-actions dictionary 147, 1105

Index
1259

annotation dictionaries 147
art box. See art box
article beads 146, 596-597, 1105
bleed box. See bleed box
boundaries. See page boundaries
bounding box 582
box colors 146
composite 264, 563, 969
content streams in 146, 151, 884-885, 1057-1058, 1060,

1062, 1098, 1128
crop box. See crop box
current 35, 200, 202, 516, 531
in destinations 581-583
display duration 147, 598, 600-601
FDF (Forms Data Format) 720-721, 1121
fully opaque objects 574
gamut 479
importing 359, 362
imposition on output medium 542-543, 557-558, 965,

1126-1127
indices 139, 362, 594
labels 139, 362, 594-596, 1113
logical structure elements on 858, 863, 868
magnification factor 140, 147, 609, 961
media box. See media box
metadata 147
modification date 145, 849
movie actions associated with 664
named 150, 710

See also template pages
output medium 478
page-piece dictionary 147
placement in another document 542, 557-558, 964-965
positioning on output medium 963, 965
private data associated with 848-849
resource dictionary 145, 358, 421, 1111
rotation 146, 609
separation dictionary 147
size limits 993, 1128-1129
in structural parent tree 147, 857
in Tagged PDF 884
template 150, 721, 1121
thumbnail image 146
transition dictionary 147, 598-600
transparency group 146, 516, 542-543, 556
trap network annotation 975
trigger events for 650
trim box. See trim box
Web Capture content set 147
See also

page objects
Pages entry

document catalog 139
FDF dictionary 715, 720

name dictionary 150, 710
separation dictionary 969

Pages object type 143, 1058, 1060
Pagination artifact type 886
pagination artifacts 886
paint types (tiling patterns) 292

type 1 (colored) 292, 294
type 2 (uncolored) 292, 298

painting
external objects (XObjects) 332, 986
filling. See filling
form XObjects 356-357, 558-559
glyphs 389-390, 401-402, 569, 1108
images 335
non-isolated groups 558
nonzero overprint mode 286
opaque imaging model 514-515
overprint parameter 284
paths 36, 193-194, 229-234, 303, 569-570
scan conversion 510-511
stroking. See stroking
transparency groups 558-559
transparent imaging model 514-516

painting operators
All colorant name 266
clipping of 36, 234
current page 35
DeviceN color spaces 271
filling 230, 232-234, 985-987
and graphics state 36, 214
None colorant name 266
parameters 36
pattern cells 292-294
PostScript and PDF compared 45
Separation color spaces 266
shading patterns 303
stroking 36, 193-194, 231-232, 985, 987
tint transformation functions 267, 271

PaintType entry
Type 1 font program 468
type 1 pattern dictionary 292, 561

Palindrome play mode (movie) 786
PANOSE Classification Metrics Guide (Hewlett-Packard

Company) 461, 1155
PANOSE classification system 461
Panose entry (CIDFont Style dictionary) 461
PANTONE Hexachrome color system 269
Paperclip annotation icon 638
Paragraph annotation icon 621
paragraphlike elements, standard

See standard paragraphlike elements
parameters, graphics state

Index
1260

See graphics state parameters
Params entry (embedded file stream dictionary) 185
parent content set (Web Capture)

image 342, 961
page 147, 961

Parent entry
field dictionary 675
outline item dictionary 585
page object 145, 710
page tree node 143
pop-up annotation dictionary 637

parent tree, structural
See structural parent tree

parentheses (()) 50, 409
as literal string delimiters 53
unbalanced 53-54, 56

ParentTree entry (structure tree root) 857, 869-870
ParentTreeNextKey entry (structure tree root) 858, 869
Part standard structure type 899, 904
partial field names 675-677, 717, 1117
Password authentication method (digital signatures) 729
Password field flag (text field) 691
passwords 121, 123-124

computing (algorithms) 126-128, 716, 1103
for FDF encryption 716
owner 120, 122-123, 126, 128, 1103
in text fields 691
user 120, 122-123, 125-127

patches, color
bicubic tensor-product 327-330
Coons 321-323, 327-328, 330

path construction operators 193, 196, 225-227
b 225
c 196, 226, 228, 985
in clipping paths 234
f 225, 229, 236
h 196, 225, 227, 231, 986
l 196, 226, 231, 987
m 196, 226, 232, 987
in path objects 36
re 196, 225-227, 987
S 231
in Type 3 glyph descriptions 422
v 196, 226, 229, 988
W 225
W* 225
y 196, 226, 229, 988

PATH environment variable (Windows) 1119
path objects 35-36, 194

as clipping paths 234, 852-853
in glyph descriptions 421
graphics state, dependence on 198

m operator 198
object shape 549
and path operators 225
re operator 198
in Tagged PDF 899

path-painting operators 193, 196, 225, 229-234
B 196, 230, 569, 985
b 196, 230, 569, 985
B* 196, 230, 569, 985
b* 196, 230, 569, 985
in clipping paths 234
ending path 194
F 196, 230, 986
f 36, 196, 210, 230, 232, 289, 292, 295, 299, 303, 986
f* 196, 230, 232, 986
filling 230, 232-234, 985-987
n 196, 230, 235, 852-853, 987
object shape 549
in path objects 36
S 36, 196, 210, 225, 229-231, 236, 289, 292, 303, 422,

987
s 196, 230, 987
shading patterns, compositing of 560
stroking 231-232, 985, 987
in Type 3 glyph descriptions 422
and transparent overprinting 569-570

paths 193, 214, 224-235, 303
clipping 193-194, 234-235, 401-402
construction 36, 193, 225-229, 985, 987-988
current 226, 231, 235
current point 226-228
filling 36, 193-194, 230, 232-234, 985-987, 1062
for ink annotations 636
open 225
painting 36, 193-194, 229-234, 303, 569-570
scan conversion 510-511
stroking 36, 193-194, 211, 215-216, 218, 231-232, 636,

985, 987
subpaths 225, 227, 234, 402, 986-987
See also

path objects
pattern cells 290-291, 294, 298

bounding box 293
clipping 293
colors 292-293
compositing in 559
compositing of 559
and fully opaque objects 574
as isolated groups 561
key 294
spacing 293
text objects in 405
transparent objects in 559

Pattern color spaces 237, 262, 290, 346

Index
1261

alternate color space, prohibited as 253, 267, 270
base color space, prohibited as 263
blending color space, prohibited as 557
colored tiling patterns 294
default color space, prohibited as 258
initial color value 287
remapping of underlying color space 258
sampled images, prohibited in 340
setting 240, 287
setting color values in 288, 291
shadings, prohibited in 305
uncolored tiling patterns 298
underlying color space for 258, 288, 298, 563
underlying color space, prohibited as 298

pattern dictionaries 290, 303
PatternType entry 290
See also

type 1 pattern dictionaries (tiling)
type 2 pattern dictionaries (shading)

Pattern entry (resource dictionary) 154, 288, 291, 294
pattern matrix 203, 291-294, 302
Pattern object type 292, 302
pattern objects 290
Pattern resource type 154, 288, 291, 294
pattern space 203, 291, 293-294, 303-304
pattern types 292, 302

type 1 (tiling) 262, 290-301
type 2 (shading) 220, 262, 290, 302-331

patterns 35, 235, 237, 289-331, 1107
for appearance streams 673
as color values 291
content streams 151, 292-294, 298, 302
dictionaries. See pattern dictionaries
explicit masks, simulating 350
and form XObjects 291
general properties 290-291
as named resources 154
object shape 549
page coordinate system, alignment with 291
parent content stream 291-292, 294
Pattern color spaces 262
pattern matrix 203, 291-294, 302
pattern objects 290
pattern space. See pattern space
resources for 153
and transparency 559-561
See also

shading patterns (type 2)
tiling patterns (type 1)

PatternType entry 290
type 1 pattern dictionary 292
type 2 pattern dictionary 302

Pause movie operation 665

PC entry (3D animation style dictionary) 799
PC entry (3D cross section dictionary) 820
PC entry (additional-actions dictionary) 649-650
PC trigger event (annotation) 650
PCL (Printer Command Language) file format 43
PCM entry (trap network appearance stream dictionary)

978
PDF files 33

body 90, 93, 1057, 1074
conversion from PostScript 44
cross-reference table. See cross-reference table
embedded file streams. See embedded file streams
encryption 41, 55, 115-128, 1103
header 90, 92-93, 99, 139, 1096-1098, 1102, 1104
incremental updates. See incremental updates
indirect generation 43-44
job tickets 478
network access 92, 1021-1023, 1051-1055

See also Forms Data Format (FDF)
optimization 41
portability 38-39, 49, 487, 783-784, 1111
preseparated 969, 978
random access 41, 45, 90, 93, 115
single-pass generation 40-41
structure 45, 47, 90-99, 1101-1102
trailer 91, 96-99, 1102

example 1057, 1074-1075, 1077, 1080, 1082
translation from other file formats 43
See also

file identifiers
PDF name registry

See name registry, PDF
PDF procedure set 842
PDF Signature Build Dictionary Specification for Acrobat

6.0 (Adobe Technical Note) 729, 1152
PDF versions

See versions, PDF
PDF/X (Portable Document Format, Exchange) file

format 970-972
PDF/X output intent dictionaries 971-972

DestOutputProfile entry 971-972
Info entry 971
OutputCondition entry 971
OutputConditionIdentifier entry 971
RegistryName entry 971
S entry 970-971
Type entry 971

PDFDocEncoding predefined character encoding 158,
188, 995-996

for alternate descriptions 943
euro character 1000
for FDF fields 1120
for JavaScript scripts 709, 1119

Index
1262

non-Latin writing systems and 688
for text annotations 1082

pdfmark language extension (PostScript) 44
percent sign (%) character 50

as comment delimiter 51
in uniform resource locators, “unsafe” 950

Perceptual rendering intent 262
period (.) character

double, in relative file specifications 180
double, in uniform resource locators (URLs) 950
in field names 677, 1117
in file names 181
in handler names 725
in uniform resource locators (URLs) 950
in unique names (Web Capture) 952

permissions, access
See access permissions

permissions dictionaries 741
DocMDP entry 731-732, 741
UR entry 726, 733-734, 741, 1121
UR3 entry 726, 728, 733-735, 741

Perms entry (document catalog) 142, 741
perspective projection (3D artwork) 808, 810-812
Pg entry

marked-content reference dictionary 863
object reference dictionary 868
structure element dictionary 858, 863, 868

photographs 36, 248, 260, 332
halftoning 38

Photoshop® image editing software 848, 1107
PI entry (additional-actions dictionary) 649-650
PI trigger event (annotation) 650
PickTrayByPDFSize entry (viewer preferences dictionary)

580
PID entry (media player info dictionary) 778-779
PieceInfo entry

document catalog 141, 844, 848
page object 145, 147, 848
type 1 form dictionary 359, 848

PIN authentication method (digital signatures) 729
pixels 36

in halftone screens 487-489, 494-495, 497
representation in memory 37-38
scan conversion 510-511

PJTF (Portable Job Ticket Format) 48, 478, 963, 975, 978,
1127

PKCS #5
Password-Based Cryptography Specification Version

2.0 (Internet RFC 2898) 119, 1157
PKCS #7 Cryptographic Message Syntax, Version 1.5 (Inter-

net RFC 2315) 128, 131, 738, 1156

PKCS #1 - RSA Cryptography Standard 1158
PKCS#1 signatures 727, 738

adbe.x509.rsa_sha1 727, 738
PKCS#7 encoding (public-key security handlers) 128
PKCS#7 objects

public-key encryption 129-131, 134
public-key signatures 727-728
revocation information 739
time stamp information 739

PKCS#7 signatures 738-740
adbe.pkcs7.detached 727, 738
adbe.pkcs7.sha1 727, 738

PL entry
media clip data dictionary 764-765, 1123
media play parameters dictionary 762, 769

placement attributes 917-918
Before 918
Block 917, 923, 931
End 918, 923, 931
Inline 901, 916-917, 922, 931
Start 918, 923, 931

Placement standard structure attribute 898, 901, 904, 912,
916-917, 922-923, 931

plates, color
Plate 1, Additive and subtractive color 241
Plate 2, Uncalibrated color 244
Plate 3, Lab color space 250
Plate 4, Color gamuts 250
Plate 5, Rendering intents 260
Plate 6, Duotone image 269
Plate 7, Quadtone image 269, 282
Plate 8, Colored tiling pattern 295
Plate 9, Uncolored tiling pattern 299
Plate 10, Axial shading 310
Plate 11, Radial shadings depicting a cone 312-313
Plate 12, Radial shadings depicting a sphere 313
Plate 13, Radial shadings with extension 313
Plate 14, Radial shading effect 313
Plate 15, Coons patch mesh 321
Plate 16, Transparency groups 515
Plate 17, Isolated and knockout groups 539-540
Plate 18, RGB blend modes 520
Plate 19, CMYK blend modes 520
Plate 20, Blending and overprinting 569

play mode (movie) 786
Once 786
Open 786
Palindrome 786
Repeat 786

Play movie operation 665
plug-in extensions

action types 652
for actions 1116-1117

Index
1263

annotation handlers 605, 614-615
for annotations 1114
file systems 182
and Linearized PDF 1032, 1034, 1039, 1048
and logical structure 873
and marked content 850, 852
and metadata 843
modification dates, maintenance of 976
names, registering 1019
output intents 1127
for RGB output 970, 1019
signature handlers 725
sound formats 783
Web Capture. See Web Capture plug-in extension
WebLink 1116
and version compatibility 1095-1096

plus sign (+) character
in dates 161
in font subset names 419

PNG (Portable Network Graphics) predictor functions
75-76

algorithm tags 76
Average 75-76
None 75-76
Paeth 75-76
Sub 75-76
Up 75-76

PNG (Portable Network Graphics) Specification (Internet
RFC 2083) 75, 1156

PO entry (3D cross section dictionary) 820
PO entry (additional-actions dictionary) 649-650
PO trigger event (annotation) 650
Poetica® typeface 419
points (printers’ unit) 201
polygon annotation dictionaries

BE entry 611, 633
BS entry 632
IC entry 633
IT entry 633
Measure entry 633
Subtype entry 632
Vertices entry 632

Polygon annotation type 615, 632-633
polygon annotations 615, 632-633

intent 633
PolygonCloud annotation intent 633
PolygonDimension annotation intent 633
polyline annotation dictionaries

BS entry 632
IC entry 633
LE entry 632
Subtype entry 632

Vertices entry 632
PolyLine annotation type 615, 632
polyline annotations 615, 632-633

intent 633
PolyLineDimension annotation intent 633
pop operator (PostScript) 176, 990
pop-up annotation dictionaries 637

Contents entry 617
Open entry 637
Parent entry 637
Subtype entry 637

pop-up annotations 616-618, 637
parent annotation 637
See also

pop-up annotation dictionaries
pop-up help systems 608, 665
pop-up windows 604, 607, 618, 623, 705

for circle annotations 630
for ink annotations 636
for line annotations 626
for pop-up annotations 637
for rubber stamp annotations 635
for sound annotations 943
for square annotations 630
for text annotations 621
for text markup annotations 633

Popup annotation type 616, 637
Popup entry (markup annotation dictionary) 618, 637
portability of PDF files 38-39, 49, 487, 783-784, 1111
portable collections 588
Portable Job Ticket Format (PJTF) 48, 478, 963, 975, 978,

1127
Portable Job Ticket Format (Adobe Technical Note #5620)

48, 478, 975, 978, 1153
Position entry (version 1.3 OPI dictionary) 981
position vector (glyph) 395

in CIDFonts 440-441
DW2 entry (CIDFont) 440
W2 entry (CIDFont) 440-441

POST request (HTTP) 704, 956, 959
“post” table (TrueType font) 429, 431
Poster entry (movie dictionary) 785
poster images (movies) 785
postfix notation 151, 194
PostScript calculator functions

See type 4 functions
PostScript Language Document Structuring Conventions

Specification (Adobe Technical Note #5001) 1152
PostScript Language Reference (Adobe Systems

Incorporated) 31, 176, 328, 413, 496, 975, 978, 989,
991, 1152

Index
1264

PostScript® page description language 23
CMap files 451
CMap names 448
color rendering dictionary 479
composite fonts 433
conversion to PDF 43
current path 226
default user space 201
dictionary keys 59
document structuring conventions (DSC) 51
Encapsulated PostScript (EPS) 516
files 44, 1128
font dictionaries 411
font names 410, 413, 417-419, 436, 453, 456
forms 355
halftone dictionaries 496, 505
image space 203
imaging model 25, 31, 34
implementation limits 991
interpreter 178, 413, 451, 991
LanguageLevel 1 333, 1108
LanguageLevel 2 1108
LanguageLevel 3 1107
names, compatibility with 1099
null object 59
number syntax 52
OPI comments 363, 979
output devices 45, 333, 413, 576, 842, 1107, 1112, 1128
page descriptions 44
page group, flattening of 543
patterns 291
and PDF, compared 45-46
postfix notation 151
predefined spot functions, definitions of 489-493
procedure sets 842
ProcessColorModel page device parameter 978
scanner 178
sequential execution model 194
spot functions 496
transfer functions 496
transparent imaging model, compatibility with 576
trapping instructions 975
Type 1 font programs 412-413, 467
Type 3 fonts 422
type 7 shadings, data format 328
Type 42 font format 418
See also

operators, PostScript
PostScript XObjects
type 4 functions (PostScript calculator)

PostScript XObject dictionaries 333
Level1 entry 333
Subtype entry 333
Type entry 333

PostScript XObjects 195, 332-334
See also PostScript XObject dictionaries

PP entry (additional-actions dictionary, obsolete) 1115
PPK. See public/private-key authentication
preblending of soft-mask image data 554-556
predefined character encodings 995-1017, 1110

for Symbol font, built-in 995, 1013-1015
for ZapfDingbats font, built-in 996, 1016
See also

MacExpertEncoding predefined character encoding
MacRomanEncoding predefined character encod-

ing
PDFDocEncoding predefined character encoding
StandardEncoding predefined character encoding
WinAnsiEncoding predefined character encoding

predefined CMaps 438-439, 442-448, 995
as base CMap 449
character collections for 446-448, 471
Identity-H 445, 471
Identity-V 445, 471
with Type 0 fonts 453
Unicode mapping 471

predefined spot functions 488-494, 497, 1111-1112
CosineDot 490
Cross 493
Diamond 493
Double 490
DoubleDot 489
Ellipse 491
EllipseA 492
EllipseB 492
EllipseC 492
InvertedDouble 490
InvertedDoubleDot 489
InvertedEllipseA 492
InvertedEllipseC 492
InvertedSimpleDot 489
Line 488, 490
LineX 490
LineY 491
Rhomboid 493
Round 491
SimpleDot 488-489
Square 493

Predictor entry
FlateDecode filter parameter dictionary 74-76
LZWDecode filter parameter dictionary 74-76

predictor functions (LZW and Flate encoding) 71, 74-77,
340

Average 75-76
None 75-76
Paeth 75-76
PNG (Portable Network Graphics) 75-76

Index
1265

Sub 75-76
TIFF (Tag Image File Format) Predictor 2 75-76
Up 75-76

preferences, viewer
See viewer preferences

Preferences folder (Mac OS) 1119
Preferred entry (Language subdictionary, optional content

usage dictionary) 380, 383
premultiplied alpha

See preblending of soft-mask image data
premultiplied opacity channel (JPEG2000) 88
“prep” table (TrueType font) 468-469
prepress production 34, 842, 962-984

See also
Open Prepress Interface (OPI)
output intents
page boundaries
printer’s marks
separation dictionaries
trapping

presentations 594, 598-601
display duration 147, 598, 600-601
sub-page navigation 601-603
transition dictionaries 147, 598-600
transition style 599

preseparated files 969
and trapping 978

PreserveRB entry (set-OCG-state action dictionary) 667
PresSteps entry (page object) 148, 602-603
Prev entry

cross-reference stream dictionary 108
file trailer dictionary 97, 99, 108, 110-111, 1030, 1038,

1075, 1077, 1080, 1082
navigation node dictionary 602-603
outline item dictionary 585-586

PrevPage named action 666
See also named-action dictionaries

Primary 3D lighting styles 818
primary colorants 264, 267

and halftones 487, 496
primary hint stream (Linearized PDF) 1027, 1032

in first-page cross-reference table 1030
and first-page section, ordering of 1032, 1034, 1051-

1052
hint table offsets in 1033, 1039, 1048
in linearization parameter dictionary 1029, 1032
object offsets, ignored by 1039-1040, 1042
and one-pass file generation 1053
overflow hint stream, concatenated with 1032, 1039

Print annotation flag 608, 968, 976, 1114
Print entry (optional content usage dictionary) 381, 383

Print event type (usage application dictionary) 382-383,
386

print scaling 580
Print Setup dialog 1127
PrintArea entry (viewer preferences dictionary) 579
PrintClip entry (viewer preferences dictionary) 580
printer driver 43-44
printer’s mark annotation dictionaries 968

MN entry 968
Subtype entry 968

printer’s mark annotations 616, 643, 966-968
annotation rectangle 966
appearance streams for 968
See also

printer’s mark annotation dictionaries
printer’s mark form dictionaries 968-969

Colorants entry 969
MarkStyle entry 968

printer’s marks 842, 962-963, 966-969
See also printer’s mark annotations

PrinterMark annotation type 616-617, 715, 968
printers 200, 243

color 487, 505
dot-matrix 36-37
and halftones 488
ink-jet 36-37
laser 36-37
process colorants 264
separations 266-267

PrintField attributes
checked 934
Desc 934
Role 934

PrintField standard attribute owner 915
printing 121

access permission 121, 123-124
alternate images 347
annotations 608-609, 613, 1114
embedded fonts, copyright restrictions on 465
glyph widths in 1109
by launch actions 659-661
list numbering 933
n-up 578
OPI proxies 1128
output medium, dialog with user on 478
page boundaries 579-580, 965
PostScript XObjects 333
predefined spot functions 1112
Print Setup dialog 1127
procedure sets and 1125
R2L reading order 578
reference XObjects 363

Index
1266

trigger events associated with 651
printing presses, offset 974
PrintingOrder entry (DeviceN mixing hints dictionary)

274
PrintPageRange entry (viewer preferences dictionary) 581
PrintScaling entry (viewer preferences dictionary) 580
PrintState entry (Print subdictionary, optional content us-

age dictionary) 381, 383
Private entry (application data dictionary) 849
Private standard structure type 901
procedure sets 46, 841-842, 1058, 1060, 1062, 1125

ImageB 842
ImageC 842
ImageI 842
as named resources 154, 842
PDF 842
and PostScript XObjects 334
Text 405, 842
trap networks, excluded from 977

process color components
and overprinting 570-571
spot colors, treating as 565
and transparent overprinting 568, 571-572

process color model 284, 477, 480, 978
DeviceCMY 978
DeviceCMYK 978
DeviceGray 978
DeviceN 978
DeviceRGB 978
DeviceRGBK 978

process colorants
additive devices, inapplicable to 266
All colorant name 266
and alternate color space 267
in composite pages 264, 969
and current blend mode 548
DeviceCMYK color space 243
DeviceN color spaces 272
halftones for 506
and high-fidelity color 268
NChannel color spaces 273
and overprinting 570-571
process color model 480
Separation color spaces 264
spot colorants, approximation of 564
transfer functions 222
and transparency 563, 566
and transparent overprinting 567, 571
See also

black colorant
cyan colorant
magenta colorant
yellow colorant

process colors 480
and blending color space 519
and flattening of transparent content 576
group color space, conversion to and from 563
separations, previewing of 970
and transparency 563
and transparent overprinting 566

process dictionaries (DeviceN color spaces) 272
Process entry (DeviceN color space attributes dictionary)

272
Process OPI color type 981
ProcessColorModel page device parameter (PostScript)

978
ProcSet entry (resource dictionary) 154, 842, 1057-1058
ProcSet resource type 154, 842, 1057-1058
producer applications, PDF 25

accessibility to users with disabilities 936
artifacts, generation of 885
encoding of data 65
glyph widths, specification of 1109
logical structure, use of 855
names, embedded spaces in 1099
names, registering 1019
page tree, handling of 143
PDF version, updating 92, 139
predefined CMaps, support for 448
printer’s marks, generation of 966
procedure sets, specification of 842
ToUnicode CMaps 40

producer applications, Tagged PDF
annotations, sequencing of 890
footnotes, placement of 906
hyphenation, specification of 888
logical structure, definition of 889
page content order, establishment of 889
Private grouping element 901
standard structure elements, role mapping to 884
Unicode mapping 892

Producer entry (document information dictionary) 844
production, prepress

See prepress production
production conditions 970-971

Custom 971
registry 971

profiles, ICC color
See ICC color profiles

projecting square line cap style 216, 231
projection dictionaries 805, 808-812

CS entry 808-809
F entry 808-809
FOV entry 809-810
N entry 809

Index
1267

OB entry 809
OS entry 809
PS entry 809, 811
Subtype entry 805, 808-810

projection, orthographic (3D artwork) 808, 810
projection, perspective (3D artwork) 808, 810-812
Prop_AuthTime entry (signature dictionary) 729
Prop_AuthType entry (signature dictionary) 729
Prop_Build entry (signature dictionary) 727, 729
Properties entry (resource dictionary) 154, 370, 851-852
Properties resource type 154, 370, 851-852
property lists 850-852, 985-986

ActualText entry 892, 905, 944
Alt entry 892, 905, 942-943
for artifacts 886
Attached entry (Tagged PDF artifact) 886
BBox entry (Tagged PDF artifact) 886
E entry 888, 892-893, 905, 945
Lang entry 905, 937-940
for logical structure content items 862
MCID entry 862, 905, 939, 941
Metadata entry 847
as named resources 154, 847, 851-852
Subtype entry (Tagged PDF artifact) 886
TagSuspect entry 889
Type entry (Tagged PDF artifact) 886

Proportional font characteristic 893
proportional fonts 393, 458
Proportional glyph class 463-464
proportional scaling 720
ProportionalRot glyph class 463-464
proxies

OPI 363, 842, 962, 979-984
reference XObject 359, 361-363, 1054

PS entry
number format dictionary 749
projection dictionary 809, 811

PS XObject subtype 332-333
pseudorectangular lattices 319
public/private-key (PPK) authentication 725
publications, related 31-32
public-key encryption 130-131
public-key encryption formats

adbe.pkcs7.s3 129, 131
adbe.pkcs7.s4 129
adbe.pkcs7.s5 129, 131

public-key security handlers 128-131
access permissions 128
Adobe.PPKLite 129
Adobe.PubSec 129
encryption algorithms 130-131

encryption dictionary 129
Entrust.PPKEF 129
PKCS#7 encoding 128
recipient lists 128-129, 134
X.509 certificate 128

Push transition style 599-600
Pushbutton field flag (button field) 686, 689
pushbutton fields 685-686

appearances for 718
and reset-form actions 707
and submit-form actions 707

pushbuttons 674
PushPin annotation icon 638
PV entry (additional-actions dictionary) 649-650
PV trigger event (annotation) 650
PZ entry (page object) 147, 961

Q
Q entry

field dictionary 673, 678-679, 683
free text annotation dictionary 624
interactive form dictionary 673

Q operator 196, 219, 987
and clipping path 235, 392, 402
and current transformation matrix (CTM) 338
and dynamic appearance streams 679
and form XObjects 357
and graphics state stack 214-215
implementation limit 992, 1128
marked clipping sequences, prohibited in 854
and tiling patterns 294

q operator 196, 219, 987
and clipping path 235
and current transformation matrix (CTM) 338
and dynamic appearance streams 679
and form XObjects 357
and graphics state stack 214-215
implementation limit 992, 1128
marked clipping sequences, prohibited in 854
and tiling patterns 294

quadding
form field 678-679
free text annotation 624

QuadPoints entry
link annotation dictionary 623
text markup annotation dictionary 634, 1115

quadtone color 269
example 282-284

QuarkXPress® publishing software 1107
QuickDraw imaging model 43-44

Index
1268

quotation mark (") character
as text-showing operator 196, 398, 400, 407, 988

quotations
block 900
inline 906

Quote standard structure type 906
BlockQuote, distinguished from 906

R
R entry

appearance characteristics dictionary 642
appearance dictionary 614, 718, 968, 975
bead dictionary 597
encryption dictionary 122, 126
floating window parameters dictionary 773, 775
media criteria dictionary 760
rectilinear measure dictionary 746
rendition action dictionary 669
selector rendition dictionary 763
signature dictionary 728
sound object 783-784
structure element dictionary 859, 874-875
target dictionary 657
Web Capture image set 955

R keyword 64
R tab order (annotations) 147, 605
R transition style 599
R2L reading order 578
radial shadings

See type 3 shadings
radio button field dictionaries

Opt entry 690-691
radio button fields 685-686, 688-691

normal caption 642
Off appearance state 689
value 689

Radio field flag (button field) 686, 689
RadiosInUnison field flag (button field) 686, 688-689,

1118
raised capitals 931
random access to PDF files 41, 45, 90, 93, 115
range, function 167-171
Range entry

function dictionary 168, 170-171, 173, 177
ICC profile stream dictionary 253, 287, 346
Lab color space dictionary 250-251, 287, 345

raster 36
raster image processor (RIP) 974
raster output devices 36-37

device space 199

graphics state parameters 214
rendering 477
scan conversion 478

Rate entry (movie activation dictionary) 785
Raw sound encoding format 783
RB standard structure type 907, 911, 928-929
RBGroups entry (optional content configuration

dictionary) 378, 667
RC entry

appearance characteristics dictionary 642
free text annotation dictionary 624
markup annotation dictionary 618, 627, 683
media play parameters MH/BE dictionaries 770

RC4 encryption algorithm 118-120, 126-128
copyright 118
for FDF 716

RClosedArrow line ending style 630
RD entry

caret annotation dictionary 635
circle annotation dictionary 625, 632
number format dictionary 749
square annotation dictionary 625, 632

re operator 196, 225-227, 987
reading order 578
ReadOnly annotation flag 609, 968, 976
ReadOnly field flag 676

and widget annotations 609, 676
real objects 51

precision limits 52, 992
range limits 52, 992
syntax 52

Reason entry (signature dictionary) 728-729
Reasons entry (signature field seed value dictionary) 698-

699
recipient lists (public-key security handlers) 128-129, 134
Recipients entry

crypt filter dictionary 134
encryption dictionary 129, 131

Rect entry (annotation dictionary) 606, 610, 612, 623, 625,
630-632, 635, 645, 663, 679, 696, 792, 910

rectangles 161
path construction 227, 987

rectilinear measure dictionaries 746-748
A entry 747
CYX entry 748
D entry 747
O entry 747
R entry 746
S entry 747
T entry 747
X entry 747

Index
1269

Y entry 747
Red 3D lighting styles 818
red color component

CMYK conversion 481, 484
cyan, complement of 482
DeviceRGB color space 241-242
grayscale conversion 481
halftones for 506
in Indexed color table 263
initialization 243
and threshold arrays 495
transfer function 484-485

red colorant
additive primary 241-243
display phosphor 264

Ref entry (type 1 form dictionary) 359, 361
reference area 896

and allocation rectangle 930
and floating elements 898
layout within 917-919, 922-923, 925-926
and nested BLSEs 897
stacking of BLSEs 897, 918

reference counts (Web Capture image set) 955, 1126
reference dictionaries 359, 362

F entry 362
ID entry 362
Page entry 362

Reference entry (signature dictionary) 728-729, 741
Reference standard structure type 900, 906
reference XObjects 195, 332, 359, 361-364

and annotations 363
bounding box 362
clipping to bounding box 362
containing document 361
in Linearized PDF 1054
and logical structure 363-364
printing 363
proxy 359, 361-363, 1054
target document 361-362

reflection
images 339
OPI proxies 981
transformation matrices 199

reflow of content 883
artifacts 886
glyph widths 1109
hidden page elements 889
illustrations 912
list numbering 933
page content order 884, 889
standard structure attributes 913, 916
standard structure types 899
word breaks 894

registered names
conversion engines (Web Capture) 961
dictionary keys 1098
first-class 185, 1019-1020
marked-content tags 850
object types 60
output intent subtypes 971
second-class 1020
security handlers 116
signature handlers 725
third-class 1020

registering PDF extensions 1020
registration targets 266, 962, 966

as printer’s mark annotations 643
Registry entry (CIDSystemInfo dictionary) 435, 445, 462
RegistryName entry (PDF/X output intent dictionary)

971
regular characters 49-51, 57
Rejected annotation state 620
related files arrays 184, 186-188, 190
related publications 31-32
relational operators 52
relative file specifications 179-180, 1119-1120
Relative Uniform Resource Locators (Internet RFC 1808)

179, 950, 959, 1156
RelativeColorimetric rendering intent 211, 260-261
remapping of colors 241, 257-258, 480, 557, 563, 972
remote go-to action dictionaries 655

D entry 655
F entry 584, 655
NewWindow entry 655
S entry 655

remote go-to actions 653, 655
destination 581-582, 584, 655
and Linearized PDF 1052
target file 655
See also

go-to actions
remote go-to action dictionaries

Rename entry (FDF template dictionary) 721, 1121
rendering 34, 477-512

alternate color spaces 267
of CIE-based colors 478
color 236, 477-478
color conversion. See color conversion
coordinate transformations, inverting 209
current page 35, 38
curves 228
flatness tolerance. See flatness tolerance
and graphics, distinguished 194, 477
graphics state parameters, device-dependent 210
halftones 38, 213, 477, 486-508, 573-574

Index
1270

image interpolation 346
images 335
implicit color conversion 259
imported pages 363
intents. See rendering intents
marking 478
order of transformations 484
overprint control 284
scan conversion 37, 478, 508-512
smoothness tolerance. See smoothness tolerance
transfer functions 477, 484-486, 496, 573-574
and transparency 573-575

rendering intents 257, 260-262, 479
AbsoluteColorimetric 261
current 211, 340, 560, 573, 575
ICC color profiles 255
and nested transparency groups 575
Perceptual 262
RelativeColorimetric 211, 260-261
RI entry (graphics state parameter dictionary) 220
ri operator 219, 987
for sampled images 340
Saturation 261
and transparency 574-575

rendition action dictionaries 669
AN entry 669
JS entry 669
OP entry 669
R entry 669
S entry 669

Rendition action type 653, 669
rendition actions 653, 668-670

See also rendition action dictionaries
rendition dictionaries 759-760

BE entry 759-760
MH entry 759-760
N entry 759
S entry 759
Type entry 759
See also

media rendition dictionary
rendition MH/BE dictionaries
selector rendition dictionary

rendition MH/BE dictionaries 760
C entry 759-760

Rendition object type 759
rendition objects 150, 758-763

See also
rendition dictionaries

Renditions entry (name dictionary) 150
renditions name tree hierarchy (Linearized PDF) 1038
renditions name tree hint table (Linearized PDF) 1034,

1049

Repeat entry (sound action dictionary) 664
Repeat play mode (movie) 786
repeatCount attribute (SMIL) 770
replacement text 936, 944

example 944
font characteristics unavailable for 893
for marked-content sequences 944
for structure elements 860, 944
in Tagged PDF 888
and Unicode natural language escape 944
word breaks 895

replies (annotations) 618-619, 621
Reproduction of Colour, The (Hunt) 1155
Required field flag 676
requirement dictionaries

RH entry 751
S entry 751
Type entry 751

requirement handler dictionaries
S entry 753
Script entry 753
Type ent 752

requirement handlers 752
Requirements entry (document catalog) 142
reserved words 49
reset-form action dictionaries 707-708

Fields entry 708
Flags entry 707-708
S entry 707

reset-form actions 653, 702, 707-708
default value 676
flag. See reset-form field flag
See also

reset-form action dictionaries
reset-form field flag 708

Include/Exclude 708
ResetForm action type 653, 707
ResFork entry (Mac OS file information dictionary) 186
resolution (output devices) 37, 200, 211, 214, 305, 346,

498, 500
Resolution entry (version 1.3 OPI dictionary) 981
resolution progression, JPEG2000 86-87
resource dictionaries 153-154, 1057

base images in 347
ColorSpace entry 154, 240, 258, 287, 354, 557
and content streams 151, 358
current. See current resource dictionary
ExtGState entry 154, 219-220
Font entry 154, 333, 389, 398, 413, 436, 673, 679
for form fields 673
for form XObjects 358, 977

Index
1271

for interactive forms 1117
in Linearized PDF 1035
for pages 145, 358, 421, 977, 1111
Pattern entry 154, 288, 291, 294
ProcSet entry 154, 842, 1057-1058
Properties entry 154, 370, 851-852
Shading entry 154, 303
for Type 3 fonts 421, 1111
for variable-text fields 678-679
XObject entry 154, 332, 339, 342, 356, 360

resource fork (Mac OS) 186
resource types 154

ColorSpace 154, 240, 258, 287, 354, 557
Encoding 1035
ExtGState 154, 219-220
Font 154, 333, 389, 398, 413, 436, 673, 679, 1035
FontDescriptor 1035
Pattern 154, 288, 291, 294
ProcSet 154, 842, 1057-1058
Properties 154, 370, 851-852
Shading 154, 303
XObject 154, 332, 339, 342, 356, 360

resources 46, 48, 145, 977
in Linearized PDF 1035-1036
See also

named resources
resource dictionaries
resource types

Resources entry
3D stream dictionary 797-798
page object 145, 153, 1035, 1037, 1057
slideshow dictionary 787
stream dictionary 153
type 1 form dictionary 358, 678, 680
type 1 pattern dictionary 293
Type 3 font dictionary 421

restore operator (PostScript) 1128
result alpha

in compositing 525
in knockout groups 540-541
notation 518, 533

result color (transparent imaging model) 517
in compositing 517, 525-526, 528, 559
in knockout groups 540-541
notation 518, 533, 543
and overprinting 565-567
and separable blend modes 520-521

result opacity 528-529
in knockout groups 541
notation 529, 533
soft clipping 550

result shape 528-529
notation 529, 533

soft clipping 550
Resume movie operation 665
retinal scans (user authentication) 725
return-to-control (RTC) pattern (CCITTFaxDecode

filter) 79
reverse-order show strings 890-891
ReversedChars marked-content tag 891
revision numbers

FDF encryption algorithm 716
security handler 121-123
structure attributes 859, 873-875
structure elements 859, 874-875

revocation information (PKCS#7 objects) 739
RF entry (file specification dictionary) 184, 187, 190
RFCs (Requests for Comments), Internet

See Internet RFCs
RG operator 196, 236, 240-241, 243, 288-289, 987
rg operator 196, 236, 240-241, 243, 288-289, 563, 568, 987
RGB color representation

for additive color 241
and CMYK, compared 243
CMYK, conversion from 484
CMYK, conversion to 213, 481-483, 575
DCTDecode filter, transformation by 85
DeviceRGB color space 237, 242
and grayscale, conversion between 481
in halftones 487
in output devices 235, 480

RGB color space (in Tagged PDF) 920-921, 927
RGB color space abbreviation (inline image object) 353
RH entry

requirement dictionary 751
Rhomboid predefined spot function 493
RI entry

appearance characteristics dictionary 643
graphics state parameter dictionary 220, 260

ri operator 196, 219, 260, 286, 289, 987
rich text strings 678, 680-684, 691

< b > XHTML element 681
< body > XHTML element 681
color CSS2 style attribute 682
default style string 683
font attributes 684, 1118
font CSS2 style attribute 682
font-family CSS2 style attribute 682
font-size CSS2 style attribute 682
font-stretch CSS2 style attribute 682
font-style CSS2 style attribute 682
font-weight CSS2 style attribute 682
free text annotations 624
< i > XHTML element 681
< p > XHTML element 681, 683

Index
1272

preserving character data 683
< span > XHTML element 681
text-align CSS2 style attribute 682
text-decoration CSS2 style attribute 682
vertical-align CSS2 style attribute 682

RichText field flag (text field) 678, 683, 691
Ridge border style 920
RIFF (Resource Interchange File Format) 782
right angle bracket (>) character 50

double, as dictionary delimiter 59, 97, 713
as EOD marker 69
as hexadecimal string delimiter 53, 56, 59, 182

right brace (}) character 50
as delimiter in PostScript calculator functions 176

right bracket (]) character 50
as array delimiter 58

right parenthesis ()) character 50
escape sequence for 54, 409
as literal string delimiter 53

right-to-left writing systems 890-891
RIP (raster image processor) 974
RL filter abbreviation 354, 1100
RlTb writing mode 919
RM 806
RM entry

3D view dictionary 806
role map 858, 860-861

and Tagged PDF 884, 898-899, 901, 911
Role PrintField attribute 934
RoleMap entry (structure tree root) 858
roll operator (PostScript) 176, 990
rollover appearance (annotation) 613
Root entry

FDF trailer dictionary 713
file trailer dictionary 92, 97, 107, 137, 1031

root fields (interactive form) 672, 721
root font (Type 0 font) 433
ROpenArrow line ending style 630
Rotate entry

movie dictionary 785
page object 146, 201, 600, 605, 609, 1127

rotation
annotations 609, 621
font matrix 421
images 338
movies 785
OPI proxies 981
order of transformations 206
pages 146, 609
text space 406
transformation matrices 199, 204-205

user space 610
round line cap style 216, 231
round line join style 216, 231
round operator (PostScript) 176, 989
Round predefined spot function 491
Row table scope attribute 935
Rows entry (CCITTFaxDecode filter parameter

dictionary) 79
RowSpan standard structure attribute 935
RP standard structure type 907, 911
RSA Security, Inc. 118, 1158
RT entry

floating window parameters dictionary 774
markup annotation dictionary 618-619
number format dictionary 749

RT standard structure type 907, 911, 928-929
RTF (Rich Text Format)

layout model 895
standard attribute owner 914-915
Tagged PDF 893
Tagged PDF, conversion from 883, 899

RTF-1.05 standard attribute owner 914
rubber stamp annotation dictionaries 635-636

Name entry 636
Subtype entry 635

rubber stamp annotations 616, 635-636
See also

rubber stamp annotation dictionaries
ruby characters 463
Ruby glyph class 463
Ruby standard structure type 907, 911
ruby text

After position 929
Center alignment 928
Distribute alignment 928
End alignment 928
Inline position 929
Justify alignment 928
RubyAlign attribute 911, 917
RubyPosition attribute 911, 917
Start alignment 928
Start position 929
Warichu position 929

RubyAlign standard structure attribute 911, 917, 928
RubyPosition standard structure attribute 911, 917, 929
run-length encoding compression 67, 77
RunLengthDecode filter 67, 77

RL abbreviation 354, 1100
in sampled images 340

running heads 886-887
RV entry

Index
1273

FDF field dictionary 719
field dictionary 678, 683-684, 691

S
S border style (solid) 611, 1114
S entry 59

action dictionary 648
border effect dictionary 612
border style dictionary 611
box style dictionary 967
collection sort dictionary 592
embedded go-to action dictionary 656-657
go-to action dictionary 654
go-to-3D-view action dictionary 670
group attributes dictionary 361, 556, 559
hide action dictionary 666
hint stream dictionary 1033
icon fit dictionary 720
import-data action dictionary 708
JavaScript action dictionary 709
launch action dictionary 660
media clip dictionary 763-764
media criteria dictionary 760
media duration dictionary 771
media offset dictionary 775
movie action dictionary 665
named-action dictionary 667
page label dictionary 595
PDF/X output intent dictionary 970-971
rectilinear measure dictionary 747
remote go-to action dictionary 655
rendition action dictionary 669
rendition dictionary 759
requirement dictionary 751
requirement handler dictionary 753
reset-form action dictionary 707
set-OCG-state action dictionary 667
soft-mask dictionary 552-553
sound action dictionary 664
source information dictionary 956
structure element dictionary 858, 898-899
submit-form action dictionary 703
thread action dictionary 661
timespan dictionary 776
transition action dictionary 670
transition dictionary 599
transparency group attributes dictionary 556
URI action dictionary 662
Web Capture command dictionary 958, 960
Web Capture content set 953
Web Capture image set 955
Web Capture page set 954

S guideline style (page boundaries) 967

S operator 36, 196, 229-231, 987
and current color 236
ending path 225
in glyph descriptions 422
and graphics state parameters 210, 231
and patterns 289, 292, 303
and subpaths 231

s operator 196, 230, 987
S structure element dictionary 1082, 1089
S tab order (annotations) 605
SA entry

3D view dictionary 806
SA entry (graphics state parameter dictionary) 222, 512,

1112
SamePath Web Capture command flag 958
SameSite Web Capture command flag 958
sample data

sounds 782-783
type 0 functions 169-171

sample values (images) 36, 334
decoding 341, 344-346
in image masks 350
in image space 337
in inline images 352
order of specification 499, 503-504
representation 336
in soft-mask images 554
source colors (transparent imaging model) 548
stream data 335

sampled functions
See type 0 functions

sampled images
See images, sampled

sans serif fonts 458
SansSerif font classification (Tagged PDF) 894
Saturation blend mode 524
Saturation rendering intent 261
save operator (PostScript) 1128
SC operator 196, 240, 287, 289, 987

in content streams 236
in DeviceCMYK color space 243
in DeviceGray color space 242
in DeviceRGB color space 243
in Indexed color spaces 264
and sampled images 236

sc operator 196, 240, 288-289, 987
in content streams 236
and Decode arrays 336
in DeviceCMYK color space 243
in DeviceGray color space 242
in DeviceRGB color space 243
in Indexed color spaces 264

Index
1274

and sampled images 236
and type 4 shadings 318

Scalable Vector Graphics (SVG) 1.0 Specification (World
Wide Web Consortium) 1124, 1158

scaling
anamorphic 720
annotations 609, 621, 719-720
fonts 390, 398
icons 719-720
line width 215
OPI proxies 981
order of transformations 206
of pages 1127
proportional 720
text space 391, 398, 400, 406
transformation matrices 199, 204-205
user space 610
Web Capture pages 961

scan conversion 37-38, 210, 236, 478, 508-512
in Adobe Acrobat products 508
clipping 511
filling 510-511
flatness tolerance. See flatness tolerance
glyphs 38, 388, 511
images 511
for raster-scan displays 508
rules 510-511
smoothness tolerance. See smoothness tolerance
stroke adjustment 211, 215, 222, 231, 511-512
stroking 510

Schema entry
collection dictionary 589

SCN operator 196, 240, 288-289, 987
in DeviceN color spaces 270
in Indexed color spaces 264
in Pattern color spaces 291, 294-295, 298
in Separation color spaces 266

scn operator 196, 240, 288-289, 987
in DeviceN color spaces 270
in Indexed color spaces 264
in Pattern color spaces 291, 294-295, 298-299
in Separation color spaces 266

Scope standard structure attribute 935
screen annotation dictionaries

A entry 640
AA entry 640
MK entry 640
Subtype entry 640

Screen annotation type 616, 640, 715
screen annotations 616, 639-640

page object 606
and rendition actions 639, 668
See also

screen annotation dictionaries
Screen blend mode 521, 569
screens, halftone

See halftone screens
Script entry

requirement handler dictionary 753
Script font flag 458, 894
script fonts 458
scroll bars, hiding and showing 578
scrolling, text fields 691
SE entry (outline item dictionary) 586
searching of text 34, 469, 883, 892, 1109
second-class names 1020
Sect standard structure type 899-900, 904
security, document 41-42

See also
encryption
signatures, digital

security handlers 115-116, 120-128, 1019
Adobe.PPKLite 129
Adobe.PubSec 129
crypt filters 90, 133
encryption 67
Entrust.PPKEF 129
interoperability 116
public key 128-131
revision number 121-123
standard 115-116, 120-128, 1103

selectfont operator (PostScript) 988
selective computation (object digests) 1133
selector rendition dictionaries 763

C entry 763
R entry 763

selector renditions 758, 763
See also selector rendition dictionary

separable blend modes 520-522
color space 520
for spot colors 520, 567
white-preserving 567

Separation color spaces 237, 262, 264-268, 346
All colorant name 266
alternate color space for 267, 307
alternate color space, prohibited as 267, 270
as base color space 263
blending color space, prohibited as 557
color values 265-266
colorant name 266-267
DeviceN color spaces, colorant information for 272
and DeviceN color spaces, compared 269
halftones for 506
initial color value 266, 287
None colorant name 266, 271

Index
1275

other color components, effect on in transparency
groups 564

and overprinting 284-571
parameters 266-267
for preseparated pages 970
for printer’s marks 969
remapping of alternate color space 258
setting color values in 288
for shadings 307
in soft masks 552
specification 265
spot color components in 564-565
for spot colorants 480, 519
tint transformation function 267, 307
tints 265-266, 287
in transparency groups 259
and transparent overprinting 568, 571

separation dictionaries 147, 969-970
ColorSpace entry 970
DeviceColorant entry 969
Pages entry 969

Separation OPI color type 981
SeparationColorNames entry (trap network appearance

stream dictionary) 978
SeparationInfo entry (page object) 147, 969
separations, color 235, 237, 264, 842, 962, 969

accurate screens algorithm 498
and colorants 265
composite pages, generation from 969
halftones for 505
and overprinting 284
preseparated files 969, 978
for spot color components 563
See also

separation dictionaries
Serif font classification (Tagged PDF) 894
Serif font flag 458, 893-894
Serifed font characteristic 893
serifed fonts 458
set-OCG-state action dictionaries

PreserveRB entry 667
S entry 667
State entry 667-668

set-state actions (obsolete) 653
setcachedevice operator (PostScript) 423, 986
setcharwidth operator (PostScript) 423, 986
setcmykcolor operator (PostScript) 986-987
setcolor operator (PostScript) 987
setcolorspace operator (PostScript) 986
setdash operator (PostScript) 986
SetF entry (FDF field dictionary) 718
SetFf entry (FDF field dictionary) 718

setflat operator (PostScript) 986
setgray operator (PostScript) 986
sethalftone operator (PostScript) 1111
setlinecap operator (PostScript) 986
setlinejoin operator (PostScript) 986
setlinewidth operator (PostScript) 988
setmiterlimit operator (PostScript) 987
SetOCGState action type 386, 653, 667
set-OCG-state actions 653, 667-668
setrgbcolor operator (PostScript) 987
setscreen operator (PostScript) 1111
sFamilyClass field (TrueType font) 461
SGML (Standard Generalized Markup Language)

PDF logical structure compared with 856
sh operator 196, 289, 303, 987

background color ignored by 305
compositing 560
object shape 549
smoothness tolerance 509
target coordinate space 304

SHA-1 message digest 131
SHA1 object digest algorithm 730, 1131
SHA1 secure hash algorithm 730, 1131
ShadedIllustration 3D render modes 816
ShadedVertices 3D render modes 816
ShadedWireframe 3D render modes 816
shading dictionaries 175, 302, 304-307

AntiAlias entry 305
Background entry 303, 305, 309-310, 560
BBox entry 305, 308, 312
ColorSpace entry 303, 305-307
Function entry 306-307
metadata 846
as named resources 154
sh operator 303
ShadingType entry 305, 308, 327
See also

type 1 shading dictionaries (function-based)
type 2 shading dictionaries (axial)
type 3 shading dictionaries (radial)
type 4 shading dictionaries (free-form Gouraud-

shaded triangle meshes)
type 5 shading dictionaries (lattice-form Gouraud-

shaded triangle meshes)
type 6 shading dictionaries (Coons patch meshes)
type 7 shading dictionaries (tensor-product patch

meshes)
Shading entry

resource dictionary 154, 303
type 2 pattern dictionary 302

shading objects 195

Index
1276

anti-aliasing 305
background color 305, 309-310, 313
bounding box 305, 308-309, 312
clipping 305
color space 257, 305-309, 311, 315, 318, 320, 324
domain 175, 308-312
shading operator 303, 987
shading type 307-331
target coordinate space. See target coordinate space
See also

shading dictionaries
type 1 shadings (function-based)
type 2 shadings (axial)
type 3 shadings (radial)
type 4 shadings (free-form Gouraud-shaded

triangle meshes)
type 5 shadings (lattice-form Gouraud-shaded

triangle meshes)
type 6 shadings (Coons patch meshes)
type 7 shadings (tensor-product patch meshes)

shading operator 196, 303, 987
sh 196, 289, 303-305, 509, 549, 560, 987

shading patterns (type 2) 193, 262, 290, 302-331
color values, interpolation of 306-307
compositing of 560
extended graphics state 302, 560
gradient fill. See gradient fills
and graphics state parameter dictionaries 220
metadata for 846
nonzero overprint mode, unaffected by 286
object shape 549
smoothness tolerance 509
and transparent overprinting 567, 572
and type 3 (stitching) functions 175
See also

shading objects
type 2 pattern dictionaries

Shading resource type 154, 303
shading types 307-331

type 1 (function-based) 304-305, 308-309
type 2 (axial) 304-305, 307, 309-310
type 3 (radial) 304-305, 307, 310-314
type 4 (free-form Gouraud-shaded triangle meshes)

304-305, 314-318, 324
type 5 (lattice-form Gouraud-shaded triangle meshes)

304-305, 319-321, 324
type 6 (Coons patch meshes) 304, 321-327
type 7 (tensor-product patch meshes) 304, 327-331

ShadingType entry (shading dictionary) 305, 308, 327
shadow, diffuse achromatic 248
shape (transparent imaging model) 234, 514-515

alpha source parameter 212, 223, 341
anti-aliasing 527

backdrop 529
in basic compositing formula 518
computation 526-529
current alpha constant 212, 222, 341
notation for 517
soft masks 516, 527, 550
specifying 549-551
See also

constant shape
group shape
mask shape
object shape
result shape
source shape

shape constant 527
shared object hint table (Linearized PDF) 1033, 1043-

1046, 1130
group entries 1037, 1042, 1044-1046, 1129-1130
header 1044-1046, 1130
and page retrieval 1053
shared object identifiers 1042, 1049

shared object identifiers (Linearized PDF) 1041-1042,
1049

shared object references (Linearized PDF) 1041-1042,
1049

shared object signatures (Linearized PDF) 1045, 1130
signature fields, distinguished from 1045

ShellExecute function (Windows) 1116
shfill operator (PostScript) 987
shift direction 897, 926
Shift-JIS character encoding 434, 444, 449, 1099, 1120
show operator (PostScript) 988
show strings 388, 891, 893, 895
ShowControls entry (movie activation dictionary) 786
showing of text 388-391, 1057, 1060

character encodings 425
CMaps 453, 455
Identity-H predefined CMap 445
Identity-V predefined CMap 445
operators 407-409, 1108
simple fonts 412
transparent overprinting 569
Type 3 fonts 422

SI entry (Web Capture content set) 954-956
Sig entry (FDF catalog) 714, 726
Sig field type 675, 695
Sig object type 727
SigFieldLock object type 697
SigFlags entry (interactive form dictionary) 672
signature dictionaries 725-729

ByteRange entry 725-729, 732, 734, 740-741

Index
1277

Cert entry 727, 738
Changes entry 728
ContactInfo entry 728
Contents entry 91, 725, 727-729, 738, 740
Filter entry 727, 738
Location entry 728-729
M entry 728-729
Name entry 728-729
Prop_AuthTime entry 729
Prop_AuthType entry 729
Prop_Build entry 727, 729
R entry 728
Reason entry 728-729
Reference entry 728-729, 741
SubFilter entry 727, 729, 738
Type entry 727
V entry 729
See also

signature field dictionaries
signature field lock dictionaries
signature field seed value dictionaries
signature reference dictionaries

Signature entry (UR transform parameters dictionary)
736

signature field dictionaries 695-696
FT entry 695
Lock entry 696
SV entry 696
T entry 696
V entry 695-696, 704

signature field lock dictionaries 696
Action entry 697
Fields entry 697
Type entry 697

signature field seed value dictionaries 696
AddRevInfo entry 699
Cert entry 698
DigestMethod entry 698
Ff entry 696, 699
Filter entry 697
LegalAttestation entry 699
MDP entry 698
Reasons entry 698
SubFilter entry 697
TimeStamp entry 699
Type entry 697
V entry 698

signature fields 672, 674-675, 685, 695-702
access permissions 121, 124
appearance 696
flags. See signature flags
shared object signatures (Linearized PDF), distin-

guished from 1045
value 695

See also
signature field dictionaries
signatures,digital

signature flags 673-674
AppendOnly 674
SignaturesExist 674

signature handlers 725, 727
Adobe.PPKLite 727
CICI.SignIt 727
Entrust.PPKEF 727
name 725, 727
VeriSign.PPKVS 727

signature reference dictionaries 725-731
Data entry 714, 730, 737
DigestLocation entry 731
DigestMethod entry 730, 1131
DigestValue entry 731-732
TransformMethod entry 714, 725, 730-731
TransformParams entry 725, 730
Type entry 730

signatures, digital 42, 124, 685, 725-743
in FDF files 715
Fingerprint authentication method 729
handlers 725, 727
and incremental updates 99, 715, 1097
and interactive forms 121, 124, 674
interoperability 738-740
Password authentication method 729
PIN authentication method 729
public/private-key (PPK) authentication 725
See also

digests
PKCS#1 signatures
PKCS#7 signatures
signature fields

SignaturesExist signature flag 674
Signed sound encoding format 783
SigRef object type 730
simple duration 770
simple file specifications 178
simple fonts 410, 412-432

descriptor 412
encodings. See character encodings
glyph selection 412
subsets 419, 1110
substitution 1111
Tj operator 390
ToUnicode CMaps, codespace ranges for 472
Unicode, mapping to 470
word spacing 399
See also

TrueType® fonts
Type 1 fonts

Index
1278

Type 3 fonts
SimpleDot predefined spot function 488-489
sin operator (PostScript) 176, 989
single-byte character codes

in simple fonts 412
and text-showing operators 409
and word spacing 399

single-pass file generation 40-41
SinglePage page layout 140
SIS content set subtype (Web Capture) 953, 955
Size entry

cross-reference stream dictionary 107
embedded file parameter dictionary 186
file trailer dictionary 97, 107, 110, 1031, 1038
type 0 function dictionary 170-171, 173
version 1.3 OPI dictionary 980
version 2.0 OPI dictionary 983-984

skewing
images 339
OPI proxies 981
order of transformations 206
transformation matrices 199, 205

slash (/) character 50, 151
as file specification delimiter 179, 182
as name delimiter 56, 58, 139, 458, 714
in uniform resource locators (URLs) 959
as UNIX file name delimiter 181

Slash line ending style 630
slideshow dictionaries 787

Resources entry 787
StartResource entry 787
Subtype entry 787
Type entry 787-788

SlideShow object type 787
slideshows (alternate presentations) 787, 1124
SM entry (graphics state parameter dictionary) 222, 509
small-cap fonts 459
Smallcap font characteristic 893
SmallCap font flag 459, 893-894
SMask entry

graphics state parameter dictionary 222, 550
image dictionary 89, 212, 341-342, 350, 550, 553, 555,

574, 1112
SMaskInData entry (image dictionary) 89, 342, 550
SMIL (Synchronized Multimedia Integration Language)

file format 1123
SMIL (Synchronized Multimedia Integration Language)

standard
fit attribute 770
repeatCount attribute 770
simple duration 770

systemAudioDesc attribute 760
systemBitrate attribute 760
systemCaptions attribute 760
systemLanguage attribute 761
systemOperatingSystem attribute 780
systemScreenDepth attribute 761
systemScreenSize attribute 761

smoothness tolerance 213, 509-510
and color conversion 510
and flatness tolerance, compared 510
shading patterns 306
SM entry (graphics state parameter dictionary) 222

snd file format 782
soft clipping 222, 516, 527, 545, 550

and current clipping path, compared 222, 516, 545
and knockout groups 550
of multiple objects 550-551
and transparency groups 550

soft hyphen character (Unicode) 888, 892, 1000
soft-mask dictionaries 212, 550, 552, 557, 1112

BC entry 552-553
G entry 553, 557
S entry 553
TR entry 552-553
Type entry 553

soft-mask image dictionaries 554-555
Matte entry 342, 554-555

soft-mask images 341, 550-551, 553-556, 1112
height 555
image data, preblending of 554-556
in JPEG2000 89, 342, 551
matte color 554-555
source color 554
width 555
See also

soft-mask image dictionaries
soft masks 350, 516, 545-547

Alpha subtype 552-553
alternate color space 552
for annotations 613
backdrop color 545-547, 553
bounding box 552
color space 547, 553-556
coordinate system 552
current. See current soft mask
group backdrop 546, 552
Luminosity subtype 553, 557
mask values 552-553
object color 545
opacity, as source of 516, 527, 550
shape, as source of 516, 527, 550
soft clipping 222, 516, 527, 545, 550
source color 545

Index
1279

specifying 550-556
spot color components unavailable in 552
spot colors unavailable in 564
subtype 552-553
transfer functions for 546-547, 552-553
transparency groups, deriving from 531, 552

group alpha 546, 552-553
group luminosity 516, 546-547, 552-553

See also
soft-mask dictionaries
soft-mask images

SoftLight blend mode 522
software identifier dictionaries 761, 778-781

H entry 779-780
HI entry 780
L entry 780
LI entry 780
OS entry 779-780
software URIs 780
Type entry 780
U entry 780
version arrays 781

software identifier objects
See software identifier dictionaries

SoftwareIdentifier object type 780
Sold annotation icon 636
Solid 3D render modes 815
Solid border style 920
Solidities entry (DeviceN mixing hints dictionary) 274
SolidOutline 3D render modes 816
SolidWireframe 3D render modes 815
“Solving the Nearest-Point-On-Curve Problem”

(Schneider) 1154
“Some Properties of Bézier Curves” (Goldman) 1154
Sony Trinitron® display 249
Sort entry

collection dictionary 590
Sort field flag (choice field) 694
sound action dictionaries 664

Mix entry 664, 1116
Repeat entry 664
S entry 664
Sound entry 664, 782, 1116
Synchronous entry 664, 1116
Volume entry 664, 1116

Sound action type 653, 664
sound actions 653, 663-664, 1116

volume 664
See also

sound action dictionaries
sounds

sound annotation dictionaries 638-639

Contents entry 617
Name entry 639
Sound entry 638, 782
Subtype entry 638

Sound annotation type 616, 638
sound annotations 33, 616-617, 638-639

activating 782
alternate text description 943
contents 617
and text annotations, compared 638
See also

sound annotation dictionaries
sounds

Sound entry
sound action dictionary 664, 782, 1116
sound annotation dictionary 638, 782

sound files 782
AIFF 782
AIFF-C 782
RIFF 782
snd 782

Sound object type 783
sound objects 782-784

B entry 783-784
C entry 783-784
CO entry 783
CP entry 783
E entry 783
R entry 783-784
and sound actions 664
and sound annotations 638
Type entry 783

SoundActions entry (legal attestation dictionary) 742
sounds 33, 604, 638, 647-648, 663, 782-784, 1123

asynchronous 664
encoding format. See encoding formats, sound
mixing 664
in movies 639, 784-785
synchronous 664
volume 664
See also

sound actions
sound annotations
sound objects

source alpha
in compositing 525-526
in knockout groups 541
notation 518, 533, 537
and overprinting 569

source color (transparent imaging model) 517
blending color space, conversion to 518
and CompatibleOverprint blend mode 568
compositing 525-526

Index
1280

in isolated groups 538
and nonseparable blend modes 524
notation 518, 533, 537
and overprinting 565-566
in patterns 560
and separable blend modes 520-522
and soft-mask images 554
and soft masks 545
specifying 548
in transparency groups 535, 537, 561

source gamut (page) 479
source information dictionaries (Web Capture) 955-957

AU entry 955
C entry 956
E entry 955, 957
S entry 956
TS entry 955-956

source opacity 526-529
in knockout groups 541
notation 528-529, 533

source shape 526-529
in knockout groups 540-541
notation 528-529, 532, 536

SP entry (media rendition dictionary) 762-763
space (SP) character 48, 50

clipping 402
in comments 51
in cross-reference table 94, 1058
in font names 417-418
in form field mapping names 704
in hexadecimal strings 56
in names 1099
nonbreaking 1000
in reverse-order show strings 891
as word separator 895
word spacing 399

SpaceAfter standard structure attribute 916, 922, 931
SpaceBefore standard structure attribute 916, 922, 931
Span marked-content tag 905, 913, 937-942, 944-945
Span standard structure type 905, 910, 937
< span > XHTML element (rich text strings) 681
SpawnTemplate form usage rights 735
Speaker annotation icon 639
special color spaces 237, 262-284

blending color space, prohibited as 557
as default color spaces 258
inline images, prohibited in 354
for shadings 305
in transparency groups 563
See also

DeviceN color spaces
Indexed color spaces

Pattern color spaces
Separation color spaces

special graphics state operators 196
cm 196, 202, 210, 219, 338, 985
Q 196, 214-215, 219, 235, 294, 338, 357, 392, 402, 679,

854, 987, 992, 1128
q 196, 214-215, 219, 235, 294, 338, 357, 679, 854, 987,

992, 1128
specular highlight 248
spell-checking 691, 694, 883, 894
SpiderContentSet object type 953
SpiderInfo entry (document catalog) 141, 946
Split transition style 599-600
spot color components 563

and alternate color space 564-565
compositing of 564
in DeviceN color spaces 564
and group opacity 564
and group shape 564
in multitones 269
and overprinting 570-572
in Separation color spaces 564-565
separations for 563
soft masks, unavailable in 552
and tint transformation functions 564
tints for 563
transfer function 485
in transparency groups, painting of 564
and transparent overprinting 568, 571-572

spot colorants 480
in composite pages 264, 563, 969
and current blend mode 548
DeviceN color spaces 272
and flattening of transparent content 576
and halftones 496, 506
in multitones 269
and overprinting 570-571
process colorants, approximation with 564
in Separation color spaces 264
and transparent overprinting 566-567, 571

spot colors
blending color space, not converted to 519
group color space, not converted to 564
in opaque imaging model 564
and separable blend modes 520, 567
soft masks, unavailable in 564
and transparency 563-565
and transparent overprinting 564, 566, 572
and white-preserving blend modes 567

spot functions 176, 488-494, 496-497, 1111-1112
for color displays 495
predefined 176
and threshold arrays, compared 494

Index
1281

threshold arrays, converted internally to 495
See also

predefined spot functions
Spot OPI color type 981
SpotFunction entry (type 1 halftone dictionary) 497
SPS content set subtype (Web Capture) 953-954
sqrt operator (PostScript) 176, 989
square annotation dictionaries 625, 631-632

BE entry 611, 631
BS entry 631
IC entry 631
RD entry 625, 632
Subtype entry 631

Square annotation type 615, 631
square annotations 615, 630-632

border style 611
border width 631
dash pattern 631
interior color 631
See also

square annotation dictionaries
Square line ending style 630
Square list numbering style 933
Square predefined spot function 493
Squiggly annotation type 616, 634
squiggly-underline annotation dictionaries

See text markup annotation dictionaries
squiggly-underline annotations

See text markup annotations
SR rendition type 759
sRGB) color space 256
SS entry

number format dictionary 749
SS entry (transition dictionary) 600
St entry (page label dictionary) 596
stack

graphics state 214-215, 219
transparency. See transparency stack

stacking of BLSEs 897, 905, 917-919
floating elements exempt from 898

Stamp annotation type 616, 635
standard 14 fonts 40, 413-414, 416, 426, 893, 995-996,

1060, 1109-1110
Courier 416, 1109
Courier-Bold 416, 1109
Courier-BoldOblique 416, 1109
Courier-Oblique 416, 1109
Helvetica 416, 1109
Helvetica-Bold 416, 1110
Helvetica-BoldOblique 416, 1110
Helvetica-Oblique 416, 1110

MacExpertEncoding not used for 996
Symbol 416, 426, 1110-1111
Times-Bold 416, 1110
Times-BoldItalic 416, 1110
Times-Italic 416, 1110
Times-Roman 416, 1110
ZapfDingbats 416, 426, 1110-1111

standard attribute owners 873, 913-914
CSS-1.00 914-915
CSS-2.00 914-915
HTML-3.20 914-915
HTML-4.01 914-915
Layout 914-916
List 914-915, 932
OEB-1.00 914-915
PrintField 915
RTF-1.05 914
Table 914-915, 934
XML-1.00 914

standard blend modes 520-525, 548
standard character sets 995-1017

expert 995-996, 1010-1012
Latin 995-1000, 1111
for Symbol font 995, 1013-1015
for ZapfDingbats font 996, 1016-1017

standard column attributes 932
ColumnCount 917, 932
ColumnGap 917, 932
ColumnWidths 917, 932

standard grouping elements 896, 899-901
Art 899-900, 904
BlockQuote 900, 906
Caption 900, 902-903
Div 899-901, 904
Document 899, 904
Index 900, 905
NonStruct 901
Part 899, 904
Private 901
Sect 899-900, 904
strong structure 904
TOC 900, 905
TOCI 900
usage guidelines 904
weak structure 904

standard illustration elements 896, 911-912
clipping in 911
Figure 912, 916, 924, 931
Form 890, 906, 912, 916, 924, 931
Formula 912, 916, 924, 931
standard layout attributes for 916, 924, 931

standard layout attributes 916-931
for BLSEs 916-917, 922-926

Index
1282

BBox 910, 912, 916, 924
BlockAlign 897, 917, 925
EndIndent 896, 916, 923
Height 912, 916-917, 924, 930-931
InlineAlign 897, 917, 925
LineHeight 917
SpaceAfter 916, 922, 931
SpaceBefore 916, 922, 931
StartIndent 896, 916, 923
TBorderStyle 917, 926
TextAlign 916, 924
TextIndent 916, 923
TPadding 917, 926
Width 912, 916-917, 924, 930-931

general 917-919
BackgroundColor 916, 919
BorderColor 916, 920-921
BorderStyle 916, 920, 926
BorderThickness 916, 921
Color 916, 921
Padding 916, 919-921, 926
Placement 898, 901, 904, 912, 916-917, 922-923,

931
WritingMode 896, 916, 919, 926, 935

for grouping elements 917
for illustrations 916, 924, 931
for ILSEs 916-917, 926-929

BaselineShift 905, 912, 917, 926, 930-931
GlyphOrientationVertical 929
LineHeight 905, 917, 922, 927, 930
RubyAlign 928
RubyPosition 929
TextDecorationColor 917, 927
TextDecorationThickness 917, 927
TextDecorationType 905, 917, 928

for ruby text
RubyAlign 911, 917
RubyPosition 911, 917

for tables 924-926
for vertical text

GlyphOrientationVertical 917
standard list attribute 932-933

ListNumbering 932-933
standard list elements 902-903, 905

L 901-902, 932
Lbl 901-902, 906, 923, 932-933
LBody 901, 903, 923
LI 901-902, 932

standard paragraphlike elements 902, 923
H 901-902, 904
H1–H6 901-902, 904
P 901-902, 904

standard RGB () color space 256
group color space, unsuitable as 562

standard ruby elements 910
RB 907, 911, 928-929
RP 907, 911
RT 907, 911, 928-929
Ruby 911

standard security handler (Standard) 115-116, 120-128,
1103

standard structure attributes 873, 883-884, 898, 913-935
and basic layout model 895
inheritance 914-915
See also

standard attribute owners
standard column attributes
standard layout attributes
standard list attribute
standard table attributes

standard structure types 860, 883-884, 898-912
and basic layout model 895
role map 858, 860
usage guidelines 904
See also

block-level structure elements (BLSEs)
inline-level structure elements (ILSEs)
standard grouping elements
standard illustration elements

standard table attributes 934-935
ColSpan 935
Headers 935
RowSpan 935
Scope 935
Summary 935

standard table elements 903, 905
standard layout attributes for 924-926
Table 901, 903, 916, 924
TBody 901, 903
TD 901, 903, 917, 919, 923-925, 930, 935
TFoot 901, 903
TH 901, 903, 917, 923-925, 930, 935
THead 901, 903
TR 901, 903, 919

standard warichu elements
Warichu 911
WP 907, 911
WT 907, 911

StandardEncoding predefined character encoding 426,
431, 995-996

as implicit base encoding 427
standards warichu elements 910
start edge 897

of allocation rectangle 931
border color 920
border style 920
border thickness 921

Index
1283

in layout 897, 918, 923-925
padding width 921, 926
ruby text alignment 928

Start entry
movie action dictionary 665
movie activation dictionary 785

Start inline alignment 925
Start placement attribute 918, 923, 931
Start ruby text alignment 928
Start text alignment 924
StartIndent standard structure attribute 896, 916, 923
StartResource entry (slideshow dictionary) 787
startxref keyword 97, 106, 1031, 1038, 1051, 1075, 1077,

1080, 1082
State entry

set-OCG-state action dictionary 667-668
text annotation dictionary 620-621

state, graphics. See graphics state
state models (annotation) 620-621
StateModel entry (text annotation dictionary) 620-621
states (annotation) 620-621
states (optional content groups) 365-367, 371, 376, 378,

382-383, 385, 667-668
Status entry (FDF dictionary) 714, 1120
StdCF crypt filter name 122
StemH entry (font descriptor) 457
StemV entry (font descriptor) 457, 894
stencil, uncolored tiling pattern as 292
stencil masking 337, 350-351

character glyphs, painting 350
and image interpolation 351
See also

image masks
stitching functions

See type 3 functions
Stm entry (marked-content reference dictionary) 864
StmF entry (encryption dictionary) 117, 129, 131-135
StmOwn entry (marked-content reference dictionary) 864
Stop movie operation 665
stream dictionaries 60-62, 306, 353

DecodeParms entry 62, 66, 107, 132
DP abbreviation 1100

as direct objects 60
DL entry 63
F entry 62, 782
FDecodeParms entry 62, 66
FFilter entry 62, 65
Filter entry 62, 65, 107, 466-467, 554, 783
Length entry 61-62, 64, 120, 306, 353, 466, 1033, 1057
Resources entry 153

See also
attribute objects
cross-reference stream dictionaries
embedded file stream dictionaries
ICC profile stream dictionaries
hint stream dictionaries
image dictionaries
metadata stream dictionaries
object stream dictionaries
PostScript XObject dictionaries
printer’s mark form dictionaries
sound objects
trap network appearance stream dictionaries
type 1 form dictionaries
type 1 pattern dictionaries (tiling)
type 4 shading dictionaries
type 5 shading dictionaries
type 6 halftone dictionaries
type 6 shading dictionaries
type 10 halftone dictionaries

stream keyword 60-62, 1100
stream objects 49, 51, 60-62, 115, 1100

as attribute objects 873
in cross-reference table reconstruction 993
data 60-62, 354
extent 61
indirect objects 60
length 60, 711
metadata associated with 846-847
strings, compared with 60
syntax 60-62, 1100
text streams 160
See also

stream dictionaries
streams

appearance. See appearance streams
CIDFont subsets 461
CMap files 415, 421, 442, 449, 453, 470
color table 263
content. See content streams
cross-reference. See cross-reference streams
embedded CIDFont programs 435
embedded CMaps 435, 448-449
embedded file. See embedded file streams
embedded font programs 388, 411, 418, 457-458, 465-

466
encryption 115
external 61-62, 65-66, 1100, 1126
FDF differences 715
glyph descriptions 420, 422
halftone 495, 499, 502-503
hint (Linearized PDF). See hint streams
HTTP form submissions 959
ICC profile 252, 972

Index
1284

See also ICC profile stream dictionaries
image 60, 335-336, 340
and JBIG2 encoding 81-82
metadata. See metadata streams
number of bytes in 63
object streams 100-105
page descriptions 60
pattern 290, 294
poster image (movie) 785
PostScript LanguageLevel 1 333
shading 302, 306, 315
sound objects 782-784
threshold arrays 496
ToUnicode CMaps 470
trap networks 977
type 0 (sampled) functions 169-170
type 4 (PostScript calculator) functions 175
See also

stream objects
stream dictionaries

StrF entry (encryption dictionary) 117, 129, 131-134
strikeout annotation dictionaries

See text markup annotation dictionaries
StrikeOut annotation type 616, 634
strikeout annotations

See text markup annotations
string objects 49-51, 53-56

length limit 53, 992
as name tree keys 161, 185, 584, 615, 709-710
syntax 53-56

string types 157-160
ASCII string 157
byte string 157, 159
PDFDocEncoded 159
PDFDocEncoded string 157
string 157
text string 157-158

strings
color table 263
default appearance. See default appearance strings
destinations, names of 584
element identifiers (logical structure) 858
encryption 115, 118
file identifiers 847
file specification 179-183
hexadecimal 53, 56
literal 53-56
reverse-order show strings 890-891
showing. See showing of text
text. See text strings
text objects 387
See also

string objects

stroke adjustment, automatic 215, 511-512
for raster-scan displays 511
See also

stroke adjustment parameter
stroke adjustment parameter 211

S operator 231
SA entry (graphics state parameter dictionary) 222,

512
stroke operator (PostScript) 985, 987
stroking

color. See stroking color, current
color space. See stroking color space, current
glyphs 401, 468, 1108
ink annotations 636
paths 36, 193-194, 211, 214-216, 218, 231-232, 636,

985, 987, 1062
scan conversion 510
stroke adjustment 211, 215, 222, 231, 511-512
text 36, 194, 392, 401
text rendering mode 401, 468, 1108
and transparent overprinting 567, 569-570, 572

stroking alpha constant, current 212, 222, 551
and fully opaque objects 573
initialization 558
and overprinting 569-570
setting 551

stroking color, current 210, 214
DeviceCMYK color space 243, 288, 986
DeviceGray color space 242, 288, 986
DeviceN color spaces 270
DeviceRGB color space 243, 288, 987
initial value 287
and S operator 231
Separation color spaces 266
setting 236, 240, 287-288, 986-987
text, showing 391, 401

stroking color space, current 210
CIE-based color spaces 245
color components, number of 287
DeviceCMYK color space 243, 288, 986
DeviceGray color space 242, 288, 986
DeviceRGB color space 243, 288, 987
Indexed color spaces 262
and S operator 231
setting 236, 240, 287-288, 986

StructElem object type 858
StructParent entry 857, 869-870

annotation dictionary 608, 869
image dictionary 342, 555, 869
type 1 form dictionary 359, 869

StructParents entry 857, 869-871, 939
page object 147, 869, 871
type 1 form dictionary 359, 869

Index
1285

StructTreeRoot entry (document catalog) 141, 856, 899
StructTreeRoot object type 857
structural parent tree 857, 868-872

annotations 608
form XObjects 359
image XObjects 342
next key 858, 869
page objects 147

structure, logical
See logical structure

structure attributes 873-877
attribute classes 858, 873-874
owner 873
revision number 859, 873-875
standard. See standard structure attributes

structure element dictionaries 858-860
A entry 859, 873-875, 913, 915
ActualText entry 470, 860, 888, 892-893, 895, 912-913,

915, 944
Alt entry 860, 888, 892-893, 912-913, 915, 942-944
C entry 859, 874-875, 913, 915
E entry 860, 892, 913, 915, 945
ID entry 858, 935
K entry 857, 859, 861, 868
Lang entry 860, 913, 915, 937, 939
P entry 858
Pg entry 858, 863, 868
R entry 859, 874-875
S entry 858, 898-899, 1082, 1089
T entry 859
Type entry 858-859

structure elements 856
abbreviation expansion 860
access, dictionary entries for 870
alternate description 860, 887, 942-943
annotations, sequencing of 890
attribute classes 859, 874
attribute objects associated with 859
and basic layout model (Tagged PDF) 895
block-level (BLSEs). See block-level structure elements
content items associated with 858, 861
content items, finding from 857, 868-872, 939
element identifier 857-858
form XObjects in 865-868
inline-level (ILSEs). See inline-level structure elements
language identifier 141, 860
natural language specification 937-941
non-graphical information (user properties) 876
outline items, associated with 586
replacement text 860, 944
revision number 859, 874-875
structure type 858, 898-899
Tagged PDF layout 899
title 859

See also
structure attributes
structure element dictionaries
structure types

structure hierarchy 856-860
and accessibility to users with disabilities 936-940
in Linearized PDF 1038
logical structure order 889
See also

structure elements
structure tree root

structure tree
See structure hierarchy

structure tree root 141, 856-858
class map 858, 874, 913
ClassMap entry 858, 874, 913
and content extraction 899
IDTree entry 857-858
K entry 856-857, 899
ParentTree entry 857, 869-870
ParentTreeNextKey entry 858, 869
role map 858, 860
RoleMap entry 858
Type entry 857

structure types 58, 858, 860-861
marked-content tags and 862
role map 858
standard. See standard structure types

structured elements
nested lists 1089
table of contents 1082

Style dictionaries
See CIDFont Style dictionaries

Style entry (CIDFont font descriptor) 461
sub operator (PostScript) 176, 989
Sub predictor function (LZW and Flate encoding) 75-76
SubFilter entry

encryption dictionary 116, 129, 131
signature dictionary 727, 729, 738
signature field seed value dictionary 697, 699

Subj entry (markup annotation dictionary) 619
Subject entry

certificate seed value dictionary 700
document information dictionary 844

SubjectDN entry (certificate seed value dictionary) 700
submit-form action dictionaries 703

F entry 703
Fields entry 703, 706-707
Flags entry 703, 706
S entry 703

submit-form actions 653, 703-707, 1119-1120
FDF differences stream 715

Index
1286

field flags, effects on 676
flags. See submit-form field flags
status string 714
See also

submit-form action dictionaries
submit-form field flags 703-706

CanonicalFormat 705
IncludeNoValueFields 704, 706-707
EmbedForm 706
ExclFKey 706
ExclNonUserAnnots 705
ExportFormat 704-706
GetMethod 704-705
Include/Exclude 704, 706
IncludeAnnotations 705
IncludeAppendSaves 705, 715
SubmitCoordinates 704
SubmitPDF 704-706
XFDF 705-706

Submit Web Capture command flag 959
SubmitCoordinates field flag (submit-form field) 704
SubmitForm action type 653, 703
SubmitPDF field flag (submit-form field) 704-706
SubmitStandalone form usage rights 735
sub-page navigation 601-603
subpaths 225, 227, 234, 402, 986-987
subscripts 403

shift direction 926
subsets, font

See font subsets
subtractive color components

and blend functions 572
subtractive color representation 241

in blending color space 519, 557
and default color spaces 258
DeviceCMYK color space 243
and halftones 487
and overprinting 572
process color components 241
in soft-mask images 554
tints 265, 270, 563, 572
transfer functions, input to 485

subtractive colorants 264, 267
See also

black colorant
cyan colorant
magenta colorant
yellow colorant

subtractive output devices 264-266, 488
Subtype entry 59-60

3D annotation dictionary 791
3D background dictionary 812

3D stream dictionary 797-798
annotation dictionary 606, 615
caret annotation dictionary 635
CIDFont dictionary 436
circle annotation dictionary 631
collection field dictionary 591
CreatorInfo subdictionary, optional content usage

dictionary 380
DeviceN color space attributes dictionary 269, 271-273
embedded file stream dictionary 185, 765
embedded font stream dictionary 458, 465, 467
external object (XObject) 332-333
file attachment annotation dictionary 638
font dictionary 60, 388, 410
free text annotation dictionary 624
image dictionary 340, 353, 554, 588
ink annotation dictionary 636
line annotation dictionary 626
link annotation dictionary 622
Mac OS file information dictionary 186
measure dictionary 745-746
metadata stream dictionary 846
movie annotation dictionary 639
multiple master font dictionary 417
PageElement subdictionary, optional content usage

dictionary 381
polygon annotation dictionary 632
polyline annotation dictionary 632
pop-up annotation dictionary 637
PostScript XObject dictionary 333
Print subdictionary, optional content usage dictionary

381
printer’s mark annotation dictionary 968
projection dictionary 805, 808-810
rubber stamp annotation dictionary 635
screen annotation dictionary 640
slideshow dictionary 787
sound annotation dictionary 638
square annotation dictionary 631
text annotation dictionary 621
text markup annotation dictionary 634
trap network annotation dictionary 644, 976
TrueType font dictionary 418
Type 0 font dictionary 433, 452
Type 1 font dictionary 413
type 1 form dictionary 358
Type 3 font dictionary 420
watermark annotation dictionary 644
widget annotation dictionary 641

Subtype entry (3D animation style dictionary) 799
Subtype entry (3D lighting scheme dictionary) 817
Subtype entry (3D render mode dictionary) 813
Subtype entry (external data dictionary, 3D markup) 835
Subtype entry (property list, Tagged PDF artifact) 886

Index
1287

subtypes, object
See object subtypes

Summary standard structure attribute 935
SummaryView annotation usage rights 735
superscripts 403

shift direction 897, 926
Supplement entry (CIDSystemInfo dictionary) 436, 445,

462
supplement number (character collection) 436, 447-448,

471
Supporting the DCT Filters in PostScript Level 2 (Adobe

Technical Note #5116) 1153
Suspects entry (mark information dictionary) 856, 890
SV entry (signature field dictionary) 696
SVCert object type 700
SVG (Scalable Vector Graphics)(in slideshows) 1124
SW entry (icon fit dictionary) 719
SWF (Macromedia Flash) file format 1123
Sy entry (caret annotation dictionary) 635
Symbol font classification (Tagged PDF) 894
Symbol standard font 416, 426, 1110-1111

character encoding, built-in 995, 1013-1015
character names 471
character set 995, 1013-1015

Symbol typeface 40
Symbolic font flag 458
symbolic fonts 426, 458, 460

base encoding 427
built-in encoding 426-427, 996

Synchronized Multimedia Integration Language (SMIL 2.0)
(World Wide Web Consortium) 1158

Synchronous entry
movie activation dictionary 786
sound action dictionary 664, 1116

syntax, PDF 47-191
array objects 58
boolean objects 52
character set 49-50
comments 51, 1099
data structures 155-166
dates 160-161
dictionary objects 59-60
document structure 137-150
encryption 115-128, 1103
file specifications 178-191
file structure 90-99, 1101-1102
filters 65-86, 1100-1101
functions 166-178
indirect objects 63-65
integer objects 52
lexical conventions 48-51

name objects 56-58, 1099-1100
name trees 161-165
null object 63
number trees 166
numeric objects 52-53
objects 51-65
real objects 52
rectangles 161
stream objects 60-62, 1100
string objects 53-56
text strings 158-159

systemAudioDesc attribute (SMIL) 760
systemBitrate attribute (SMIL) 760
systemCaptions attribute (SMIL) 760
systemLanguage attribute (SMIL) 761
systemOperatingSystem attribute (SMIL) 780
systemScreenDepth attribute (SMIL) 761
systemScreenSize attribute (SMIL) 761

T
T entry

bead dictionary 597, 1035
FDF field dictionary 717, 1120
field dictionary 675-677, 696
floating window parameters dictionary 774
hide action dictionary 666
hint stream dictionary 1033
linearization parameter dictionary 1030, 1053
markup annotation dictionary 618, 620, 637, 705
media duration dictionary 771
media offset time dictionary 776
movie action dictionary 665
movie annotation dictionary 639
rectilinear measure dictionary 747
structure element dictionary 859
target dictionary 657
Web Capture page set 954

T highlighting mode (toggle) 641
T* operator 196, 398, 400, 406, 987
TA entry (go-to-3D-view action dictionary) 671
tab character

See horizontal tab (HT) character
tab order (annotations) 147, 604-605, 1113
table attributes, standard

See standard table attributes
table elements, standard

See standard table elements
Table standard attribute owner 914-915, 934
Table standard structure type 901, 903

standard layout attributes for 916, 924

Index
1288

tables of contents 900, 905
Tabs entry (page object) 147, 605
Tag annotation icon 638
tag suspects (Tagged PDF) 856, 889
Tagged PDF 421, 841, 883-935

accessibility to users with disabilities 883-884, 888,
899, 912

annotations, sequencing of 890
artifacts. See artifacts
basic layout model 883, 895-898
character properties, extraction of 891-893
content reflow. See reflow of content
exporting 913-914, 916, 927
font characteristics, determination of 892-894
hidden page elements 888-889
hyphenation 888, 898
and logical structure 841, 883-885
logical structure order 889
mark information dictionary 141, 856
page content 883-895
page content order 883-884, 888-891, 936
real content 884-885
reverse-order show strings 890-891
standard structure attributes. See standard structure at-

tributes
standard structure types. See standard structure types
tag suspects 856, 889
text discontinuities 888
Unicode, mapping to 470, 883-884, 892
word breaks, identifying 883-884, 891, 894-895

tags
algorithm (PNG predictor functions) 76
font subset 419, 458, 461, 1110
marked-content 850-851, 1019
TIFF 982-983

Tags entry
version 1.3 OPI dictionary 982
version 2.0 OPI dictionary 983

Tags for the Identification of Languages (Internet RFC
3066) 461, 937, 1157

TagSuspect entry
property list 889

TagSuspect marked-content tag 889-890
target attribute (HTML) 715
target coordinate space 304-305, 308-309, 311, 316, 320,

324, 330
target coordinate system (3D annotations) 792, 804-805,

808-810, 834
target dictionaries 657

A entry 657
N entry 657
P entry 657
R entry 657

T entry 657
target document (reference XObject) 361-362
Target entry (FDF dictionary) 715
TB entry

3D activation dictionary 795
TBody standard structure type 901, 903
TBorderStyle standard structure attribute 917, 926
TbRl writing mode 919
Tc operator 196, 398, 987
TD operator 196, 400, 406, 988
Td operator 196, 390, 406, 987
TD standard structure type 901, 903, 935

content rectangle 930
stacking direction 919
standard layout attributes for 917, 923-925

Technical Notes, Adobe
See Adobe Technical Notes

Template object type 710
template pages 150, 721, 1121
TemplateInstantiated entry (page object) 148, 1138
Templates entry

FDF page dictionary 720
name dictionary 150, 710

tensor-product patch meshes
See type 7 shadings

tensor-product patches, bicubic 327-330
terminal fields 672, 675
text 387-475

alignment. See text alignment
exporting 469, 892, 901
extraction of 40, 121, 124, 409, 912
filling 36, 194, 401
indexing 469, 883
in pattern cells 292
positioning 390
searching 34, 409, 469, 883, 892, 1109
special graphical effects 391-393
spell-checking 691, 694, 883, 894
stroking 36, 194, 401
subscripts 403, 926
superscripts 403, 897, 926
and transparent overprinting 567, 572
See also

fonts
glyphs, character
showing of text
text line matrix
text matrix
text objects
text operators
text rendering matrix
text rendering mode

Index
1289

text space
text state
writing mode

text alignment 924
Center 924
End 924
Justify 924
Start 924

text annotation dictionaries 621
IRT entry 620
Name entry 621
Open entry 621
State entry 620-621
StateModel entry 620-621
Subtype entry 621

Text annotation type 615, 621
text annotations 99, 124, 621-622, 1114

access permissions for 121
font 621
and free text annotations, compared 623
modification date, updating 1113
rotation, not subject to 621
scaling, not subject to 621
and sound annotations, compared 638
text size 621
in updating example 1074-1075, 1077-1080, 1082
See also

text annotation dictionaries
Text Boundaries (Unicode Standard Annex #29) 895, 1158
text color (Tagged PDF) 921
text decoration type 928

LineThrough 928
None 928
Overline 928
Underline 928

text discontinuities 888
text field dictionaries 692

MaxLen entry 691-692
text field flags 691

Comb 691
DoNotScroll 691
DoNotSpellCheck 691
FileSelect 691-692
Multiline 691
Password 691
RichText 678, 683, 691

text fields 675, 685, 691-693
flags. See text field flags
trigger events for 651
value 691-692
variable text in 677
See also

text field dictionaries

text files 39, 49
text font (Tf) parameter

Tf operator 988
text font parameter 397

Font entry (graphics state parameter dictionary) 221
showing of text 389
Tf operator 398

text font size (Tfs) parameter
Tf operator 988

text font size parameter 397
Font entry (graphics state parameter dictionary) 221
showing of text 389
text matrix, updating of 410
text space 406
Tf operator 390, 398
unscaled text space units unaffected by 398

text identifiers (Web Capture page sets) 951, 953-954
text knockout (Tk) parameter

transparent overprinting independent of 569
text knockout parameter 397, 403-404

TK entry (graphics state parameter dictionary) 223
text line matrix 397, 404, 407
text markup annotation dictionaries 634

QuadPoints entry 634, 1115
Subtype entry 634

text markup annotations 633-634, 1115
See also

text markup annotation dictionaries
text matrix 203, 390, 397-398, 404, 407, 409-410

text size 390
translation 408

text object operators 196, 404-405
BT 196, 390, 401, 405, 679, 851, 911, 985
ET 196, 401, 405, 679, 851, 911, 986
marked-content operators, combined with 851

text objects 36, 194, 387, 389, 404-410, 985-986
as clipping paths 235, 401-402, 852-853
and color operators 286
and default appearance strings 679
in glyph descriptions 421
and graphics state 198
illustration elements (Tagged PDF) prohibited within

911
operators in 405
showing text 389
text knockout parameter 223, 403, 548
text line matrix 397
text matrix 397
text rendering matrix 397
text state operators 397
text state parameters 397
Type 3 fonts in 405
See also

Index
1290

text object operators
text operators 193, 1060

in text objects 387, 404
Text procedure set 405
See also

text object operators
text-positioning operators
text-showing operators
text state operators
Type 3 font operators

text position, current
See current text position

text-positioning operators 196, 406-407
in dynamic appearance streams 680
T* 196, 398, 400, 987
TD 196, 400, 406, 988
Td 196, 390, 406, 987
in text objects 405, 407
Tm 196, 406, 679, 988

Text procedure set 405, 842
text rendering matrix 397, 404, 409
text rendering mode 397, 401-402, 468

special graphical effects 391-392
Type 3 fonts unaffected by 392, 401

text rendering mode (Tmode) 1108
and marked content 852-853
Tr operator 988
and transparent overprinting 569-570

text rendering mode operator 398
text rise (Trise) parameter

Ts operator 988
text rise parameter 397, 403

text space 406, 409
Ts operator 398

text-showing operators 196, 394, 407-410, 988, 1108
' (apostrophe) 196, 398, 400, 407, 988
" (quotation mark) 196, 398, 400, 407, 988
and CMaps 434, 453
and composite fonts 433
in dynamic appearance streams 680
glyph positioning 394-395, 406-407
glyph selection 412
object shape 549
in text objects 405
TJ 196, 394, 398, 400, 408, 410, 988, 1108
Tj 196, 289-290, 295, 299, 303, 390-394, 398, 407, 409,

453, 988, 1108
and Type 3 fonts 422-423

text space 203, 221, 406, 409-410
device space, relationship with 409
glyph positioning 395
glyph space, relationship with 394, 409, 420
origin 394, 406

rotation 406
scaling 391, 398, 400, 406
text size 390-391
and text state parameters 401
translation 393, 395, 406, 408
and Type 3 glyph descriptions 422
units 390-391, 408, 414
user space, relationship with 406-407

text state 387, 396
See also

text state operators
text state parameters

text state operators 196, 218, 397-398
in default appearance strings 678-679
initialization 397
Tc 196, 398, 987
in text objects 405
Tf 60, 196, 221, 389-390, 398, 436, 679, 988
TL 196, 398, 988
Tr 196, 392, 398, 988
Ts 196, 398, 988
Tw 196, 398, 988
Tz 196, 398, 988

text state parameters 211, 387, 391, 396-404
See also

character spacing parameter
horizontal scaling parameter
leading parameter
text font parameter
text font size parameter
text knockout parameter
text line matrix
text matrix
text rendering matrix
text rendering mode
text rise parameter
word spacing parameter

text streams 160
text strings 158-159

as annotation names 606
as choice field options 694-695, 1119
encodings for 158, 996
as FDF option names 719
as field names 676
as field values 688, 691-692
as name tree keys 584
as page set titles (Web Capture) 954
as production condition names 971
as streams 160
as structure element titles 859
as trap network descriptions 978
See also

rich text strings
text streams

Index
1291

text-to-speech conversion 936
abbreviations and acronyms 945
alternate descriptions 942
artifacts 887
hidden page elements 889
natural language specification 841
Unicode 892
word breaks 894

text-align CSS2 style attribute (rich text strings) 682
TextAlign standard structure attribute 916, 924
text-decoration CSS2 style attribute (rich text strings) 682
TextDecorationColor standard structure attribute 917,

927
TextDecorationThickness standard structure attribute

917, 927
TextDecorationType standard structure attribute 905, 917,

928
TextIndent standard structure attribute 916, 923
TF entry (media permissions dictionary) 766
Tf operator 60, 196, 221, 389-390, 398, 988

CIDFonts, inapplicable to 436
in default appearance strings 679

TFoot standard structure type 901, 903
TH standard structure type 901, 903, 935

content rectangle 930
standard layout attributes for 917, 923-925

THead standard structure type 901, 903
third-class names 1020
thread action dictionaries 661-662

B entry 662
D entry 661
F entry 584, 661
S entry 661

Thread action type 653, 661
thread actions 653, 661-662

and Linearized PDF 1052
and named destinations 584
target bead 662
target file 661
target thread 661
See also

thread action dictionaries
thread dictionaries 140, 596

F entry 596
I entry 596, 1020, 1037
in Linearized PDF 1031, 1035, 1037
thread actions, target of 661
Type entry 596

thread information dictionaries 596
in Linearized PDF 1031, 1037
registered names not required in 1020
thread actions, target of 661

thread information hint table (Linearized PDF) 1033,
1048

Thread object type 596
threads, article 594, 596-597

in document catalog 137, 140
in Linearized PDF 1035, 1052-1055
and thread actions 661
See also

articles
beads
thread dictionaries
thread information dictionaries

Threads entry (document catalog) 140, 596, 661, 1031,
1053

three-dimensional graphics. See 3D artwork
threshold arrays 494-496

device space, defined in 494, 499, 503-504
height 499
and spot functions, compared 494
spot functions converted internally to 495
type 6 halftones 496, 499
type 10 halftones 496, 499-500
type 16 halftones 496, 503-504
width 499

Thumb entry (page object) 146, 588, 1035
thumbnail hint table (Linearized PDF) 1033, 1046-1047

header 1046-1047
per-page entries 1046-1047

thumbnail images 581, 587-588
access permission 121, 124
color space 588
display of 137
hiding and showing 140, 578
image XObjects as 335, 339, 588
in Linearized PDF 1037, 1046-1047
in page object 137, 146
sample limit 993
unrecognized filters in 1101

TI entry (choice field dictionary) 694
TID entry (Web Capture page set) 953-954
TIFF (Tag Image File Format) Predictor 2 predictor

function 76
TIFF (Tag Image File Format) standard 71, 75, 982-983
%%TIFFASCIITag OPI comment (PostScript) 983
tilde, right angle bracket (~>) character sequence

as EOD marker 69-70
tiling patterns (type 1) 262, 290-301

bounding box 293
colored 292, 294-298, 561
compositing in 559
compositing of 559
and fully opaque objects 574

Index
1292

gradient fills in 303
key pattern cell 294
metadata for 846
object opacity 528
object shape 528, 549
painting with 294
pattern cell. See pattern cells
resources 293
spacing 293
and text objects 405
uncolored 288, 292, 298-301, 561
See also

type 1 pattern dictionaries
tiling types (tiling patterns)

type 1 (constant spacing) 293
type 2 (no distortion) 293
type 3 (constant spacing and faster tiling) 293

TilingType entry (type 1 pattern dictionary) 293
time scale (movie) 785
time stamp dictionaries 699

Ff entry 699
URL entry 699

time stamp information (PKCS#7 objects) 739
Times* typeface 40, 388, 995
Times-Bold standard font 416, 1110
Times-BoldItalic standard font 416, 1110
Times-Italic standard font 416, 1110
Times-Roman standard font 416, 1110
TimesNewRoman standard font name 1110
TimesNewRoman,Bold standard font name 1110
TimesNewRoman,BoldItalic standard font name 1110
TimesNewRoman,Italic standard font name 1110
timespan dictionaries 771, 776

S entry 776
Type entry 776
V entry 776

Timespan object type 776
TimeStamp entry (signature field seed value dictionary)

699
Tint entry (version 1.3 OPI dictionary) 982
tint transformation functions 175, 253, 258, 267, 271

and color separations 970
for DeviceN color spaces 271-272, 286, 307
for Separation color spaces 267, 307
and spot color components 564

tints
All colorant name 266
CS operator 287
DeviceN color spaces 270
in halftones 487
and overprint mode 285

and overprint parameter 284
Separation color spaces 265-266
for spot color components 563
subtractive color representation 265, 270, 563, 572
tint transformation function 271

title bar
document window 578
pop-up window 607, 618

Title entry
document information dictionary 844
outline item dictionary 585

TJ operator 196, 394, 398, 400, 408, 410, 988, 1108
Tj operator 196, 390, 407, 988, 1108

character spacing 398
and CMaps 453
glyph positioning 393-394
with multiple glyphs 409
with patterns 289, 295, 299, 303
special graphical effects 391-392
tiling patterns, emulating with 290
word spacing 398

TK entry (graphics state parameter dictionary) 223, 397,
403

TL operator 196, 398, 988
TM entry (3D animation style dictionary) 799
TM entry (field dictionary) 675, 704
Tm operator 196, 406, 988

in default appearance strings 679
“to CIE” information (ICC color profile) 255, 972, 1127
TOC standard structure type 900, 905
TOCI standard structure type 900
Toggle state (optional content groups) 667-668
ToggleNoView annotation flag 609, 1114
tokens, lexical 48-51, 91, 146
tool bars, hiding and showing 578
tool tips

See pop-up help systems
topmost object 573
TopSecret annotation icon 636
ToUnicode CMaps 472-475, 1111

beginbfrange and endbfrange operators in 452
CMap format, based on 449
for content extraction 40
syntax 472, 475
in Tagged PDF 470, 892
for Type 0 fonts 453
for Type 1 fonts 415
for Type 3 fonts 421

ToUnicode entry 470
Type 0 font dictionary 453
Type 1 font dictionary 415

Index
1293

Type 3 font dictionary 421
ToUnicode Mapping File Tutorial (Adobe Technical Note

#5411) 472, 1153
TP entry (appearance characteristics dictionary) 643
TPadding standard structure attribute 917, 926
TR entry

graphics state parameter dictionary 222, 289, 485, 743
soft-mask dictionary 552-553

Tr operator 196, 392, 398, 988
TR standard structure type 901, 903

stacking direction 919
TR2 entry (graphics state parameter dictionary) 222, 289,

485
trailer, file

See file trailer
trailer dictionaries 107
trailer keyword 97, 107, 713
Trans action type 653, 670
Trans entry

page object 147, 598, 603
transition action dictionary 670

Trans object type 599
transfer functions 477, 484-486, 496

additive colors produced by 485, 488
for CMYK devices 484
color inversion with 485
current. See current transfer function
for DeviceGray color space 486
for halftone screens 498-499, 502, 504-505
halftones, applied before 484, 486
for soft masks 546-547, 552-553
and transparency 573-574

TransferFunction entry
type 1 halftone dictionary 498
type 6 halftone dictionary 499
type 10 halftone dictionary 502
type 16 halftone dictionary 504

transform methods (object signatures) 731-737
DocMDP 730-733, 741-742
FieldMDP 726, 730-731, 736-737
Identity 714, 730, 737
UR 726, 730, 733, 741

transform parameters (object signatures) 730-731
DocMDP 732-733, 737
FieldMDP 736
UR 734

transformation (ICC color profile) 255, 519
transformation matrices 199, 204, 207-209

3D artwork 804, 832-835
CIE-based color space 246-249, 251
reference XObject 362
specification 205, 208

type 1 (function-based) shading 308
See also

current transformation matrix (CTM)
font matrix
form matrix
pattern matrix
text line matrix
text matrix
text rendering matrix

transformations, coordinate
See coordinate transformations

TransformMethod entry (signature reference dictionary)
714, 725, 730-731

TransformParams entry (signature reference dictionary)
725, 730

TransformParams object type 733-734, 736
transition action dictionaries

S entry 670
Trans entry 670

transition actions 653, 670
transition dictionaries 147, 598-600

B entry 600
D entry 600
Di entry 599-600
Dm entry 599-600
M entry 599-600
S entry 599
SS entry 600
Type entry 599

transition duration 600-601
transition style 599

Blinds 599-600
Box 599-600
Cover 599-600
Dissolve 599
Fade 599
Fly 599-600
Glitter 599-600
Push 599-600
R 599
Split 599-600
Uncover 599-600
Wipe 599-600

translation
images 338
order of transformations 206
text space 393, 395, 406, 408
transformation matrices 199, 204-205

transparency
See transparent imaging model

Transparency entry (version 1.3 OPI dictionary) 982
transparency group attributes dictionaries 556-558

CS entry 553, 557, 559

Index
1294

I entry 557-558
K entry 558-559
S entry 556

Transparency group subtype 361, 556, 559
transparency group XObjects 195, 361, 556-559

graphics state parameters, initialization of 211-212
soft masks, definition of 552-553
version compatibility 1098

transparency groups 195, 361, 515-516, 530-545
alpha. See group alpha
as annotation appearances 557, 613
backdrop. See group backdrop
backdrop alpha 535
backdrop color 535
and black-generation functions 575
blend mode 515, 531, 537, 539-540
blending color space. See blending color space
bounding box 559
clipping to bounding box 559
color. See group color
color space. See group color space
compositing computations. See compositing computa-

tions
compositing in 515-516, 530-531, 533-534, 546, 557,

559, 561
compositing of 515-516, 530-531, 533-535, 552, 557-

559, 561, 569
constant opacity 531
constant shape 531
elements 534-536, 538-539, 541
group attributes dictionary 146
hierarchy 515, 530
immediate backdrop (group elements). See immediate

backdrop
initial backdrop. See initial backdrop
mask opacity 531
mask shape 531
nested 515, 530, 534, 575
and nonstroking alpha constant 551
notation 534
opacity. See group opacity
and overprinting 569-570, 572
page group 146, 516, 542-543, 556
painting 558-559
in pattern cells 559
and rendering intents 574-575
rendering parameters ignored for 573
shape. See group shape
soft clipping 550
soft masks, deriving from 531, 552

group alpha 546, 552-553
group luminosity 516, 546-547, 552-553

spot color components, painting of 564
stack. See group stack

structure and nomenclature 533-534
and undercolor-removal functions 575
See also

isolated groups
knockout groups
non-isolated groups
non-knockout groups
transparency group XObjects

transparency stack 195, 514
graphics objects and 548
group. See group stack
opacity 515
page group 516, 573
shape 515
and transparency groups 515, 530-532

Transparent 3D render modes 815
transparent imaging model 35, 195, 513-576

and alternate color space 267, 271, 519
appearance streams and 613
backdrop. See backdrop
halftones and 573-574
JPEG2000 and 88
opaque overprinting, compatibility with 567-569
overprinting 565-572
overview 514-516
patterns and 559-561
PostScript, compatibility with 576
rendering intents and 574-575
rendering parameters and 573-575
spot colors and 563-565
text, showing of 401
text knockout parameter 223, 397, 403-404, 569
transfer functions and 573-574
version compatibility 1098
See also

alpha
blend modes
blending color space
compositing
opacity
shape
soft masks
transparency groups
transparency stack

TransparentBoundingBox 3D render modes 815
TransparentBoundingBoxOutline 3D render modes 816
TransparentWireframe 3D render modes 815
trap network annotation dictionaries 976-977

AnnotStates entry 976-977
FontFauxing entry 977
LastModified entry 976
Subtype entry 644, 976
Version entry 976-978, 1128

Index
1295

trap network annotations 616, 643-644, 975-977, 1128
appearance streams. See trap network appearances
See also

trap network annotation dictionaries
trap network appearance stream dictionaries 978

PCM entry 978
SeparationColorNames entry 978
TrapRegions entry 978
TrapStyles entry 978

trap network appearances 975, 977-978
See also trap network appearance stream dictionaries

trap networks 975-978
current 975
modification date 976
regeneration 976
validation 976, 1128

TrapNet annotation type 616-617, 644, 715, 976
Trapped entry (document information dictionary) 844
trapping 565, 643, 842, 962, 974-978

document status 844
instructions 974
parameters 974, 978
and preseparated files 978
zones 974, 978
See also

trap network annotations
trap network appearances
trap networks

TrapRegion objects (PJTF) 978
TrapRegions entry (trap network appearance stream

dictionary) 978
TrapStyles entry (trap network appearance stream

dictionary) 978
trees

balanced 143, 1153
of chained actions 648
interactive form 674
name. See name trees
number. See number trees
page 137, 139, 143-149, 710, 1057, 1065
structural parent 147, 342, 359, 608
structure. See structure hierarchy

TRef entry (FDF template dictionary) 721
triangle meshes, Gouraud-shaded 324

free-form. See type 4 shadings
lattice-form. See type 5 shadings

trigger events 141, 647-652, 1115-1116
for annotations 649-650
Bl (annotation) 650
C (form field) 651-652
C (page) 650
D (annotation) 649, 651-652
for documents 651

DP (document) 651
DS (document) 651
E (annotation) 649, 651-652, 665
F (form field) 651-652
for FDF fields 719
Fo (annotation) 649
for form fields 651-652, 676
K (form field) 651-652
mouse-related 649, 652
for multimedia 649
O (page) 650
for pages 650
PC (annotation) 650
PI (annotation) 650
PO (annotation) 650
and pop-up help systems 665
PV (annotation) 650
U (annotation) 649, 651-652
V (form field) 651-652
WC (document) 651
WP (document) 651
WS (document) 651
X (annotation) 649, 651-652, 665

trim box 963
clipping to 965
display of 967
in page object 146
page placement, ignored in 965
for page positioning 965
printer’s marks excluded from 966
in printing 965

TrimBox entry
box color information dictionary 967
page object 146, 963, 1127

Trinitron® display, Sony 249
tristimulus values 244, 246, 248, 250-251
true (boolean object) 52
true operator (PostScript) 176, 990
TrueType 1.0 Font Files Technical Specification (Microsoft

Corporation) 418, 461, 1157
TrueType font dictionaries 418-419, 468

BaseFont entry 418-419
Encoding entry 418, 429-432
Subtype entry 418

TrueType font programs
“cmap” table 429-432, 438-439, 468
“cvt ” table 468-469
embedded 40, 457, 466, 468
“fpgm” table 468-469
“glyf ” table 466, 468-469
“head” table 468-469
“hhea” table 468-469
“hmtx” table 468-469

Index
1296

“loca” table 468-469
“maxp” table 468-469
“name” table 418
“OS/2” table 461
“post” table 429, 431
“prep” table 468-469
sFamilyClass field 461
“vhea” table 468
“vmtx” table 468

TrueType font type 60, 411, 418, 466
TrueType® fonts 32, 418-419

built-in encoding 429
character encodings 429-432, 468, 996
font descriptors for 457
format 388, 418
glyph descriptions 429-431, 438, 445, 468
glyph indices 438, 445
in Linearized PDF 1036
PostScript name 418-419
in PostScript XObjects 333
subsets 419
synthesized styles 418
and Type 2 CIDFonts 436, 438, 445, 453
vertical metrics 468
See also

TrueType font dictionaries
TrueType font programs

TrueType Reference Manual (Apple Computer, Inc.) 418,
466, 1153

TrueTypeFonts entry (legal attestation dictionary) 743
truncate operator (PostScript) 176, 989
TS entry

source information dictionary 955-956
Web Capture content set 954

Ts operator 196, 398, 988
TT entry (floating window parameters dictionary) 775
TU entry (field dictionary) 675, 943
Tw operator 196, 398, 988
TwoColumnLeft page layout 140
TwoColumnRight page layout 140
TwoPageLeft page layout 140
TwoPageRight page layout 140
Tx field type 675, 680
Type 0 CIDFont programs

compact 466-468
Type 0 CIDFonts 436

glyph selection 438
PostScript name 436, 453
See also

Type 0 CIDFont programs
Type 0 font dictionaries 433, 441, 452-453

BaseFont entry 453

DescendantFonts entry 435, 453-454
Encoding entry 435, 453
Subtype entry 433, 452
ToUnicode entry 453
Type entry 452

Type 0 fonts 410, 433-455
character identification 471
CID-keyed fonts as 435
CIDFonts 411
CIDFonts as descendants of 436, 453-455, 471
CMap mapping 454, 1111
descendant fonts 433, 453
font descriptors lacking in 455
glyph selection 452-455
Identity-H predefined CMap 445
Identity-V predefined CMap 445
root font 433
undefined characters 454-455
See also

Type 0 font dictionaries
type 0 function dictionaries (sampled) 170

BitsPerSample entry 170-171
Decode entry 170, 172-173
Encode entry 169-170
Order entry 170, 173, 1105
Size entry 170-171, 173

type 0 functions (sampled) 168-173, 1105
clipping to domain 170
clipping to range 171
clipping to sample table 171
decoding of output values 171
dimensionality 169
encoding of input values 171
interpolation 171
sample data 169-171
and smoothness tolerance 510
See also

type 0 function dictionaries
Type 1 font dictionaries 413-415, 417-418, 1108-1109

BaseFont entry 58, 333, 413
Encoding entry 414, 429
FirstChar entry 413-414, 1110
FontDescriptor entry 414, 1110
LastChar entry 414, 1110
Name entry 413, 1108
Subtype entry 413
ToUnicode entry 415
Type entry 413
Widths entry 414, 1110

Type 1 Font Format Supplement (Adobe Technical Note
#5015) 416, 1151-1152

Type 1 font programs
clear-text portion 466-467
compact 466, 468

Index
1297

embedded 40, 457, 465-467, 1109
encrypted portion 467
fixed-content portion 467
PaintType entry 468

Type 1 fonts 32, 40, 412-417, 1108-1109
built-in encoding 414, 429, 996
character encodings 428-429, 996
compact 467
font descriptors for 457
FontName entry 413
format 388
glyph descriptions 412
glyph widths 414, 1108-1109
hints 412
in Linearized PDF 1036
multiple master 416-417, 1111
in PostScript files 46
in PostScript XObjects 333
subsets 419
and Type 0 CIDFonts 436
and Type 3 fonts, compared 420
See also

Type 1 font dictionaries
Type 1 font programs

type 1 form dictionaries 358-359
BBox entry 357-358, 362, 558, 612, 678, 930
FormType entry 358
Group entry 359-360, 362, 556, 559, 613
LastModified entry 359
Matrix entry 357-358, 362, 552, 612
Metadata entry 359
Name entry 360, 1108
OC entry 360
OPI entry 359, 979
PieceInfo entry 359, 848
Ref entry 359, 361-362
Resources entry 358, 678, 680
StructParent entry 359, 869
StructParents entry 359, 869
Subtype entry 358
Type entry 358

type 1 halftone dictionaries 497-498
AccurateScreens entry 497-498
Angle entry 497
Frequency entry 497
HalftoneName entry 497
HalftoneType entry 497
SpotFunction entry 497
TransferFunction entry 498
Type entry 497

type 1 halftones 496-498
See also type 1 halftone dictionaries

type 1 pattern dictionaries (tiling) 292-293
BBox entry 293

Matrix entry 293, 357
PaintType entry 292, 561
PatternType entry 292
Resources entry 293
TilingType entry 293
Type entry 292
XStep entry 293
YStep entry 293

type 1 patterns (tiling)
See tiling patterns

type 1 shading dictionaries (function-based) 308
Domain entry 308
Function entry 308
Matrix entry 308

type 1 shadings (function-based) 304, 308-309
coordinate system 308
See also

type 1 shading dictionaries
Type 2 Charstring Format, The (Adobe Technical Note

#5177) 1153
Type 2 CIDFonts 436

encoding 453
glyph selection 438-439
and Identity-H predefined CMap 445
and Identity-V predefined CMap 445
PostScript name 436, 453

type 2 function dictionaries (exponential interpolation)
173

C0 entry 173
C1 entry 173
N entry 173

type 2 functions (exponential interpolation) 168, 173-174,
1105

See also type 2 function dictionaries
type 2 pattern dictionaries (shading) 302-304

ExtGState entry 302, 560
Matrix entry 302, 357
PatternType entry 302
Shading entry 302
Type entry 302

type 2 patterns (shading)
See shading patterns

type 2 shading dictionaries (axial) 309
Coords entry 309
Domain entry 309
Extend entry 309
Function entry 309

type 2 shadings (axial) 304, 307, 309-310
parametric variable 309-310
See also

type 2 shading dictionaries
Type 3 font dictionaries 411, 420-421

CharProcs entry 370, 421-423, 429

Index
1298

Encoding entry 421, 429, 1110
FirstChar entry 421
FontBBox entry 420
FontDescriptor entry 421
FontMatrix entry 394, 420, 422
LastChar entry 421
Name entry 420
Resources entry 421
Subtype entry 420
ToUnicode entry 421
Type entry 420
Widths entry 421, 423

Type 3 font operators 196, 422-423
d0 196, 421, 423, 986
d1 196, 289, 421, 423, 986

Type 3 fonts 153, 203, 411, 420-425, 1110-1111
bounding box 420, 422-423, 986
character encodings 425, 429
font descriptors lacking in 455
font matrix 394
glyph descriptions 420-422, 1101
glyph widths 421-423, 986
hints unavailable in 420
metrics 394
PostScript and PDF, compared 422-423
resource dictionary 421, 1111
in text objects 405
text rendering mode, unaffected by 392, 401
and Type 1 fonts, compared 420
See also

Type 3 font dictionaries
Type 3 font operators

type 3 function dictionaries (stitching) 174
Bounds entry 174
Encode entry 174
Functions entry 174

type 3 functions (stitching) 168, 174-175, 1105
for inverting function domains 175
See also

type 3 function dictionaries
type 3 shading dictionaries (radial) 311

Coords entry 311
Domain entry 311
Extend entry 311
Function entry 311

type 3 shadings (radial) 304, 307, 310-314
blend circles 311-313
parametric variable 311
See also

type 3 shading dictionaries
type 4 functions (PostScript calculator) 168-169, 175-178,

1105
error detection and reporting 178

language limitations 176
null operands and results 52
operand stack 177
operand syntax 176
operators 176, 989-990
predefined spot functions, definitions of 489-493
as spot functions 1112
as transfer functions 485

type 4 shading dictionaries (free-form Gouraud-shaded
triangle mesh) 315

BitsPerComponent entry 315
BitsPerCoordinate entry 315
BitsPerFlag entry 315
Decode entry 315
Function entry 315

type 4 shadings (free-form Gouraud-shaded triangle
meshes) 304, 314-318

data format 315-318
edge flags 315-318
parametric variable 315-316, 318
See also

type 4 shading dictionaries
type 5 halftone dictionaries 498-499, 502, 505

Default entry 505
HalftoneName entry 505
HalftoneType entry 505
keys 496
Type entry 505

type 5 halftones 496, 505-508
default halftone 505
transfer functions required for components 498-499,

502
type 5 halftones, prohibited as components of 505
See also

type 5 halftone dictionaries
type 5 shading dictionaries (lattice-form Gouraud-shaded

triangle mesh) 320
BitsPerComponent entry 320
BitsPerCoordinate entry 320
Decode entry 320
Function entry 320
VerticesPerRow entry 320

type 5 shadings (lattice-form Gouraud-shaded triangle
meshes) 304, 319-321

data format 319-321
parametric variable 320
See also

type 5 shading dictionaries
type 6 halftone dictionaries 499

HalftoneName entry 499
HalftoneType entry 499
Height entry 499, 502
TransferFunction entry 499

Index
1299

Type entry 499
Width entry 499, 502

type 6 halftones 496, 499
and type 10 halftones, compared 499, 502
See also

type 6 halftone dictionaries
type 6 shading dictionaries (Coons patch mesh) 324, 327

BitsPerComponent entry 324
BitsPerCoordinate entry 324
BitsPerFlag entry 324
Decode entry 324
Function entry 324

type 6 shadings (Coons patch meshes) 304, 321-327
data format 324-327
edge flags 325-327
parametric variables 321-322, 324, 326
See also

type 6 shading dictionaries
type 7 shading dictionaries (tensor-product patch mesh)

327
type 7 shadings (tensor-product patch meshes) 304, 327-

331
data format 330-331
edge flags 330-331
parametric variables 329
See also

type 7 shading dictionaries
type 10 halftone dictionaries 502

HalftoneName entry 502
HalftoneType entry 502
TransferFunction entry 502
Type entry 502
Xsquare entry 502
Ysquare entry 502

type 10 halftones 496, 499-503
and type 6 halftones, compared 499, 502
and type 16 halftones, compared 503
See also

type 10 halftone dictionaries
type 16 halftone dictionaries 504

HalftoneName entry 504
HalftoneType entry 504
Height entry 503-504
Height2 entry 503-504
TransferFunction entry 504
Type entry 504
Width entry 503-504
Width2 entry 503-504

type 16 halftones 496, 503-504
and type 10 halftones, compared 503
See also

type 16 halftone dictionaries
Type 42 fonts 46

inapplicable to PDF 418
Type entry 59-60

3D reference dictionary 801
3D stream dictionary 797
3D view dictionary 804
action dictionary 648
annotation dictionary 606
bead dictionary 597
border style dictionary 611
certificate seed value dictionary 700
CIDFont dictionary 436
CMap dictionary 448
collection dictionary 589
collection field dictionary 591
collection items dictionary 189
collection schema dictionary 590
collection sort dictionary 592
cross-reference stream dictionary 107
crypt filter dictionary 132
Crypt filter parameter dictionary 90
DocMDP transform parameters dictionary 733
document catalog 139
embedded file stream dictionary 185
encoding dictionary 427
external object (XObject) 332
FieldMDP transform parameters dictionary 736
file specification dictionary 182, 184, 190
fixed print dictionary 645
floating window parameters dictionary 774
font descriptor 456
font dictionary 60
graphics state parameter dictionary 220
group attributes dictionary 361
halftone dictionary 496
image dictionary 340, 353, 554
marked-content reference dictionary 863
measure dictionary 746
media clip dictionary 764
media criteria dictionary 760
media duration dictionary 771
media offset dictionaries 775
media permissions dictionary 766
media play parameters dictionary 769
media player info dictionary 779
media players dictionary 777
media screen parameters dictionary 772
metadata stream dictionary 846
minimum bit depth dictionary 761
minimum screen size dictionary 762
navigation node dictionary 602
number format dictionary 748
object reference dictionary 868
object stream dictionary 101
optional content group dictionary 364-365

Index
1300

optional content membership dictionary 366
outline dictionary 585
page label dictionary 595
page object 145
page tree node 143
PDF/X output intent dictionary 971
PostScript XObject dictionary 333
property list (Tagged PDF artifact) 886
rendition dictionary 759
requirement dictionary 751
requirement handler dictionary 752
signature dictionary 727
signature field lock dictionary 697
signature field seed value dictionary 697
signature reference dictionary 730
slideshow dictionary 787-788
soft-mask dictionary 553
software identifier dictionary 780
sound object 783
stream dictionary 332
structure element dictionary 858-859
structure tree root 857
thread dictionary 596
timespan dictionary 776
transition dictionary 599
Type 0 font dictionary 452
Type 1 font dictionary 413
type 1 form dictionary 358
type 1 halftone dictionary 497
type 1 pattern dictionary 292
type 2 pattern dictionary 302
Type 3 font dictionary 420
type 5 halftone dictionary 505
type 6 halftone dictionary 499
type 10 halftone dictionary 502
type 16 halftone dictionary 504
UR transform parameters dictionary 734
User subdictionary, optional content usage dictionary

381, 383
version 1.3 OPI dictionary 980
version 2.0 OPI dictionary 983
viewport dictionary 745
Web Capture content set 953

Type entry (3D animation style dictionary) 799
Type entry (3D cross section dictionary) 819
Type entry (3D lighting scheme dictionary) 817
Type entry (3D node dictionary) 829
Type entry (3D render mode dictionary) 813
Type entry (external data dictionary, 3D markup) 835
Type0 font type 411, 433, 452
Type1 font type 60, 411, 413, 465-466
Type1C embedded font subtype 466-467
Type3 font type 411, 420

typefaces
Adobe Garamond® 415
Courier 40, 995
Helvetica* 40, 388-390, 995, 1060
ITC Zapf Dingbats® 40, 295, 996
New York 418
Poetica® 419
Symbol 40
Times* 40, 388, 995

types, object
See object types

Tz operator 196, 398, 988

U
U border style (underline) 611
U entry

additional-actions dictionary 649
encryption dictionary 123, 126-127
number format dictionary 748
software identifier dictionary 780
URL alias dictionary 957

U trigger event (annotation) 649, 651-652
U3D 3D stream subtype 797
U3D format (3D artwork) 798, 805
U3DPath entry

3D view dictionary 805
UC entry (floating window parameters dictionary) 775
UCR entry (graphics state parameter dictionary) 221, 289,

483, 743
UCR2 entry (graphics state parameter dictionary) 221,

289, 483
UCS-2 character encoding 442-445
UF entry

file specification dictionary 183
UHC (Unified Hangul Code) character encoding 445,

1120
unbalanced parentheses 53-54, 56
Unchanged state (optional content groups) 376
uncolored tiling patterns 288, 292, 298-301

color value for painting 298
content stream 289
in transparent imaging model 561

Uncover transition style 599-600
undefined characters (Type 0 fonts) 454-455
undercolor-removal function 213, 482-484

and transparency 573-575
UCR entry (graphics state parameter dictionary) 221
UCR2 entry (graphics state parameter dictionary) 221

underline annotation dictionaries
See text markup annotation dictionaries

Index
1301

Underline annotation type 616, 634
underline annotations

See text markup annotations
Underline text decoration type 928
underlying color space (Pattern color space) 258, 288, 298,

563
underscore (_) character

in file specifications 181
in multiple master font names 417

undoing changes 42
UniCNS-UCS2-H predefined CMap 443, 446
UniCNS-UCS2-V predefined CMap 443, 446
UniCNS-UTF16-H predefined CMap 443, 446
UniCNS-UTF16-V predefined CMap 443, 446
Unicode character encoding 40

for alternate descriptions 943
for field names 1117
for field values 691, 715
hard hyphen character 888
JavaScript 1.2 incompatible with 1119
for JavaScript scripts 709, 1119
list numbering 933
Microsoft Unicode 431
natural language escape 159, 937, 943-945
soft hyphen character 888, 892, 1000
Tagged PDF, mapping from 470, 883-884, 892
for text strings 158-159, 996
TrueType character names, mapping to 431
UCS-2 442-445
UTF-8 58, 1100
UTF-16BE 158, 442-445, 474, 684
word breaks 895

Unicode Consortium 1158
Bidirectional Algorithm, The (Standard Annex #9) 919
Text Boundaries (Standard Annex #29) 895
Unicode Standard, The 470, 892

Unicode Standard, The (Unicode Consortium) 470, 892,
1158

Uniform Resource Identifiers (URI)
Generic Syntax (Internet RFC 2396) 662, 780, 1156

uniform resource identifiers (URIs) 662
Uniform Resource Locators (Internet RFC 1738) 179, 188,

950, 1156
uniform resource locators (URLs)

file specifications 179, 183, 188, 703
and Linearized PDF 1022-1023
redirection 957
in submit-form actions 702-703, 1119
“unsafe” characters in 950
Web Capture 150, 946-948, 950, 956, 958-959, 1126

See also URL alias dictionaries
UniGB-UCS2-H predefined CMap 443, 446

UniGB-UCS2-V predefined CMap 443, 446
UniGB-UTF16-H predefined CMap 443, 446
UniGB-UTF16-V predefined CMap 443, 446
UniJIS-UCS2-H predefined CMap 444, 447
UniJIS-UCS2-HW-H predefined CMap 444, 447
UniJIS-UCS2-HW-V predefined CMap 444, 447
UniJIS-UCS2-V predefined CMap 444, 447
UniJIS-UTF16-H predefined CMap 444, 447
UniJIS-UTF16-V predefined CMap 444, 447
UniKS-UCS2-H predefined CMap 445, 447
UniKS-UCS2-V predefined CMap 445, 447
UniKS-UTF16-H predefined CMap 445, 447
UniKS-UTF16-V predefined CMap 445, 447
Union function 528-530, 532, 535, 538, 541, 544
unit size (default user space) 148, 201, 390, 993, 1128
Universal 3D file format (3D artwork) 790
universal resource identifiers (URIs), in software identifier

dictionaries 780
Universal Time (UT) 160-161
Unix entry

file specification dictionary 183
launch action dictionary 660

UNIX® operating system
Acrobat “Print As Image” feature unavailable in 1103
application launch parameters 660
conversion from PostScript to PDF 44
file names 181, 711

Unmarked annotation state 620
Up predictor function (LZW and Flate encoding) 75-76
updates, incremental

See incremental updates
UpperAlpha list numbering style 933
UpperRoman list numbering style 933
UR entry (permissions dictionary) 726, 733-734, 741,

1121
UR transform method 726, 730, 733, 741
UR transform parameters dictionaries

Annots entry 735
Document entry 734
EF entry 736
Form entry 735
FormEx entry 735
Msg entry 734
P entry 736
Signature entry 736
Type entry 734
V entry 734

UR3 entry (permissions dictionary) 726, 728, 733-735,
741

URI action dictionaries 662

Index
1302

IsMap entry 662
S entry 662
URI entry 662

URI action type 653, 662
URI actions 141, 653, 662-663, 1116

for annotations 662
base URI 663
and go-to actions 623
and link annotations 623
OpenAction entry (document catalog), ignored for

662
outline items, ignored for 662
See also

URI action dictionaries
URI dictionaries

URI dictionaries 141, 663
Base entry 663

URI entry
document catalog 141, 663, 766
URI action dictionary 662

URIActions entry (legal attestation dictionary) 742
URIs. See uniform resource identifiers
URL alias dictionaries 955-957, 1126

C entry 957
U entry 957

URL entry
certificate seed value dictionary 702
time stamp dictionary 699
Web Capture command dictionary 958

URL file specifications 179, 188, 703
URL file system 182, 188
URLs. See uniform resource locators
URLS entry (name dictionary) 150, 947-950, 954
URLType entry

certificate seed value dictionary 702
US Secure Hash Algorithm 1 (SHA1) (Internet RFC 3174)

1157
usage application dictionaries 377, 382-386

Category entry 382
Event entry 382-383, 386
OCGs entry 382-383, 386

usage dictionaries (optional content) 365
Usage entry (optional content group dictionary) 365, 380
usage rights 717, 733-736

annotation
Copy 735
Create 735
Delete 735
Export 735
Import 735
Modify 735
Online 735

SummaryView 735
document

Fullsave 734
embedded files

Create 736
Delete 736
Import 736
Modify 736

form
BarcodePlainText 735
Export 735
FillIn 735
Import 735
Online 735
SpawnTemplate 735
SubmitStandalone 735

signatures
Modify 736

validating signatures 734
See also

UR transform method
UseCMap entry (CMap dictionary) 449, 451, 472
usecmap operator (PostScript) 451
usefont operator (PostScript) 452
UseNone page mode 140, 578
UseOC page mode 140, 578
UseOutlines page mode 140, 578, 1027, 1031, 1035
User entry (optional content usage dictionary) 381, 383
user interface

controller bars (movies) 786
field names 675, 943
icons 604, 607, 621, 636, 638-639, 1114
menu bar 578
menu items 674, 1117
navigation controls 578
Print Setup dialog 1127
pushbuttons 674
scroll bars 578
tool bars 578
windows

See
 document windows
 floating windows
 pop-up windows

See also
actions
annotations
document outline
interactive forms
mouse
movies
page mode
presentations

Index
1303

sounds
thumbnail images

user password 120, 122-123, 125
computing (algorithm) 126-127

user properties 856, 876-877
See also

user property dictionaries
user property dictionaries 876-877

F entry 876
H entry 877
N entry 876
V entry 876

user space 200-202
current transformation matrix (CTM) 193, 204, 210
default. See default user space
form space, mapping from 357-358
glyph space, mapping from 422
glyphs in 390
and graphics state parameters 401
image space, relationship with 335, 337
rotation 610
scaling 610
and sh operator 303
shadings, target coordinate space for 304
soft-mask images in 555
text position in 390
text space, relationship with 406-407
URI actions, mouse position for 662-663

UserProperties attribute owner 876
UserProperties entry (mark information dictionary) 856,

877
UserUnit entry (page object) 148, 201, 390, 1128
UseThumbs page mode 140, 578
UT (Universal Time) 160-161
UTF-8 character encoding 58, 1100
UTF-16BE character encoding 158, 442-445, 474, 684

V
V entry

additional-actions dictionary 651
bead dictionary 597
collection field dictionary 592
DocMDP transform parameters dictionary 733
encryption dictionary 116-117, 119, 122, 126, 132,

1103
FDF field dictionary 692, 715, 717, 1120
field dictionary 676-677, 683, 686, 689, 692, 694-696,

704, 707, 724, 726
FieldMDP transform parameters dictionary 736
file specification dictionary 183
fixed print dictionary 645

go-to-3D-view action dictionary 671
hint stream dictionary 1033
media criteria dictionary 761
media play parameters MH/BE dictionaries 757, 769
minimum bit depth dictionary 761
minimum screen size dictionary 762
signature dictionary 729
signature field seed value dictionary 698
timespan dictionary 776
UR transform parameters dictionary 734
user property dictionary 876
Web Capture information dictionary 947

V entry (3D node dictionary) 829
v operator 196, 226, 229, 988
V predefined CMap 444, 447
V trigger event (form field) 651-652
V2 decryption method (crypt filters) 122, 133-134
VA entry

3D stream dictionary 671, 791, 793, 797-798, 804
values

in dictionaries 59
in name trees 161-162
in number trees 166

variable-pitch fonts 393, 458
variable text (form fields) 677-680

default resource dictionary 678-679
resources 680
rich text strings 680
See also

default appearance strings
dynamic appearance streams

VE entry (optional content membership dictionary) 366-
367, 374

VeriSign.PPKVS signature handler 727
version compatibility, PDF 25-26, 1095-1130

compatibility sections 152
default color spaces 257
document outline 586
extensibility 42
go-to actions 654
logical structure 586
named destinations 584
procedure sets 842
version specification 92

Version entry
document catalog 92, 99, 139, 761, 1096-1097, 1104
FDF catalog 712, 714, 1119
trap network annotation dictionary 976-978, 1128
version 1.3 OPI dictionary 980
version 2.0 OPI dictionary 983

versions, PDF 26
character collections 446-448, 471

Index
1304

color spaces 241, 244, 253, 257, 478
compatibility. See version compatibility, PDF
and FDF files 711-712, 714, 1119
form XObjects, resources for 358
ICC profiles 254
imaging models 35, 195
linearization independent of 1028
masked images 349-350
PostScript XObjects 333
specification 90, 92, 99, 139, 1096
TrueType font encodings 430
version numbers 1095-1098

major 1095-1096
minor 1095-1097

vertical text attributes
GlyphOrientationVertical 917

vertical writing
character spacing 399
in CIDFonts 437, 440-441, 463-464
glyph displacement 410
R2L reading order 578
word spacing 399
writing mode 1 395-396

vertical-align CSS2 style attribute (rich text strings) 682
Vertices 3D render modes 816
Vertices entry

polygon annotation dictionary 632
polyline annotation dictionary 632

VerticesPerRow entry (type 5 shading dictionary) 320
“vhea” table (TrueType font) 468
viability (multimedia objects) 757-758
View entry

collection dictionary 590
View entry (optional content usage dictionary) 381, 383
View event type (usage application dictionary) 382-384,

386
View intent (optional content) 365, 368, 376
ViewArea entry (viewer preferences dictionary) 579
ViewClip entry (viewer preferences dictionary) 579
viewconsumerer applications, PDF

font management 387
viewer applications, PDF

annotation handlers, standard 605
annotation icons, predefined appearances for 621, 636,

638-639
annotations, scaling and rotation of 610
articles, navigation facilities for 596
chained actions, execution of 648
color separations, previewing of 970
compatibility, cross-platform 43-44
compatibility, version 1095-1130
date strings 606

font management 1108-1109
form fields, variable text in 677-680
implementation limits 991-993
launch actions, response to 660
Linearized PDF, processing of 1021, 1024, 1035-1037,

1051-1055
mouse, responding to 652
movies, asynchronous playing of 786
named actions 666
named pages, handling of 710
outline items, responding to 585
page boundaries, display of 146, 965-966
passwords, handling of 691
presentations 147, 598
private data ignored by 848
remote go-to actions, response to 655
scan conversion 511
signatures, digital 674
Sort choice field flag ignored by 694
sound formats 783
sounds, synchronous playing of 664
text annotations, font and size for 621
thumbnail images, display of 587
unknown annotation types, handling of 614
user interface 578-579

viewer preferences 577-580
viewer preferences dictionary 139, 577-580

CenterWindow entry 578
Direction entry 578, 605
DisplayDocTitle entry 578
Duplex entry 580
FitWindow entry 578
HideMenubar entry 578
HideToolbar entry 578
HideWindowUI entry 578
NonFullScreenPageMode entry 578
NumCopies entry 581
PickTrayByPDFSize entry 580
PrintArea entry 579
PrintClip entry 580
PrintPageRange entry 581
PrintScaling entry 580
ViewArea entry 579
ViewClip entry 579

ViewerPreferences entry (document catalog) 139, 577,
1031

viewing of documents 41
document window, size and positioning of 578
embedded fonts, copyright restrictions on 465
glyph widths in 1109
output medium, dialog with user on 478
page boundaries 579
page mode 140, 578
version compatibility 1095

Index
1305

viewport dictionaries 148, 745
BBox entry 744-745
Measure entry 744-745
Name entry 745
Type entry 745

Viewport object type 745
viewports 148, 744-745, 747
ViewState entry (View subdictionary, optional content us-

age dictionary) 381, 383
vignettes 527, 545
visibility expressions (optional content) 366-368
visibility policy (optional content membership

dictionaries) 365-366
AllOff 366-367, 372
AllOn 366-367
AnyOff 366-367
AnyOn 366-367

VisiblePages list mode (optional content configuration
dictionary) 377

“vmtx” table (TrueType font) 468
Volume entry

movie activation dictionary 785
sound action dictionary 664, 1116

VP entry (page object) 148, 744

W
W entry

border style dictionary 611
box style dictionary 967
CIDFont dictionary 437, 439-440
cross-reference stream dictionary 107-108
inline image object 353
media screen parameters MH/BE dictionaries 772

W operator 196, 225, 232, 234-235, 852-853, 988
w operator 196, 213, 219, 392, 988
W* operator 196, 225, 232, 234-235, 852-853, 988
W2 entry (CIDFont dictionary) 437, 440-441, 468
Warichu ruby text position 929
Warichu standard structure type 907, 911
Warnock, John 24
watermark annotation dictionaries

FixedPrint entry 644-645
Subtype entry 644

Watermark annotation type 616, 644
watermark annotations 616, 644-647

See also
watermark annotation dictionaries

WC entry (additional-actions dictionary) 651
WC trigger event (document) 651

Web Capture command dictionaries 947, 956-960
CT entry 958-959
F entry 958
H entry 958-959
L entry 958
P entry 958-959
S entry 958, 960
URL entry 958

Web Capture command flags 958-959
SamePath 958
SameSite 958
Submit 959

Web Capture command settings dictionaries 958, 960-961
C entry 960
G entry 960

Web Capture content database 946
Web Capture content sets 947-949, 953-955

creation date 954, 956
CT entry 954
digital identifier 147, 342, 961
expiration date 955, 957
ID entry 954
modification date 955-956
in name dictionary 150
O entry 953-955, 961, 1126
S entry 953
SI entry 954-956
source information 956-957
subtype 953-955
TS entry 954
Type entry 953
URLs for 950
See also

Web Capture image sets
Web Capture page sets

Web Capture image sets 947-949, 954-955, 1126
digital identifier 951
R entry 955
reference counts 955, 1126
S entry 955

Web Capture information dictionary 141, 946-947
C entry 947
V entry 947

Web Capture page sets 947-949, 953-954
digital identifier 951
form submission type 956
S entry 954
T entry 954
text identifier 951, 953-954
TID entry 953-954
title 954

Web Capture plug-in extension (AcroSpider) 141, 842,
946-961

Index
1306

commands
See
 Web Capture command dictionaries
 Web Capture command settings dictionaries

content database 947-949
content sets. See Web Capture content sets
digital identifiers 946-948, 950-951, 954, 956, 1126
implementation limits 946
information dictionary. See Web Capture information

dictionary
and link annotations 623
object attributes related to 961
source information. See source information dictionar-

ies
unique name generation 951-953
URLs (uniform resource locators) 150, 946-948, 950,

956, 958-959, 1126
See also URL alias dictionaries

version number 947
Web Content Accessibility Guidelines (World Wide Web

Consortium) 936, 1158
WebLink plug-in extension 1116
Western writing systems

character encodings 996
glyph displacements 395, 891
page content order 889
progression directions 896-897, 905, 919
shift direction 926
writing mode 919

White 3D lighting styles 817
white point

diffuse 246-248, 251
of output medium 261

white-preserving blend modes 567
in isolated groups 567
for spot colors 567

white-space characters 48-50, 1129
ASCII85Decode filter, ignored by 69
ASCIIHexDecode filter, ignored by 69
in hexadecimal strings 56
in inline images 352
in name objects 56-57

WhitePoint entry
CalGray color space dictionary 246-247
CalRGB color space dictionary 248, 250
Lab color space dictionary 251

widget annotation dictionaries 641
A entry 641
AA entry 641
and dynamic appearance streams 679
FDF field dictionaries, compared with 717
field dictionaries, merged with 640, 672, 696
H entry 641

MK entry 641-642, 1118
Subtype entry 641

Widget annotation type 616-617, 641, 715
widget annotations 616, 640-641, 672

appearance dictionaries for 672, 686
appearance streams for 672, 678, 686
for FDF fields 718-719
and Form standard structure type 906, 912
and hide actions 666
highlighting mode 641
icon 719-720
for radio button fields 689, 691
and ReadOnly field flag 609, 676
rotation 642
scaling 719-720
and submit-form actions 704, 707
trigger events for 649-650
See also

fields, interactive form
widget annotation dictionaries

Width entry
image dictionary 89, 340, 351, 555, 588
inline image object 353
type 6 halftone dictionary 499, 502
type 16 halftone dictionary 503-504

Width standard structure attribute 912, 916-917, 924, 930-
931

Width2 entry (type 16 halftone dictionary) 503-504
Widths entry

font dictionary 457
Type 1 font dictionary 414, 1110
Type 3 font dictionary 421, 423

Win entry (launch action dictionary) 660, 1116
WinAnsiEncoding predefined character encoding 426,

995-996
as base encoding 427
euro character 1000
for TrueType fonts 430
for Type 1 fonts 414
and Unicode mapping 470

windows
See

document windows
floating windows
pop-up windows

Windows launch parameter dictionaries 660-661, 1116
D entry 661
F entry 660
O entry 661
P entry 661

Windows® operating system
Adobe PDF printer 43
application launch parameters 660

Index
1307

character encoding 425-426, 996
Code Page 932 444
Code Page 936 442
Code Page 949 445
Code Page 950 443
Code Page 1252 996
directories 661, 1119
file names 181, 660, 711
font names 418
Graphics Device Interface (GDI) 43
LOGFONT structure 418
PATH environment variable 1119
ShellExecute function 1116
TrueType® font format 418, 429
WNetGetConnection function 180

Wipe transition style 599-600
Wireframe 3D render modes 816
WMode entry (CMap dictionary) 440, 449
WNetGetConnection function (Windows) 180
word spacing (Tw) parameter

Tw operator 988
word spacing parameter

and horizontal scaling 400
and quotation mark (") operator 407

 394, 397, 399
text matrix, updating of 410
Tw operator 398

workflow 34, 259, 962, 970, 972, 978, 1127
World Wide Web

accessibility guidelines for 936
document distribution on 845, 970
form submission 702-703
Linearized PDF and 1022
PDF specification available on 23
See also

Web Capture plug-in extension
World Wide Web Consortium 75, 1158

Cascading Style Sheets, level 2 (CSS2) Specification
1158

Extensible Markup Language (XML) 1.1 706, 937, 1158
Extensible Stylesheet Language (XSL) 1.0 893, 1158
HTML 4.01 Specification 663, 1158
Scalable Vector Graphics (SVG) 1.0 Specification 1124,

1158
Synchronized Multimedia Integration Language (SMIL

2.0) 1158
Web Content Accessibility Guidelines 936, 1158
XHTML 1.0—The Extensible Hypertext Markup

Language 1158
WP entry (additional-actions dictionary) 651
WP standard structure type 907, 911
WP trigger event (document) 651

writing mode (fonts) 395-396, 439-440
and character spacing 398
CMaps, specified by 441, 449
horizontal scaling independent of 400
leading independent of 400
simple fonts, horizontal only in 412
text matrix, adjustment of 410
text rise independent of 403
and TJ operator 408
and word spacing 399

writing mode (Tagged PDF) 919
LrTb 919
RlTb 919
TbRl 919

writing systems
Arabic 890, 919
Asian 395, 433
Chinese 919
Hebrew 890, 919
Japanese 919
Latin 425, 460
non-Latin 426, 688
progression directions 896
right-to-left 890-891
Western. See Western writing systems

WritingMode standard structure attribute 896, 916, 919,
926, 935

WS entry (additional-actions dictionary) 651
WS trigger event (document) 651
WT standard structure type 907, 911

X
X entry

additional-actions dictionary 649, 652
rectilinear measure dictionary 747

X trigger event (annotation) 649, 651-652, 665
X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol—OCSP (Internet RFC 2396) 739,
1156

X.509 public-key certificate 128
XFA (XML Forms Architecture) 722-724

compatibility with PDF form fields 724
configuration information 722
form data 722
form template 722
packets 673, 722
XFA resource 673, 722

XFA entry (interactive form dictionary) 673, 722, 724,
1117

XFA Scripting Object Model (SOM) 724
XFA Specification (Adobe Technical Note) 724

Index
1308

xfa:APIVersion attribute (< body > XHTML element) 681
xfa:contentType attribute (< body > XHTML element) 681
xfa:spec attribute (< body > XHTML element) 681
XFDF 706, 735
XFDF field flag (submit-form field) 705-706
XHeight entry (font descriptor) 457
XHTML 680

elements, rich text strings 680
XHTML 1.0—The Extensible Hypertext Markup Language

(World Wide Web Consortium) 1158
XHTML elements (rich text strings)

< b > 681
< body > 681
< i > 681
< p > 681, 683
< span > 681

XML (Extensible Markup Language)
file-select controls, not supported for 692
language identifiers 937
for metadata streams 845-846
PDF logical structure compared with 856
standard attribute owner 914-915
strongly structured document organization 905
Tagged PDF, conversion from 883, 893, 899

XML Data Package 673
XML Data Package (XDP) Specification (Adobe Technical

Note) 673, 1152
XML Data Package Specification (Adobe Technical Note)

722
XML Forms Architecture (XFA). See XFA
XML Forms Architecture (XFA) Specification 680
XML Forms Architecture (XFA) Specification (Adobe Tech-

nical Note) 1152
XML Forms Data Format (XFDF) Specification, Version 2.0

(Adobe Technical Note) 1152
XML Forms Data Format Specification, Version 2.0 (Adobe

Technical Note) 706
XML metadata subtype 846
XML Template Specification (Adobe Technical Note) 1152
XML-1.00 standard attribute owner 914
xmlns attribute (< body > XHTML element) 681
XMP (Extensible Metadata Platform) framework 846
XMP: Extensible Metadata Platform (Adobe Systems

Incorporated) 846, 1152
XN entry (3D view dictionary) 804
XObject entry (resource dictionary) 154, 332, 339, 342,

356, 360
XObject object type 332-333, 340, 358, 554
XObject operator 196, 332

Do 196, 291, 295, 299, 303, 332-333, 335, 339, 343,
356-357, 360, 374, 558-559, 574-575, 853, 865, 868,
986

XObject resource type 154, 332, 339, 342, 356, 360
XObject subtypes

Form 332, 358
Image 332, 340, 554, 588
PS 332-333

XObjects
See external objects

xor operator (PostScript) 176, 990
xref keyword 93, 97, 106, 1030
XRef object type 107
XRefStm entry (hybrid-reference file trailer dictionary)

98, 110-111
XSL (Extensible Stylesheet Language) file format 893, 895
Xsquare entry (type 10 halftone dictionary) 502
XStep entry (type 1 pattern dictionary) 293
XX name prefix 1020
XYZ color representation 254

Y
Y entry (rectilinear measure dictionary) 747
y operator 196, 226, 229, 988
yellow color component

blue, complement of 482
DeviceCMYK color space 241, 243
DeviceN color spaces 268
grayscale conversion 481, 486
halftones for 506
initialization 243
overprinting 570-571
RGB conversion 481-482
transfer function 484-485
transparent overprinting 571
undercolor removal 213, 482-483

yellow colorant
overprinting 570-571
PANTONE Hexachrome system 269
printing ink 264
process colorant 241, 243
subtractive primary 241, 243
transparent overprinting 571

Yes appearance state (check box fields) 686
Ysquare entry (type 10 halftone dictionary) 502
YStep entry (type 1 pattern dictionary) 293
yuan symbol (¥) character 442
YUV color representation 85
YUVK color representation 85

Index
1309

Z
Z entry (media criteria dictionary) 761
Zapf Dingbats typeface

See ITC Zapf Dingbats® typeface
ZapfDingbats standard font 416, 426, 1110-1111

character encoding, built-in 996, 1016
character set 996, 1016-1017

ZLIB Compressed Data Format Specification (Internet RFC
1950) 71, 1156

zlib/deflate compression
See Flate compression

zone theory of color vision 244
Zoom entry (optional content usage dictionary) 381, 383,

385
zoom factor

See magnification factor

Index
1310

	Contents
	Figures
	Tables
	Preface
	1 Introduction
	1.1 About This Book
	1.2 Introduction to PDF 1.7 Features
	1.2.1 Presentation of 3D Artwork
	1.2.2 Interactive Features
	Interactive Features That Aid Technical Communication
	Interactive Feature for Use in a Legal Setting

	1.2.3 Accessibility Related Features
	1.2.4 Document Navigation Feature
	1.2.5 Security-Related Features
	1.2.6 General Features
	1.2.7 PDF Reference Changes

	1.3 Related Publications
	1.4 Intellectual Property

	2 Overview
	2.1 Imaging Model
	2.1.1 Page Description Languages
	2.1.2 Adobe Imaging Model
	2.1.3 Raster Output Devices
	2.1.4 Scan Conversion

	2.2 Other General Properties
	2.2.1 Portability
	2.2.2 Compression
	2.2.3 Font Management
	2.2.4 Single-Pass File Generation
	2.2.5 Random Access
	2.2.6 Security
	2.2.7 Incremental Update
	2.2.8 Extensibility

	2.3 Creating PDF
	2.4 PDF and the PostScript Language

	3 Syntax
	3.1 Lexical Conventions
	3.1.1 Character Set
	3.1.2 Comments

	3.2 Objects
	3.2.1 Boolean Objects
	3.2.2 Numeric Objects
	3.2.3 String Objects
	Literal Strings
	Hexadecimal Strings

	3.2.4 Name Objects
	3.2.5 Array Objects
	3.2.6 Dictionary Objects
	3.2.7 Stream Objects
	Stream Extent

	3.2.8 Null Object
	3.2.9 Indirect Objects

	3.3 Filters
	3.3.1 ASCIIHexDecode Filter
	3.3.2 ASCII85Decode Filter
	3.3.3 LZWDecode and FlateDecode Filters
	Details of LZW Encoding
	LZWDecode and FlateDecode Parameters
	LZW and Flate Predictor Functions

	3.3.4 RunLengthDecode Filter
	3.3.5 CCITTFaxDecode Filter
	3.3.6 JBIG2Decode Filter
	3.3.7 DCTDecode Filter
	3.3.8 JPXDecode Filter
	3.3.9 Crypt Filter

	3.4 File Structure
	3.4.1 File Header
	3.4.2 File Body
	3.4.3 Cross-Reference Table
	3.4.4 File Trailer
	3.4.5 Incremental Updates
	3.4.6 Object Streams
	3.4.7 Cross-Reference Streams
	Cross-Reference Stream Dictionary
	Cross-Reference Stream Data
	Compatibility with Applications That Do Not Support PDF 1.5

	3.5 Encryption
	3.5.1 General Encryption Algorithm
	3.5.2 Standard Security Handler
	Standard Encryption Dictionary
	Encryption Key Algorithm
	Password Algorithms

	3.5.3 Public-Key Security Handlers
	Public-Key Encryption Dictionary
	Public-Key Encryption Algorithms

	3.5.4 Crypt Filters

	3.6 Document Structure
	3.6.1 Document Catalog
	3.6.2 Page Tree
	Page Tree Nodes
	Page Objects
	Inheritance of Page Attributes

	3.6.3 Name Dictionary

	3.7 Content Streams and Resources
	3.7.1 Content Streams
	3.7.2 Resource Dictionaries

	3.8 Common Data Structures
	3.8.1 String Types
	Text String Type
	PDFDocEncoded String Type
	Byte String Type

	3.8.2 Text Streams
	3.8.3 Dates
	3.8.4 Rectangles
	3.8.5 Name Trees
	3.8.6 Number Trees

	3.9 Functions
	3.9.1 Type 0 (Sampled) Functions
	3.9.2 Type 2 (Exponential Interpolation) Functions
	3.9.3 Type 3 (Stitching) Functions
	3.9.4 Type 4 (PostScript Calculator) Functions
	Errors in Type 4 Functions

	3.10 File Specifications
	3.10.1 File Specification Strings
	Absolute and Relative File Specifications
	Conversion to Platform-Dependent File Names
	Multiple-Byte Strings in File Specifications

	3.10.2 File Specification Dictionaries
	3.10.3 Embedded File Streams
	Related Files Arrays

	3.10.4 URL Specifications
	3.10.5 Collection Items
	3.10.6 Maintenance of File Specifications

	4 Graphics
	4.1 Graphics Objects
	4.2 Coordinate Systems
	4.2.1 Coordinate Spaces
	Device Space
	User Space
	Other Coordinate Spaces
	Relationships among Coordinate Spaces

	4.2.2 Common Transformations
	4.2.3 Transformation Matrices

	4.3 Graphics State
	4.3.1 Graphics State Stack
	4.3.2 Details of Graphics State Parameters
	Line Width
	Line Cap Style
	Line Join Style
	Miter Limit
	Line Dash Pattern

	4.3.3 Graphics State Operators
	4.3.4 Graphics State Parameter Dictionaries

	4.4 Path Construction and Painting
	4.4.1 Path Construction Operators
	Cubic Bézier Curves

	4.4.2 Path-Painting Operators
	Stroking
	Filling
	Nonzero Winding Number Rule
	Even-Odd Rule

	4.4.3 Clipping Path Operators

	4.5 Color Spaces
	4.5.1 Color Values
	4.5.2 Color Space Families
	4.5.3 Device Color Spaces
	DeviceGray Color Space
	DeviceRGB Color Space
	DeviceCMYK Color Space

	4.5.4 CIE-Based Color Spaces
	CalGray Color Spaces
	CalRGB Color Spaces
	Lab Color Spaces
	ICCBased Color Spaces
	Default Color Spaces
	Implicit Conversion of CIE-Based Color Spaces
	Rendering Intents

	4.5.5 Special Color Spaces
	Pattern Color Spaces
	Indexed Color Spaces
	Separation Color Spaces
	DeviceN Color Spaces
	Multitone Examples

	4.5.6 Overprint Control
	4.5.7 Color Operators

	4.6 Patterns
	4.6.1 General Properties of Patterns
	4.6.2 Tiling Patterns
	Colored Tiling Patterns
	Uncolored Tiling Patterns

	4.6.3 Shading Patterns
	Shading Operator
	Shading Dictionaries
	Color Space: Special Considerations
	Shading Types
	Type 1 (Function-Based) Shadings
	Type 2 (Axial) Shadings
	Type 3 (Radial) Shadings
	Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)
	Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)
	Type 6 Shadings (Coons Patch Meshes)
	Type 7 Shadings (Tensor-Product Patch Meshes)

	4.7 External Objects
	4.7.1 PostScript XObjects

	4.8 Images
	4.8.1 Image Parameters
	4.8.2 Sample Representation
	4.8.3 Image Coordinate System
	4.8.4 Image Dictionaries
	Decode Arrays
	Image Interpolation
	Alternate Images

	4.8.5 Masked Images
	Stencil Masking
	Explicit Masking
	Color Key Masking

	4.8.6 Inline Images

	4.9 Form XObjects
	4.9.1 Form Dictionaries
	4.9.2 Group XObjects
	4.9.3 Reference XObjects
	Printing Reference XObjects
	Special Considerations

	4.10 Optional Content
	4.10.1 Optional Content Groups
	Optional Content Membership Dictionaries
	Intent

	4.10.2 Making Graphical Content Optional
	Optional Content in Content Streams
	Optional Content in XObjects and Annotations

	4.10.3 Configuring Optional Content
	Optional Content Properties Dictionary
	Optional Content Configuration Dictionaries
	Usage and Usage Application Dictionaries
	Determining the State of Optional Content Groups

	5 Text
	5.1 Organization and Use of Fonts
	5.1.1 Basics of Showing Text
	5.1.2 Achieving Special Graphical Effects
	5.1.3 Glyph Positioning and Metrics

	5.2 Text State Parameters and Operators
	5.2.1 Character Spacing
	5.2.2 Word Spacing
	5.2.3 Horizontal Scaling
	5.2.4 Leading
	5.2.5 Text Rendering Mode
	5.2.6 Text Rise
	5.2.7 Text Knockout

	5.3 Text Objects
	5.3.1 Text-Positioning Operators
	5.3.2 Text-Showing Operators
	5.3.3 Text Space Details

	5.4 Introduction to Font Data Structures
	5.5 Simple Fonts
	5.5.1 Type 1 Fonts
	Standard Type 1 Fonts (Standard 14 Fonts)
	Multiple Master Fonts

	5.5.2 TrueType Fonts
	5.5.3 Font Subsets
	5.5.4 Type 3 Fonts
	Example of a Type 3 Font

	5.5.5 Character Encoding
	Encodings for Type 1 Fonts
	Encodings for Type 3 Fonts
	Encodings for TrueType Fonts

	5.6 Composite Fonts
	5.6.1 CID-Keyed Fonts Overview
	5.6.2 CIDSystemInfo Dictionaries
	5.6.3 CIDFonts
	Glyph Selection in CIDFonts
	Glyph Metrics in CIDFonts

	5.6.4 CMaps
	Predefined CMaps
	Embedded CMap Files
	CMap Example and Operator Summary

	5.6.5 Type 0 Font Dictionaries
	CMap Mapping
	Handling Undefined Characters

	5.7 Font Descriptors
	5.7.1 Font Descriptor Flags
	5.7.2 Font Descriptors for CIDFonts
	Style
	FD

	5.8 Embedded Font Programs
	5.9 Extraction of Text Content
	5.9.1 Mapping Character Codes to Unicode Values
	5.9.2 ToUnicode CMaps

	6 Rendering
	6.1 CIE-Based Color to Device Color
	6.2 Conversions among Device Color Spaces
	6.2.1 Conversion between DeviceGray and DeviceRGB
	6.2.2 Conversion between DeviceGray and DeviceCMYK
	6.2.3 Conversion from DeviceRGB to DeviceCMYK
	6.2.4 Conversion from DeviceCMYK to DeviceRGB

	6.3 Transfer Functions
	6.4 Halftones
	6.4.1 Halftone Screens
	6.4.2 Spot Functions
	6.4.3 Threshold Arrays
	6.4.4 Halftone Dictionaries
	Type 1 Halftones
	Type 6 Halftones
	Type 10 Halftones
	Type 16 Halftones
	Type 5 Halftones

	6.5 Scan Conversion Details
	6.5.1 Flatness Tolerance
	6.5.2 Smoothness Tolerance
	6.5.3 Scan Conversion Rules
	6.5.4 Automatic Stroke Adjustment

	7 Transparency
	7.1 Overview of Transparency
	7.2 Basic Compositing Computations
	7.2.1 Basic Notation for Compositing Computations
	7.2.2 Basic Compositing Formula
	7.2.3 Blending Color Space
	7.2.4 Blend Mode
	7.2.5 Interpretation of Alpha
	7.2.6 Shape and Opacity Computations
	Source Shape and Opacity
	Result Shape and Opacity

	7.2.7 Summary of Basic Compositing Computations

	7.3 Transparency Groups
	7.3.1 Notation for Group Compositing Computations
	7.3.2 Group Structure and Nomenclature
	7.3.3 Group Compositing Computations
	7.3.4 Isolated Groups
	7.3.5 Knockout Groups
	7.3.6 Page Group
	7.3.7 Summary of Group Compositing Computations

	7.4 Soft Masks
	7.4.1 Deriving a Soft Mask from Group Alpha
	7.4.2 Deriving a Soft Mask from Group Luminosity

	7.5 Specifying Transparency in PDF
	7.5.1 Specifying Source and Backdrop Colors
	7.5.2 Specifying Blending Color Space and Blend Mode
	7.5.3 Specifying Shape and Opacity
	Object Shape and Opacity
	Mask Shape and Opacity
	Constant Shape and Opacity

	7.5.4 Specifying Soft Masks
	Soft-Mask Dictionaries
	Soft-Mask Images

	7.5.5 Transparency Group XObjects
	7.5.6 Patterns and Transparency

	7.6 Color Space and Rendering Issues
	7.6.1 Color Spaces for Transparency Groups
	7.6.2 Spot Colors and Transparency
	7.6.3 Overprinting and Transparency
	Blend Modes and Overprinting
	Compatibility with Opaque Overprinting
	Special Path-Painting Considerations
	Summary of Overprinting Behavior

	7.6.4 Rendering Parameters and Transparency
	Halftone and Transfer Function
	Rendering Intent and Color Conversions

	7.6.5 PostScript Compatibility

	8 Interactive Features
	8.1 Viewer Preferences
	8.2 Document-Level Navigation
	8.2.1 Destinations
	Explicit Destinations
	Named Destinations

	8.2.2 Document Outline
	8.2.3 Thumbnail Images
	8.2.4 Collections

	8.3 Page-Level Navigation
	8.3.1 Page Labels
	8.3.2 Articles
	8.3.3 Presentations
	Sub-page Navigation

	8.4 Annotations
	8.4.1 Annotation Dictionaries
	8.4.2 Annotation Flags
	8.4.3 Border Styles
	8.4.4 Appearance Streams
	8.4.5 Annotation Types
	Markup Annotations
	Annotation States
	Text Annotations
	Link Annotations
	Free Text Annotations
	Line Annotations
	Square and Circle Annotations
	Polygon and Polyline Annotations
	Text Markup Annotations
	Caret Annotations
	Rubber Stamp Annotations
	Ink Annotations
	Pop-up Annotations
	File Attachment Annotations
	Sound Annotations
	Movie Annotations
	Screen Annotations
	Widget Annotations
	Printer’s Mark Annotations
	Trap Network Annotations
	Watermark Annotations

	8.5 Actions
	8.5.1 Action Dictionaries
	8.5.2 Trigger Events
	8.5.3 Action Types
	Go-To Actions
	Remote Go-To Actions
	Embedded Go-To Actions
	Launch Actions
	Thread Actions
	URI Actions
	Sound Actions
	Movie Actions
	Hide Actions
	Named Actions
	Set-OCG-State Actions
	Rendition Actions
	Transition Actions
	Go-To-3D-View Actions

	8.6 Interactive Forms
	8.6.1 Interactive Form Dictionary
	8.6.2 Field Dictionaries
	Field Names
	Variable Text
	Rich Text Strings

	8.6.3 Field Types
	Button Fields
	Pushbuttons
	Check Boxes
	Radio Buttons

	Text Fields
	Choice Fields
	Signature Fields

	8.6.4 Form Actions
	Submit-Form Actions
	Reset-Form Actions
	Import-Data Actions
	JavaScript Actions

	8.6.5 Named Pages
	8.6.6 Forms Data Format
	FDF File Structure
	FDF Header
	FDF Body
	FDF Trailer

	FDF Catalog
	FDF Fields
	FDF Pages
	FDF Annotation Dictionaries

	8.6.7 XFA Forms

	8.7 Digital Signatures
	8.7.1 Transform Methods
	DocMDP
	Validating MDP signatures

	UR
	FieldMDP
	Identity

	8.7.2 Signature Interoperability
	PKCS#1 Signatures
	PKCS#7 Signatures
	Revocation Information

	8.7.3 Permissions
	8.7.4 Legal Content Attestations

	8.8 Measurement Properties
	8.9 Document Requirements
	8.9.1 Requirement Handlers

	9 Multimedia Features
	9.1 Multimedia
	9.1.1 Viability
	9.1.2 Renditions
	Media Renditions
	Selector Renditions

	9.1.3 Media Clip Objects
	Media Clip Data
	Media Clip Section

	9.1.4 Media Play Parameters
	9.1.5 Media Screen Parameters
	Media Offset Dictionary
	Timespan Dictionary

	9.1.6 Other Multimedia Objects
	Media Players Dictionary
	Media Player Info Dictionary
	Software Identifier Dictionary
	Software URIs
	Version arrays

	Monitor Specifier

	9.2 Sounds
	9.3 Movies
	9.4 Alternate Presentations
	9.5 3D Artwork
	9.5.1 3D Annotations
	9.5.2 3D Streams
	3D Animation Style Dictionaries
	3D Reference Dictionaries

	9.5.3 3D Views
	Projection Dictionaries
	3D Background Dictionaries
	3D Render Mode Dictionaries
	3D Lighting Scheme Dictionaries
	3D Cross Section Dictionaries
	3D Node Dictionaries

	9.5.4 Coordinate Systems for 3D
	9.5.5 3D Markup

	10 Document Interchange
	10.1 Procedure Sets
	10.2 Metadata
	10.2.1 Document Information Dictionary
	10.2.2 Metadata Streams

	10.3 File Identifiers
	10.4 Page-Piece Dictionaries
	10.5 Marked Content
	10.5.1 Property Lists
	10.5.2 Marked Content and Clipping

	10.6 Logical Structure
	10.6.1 Structure Hierarchy
	10.6.2 Structure Types
	10.6.3 Structure Content
	Marked-Content Sequences as Content Items
	PDF Objects as Content Items
	Finding Structure Elements from Content Items

	10.6.4 Structure Attributes
	Attribute Classes
	Attribute Revision Numbers
	User Properties

	10.6.5 Example of Logical Structure

	10.7 Tagged PDF
	10.7.1 Tagged PDF and Page Content
	Real Content and Artifacts
	Specification of Artifacts
	Incidental Artifacts

	Page Content Order
	Sequencing of Annotations
	Reverse-Order Show Strings

	Extraction of Character Properties
	Unicode Mapping in Tagged PDF
	Font Characteristics

	Identifying Word Breaks

	10.7.2 Basic Layout Model
	10.7.3 Standard Structure Types
	Grouping Elements
	Block-Level Structure Elements
	Paragraphlike Elements
	List Elements
	Table Elements
	Usage Guidelines for Block-Level Structure

	Inline-Level Structure Elements
	Link Elements
	Annotation Elements
	Ruby and Warichu Elements

	Illustration Elements

	10.7.4 Standard Structure Attributes
	Standard Attribute Owners
	Attribute Values and Inheritance
	Layout Attributes
	General Layout Attributes
	Layout Attributes for BLSEs
	Layout Attributes for ILSEs
	Content and Allocation Rectangles
	Illustration Attributes
	Column Attributes

	List Attribute
	PrintField Attributes
	Table Attributes

	10.8 Accessibility Support
	10.8.1 Natural Language Specification
	Language Identifiers
	Language Specification Hierarchy
	Multi-language Text Arrays

	10.8.2 Alternate Descriptions
	10.8.3 Replacement Text
	10.8.4 Expansion of Abbreviations and Acronyms

	10.9 Web Capture
	10.9.1 Web Capture Information Dictionary
	10.9.2 Content Database
	URL Strings
	Digital Identifiers
	Unique Name Generation

	10.9.3 Content Sets
	Page Sets
	Image Sets

	10.9.4 Source Information
	URL Alias Dictionaries
	Command Dictionaries
	Command Settings

	10.9.5 Object Attributes Related to Web Capture

	10.10 Prepress Support
	10.10.1 Page Boundaries
	Display of Page Boundaries

	10.10.2 Printer’s Marks
	10.10.3 Separation Dictionaries
	10.10.4 Output Intents
	10.10.5 Trapping Support
	Trap Network Annotations
	Trap Network Appearances

	10.10.6 Open Prepress Interface (OPI)

	A Operator Summary
	B Operators in Type 4 Functions
	B.1 Arithmetic Operators
	B.2 Relational, Boolean, and Bitwise Operators
	B.3 Conditional Operators
	B.4 Stack Operators

	C Implementation Limits
	D Character Sets and Encodings
	D.1 Latin Character Set and Encodings
	D.2 PDFDocEncoding Character Set
	D.3 Expert Set and MacExpertEncoding
	D.4 Symbol Set and Encoding
	D.5 ZapfDingbats Set and Encoding

	E PDF Name Registry
	F Linearized PDF
	F.1 Background and Assumptions
	F.2 Linearized PDF Document Structure
	F.2.1 Header (Part 1)
	F.2.2 Linearization Parameter Dictionary (Part 2)
	F.2.3 First-Page Cross-Reference Table and Trailer (Part 3)
	F.2.4 Document Catalog and Document-Level Objects (Part 4)
	F.2.5 Hint Streams (Parts 5 and 10)
	F.2.6 First-Page Section (Part 6)
	F.2.7 Remaining Pages (Part 7)
	F.2.8 Shared Objects (Part 8)
	F.2.9 Other Objects (Part 9)
	F.2.10 Main Cross-Reference and Trailer (Part 11)

	F.3 Hint Tables
	F.3.1 Page Offset Hint Table
	F.3.2 Shared Object Hint Table
	F.3.3 Thumbnail Hint Table
	F.3.4 Generic Hint Tables
	F.3.5 Extended Generic Hint Tables
	F.3.6 Embedded File Stream Hint Tables

	F.4 Access Strategies
	F.4.1 Opening at the First Page
	F.4.2 Opening at an Arbitrary Page
	F.4.3 Going to Another Page of an Open Document
	F.4.4 Drawing a Page Incrementally
	F.4.5 Following an Article Thread
	F.4.6 Accessing an Updated File

	G Example PDF Files
	G.1 Minimal PDF File
	G.2 Simple Text String Example
	G.3 Simple Graphics Example
	G.4 Page Tree Example
	G.5 Outline Hierarchy Example
	G.6 Updating Example
	G.6.1 Stage 1: Add Four Text Annotations
	G.6.2 Stage 2: Modify Text of One Annotation
	G.6.3 Stage 3: Delete Two Annotations
	G.6.4 Stage 4: Add Three Annotations

	G.7 Structured Elements That Describe Hierarchical Lists
	G.7.1 Table of Contents
	G.7.2 Nested Lists

	H Compatibility and Implementation Notes
	H.1 PDF Version Numbers
	H.2 Feature Compatibility
	H.3 Implementation Notes
	1.2, “Introduction to PDF 1.7 Features”
	3.1.2, “Comments”
	3.2.4, “Name Objects”
	3.2.7, “Stream Objects”
	3.2.9, “Indirect Objects”
	3.3, “Filters”
	3.3.7, “DCTDecode Filter”
	3.4, “File Structure”
	3.4.1, “File Header”
	3.4.3, “Cross-Reference Table”
	3.4.4, “File Trailer”
	3.4.6, “Object Streams”
	3.4.7, “Cross-Reference Streams” (Cross-Reference Stream Dictionary)
	3.4.7, “Cross-Reference Streams” (Compatibility with PDF 1.4)
	3.5, “Encryption”
	3.5.2, “Standard Security Handler” (Standard Encryption Dictionary)
	3.5.2, “Standard Security Handler” (Encryption Key Algorithm)
	3.5.2, “Standard Security Handler” (Password Algorithms)
	3.5.4, “Crypt Filters”
	3.6.1, “Document Catalog”
	3.6.2, “Page Tree” (Page Objects)
	3.7.1, “Content Streams”
	3.9.1, “Type 0 (Sampled) Functions”
	3.9.2, “Type 2 (Exponential Interpolation) Functions”
	3.9.3, “Type 3 (Stitching) Functions”
	3.9.4, “Type 4 (PostScript Calculator) Functions”
	3.10.2, “File Specification Dictionaries”
	4.5.2, “Color Space Families”
	4.5.5, “Special Color Spaces” (DeviceN Color Spaces)
	4.5.5, “Special Color Spaces” (Multitone Examples)
	4.6, “Patterns”
	4.7, “External Objects”
	4.8.4, “Image Dictionaries”
	4.8.5, “Masked Images”
	4.9.1, “Form Dictionaries”
	4.9.3, “Reference XObjects
	5.2.5, “Text Rendering Mode”
	5.3.2, “Text-Showing Operators”
	5.5.1, “Type 1 Fonts”
	5.5.1, “Type 1 Fonts” (Standard Type 1 Fonts (Standard 14 Fonts))
	5.5.3, “Font Subsets”
	5.5.4, “Type 3 Fonts”
	5.6.4, “CMaps”
	5.7, “Font Descriptors”
	5.8, “Embedded Font Programs”
	6.4.2, “Spot Functions”
	6.5.4, “Automatic Stroke Adjustment”
	7.5.2, “Specifying Blending Color Space and Blend Mode”
	7.5.3, “Specifying Shape and Opacity” (Mask Shape and Opacity)
	8.2.2, “Document Outline”
	8.3.1, “Page Labels”
	8.4, “Annotations”
	8.4.1, “Annotation Dictionaries”
	8.4.2, “Annotation Flags”
	8.4.3, “Border Styles”
	8.4.4, “Appearance Streams”
	8.4.5, “Annotation Types”
	8.4.5, “Annotation Types” (Link Annotations)
	8.4.5, “Annotation Types” (Polygon and Polyline Annotations)
	8.4.5, “Annotation Types” (Text Markup Annotations)
	8.4.5, “Annotation Types” (Ink Annotations)
	8.4.5, “Annotation Types” (File Attachment Annotations)
	8.4.5, “Annotation Types” (Watermark Annotations)
	8.5.2, “Trigger Events”
	8.5.3, “Action Types” (Launch Actions)
	8.5.3, “Action Types” (URI Actions)
	8.5.3, “Action Types” (Sound Actions)
	8.5.3, “Action Types” (Movie Actions)
	8.5.3, “Action Types” (Hide Actions)
	8.5.3, “Action Types” (Named Actions)
	8.6.1, “Interactive Form Dictionary”
	8.6.2, “Field Dictionaries” (Field Names)
	8.6.2, “Field Dictionaries” (Variable Text)
	8.6.2, “Field Dictionaries” (Rich Text Strings)
	8.6.2, “Field Dictionaries” (Button Fields)
	8.6.3, “Field Types” (Choice Fields)
	8.6.4, “Form Actions” (Submit-Form Actions)
	8.6.4, “Form Actions” (Import-Data Actions)
	8.6.4, “Form Actions” (JavaScript Actions)
	8.6.6, “Forms Data Format” (FDF Header)
	8.6.6, “Forms Data Format” (FDF Catalog)
	8.6.6, “Forms Data Format” (FDF Fields)
	8.6.6, “Forms Data Format” (FDF Pages)
	8.7, “Digital Signatures”
	8.7.1, “Transform Methods”
	8.7.2, “Signature Interoperability”
	8.9, “Document Requirements”
	9.1, “Multimedia”
	9.2, “Sounds”
	9.3, “Movies”
	9.4, “Alternate Presentations”
	9.5, “3D Artwork”
	10.1, “Procedure Sets”
	10.2, “Metadata”
	10.2.2, “Metadata Streams”
	10.3, “File Identifiers”
	10.9.2, “Content Database” (Digital Identifiers)
	10.9.3, “Content Sets” (Image Sets)
	10.9.4, “Source Information” (URL Alias Dictionaries)
	10.10.1, “Page Boundaries”
	10.10.4, “Output Intents”
	10.10.5, “Trapping Support” (Trap Network Annotations)
	10.10.6, “Open Prepress Interface (OPI)”
	Appendix C, “Implementation Limits”
	F.2.2, “Linearization Parameter Dictionary (Part 2)“
	F.2.6, “First-Page Section (Part 6)”
	F.2.8, “Shared Objects (Part 8)”
	F.3.1, “Page Offset Hint Table”
	F.3.2, “Shared Object Hint Table”

	I Computation of Object Digests
	I.1 Basic Object Types
	I.2 Selective Computation
	I.2.1 Document
	I.2.2 Page Objects
	I.2.3 Named Pages
	I.2.4 Embedded Files
	I.2.5 Annotation Dictionaries
	I.2.6 Form Fields
	I.2.7 Actions
	I.2.8 Additional-Actions
	I.2.9 Page Template Verification

	Color Plates
	Bibliography
	Resources from Adobe Systems Incorporated
	Other Resources

	Index
	Special Characters
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

