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Preface

The origins of the Portable Document Format and the Adobe” Acrobat product
family date to early 1990. At that time, the PostScript page description language
was rapidly becoming the worldwide standard for the production of the printed
page. PDF builds on the PostScript page description language by layering a docu-
ment structure and interactive navigation features on PostScript’s underlying im-
aging model, providing a convenient, efficient mechanism enabling documents
to be reliably viewed and printed anywhere.

The PDF specification was first published at the same time the first Acrobat prod-
ucts were introduced in 1993. Since then, updated versions of the specification
have been and continue to be available from Adobe on the World Wide Web. It
includes the precise documentation of the underlying imaging model from Post-
Script along with the PDF-specific features that are combined in version 1.7 of
the PDF standard.

Over the past eleven years, aided by the explosive growth of the Internet, PDF has
become the de facto standard for the electronic exchange of documents. Well over
500 million copies of the free Adobe Reader software have been distributed
around the world, facilitating efficient sharing of digital content. In addition, PDF
is now the industry standard for the intermediate representation of printed mate-
rial in electronic prepress systems for conventional printing applications. As ma-
jor corporations, government agencies, and educational institutions streamline
their operations by replacing paper-based workflow with electronic exchange of
information, the impact and opportunity for the application of PDF will continue
to grow at a rapid pace.

PDF is the file format that underlies the Adobe Intelligent Document Platform,
facilitating the process of creating, managing, securing, collecting, and exchang-
ing digital content on diverse platforms and devices. The Intelligent Document
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Platform fulfills a set of requirements related to business process needs for the
global desktop user, including:

e Preservation of document fidelity across the enterprise, independently of the
device, platform, and software

e Merging of content from diverse sources—Web sites, word processing and
spreadsheet programs, scanned documents, photos, and graphics—into one
self-contained document while maintaining the integrity of all original source
documents

e Real-time collaborative editing of documents from multiple locations or plat-
forms

e Digital signatures to certify authenticity

e Security and permissions to allow the creator to retain control of the document
and associated rights

o Accessibility of content to those with disabilities
¢ Extraction and reuse of content using other file formats and applications

e Electronic forms to gather data and integrate it with business systems.

The emergence of PDF as a standard for electronic information exchange is the
result of concerted effort by many individuals in both the private and public sec-
tors. Without the dedication of Adobe employees, our industry partners, and our
customers, the widespread acceptance of PDF could not have been achieved. We
thank all of you for your continuing support and creative contributions to the
success of PDE.

Chuck Geschke and John Warnock
November 2004
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CHAPTER 1

Introduction

The Adobe Portable Document Format (PDF) is the native file format of the
Adobe” Acrobat” family of products. The goal of these products is to enable users
to exchange and view electronic documents easily and reliably, independently of
the environment in which they were created. PDF relies on the same imaging
model as the PostScript page description language to describe text and graphics
in a device-independent and resolution-independent manner. To improve perfor-
mance for interactive viewing, PDF defines a more structured format than that
used by most PostScript language programs. PDF also includes objects, such as
annotations and hypertext links, that are not part of the page itself but are useful
for interactive viewing and document interchange.

About This Book

This book provides a description of the PDF file format and is intended primarily
for developers of PDF producer applications that create PDF files directly. It also
contains enough information to allow developers to write PDF consumer applica-
tions that read existing PDF files and interpret or modify their contents.

Although the PDF Reference is independent of any particular software implemen-
tation, some PDF features are best explained by describing the way they are pro-
cessed by a typical application program. In such cases, this book uses the Acrobat
family of PDF viewer applications as its model. (The prototypical viewer is the
fully capable Acrobat product, not the limited Adobe Reader product.) Appendix
C discusses some implementation limits in the Acrobat viewer applications, even
though these limits are not part of the file format itself. Appendix H provides
compatibility and implementation notes that describe how Acrobat viewers be-
have when they encounter newer features they do not understand and specify ar-
eas in which the Acrobat products diverge from the specification presented in
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this book. Implementors of PDF producer and consumer applications can use
this information as guidance.

This edition of the PDF Reference describes version 1.7 of PDE. (See implementa-
tion note 1 in Appendix H.) Throughout the book, information specific to partic-
ular versions of PDF is marked with indicators such as (PDF 1.3) or (PDF 1.4).
Features so marked may be new or substantially redefined in that version. Fea-
tures designated (PDF 1.0) have generally been superseded in later versions; un-
less otherwise stated, features identified as specific to other versions are
understood to be available in later versions as well. (PDF consumer applications
designed for a specific PDF version generally ignore newer features they do not
recognize; implementation notes in Appendix H point out exceptions.)

Note: In this edition, the term consumer is generally used to refer to PDF processing
applications; viewer is reserved for applications that implement features that inter-
act with users. This distinction is not always clear, however, since non-interactive
applications may process objects in PDF documents (such as annotations) that rep-
resent interactive features.

The rest of the book is organized as follows:

o Chapter 2, “Overview,” briefly introduces the overall architecture of PDF and
the design considerations behind it, compares it with the PostScript language,
and describes the underlying imaging model that they share.

e Chapter 3, “Syntax,” presents the syntax of PDF at the object, file, and docu-
ment level. It sets the stage for subsequent chapters, which describe how that
information is interpreted as page descriptions, interactive navigational aids,
and application-level logical structure.

o Chapter 4, “Graphics,” describes the graphics operators used to describe the
appearance of pages in a PDF document.

o Chapter 5, “Text,” discusses PDF’s special facilities for presenting text in the
form of character shapes, or glyphs, defined by fonts.

e Chapter 6, “Rendering,” considers how device-independent content descrip-
tions are matched to the characteristics of a particular output device.

o Chapter 7, “Transparency, discusses the operation of the transparent imaging
model, introduced in PDF 1.4, in which objects can be painted with varying
degrees of opacity, allowing the previous contents of the page to show through.
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o Chapter 8, “Interactive Features,” describes those features of PDF that allow a

user to interact with a document on the screen by using the mouse and key-

board.

Chapter 9, “Multimedia Features,” describes those features of PDF that support
embedding and playing multimedia content, including video, music and 3D
artwork.

Chapter 10, “Document Interchange,” shows how PDF documents can incor-
porate higher-level information that is useful for the interchange of documents
among applications.

Appendix A, “Operator Summary,’ lists all the operators used in describing the
visual content of a PDF document.

Appendix B, “Operators in Type 4 Functions,” summarizes the PostScript oper-
ators that can be used in PostScript calculator functions, which contain code
written in a small subset of the PostScript language.

Appendix C, “Implementation Limits,” describes typical size and quantity
limits imposed by the Acrobat viewer applications.

Appendix D, “Character Sets and Encodings,” lists the character sets and en-
codings that are assumed to be predefined in any PDF consumer application.

Appendix E, “PDF Name Registry,” discusses a registry, maintained for devel-
opers by Adobe Systems, that contains private names and formats used by PDF
producers or Acrobat plug-in extensions.

Appendix E “Linearized PDF,” describes a special form of PDF file organiza-
tion designed to work efficiently in network environments.

Appendix G, “Example PDF Files,” presents several examples showing the
structure of actual PDF files, ranging from one containing a minimal one-page
document to one showing how the structure of a PDF file evolves over the
course of several revisions.

Appendix H, “Compatibility and Implementation Notes,” provides details on
the behavior of Acrobat viewer applications and describes how consumer appli-
cations should handle PDF files containing features that they do not recognize.

o Appendix I, “Computation of Object Digests,” describes in detail an algorithm

for calculating an object digest (discussed in Section 8.7, “Digital Signatures”).
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A color plate section provides illustrations of some of PDF’s color-related fea-
tures. References in the text of the form “see Plate 1” refer to the contents of this
section.

The book concludes with a Bibliography and an Index.

Introduction to PDF 1.7 Features

Several features have been introduced or modified in PDF 1.7. The following is a
list of the most significant additions, along with references to the primary sec-
tions where those additions are discussed:

Presentation of 3D Artwork

PDF 1.7 introduces new features that increase the control the PDF viewing appli-
cation has over the appearance and behavior of 3D artwork:

¢ More control over the appearance of 3D artwork, without having to change the
original artwork and without the use of embedded JavaScript. Specific views of
3D artwork can specify how that artwork should be rendered, colored, lit, and
cross-sectioned. They can also specify which nodes (three-dimensional areas)
of 3D artwork should be included in a view, where those nodes should be
placed in the view, and whether they should be transparent. These features can
expose areas of geometry that would otherwise be difficult to view.

o The ability to place markup annotations on specific views of 3D artwork. This
ensures that markups applied to 3D artwork can later be shown properly with
respect to both the artwork as a whole and individual elements within the art-
work. Markup annotations applied to 3D artwork provide a means of ensuring
the artwork has not changed since the markup annotation was applied.

o Control over the user interfaces and toolbars presented on activation of 3D art-
work.

e Control over the timeframe, repetition, and style of play of keyframe anima-
tions. The styles of play are linear repetition (as in a walking character) and a
cosine-based repetition (as in an exploding-contracting image).
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1.2.2 Interactive Features

Several additions to markup annotations make them more suitable for technical
communication and review, or for use in a legal setting.

Interactive Features That Aid Technical Communication
Several additions to markup annotations aid technical communication and review:

e The addition of dimension intents for polyline and polygon markup annota-
tions. Dimension intent supports the association of user-provided dimension
information with the line segments that compose polyline and polygon markup
annotations. This feature is similar to the dimension intent introduced for line
markup annotations in PDF 1.6.

e The ability to specify units and scaling for the dimension intents of line,
polyline, and polygon markup annotations. This feature enables users to mea-
sure distances in the document, such as the width of an architectural diagram
or the diameter of a 3D cross section.

¢ The ability to place markup annotations on specific views of 3D artwork

o The ability to lock the contents of an annotation

Interactive Feature for Use in a Legal Setting

One addition to markup annotations is intended for use in a legal setting, espe-
cially banking. The addition of new viewer preference settings that specify print
characteristics, such as paper selection and handling, page range, copies, and
scaling. When a user prints a PDF document with those viewer preference set-
tings, the print dialog is pre-populated as specified in those settings. This capabil-
ity increases the predictability of how PDF documents are printed, which can
make PDF documents more suitable for use in a legal setting.

1.2.3 Accessibility Related Features

Additions to TaggedPDF identify the roles of more types of page content:

o The ability to identify the roles of form fields in non-interactive PDF docu-
ments. This change identifies button fields (pushbuttons, check boxes and ra-
dio buttons) and text fields (populated or unpopulated).
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o The ability to provide table summaries associated with table structures. This
feature can help a visually impaired person understand the purpose and struc-
ture of a table without having to read the content in that table.

e The ability to identify background page artifacts, which can be important to
document reflowing. Background artifacts are collections of objects that do not
contribute to the meaning of the author's original content, such as a colored
rectangle behind a sidebar or a full-page background image. Such page back-
grounds may not correlate to any logical structure, but they may be useful in
reproducing the appearance of original document.

e The ability to differentiate the pagination artifacts: watermarks, headers and
footers.

1.2.4 Document Navigation Feature

Additions to document navigation specify the viewing and organizational charac-
teristics of portable collections, in which multiple file attachments are displayed
within a single window. Portable collections are used to present, sort, and search
collections of related documents, such as email archives, photo collections, and
engineering bid sets.

1.2.5 Security-Related Features

Additions to PDF introduced in 1.7 increase the control the document author can
impose upon digital signatures and over requirements PDF consumer applica-
tions must satisfy:

¢ Additional digital signature constraints, which are enforced at the time the sig-
nature is applied. These constraints include preferred digest methods, revoca-
tion checking of the certificate used in a signature, and flags that clarify the
interpretation of other parameters.

¢ Additional constraints regarding the certificate to be used when signing. These
constraints include Subject Distinguished Name (DN) dictionaries that must
be present in the certificate, KeyUsage extensions that must be present in the
signing certificate, and flags that clarify the interpretation of other parameters
that specify certificate constraints.

e The ability to specify requirement handlers that verify some requirement that
the PDF consumer applications must satisfy before processing or displaying a
PDF document. This feature provides an approach that ensures backward com-
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patibility with PDF documents that may include JavaScript segments to verify a
requirement. Before this feature was added, JavaScript was the only way to per-
form such requirement-checking. The feature ensures that either the JavaScript
segment verifies the requirement or a named handler verifies the requirement.

General Features

Additions to PDF 1.7 provide more cross-platform and cross-application stability,
by providing encoding information for strings and file names:

e The clarification of string types to describe the encodings used for strings.
Throughout the entire PDF Reference, any uses of the string type are replaced
with one of the more specific string types. This clarification does not require
changes to PDF consumer applications. Instead, it provides a clearer under-
standing of the encoding supported by each PDF string entry. This understand-
ing can be especially important when comparing strings in a PDF document to
strings in an external source, such as an XML document or 3D artwork.

e The ability to specify file names using Unicode in addition to specifying file
names using the standard encoding for the platform on which the document is
being viewed. This feature reduces problems in decoding file path names that
have been encoded on a different platform or in a different language.

PDF Reference Changes

This release of the PDF Reference includes clarifications not related to new fea-
tures or additional capabilities:

o A description of the formulas for all blend modes.

¢ An explanation of the TaggedPDF representation of nested table of contents
entries or list entries.

Related Publications

PDF and the PostScript page description language share the same underlying
Adobe imaging model. A document can be converted straightforwardly between
PDF and the PostScript language; the two representations produce the same out-
put when printed. However, PostScript includes a general-purpose programming
language framework not present in PDF. The PostScript Language Reference is the
comprehensive reference for the PostScript language and its imaging model.
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PDF and PostScript support several standard formats for font programs, includ-
ing Adobe Type 1, CFF (Compact Font Format), TrueType, OpenType and CID-
keyed fonts. The PDF manifestations of these fonts are documented in this book.
However, the specifications for the font files themselves are published separately,
because they are highly specialized and are of interest to a different user commu-
nity. A variety of Adobe publications are available on the subject of font formats.
The Bibliography lists these publications, as well as additional documents related
to PDF and the contents of this book.

1.4 Intellectual Property

Adobe owns copyrights in the PDF Reference. Adobe will enforce its copyrights.
One reason Adobe must retain its copyrights in the PDF Reference is to maintain
the integrity of the Portable Document Format standard and ensure that the pub-
lic can distinguish between the Portable Document Format and other interchange
formats for electronic documents. Nonetheless, Adobe desires to promote the use
of the Portable Document Format for information interchange among diverse
products and applications. Accordingly, Adobe gives permission to everyone un-
der its copyrights to copy, modify, and distribute any example code in the written
specification, to the extent necessary to implement the Portable Document For-
mat in a manner compliant with the PDF Reference.!

Adobe Systems Incorporated and its subsidiaries own a number of patents cover-
ing technology disclosed in the PDF Reference. Nothing in the PDF Reference it-
self grants rights under any patent. Nonetheless, Adobe desires to encourage
implementation of the PDF computer file format on a wide variety of devices and
platforms, and for this reason offers certain royalty-free patent licenses to PDF
implementors worldwide. To review those licenses, please visit
http://www.adobe.com/go/developer_legalnotices.

1.This example code includes, but is not limited to, the copyrighted list of data structures, opera-
tors, and PostScript language function definitions, that were referenced in PDF Reference, fifth
edition, version 1.6, Section 1.5 (Intellectual Property).
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CHAPTER 2

Overview

PDF is a file format for representing documents in a manner independent of the
application software, hardware, and operating system used to create them and of
the output device on which they are to be displayed or printed. A PDF document
consists of a collection of objects that together describe the appearance of one or
more pages, possibly accompanied by additional interactive elements and higher-
level application data. A PDF file contains the objects making up a PDF docu-
ment along with associated structural information, all represented as a single self-
contained sequence of bytes.

A document’s pages (and other visual elements) can contain any combination of
text, graphics, and images. A page’s appearance is described by a PDF content
stream, which contains a sequence of graphics objects to be painted on the page.
This appearance is fully specified; all layout and formatting decisions have al-
ready been made by the application generating the content stream.

In addition to describing the static appearance of pages, a PDF document can
contain interactive elements that are possible only in an electronic representation.
PDF supports annotations of many kinds for such things as text notes, hypertext
links, markup, file attachments, sounds, and movies. A document can define its
own user interface; keyboard and mouse input can trigger actions that are speci-
fied by PDF objects. The document can contain interactive form fields to be filled
in by the user, and can export the values of these fields to or import them from
other applications.

Finally, a PDF document can contain higher-level information that is useful for

interchange of content among applications. In addition to specifying appearance,
a document’s content can include identification and logical structure information
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that allows it to be searched, edited, or extracted for reuse elsewhere. PDF is par-
ticularly well suited for representing a document as it moves through successive
stages of a prepress production workflow.

Imaging Model

At the heart of PDF is its ability to describe the appearance of sophisticated
graphics and typography. This ability is achieved through the use of the Adobe
imaging model, the same high-level, device-independent representation used in
the PostScript page description language.

Although application programs could theoretically describe any page as a full-
resolution pixel array, the resulting file would be bulky, device-dependent, and
impractical for high-resolution devices. A high-level imaging model enables
applications to describe the appearance of pages containing text, graphical
shapes, and sampled images in terms of abstract graphical elements rather than
directly in terms of device pixels. Such a description is economical and device-
independent, and can be used to produce high-quality output on a broad range of
printers, displays, and other output devices.

Page Description Languages

Among its other roles, PDF serves as a page description language, a language for
describing the graphical appearance of pages with respect to an imaging model.
An application program produces output through a two-stage process:

1. The application generates a device-independent description of the desired out-
put in the page description language.

2. A program controlling a specific output device interprets the description and
renders it on that device.

The two stages may be executed in different places and at different times. The
page description language serves as an interchange standard for the compact, de-
vice-independent transmission and storage of printable or displayable docu-
ments.
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2.1.2 Adobe Imaging Model

The Adobe imaging model is a simple and unified view of two-dimensional
graphics borrowed from the graphic arts. In this model, “paint” is placed on a
page in selected areas:

¢ The painted figures can be in the form of character shapes (glyphs), geometric
shapes, lines, or sampled images such as digital representations of photographs.

e The paint may be in color or in black, white, or any shade of gray. It may also
take the form of a repeating pattern (PDF 1.2) or a smooth transition between
colors (PDF 1.3).

¢ Any of these elements may be clipped to appear within other shapes as they are
placed onto the page.

A page’s content stream contains operands and operators describing a sequence of
graphics objects. A PDF consumer application maintains an implicit current page
that accumulates the marks made by the painting operators. Initially, the current
page is completely blank. For each graphics object encountered in the content
stream, the application places marks on the current page, which replace or com-
bine with any previous marks they may overlay. Once the page has been com-
pletely composed, the accumulated marks are rendered on the output medium
and the current page is cleared to blank again.

PDF 1.3 and earlier versions use an opaque imaging model in which each new
graphics object painted onto a page completely obscures the previous contents of
the page at those locations (subject to the effects of certain optional parameters
that may modify this behavior; see Section 4.5.6, “Overprint Control”). No mat-
ter what color an object has—white, black, gray, or color—it is placed on the page
as if it were applied with opaque paint. PDF 1.4 introduces a transparent imaging
model in which objects painted on the page are not required to be fully opaque.
Instead, newly painted objects are composited with the previously existing con-
tents of the page, producing results that combine the colors of the object and its
backdrop according to their respective opacity characteristics. The transparent
imaging model is described in Chapter 7.

The principal graphics objects (among others) are as follows:

o A path object consists of a sequence of connected and disconnected points,
lines, and curves that together describe shapes and their positions. It is built up
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through the sequential application of path construction operators, each of which
appends one or more new elements. The path object is ended by a path-painting
operator, which paints the path on the page in some way. The principal path-
painting operators are S (stroke), which paints a line along the path, and f (fill),
which paints the interior of the path.

o A text object consists of one or more glyph shapes representing characters of
text. The glyph shapes for the characters are described in a separate data struc-
ture called a font. Like path objects, text objects can be stroked or filled.

e An image object is a rectangular array of sample values, each representing a
color at a particular position within the rectangle. Such objects are typically
used to represent photographs.

The painting operators require various parameters, some explicit and others im-
plicit. Implicit parameters include the current color, current line width, current
font (typeface and size), and many others. Together, these implicit parameters
make up the graphics state; there are operators for setting the value of each im-
plicit parameter in the graphics state. Painting operators use the values currently
in effect at the time they are invoked.

One additional implicit parameter in the graphics state modifies the results of
painting graphics objects. The current clipping path outlines the area of the cur-
rent page within which paint can be placed. Although painting operators may
attempt to place marks anywhere on the current page, only those marks falling
within the current clipping path affect the page; those falling outside it do not af-
fect the page. Initially, the current clipping path encompasses the entire imagea-
ble area of the page. It can temporarily be reduced to the shape defined by a path
or text object, or to the intersection of multiple such shapes. Marks placed by sub-
sequent painting operators are confined within that boundary.

Raster Output Devices

Much of the power of the Adobe imaging model derives from its ability to deal
with the general class of raster output devices. These encompass such technologies
as laser, dot-matrix, and ink-jet printers, digital imagesetters, and raster-scan
displays. The defining property of a raster output device is that a printed or dis-
played image consists of a rectangular array, or raster, of dots called pixels (picture
elements) that can be addressed individually. On a typical bilevel output device,
each pixel can be made either black or white. On some devices, pixels can be set to
intermediate shades of gray or to some color. The ability to set the colors of
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individual pixels makes it possible to generate printed or displayed output that
can include text, arbitrary graphical shapes, and reproductions of sampled images.

The resolution of a raster output device measures the number of pixels per unit of
distance along the two linear dimensions. Resolution is typically—but not neces-
sarily—the same horizontally and vertically. Manufacturers” decisions on device
technology and price/performance trade-offs create characteristic ranges of reso-
lution:

o Computer displays have relatively low resolution, typically 75 to 110 pixels per
inch.

¢ Dot-matrix printers generally range from 100 to 250 pixels per inch.

e Ink-jet and laser-scanned xerographic printing technologies achieve medium-
level resolutions of 300 to 1400 pixels per inch.

¢ Photographic technology permits high resolutions of 2400 pixels per inch or
more.

Higher resolution yields better quality and fidelity of the resulting output but is
achieved at greater cost. As the technology improves and computing costs de-
crease, products evolve to higher resolutions.

Scan Conversion

An abstract graphical element (such as a line, a circle, a character glyph, or a
sampled image) is rendered on a raster output device by a process known as scan
conversion. Given a mathematical description of the graphical element, this pro-
cess determines which pixels to adjust and what values to assign to those pixels to
achieve the most faithful rendition possible at the available device resolution.

The pixels on a page can be represented by a two-dimensional array of pixel
values in computer memory. For an output device whose pixels can only be black
or white, a single bit suffices to represent each pixel. For a device that can repro-
duce gray levels or colors, multiple bits per pixel are required.

Note: Although the ultimate representation of a printed or displayed page is logically
a complete array of pixels, its actual representation in computer memory need not
consist of one memory cell per pixel. Some implementations use other representa-
tions, such as display lists. The Adobe imaging model has been carefully designed
not to depend on any particular representation of raster memory.



2.2

2.2.1

38
CHAPTER 2 I Overview |

For each graphical element that is to appear on the page, the scan converter sets
the values of the corresponding pixels. When the interpretation of the page de-
scription is complete, the pixel values in memory represent the appearance of the
page. At this point, a raster output process can render this representation (make it
visible) on a printed page or display screen.

Scan-converting a graphical shape, such as a rectangle or circle, entails determin-
ing which device pixels lie inside the shape and setting their values appropriately
(for example, to black). Because the edges of a shape do not always fall precisely
on the boundaries between pixels, some policy is required for deciding how to set
the pixels along the edges. Scan-converting a glyph representing a text character
is conceptually the same as scan-converting an arbitrary graphical shape. How-
ever, character glyphs are much more sensitive to legibility requirements and
must meet more rigid objective and subjective measures of quality.

Rendering grayscale elements on a bilevel device is accomplished by a technique
known as halftoning. The array of pixels is divided into small clusters according to
some pattern (called the halftone screen). Within each cluster, some pixels are set
to black and others to white in proportion to the level of gray desired at that loca-
tion on the page. When viewed from a sufficient distance, the individual dots be-
come imperceptible and the perceived result is a shade of gray. This enables a
bilevel raster output device to reproduce shades of gray and to approximate natu-
ral images such as photographs. Some color devices use a similar technique.

Other General Properties

This section describes other notable general properties of PDE, aside from its im-
aging model.

Portability

PDF files are represented as sequences of 8-bit binary bytes. A PDF file is de-
signed to be portable across all platforms and operating systems. The binary rep-
resentation is intended to be generated, transported, and consumed directly,
without translation between native character sets, end-of-line representations, or
other conventions used on various platforms.
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Any PDF file can also be represented in a form that uses only 7-bit ASCII
(American Standard Code for Information Interchange) character codes. This is
useful for the purpose of exposition, as in this book. However, this representation
is not recommended for actual use, since it is less efficient than the normal binary
representation. Regardless of which representation is used, PDF files must be
transported and stored as binary files, not as text files. Inadvertent changes, such
as conversion between text end-of-line conventions, will damage the file and may
render it unusable.

Compression

To reduce file size, PDF supports a number of industry-standard compression
filters:

¢ JPEG and (in PDF 1.5) JPEG2000 compression of color and grayscale images

e CCITT (Group 3 or Group 4), run-length, and (in PDF 1.4) JBIG2 compression
of monochrome images

o LZW (Lempel-Ziv-Welch) and (beginning with PDF 1.2) Flate compression of
text, graphics, and images

Using JPEG compression, color and grayscale images can be compressed by a fac-
tor of 10 or more. Effective compression of monochrome images depends on the
compression filter used and the properties of the image, but reductions of 2:1 to
8:1 are common (or 20:1 to 50:1 for JBIG2 compression of an image of a page full
of text). LZW or Flate compression of the content streams describing all other
text and graphics in the document results in compression ratios of approximately
2:1. All of these compression filters produce binary data, which can be further
converted to ASCII base-85 encoding if a 7-bit ASCII representation is required.

Font Management

Managing fonts is a fundamental challenge in document interchange. Generally,
the receiver of a document must have the same fonts that were originally used to
create it. If a different font is substituted, its character set, glyph shapes, and met-
rics may differ from those in the original font. This substitution can produce un-
expected and unwanted results, such as lines of text extending into margins or
overlapping with graphics.
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PDF provides various means for dealing with font management:

o The original font programs can be embedded in the PDF file, which ensures the
most predictable and dependable results. PDF supports various font formats,
including Type 1, TrueType, OpenType, and CID-keyed fonts.

e To conserve space, a font subset can be embedded, containing just the glyph
descriptions for those characters that are actually used in the document. Also,
Type 1 fonts can be represented in a special compact format.

o PDF prescribes a set of 14 standard fonts that can be used without prior defini-
tion. These include four faces each of three Latin text typefaces (Courier,
Helvetica*, and Times*), as well as two symbolic fonts (Symbol and ITC Zapf
Dingbats ). These fonts, or suitable substitute fonts with the same metrics, are
required to be available in all PDF consumer applications.

¢ A PDF file can refer by name to fonts that are not embedded in the PDF file. In
this case, a PDF consumer can use those fonts if they are available in its envi-
ronment. This approach suffers from the uncertainties noted above.

o A PDF file contains a font descriptor for each font that it uses. The font descrip-
tor includes font metrics and style information, enabling an application to se-
lect or synthesize a suitable substitute font if necessary. Although the glyphs’
shapes differ from those intended, their placement is accurate.

Font management is primarily concerned with producing the correct appearance
of text—that is, the shape and placement of glyphs. However, it is sometimes nec-
essary for a PDF application to extract the meaning of the text, represented in
some standard information encoding such as Unicode. In some cases, this in-
formation can be deduced from the encoding used to represent the text in the
PDF file. Otherwise, the PDF producer application should specify the mapping
explicitly by including a special object, the ToUnicode CMap.

Single-Pass File Generation

Because of system limitations and efficiency considerations, it may be necessary
or desirable for an application program to generate a PDF file in a single pass. For
example, the program may have limited memory available or be unable to open
temporary files. For this reason, PDF supports single-pass generation of files.
Although some PDF objects must specify their length in bytes, a mechanism is
provided allowing the length to follow the object in the PDF file. In addition, in-
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formation such as the number of pages in the document can be written into the
file after all pages have been generated.

A PDF file that is generated in a single pass is generally not ordered for most effi-
cient viewing, particularly when accessing the contents of the file over a network.
When generating a PDF file that is intended to be viewed many times, it is worth-
while to perform a second pass to optimize the order in which objects occur in
the file. PDF specifies a particular file organization, Linearized PDF, which is doc-
umented in Appendix F. Other optimizations are also possible, such as detecting
duplicated sequences of graphics objects and collapsing them to a single shared
sequence that is specified only once.

Random Access

A PDF file should be thought of as a flattened representation of a data structure
consisting of a collection of objects that can refer to each other in any arbitrary
way. The order of the objects’ occurrence in the PDF file has no semantic signifi-
cance. In general, an application should process a PDF file by following references
from object to object, rather than by processing objects sequentially. This is par-
ticularly important for interactive document viewing or for any application in
which pages or other objects in the PDF file are accessed out of sequence.

To support such random access to individual objects, every PDF file contains a
cross-reference table that can be used to locate and directly access pages and other
important objects within the file. The cross-reference table is stored at the end of
the file, allowing applications that generate PDF files in a single pass to store it
easily and those that read PDF files to locate it easily. By using the cross-reference
table, the time needed to locate a page or other object is nearly independent of the
length of the document, allowing PDF documents containing hundreds or thou-
sands of pages to be accessed efficiently.

Security

PDF has two security features that can be used, separately or together, in any doc-
ument:

e The document can be encrypted so that only authorized users can access it.
There is separate authorization for the owner of the document and for all other
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users; the users’” access can be selectively restricted to allow only certain opera-
tions, such as viewing, printing, or editing.

e The document can be digitally signed to certify its authenticity. The signature
may take many forms, including a document digest that has been encrypted
with a public/private key, a biometric signature such as a fingerprint, and oth-
ers. Any subsequent changes to a signed PDF file invalidate the signature.

2.2.7 Incremental Update

Applications may allow users to modify PDF documents. Users should not have
to wait for the entire file—which can contain hundreds of pages or more—to be
rewritten each time modifications to the document are saved. PDF allows modifi-
cations to be appended to a file, leaving the original data intact. The addendum
appended when a file is incrementally updated contains only those objects that
were actually added or modified, and includes an update to the cross-reference
table. Incremental update allows an application to save modifications to a PDF
document in an amount of time proportional to the size of the modification rath-
er than the size of the file.

In addition, because the original contents of the document are still present in the
file, it is possible to undo saved changes by deleting one or more addenda. The
ability to recover the exact contents of an original document is critical when digi-
tal signatures have been applied and subsequently need to be verified.

2.2.8 Extensibility

PDF is designed to be extensible. Not only can new features be added, but appli-
cations based on earlier versions of PDF can behave reasonably when they en-
counter newer features that they do not understand. Appendix H describes how a
PDF consumer application should behave in such cases.

Additionally, PDF provides means for applications to store their own private in-
formation in a PDF file. This information can be recovered when the file is im-
ported by the same application, but it is ignored by other applications. Therefore,
PDF can serve as an application’s native file format while its documents can be
viewed and printed by other applications. Application-specific data can be stored
either as marked content annotating the graphics objects in a PDF content stream
or as entirely separate objects unconnected with the PDF content.
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2.3 Creating PDF

PDF files may be produced either directly by application programs or indirectly
by conversion from other file formats or imaging models. As PDF documents and
applications that process them become more prevalent, new ways of creating and
using PDF will be invented.

Many applications can generate PDF files directly, and some can import them as
well. This direct approach is preferable, since it gives the application access to the
full capabilities of PDEF, including the imaging model and the interactive and doc-
ument interchange features. Alternatively, applications that do not generate PDF
directly can produce PDF output indirectly. There are two principal indirect
methods:

o The application describes its printable output by makmg calls to an apphcatlon
programming interface (API) such as GDI in Microsoft Windows or Quick-
Draw in the Apple Mac OS. A software component called a printer driver inter-
cepts these calls and interprets them to generate output in PDF form.

o The application produces printable output directly in some other file format,
such as PostScript, PCL, HPGL, or DVI, which is converted to PDF by a sepa-
rate translation program.

Although these indirect strategies are often the easiest way to obtain PDF output
from an existing application, the resulting PDF files may not make the best use of
the high-level Adobe imaging model. This is because the information embodied
in the application’s API calls or in the intermediate output file often describes the
desired results at too low a level. Any higher-level information maintained by the
original application has been lost and is not available to the printer driver or
translator.

Figures 2.1 and 2.2 show how Acrobat products support these indirect
approaches. The Adobe PDF printer (Figure 2.1), available on the Windows and
Mac OS platforms, acts as a printer driver, intercepting graphics and text opera-
tions generated by a running application program through the operating system’s
API. Instead of converting these operations into printer commands and transmit-
ting them directly to a printer, the Adobe PDF printer converts them to equiva-
lent PDF operators and embeds them in a PDF file. The result is a platform-
independent file that can be viewed and printed by a PDF viewer application,
such as Acrobat, running on any supported platform—even a different platform
from the one on which the file was originally generated.
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FIGURE 2.1 Creating PDF files using the Adobe PDF printer

Instead of describing their printable output through API calls, some applications
produce PostScript page descriptions directly—either because of limitations in
the QuickDraw or GDI imaging models or because the applications run on plat-
forms such as DOS or UNIX , where no system-level printer driver exists. Post-
Script files generated by such applications can be converted to PDF files using the
Acrobat Distiller application (see Figure 2.2). Because PostScript and PDF share
the same Adobe imaging model, Distiller can preserve the exact graphical con-
tent of the PostScript file in the translation to PDE Additionally, Distiller sup-
ports a PostScript language extension, called pdfmark, that allows the producing
application to embed instructions in the PostScript file for creating hypertext
links, logical structure, and other interactive and document interchange features
of PDF. Again, the resulting PDF file can be viewed with a viewer application,
such as Acrobat, on any supported platform.
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PostScript
page description

Acrobat Distiller

Acrobat

FIGURE 2.2 Creating PDF files using Acrobat Distiller

2.4 PDF and the PostScript Language

The PDF operators for setting the graphics state and painting graphics objects are
similar to the corresponding operators in the PostScript language. Unlike Post-
Script, however, PDF is not a full-scale programming language; it trades reduced
flexibility for improved efficiency and predictability. PDF therefore differs from
PostScript in the following significant ways:

¢ PDF enforces a strictly defined file structure that allows an application to ac-
cess parts of a document in arbitrary order.

o To simplify the processing of content streams, PDF does not include common
programming language features such as procedures, variables, and control con-
structs.

¢ PDF files contain information such as font metrics to ensure viewing fidelity.

¢ A PDF file may contain additional information that is not directly connected
with the imaging model, such as hypertext links for interactive viewing and
logical structure information for document interchange.

Because of these differences, a PDF file generally cannot be transmitted directly
to a PostScript output device for printing (although a few such devices do also
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support PDF directly). An application printing a PDF document to a PostScript
device must follow these steps:

. Insert procedure sets containing PostScript procedure definitions to implement

the PDF operators.

. Extract the content for each page. Each content stream is essentially the script

portion of a traditional PostScript program using very specific procedures,
such as m for moveto and | for lineto.

. Decode compressed text, graphics, and image data as necessary. The compres-

sion filters used in PDF are compatible with those used in PostScript; they may
or may not be supported, depending on the LanguageLevel of the target output
device.

. Insert any needed resources, such as fonts, into the PostScript file. These can

be either the original fonts or suitable substitute fonts based on the font met-
rics in the PDF file. Fonts may need to be converted to a format that the Post-
Script interpreter recognizes, such as Type 1 or Type 42.

. Put the information in the correct order. The result is a traditional PostScript

program that fully represents the visual aspects of the document but no longer
contains PDF elements such as hypertext links, annotations, and bookmarks.

. Transmit the PostScript program to the output device.



CHAPTER 3

Syntax

This chapter covers everything about the syntax of PDF at the object, file, and
document level. It sets the stage for subsequent chapters, which describe how the
contents of a PDF file are interpreted as page descriptions, interactive
navigational aids, and application-level logical structure.

PDF syntax is best understood by thinking of it in four parts, as shown in Figure
3.1:

e Objects. A PDF document is a data structure composed from a small set of
basic types of data objects. Section 3.1, “Lexical Conventions,” describes the
character set used to write objects and other syntactic elements. Section 3.2,
“Objects,” describes the syntax and essential properties of the objects. Section
3.2.7, “Stream Objects,” provides complete details of the most complex data
type, the stream object.

o File structure. The PDF file structure determines how objects are stored in a
PDF file, how they are accessed, and how they are updated. This structure is
independent of the semantics of the objects. Section 3.4, “File Structure,” de-
scribes the file structure. Section 3.5, “Encryption,” describes a file-level mech-
anism for protecting a document’s contents from unauthorized access.

o Document structure. The PDF document structure specifies how the basic ob-
ject types are used to represent components of a PDF document: pages, fonts,
annotations, and so forth. Section 3.6, “Document Structure,” describes the
overall document structure; later chapters address the detailed semantics of the
components.

o Content streams. A PDF content stream contains a sequence of instructions de-
scribing the appearance of a page or other graphical entity. These instructions,
while also represented as objects, are conceptually distinct from the objects that

47
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represent the document structure and are described separately. Section 3.7,
“Content Streams and Resources,” discusses PDF content streams and their as-
sociated resources.

Objects
File Content
structure stream
Document
structure

FIGURE 3.1 PDF components

In addition, this chapter describes some data structures, built from basic objects,
that are so widely used that they can almost be considered basic object types in
their own right. These objects are covered in Sections 3.8, “Common Data
Structures”; 3.9, “Functions”; and 3.10, “File Specifications.”

PDF’s object and file syntax is also used as the basis for other file formats. These
include the Forms Data Format (FDF), described in Section 8.6.6, “Forms Data
Format,” and the Portable Job Ticket Format (PJTF), described in Adobe
Technical Note #5620, Portable Job Ticket Format.

Lexical Conventions

At the most fundamental level, a PDF file is a sequence of 8-bit bytes. These bytes
can be grouped into tokens according to the syntax rules described below. One or
more tokens are assembled to form higher-level syntactic entities, principally
objects, which are the basic data values from which a PDF document is
constructed.

PDF can be entirely represented using byte values corresponding to the visible
printable subset of the ASCII character set, plus white space characters such as
space, tab, carriage return, and line feed characters. ASCII is the American
Standard Code for Information Interchange, a widely used convention for
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encoding a specific set of 128 characters as binary numbers. However, a PDF file
is not restricted to the ASCII character set; it can contain arbitrary 8-bit bytes,
subject to the following considerations:

o The tokens that delimit objects and that describe the structure of a PDF file are
all written in the ASCII character set, as are all the reserved words and the
names used as keys in standard dictionaries.

o The data values of certain types of objects—strings and streams—can be but
need not be written entirely in ASCII. For the purpose of exposition (as in this
book), ASCII representation is preferred. However, in actual practice, data that
is naturally binary, such as sampled images, is represented directly in binary for
compactness and efficiency.

o A PDF file containing binary data must be transported and stored by means
that preserve all bytes of the file faithfully; that is, as a binary file rather than a
text file. Such a file is not portable to environments that impose reserved char-
acter codes, maximum line lengths, end-of-line conventions, or other restric-
tions.

Note: In this chapter, the term character is synonymous with byte and merely refers
to a particular 8-bit value. This usage is entirely independent of any logical meaning
that the value may have when it is treated as data in specific contexts, such as repre-
senting human-readable text or selecting a glyph from a font.

Character Set

The PDF character set is divided into three classes, called regular, delimiter, and
white-space characters. This classification determines the grouping of characters
into tokens, except within strings, streams, and comments; different rules apply
in those contexts.

White-space characters (see Table 3.1) separate syntactic constructs such as names
and numbers from each other. All white-space characters are equivalent, except
in comments, strings, and streams. In all other contexts, PDF treats any sequence
of consecutive white-space characters as one character.
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TABLE 3.1 White-space characters

DECIMAL HEXADECIMAL OCTAL NAME

0 00 000 Null (NUL)

9 09 011 Tab (HT)

10 0A 012 Line feed (LF)

12 0C 014 Form feed (FF)

13 0D 015 Carriage return (CR)
32 20 040 Space (SP)

The carriage return (CR) and line feed (LF) characters, also called newline
characters, are treated as end-of-line (EOL) markers. The combination of a
carriage return followed immediately by a line feed is treated as one EOL marker.
For the most part, EOL markers are treated the same as any other white-space
characters. However, sometimes an EOL marker is required or recommended—
that is, the following token must appear at the beginning of a line.

Note: The examples in this book illustrate a recommended convention for arranging
tokens into lines. However, the examples’ use of white space for indentation is purely
for clarity of exposition and is not recommended for practical use.

The delimiter characters (, ), <, >, [, 1, {, }, /, and % are special. They delimit
syntactic entities such as strings, arrays, names, and comments. Any of these
characters terminates the entity preceding it and is not included in the entity.

All characters except the white-space characters and delimiters are referred to as
regular characters. These characters include 8-bit binary characters that are
outside the ASCII character set. A sequence of consecutive regular characters
comprises a single token.

Note: PDF is case-sensitive; corresponding uppercase and lowercase letters are con-
sidered distinct.
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3.1.2 Comments

Any occurrence of the percent sign character (%) outside a string or stream
introduces a comment. The comment consists of all characters between the
percent sign and the end of the line, including regular, delimiter, space, and tab
characters. PDF ignores comments, treating them as if they were single white-
space characters. That is, a comment separates the token preceding it from the
one following it; thus, the PDF fragment

abc% comment {/%) blah blah blah
123

is syntactically equivalent to just the tokens abc and 123.

Comments (other than the %PDF-n.m and %%EOF comments described in
Section 3.4, “File Structure”) have no semantics. They are not necessarily
preserved by applications that edit PDF files (see implementation note 2 in
Appendix H). In particular, there is no PDF equivalent of the PostScript
document structuring conventions (DSC).

3.2 Objects

PDF supports eight basic types of objects:

¢ Boolean values

e Integer and real numbers
o Strings

e Names

e Arrays

e Dictionaries

e Streams

e The null object

Objects may be labeled so that they can be referred to by other objects. A labeled
object is called an indirect object.
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The following sections describe each object type, as well as how to create and
refer to indirect objects.

Boolean Objects

PDF provides boolean objects identified by the keywords true and false. Boolean
objects can be used as the values of array elements and dictionary entries, and can
also occur in PostScript calculator functions as the results of boolean and
relational operators and as operands to the conditional operators if and ifelse (see
Section 3.9.4, “Type 4 (PostScript Calculator) Functions”).

Numeric Objects

PDF provides two types of numeric objects: integer and real. Integer objects rep-
resent mathematical integers within a certain interval centered at 0. Real objects
approximate mathematical real numbers, but with limited range and precision;
they are typically represented in fixed-point form rather than floating-point
form. The range and precision of numbers are limited by the internal
representations used in the computer on which the PDF consumer application is
running; Appendix C gives these limits for typical implementations.

An integer is written as one or more decimal digits optionally preceded by a sign:
123 43445 +17 -98 0

The value is interpreted as a signed decimal integer and is converted to an integer
object. If it exceeds the implementation limit for integers, it is converted to a real
object.

A real value is written as one or more decimal digits with an optional sign and a
leading, trailing, or embedded period (decimal point):

345 -3.62 +1236 4. -.002 0.0

The value is interpreted as a real number and is converted to a real object. If it
exceeds the implementation limit for real numbers, an error occurs.

Note: PDF does not support the PostScript syntax for numbers with nondecimal
radices (such as 16#FFFE) or in exponential format (such as 6.02E23).
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Throughout this book, the term number refers to an object whose type may be
either integer or real. Wherever a real number is expected, an integer may be used
instead and is automatically converted to an equivalent real value. For example, it
is not necessary to write the number 1.0 in real format; the integer 1 is sufficient.

3.2.3 String Objects

A string object consists of a series of bytes—unsigned integer values in the range 0
to 255. String objects are not integer objects, but are stored in a more compact
format. The length of a string may be subject to implementation limits; see
Appendix C.

String objects can be written in two ways:

e As a sequence of literal characters enclosed in parentheses (); see “Literal
Strings,” below”

¢ As hexadecimal data enclosed in angle brackets < >; see “Hexadecimal Strings”
on page 56

This section describes only the basic syntax for writing a string as a sequence of
bytes. Strings can be used for many purposes and can be formatted in a variety of
ways. When a string is used for a specific purpose (to represent a date, for ex-
ample), it is useful to have a standard format for that purpose (see Section 3.8.3,
“Dates”). Such formats are merely conventions for interpreting the contents of a
string and are not separate object types. The use of a particular format is
described with the definition of the string object that uses that format.

Section 3.8.1, “String Types” describes the encoding schemes used for the
contents of string objects.

Literal Strings

A literal string is written as an arbitrary number of characters enclosed in
parentheses. Any characters may appear in a string except unbalanced
parentheses and the backslash, which must be treated specially. Balanced pairs of
parentheses within a string require no special treatment.
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The following are valid literal strings:

(This is a string)

(Strings may contain newlines

and such.)

(Strings may contain balanced parentheses () and
special characters (*!&}A% and so on).)

(The following is an empty string.)

0
(It has zero (0) length.)

Within a literal string, the backslash (\) is used as an escape character for various
purposes, such as to include newline characters, nonprinting ASCII characters,
unbalanced parentheses, or the backslash character itself in the string. The
character immediately following the backslash determines its precise
interpretation (see Table 3.2). If the character following the backslash is not one
of those shown in the table, the backslash is ignored.

TABLE 3.2 Escape sequences in literal strings

SEQUENCE MEANING

\n Line feed (LF)

\r Carriage return (CR)

\t Horizontal tab (HT)

\b Backspace (BS)

\f Form feed (FF)

\( Left parenthesis

\) Right parenthesis

\ Backslash

\ddd Character code ddd (octal)

If a string is too long to be conveniently placed on a single line, it may be split
across multiple lines by using the backslash character at the end of a line to
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indicate that the string continues on the following line. The backslash and the
end-of-line marker following it are not considered part of the string. For example:

(These \

two strings \

are the same.)

(These two strings are the same.)

If an end-of-line marker appears within a literal string without a preceding
backslash, the result is equivalent to \n (regardless of whether the end-of-line
marker was a carriage return, a line feed, or both). For example:

(This string has an end—of-line at the end of it.
)

(So does this one.\n)

The \ddd escape sequence provides a way to represent characters outside the
printable ASCII character set. For example:

(This string contains \245two octal characters\307.)

The number ddd may consist of one, two, or three octal digits, with high-order
overflow ignored. It is required that three octal digits be used, with leading zeros
as needed, if the next character of the string is also a digit. For example, the literal

(\0053)

denotes a string containing two characters, \005 (Control-E) followed by the digit
3, whereas both

(\053)
and
(\53)
denote strings containing the single character \053, a plus sign (+).

This notation provides a way to specify characters outside the 7-bit ASCII
character set by using ASCII characters only. However, any 8-bit value may
appear in a string. In particular, when a document is encrypted (see Section 3.5,
“Encryption”), all of its strings are encrypted and often contain arbitrary 8-bit
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values. Note that the backslash character is still required as an escape to specify
unbalanced parentheses or the backslash character itself.

Hexadecimal Strings

Strings may also be written in hexadecimal form, which is useful for including
arbitrary binary data in a PDF file. A hexadecimal string is written as a sequence
of hexadecimal digits (0-9 and either A-F or a—f) enclosed within angle brackets
(< and >):

<4E6F762073686D6F7A206B6120706F702E >

Each pair of hexadecimal digits defines one byte of the string. White-space
characters (such as space, tab, carriage return, line feed, and form feed) are
ignored.

If the final digit of a hexadecimal string is missing—that is, if there is an odd
number of digits—the final digit is assumed to be 0. For example:

<901FA3>

is a 3-byte string consisting of the characters whose hexadecimal codes are 90, 1F,
and A3, but

<901FA>

is a 3-byte string containing the characters whose hexadecimal codes are 90, 1F,
and AO0.

Name Objects

A name object is an atomic symbol uniquely defined by a sequence of characters.
Uniquely defined means that any two name objects made up of the same sequence
of characters are identically the same object. Atomic means that a name has no
internal structure; although it is defined by a sequence of characters, those
characters are not considered elements of the name.

A slash character (/) introduces a name. The slash is not part of the name but is a
prefix indicating that the following sequence of characters constitutes a name.
There can be no white-space characters between the slash and the first character
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in the name. The name may include any regular characters, but not delimiter or
white-space characters (see Section 3.1, “Lexical Conventions”). Uppercase and
lowercase letters are considered distinct: /A and /a are different names. The
following examples are valid literal names:

/Name1

/ASomewhatLongerName
/A;Name_With—Various***Characters?
/1.2

/%%

/@pattern

/.notdef

Note: The token / (a slash followed by no regular characters) is a valid name.

Beginning with PDF 1.2, any character except null (character code 0) may be
included in a name by writing its 2-digit hexadecimal code, preceded by the
number sign character (#); see implementation notes 3 and 4 in Appendix H.
This syntax is required to represent any of the delimiter or white-space characters
or the number sign character itself; it is recommended but not required for
characters whose codes are outside the range 33 (!) to 126 (~). The examples
shown in Table 3.3 are valid literal names in PDF 1.2 and later.

TABLE 3.3 Examples of literal names using the # character

LITERAL NAME RESULT
/Adobe#20Green Adobe Green
/PANTONE#205757#20CV PANTONE 5757 CV
/paired#28#29parentheses paired()parentheses
/The_Key_of_F#23_Minor The_Key_of_F#_Minor
/A#42 AB

The length of a name is subject to an implementation limit; see Appendix C. The
limit applies to the number of characters in the name’s internal representation.
For example, the name /A#20B has four characters (/, A, space, B), not six.

As stated above, name objects are treated as atomic symbols within a PDF file.
Ordinarily, the bytes making up the name are never treated as text to be presented
to a human user or to an application external to a PDF consumer. However,
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occasionally the need arises to treat a name object as text, such as one that
represents a font name (see the BaseFont entry in Table 5.8 on page 413) or a
structure type (see Section 10.6.2, “Structure Types”).

In such situations, it is recommended that the sequence of bytes (after expansion
of # sequences, if any) be interpreted according to UTF-8, a variable-length byte-
encoded representation of Unicode in which the printable ASCII characters have
the same representations as in ASCII. This enables a name object to represent text
in any natural language, subject to the implementation limit on the length of a
name. (See implementation note 5 in Appendix H.)

Note: PDF does not prescribe what UTF-8 sequence to choose for representing any
given piece of externally specified text as a name object. In some cases, multiple
UTF-8 sequences could represent the same logical text. Name objects defined by dif-
ferent sequences of bytes constitute distinct name objects in PDE, even though the
UTF-8 sequences might have identical external interpretations.

In PDE name objects always begin with the slash character (/), unlike keywords
such as true, false, and obj. This book follows a typographic convention of
writing names without the leading slash when they appear in running text and
tables. For example, Type and FullScreen denote names that would actually be
written in a PDF file (and in code examples in this book) as /Type and /FullScreen.

Array Objects

An array object is a one-dimensional collection of objects arranged sequentially.
Unlike arrays in many other computer languages, PDF arrays may be hetero-
geneous; that is, an array’s elements may be any combination of numbers, strings,
dictionaries, or any other objects, including other arrays. The number of
elements in an array is subject to an implementation limit; see Appendix C.

An array is written as a sequence of objects enclosed in square brackets ([ and ]):
[549 3.14 false (Ralph) /SomeName]

PDF directly supports only one-dimensional arrays. Arrays of higher dimension
can be constructed by using arrays as elements of arrays, nested to any depth.
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3.2.6 Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known as
the dictionary’s entries. The first element of each entry is the key and the second
element is the value. The key must be a name (unlike dictionary keys in
PostScript, which may be objects of any type). The value can be any kind of
object, including another dictionary. A dictionary entry whose value is null (see
Section 3.2.8, “Null Object”) is equivalent to an absent entry. (This differs from
PostScript, where null behaves like any other object as the value of a dictionary
entry.) The number of entries in a dictionary is subject to an implementation
limit; see Appendix C.

Note: No two entries in the same dictionary should have the same key. If a key does
appear more than once, its value is undefined.

A dictionary is written as a sequence of key-value pairs enclosed in double angle
brackets (<<...>>). For example:

<< /[Type /Example
/Subtype /DictionaryExample
/Version 0.01
/Integerltem 12
/Stringltem (a string)
/Subdictionary << /ltem1 0.4
/ltem2 true
/Lastltem (not!)
/VerylLastltem (OK)
>>
>>

Note: Do not confuse the double angle brackets with single angle brackets (< and >),
which delimit a hexadecimal string (see “Hexadecimal Strings” on page 56).

Dictionary objects are the main building blocks of a PDF document. They are
commonly used to collect and tie together the attributes of a complex object, such
as a font or a page of the document, with each entry in the dictionary specifying
the name and value of an attribute. By convention, the Type entry of such a
dictionary identifies the type of object the dictionary describes. In some cases, a
Subtype entry (sometimes abbreviated S) is used to further identify a specialized
subcategory of the general type. The value of the Type or Subtype entry is always
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a name. For example, in a font dictionary, the value of the Type entry is always
Font, whereas that of the Subtype entry may be Typel, TrueType, or one of
several other values.

The value of the Type entry can almost always be inferred from context. The
operand of the Tf operator, for example, must be a font object; therefore, the Type
entry in a font dictionary serves primarily as documentation and as information
for error checking. The Type entry is not required unless so stated in its
description; however, if the entry is present, it must have the correct value. In
addition, the value of the Type entry in any dictionary, even in private data, must
be either a name defined in this book or a registered name; see Appendix E for
details.

Stream Objects

A stream object, like a string object, is a sequence of bytes. However, a PDF
application can read a stream incrementally, while a string must be read in its
entirety. Furthermore, a stream can be of unlimited length, whereas a string is
subject to an implementation limit. For this reason, objects with potentially large
amounts of data, such as images and page descriptions, are represented as
streams.

Note: As with strings, this section describes only the syntax for writing a stream as a
sequence of bytes. What those bytes represent is determined by the context in which
the stream is referenced.

A stream consists of a dictionary followed by zero or more bytes bracketed
between the keywords stream and endstream:

dictionary

stream

...Zero or more bytes...
endstream

All streams must be indirect objects (see Section 3.2.9, “Indirect Objects”) and
the stream dictionary must be a direct object. The keyword stream that follows
the stream dictionary should be followed by an end-of-line marker consisting of
either a carriage return and a line feed or just a line feed, and not by a carriage
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return alone. The sequence of bytes that make up a stream lie between the stream
and endstream keywords; the stream dictionary specifies the exact number of
bytes. It is recommended that there be an end-of-line marker after the data and
before endstream; this marker is not included in the stream length.

Alternatively, beginning with PDF 1.2, the bytes may be contained in an external
file, in which case the stream dictionary specifies the file, and any bytes between
stream and endstream are ignored. (See implementation note 6 in Appendix H.)

Note: Without the restriction against following the keyword stream by a carriage re-
turn alone, it would be impossible to differentiate a stream that uses carriage return
as its end-of-line marker and has a line feed as its first byte of data from one that
uses a carriage return-line feed sequence to denote end-of-line.

Table 3.4 lists the entries common to all stream dictionaries; certain types of
streams may have additional dictionary entries, as indicated where those streams
are described. The optional entries regarding filters for the stream indicate
whether and how the data in the stream must be transformed (decoded) before it
is used. Filters are described further in Section 3.3, “Filters.”

Stream Extent

Every stream dictionary has a Length entry that indicates how many bytes of the
PDF file are used for the stream’s data. (If the stream has a filter, Length is the
number of bytes of encoded data.) In addition, most filters are defined so that the
data is self-limiting; that is, they use an encoding scheme in which an explicit
end-of-data (EOD) marker delimits the extent of the data. Finally, streams are
used to represent many objects from whose attributes a length can be inferred. All
of these constraints must be consistent.

For example, an image with 10 rows and 20 columns, using a single color
component and 8 bits per component, requires exactly 200 bytes of image data. If
the stream uses a filter, there must be enough bytes of encoded data in the PDF
file to produce those 200 bytes. An error occurs if Length is too small, if an
explicit EOD marker occurs too soon, or if the decoded data does not contain 200

bytes.

It is also an error if the stream contains too much data, with the exception that
there may be an extra end-of-line marker in the PDF file before the keyword
endstream.
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TABLE 3.4 Entries common to all stream dictionaries

KEY

TYPE

VALUE

Length

Filter

DecodeParms

FFilter

FDecodeParms

integer

name or array

dictionary or array

file specification

name or array

dictionary or array

(Required) The number of bytes from the beginning of the line fol-
lowing the keyword stream to the last byte just before the keyword
endstream. (There may be an additional EOL marker, preceding
endstream, that is not included in the count and is not logically part
of the stream data.) See “Stream Extent,” above, for further discus-
sion.

(Optional) The name of a filter to be applied in processing the stream
data found between the keywords stream and endstream, or an array
of such names. Multiple filters should be specified in the order in
which they are to be applied.

(Optional) A parameter dictionary or an array of such dictionaries,
used by the filters specified by Filter. If there is only one filter and that
filter has parameters, DecodeParms must be set to the filter’s parame-
ter dictionary unless all the filter’s parameters have their default
values, in which case the DecodeParms entry may be omitted. If there
are multiple filters and any of the filters has parameters set to non-
default values, DecodeParms must be an array with one entry for
each filter: either the parameter dictionary for that filter, or the null
object if that filter has no parameters (or if all of its parameters have
their default values). If none of the filters have parameters, or if all
their parameters have default values, the DecodeParms entry may be
omitted. (See implementation note 7 in Appendix H.)

(Optional; PDF 1.2) The file containing the stream data. If this entry
is present, the bytes between stream and endstream are ignored, the
filters are specified by FFilter rather than Filter, and the filter parame-
ters are specified by FDecodeParms rather than DecodeParms. How-
ever, the Length entry should still specify the number of those bytes.
(Usually, there are no bytes and Length is 0.) (See implementation
note 46 in Appendix H.)

(Optional; PDF 1.2) The name of a filter to be applied in processing
the data found in the stream’s external file, or an array of such names.
The same rules apply as for Filter.

(Optional; PDF 1.2) A parameter dictionary, or an array of such dic-
tionaries, used by the filters specified by FFilter. The same rules apply
as for DecodeParms.
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KEY TYPE VALUE
DL integer (Optional; PDF 1.5) A non-negative integer representing the number

of bytes in the decoded (defiltered) stream. It can be used to deter-
mine, for example, whether enough disk space is available to write a

stream to a file.

This value should be considered a hint only; for some stream filters, it

may not be possible to determine this value precisely.

3.2.8 Null Object

3.2.9

The null object has a type and value that are unequal to those of any other object.
There is only one object of type null, denoted by the keyword null. An indirect
object reference (see Section 3.2.9, “Indirect Objects”) to a nonexistent object is
treated the same as a null object. Specifying the null object as the value of a
dictionary entry (Section 3.2.6, “Dictionary Objects”) is equivalent to omitting
the entry entirely.

Indirect Objects

Any object in a PDF file may be labeled as an indirect object. This gives the object
a unique object identifier by which other objects can refer to it (for example, as an
element of an array or as the value of a dictionary entry). The object identifier
consists of two parts:

o A positive integer object number. Indirect objects are often numbered sequen-
tially within a PDF file, but this is not required; object numbers may be
assigned in any arbitrary order.

¢ A non-negative integer generation number. In a newly created file, all indirect
objects have generation numbers of 0. Nonzero generation numbers may be in-
troduced when the file is later updated; see Sections 3.4.3, “Cross-Reference
Table,” and 3.4.5, “Incremental Updates”

Together, the combination of an object number and a generation number
uniquely identifies an indirect object. The object retains the same object number
and generation number throughout its existence, even if its value is modified.
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The definition of an indirect object in a PDF file consists of its object number and
generation number, followed by the value of the object bracketed between the
keywords obj and endobj. For example, the definition

12 0 obj
(Brillig)
endobj

defines an indirect string object with an object number of 12, a generation
number of 0, and the value Brillig.

The object can be referred to from elsewhere in the file by an indirect reference
consisting of the object number, the generation number, and the keyword R:

12 0 R

Beginning with PDF 1.5, indirect objects may reside in object streams (see
Section 3.4.6, “Object Streams”). They are referred to in the same way; however,
their definition does not include the keywords obj and endobj.

An indirect reference to an undefined object is not an error; it is simply treated as
a reference to the null object. For example, if a file contains the indirect reference
17 0 Rbut does not contain the corresponding definition

17 0 obj
endobj
then the indirect reference is considered to refer to the null object.

Note: In the data structures that make up a PDF document, certain values are re-
quired to be specified as indirect object references. Except where this is explicitly
called out, any object (other than a stream) may be specified either directly or as an
indirect object reference; the semantics are entirely equivalent. Note in particular
that content streams, which define the visible contents of the document, may not
contain indirect references (see Section 3.7.1, “Content Streams”). Also, see imple-
mentation note 8 in Appendix H.

Example 3.1 shows the use of an indirect object to specify the length of a stream.
The value of the stream’s Length entry is an integer object that follows the stream
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in the file. This allows applications that generate PDF in a single pass to defer
specifying the stream’s length until after its contents have been generated.

Example 3.1

7 0 obj
<< /Length 80R >> % An indirect reference to object 8
stream
BT
/F1 12 Tf
72 712 1d
(A stream with an indirect length) Tj
ET
endstream
endobj

8 0 obj
77 % The length of the preceding stream
endobj

3.3 Filters

Stream filters are introduced in Section 3.2.7, “Stream Objects” A filter is an
optional part of the specification of a stream, indicating how the data in the
stream must be decoded before it is used. For example, if a stream has an
ASClIHexDecode filter, an application reading the data in that stream will
transform the ASCII hexadecimal-encoded data in the stream into binary data.

An application program that produces a PDF file can encode certain information
(for example, data for sampled images) to compress it or to convert it to a port-
able ASCII representation. Then an application that reads (consumes) the PDF
file can invoke the corresponding decoding filter to convert the information back
to its original form.

The filter or filters for a stream are specified by the Filter entry in the stream’s
dictionary (or the FFilter entry if the stream is external). Filters can be cascaded
to form a pipeline that passes the stream through two or more decoding
transformations in sequence. For example, data encoded using LZW and ASCII
base-85 encoding (in that order) can be decoded using the following entry in the
stream dictionary:

/Filter [/ASCII85Decode /LZWDecode]
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Some filters may take parameters to control how they operate. These optional
parameters are specified by the DecodeParms entry in the stream’s dictionary (or
the FDecodeParms entry if the stream is external).

PDF supports a standard set of filters that fall into two main categories:

o ASCII filters enable decoding of arbitrary 8-bit binary data that has been en-
coded as ASCII text. (See Section 3.1, “Lexical Conventions,” for an explanation
of why this type of encoding might be useful.) Note that ASCII filters serve no
useful purpose in a PDF file that is encrypted; see Section 3.5, “Encryption.”

e Decompression filters enable decoding of data that has been compressed. The
compressed data is always in 8-bit binary format, even if the original data is
ASCII text. (Compression is particularly valuable for large sampled images,
since it reduces storage requirements and transmission time. Some types of
compression are lossy, meaning that some data is lost during the encoding, re-
sulting in a loss of quality when the data is decompressed. Compression in
which no loss of data occurs is called lossless.)

The standard filters are summarized in Table 3.5, which also indicates whether
they accept any optional parameters. The following sections describe these filters
and their parameters (if any) in greater detail, including specifications of
encoding algorithms for some filters. (See also implementation notes 9 and 10 in
Appendix H.)

Example 3.2 shows a stream, containing the marking instructions for a page, that
was compressed using the LZW compression method and then encoded in ASCII
base-85 representation. Example 3.3 shows the same stream without any
encoding. (The stream’s contents are explained in Section 3.7.1, “Content
Streams,” and the operators used there are further described in Chapter 5.)
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TABLE 3.5 Standard filters

FILTER NAME

PARAMETERS?

DESCRIPTION

ASClIHexDecode

ASCIlI85Decode

LZWDecode

FlateDecode

RunLengthDecode

CCITTFaxDecode

JBIG2Decode

DCTDecode

JPXDecode

Crypt

no

no

yes

yes

no

yes

yes

yes

no

yes

Decodes data encoded in an ASCII hexadecimal representation,
reproducing the original binary data.

Decodes data encoded in an ASCII base-85 representation, repro-
ducing the original binary data.

Decompresses data encoded using the LZW (Lempel-Ziv-Welch)
adaptive compression method, reproducing the original text or bin-
ary data.

(PDF 1.2) Decompresses data encoded using the zlib/deflate com-
pression method, reproducing the original text or binary data.

Decompresses data encoded using a byte-oriented run-length encod-
ing algorithm, reproducing the original text or binary data (typically
monochrome image data, or any data that contains frequent long
runs of a single byte value).

Decompresses data encoded using the CCITT facsimile standard,
reproducing the original data (typically monochrome image data at 1
bit per pixel).

(PDF 1.4) Decompresses data encoded using the JBIG2 standard,
reproducing the original monochrome (1 bit per pixel) image data
(or an approximation of that data).

Decompresses data encoded using a DCT (discrete cosine transform)
technique based on the JPEG standard, reproducing image sample
data that approximates the original data.

(PDF 1.5) Decompresses data encoded using the wavelet-based
JPEG2000 standard, reproducing the original image data.

(PDF 1.5) Decrypts data encrypted by a security handler, reproduc-
ing the original data as it was before encryption.




68
| CHAPTER 3 I Syntax |

Example 3.2

1 0 obj

<< /Length 534

/Filter [/ASCII85Decode /LZWDecode]

>>
stream
J.)6T ?2p&<!1J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n'$"<Atdi"\Vn%b%)&'cA*VnK\CJY(sF>c!nl@
RM]WM;jjH6GNc75idkL5]+cPZKEBPWdAR>FF(kj1_R%W_d
&/jShiuad7h?[L-F$+110A3Ck*$10KZ?;<)CJtqi65Xb
Vc3\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:IUpR;60N[C2E4
ZNr8Udn.'p+2#X+1>0Kuk$SbCDF/(3fL510q)AkJZ!IC2H1
'"TOIRI?Q:&'<5&iP!SRq;BXRecDNIIJB’,)08XJ0OSJ9sD
SIhQ;Rj@!ND)bD_q&C\g:inYC%)&u#:u,M6BmM%IY!Kb1+
":aAa'S ViJglLb8<W9Ik6YIN\\OMcJQkDeLWdPN?9A'jX*
al>iG1p&i;eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,
JD?MS0QP)IKn0611apKDC@\qJ4B!(5m+j.7F790m(Vj8
818Q:_CZ(Gm1%X\N1&u!FKHMB~>
endstream
endobj

Example 3.3

1 0 obj
<< /Length 568 >>
stream
2
BT
/F1 12 Tf
0 Tc
0 Tw
725 712 TD
[(Unencoded streams can be read easily) 65 (,)] TJ
0 -14 TD
[(b) 20 (utgenerallytak) 10 (e more space than\311)] TJ
T* (encoded streams.) Tj
0 —28 TD
[(Se) 25 (v) 15 (eral encoding methodsarea) 20 (v) 25 (ailablein PDF) 80 (.)] TJ
0 -14 TD
(Some are used for compression and others simply) Tj
T* [(to represent binary datainan) 55 (ASCll format.)] TJ
T* (Some of the compression encoding methods are \
suitable) Tj
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T* (for both data and images, while others are \
suitable only) Tj

T* (for continuous—tone images.) Tj

ET

endstream

endobj

ASClIHexDecode Filter

The ASCliIHexDecode filter decodes data that has been encoded in ASCII
hexadecimal form. ASCII hexadecimal encoding and ASCII base-85 encoding
(described in the next section) convert binary data, such as image data, to 7-bit
ASCII characters. In general, ASCII base-85 encoding is preferred to ASCII
hexadecimal encoding because it is more compact: it expands the data by a factor
of 4:5, compared with 1:2 for ASCII hexadecimal encoding.

The ASClIHexDecode filter produces one byte of binary data for each pair of
ASCII hexadecimal digits (0-9 and A-F or a—f). All white-space characters (see
Section 3.1, “Lexical Conventions”) are ignored. A right angle bracket character
(>) indicates EOD. Any other characters cause an error. If the filter encounters
the EOD marker after reading an odd number of hexadecimal digits, it behaves as
if a 0 followed the last digit.

ASCII85Decode Filter

The ASCII85Decode filter decodes data that has been encoded in ASCII base-85
encoding and produces binary data. The following paragraphs describe the
process for encoding binary data in ASCII base-85; the ASCII85Decode filter
reverses this process.

The ASCII base-85 encoding uses the characters ! through u and the character z,
with the 2-character sequence ~> as its EOD marker. The ASCII85Decode filter
ignores all white-space characters (see Section 3.1, “Lexical Conventions”). Any
other characters, and any character sequences that represent impossible
combinations in the ASCII base-85 encoding, cause an error.
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Specifically, ASCII base-85 encoding produces 5 ASCII characters for every 4
bytes of binary data. Each group of 4 binary input bytes, (b, b, b, b,), is converted
to a group of 5 output bytes, (c, ¢, ¢; ¢, ¢5), using the relation

3 2 1
(b x2567) +(byx2567) +(byx256" ) +b, =
(c; X 851) +(cy X 857) + (cy X 85°) +(c, x85') + s

In other words, 4 bytes of binary data are interpreted as a base-256 number and
then converted to a base-85 number. The five bytes of the base-85 number are
then converted to ASCII characters by adding 33 (the ASCII code for the
character !) to each. The resulting encoded data contains only printable ASCII
characters with codes in the range 33 (!) to 117 (u). As a special case, if all five
bytes are 0, they are represented by the character with code 122 (z) instead of by
five exclamation points (!!!!1).

If the length of the binary data to be encoded is not a multiple of 4 bytes, the last,
partial group of 4 is used to produce a last, partial group of 5 output characters.
Given 7 (1, 2, or 3) bytes of binary data, the encoder first appends 4 — n zero bytes
to make a complete group of 4. It then encodes this group in the usual way, but
without applying the special z case. Finally, it writes only the first n + 1 characters
of the resulting group of 5. These characters are immediately followed by the ~>
EOD marker.

The following conditions (which never occur in a correctly encoded byte
sequence) cause errors during decoding:

o The value represented by a group of 5 characters is greater than 232 — 1.

o A z character occurs in the middle of a group.

e A final partial group contains only one character.
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3.3.3 LZWDecode and FlateDecode Filters

The LZWDecode and (in PDF 1.2) FlateDecode filters have much in common and
are discussed together in this section. They decode data that has been encoded
using the LZW or Flate data compression method, respectively:

o LZW (Lempel-Ziv-Welch) is a variable-length, adaptive compression method
that has been adopted as one of the standard compression methods in the Tag
Image File Format (TIFF) standard. Details on LZW encoding follow in the
next section.

e The Flate method is based on the public-domain zlib/deflate compression
method, which is a variable-length Lempel-Ziv adaptive compression method
cascaded with adaptive Huffman coding. It is fully defined in Internet RFCs
1950, ZLIB Compressed Data Format Specification, and 1951, DEFLATE Com-
pressed Data Format Specification (see the Bibliography).

Both of these methods compress either binary data or ASCII text but (like all
compression methods) always produce binary data, even if the original data was
text.

The LZW and Flate compression methods can discover and exploit many
patterns in the input data, whether the data is text or images. As described later,
both filters support optional transformation by a predictor function, which
improves the compression of sampled image data. Because of its cascaded
adaptive Huffman coding, Flate-encoded output is usually much more compact
than LZW-encoded output for the same input. Flate and LZW decoding speeds
are comparable, but Flate encoding is considerably slower than LZW encoding.

Usually, both Flate and LZW encodings compress their input substantially.
However, in the worst case (in which no pair of adjacent characters appears
twice), Flate encoding expands its input by no more than 11 bytes or a factor of
1.003 (whichever is larger), plus the effects of algorithm tags added by PNG
predictors. For LZW encoding, the best case (all zeros) provides a compression
approaching 1365:1 for long files, but the worst-case expansion is at least a factor
of 1.125, which can increase to nearly 1.5 in some implementations, plus the
effects of PNG tags as with Flate encoding.
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Details of LZW Encoding

Data encoded using the LZW compression method consists of a sequence of
codes that are 9 to 12 bits long. Each code represents a single character of input
data (0-255), a clear-table marker (256), an EOD marker (257), or a table entry
representing a multiple-character sequence that has been encountered previously
in the input (258 or greater).

Initially, the code length is 9 bits and the LZW table contains only entries for the
258 fixed codes. As encoding proceeds, entries are appended to the table, asso-
ciating new codes with longer and longer sequences of input characters. The
encoder and the decoder maintain identical copies of this table.

Whenever both the encoder and the decoder independently (but synchronously)
realize that the current code length is no longer sufficient to represent the
number of entries in the table, they increase the number of bits per code by 1. The
first output code that is 10 bits long is the one following the creation of table entry
511, and similarly for 11 (1023) and 12 (2047) bits. Codes are never longer than
12 bits; therefore, entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each output
code:

1. Accumulate a sequence of one or more input characters matching a sequence
already present in the table. For maximum compression, the encoder looks for
the longest such sequence.

2. Emit the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the sequence
found in step 1 followed by the next input character.

For example, suppose the input consists of the following sequence of ASCII
character codes:

45 45 45 45 45 65 45 45 45 66

Starting with an empty table, the encoder proceeds as shown in Table 3.6.
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TABLE 3.6 Typical LZW encoding sequence

INPUT OUTPUT CODE ADDED SEQUENCE REPRESENTED
SEQUENCE CODE TO TABLE BY NEW CODE

- 256 (clear-table) - -

45 45 258 45 45

45 45 258 259 45 45 45
45 45 258 260 45 45 65
65 65 261 65 45

45 45 45 259 262 45 45 45 66
66 66 - _

- 257 (EOD) - -

Codes are packed into a continuous bit stream, high-order bit first. This stream is
then divided into 8-bit bytes, high-order bit first. Thus, codes can straddle byte
boundaries arbitrarily. After the EOD marker (code value 257), any leftover bits
in the final byte are set to 0.

In the example above, all the output codes are 9 bits long; they would pack into
bytes as follows (represented in hexadecimal):

80 0B 60 50 22 0C 0C 85 01

To adapt to changing input sequences, the encoder may at any point issue a clear-
table code, which causes both the encoder and the decoder to restart with initial
tables and a 9-bit code length. By convention, the encoder begins by issuing a
clear-table code. It must issue a clear-table code when the table becomes full; it
may do so sooner.

LZWDecode and FlateDecode Parameters

The LZWDecode and FlateDecode filters accept optional parameters to control
the decoding process. Most of these parameters are related to techniques that
reduce the size of compressed sampled images (rectangular arrays of color values,
described in Section 4.8, “Images”). For example, image data typically changes
very little from sample to sample. Therefore, subtracting the values of adjacent
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samples (a process called differencing), and encoding the differences rather than
the raw sample values, can reduce the size of the output data. Furthermore, when
the image data contains several color components (red-green-blue or cyan-
magenta-yellow-black) per sample, taking the difference between the values of
corresponding components in adjacent samples, rather than between different
color components in the same sample, often reduces the output data size.

Table 3.7 shows the parameters that can optionally be specified for LZWDecode
and FlateDecode filters. Except where otherwise noted, all values supplied to the
decoding filter for any optional parameters must match those used when the data
was encoded.

TABLE 3.7 Optional parameters for LZWDecode and FlateDecode filters
KEY TYPE VALUE

Predictor integer A code that selects the predictor algorithm, if any. If the value of this entry
is 1, the filter assumes that the normal algorithm was used to encode the data,
without prediction. If the value is greater than 1, the filter assumes that the
data was differenced before being encoded, and Predictor selects the predic-
tor algorithm. For more information regarding Predictor values greater
than 1, see “LZW and Flate Predictor Functions,” below. Default value: 1.

Colors integer (Used only if Predictor is greater than 1) The number of interleaved color com-
ponents per sample. Valid values are 1 to 4 in PDF 1.2 or earlier and 1 or
greater in PDF 1.3 or later. Default value: 1.

BitsPerComponent  integer (Used only if Predictor is greater than 1) The number of bits used to represent
each color component in a sample. Valid values are 1, 2, 4, 8, and (in PDF 1.5)
16. Default value: 8.

Columns integer (Used only if Predictor is greater than 1) The number of samples in each row.
Default value: 1.

EarlyChange integer (LZWDecode only) An indication of when to increase the code length. If the
value of this entry is 0, code length increases are postponed as long as pos-
sible. If the value is 1, code length increases occur one code early. This pa-
rameter is included because LZW sample code distributed by some vendors
increases the code length one code earlier than necessary. Default value: 1.
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LZW and Flate Predictor Functions

LZW and Flate encoding compress more compactly if their input data is highly
predictable. One way of increasing the predictability of many continuous-tone
sampled images is to replace each sample with the difference between that sample
and a predictor function applied to earlier neighboring samples. If the predictor
function works well, the postprediction data clusters toward 0.

Two groups of predictor functions are supported. The first, the TIFF group,
consists of the single function that is Predictor 2 in the TIFF standard. (In the
TIFF standard, Predictor 2 applies only to LZW compression, but here it applies
to Flate compression as well.) TIFF Predictor 2 predicts that each color
component of a sample is the same as the corresponding color component of the
sample immediately to its left.

The second supported group of predictor functions, the PNG group, consists of
the filters of the World Wide Web Consortium’s Portable Network Graphics
recommendation, documented in Internet RFC 2083, PNG (Portable Network
Graphics) Specification (see the Bibliography). The term predictors is used here
instead of filters to avoid confusion. There are five basic PNG predictor
algorithms (and a sixth that chooses the optimum predictor function separately
for each row):

None No prediction

Sub Predicts the same as the sample to the left

Up Predicts the same as the sample above

Average  Predicts the average of the sample to the left and the sample above
Paeth A nonlinear function of the sample above, the sample to the left,

and the sample to the upper left

The predictor algorithm to be used, if any, is indicated by the Predictor filter
parameter (see Table 3.7), which can have any of the values listed in Table 3.8.

For LZWDecode and FlateDecode, a Predictor value greater than or equal to 10
merely indicates that a PNG predictor is in use; the specific predictor function
used is explicitly encoded in the incoming data. The value of Predictor supplied
by the decoding filter need not match the value used when the data was encoded
if they are both greater than or equal to 10.
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TABLE 3.8 Predictor values

VALUE MEANING

1 No prediction (the default value)

2 TIFF Predictor 2

10 PNG prediction (on encoding, PNG None on all rows)
11 PNG prediction (on encoding, PNG Sub on all rows)

12 PNG prediction (on encoding, PNG Up on all rows)

13 PNG prediction (on encoding, PNG Average on all rows)
14 PNG prediction (on encoding, PNG Paeth on all rows)
15 PNG prediction (on encoding, PNG optimum)

The two groups of predictor functions have some commonalities. Both make the
following assumptions:

o Data is presented in order, from the top row to the bottom row and, within a
row, from left to right.

¢ A row occupies a whole number of bytes, rounded up if necessary.

o Samples and their components are packed into bytes from high-order to low-
order bits.

o All color components of samples outside the image (which are necessary for
predictions near the boundaries) are 0.

The predictor function groups also differ in significant ways:

o The postprediction data for each PNG-predicted row begins with an explicit
algorithm tag; therefore, different rows can be predicted with different algo-
rithms to improve compression. TIFF Predictor 2 has no such identifier; the
same algorithm applies to all rows.

e The TIFF function group predicts each color component from the prior in-
stance of that component, taking into account the number of bits per com-
ponent and components per sample. In contrast, the PNG function group
predicts each byte of data as a function of the corresponding byte of one or
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more previous image samples, regardless of whether there are multiple color
components in a byte or whether a single color component spans multiple
bytes. This can yield significantly better speed at the cost of somewhat worse
compression.

3.3.4 RunLengthDecode Filter

335

The RunLengthDecode filter decodes data that has been encoded in a simple
byte-oriented format based on run length. The encoded data is a sequence of
runs, where each run consists of a length byte followed by 1 to 128 bytes of data. If
the length byte is in the range 0 to 127, the following length + 1 (1 to 128) bytes
are copied literally during decompression. If length is in the range 129 to 255, the
following single byte is to be copied 257 —length (2 to 128) times during
decompression. A length value of 128 denotes EOD.

The compression achieved by run-length encoding depends on the input data. In
the best case (all zeros), a compression of approximately 64:1 is achieved for long
files. The worst case (the hexadecimal sequence 00 alternating with FF) results in
an expansion of 127:128.

CCITTFaxDecode Filter

The CCITTFaxDecode filter decodes image data that has been encoded using
either Group 3 or Group 4 CCITT facsimile (fax) encoding. CCITT encoding is
designed to achieve efficient compression of monochrome (1 bit per pixel) image
data at relatively low resolutions, and so is useful only for bitmap image data, not
for color images, grayscale images, or general data.

The CCITT encoding standard 1is defined by the International
Telecommunications Union (ITU), formerly known as the Comité Consultatif
International Téléphonique et Télégraphique (International Coordinating
Committee for Telephony and Telegraphy). The encoding algorithm is not
described in detail in this book but can be found in ITU Recommendations T.4
and T.6 (see the Bibliography). For historical reasons, we refer to these
documents as the CCITT standard.
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CCITT encoding is bit-oriented, not byte-oriented. Therefore, in principle,
encoded or decoded data might not end at a byte boundary. This problem is dealt
with in the following ways:

e Unencoded data is treated as complete scan lines, with unused bits inserted at
the end of each scan line to fill out the last byte. This approach is compatible
with the PDF convention for sampled image data.

¢ Encoded data is ordinarily treated as a continuous, unbroken bit stream. The
EncodedByteAlign parameter (described in Table 3.9) can be used to cause
each encoded scan line to be filled to a byte boundary. Although this is not pre-
scribed by the CCITT standard and fax machines never do this, some software
packages find it convenient to encode data this way.

o When a filter reaches EOD, it always skips to the next byte boundary following
the encoded data.

If the CCITTFaxDecode filter encounters improperly encoded source data, an
error occurs. The filter does not perform any error correction or
resynchronization, except as noted for the DamagedRowsBeforeError parameter
in Table 3.9.

Table 3.9 lists the optional parameters that can be used to control the decoding.
Except where noted otherwise, all values supplied to the decoding filter by any of
these parameters must match those used when the data was encoded.

TABLE 3.9 Optional parameters for the CCITTFaxDecode filter

KEY

TYPE VALUE

integer A code identifying the encoding scheme used:
<0 Pure two-dimensional encoding (Group 4)

0 Pure one-dimensional encoding (Group 3, 1-D)

>0 Mixed one- and two-dimensional encoding (Group 3, 2-D),
in which a line encoded one-dimensionally can be followed

by at most K — 1 lines encoded two-dimensionally

The filter distinguishes among negative, zero, and positive values of
K to determine how to interpret the encoded data; however, it does
not distinguish between different positive K values. Default value: 0.
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KEY

TYPE

VALUE

EndOfLine

EncodedByteAlign

Columns

Rows

EndOfBlock

Blackls1

DamagedRowsBeforeError

boolean

boolean

integer

integer

boolean

boolean

integer

A flag indicating whether end-of-line bit patterns are required to be
present in the encoding. The CCITTFaxDecode filter always accepts
end-of-line bit patterns, but requires them only if EndOfLine is true.
Default value: false.

A flag indicating whether the filter expects extra 0 bits before each
encoded line so that the line begins on a byte boundary. If true, the
filter skips over encoded bits to begin decoding each line at a byte
boundary. If false, the filter does not expect extra bits in the encod-
ed representation. Default value: false.

The width of the image in pixels. If the value is not a multiple of 8,
the filter adjusts the width of the unencoded image to the next mul-
tiple of 8 so that each line starts on a byte boundary. Default value:
1728.

The height of the image in scan lines. If the value is 0 or absent, the
image’s height is not predetermined, and the encoded data must be
terminated by an end-of-block bit pattern or by the end of the fil-
ter’s data. Default value: 0.

A flag indicating whether the filter expects the encoded data to be
terminated by an end-of-block pattern, overriding the Rows param-
eter. If false, the filter stops when it has decoded the number of lines
indicated by Rows or when its data has been exhausted, whichever
occurs first. The end-of-block pattern is the CCITT end-of-facsim-
ile-block (EOFB) or return-to-control (RTC) appropriate for the K
parameter. Default value: true.

A flag indicating whether 1 bits are to be interpreted as black pixels
and 0 bits as white pixels, the reverse of the normal PDF convention
for image data. Default value: false.

The number of damaged rows of data to be tolerated before an error
occurs. This entry applies only if EndOfLine is true and K is non-
negative. Tolerating a damaged row means locating its end in the
encoded data by searching for an EndOfLine pattern and then sub-
stituting decoded data from the previous row if the previous row
was not damaged, or a white scan line if the previous row was also
damaged. Default value: 0.
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The compression achieved using CCITT encoding depends on the data, as well as
on the value of various optional parameters. For Group 3 one-dimensional
encoding, in the best case (all zeros), each scan line compresses to 4 bytes, and the
compression factor depends on the length of a scan line. If the scan line is 300
bytes long, a compression ratio of approximately 75:1 is achieved. The worst case,
an image of alternating ones and zeros, produces an expansion of 2:9.

JBIG2Decode Filter

The JBIG2Decode filter (PDF 1.4) decodes monochrome (1 bit per pixel) image
data that has been encoded using JBIG2 encoding. JBIG stands for the Joint Bi-
Level Image Experts Group, a group within the International Organization for
Standardization (ISO) that developed the format. JBIG2 is the second version of a
standard originally released as JBIG1.

JBIG2 encoding, which provides for both lossy and lossless compression, is useful
only for monochrome images, not for color images, grayscale images, or general
data. The algorithms used by the encoder, and the details of the format, are not
described here. A working draft of the JBIG2 specification can be found through
the Web site for the JBIG and JPEG (Joint Photographic Experts Group)
committees at <http://www.jpeg.org>.

In general, JBIG2 provides considerably better compression than the existing
CCITT standard (discussed in Section 3.3.5). The compression it achieves
depends strongly on the nature of the image. Images of pages containing text in
any language compress particularly well, with typical compression ratios of 20:1
to 50:1 for a page full of text. The JBIG2 encoder builds a table of unique symbol
bitmaps found in the image, and other symbols found later in the image are
matched against the table. Matching symbols are replaced by an index into the
table, and symbols that fail to match are added to the table. The table itself is
compressed using other means. This method results in high compression ratios
for documents in which the same symbol is repeated often, as is typical for
images created by scanning text pages. It also results in high compression of white
space in the image, which does not need to be encoded because it contains no
symbols.

While best compression is achieved for images of text, the JBIG2 standard also
includes algorithms for compressing regions of an image that contain dithered
halftone images (for example, photographs).
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The JBIG2 compression method can also be used for encoding multiple images
into a single JBIG2 bit stream. Typically, these images are scanned pages of a
multiple-page document. Since a single table of symbol bitmaps is used to match
symbols across multiple pages, this type of encoding can result in higher
compression ratios than if each of the pages had been individually encoded using
JBIG2.

In general, an image may be specified in PDF as either an image XObject or an
inline image (as described in Section 4.8, “Images”); however, the JBIG2Decode
filter can be applied only to image XObjects.

This filter addresses both single-page and multiple-page JBIG2 bit streams by
representing each JBIG2 page as a PDF image, as follows:

o The filter uses the embedded file organization of JBIG2. (The details of this and
the other types of file organization are provided in an annex of the ISO specifi-
cation.) The optional 2-byte combination (marker) mentioned in the specifica-
tion is not used in PDE JBIG2 bit streams in random-access organization
should be converted to the embedded file organization. Bit streams in sequen-
tial organization need no reorganization, except for the mappings described
below.

o The JBIG2 file header, end-of-page segments, and end-of-file segment are not
used in PDF. These should be removed before the PDF objects described below
are created.

¢ The image XObject to which the JBIG2Decode filter is applied contains all seg-
ments that are associated with the JBIG2 page represented by that image; that
is, all segments whose segment page association field contains the page number
of the JBIG2 page represented by the image. In the image XObject, however, the
segment’s page number should always be 1; that is, when each such segment is
written to the XObject, the value of its segment page association field should be
set to 1.

o If the bit stream contains global segments (segments whose segment page asso-
ciation field contains 0), these segments must be placed in a separate PDF
stream, and the filter parameter listed in Table 3.10 should refer to that stream.
The stream can be shared by multiple image XObjects whose JBIG2 encodings
use the same global segments.
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TABLE 3.10 Optional parameter for the JBIG2Decode filter

KEY TYPE VALUE

JBIG2Globals stream A stream containing the JBIG2 global (page 0) segments. Global segments
must be placed in this stream even if only a single JBIG2 image XObject re-
fers to it.

Example 3.4 shows an image that was compressed using the JBIG2 compression
method and then encoded in ASCII hexadecimal representation. Since the JBIG2
bit stream contains global segments, these segments are placed in a separate PDF
stream, as indicated by the JBIG2Globals filter parameter.

Example 3.4

5 0 obj
<< /Type /XObject
/Subtype /Image
/Width 52
/Height 66
/ColorSpace /DeviceGray
/BitsPerComponent 1
/Length 224
/Filter [/ASClIHexDecode /JBIG2Decode]
/DecodeParms [null << /JBIG2Globals 6 0R >>]
>>
stream
000000013000010000001300000034000000420000000000
00000040000000000002062000010000001e000000340000
004200000000000000000200100000000231db51ce51ffac>
endstream
endobj

6 0 obj

<< /Length 126

/Filter /ASClIHexDecode

>>
stream
0000000000010000000032000003fffdff02fefefe000000
01000000012ae225aea%a5a538b4d9999c5c8e56ef0f872
7f2b53d4e37ef795cc5506dffac>
endstream
endobj
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The JBIG2 bit stream for this example is as follows:

97 4A 42 32 0D OA 1A OA 01 00 00 00 01 00 00 00 00 00 01 00 00 00 00 32
00 00 03 FF FD FF 02 FE FE FE 00 00 00 01 00 00 00 O1 2A E2 25 AE A9 A5

A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87 27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D
FF AC 00 00 00 01 30 00 01 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00

00 00 00 00 00 40 00 00 00 00 00 02 06 20 00 O1 00 00 OO 1E 00 00 00 34

00 00 00 42 00 00 00 00 00 00 00 OO 02 00 10 00 00 00 02 31 DB 51 CE 51

FF AC 00 00 00 03 31 00 01 00 00 00 00 00 00 00 04 33 01 00 00 00 00

This bit stream is made up of the following parts (in the order listed):

1. The JBIG2 file header

97 4A 42 32 0D OA 1A OA 01 00 00 00 01

Since the JBIG2 file header is not used in PDE, this header is not placed in the
JBIG2 stream object and is discarded.

. The first JBIG2 segment (segment 0)—in this case, the symbol dictionary seg-

ment

00 00 00 00 00 01 00 00 00 00 32 00 00 03 FF FD FF 02 FE FE FE 00 00 00
01 00 00 00 01 2A E2 25 AE A9 A5 A5 38 B4 D9 99 9C 5C 8E 56 EF OF 87
27 F2 B5 3D 4E 37 EF 79 5C C5 50 6D FF AC

This is a global segment (segment page association = 0) and so is placed in the
JBIG2Globals stream.

. The page information segment

00 00 00 01 30 00 O1 00 00 00 13 00 00 00 34 00 00 00 42 00 00 00 00
00 00 00 00 40 00 00

and the immediate text region segment

00 00 00 02 06 20 00 01 00 00 00 1E 00 00 00 34 00 00 00 42 00 00 00
00 00 00 00 00 02 00 10 00 00 00 02 31 DB 51 CE 51 FF AC

These two segments constitute the contents of the JBIG2 page and are placed
in the PDF XObject representing this image.

. The end-of-page segment

00 00 00 03 31 00 01 00 00 00 00
and the end-of-file segment
00 00 00 04 33 01 00 00 00 00

Since these segments are not used in PDE, they are discarded.
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The resulting PDF image object, then, contains the page information segment
and the immediate text region segment and refers to a JBIG2Globals stream that
contains the symbol dictionary segment.

DCTDecode Filter

The DCTDecode filter decodes grayscale or color image data that has been
encoded in the JPEG baseline format. (JPEG stands for the Joint Photographic
Experts Group, a group within the International Organization for
Standardization that developed the format; DCT stands for discrete cosine
transform, the primary technique used in the encoding.)

JPEG encoding is a lossy compression method, designed specifically for
compression of sampled continuous-tone images and not for general data
compression. Data to be encoded using JPEG consists of a stream of image
samples, each consisting of one, two, three, or four color components. The color
component values for a particular sample must appear consecutively. Each
component value occupies an 8-bit byte.

During encoding, several parameters control the algorithm and the information
loss. The values of these parameters, which include the dimensions of the image
and the number of components per sample, are entirely under the control of the
encoder and are stored in the encoded data. DCTDecode generally obtains the
parameter values it requires directly from the encoded data. However, in one
instance, the parameter might not be present in the encoded data but must be
specified in the filter parameter dictionary; see Table 3.11.

The details of the encoding algorithm are not presented here but are in the ISO
specification and in JPEG: Still Image Data Compression Standard, by Pennebaker
and Mitchell (see the Bibliography). Briefly, the JPEG algorithm breaks an image
up into blocks that are 8 samples wide by 8 samples shigh. Each color component
in an image is treated separately. A two-dimensional DCT is performed on each
block. This operation produces 64 coefficients, which are then quantized. Each
coefficient may be quantized with a different step size. It is this quantization that
results in the loss of information in the JPEG algorithm. The quantized coef-
ficients are then compressed.
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TABLE 3.11 Optional parameter for the DCTDecode filter

KEY

TYPE

VALUE

ColorTransform

integer

A code specifying the transformation to be performed on the sample values:
0  No transformation.

1 If the image has three color components, transform RGB values to
YUV before encoding and from YUV to RGB after decoding. If the
image has four components, transform CMYK values to YUVK be-
fore encoding and from YUVK to CMYK after decoding. This option
is ignored if the image has one or two color components.

Note: The RGB and YUV used here have nothing to do with the color spaces
defined as part of the Adobe imaging model. The purpose of converting from
RGB to YUV is to separate luminance and chrominance information (see be-
low).

The default value of ColorTransform is 1 if the image has three components
and 0 otherwise. In other words, conversion between RGB and YUYV is per-
formed for all three-component images unless explicitly disabled by setting
ColorTransform to 0. Additionally, the encoding algorithm inserts an Adobe-
defined marker code in the encoded data, indicating the ColorTransform val-
ue used. If present, this marker code overrides the ColorTransform value giv-
en to DCTDecode. Thus it is necessary to specify ColorTransform only when
decoding data that does not contain the Adobe-defined marker code.

The encoding algorithm can reduce the information loss by making the step size
in the quantization smaller at the expense of reducing the amount of compression
achieved by the algorithm. The compression achieved by the JPEG algorithm
depends on the image being compressed and the amount of loss that is
acceptable. In general, a compression of 15:1 can be achieved without perceptible
loss of information, and 30:1 compression causes little impairment of the image.

Better compression is often possible for color spaces that treat luminance and
chrominance separately than for those that do not. The RGB-to-YUV conversion
provided by the filters is one attempt to separate luminance and chrominance; it
conforms to CCIR recommendation 601-1. Other color spaces, such as the CIE
1976 L*a*b* space, may also achieve this objective. The chrominance
components can then be compressed more than the luminance by using coarser
sampling or quantization, with no degradation in quality.
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The JPEG filter implementation in Acrobat products does not support features of
the JPEG standard that are irrelevant to images. In addition, certain choices have
been made regarding reserved marker codes and other optional features of the
standard. For details, see Adobe Technical Note #5116, Supporting the DCT
Filters in PostScript Level 2.

In addition to the baseline JPEG format, beginning with PDF 1.3, the DCTDecode
filter supports the progressive JPEG extension. This extension does not add any
entries to the DCTDecode parameter dictionary; the distinction between baseline
and progressive JPEG is represented in the encoded data.

Note: There is no benefit to using progressive JPEG for stream data that is embed-
ded in a PDF file. Decoding progressive JPEG is slower and consumes more memory
than baseline JPEG. The purpose of this feature is to enable a stream to refer to an
external file whose data happens to be already encoded in progressive JPEG. (See
also implementation note 11 in Appendix H.)

3.3.8 JPXDecode Filter

The JPXDecode filter (PDF 1.5) decodes data that has been encoded using the
JPEG2000 compression method, an international standard for the compression
and packaging of image data. JPEG2000 defines a wavelet-based method for
image compression that gives somewhat better size reduction than other methods
such as regular JPEG or CCITT. Although the filter can reproduce samples that
are losslessly compressed, it is recommended only for use with images and not for
general data compression.

In PDF, this filter can be applied only to image XObjects, and not to inline images
(see Section 4.8, “Images”). It is suitable both for images that have a single color
component and for those that have multiple color components. The color
components in an image may have different numbers of bits per sample. Any
value from 1 to 38 is allowed.

From a single JPEG2000 data stream, multiple versions of an image may be
decoded. These different versions form progressions along four degrees of
freedom: sampling resolution, color depth, band, and location. For example, with
a resolution progression, a thumbnail version of the image may be decoded from
the data, followed by a sequence of other versions of the image, each with
approximately four times as many samples (twice the width times twice the
height) as the previous one. The last version is the full-resolution image.
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Viewing and printing applications may gain performance benefits by using the
resolution progression. If the full-resolution image is densely sampled, the
application may be able to select and decode only the data making up a lower-
resolution version, thereby spending less time decoding. Fewer bytes need be
processed, a particular benefit when viewing files over the Web. The tiling
structure of the image may also provide benefits if only certain areas of an image
need to be displayed or printed.

Note: Information on these progressions is encoded in the data; no decode parame-
ters are needed to describe them. The decoder deals with any progressions it encoun-
ters to deliver the correct image data. Progressions that are of no interest may simply
have performance consequences.

The JPEG2000 specifications define two widely used formats, JP2 and JPX, for
packaging the compressed image data. JP2 is a subset of JPX. These packagings
contain all the information needed to properly interpret the image data,
including the color space, bits per component, and image dimensions. In other
words, they are complete descriptions of images (as opposed to image data that
require outside parameters for correct interpretation). The JPXDecode filter
expects to read a full JPX file structure—either internal to the PDF file or as an
external file.

To promote interoperability, the specifications define a subset of JPX called JPX
baseline (of which JP2 is also a subset). The complete details of the baseline set of
JPX features are contained in ISO/IEC 15444-2, Information Technology—JPEG
2000 Image Coding System: Extensions (see the Bibliography). See also
<http://www.jpeg.org/jpeg2000/>.

Data used in PDF image XObjects should be limited to the JPX baseline set of
features, except for enumerated color space 19 (CIEJab). In addition, enumerated
color space 12 (CMYK), which is part of JPX but not JPX baseline, is supported in
PDE

A JPX file describes a collection of channels that are present in the image data. A
channel may have one of three types:

¢ An ordinary channel contains values that, when decoded, become samples for a
specified color component.

e An opacity channel provides samples that are to be interpreted as raw opacity
information.
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o A premultiplied opacity channel provides samples that have been multiplied
into the color samples of those channels with which it is associated.

Opacity and premultiplied opacity channels are associated with specific color
channels. There is never more than one opacity channel (of either type)
associated with a given color channel. For example, it is possible for one opacity
channel to apply to the red samples and another to apply to the green and blue
color channels of an RGB image.

Note: The method by which the opacity information is to be used is explicitly not
specified, although one possible method shows a normal blending mode.

In addition to using opacity channels for describing transparency, JPX files also
have the ability to specify chroma-key transparency. A single color is specified by
giving an array of values, one value for each color channel. Any image location
that matches this color is considered to be completely transparent.

Images in JPX files can have one of the following color spaces:

o A predefined color space, chosen from a list of enumerated color spaces. (Two of
these are actually families of spaces and parameters are included.)

o A “restricted ICC profile” (These are the only sorts of ICC profiles that are al-
lowed in JP2 files.)

¢ An input ICC profile of any sort defined by ICC-1.

o A vendor-defined color space.

More than one color space may be specified for an image, with each space being
tagged with a precedence and an approximation value that indicates how well it
represents the preferred color space. In addition, the image’s color space may
serve as the foundation for a palette of colors that are selected using samples
coming from the image’s data channels: the equivalent of an Indexed color space
in PDE

There are other features in the JPX format beyond describing a simple image.
These include provisions for describing layering and giving instructions on
composition, specifying simple animation, and including generic XML metadata
(along with JPEG2000-specific schemas for such data). It is recommended, but
not required, that relevant metadata be replicated in the image dictionary’s
Metadata stream in XMP format (see Section 10.2.2, “Metadata Streams).



89 )
I SECTION 3.3 | Filters |

When using the JPXDecode filter with image XObjects, there are changes to and
constraints on some entries in the image dictionary (see Section 4.8.4, “Image
Dictionaries” for details on these entries):

¢ Width and Height must match the corresponding width and height values in
the JPEG2000 data.

¢ ColorSpace is optional since JPEG2000 data contain color space specifications.
If present, it determines how the image samples are interpreted, and the color
space specifications in the JPEG2000 data are ignored. The number of color
channels in the JPEG2000 data must match the number of components in the
color space; the PDF producer must ensure that the samples are consistent with
the color space used.

Any color space other than Pattern may be specified. If an Indexed color space
is used, it is subject to the PDF limit of 256 colors. (The analogous concept in
the JPEG2000 color specifications is a palette color space, which has a limit of
1024 colors.) If the color space does not match one of JPX’s enumerated color
spaces (for example, if it has two color components or more than four), it can
be specified as a vendor color space in the JPX data.

If ColorSpace is not present in the image dictionary, the color space informa-
tion in the JPEG2000 data is used. Consumer applications must support the
JPX baseline set of enumerated color spaces; they are also responsible for deal-
ing with the interaction between the color spaces and the bit depth of samples.

If multiple color space specifications are given in the JPEG2000 data, a render-
ing application should attempt to use the one with the highest precedence and
best approximation value. If the color space is given by an unsupported ICC
profile, the next lower color space, in terms of precedence and approximation
value, is used. If no supported color space is found, the color space used should
be DeviceGray, DeviceRGB, or DeviceCMYK, depending on the number of color
channels in the JPEG2000 data.

¢ SMaskinData specifies whether soft-mask information packaged with the im-
age samples should be used (see “Soft-Mask Images” on page 553); if it is, the
SMask entry is not needed. If SMaskiInData is nonzero, there must be only one
opacity channel in the JPEG2000 data and it must apply to all color channels.

¢ Decode is ignored, except in the case where the image is treated as a mask; that
is, when ImageMask is true. In this case, the JPEG2000 data must provide a sin-
gle color channel with 1-bit samples.
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Crypt Filter

The Crypt filter (PDF 1.5) allows the document-level security handler (see
Section 3.5, “Encryption”) to determine which algorithms should be used to
decrypt the input data. The Name parameter in the decode parameters dictionary
for this filter (see Table 3.12) specifies which of the named crypt filters in the
document (see Section 3.5.4, “Crypt Filters”) should be used.

TABLE 3.12 Optional parameters for Crypt filters

KEY

TYPE VALUE

Type

Name

name (Optional) If present, must be CryptFilterDecodeParms for a Crypt filter de-
code parameter dictionary.

name (Optional) The name of the crypt filter that is to be used to decrypt this
stream. The name must correspond to an entry in the CF entry of the encryp-
tion dictionary (see Table 3.18) or one of the standard crypt filters (see
Table 3.23).

Default value: Identity.

34

In addition, the decode parameters dictionary may include entries that are
private to the security handler. Security handlers may use information from both
the crypt filter decode parameters dictionary and the crypt filter dictionaries (see
Table 3.22) when decrypting data or providing a key to decrypt data.

Note: When adding private data to the decode parameters dictionary, security han-
dlers should name these entries in conformance with the PDF name registry (see
Appendix E, “PDF Name Registry”).

File Structure

The preceding sections describe the syntax of individual objects. This section
describes how objects are organized in a PDF file for efficient random access and
incremental update. A canonical PDF file initially consists of four elements (see
Figure 3.2):

¢ A one-line header identifying the version of the PDF specification to which the
file conforms

¢ A body containing the objects that make up the document contained in the file
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o A cross-reference table containing information about the indirect objects in the
file

o A trailer giving the location of the cross-reference table and of certain special
objects within the body of the file

This initial structure may be modified by later updates, which append additional
elements to the end of the file; see Section 3.4.5, “Incremental Updates,” for
details.

Header

Body

Cross-reference
table

Trailer

FIGURE 3.2 Initial structure of a PDF file

As a matter of convention, the tokens in a PDF file are arranged into lines; see
Section 3.1, “Lexical Conventions” Each line is terminated by an end-of-line
(EOL) marker, which may be a carriage return (character code 13), a line feed
(character code 10), or both. PDF files with binary data may have arbitrarily long
lines. However, to increase compatibility with other applications that process
PDF files, lines that are not part of stream object data are limited to no more than
255 characters, with one exception. Beginning with PDF 1.3, the Contents string
of a signature dictionary (see Section 8.7, “Digital Signatures”) is not subject to
the restriction on line length. See also implementation note 12 in Appendix H.
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The rules described here are sufficient to produce a well-formed PDF file.
However, additional rules apply to organizing a PDF file to enable efficient
incremental access to a document’s components in a network environment. This
form of organization, called Linearized PDE, is described in Appendix F.

File Header

The first line of a PDF file is a header identifying the version of the PDF

specification to which the file conforms. For a file conforming to PDF 1.7, the
header should be

%PDF-1.7

However, since any file conforming to an earlier version of PDF also conforms to
version 1.7, an application that processes PDF 1.7 can also accept files with any of
the following headers:

%PDF-1.0
%PDF-1.1
%PDF-1.2
%PDF-1.3
%PDF-1.4
%PDF-1.5
%PDF-1.6

(See also implementation notes 13 and 14 in Appendix H.)

Beginning with PDF 1.4, the version in the file header can be overridden by the
Version entry in the document’s catalog dictionary (located by means of the Root
entry in the file’s trailer, as described in Section 3.4.4, “File Trailer”). This enables
a PDF producer application to update the version using an incremental update
(see Section 3.4.5, “Incremental Updates”).

Under some conditions, a consumer application may be able to process PDF files
conforming to a later version than it was designed to accept. New PDF features
are often introduced in such a way that they can safely be ignored by a consumer
that does not understand them (see Section H.1, “PDF Version Numbers”).

Note: If a PDF file contains binary data, as most do (see Section 3.1, “Lexical Con-
ventions”), it is recommended that the header line be immediately followed by a
comment line containing at least four binary characters—that is, characters whose
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codes are 128 or greater. This ensures proper behavior of file transfer applications
that inspect data near the beginning of a file to determine whether to treat the file’s
contents as text or as binary.

File Body

The body of a PDF file consists of a sequence of indirect objects representing the
contents of a document. The objects, which are of the basic types described in
Section 3.2, “Objects,” represent components of the document such as fonts,
pages, and sampled images. Beginning with PDF 1.5, the body can also contain
object streams, each of which contains a sequence of indirect objects; see Section
3.4.6, “Object Streams.”

Cross-Reference Table

The cross-reference table contains information that permits random access to
indirect objects within the file so that the entire file need not be read to locate any
particular object. The table contains a one-line entry for each indirect object,
specifying the location of that object within the body of the file. (Beginning with
PDF 1.5, some or all of the cross-reference information may alternatively be
contained in cross-reference streams; see Section 3.4.7, “Cross-Reference
Streams”)

The cross-reference table is the only part of a PDF file with a fixed format, which
permits entries in the table to be accessed randomly. The table comprises one or
more cross-reference sections. Initially, the entire table consists of a single section
(or two sections if the file is linearized; see Appendix F). One additional section is
added each time the file is updated (see Section 3.4.5, “Incremental Updates”).

Each cross-reference section begins with a line containing the keyword xref.
Following this line are one or more cross-reference subsections, which may appear
in any order. The subsection structure is useful for incremental updates, since it
allows a new cross-reference section to be added to the PDF file, containing
entries only for objects that have been added or deleted. For a file that has never
been updated, the cross-reference section contains only one subsection, whose
object numbering begins at 0.
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Each cross-reference subsection contains entries for a contiguous range of object
numbers. The subsection begins with a line containing two numbers separated by
a space: the object number of the first object in this subsection and the number of
entries in the subsection. For example, the line

28 5

introduces a subsection containing five objects numbered consecutively from 28
to 32.

Note: A given object number must not have an entry in more than one subsection
within a single section. However, see implementation note 15 in Appendix H.

Following this line are the cross-reference entries themselves, one per line. Each
entry is exactly 20 bytes long, including the end-of-line marker. There are two
kinds of cross-reference entries: one for objects that are in use and another for
objects that have been deleted and therefore are free. Both types of entries have
similar basic formats, distinguished by the keyword n (for an in-use entry) or f
(for a free entry). The format of an in-use entry is

nnnnnnnnnn ggggg n eol

where
nnnnnnnnnn is a 10-digit byte offset
99ggg is a 5-digit generation number
n is a literal keyword identifying this as an in-use entry

eol is a 2-character end-of-line sequence

The byte offset is a 10-digit number, padded with leading zeros if necessary,
giving the number of bytes from the beginning of the file to the beginning of the
object. It is separated from the generation number by a single space. The
generation number is a 5-digit number, also padded with leading zeros if
necessary. Following the generation number is a single space, the keyword n, and
a 2-character end-of-line sequence. If the file’s end-of-line marker is a single
character (either a carriage return or a line feed), it is preceded by a single space;
if the marker is 2 characters (both a carriage return and a line feed), it is not
preceded by a space. Thus, the overall length of the entry is always exactly 20
bytes.
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The cross-reference entry for a free object has essentially the same format, except
that the keyword is f instead of n and the interpretation of the first item is
different:

nnnnnnnnnn ggggg f eol

where
nnnnnnnnnn is the 10-digit object number of the next free object
ggg9gg is a 5-digit generation number
f is a literal keyword identifying this as a free entry

eol is a 2-character end-of-line sequence

The free entries in the cross-reference table form a linked list, with each free
entry containing the object number of the next. The first entry in the table (object
number 0) is always free and has a generation number of 65,535; it is the head of
the linked list of free objects. The last free entry (the tail of the linked list) links
back to object number 0. (In addition, the table may contain other free entries
that link back to object number 0 and have a generation number of 65,535, even
though these entries are not in the linked list itself.) See implementation note 16
in Appendix H.

Except for object number 0, all objects in the cross-reference table initially have
generation numbers of 0. When an indirect object is deleted, its cross-reference
entry is marked free and it is added to the linked list of free entries. The entry’s
generation number is incremented by 1 to indicate the generation number to be
used the next time an object with that object number is created. Thus, each time
the entry is reused, it is given a new generation number. The maximum
generation number is 65,535; when a cross-reference entry reaches this value, it is
never reused.

The cross-reference table (comprising the original cross-reference section and all
update sections) must contain one entry for each object number from 0 to the
maximum object number used in the file, even if one or more of the object
numbers in this range do not actually occur in the file. See implementation note
17 in Appendix H.

Example 3.5 shows a cross-reference section consisting of a single subsection
with six entries: four that are in use (objects number 1, 2, 4, and 5) and two that
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are free (objects number 0 and 3). Object number 3 has been deleted, and the
next object created with that object number is given a generation number of 7.

Example 3.5

xref

06

0000000003 65535
0000000017 00000
0000000081 00000
0000000000 00007
0000000331 00000
0000000409 00000

5 3 ™ S5 o5 Th

Example 3.6 shows a cross-reference section with four subsections, containing a
total of five entries. The first subsection contains one entry, for object number 0,
which is free. The second subsection contains one entry, for object number 3,
which is in use. The third subsection contains two entries, for objects number 23
and 24, both of which are in use. Object number 23 has been reused, as can be
seen from the fact that it has a generation number of 2. The fourth subsection
contains one entry, for object number 30, which is in use.

Example 3.6

xref

01

0000000000 65535 f
31

0000025325 00000 n
23 2

0000025518 00002 n
0000025635 00000 n
30 1

0000025777 00000 n

See Section G.6, “Updating Example,” for a more extensive example of the
structure of a PDF file that has been updated several times.

3.4.4 File Trailer

The trailer of a PDF file enables an application reading the file to quickly find the
cross-reference table and certain special objects. Applications should read a PDF
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file from its end. The last line of the file contains only the end-of-file marker,
%%EOF. (See implementation note 18 in Appendix H.) The two preceding lines
contain the keyword startxref and the byte offset from the beginning of the file to
the beginning of the xref keyword in the last cross-reference section. The
startxref line is preceded by the trailer dictionary, consisting of the keyword
trailer followed by a series of key-value pairs enclosed in double angle brackets
(<<...>>). Thus, the trailer has the following overall structure:

trailer
<< key, value,
key, value,

key,, value,,
>>
startxref
Byte_offset_of _last_cross-reference_section
%%EOF

Table 3.13 lists the contents of the trailer dictionary.

TABLE 3.13 Entries in the file trailer dictionary
KEY TYPE VALUE

Size integer (Required; must not be an indirect reference) The total number of entries in the file’s
cross-reference table, as defined by the combination of the original section and all
update sections. Equivalently, this value is 1 greater than the highest object number
used in the file.

Note: Any object in a cross-reference section whose number is greater than this value is
ignored and considered missing.

Prev integer (Present only if the file has more than one cross-reference section; must not be an indi-
rect reference) The byte offset from the beginning of the file to the beginning of the
previous cross-reference section.

Root dictionary (Required; must be an indirect reference) The catalog dictionary for the PDF docu-
ment contained in the file (see Section 3.6.1, “Document Catalog”).

Encrypt dictionary (Required if document is encrypted; PDF 1.1) The document’s encryption dictionary
(see Section 3.5, “Encryption”).

Info dictionary (Optional; must be an indirect reference) The document’s information dictionary
(see Section 10.2.1, “Document Information Dictionary”).
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KEY TYPE VALUE
ID array (Optional, but strongly recommended; PDF 1.1) An array of two byte-strings consti-

tuting a file identifier (see Section 10.3, “File Identifiers”) for the file. The two byte-
strings should be direct objects and should be unencrypted. Although this entry is
optional, its absence might prevent the file from functioning in some workflows
that depend on files being uniquely identified.

Note: Table 3.17 defines an additional entry, XRefStm, that appears only in the trail-
er of hybrid-reference files, described in “Compatibility with Applications That Do
Not Support PDF 1.5” on page 109.

Example 3.7 shows an example trailer for a file that has never been updated (as
indicated by the absence of a Prev entry in the trailer dictionary).

Example 3.7

trailer
<< /Size 22
/Root 20R
/Info 10R
/ID [ <81b14aafa313db63dbd6f981e49f94f4 >
<81b14aafa313db63dbd6fo81e49fo4f4 >

>>
startxref
18799
%%EQOF

3.4.5 Incremental Updates

The contents of a PDF file can be updated incrementally without rewriting the
entire file. Changes are appended to the end of the file, leaving its original
contents intact. The main advantage to updating a file in this way (as discussed in
Section 2.2.7, “Incremental Update”) is that small changes to a large document
can be saved quickly. There are additional advantages:

¢ In some cases, incremental updating is the only way to save changes to a docu-
ment. An accepted practice for minimizing the risk of data loss when saving a
document is to write it to a new file and rename the new file to replace the old
one. However, in certain contexts, such as when editing a document across an
HTTP connection or using OLE embedding (a Windows-specific technology),
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it is not possible to overwrite the contents of the original file in this manner. In-
cremental updates can be used to save changes to documents in these contexts.

e Once a document has been signed (see Section 2.2.6, “Security”), all changes
made to the document must be saved using incremental updates, since altering
any existing bytes in the file invalidates existing signatures.

In an incremental update, any new or changed objects are appended to the file, a
cross-reference section is added, and a new trailer is inserted. The resulting file
has the structure shown in Figure 3.3. A complete example of an updated file is
shown in Section G.6, “Updating Example”

The cross-reference section added when a file is updated contains entries only for
objects that have been changed, replaced, or deleted. Deleted objects are left
unchanged in the file, but are marked as deleted by means of their cross-reference
entries. The added trailer contains all the entries (perhaps modified) from the
previous trailer, as well as a Prev entry giving the location of the previous cross-
reference section (see Table 3.13 on page 97). As shown in Figure 3.3, a file that
has been updated several times contains several trailers; each trailer is terminated
by its own end-of-file (%%EOF) marker.

Because updates are appended to PDF files, a file can have several copies of an
object with the same object identifier (object number and generation number).
This can occur, for example, if a text annotation (see Section 8.4, “Annotations”)
is changed several times and the file is saved between changes. Because the text
annotation object is not deleted, it retains the same object number and generation
number as before. An updated copy of the object is included in the new update
section added to the file. The update’s cross-reference section includes a byte
offset to this new copy of the object, overriding the old byte offset contained in
the original cross-reference section. When a consumer application reads the file,
it must build its cross-reference information in such a way that the most recent
copy of each object is the one accessed in the file.

In versions of PDF earlier than 1.4, it was not possible to use an incremental
update to alter the version of PDF to which the document conforms, since the
version was specified only in the header at the beginning of the file (see Section
3.4.1, “File Header”). In PDF 1.4, it is possible for a Version entry in the
document’s catalog dictionary (see Section 3.6.1, “Document Catalog”) to
override the version specified in the header, which enables the version to be
altered using an incremental update.
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Header

Original
body

Original
cross-reference
section

Original trailer

Body update 1

Cross-reference
section 1

Updated trailer 1

N~ AT
N AT

Body update n

Cross-reference
section n

Updated trailer n

FIGURE 3.3 Structure of an updated PDF file

3.4.6 Object Streams

PDF 1.5 introduces a new kind of stream, an object stream, which contains a
sequence of PDF objects. The purpose of object streams is to allow a greater
number of PDF objects to be compressed, thereby substantially reducing the size
of PDF files. The objects in the stream are referred to as compressed objects. (This
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term is used regardless of whether the stream is actually encoded with a
compression filter.)

Any PDF object can appear in an object stream, with the following exceptions:

e Stream objects
o Objects with a generation number other than zero
¢ A document’s encryption dictionary (see Section 3.5, “Encryption”)

¢ An object representing the value of the Length entry in an object stream dictio-
nary

Note: In addition, in linearized files (see Appendix F, “Linearized PDF”), the docu-
ment catalog, the linearization dictionary, and page objects may not appear in an
object stream.

Indirect references to objects inside object streams use the normal syntax: for
example, 14 0 R. Access to these objects requires a different way of storing cross-
reference information; see Section 3.4.7, “Cross-Reference Streams.” Although an
application must support PDF 1.5 to use compressed objects, the objects can be
stored in a manner that is compatible with PDF 1.4. Applications that do not
support PDF 1.5 can ignore the objects; see “Compatibility with Applications That
Do Not Support PDF 1.5” on page 109.

In addition to the standard keys for streams shown in Table 3.4, the stream
dictionary describing an object stream contains the following entries:

TABLE 3.14 Additional entries specific to an object stream dictionary

KEY TYPE DESCRIPTION

Type name (Required) The type of PDF object that this dictionary describes; must be ObjStm
for an object stream.

N integer (Required) The number of compressed objects in the stream.

First integer (Required) The byte offset (in the decoded stream) of the first compressed object.

Extends stream (Optional) A reference to an object stream, of which the current object stream is

considered an extension. Both streams are considered part of a collection of object
streams (see below). A given collection consists of a set of streams whose Extends

links form a directed acyclic graph.
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The creator of a PDF file has flexibility in determining which objects, if any, to
store in object streams. For example, it can be useful to store objects having
common characteristics together, such as “fonts on page 1,” or “Comments for
draft #3 These objects are known as a collection.

To avoid a degradation of performance, such as would occur when downloading
and decompressing a large object stream to access a single compressed object, the
number of objects in an individual object stream should be limited. (See
implementation note 19 in Appendix H.) This may require a group of object
streams to be linked as a collection, which can be done by means of the Extends
entry in the object stream dictionary.

Extends can also be used when a collection is being updated to include new
objects. Rather than redefine the original object stream, which would require
duplicating the stream data, the new objects can be stored in a new object stream.
This is particularly important when adding an update section to a document.

The stream data in an object stream consists of the following items:

o N pairs of integers, where the first integer in each pair represents the object
number of a compressed object and the second integer represents the byte off-
set of that object, relative to the first one. The offsets must be in increasing or-
der, but there is no restriction on the order of object numbers.

Note: The byte offset in the decoded stream of the first object is the value of the
First entry.

e The N objects stored consecutively. Only the object values are stored in the
stream; the obj and endobj keywords are not used. A compressed dictionary or
array may contain indirect references.

Note: It is illegal for a compressed object to consist of only an indirect reference;
for example, 30R.

By contrast, dictionaries and arrays in content streams (Section 3.7.1) may not
contain indirect references. In an encrypted file, strings occurring anywhere in
an object stream must not be separately encrypted, since the entire object
stream is encrypted.

Note: The data for the first object is not required to immediately follow the last
byte offset. Future extensions may place additional information between those
two points in the stream.
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An object stream itself, like any stream, is an indirect object, and there must be an
entry for it in a cross-reference table or cross-reference stream (see Section 3.4.7,
“Cross-Reference Streams”), although there might not be any references to it (of
the form 243 0R).

The generation number of an object stream and of any compressed object is
implicitly zero. If either an object stream or a compressed object is deleted and
the object number is freed, that object number can be reused only for an ordinary
(uncompressed) object other than an object stream. When new object streams
and compressed objects are created, they must always be assigned new object
numbers, not old ones taken from the free list.

Example 3.8 shows three objects (two fonts and a font descriptor) as they would
be represented in a PDF 1.4 or earlier file, along with a cross-reference table. In
Example 3.9, the same objects are stored in an object stream in a PDF 1.5 file,
along with a cross-reference stream.

Example 3.8

110 obj
<< /Type /Font
/Subtype /TrueType
...other entries...
/FontDescriptor 120 R
>>
endobj

120 obj
<< /Type /FontDescriptor
/Ascent 891
...other entries...
/FontFile2 22 0R
>>
endobj

13 0 obj
<< /Type /Font
/Subtype /Type0
...other entries...
/ToUnicode 100 R
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>>
endobj

xref
032
0000000000 65535 f

0000001434 00000 n % Cross-reference entry for object 11
0000001735 00000 n % Cross-reference entry for object 12
0000002155 00000 n % Cross-reference entry for object 13

trailer
<< /Size 32
/Root ...

>>

In Example 3.9, the cross-reference stream (see Section 3.4.7, “Cross-Reference
Streams”) contains entries for the fonts (objects 11 and 13) and the descriptor
(object 12), which are compressed objects in an object stream. The first field of
these entries is the entry type (2), the second field is the number of the object
stream (15), and the third field is the position within the sequence of objects in
the object stream (0, 1, and 2). The cross-reference stream also contains a type 1
entry for the object stream itself.

Note: For readability, the object stream has been shown unencoded. In a real PDF
1.5 file, Flate encoding would typically be used to gain the benefits of compression.

Example 3.9
150 obj % The object stream
<< /Type /ObjStm
/Length 1856
/N3 % The number of objects in the stream
/First 24 % The byte offset of the first object
>>
stream

% The object numbers and offsets of the objects, relative to the first
11012547 13 665
<< /Type /Font

/Subtype /TrueType

...other keys...
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/FontDescriptor 120 R
>>

<< /Type /FontDescriptor
/Ascent 891
...other keys...
/FontFile2 22 0R

>>

<< /Type /Font
/Subtype /TypeO
...other keys...
/ToUnicode 100R

>>

endstream
endobj

99 0 obj % The cross-reference stream
<< [Type /XRef
/Index [0 32] % This section has one subsection with 32 objects
/WI[122] % Each entry has 3 fields: 1, 2 and 2 bytes in width,
% respectively
/Filter /ASClIHexDecode % For readability in this example

/Size 32
>>
stream
00 0000 FFFF % “0 65535 f” in a cross-reference table
02 000F 0000 % The entry for object 11, the first font
02 000F 0001 % The entry for object 12, the font descriptor
02 000F 0002 % The entry for object 13, the second font

01 BA5E 0000 % The entry for object 15, the object stream

endstream
endobj

startxref
54321 % The offset of “99 0 obj”
%%EOF
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3.4.7 Cross-Reference Streams

Beginning with PDF 1.5, cross-reference information may be stored in a cross-
reference stream instead of in a cross-reference table. Cross-reference streams
provide the following advantages:

¢ A more compact representation of cross-reference information

o The ability to access compressed objects that are stored in object streams (see
Section 3.4.6, “Object Streams”) and to allow new cross-reference entry types
to be added in the future

Cross-reference streams are stream objects (see Section 3.2.7, “Stream Objects”),
and contain a dictionary and a data stream. Each cross-reference stream contains
the information equivalent to the cross-reference table (see Section 3.4.3, “Cross-
Reference Table”) and trailer (see Section 3.4.4, “File Trailer”) for one cross-
reference section. The trailer dictionary entries are stored in the stream
dictionary, and the cross-reference table entries are stored as the stream data, as
shown in the following example:

Example 3.10

... objects ...

12 0 obj % Cross-reference stream
<< /Type /XRef % Cross-reference stream dictionary
/Size ...
/Root ...
>>
stream
% Stream data containing cross-reference information
endstream
endobj

... more objects ...

startxref
byte_offset_of _cross-reference_stream % Points to object 12
%%EOF

Note that the value following the startxref keyword is now the offset of the cross-
reference stream rather than the xref keyword. (See implementation note 21 in
Appendix H.) For files that use cross-reference streams entirely (that is, PDF 1.5
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files that are not hybrid-reference files; see “Compatibility with Applications That
Do Not Support PDF 1.5” on page 109), the keywords xref and trailer are no longer
used. Therefore, with the exception of the startxref address %%EOF segment and
comments, a PDF 1.5 file is entirely a sequence of objects.

Note: The use of object streams and cross-reference streams is permitted in linear-
ized PDE, with minor modifications to the specification (see Section F.2, “Linearized
PDF Document Structure”).

Cross-Reference Stream Dictionary

Cross-reference streams contain the entries shown in Table 3.15 in addition to
the entries common to all streams (Table 3.4) and trailer dictionaries (Table 3.13).
Since some of the information in the cross-reference stream is needed by the
consumer application to construct the index that allows indirect references to be
resolved, the entries in cross-reference streams are subject to the following
restrictions:

o The value of all entries shown in Table 3.15 must be direct objects; indirect ref-
erences are not permitted. For arrays (the Index and W entries), all their ele-
ments must be direct objects as well. If the stream is encoded, the Filter and
DecodeParms entries in Table 3.4 must also be direct objects. Also, see imple-
mentation note 20 in Appendix H.

Note: Other cross-reference stream entries not listed in Table 3.15 may be indi-
rect; in fact, some (such as Root in Table 3.13) are required to be indirect.

e The cross-reference stream must not be encrypted, nor may any strings appear-
ing in the cross-reference stream dictionary. It must not have a Filter entry that
specifies a Crypt filter (see 3.3.9, “Crypt Filter”).

TABLE 3.15 Additional entries specific to a cross-reference stream dictionary
KEY TYPE DESCRIPTION

Type name (Required) The type of PDF object that this dictionary describes; must be XRef for
a cross-reference stream.

Size integer (Required) The number one greater than the highest object number used in this
section or in any section for which this is an update. It is equivalent to the Size en-
try in a trailer dictionary.
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KEY

TYPE

DESCRIPTION

Index

Prev

array

integer

array

(Optional) An array containing a pair of integers for each subsection in this sec-
tion. The first integer is the first object number in the subsection; the second inte-
ger is the number of entries in the subsection

The array is sorted in ascending order by object number. Subsections cannot over-
lap; an object number may have at most one entry in a section.

Default value: [0 Size].

(Present only if the file has more than one cross-reference stream; not meaningful in
hybrid-reference files; see “Compatibility with Applications That Do Not Support
PDF 1.5” on page 109) The byte offset from the beginning of the file to the begin-
ning of the previous cross-reference stream. This entry has the same function as
the Prev entry in the trailer dictionary (Table 3.13). (See also implementation note
21 in Appendix H.)

(Required) An array of integers representing the size of the fields in a single cross-
reference entry. Table 3.16 describes the types of entries and their fields. For PDF
1.5, W always contains three integers; the value of each integer is the number of
bytes (in the decoded stream) of the corresponding field. For example, [1 2 1]
means that the fields are one byte, two bytes, and one byte, respectively.

A value of zero for an element in the W array indicates that the corresponding field
is not present in the stream, and the default value is used, if there is one. If the first
element is zero, the type field is not present, and it defaults to type 1.

The sum of the items is the total length of each entry; it can be used with the Index
array to determine the starting position of each subsection.

Note: Different cross-reference streams in a PDF file may use different values for W.

Cross-Reference Stream Data

Each entry in a cross-reference stream has one or more fields, the first of which
designates the entry’s type (see Table 3.16). In PDF 1.5, only types 0, 1, and 2 are
allowed. Any other value is interpreted as a reference to the null object, thus
permitting new entry types to be defined in the future.

The fields are written in increasing order of field number; the length of each field
is determined by the corresponding value in the W entry (see Table 3.15). Fields
requiring more than one byte are stored with the high-order byte first.
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TABLE 3.16 Entries in a cross-reference stream
TYPE FIELD DESCRIPTION

0 1 The type of this entry, which must be 0. Type 0 entries define the
linked list of free objects (corresponding to f entries in a cross-
reference table).

2 The object number of the next free object.
3 The generation number to use if this object number is used again.
1 1 The type of this entry, which must be 1. Type 1 entries define

objects that are in use but are not compressed (corresponding to n
entries in a cross-reference table).

2 The byte offset of the object, starting from the beginning of the
file.

3 The generation number of the object. Default value: 0.

2 1 The type of this entry, which must be 2. Type 2 entries define

compressed objects.

2 The object number of the object stream in which this object is
stored. (The generation number of the object stream is implicitly
0.)

3 The index of this object within the object stream.

Like any stream, a cross-reference stream is an indirect object. Therefore, an
entry for it must exist in either a cross-reference stream (usually itself) or in a
cross-reference table (in hybrid-reference files; see “Compatibility with
Applications That Do Not Support PDF 1.5” on page 109).

Compatibility with Applications That Do Not Support PDF 1.5

Applications that do not support PDF 1.5 cannot access objects that are
referenced by cross-reference streams. If a file uses cross-reference streams
exclusively, it cannot be opened by such applications.

However, it is possible to construct a file called a hybrid-reference file that is
readable by a PDF 1.4 consumer. Such a file contains objects referenced by
standard cross-reference tables in addition to objects in object streams that are
referenced by cross-reference streams.
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In these files, the trailer dictionary can contain, in addition to the entry for
trailers shown in Table 3.13, an additional entry, as shown in Table 3.17. This
entry is ignored by PDF 1.4 consumers, which therefore have no access to entries
in the cross-reference stream the entry refers to.

TABLE 3.17 Additional entries in a hybrid-reference file’s trailer dictionary

KEY TYPE VALUE

XRefStm integer (Optional) The byte offset from the beginning of the file of a cross-reference stream.

The Size entry of the trailer must be large enough to include all objects, including
those defined in the cross-reference stream referenced by the XRefStm entry.
However, to allow random access, a main cross-reference section must contain
entries for all objects numbered 0 through Size - 1 (see Section 3.4.3, “Cross-
Reference Table”). Therefore, the XRefStm entry cannot be used in the trailer
dictionary of the main cross-reference section but only in an update cross-
reference section.

When a PDF 1.5 consumer opens a hybrid-reference file, objects with entries in
cross-reference streams are not hidden. When the application searches for an
object, if an entry is not found in any given standard cross-reference section, the
search proceeds to a cross-reference stream specified by the XRefStm entry before
looking in the previous cross-reference section (the Prev entry in the trailer).

Hidden objects, therefore, have two cross-reference entries. One is in the cross-
reference stream. The other is a free entry in some previous section, typically the
section referenced by the Prev entry. A PDF 1.5 consumer looks in the cross-
reference stream first, finds the object there, and ignores the free entry in the
previous section. A PDF 1.4 consumer ignores the cross-reference stream and
looks in the previous section, where it finds the free entry. The free entry must
have a next-generation number of 65535 so that the object number is never reused.

There are limitations on which objects in a hybrid-reference file can be hidden
without making the file appear invalid to PDF 1.4 and earlier consumers. In
particular, the root of the PDF file, the document catalog (see Section 3.6.1,
“Document Catalog”), must not be hidden, nor any object that is visible from the
root. Such objects can be determined by starting from the root and working
recursively:

e In any dictionary that is visible, direct objects are visible. The value of any re-
quired key-value pair is visible.
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e In any array that is visible, every element is visible.

e Resource dictionaries in content streams are visible. Although a resource dic-
tionary is not required, strictly speaking, the content stream to which it is at-
tached is assumed to contain references to the resources.

In general, the objects that may be hidden are optional objects specified by
indirect references. A PDF 1.5 consumer can resolve those references by
processing the cross-reference streams. In a PDF 1.4 consumer, the objects
appear to be free, and the references are treated as references to the null object.

For example, the Outlines entry in the catalog dictionary is optional. Therefore,
its value may be an indirect reference to a hidden object. A PDF 1.4 consumer
treats it as a reference to the null object, which is equivalent to having omitted the
entry entirely; a PDF 1.5 consumer recognizes it. However, if the value of the
Outlines entry is an indirect reference to a visible object, the entire outline tree
must be visible because nodes in the outline tree contain required pointers to
other nodes.

Following this logic, items that must be visible include the entire page tree, fonts,
font descriptors, and width tables. Objects that may be hidden in a hybrid-
reference file include the structure tree, the outline tree, article threads,
annotations, destinations, Web Capture information, and page labels,.

Example 3.11 shows a hybrid-reference file containing a main cross-reference
section and an update cross-reference section with an XRefStm entry that points
to a cross-reference stream (object 11), which in turn has references to an object
stream (object 2).

In this example, the catalog (object 1) contains an indirect reference (3 0 R) to the
root of the structure tree. The search for the object starts at the update cross-
reference table, which has no objects in it. The search proceeds depending on the
version of the consumer application:

¢ In a PDF 1.4 consumer, the search continues by following the Prev pointer to
the main cross-reference table. That table defines object 3 as a free object,
which is treated as the null object. Therefore, the entry is considered missing,
and the document has no structure tree.

¢ In a PDF 1.5 consumer, the search continues by following the XRefStm pointer
to the cross-reference stream (object 11). It defines object 3 as a compressed
object, stored at index 0 in the object stream (2 0 obj). Therefore, the document
has a structure tree.
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Example 3.11

10 obj

<< /Type /Catalog
/StructTreeRoot 3 0 R

>>
endobj

120 obj
endobj
990 obj
endobj

xref

0100

0000000002 65535 f
0000000023 00000 n
0000000003 65535 f
0000000004 65535 f
0000000005 65535 f
0000000006 65535 f
0000000007 65535 f
0000000008 65535 f
0000000009 65535 f
0000000010 65535 f
0000000011 65535 f
0000000000 65535 f
0000000045 00000 n
0000000179 00000 n

0000002201 00000 n
trailer
<< /Size 100
/Root10R

Note: To make the format and contents of the cross-reference stream readable in this
example, an ASClIHexDecode filter is specified. As explained in implementation
note 20 in Appendix H, the example would not be acceptable to Acrobat 6.0 and lat-
er viewers as written.

% The document root, at offset 23.

% The main xref section, at offset 2664

% This subsection has entries for objects 0 - 99.

% Entry for object 0

% Entry for object 1, the root

% Entry for object 2 (object stream), marked free in this table
% Entry for object 3, marked free in this table

% ...

% Entry for object 11 (xref stream), marked free in this table.
% Entry for object 12, in use.
% Entry for object 13, in use.

% Entry for object 99, in use.
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/ID ...
>>
startxref
2664 % Offset of the main xref section
%%EOF

20 obj % The object stream, at offset 3722
<</Length ...
/N8 % This stream contains 8 objects.
/First 47 % The stream-offset of the first object
>>
stream
30450572... % The numbers and stream-offsets of the 8 objects
<< /Type /StructTreeRoot % This is object 3.
/K40R
/RoleMap 50 R
/ClassMap 6 0R
/ParentTree 70 R
/ParentTreeNextKey 8
>>
<< /S /Workbook % This is object 4 (K value from StructTreeRoot).
/P80OR
/K90R
>>
<< /Workbook /Div % This is object 5 (RoleMap).
/Worksheet /Sect
/TextBox /Figure
/Shape /Figure
>>
% Objects 6 through 10 are defined here.
endstream
endobj

11 0 obj % The cross-reference stream, at offset 4899
<< /Type /XRef
/Index [2 10] % This stream contains entries for objects 2 through 11
/Size 100
/WI[121] % The byte-widths of each field
/Filter /ASClIHexDecode % For readability only (not supported by Acrobat 6)

>>
stream
010E8A 0 % Entry for object 2 (OXOE8A = 3722)
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020002 00 % Entry for object 3 (in object stream 2, index 0)
020002 01 % Entry for object 4 (in object stream 2, index 1)
020002 02 % ...
020002 03
02 0002 04
020002 05
02 0002 06
02 0002 07 % Entry for object 10 (in object stream 2, index 7)
0113230 % Entry for object 11 (0x1323 = 4899)
endstream
endobj

xref % The update xref section, at offset 5640
00 % There are no entries in this section.
trailer
<< /Size 100
/Prev 2664 % Offset of previous xref section
/XRefStm 4899
/Root10R
/ID ...
>>
startxref
5640
%%EOF

The example illustrates several other points:

¢ The object stream is unencoded and the cross-reference stream uses an ASCII
hexadecimal encoding for clarity. In practice, both streams would be Flate-en-
coded. Also, the comments shown in the cross-reference table in the above ex-
ample are for illustrative purposes; PDF comments are not legal in a cross-
reference table.

e The hidden objects, 2 through 11, are numbered consecutively. In practice,
there is no such requirement, nor is there a requirement that free items in a
cross-reference table be linked in ascending order until the end.

o The update cross-reference table contains no entries, which is not a require-
ment but is reasonable. A PDF creator that uses the hybrid-reference format
creates the main cross-reference table, the update cross-reference table, and the
cross-reference stream at the same time. Objects 12 and 13, for example, are not
compressed. They might have entries in the update table. Since objects 2 and
11, the object stream and the cross-reference stream, are not compressed, they
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might also be defined in the update table. Since they are part of the hidden sec-
tion, however, it makes sense to define them in the cross-reference stream.

e The update cross-reference section must appear at the end of the file, but other-
wise, there are no ordering restrictions on any of the objects or on the main
cross-reference section. However, a file that uses both the hybrid-reference for-
mat and the linearized format has ordering requirements (see Appendix F,
“Linearized PDF”).

Encryption

A PDF document can be encrypted (PDF 1.1) to protect its contents from un-
authorized access. Encryption applies to all strings and streams in the document’s
PDF file, but not to other object types such as integers and boolean values, which
are used primarily to convey information about the document’s structure rather
than its content. Leaving these values unencrypted allows random access to the
objects within a document, whereas encrypting the strings and streams protects
the document’s substantive contents.

Note: When a PDF stream object (see Section 3.2.7, “Stream Objects”) refers to an
external file, the stream’s contents are not encrypted, since they are not part of the
PDF file itself. However, if the contents of the stream are embedded within the PDF
file (see Section 3.10.3, “Embedded File Streams”), they are encrypted like any other
stream in the file. Beginning with PDF 1.5, embedded files may be encrypted in an
otherwise unencrypted document (see Section 3.5.4, “Crypt Filters”).

Encryption-related information is stored in a document’s encryption dictionary,
which is the value of the Encrypt entry in the document’s trailer dictionary (see
Table 3.13 on page 97). The absence of this entry from the trailer dictionary
means that the document is not encrypted. The entries shown in Table 3.18 are
common to all encryption dictionaries.

The encryption dictionary’s Filter entry identifies the file’s security handler, a
software module that implements various aspects of the encryption process and
controls access to the contents of the encrypted document. PDF specifies a
standard password-based security handler that all consumer applications are
expected to support, but applications may optionally provide security handlers of
their own.
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The SubFilter entry specifies the syntax of the encryption dictionary contents. It
allows interoperability between handlers; that is, a document may be decrypted
by a handler other than the preferred one (the Filter entry) if they both support
the format specified by SubFilter.

The V entry, in specifying which algorithm to use, determines the length of the
encryption key, on which the encryption (and decryption) of data in a PDF file is
based. For V values 2 and 3, the Length entry specifies the exact length of the
encryption key. In PDF 1.5, a value of 4 for V permits the security handler to use
its own encryption and decryption algorithms and to specify crypt filters to use
on specific streams (see Section 3.5.4, “Crypt Filters”).

The remaining contents of the encryption dictionary are determined by the
security handler and may vary from one handler to another. Entries for the
standard security handler are described in Section 3.5.2, “Standard Security
Handler” Entries for public-key security handlers are described in Section 3.5.3,
“Public-Key Security Handlers”

TABLE 3.18 Entries common to all encryption dictionaries

KEY

TYPE VALUE

Filter

SubFilter

name (Required) The name of the preferred security handler for this document. Typically, it is
the name of the security handler that was used to encrypt the document. If SubFilter is
not present, only this security handler should be used when opening the document. If it
is present, consumer applications can use any security handler that implements the for-

mat specified by SubFilter.

Standard is the name of the built-in password-based security handler. Names for other
security handlers can be registered by using the procedure described in Appendix E.

Note: The definition of this entry has been clarified since the previous version of this docu-

ment.

name (Optional; PDF 1.3) A name that completely specifies the format and interpretation of
the contents of the encryption dictionary. It is needed to allow security handlers other
than the one specified by Filter to decrypt the document. If this entry is absent, other se-

curity handlers should not be allowed to decrypt the document.

Note: This entry was introduced in PDF 1.3 to support the use of public-key cryptography
in PDF files (see Section 3.5.3, “Public-Key Security Handlers”); however, it was not incor-

porated into the PDF Reference until the fourth edition (PDF 1.5).
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KEY TYPE VALUE
\ number (Optional but strongly recommended) A code specifying the algorithm to be used in en-

crypting and decrypting the document:

0  An algorithm that is undocumented and no longer supported, and whose use is
strongly discouraged.

1  Algorithm 3.1 on page 119, with an encryption key length of 40 bits; see below.

2 (PDF 1.4) Algorithm 3.1, but permitting encryption key lengths greater than 40
bits.

3 (PDF 1.4) An unpublished algorithm that permits encryption key lengths rang-
ing from 40 to 128 bits; see implementation note 22 in Appendix H.

4  (PDF 1.5) The security handler defines the use of encryption and decryption in
the document, using the rules specified by the CF, StmF, and StrF entries.

The default value if this entry is omitted is 0, but a value of 1 or greater is strongly rec-
ommended. (See implementation note 23 in Appendix H.)

Length integer (Optional; PDF 1.4; only if V is 2 or 3) The length of the encryption key, in bits. The value
must be a multiple of 8, in the range 40 to 128. Default value: 40.

CF dictionary (Optional; meaningful only when the value of V is 4; PDF 1.5) A dictionary whose keys
are crypt filter names and whose values are the corresponding crypt filter dictionaries
(see Table 3.22). Every crypt filter used in the document must have an entry in this dic-
tionary, except for the standard crypt filter names (see Table 3.23).

Note: An attempt to redefine any of the standard names in Table 3.23 is ignored.

StmF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the crypt filter
that is used by default when decrypting streams. The name must be a key in the CF dic-
tionary or a standard crypt filter name specified in Table 3.23. All streams in the docu-
ment, except for cross-reference streams (see Section 3.4.7, “Cross-Reference Streams”)
or streams that have a Crypt entry in their Filter array (see Table 3.5), are decrypted by
the security handler, using this crypt filter.

Default value: Identity.

StrF name (Optional; meaningful only when the value of V is 4; PDF 1.5) The name of the crypt filter
that is used when decrypting all strings in the document. The name must be a key in the
CF dictionary or a standard crypt filter name specified in Table 3.23.

Default value: Identity.
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KEY

TYPE

VALUE

EFF

name

(Optional; meaningful only when the value of V is 4; PDF 1.6) The name of the crypt filter
that should be used by default when encrypting embedded file streams; it must corre-
spond to a key in the CF dictionary or a standard crypt filter name specified in
Table 3.23.

This entry is provided by the security handler. (See implementation note 24 in Appendix
H.) Applications should respect this value when encrypting embedded files, except for
embedded file streams that have their own crypt filter specifier. If this entry is not
present, and the embedded file stream does not contain a crypt filter specifier, the
stream should be encrypted using the default stream crypt filter specified by StmF.

3.5.1

Unlike strings within the body of the document, those in the encryption
dictionary must be direct objects. The contents of the encryption dictionary are
not encrypted by the usual methods (the algorithm specified by the V entry).
Security handlers are responsible for encrypting any data in the encryption
dictionary that they need to protect.

Note: Document creators have two choices if the encryption methods and syntax
provided by PDF are not sufficient for their needs: they can provide an alternate se-
curity handler or they can encrypt whole PDF documents themselves, not making
use of PDF security.

General Encryption Algorithm

The following algorithms are used when encrypting data in a PDF file:

¢ A proprietary encryption algorithm known as RC4. RC4 is a symmetric stream
cipher: the same algorithm is used for both encryption and decryption, and the
algorithm does not change the length of the data.

Note: RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Adobe
Systems has licensed this algorithm for use in its Acrobat products. Independent
software vendors may be required to license RC4 to develop software that encrypts
or decrypts PDF documents. For further information, visit the RSA Web site at
< http://www.rsasecurity.com > or send e-mail to <products@rsasecurity.com>.

e The AES (Advanced Encryption Standard) algorithm (beginning with PDF
1.6). AES is a symmetric block cipher: the same algorithm is used for both en-
cryption and decryption, and the length of the data when encrypted is rounded
up to a multiple of the block size, which is fixed in this implementation to al-
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ways be 16 bytes, as specified in FIPS 197, Advanced Encryption Standard
(AES); see the Bibliography).

Strings and streams encrypted with AES use a padding scheme that is de-
scribed in Internet RFC 2898, PKCS #5: Password-Based Cryptography Specifi-
cation Version 2.0; see the Bibliography. For an original message length of M,
the pad consists of 16 - (M mod 16) bytes whose value is also 16 - (M mod 16).
For example, a 9-byte message has a pad of 7 bytes, each with the value 0x07.
The pad can be unambiguously removed to determine the original message
length when decrypting. Note that the pad is present when M is evenly divisible
by 16; it contains 16 bytes of 0x10.

PDF’s standard encryption methods also make use of the MD5 message-digest
algorithm for key generation purposes (described in Internet RFC 1321, The
MD5 Message-Digest Algorithm; see the Bibliography).

The encryption of data in a PDF file is based on the use of an encryption key
computed by the security handler. Different security handlers compute the
encryption key using their own mechanisms. Regardless of how the key is
computed, its use in the encryption of data is always the same (see Algorithm
3.1). Because the RC4 algorithm and AES algorithms are symmetric, this same
sequence of steps can be used both to encrypt and to decrypt data.

Algorithm 3.1 Encryption of data using the RC4 or AES algorithms

1. Obtain the object number and generation number from the object identifier of the
string or stream to be encrypted (see Section 3.2.9, “Indirect Objects”). If the
string is a direct object, use the identifier of the indirect object containing it.

2. Treating the object number and generation number as binary integers, extend the
original n-byte encryption key to n + 5 bytes by appending the low-order 3 bytes
of the object number and the low-order 2 bytes of the generation number in that
order, low-order byte first. (n is 5 unless the value of V in the encryption dictio-
nary is greater than 1, in which case # is the value of Length divided by 8.)

If using the AES algorithm, extend the encryption key an additional 4 bytes by
adding the value "sAIT", which corresponds to the hexadecimal values 0x73, 0x41,
0x6C, 0x54. (This addition is done for backward compatibility and is not intended
to provide additional security.)

3. Initialize the MD5 hash function and pass the result of step 2 as input to this func-
tion.
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4. Use the first (n + 5) bytes, up to a maximum of 16, of the output from the MD5
hash as the key for the RC4 or AES symmetric key algorithms, along with the
string or stream data to be encrypted.

If using the AES algorithm, the Cipher Block Chaining (CBC) mode, which re-
quires an initialization vector, is used. The block size parameter is set to 16 bytes,
and the initialization vector is a 16-byte random number that is stored as the first
16 bytes of the encrypted stream or string.

The output is the encrypted data to be stored in the PDF file.

Stream data is encrypted after applying all stream encoding filters and is
decrypted before applying any stream decoding filters. The number of bytes to be
encrypted or decrypted is given by the Length entry in the stream dictionary.
Decryption of strings (other than those in the encryption dictionary) is done
after escape-sequence processing and hexadecimal decoding as appropriate to the
string representation described in Section 3.2.3, “String Objects.

Standard Security Handler

PDF’s standard security handler allows access permissions and up to two
passwords to be specified for a document: an owner password and a user
password. An application’s decision to encrypt a document is based on whether
the user creating the document specifies any passwords or access restrictions (for
example, in a security settings dialog box that the user can invoke before saving
the PDF file). If so, the document is encrypted, and the permissions and
information required to validate the passwords are stored in the encryption
dictionary. (An application may also create an encrypted document without any
user interaction if it has some other source of information about what passwords
and permissions to use.)

If a user attempts to open an encrypted document that has a user password, the
application should prompt for a password. Correctly supplying either password
enables the user to open the document, decrypt it, and display it on the screen. If
the document does not have a user password, no password is requested; the
application can simply open, decrypt, and display the document. Whether
additional operations are allowed on a decrypted document depends on which
password (if any) was supplied when the document was opened and on any
access restrictions that were specified when the document was created:

¢ Opening the document with the correct owner password (assuming it is not the
same as the user password) allows full (owner) access to the document. This
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unlimited access includes the ability to change the document’s passwords and
access permissions.

e Opening the document with the correct user password (or opening a docu-
ment that does not have a user password) allows additional operations to be
performed according to the user access permissions specified in the docu-
ment’s encryption dictionary.

Access permissions are specified in the form of flags corresponding to the various
operations, and the set of operations to which they correspond depends on the
security handler’s revision number (also stored in the encryption dictionary). If
the revision number is 2 or greater, the operations to which user access can be
controlled are as follows:

¢ Modifying the document’s contents

¢ Copying or otherwise extracting text and graphics from the document, includ-
ing extraction for accessibility purposes (that is, to make the contents of the
document accessible through assistive technologies such as screen readers or
Braille output devices; see Section 10.8, “Accessibility Support”)

¢ Adding or modifying text annotations (see “Text Annotations” on page 621)
and interactive form fields (Section 8.6, “Interactive Forms”)

e Printing the document

If the security handler’s revision number is 3 or greater, user access to the
following operations can be controlled more selectively:

o Filling in forms (that is, filling in existing interactive form fields) and signing
the document (which amounts to filling in existing signature fields, a type of
interactive form field).

o Assembling the document: inserting, rotating, or deleting pages and creating
navigation elements such as bookmarks or thumbnail images (see Section 8.2,
“Document-Level Navigation”).

e Printing to a representation from which a faithful digital copy of the PDF con-
tent could be generated. Disallowing such printing may result in degradation of
output quality (a feature implemented as “Print As Image” in Acrobat).

In addition, revisions 3 and greater enable the extraction of text and graphics (in
support of accessibility to users with disabilities or for other purposes) to be
controlled separately.
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If revision 4 is specified, the standard security handler supports crypt filters (see
Section 3.5.4, “Crypt Filters”). The support is limited to the Identity crypt filter
(see Table 3.23) and crypt filters named StdCF whose dictionaries contain a CFM
value of V2 or AESV2 and an AuthEvent value of DocOpen.

Note: Once the document has been opened and decrypted successfully, the applica-
tion has access to the entire contents of the document. There is nothing inherent in
PDF encryption that enforces the document permissions specified in the encryption
dictionary. It is up to the implementors of PDF consumer applications to respect the
intent of the document creator by restricting user access to an encrypted PDF file ac-
cording to the permissions contained in the file.

Note: PDF 1.5 introduces a set of access permissions that do not require the docu-
ment to be encrypted; see Section 8.7.3, “Permissions.”

Standard Encryption Dictionary

Table 3.19 shows the encryption dictionary entries for the standard security
handler (in addition to those in Table 3.18).

TABLE 3.19 Additional encryption dictionary entries for the standard security handler

KEY

TYPE VALUE

number (Required) A number specifying which revision of the standard security handler

should be used to interpret this dictionary:

e 2 if the document is encrypted with a V value less than 2 (see Table 3.18) and
does not have any of the access permissions set (by means of the P entry, below)

that are designated “Revision 3 or greater” in Table 3.20

e 3 if the document is encrypted with a V value of 2 or 3, or has any “Revision 3

or greater” access permissions set

¢ 4 if the document is encrypted with a V value of 4

string  (Required) A 32-byte string, based on both the owner and user passwords, that is
used in computing the encryption key and in determining whether a valid owner
password was entered. For more information, see “Encryption Key Algorithm” on

page 124 and “Password Algorithms” on page 126.
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KEY TYPE VALUE
U string  (Required) A 32-byte string, based on the user password, that is used in determin-

ing whether to prompt the user for a password and, if so, whether a valid user or
owner password was entered. For more information, see “Password Algorithms”
on page 126.

P integer  (Required) A set of flags specifying which operations are permitted when the doc-
ument is opened with user access (see Table 3.20).

EncryptMetadata boolean (Optional; meaningful only when the value of V is 4; PDF 1.5) Indicates whether
the document-level metadata stream (see Section 10.2.2, “Metadata Streams”) is
to be encrypted. Applications should respect this value.

Default value: true.

The values of the O and U entries in this dictionary are used to determine
whether a password entered when the document is opened is the correct owner
password, user password, or neither.

The value of the P entry is an unsigned 32-bit integer containing a set of flags
specifying which access permissions should be granted when the document is
opened with user access. Table 3.20 shows the meanings of these flags. Bit
positions within the flag word are numbered from 1 (low-order) to 32 (high-
order). A 1 bit in any position enables the corresponding access permission.
Which bits are meaningful, and in some cases how they are interpreted, depends
on the security handler’s revision number (specified in the encryption
dictionary’s R entry).

Note: PDF integer objects are represented internally in signed twos-complement
form. Since all the reserved high-order flag bits in the encryption dictionary’s P val-
ue are required to be 1, the value must be specified as a negative integer. For exam-
ple, assuming revision 2 of the security handler, the value -44 permits printing and
copying but disallows modifying the contents and annotations.

TABLE 3.20 User access permissions

BIT POSITION MEANING
1-2 Reserved; must be 0.
3 (Revision 2) Print the document.

(Revision 3 or greater) Print the document (possibly not at the high-
est quality level, depending on whether bit 12 is also set).
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BIT POSITION MEANING
4 Modify the contents of the document by operations other than

those controlled by bits 6, 9, and 11.

5 (Revision 2) Copy or otherwise extract text and graphics from the
document, including extracting text and graphics (in support of ac-
cessibility to users with disabilities or for other purposes).

(Revision 3 or greater) Copy or otherwise extract text and graphics
from the document by operations other than that controlled by bit
10.

6 Add or modify text annotations, fill in interactive form fields, and,
if bit 4 is also set, create or modify interactive form fields (including
signature fields).

7-8 Reserved; must be 1.

9 (Revision 3 or greater) Fill in existing interactive form fields (includ-
ing signature fields), even if bit 6 is clear.

10 (Revision 3 or greater) Extract text and graphics (in support of ac-
cessibility to users with disabilities or for other purposes).

11 (Revision 3 or greater) Assemble the document (insert, rotate, or de-
lete pages and create bookmarks or thumbnail images), even if bit 4
is clear.

12 (Revision 3 or greater) Print the document to a representation from

which a faithful digital copy of the PDF content could be generated.
When this bit is clear (and bit 3 is set), printing is limited to a low-
level representation of the appearance, possibly of degraded quality.
(See implementation note 25 in Appendix H.)

13-32 (Revision 3 or greater) Reserved; must be 1.

Encryption Key Algorithm

As noted earlier, one function of a security handler is to generate an encryption
key for use in encrypting and decrypting the contents of a document. Given a
password string, the standard security handler computes an encryption key as
shown in Algorithm 3.2.
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Algorithm 3.2 Computing an encryption key

1. Pad or truncate the password string to exactly 32 bytes. If the password string is
more than 32 bytes long, use only its first 32 bytes; if it is less than 32 bytes long,
pad it by appending the required number of additional bytes from the beginning
of the following padding string:

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 DO 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is n bytes long, append the first 32 — n bytes of the
padding string to the end of the password string. If the password string is empty
(zero-length), meaning there is no user password, substitute the entire padding
string in its place.

2. Initialize the MD5 hash function and pass the result of step 1 as input to this func-
tion.

3. Pass the value of the encryption dictionary’s O entry to the MD5 hash function.
(Algorithm 3.3 shows how the O value is computed.)

4. Treat the value of the P entry as an unsigned 4-byte integer and pass these bytes to
the MD5 hash function, low-order byte first.

5. Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.13 on page 97) to the MD5 hash
function. (See implementation note 26 in Appendix H.)

6. (Revision 4 or greater) If document metadata is not being encrypted, pass 4 bytes
with the value OxFFFFFFFF to the MD5 hash function.

7. Finish the hash.

8. (Revision 3 or greater) Do the following 50 times: Take the output from the previ-
ous MD5 hash and pass the first n bytes of the output as input into a new MD5
hash, where # is the number of bytes of the encryption key as defined by the value
of the encryption dictionary’s Length entry.

9. Set the encryption key to the first n bytes of the output from the final MD5 hash,
where 7 is always 5 for revision 2 but, for revision 3 or greater, depends on the val-
ue of the encryption dictionary’s Length entry.

This algorithm, when applied to the user password string, produces the
encryption key used to encrypt or decrypt string and stream data according to
Algorithm 3.1 on page 119. Parts of this algorithm are also used in the algorithms
described below.
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Password Algorithms

In addition to the encryption key, the standard security handler must provide the
contents of the encryption dictionary (Table 3.18 on page 116 and Table 3.19 on
page 122). The values of the Filter, V, Length, R, and P entries are straightforward,
but the computation of the O (owner password) and U (user password) entries
requires further explanation. Algorithms 3.3 through 3.5 show how the values of
the owner password and user password entries are computed (with separate
versions of the latter depending on the revision of the security handler).

Algorithm 3.3 Computing the encryption dictionary’s O (owner password) value

1. Pad or truncate the owner password string as described in step 1 of Algorithm 3.2.
If there is no owner password, use the user password instead. (See implementation
note 27 in Appendix H.)

2. Initialize the MD5 hash function and pass the result of step 1 as input to this function.

3. (Revision 3 or greater) Do the following 50 times: Take the output from the previ-
ous MD5 hash and pass it as input into a new MD5 hash.

4. Create an RC4 encryption key using the first n bytes of the output from the final
MD?5 hash, where 7 is always 5 for revision 2 but, for revision 3 or greater, depends
on the value of the encryption dictionary’s Length entry.

5. Pad or truncate the user password string as described in step 1 of Algorithm 3.2.

6. Encrypt the result of step 5, using an RC4 encryption function with the encryp-
tion key obtained in step 4.

7. (Revision 3 or greater) Do the following 19 times: Take the output from the previ-
ous invocation of the RC4 function and pass it as input to a new invocation of the
function; use an encryption key generated by taking each byte of the encryption
key obtained in step 4 and performing an XOR (exclusive or) operation between
that byte and the single-byte value of the iteration counter (from 1 to 19).

8. Store the output from the final invocation of the RC4 function as the value of the
O entry in the encryption dictionary.
Algorithm 3.4 Computing the encryption dictionary’s U (user password) value (Revision 2)

1. Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.

2. Encrypt the 32-byte padding string shown in step 1 of Algorithm 3.2, using an
RC4 encryption function with the encryption key from the preceding step.

3. Store the result of step 2 as the value of the U entry in the encryption dictionary.
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Algorithm 3.5 Computing the encryption dictionary’s U (user password) value (Revision 3
or greater)

1. Create an encryption key based on the user password string, as described in Algo-
rithm 3.2.

2. Initialize the MD5 hash function and pass the 32-byte padding string shown in
step 1 of Algorithm 3.2 as input to this function.

3. Pass the first element of the file’s file identifier array (the value of the ID entry in
the document’s trailer dictionary; see Table 3.13 on page 97) to the hash function
and finish the hash. (See implementation note 26 in Appendix H.)

4. Encrypt the 16-byte result of the hash, using an RC4 encryption function with the
encryption key from step 1.

5. Do the following 19 times: Take the output from the previous invocation of the
RC4 function and pass it as input to a new invocation of the function; use an en-
cryption key generated by taking each byte of the original encryption key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between that
byte and the single-byte value of the iteration counter (from 1 to 19).

6. Append 16 bytes of arbitrary padding to the output from the final invocation of
the RC4 function and store the 32-byte result as the value of the U entry in the en-
cryption dictionary.

The standard security handler uses Algorithms 3.6 and 3.7 to determine whether
a supplied password string is the correct user or owner password. Note too that
Algorithm 3.6 can be used to determine whether a document’s user password is
the empty string, and therefore whether to suppress prompting for a password
when the document is opened.

Algorithm 3.6 Authenticating the user password

1. Perform all but the last step of Algorithm 3.4 (Revision 2) or Algorithm 3.5 (Revi-
sion 3 or greater) using the supplied password string.

2. If the result of step 1 is equal to the value of the encryption dictionary’s U entry
(comparing on the first 16 bytes in the case of Revision 3 or greater), the password
supplied is the correct user password. The key obtained in step 1 (that is, in the
first step of Algorithm 3.4 or 3.5) can be used to decrypt the document using Al-
gorithm 3.1 on page 119.
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Algorithm 3.7 Authenticating the owner password

1. Compute an encryption key from the supplied password string, as described in
steps 1 to 4 of Algorithm 3.3.

2. (Revision 2 only) Decrypt the value of the encryption dictionary’s O entry, using
an RC4 encryption function with the encryption key computed in step 1.

(Revision 3 or greater) Do the following 20 times: Decrypt the value of the encryp-
tion dictionary’s O entry (first iteration) or the output from the previous iteration
(all subsequent iterations), using an RC4 encryption function with a different en-
cryption key at each iteration. The key is generated by taking the original key (ob-
tained in step 1) and performing an XOR (exclusive or) operation between each
byte of the key and the single-byte value of the iteration counter (from 19 to 0).

3. The result of step 2 purports to be the user password. Authenticate this user pass-
word using Algorithm 3.6. If it is correct, the password supplied is the correct
owner password.

3.5.3 Public-Key Security Handlers

Security handlers may use public-key encryption technology to encrypt a
document (or strings and streams within a document). When doing so, it is
possible to specify one or more lists of recipients, where each list has its own
unique access permissions. Only specified recipients can open the encrypted
document or content, unlike the standard security handler, where a password
determines access. The permissions defined for public-key security handlers are
identical to those defined for the standard security handler (see Section 3.5.2,
“Standard Security Handler”).

Public-key security handlers use the industry standard Public Key Cryptographic
Standard Number 7 (PKCS#7) binary encoding syntax to encode recipient list,
decryption key, and access permission information. The PKCS#7 specification is
in Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see
the Bibliography).

When encrypting the data, each recipient’s X.509 public key certificate (as
described in ITU-T Recommendation X.509; see the Bibliography) must be
available. When decrypting the data, the application scans the recipient list for
which the content is encrypted and attempts to find a match with a certificate that
belongs to the user. If a match is found, the user requires access to the
corresponding private key, which may require authentication, possibly using a
password. Once access is obtained, the private key is used to decrypt the
encrypted data.
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Public-Key Encryption Dictionary

Encryption dictionaries for public-key security handlers contain the common
entries shown in Table 3.18, whose values are described below. In addition, they
may contain the entry shown in Table 3.21.

The Filter entry is the name of a public-key security handler. Examples of existing
security handlers that support public-key encryption are Entrust.PPKEF,
Adobe.PPKLite, and Adobe.PubSec. This handler will be the preferred handler
when encrypting the document.

Permitted values of the SubFilter entry for use with conforming public-key
security handlers are adbe.pkcs7.s3, adbe.pkcs7.s4, which are used when not
using crypt filters (see Section 3.5.4, “Crypt Filters”) and adbe.pkcs7.s5, which is
used when using crypt filters.

The CF, StmF, and StrF entries may be present when SubFilter is adbe.pkcs7.s5.

TABLE 3.21 Additional encryption dictionary entries for public-key security handlers

KEY

TYPE VALUE

Recipients

array (Required when SubFilter is adbe.pkcs7.s3 or adbe.pkcs7.s4; PDF 1.3) An array of
byte-strings, where each string is a PKCS#7 object listing recipients who have been
granted equal access rights to the document. The data contained in the PKCS#7 ob-
ject includes both a cryptographic key that is used to decrypt the encrypted data
and the access permissions (see Table 3.20) that apply to the recipient list. There
should be only one PKCS#7 object per unique set of access permissions; if a recipi-
ent appears in more than one list, the permissions used are those in the first match-
ing list.

Note: When SubfFilter is adbe.pkcs7.s5, recipient lists are specified in the crypt filter
dictionary; see Table 3.24.
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Public-Key Encryption Algorithms

Figure 3.4 illustrates how PKCS#7 objects are used when encrypting PDF files. A
PKCS#7 object is designed to encapsulate and encrypt what is referred to as the
enveloped data.

Plaintext byte array

PKCS#7 Object 20-byte seed |Permissions*
* Permissions not present
Enveloped data I\ when PKCS#7 object is ref-
Decrypt erenced from Crypt filter
decode parameter dictio-

nary

| Plalntext key

Used to generate
encryption key as

described on page
John Doe 131
Encrypted key

Jeff Smith
Encrypted key

‘ John Doe’s private key

FIGURE 3.4 Public-key encryption algorithm

The enveloped data in the PKCS#7 object contains keying material that must be
used to decrypt the document (or individual strings or streams in the document,
when crypt filters are used; see Section 3.5.4, “Crypt Filters”). A key is used to
encrypt (and decrypt) the enveloped data. This key (the plaintext key in Figure
3.4) is encrypted for each recipient, using that recipient’s public key, and is stored
in the PKCS#7 object (as the encrypted key for each recipient). To decrypt the
document, that key is decrypted using the recipient’s private key, which yields a
decrypted (plaintext) key. That key, in turn, is used to decrypt the enveloped data
in the PKCS#7 object, resulting in a byte array that includes the following
information:

o A 20-byte seed that is used to create the encryption key that is used by Algo-
rithm 3.1. The seed should be a unique random number generated by the secu-
rity handler that encrypted the document.

e A 4-byte value defining the permissions, least significant byte first. See
Table 3.20 for the possible permission values.
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e When SubfFilter is adbe.pkcs7.s3, the relevant permissions are restricted to
those specified for revision 2 of the standard security handler.

¢ For adbe.pkcs7.s4, revision 3 permissions apply.

e For adbe.pkcs7.s5, which supports the use of crypt filters, the permissions
are the same as adbe.pkcs7.s4 when the crypt filter is referenced from the
StmF or StrF entries of the encryption dictionary. When referenced from the
Crypt filter decode parameter dictionary of a stream object (see Table 3.12),
the 4 bytes of permissions are absent from the enveloped data.

The algorithms that may be used to encrypt the enveloped data in the PKCS#7
object are: RC4 with key lengths up to 256-bits, DES, Triple DES, RC2 with key
lengths up to 128 bits, 128-bit AES in Cipher Block Chaining (CBC) mode, 192-
bit AES in CBC mode, 256-bit AES in CBC mode. Acrobat products have used
Triple DES to encrypt the enveloped data, and support all of these listed
algorithms when decrypting the enveloped data. The PKCS#7 specification is in
Internet RFC 2315, PKCS #7: Cryptographic Message Syntax, Version 1.5 (see the
Bibliography).

The encryption key that is used by Algorithm 3.1 is calculated by means of an
SHA-1 message digest operation that digests the following data, in order:

1. The 20 bytes of seed

2. The bytes of each item in the Recipients array of PKCS#7 objects in the order
in which they appear in the array

3. 4 bytes with the value 0xFF if the key being generated is intended for use in
document-level encryption and the document metadata is being left as plain-
text

The first n/8 bytes of the resulting digest is used as the encryption key, where n is
the bit length of the RC4 key.

Crypt Filters

PDF 1.5 introduces crypt filters, which provide finer granularity control of
encryption within a PDF file. The use of crypt filters involves the following
structures:

¢ The encryption dictionary (see Table 3.18) contains entries that enumerate the
crypt filters in the document (CF) and specify which ones are used by default to
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decrypt all the streams (StmF) and strings (StrF) in the document. In addition,
the value of the V entry must be 4 to use crypt filters.

e Each crypt filter specified in the CF entry of the encryption dictionary is repre-
sented by a crypt filter dictionary, whose entries are shown in Table 3.22.

o A stream filter type, the Crypt filter (see Section 3.3.9, “Crypt Filter”) can be
specified for any stream in the document to override the default filter for
streams. A standard Identity filter is provided (see Table 3.23) to allow specific
streams, such as document metadata, to be unencrypted in an otherwise en-
crypted document. The stream’s DecodeParms entry must contain a Crypt filter
decode parameters dictionary (see Table 3.12) whose Name entry specifies the
particular crypt filter to be used (if missing, Identity is used). Different streams
may specify different crypt filters; however, see implementation notes 28 and
29 in Appendix H.

Authorization to decrypt a stream must always be obtained before the stream can
be accessed. This typically occurs when the document is opened, as specified by a
value of DocOpen for the AuthEvent entry in the crypt filter dictionary. PDF
consumer applications and security handlers should treat any attempt to access a
stream for which authorization has failed as an error. AuthEvent may also be
EFOpen, which indicates the presence of an embedded file that is encrypted with
a crypt filter that may be different from the crypt filters used by default to encrypt
strings and streams in the document; see implementation note 31 in Appendix H.

By specitying a value of None for the CFM entry in the crypt filter dictionary, the
security handler can do its own decryption. This allows the handler to tightly
control key management and use any preferred symmetric-key cryptographic
algorithm.

TABLE 3.22 Entries common to all crypt filter dictionaries

KEY TYPE VALUE

Type name (Optional) If present, must be CryptFilter for a crypt filter dictionary.



I SECTION 3.5

I Encryption |

KEY

TYPE

VALUE

CFM

AuthEvent

name

name

(Optional) The method used, if any, by the consumer application to decrypt
data. The following values are supported:

None The application does not decrypt data but directs the input stream
to the security handler for decryption. (See implementation note
30 in Appendix H.)

\'] The application asks the security handler for the encryption key
and implicitly decrypts data with Algorithm 3.1, using the RC4 al-
gorithm.

AESV2 (PDF 1.6) The application asks the security handler for the en-
cryption key and implicitly decrypts data with Algorithm 3.1, us-
ing the AES algorithm in Cipher Block Chaining (CBC) mode
with a 16-byte block size and an initialization vector that is ran-
domly generated and placed as the first 16 bytes in the stream or
string.

When the value is V2 or AESV2, the application may ask once for this encryp-
tion key and cache the key for subsequent use for streams that use the same
crypt filter. Therefore, there must be a one-to-one relationship between a
crypt filter name and the corresponding encryption key.

Only the values listed here are supported. Applications that encounter other
values should report that the file is encrypted with an unsupported algo-
rithm.

Default value: None.

(Optional) The event to be used to trigger the authorization that is required
to access encryption keys used by this filter. If authorization fails, the event
should fail. Valid values are:

e DocOpen: Authorization is required when a document is opened.
e EFOpen: Authorization is required when accessing embedded files.
Default value: DocOpen.

If this filter is used as the value of StrF or StmF in the encryption dictionary
(see Table 3.18), the application should ignore this key and behave as if the
value is DocOpen.
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KEY TYPE VALUE
Length integer (Optional) The bit length of the encryption key. It must be a multiple of 8 in
the range of 40 to 128.
Note: Security handlers can define their own use of the Length entry but are en-
couraged to use it to define the bit length of the encryption key.
Security handlers can add their own private data to crypt filter dictionaries.
Names for private data entries must conform to the PDF name registry (see
Appendix E, “PDF Name Registry”).
TABLE 3.23 Standard crypt filter names
NAME DESCRIPTION
Identity Input data is passed through without any processing.
Table 3.24 lists the additional crypt filter dictionary entries used by public-key
security handlers (see Section 3.5.3, “Public-Key Security Handlers”). When
these entries are present, the value of CFM must be V2 or AESV2.
TABLE 3.24 Additional crypt filter dictionary entries for public-key security handlers
KEY TYPE VALUE
Recipients array or (Required) If the crypt filter is referenced from StmF or StrF in the encryption
string dictionary, this entry is an array of byte strings, where each string is a binary-

encoded PKCS#7 object listing recipients that have been granted equal access
rights to the document. The enveloped data contained in the PKCS#7 object
includes both a 20-byte seed value used to compute the encryption key (see
“Public-Key Encryption Algorithms” on page 130) followed by 4 bytes of per-
missions settings (see Table 3.20) that apply to the recipient list. There should
be only one object per unique set of access permissions. If a recipient appears
in more than one list, the permissions used are those in the first matching list.

If the crypt filter is referenced from a Crypt filter decode parameter dictio-
nary (see Table 3.12), this entry is a string that is a binary-encoded PKCS#7
object containing a list of all recipients who are permitted to access the corre-
sponding encrypted stream. The enveloped data contained in the PKCS#7
object is a 20-byte seed value used to create the encryption key that is used by
Algorithm 3.1.
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KEY TYPE VALUE

EncryptMetadata  boolean (Optional; used only by crypt filters that are referenced from StmF in an encryp-
tion dictionary) Indicates whether the document-level metadata stream (see
Section 10.2.2, “Metadata Streams”) is to be encrypted. PDF consumer appli-
cations should respect this value when determining whether metadata should
be encrypted; see implementation note 32 in Appendix H.

Default value: true.

Example 3.12 shows the use of crypt filters in an encrypted document containing
a plaintext document-level metadata stream. The metadata stream is left as is by
applying the Identity crypt filter. The remaining streams and strings are
decrypted using the default filters.

Example 3.12

%PDF1.5
10 obj % Document catalog
<< /Type /Catalog
/Pages20R
/Metadata 6 OR
>>
endobj
20 obj % Page tree
<< /Type /Pages
/Kids [30R]
/Count 1
>>
endobj
300bj % 1s t page
<< /Type /Page
/Parent20R
/MediaBox [0 0 612 792]
/Contents 4 0R
>>
endobj
40 obj % Page contents
<< /Length 35 >>
stream
*** Encrypted Page-marking operators ***
endstream
endobj
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50 obj
<< [Title ($#*#%*$#/&i#t#) >> % Info dictionary: encrypted text string
endobj
6 0 obj
<< /Type /Metadata
/Subtype /XML
/Length 15
[Filter [/Crypt] % Uses a crypt filter
/DecodeParms % with these parameters
<< /Type /CryptFilterDecodeParms
/Name /Identity % Indicates no encryption
>>
>>
stream
XML metadata % Unencrypted metadata
endstream
endobj
80 obj % Encryption dictionary
<< /Filter /MySecurityHandlerName
N4 % Version 4: allow crypt filters
/CF % List of crypt filters

<< /MyFilter0
<< /Type /CryptFilter
/CFMV2 >>
>>
/StrF /MyFilterO
/StmF /MyFilter0

/MyUnsecureKey (12345678)
/EncryptMetadata false
>>
endobj
xref

trailer
<< /Size 8
/Root10R
/Info50R
/Encrypt 8 0R
>>
startxref
495
%%EOF

% Uses the standard algorithm

% Strings are decrypted using /MyFilter0
% Streams are decrypted using /MyFilter0
% Private data for /MySecurityHandlerName
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3.6 Document Structure

3.6.1

A PDF document can be regarded as a hierarchy of objects contained in the
body section of a PDF file. At the root of the hierarchy is the document’s catalog
dictionary (see Section 3.6.1, “Document Catalog”). Most of the objects in the
hierarchy are dictionaries. For example, each page of the document is
represented by a page object—a dictionary that includes references to the page’s
contents and other attributes, such as its thumbnail image (Section 8.2.3,
“Thumbnail Images”) and any annotations (Section 8.4, “Annotations”)
associated with it. The individual page objects are tied together in a structure
called the page tree (described in Section 3.6.2, “Page Tree”), which in turn is
specified by an indirect reference in the document catalog. Parent, child, and
sibling relationships within the hierarchy are defined by dictionary entries whose
values are indirect references to other dictionaries. Figure 3.5 illustrates the
structure of the object hierarchy.

Note: The data structures described in this section, particularly the catalog and page
dictionaries, combine entries describing document structure with ones dealing with
the detailed semantics of documents and pages. All entries are listed here, but many
of their descriptions are deferred to subsequent chapters.

Document Catalog

The root of a document’s object hierarchy is the catalog dictionary, located by
means of the Root entry in the trailer of the PDF file (see Section 3.4.4, “File
Trailer”). The catalog contains references to other objects defining the
document’s contents, outline, article threads (PDF 1.1), named destinations, and
other attributes. In addition, it contains information about how the document
should be displayed on the screen, such as whether its outline and thumbnail
page images should be displayed automatically and whether some location other
than the first page should be shown when the document is opened. Table 3.25
shows the entries in the catalog dictionary.
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TABLE 3.25 Entries in the catalog dictionary

VALUE

I SECTION 3.6
KEY TYPE
Type name
Version name
Pages dictionary
Pagelabels number tree
Names dictionary
Dests dictionary
ViewerPreferences  dictionary

(Required) The type of PDF object that this dictionary describes; must
be Catalog for the catalog dictionary.

(Optional; PDF 1.4) The version of the PDF specification to which the
document conforms (for example, 1.4) if later than the version specified
in the file’s header (see Section 3.4.1, “File Header”). If the header speci-
fies a later version, or if this entry is absent, the document conforms to
the version specified in the header. This entry enables a PDF producer
application to update the version using an incremental update; see Sec-
tion 3.4.5, “Incremental Updates” (See implementation note 33 in Ap-
pendix H.)

Note: The value of this entry is a name object, not a number, and therefore
must be preceded by a slash character (/) when written in the PDF file (for
example, /1.4).

(Required; must be an indirect reference) The page tree node that is the
root of the document’s page tree (see Section 3.6.2, “Page Tree”).

(Optional; PDF 1.3) A number tree (see Section 3.8.6, “Number Trees”)
defining the page labeling for the document. The keys in this tree are
page indices; the corresponding values are page label dictionaries (see
Section 8.3.1, “Page Labels”). Each page index denotes the first page in a
labeling range to which the specified page label dictionary applies. The
tree must include a value for page index 0.

(Optional; PDF 1.2) The document’s name dictionary (see Section 3.6.3,
“Name Dictionary”).

(Optional; PDF 1.1; must be an indirect reference) A dictionary of names
and corresponding destinations (see “Named Destinations” on page
583).

(Optional; PDF 1.2) A viewer preferences dictionary (see Section 8.1,
“Viewer Preferences”) specifying the way the document is to be dis-
played on the screen. If this entry is absent, applications should use their
own current user preference settings.
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KEY TYPE VALUE

Pagelayout name (Optional) A name object specifying the page layout to be used when the
document is opened:

SinglePage Display one page at a time

OneColumn Display the pages in one column

TwoColumnLeft Display the pages in two columns, with odd-
numbered pages on the left

TwoColumnRight  Display the pages in two columns, with odd-
numbered pages on the right

TwoPageLeft (PDF 1.5) Display the pages two at a time, with
odd-numbered pages on the left

TwoPageRight (PDF 1.5) Display the pages two at a time, with
odd-numbered pages on the right

Default value: SinglePage.

PageMode name (Optional) A name object specifying how the document should be dis-
played when opened:

UseNone Neither document outline nor thumbnail im-
ages visible

UseOutlines Document outline visible

UseThumbs Thumbnail images visible

FullScreen Full-screen mode, with no menu bar, window
controls, or any other window visible

UseOC (PDF 1.5) Optional content group panel visible

UseAttachments (PDF 1.6) Attachments panel visible

Default value: UseNone.

Outlines dictionary (Optional; must be an indirect reference) The outline dictionary that is
the root of the document’s outline hierarchy (see Section 8.2.2, “Docu-
ment Outline”).

Threads array (Optional; PDF 1.1; must be an indirect reference) An array of thread
dictionaries representing the document’s article threads (see Section
8.3.2, “Articles™).

OpenAction array or (Optional; PDF 1.1) A value specifying a destination to be displayed or

dictionary an action to be performed when the document is opened. The value is

either an array defining a destination (see Section 8.2.1, “Destinations”)
or an action dictionary representing an action (Section 8.5, “Actions”). If
this entry is absent, the document should be opened to the top of the
first page at the default magnification factor.
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VALUE

I SECTION 3.6

KEY TYPE

AA dictionary
URI dictionary
AcroForm dictionary
Metadata stream
StructTreeRoot dictionary
Markinfo dictionary
Lang text string
Spiderinfo dictionary
Outputintents array
Piecelnfo dictionary
OCProperties dictionary

(Optional; PDF 1.4) An additional-actions dictionary defining the ac-
tions to be taken in response to various trigger events affecting the docu-
ment as a whole (see “Trigger Events” on page 648). (See also
implementation note 34 in Appendix H.)

(Optional; PDF 1.1) A URI dictionary containing document-level infor-
mation for URI (uniform resource identifier) actions (see “URI Actions”
on page 662).

(Optional; PDF 1.2) The document’s interactive form (AcroForm) dictio-
nary (see Section 8.6.1, “Interactive Form Dictionary”).

(Optional; PDF 1.4; must be an indirect reference) A metadata stream
containing metadata for the document (see Section 10.2.2, “Metadata
Streams”).

(Optional; PDF 1.3) The document’s structure tree root dictionary (see
Section 10.6.1, “Structure Hierarchy”).

(Optional; PDF 1.4) A mark information dictionary containing informa-
tion about the document’s usage of Tagged PDF conventions (see Sec-
tion 10.6, “Logical Structure”).

(Optional; PDF 1.4) A language identifier specifying the natural language
for all text in the document except where overridden by language speci-
fications for structure elements or marked content (see Section 10.8.1,
“Natural Language Specification”). If this entry is absent, the language is
considered unknown.

(Optional; PDF 1.3) A Web Capture information dictionary containing
state information used by the Acrobat Web Capture (AcroSpider) plug-
in extension (see Section 10.9.1, “Web Capture Information Dictio-
nary”).

(Optional; PDF 1.4) An array of output intent dictionaries describing the
color characteristics of output devices on which the document might be
rendered (see “Output Intents” on page 970).

(Optional; PDF 1.4) A page-piece dictionary associated with the docu-
ment (see Section 10.4, “Page-Piece Dictionaries”).

(Optional; PDF 1.5; required if a document contains optional content) The
document’s optional content properties dictionary (see Section 4.10.3,
“Configuring Optional Content”).
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KEY TYPE VALUE
Perms dictionary (Optional; PDF 1.5) A permissions dictionary that specifies user access
permissions for the document. Section 8.7.3, “Permissions,” describes
this dictionary and how it is used.
Legal dictionary (Optional; PDF 1.5) A dictionary containing attestations regarding the

Requirements

Collection

NeedsRendering

array

dictionary

boolean

content of a PDF document, as it relates to the legality of digital signa-
tures (see Section 8.7.4, “Legal Content Attestations”).

(Optional; PDF 1.7) An array of requirement dictionaries representing
requirements for the document. Section 8.9, “Document Requirements,”
describes this dictionary and how to use it.

(Optional; PDF 1.7) A collection dictionary that a PDF consumer uses to
enhance the presentation of file attachments stored in the PDF docu-
ment. (see Section 8.2.4, “Collections”).

(Optional; PDF 1.7) A flag used to expedite the display of PDF docu-
ments containing XFA forms. It specifies whether the document must be
regenerated when the document is first opened.

If true, the viewer application treats the document as a shell and regener-
ates the content when the document is opened, regardless of any dynam-
ic forms settings that appear in the XFA stream itself. This setting is used
to expedite the display of documents whose layout varies depending on
the content of the XFA streams.

If false, the viewer application does not regenerate the content when the
document is opened. See the XML Forms Architecture (XFA) Specifica-
tion (Bibliography).

Default value: false.

Example 3.13 shows a sample catalog object.

Example 3.13

1 0 obj
<< [Type /Catalog

>>
endobj

/Pages 20R

/PageMode /UseOutlines

/Outlines 30R
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3.6.2 Page Tree

The pages of a document are accessed through a structure known as the page tree,
which defines the ordering of pages in the document. The tree structure allows
PDF consumer applications, using only limited memory, to quickly open a
document containing thousands of pages. The tree contains nodes of two types—
intermediate nodes, called page tree nodes, and leaf nodes, called page objects—
whose form is described in the sections below. Applications should be prepared
to handle any form of tree structure built of such nodes. The simplest structure
would consist of a single page tree node that references all of the document’s page
objects directly. However, to optimize application performance, the Acrobat
Distiller program constructs trees of a particular form, known as balanced trees.
Further information on this form of tree can be found in Data Structures and
Algorithms, by Aho, Hopcroft, and Ullman (see the Bibliography).

Page Tree Nodes

Table 3.26 shows the required entries in a page tree node.

TABLE 3.26 Required entries in a page tree node
KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be Pages for
a page tree node.

Parent dictionary (Required except in root node; must be an indirect reference) The page tree node that
is the immediate parent of this one.

Kids array (Required) An array of indirect references to the immediate children of this node.
The children may be page objects or other page tree nodes.

Count integer (Required) The number of leaf nodes (page objects) that are descendants of this
node within the page tree.

Note: The structure of the page tree is not necessarily related to the logical structure
of the document; that is, page tree nodes do not represent chapters, sections, and so
forth. (Other data structures are defined for that purpose; see Section 10.6, “Logical
Structure.”) Applications that consume or produce PDF files are not required to pre-
serve the existing structure of the page tree.
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Example 3.14 illustrates the page tree for a document with three pages. See “Page
Objects,” below, for the contents of the individual page objects, and Section G.4,
“Page Tree Example,” for a more extended example showing the page tree for a
longer document.

Example 3.14

2 0 obj
<< /Type /Pages
/Kids [ 40R
100R
240R
]
/Count 3
>>
endobj

4 0 obj
<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

10 O obj
<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

24 0 obj
<< /Type /Page
...Additional entries describing the attributes of this page...
>>
endobj

In addition to the entries shown in Table 3.26, a page tree node may contain
further entries defining inherited attributes for the page objects that are its
descendants (see “Inheritance of Page Attributes” on page 149).

Page Objects

The leaves of the page tree are page objects, each of which is a dictionary
specifying the attributes of a single page of the document. Table 3.27 shows the
contents of this dictionary (see also implementation note 35 in Appendix H). The
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table also identifies which attributes a page may inherit from its ancestor nodes in
the page tree, as described under “Inheritance of Page Attributes” on page 149.
Attributes that are not explicitly identified in the table as inheritable cannot be

TABLE 3.27 Entries in a page object

VALUE

inherited.
KEY TYPE
Type name
Parent dictionary
LastModified date
Resources dictionary
MediaBox rectangle
CropBox rectangle
BleedBox rectangle

(Required) The type of PDF object that this dictionary describes; must be
Page for a page object.

(Required; must be an indirect reference) The page tree node that is the im-
mediate parent of this page object.

(Required if Piecelnfo is present; optional otherwise; PDF 1.3) The date and
time (see Section 3.8.3, “Dates”) when the page’s contents were most re-
cently modified. If a page-piece dictionary (Piecelnfo) is present, the
modification date is used to ascertain which of the application data dictio-
naries that it contains correspond to the current content of the page (see
Section 10.4, “Page-Piece Dictionaries”).

(Required; inheritable) A dictionary containing any resources required by
the page (see Section 3.7.2, “Resource Dictionaries”). If the page requires
no resources, the value of this entry should be an empty dictionary. Omit-
ting the entry entirely indicates that the resources are to be inherited from
an ancestor node in the page tree.

(Required; inheritable) A rectangle (see Section 3.8.4, “Rectangles”), ex-
pressed in default user space units, defining the boundaries of the physical
medium on which the page is intended to be displayed or printed (see
Section 10.10.1, “Page Boundaries”).

(Optional; inheritable) A rectangle, expressed in default user space units,
defining the visible region of default user space. When the page is dis-
played or printed, its contents are to be clipped (cropped) to this rectangle
and then imposed on the output medium in some implementation-
defined manner (see Section 10.10.1, “Page Boundaries”). Default value:
the value of MediaBox.

(Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the region to which the contents of the page should be clipped
when output in a production environment (see Section 10.10.1, “Page
Boundaries”). Default value: the value of CropBox.
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KEY TYPE VALUE
TrimBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space units, de-
fining the intended dimensions of the finished page after trimming (see
Section 10.10.1, “Page Boundaries”). Default value: the value of CropBox.
ArtBox rectangle (Optional; PDF 1.3) A rectangle, expressed in default user space units, de-

BoxColorinfo

Contents

Rotate

Group

Thumb

dictionary

stream or array

integer

dictionary

stream

array

fining the extent of the page’s meaningful content (including potential
white space) as intended by the page’s creator (see Section 10.10.1, “Page
Boundaries”). Default value: the value of CropBox.

(Optional; PDF 1.4) A box color information dictionary specifying the col-
ors and other visual characteristics to be used in displaying guidelines on
the screen for the various page boundaries (see “Display of Page Bound-
aries” on page 965). If this entry is absent, the application should use its
own current default settings.

(Optional) A content stream (see Section 3.7.1, “Content Streams”) de-
scribing the contents of this page. If this entry is absent, the page is empty.

The value may be either a single stream or an array of streams. If the value
is an array, the effect is as if all of the streams in the array were concatenat-
ed, in order, to form a single stream. This allows PDF producers to create
image objects and other resources as they occur, even though they inter-
rupt the content stream. The division between streams may occur only at
the boundaries between lexical tokens (see Section 3.1, “Lexical Conven-
tions”) but is unrelated to the page’s logical content or organization. Ap-
plications that consume or produce PDF files are not required to preserve
the existing structure of the Contents array. (See implementation note 36
in Appendix H.)

(Optional; inheritable) The number of degrees by which the page should
be rotated clockwise when displayed or printed. The value must be a mul-
tiple of 90. Default value: 0.

(Optional; PDF 1.4) A group attributes dictionary specifying the attributes
of the page’s page group for use in the transparent imaging model (see
Sections 7.3.6, “Page Group,” and 7.5.5, “Transparency Group XObjects”).

(Optional) A stream object defining the page’s thumbnail image (see Sec-
tion 8.2.3, “Thumbnail Images”).

(Optional; PDF 1.1; recommended if the page contains article beads) An ar-
ray of indirect references to article beads appearing on the page (see Sec-
tion 8.3.2, “Articles”; see also implementation note 37 in Appendix H).
The beads are listed in the array in natural reading order.
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VALUE
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KEY TYPE
Dur number
Trans dictionary
Annots array
AA dictionary
Metadata stream
Piecelnfo dictionary
StructParents integer
ID byte string
Pz number

Separationinfo

Tabs

dictionary

name

(Optional; PDF 1.1) The page’s display duration (also called its advance
timing): the maximum length of time, in seconds, that the page is dis-
played during presentations before the viewer application automatically
advances to the next page (see Section 8.3.3, “Presentations”). By default,
the viewer does not advance automatically.

(Optional; PDF 1.1) A transition dictionary describing the transition effect
to be used when displaying the page during presentations (see Section
8.3.3, “Presentations”).

(Optional) An array of annotation dictionaries representing annotations
associated with the page (see Section 8.4, “Annotations”).

(Optional; PDF 1.2) An additional-actions dictionary defining actions to
be performed when the page is opened or closed (see Section 8.5.2, “Trig-
ger Events”; see also implementation note 38 in Appendix H).

(Optional; PDF 1.4) A metadata stream containing metadata for the page
(see Section 10.2.2, “Metadata Streams”).

(Optional; PDF 1.3) A page-piece dictionary associated with the page (see
Section 10.4, “Page-Piece Dictionaries”).

(Required if the page contains structural content items; PDF 1.3) The inte-
ger key of the page’s entry in the structural parent tree (see “Finding Struc-
ture Elements from Content Items” on page 868).

(Optional; PDF 1.3; indirect reference preferred) The digital identifier of
the page’s parent Web Capture content set (see Section 10.9.5, “Object At-
tributes Related to Web Capture”).

(Optional; PDF 1.3) The page’s preferred zoom (magnification) factor: the
factor by which it should be scaled to achieve the natural display magnifi-
cation (see Section 10.9.5, “Object Attributes Related to Web Capture”).

(Optional; PDF 1.3) A separation dictionary containing information need-
ed to generate color separations for the page (see Section 10.10.3, “Separa-
tion Dictionaries”).

(Optional; PDF 1.5) A name specifying the tab order to be used for anno-
tations on the page. The possible values are R (row order), C (column or-
der), and S (structure order). See Section 8.4, “Annotations,” for details.



I CHAPTER 3

I Syntax |

KEY TYPE

VALUE

Templatelnstantiated

name
PresSteps dictionary
UserUnit number

VP dictionary

(Required if this page was created from a named page object; PDF 1.5) The
name of the originating page object (see Section 8.6.5, “Named Pages”).

(Optional; PDF 1.5) A navigation node dictionary representing the first
node on the page (see “Sub-page Navigation” on page 601).

(Optional; PDF 1.6) A positive number giving the size of default user
space units, in multiples of 1/72 inch. The range of supported values is im-
plementation-dependent; see implementation note 177 in Appendix H.

Default value: 1.0 (user unit is 1/72 inch).

(Optional; PDF 1.6) An array of viewport dictionaries (see Table 8.109)
specifying rectangular regions of the page.

Example 3.15 shows the definition of a page object with a thumbnail image and
two annotations. The media box specifies that the page is to be printed on letter-
size paper. In addition, the resource dictionary is specified as a direct object and
shows that the page makes use of three fonts named F3, F5, and F7.

Example 3.15

3 0 obj
<< /Type /Page
/Parent 40R
/MediaBox [0 O
/Resources << /I

/!
>>
/Contents 120R
/Thumb 140R
/Annots [ 230R
240R

>>
endobj

612 792]
Font << /F3 70R
/F5 90R
/F7 110R
>>
ProcSet [/PDF]
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Inheritance of Page Attributes

Some of the page attributes shown in Table 3.27 are designated as inheritable. If
such an attribute is omitted from a page object, its value is inherited from an
ancestor node in the page tree. If the attribute is a required one, a value must be
supplied in an ancestor node. If the attribute is optional and no inherited value is
specified, the default value is used.

An attribute can thus be defined once for a whole set of pages by specifying it in
an intermediate page tree node and arranging the pages that share the attribute as
descendants of that node. For example, a document might specify the same
media box for all of its pages by including a MediaBox entry in the root node of
the page tree. If necessary, an individual page object could override this inherited
value with a MediaBox entry of its own.

Note: In a document conforming to the Linearized PDF organization (see Appen-
dix F), all page attributes must be specified explicitly as entries in the page dictio-
naries to which they apply; they may not be inherited from an ancestor node.

Figure 3.6 illustrates the inheritance of attributes. In the page tree shown, pages 1,
2, and 4 are rotated clockwise by 90 degrees, page 3 by 270 degrees, page 6 by 180
degrees, and pages 5 and 7 not at all (0 degrees).

Pages
Pages Pages Pages
/Rotate 90 /Rotate 180
Page Page Pages Page Page Page
/Rotate 0
Page 1 Page 2 Page 5 Page 6 Page 7

—

Page Page
/Rotate 270 /Rotate 90
Page 3 Page 4

FIGURE 3.6 Inheritance of attributes
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3.6.3

Name Dictionary

Some categories of objects in a PDF file can be referred to by name rather than by
object reference. The correspondence between names and objects is established
by the document’s name dictionary (PDF 1.2), located by means of the Names
entry in the document’s catalog (see Section 3.6.1, “Document Catalog”). Each
entry in this dictionary designates the root of a name tree (Section 3.8.5, “Name
Trees”) defining names for a particular category of objects. Table 3.28 shows the
contents of the name dictionary.

TABLE 3.28 Entries in the name dictionary

KEY

TYPE

VALUE

Dests

AP

JavaScript

Pages

Templates

IDS

URLS

Embedded

name tree

name tree

name tree

name tree

name tree

name tree

name tree

Files name tree

AlternatePresentations name tree

Renditions

name tree

(Optional; PDF 1.2) A name tree mapping name strings to destinations
(see “Named Destinations” on page 583).

(Optional; PDF 1.3) A name tree mapping name strings to annotation
appearance streams (see Section 8.4.4, “Appearance Streams”).

(Optional; PDF 1.3) A name tree mapping name strings to document-level
JavaScript actions (see “JavaScript Actions” on page 709).

(Optional; PDF 1.3) A name tree mapping name strings to visible pages for
use in interactive forms (see Section 8.6.5, “Named Pages”).

(Optional; PDF 1.3) A name tree mapping name strings to invisible (tem-
plate) pages for use in interactive forms (see Section 8.6.5, “Named Pag-
es”).

(Optional; PDF 1.3) A name tree mapping digital identifiers to Web Cap-
ture content sets (see Section 10.9.3, “Content Sets™).

(Optional; PDF 1.3) A name tree mapping uniform resource locators
(URLSs) to Web Capture content sets (see Section 10.9.3, “Content Sets”).

(Optional; PDF 1.4) A name tree mapping name strings to file specifica-
tions for embedded file streams (see Section 3.10.3, “Embedded File
Streams”).

(Optional; PDF 1.4) A name tree mapping name strings to alternate pre-
sentations (see Section 9.4, “Alternate Presentations”).

(Optional; PDF 1.5) A name tree mapping name strings (which must have
Unicode encoding) to rendition objects (see Section 9.1.2, “Renditions”).
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3.7 Content Streams and Resources

3.7.1

Content streams are the primary means for describing the appearance of pages
and other graphical elements. A content stream depends on information
contained in an associated resource dictionary; in combination, these two objects
form a self-contained entity. This section describes these objects.

Content Streams

A content stream is a PDF stream object whose data consists of a sequence of
instructions describing the graphical elements to be painted on a page. The
instructions are represented in the form of PDF objects, using the same object
syntax as in the rest of the PDF document. However, whereas the document as a
whole is a static, random-access data structure, the objects in the content stream
are intended to be interpreted and acted upon sequentially.

Each page of a document is represented by one or more content streams. Content
streams are also used to package sequences of instructions as self-contained
graphical elements, such as forms (see Section 4.9, “Form XObjects”), patterns
(Section 4.6, “Patterns”), certain fonts (Section 5.5.4, “Type 3 Fonts”), and
annotation appearances (Section 8.4.4, “Appearance Streams”).

A content stream, after decoding with any specified filters, is interpreted
according to the PDF syntax rules described in Section 3.1, “Lexical
Conventions.” It consists of PDF objects denoting operands and operators. The
operands needed by an operator precede it in the stream. See Example 3.3 on
page 68 for an example of a content stream.

An operand is a direct object belonging to any of the basic PDF data types except
a stream. Dictionaries are permitted as operands only by certain specific
operators. Indirect objects and object references are not permitted at all.

An operator is a PDF keyword that specifies some action to be performed, such as
painting a graphical shape on the page. An operator keyword is distinguished
from a name object by the absence of an initial slash character (/). Operators are
meaningful only inside a content stream.

Note: This postfix notation, in which an operator is preceded by its operands, is
superficially the same as in the PostScript language. However, PDF has no concept
of an operand stack as PostScript has. In PDE, all of the operands needed by an op-
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erator must immediately precede that operator. Operators do not return results, and
operands cannot be left over when an operator finishes execution.

Most operators have to do with painting graphical elements on the page or with
specifying parameters that affect subsequent painting operations. The individual
operators are described in the chapters devoted to their functions:

o Chapter 4 describes operators that paint general graphics, such as filled areas,
strokes, and sampled images, and that specify device-independent graphical
parameters, such as color.

o Chapter 5 describes operators that paint text using character glyphs defined in
fonts.

o Chapter 6 describes operators that specify device-dependent rendering param-
eters.

o Chapter 10 describes the marked-content operators that associate higher-level
logical information with objects in the content stream. These operators do not
affect the rendered appearance of the content; they specify information useful
to applications that use PDF for document interchange.

Ordinarily, when an application encounters an operator in a content stream that
it does not recognize, an error occurs. (See implementation note 39 in Appendix
H.) A pair of compatibility operators, BX and EX (PDF 1.1), modify this behavior
(see Table 3.29). These operators must occur in pairs and may be nested. They
bracket a compatibility section, a portion of a content stream within which
unrecognized operators are to be ignored without error. This mechanism enables
a PDF document to use operators defined in later versions of PDF without
sacrificing compatibility with older applications. It should be used only in cases
where ignoring such newer operators is the appropriate thing to do. The BX and
EX operators are not themselves part of any graphics object (see Section 4.1,
“Graphics Objects”) or of the graphics state (Section 4.3, “Graphics State”).

TABLE 3.29 Compatibility operators
OPERANDS OPERATOR DESCRIPTION

— BX (PDF 1.1) Begin a compatibility section. Unrecognized operators (along with their
operands) are ignored without error until the balancing EX operator is encountered.

— EX (PDF 1.1) End a compatibility section begun by a balancing BX operator.
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3.7.2 Resource Dictionaries

As stated above, the operands supplied to operators in a content stream may only
be direct objects; indirect objects and object references are not permitted. In
some cases, an operator needs to refer to a PDF object that is defined outside the
content stream, such as a font dictionary or a stream containing image data. This
can be accomplished by defining such objects as named resources and referring to
them by name from within the content stream.

Note: Named resources are meaningful only in the context of a content stream. The
scope of a resource name is local to a particular content stream and is unrelated to
externally known identifiers for objects such as fonts. References from one object to
another outside of content streams should be made by means of indirect object refer-
ences rather than named resources.

A content stream’s named resources are defined by a resource dictionary, which
enumerates the named resources needed by the operators in the content stream
and the names by which they can be referred to. For example, if a text operator
appearing within the content stream needs a certain font, the content stream’s
resource dictionary can associate the name F42 with the corresponding font
dictionary. The text operator can use this name to refer to the font.

A resource dictionary is associated with a content stream in one of the following
ways:

e For a content stream that is the value of a pages Contents entry (or is an
element of an array that is the value of that entry), the resource dictionary is
designated by the page dictionary’s Resources entry. (Since a page’s Resources
attribute is inheritable, as described under “Inheritance of Page Attributes” on
page 149, it may actually reside in some ancestor node of the page object.)

e For other content streams, the stream dictionary’s Resources entry specifies the
resource dictionary. This applies to content streams that define form XObjects,
patterns, Type 3 fonts, and annotation appearances.

¢ A form XObject or a Type 3 font’s glyph description may omit the Resources
entry, in which case resources are looked up in the Resources entry of the page
on which the form or font is used. This practice is not recommended.
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In the context of a given content stream, the term current resource dictionary
refers to the resource dictionary associated with the stream in one of the ways

described above.

Each key in a resource dictionary is the name of a resource type, as shown in
Table 3.30. The corresponding values are as follows:

e For resource type ProcSet, the value is an array of procedure set names

e For all other resource types, the value is a subdictionary. Each key in the sub-
dictionary is the name of a specific resource, and the corresponding value is a
PDF object associated with the name.

TABLE 3.30 Entries in a resource dictionary

VALUE

KEY TYPE

ExtGState dictionary
ColorSpace dictionary
Pattern dictionary
Shading dictionary
XObject dictionary
Font dictionary
ProcSet array

Properties dictionary

(Optional) A dictionary that maps resource names to graphics state parame-
ter dictionaries (see Section 4.3.4, “Graphics State Parameter Dictionaries”).

(Optional) A dictionary that maps each resource name to either the name of a
device-dependent color space or an array describing a color space (see Sec-
tion 4.5, “Color Spaces”).

(Optional) A dictionary that maps resource names to pattern objects (see Sec-
tion 4.6, “Patterns”).

(Optional; PDF 1.3) A dictionary that maps resource names to shading dic-
tionaries (see “Shading Dictionaries” on page 304).

(Optional) A dictionary that maps resource names to external objects (see
Section 4.7, “External Objects”).

(Optional) A dictionary that maps resource names to font dictionaries (see
Chapter 5).

(Optional) An array of predefined procedure set names (see Section 10.1,
“Procedure Sets”).

(Optional; PDF 1.2) A dictionary that maps resource names to property list
dictionaries for marked content (see Section 10.5.1, “Property Lists”).

Example 3.16 shows a resource dictionary containing procedure sets, fonts, and
external objects. The procedure sets are specified by an array, as described in
Section 10.1, “Procedure Sets” The fonts are specified with a subdictionary
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associating the names F5, F6, F7, and F8 with objects 6, 8, 10, and 12, respectively.
Likewise, the XObject subdictionary associates the names Im1 and Im2 with
objects 13 and 15, respectively.

Example 3.16

<< /ProcSet [/PDF /ImageB]
/Font << /F5 60R
/F6 80R
/F7 100R
/F8 120R
>>
/XObject << /Im1 130R
/Im2 150R
>>
>>

3.8 Common Data Structures

As mentioned at the beginning of this chapter, there are some general-purpose
data structures that are built from the basic object types described in Section 3.2,
“Objects,” and are used in many places throughout PDFE. This section describes
data structures for text strings, dates, rectangles, name trees, and number trees.
The subsequent two sections describe more complex data structures for functions
and file specifications.

All of these data structures are meaningful only as part of the document hier-
archy; they cannot appear within content streams. In particular, the special
conventions for interpreting the values of string objects apply only to strings
outside content streams. An entirely different convention is used within content
streams for using strings to select sequences of glyphs to be painted on the page
(see Chapter 5). Table 3.31 summarizes the basic and higher-level data types that
are used throughout this book to describe the values of dictionary entries and

other PDF data values.
TABLE 3.31 PDF data types
TYPE DESCRIPTION SECTION PAGE
ASCII string Bytes containing ASCII characters 3.8.1 157

array Array object 3.2.5 58
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TYPE DESCRIPTION SECTION PAGE
boolean Boolean value 3.2.1 52
byte string A series of 8-bit bytes that represent 3.8.1 157

characters or other binary data. If such a
type represents characters, the encoding
is not identified.

date Date (ASCII string) 3.8.3 160
dictionary Dictionary object 3.2.6 59
file specification File specification (string or dictionary) 3.10 178
function Function (dictionary or stream) 39 166
integer Integer number 3.2.2 52
name Name object 3.2.4 56
name tree Name tree (dictionary) 3.8.5 161
null Null object 3.2.8 63
number Number (integer or real) 3.2.2 52
number tree Number tree (dictionary) 3.8.6 166

PDFDocEncoded string  Bytes containing a string that has been 3.8.1
encoded using PDFDocEncoding

rectangle Rectangle (array) 3.84 161
stream Stream object 3.2.7 60
string Any string that is not a text string. 3.8.1 53

Beginning with PDF 1.7, this type is
further qualified as the types:
PDFDocEncoded string, ASCII string,
and byte string.

text string Bytes that represent characters encoded ~ 3.8.1 158
using either PDFDocEncoding or UTF-
16BE with a leading byte-order marker (as
defined in “Text String Type” on page 158.)

text stream Text stream 3.8.2 160
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3.8.1 String Types

PDF supports the string and text string types. Beginning with PDF 1.7, the string
type is further qualified as PDFDocEncoded string, ASCII string, or byte string.
The further qualification reflects the encoding used to represent the characters or
glyphs described by the string.

Table 3.32 summarizes the string types. These types are not true types. Rather,
they are versions of the string type that represent data encoded using specific

conventions.
TABLE 3.32 String Types
TYPE DESCRIPTION
string For PDF 1.6 and earlier, this type is used for any string that can-

text string

PDFDocEncoded string

ASCII string

byte string

not be represented as a text string. Beginning with PDF 1.7, this
type is further qualified as ASCII string, PDFDocEncoded
string, and byte string.

Used for human-readable characters, such as text annotations,
bookmark names, article names, and document information.
These strings are encoded using either PDFDocEncoding or
UTF-16BE with a leading byte-order marker.

This type is described in “Text String Type” on page 158.

(PDF 1.7) Used for characters and glyphs that are represented in
a single byte, using PDFDocEncoding. This type, which reflects
a more specific encoding than the text string type, is described
in “PDFDocEncoded String Type” on page 159.

(PDF 1.7) Used for characters that are represented in a single
byte using ASCII encoding.

(PDF 1.7) Used for binary data represented as a series of 8-bit
bytes, where each byte can be any value representable in 8 bits.
The string may represent characters or glyphs but the encoding
is not known. The bytes of the string may not represent charac-
ters. This type is used for data such as MD5 hash values, signa-
ture certificates, and Web Capture identification values.

This type is described in “Byte String Type” on page 159.
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The string types described in Table 3.32 specify increasingly specific encoding
schemes, as shown in Figure 3.7.

string type
text string type ASClI string type byte string type
PDFDocEncoded UTF-16BE encoded string with
string type a leading byte order marker

FIGURE 3.7 Relationship between string types

Text String Type

The text string type is used for character strings that contain information
intended to be human-readable, such as text annotations, bookmark names,
article names, document information, and so forth. The term character strings is
used to describe such strings independent of the encoding with which they are
represented in a PDF document.

Note: This type is not a true type. Rather, it is a string type that represents data en-
coded using specific conventions.

The text string type is used for character strings that are encoded in either PDF-
DocEncoding or the UTF-16BE Unicode character encoding scheme. PDFDocEn-
coding can encode all of the ISO Latin 1 character set and is documented in
Appendix D. UTF-16BE can encode all Unicode characters. UTF-16BE and
Unicode character encoding are described in the Unicode Standard by the
Unicode Consortium (see the Bibliography). Note that PDFDocEncoding does
not support all Unicode characters whereas UTF-16BE does.

For text strings encoded in Unicode, the first two bytes must be 254 followed by
255. These two bytes represent the Unicode byte order marker, U+FEFF, indicating
that the string is encoded in the UTF-16BE (big-endian) encoding scheme
specified in the Unicode standard. (This mechanism precludes beginning a string
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using PDFDocEncoding with the two characters thorn ydieresis, which is unlikely
to be a meaningful beginning of a word or phrase).

Note: Applications that process PDF files containing Unicode text strings should be
prepared to handle supplementary characters; that is, characters requiring more
than two bytes to represent.

An escape sequence may appear anywhere in a Unicode text string to indicate the
language in which subsequent text is written, which is useful when the language
cannot be determined from the character codes used in the text. The escape
sequence consists of the following elements, in order:

1. The Unicode value U+001B (that is, the byte sequence 0 followed by 27).

2. A 2-character ISO 639 language code—for example, en for English or ja for
Japanese. Character in this context means byte (as in ASCII character), not
Unicode character.

3. (Optional) A 2-character ISO 3166 country code—for example, US for the
United States or JP for Japan.

4. The Unicode value U+001B.

The complete list of codes defined by ISO 639 and ISO 3166 can be obtained
from the International Organization for Standardization (see the Bibliography).

PDFDocEncoded String Type

A PDFDocEncoded string is similar to a string object, but it is a character string
where characters are represented in a single byte using PDFDocEncoding. Note
that PDFDocEncoding does not support all Unicode characters whereas UTEF-
16BE does.

Note: This type is not a true type. Rather, it is a string type that represents data en-
coded using a specific convention.

Byte String Type

The byte string type is used for binary data represented as a series of 8-bit bytes,
where each byte can be any value representable in 8 bits. The string may
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represent characters but the encoding is not known. The bytes of the string may
not represent characters.

Note: This type is not a true type. Rather, it is a string type that represents data
whose encoding is unknown.

Text Streams

A text stream (PDF 1.5) is a PDF stream object (Section 3.2.7) whose unencoded
bytes meet the same requirements as a text string (“Text String Type” on page
158) with respect to encoding, byte order, and lead bytes.

Dates

PDF defines a standard date format, which closely follows that of the
international standard ASN.1 (Abstract Syntax Notation One), defined in ISO/
IEC 8824 (see the Bibliography). A date is an ASCII string of the form

(D:YYYYMMDDHHmMmMSSOHH' mm")

where
YYYY is the year
MM is the month
DD is the day (01-31)
HH is the hour (00-23)
mm is the minute (00-59)
SS is the second (00-59)

O is the relationship of local time to Universal Time (UT), denoted by one of
the characters +, —, or Z (see below)

HH followed by ' is the absolute value of the offset from UT in hours (00-23)
mm followed by ' is the absolute value of the offset from UT in minutes (00-59)
The apostrophe character (') after HH and mm is part of the syntax. All fields after

the year are optional. (The prefix D:, although also optional, is strongly
recommended.) The default values for MM and DD are both 01; all other
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numerical fields default to zero values. A plus sign (+) as the value of the O field
signifies that local time is later than UT, a minus sign (-) signifies that local time
is earlier than UT, and the letter Z signifies that local time is equal to UT. If no UT
information is specified, the relationship of the specified time to UT is considered
to be unknown. Regardless of whether the time zone is known, the rest of the date
should be specified in local time.

For example, December 23, 1998, at 7:52 PM, U.S. Pacific Standard Time, is
represented by the string

D:199812231952-08'00"

Rectangles

Rectangles are used to describe locations on a page and bounding boxes for a
variety of objects, such as fonts. A rectangle is written as an array of four numbers
giving the coordinates of a pair of diagonally opposite corners. Typically, the
array takes the form

[IIX lIy ur, ury]

specifying the lower-left x, lower-left y upper-right x, and upper-right y
coordinates of the rectangle, in that order. The other two corners of the rectangle
are then assumed to have coordinates (//,, ury) and (ur,, lly).

Note: Although rectangles are conventionally specified by their lower-left and upper-
right corners, it is acceptable to specify any two diagonally opposite corners. Appli-
cations that process PDF should be prepared to normalize such rectangles in situa-
tions where specific corners are required.

Name Trees

A name tree serves a similar purpose to a dictionary—associating keys and
values—but by different means. A name tree differs from a dictionary in the
following important ways:

¢ Unlike the keys in a dictionary, which are name objects, those in a name tree
are strings.

o The keys are ordered.
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¢ The values associated with the keys may be objects of any type. Stream objects
are required to be specified by indirect object references. It is recommended,
though not required, that dictionary, array, and string objects be specified by
indirect object references, and other PDF objects (nulls, numbers, booleans,
and names) be specified as direct objects.

e The data structure can represent an arbitrarily large collection of key-value
pairs, which can be looked up efficiently without requiring the entire data
structure to be read from the PDF file. (In contrast, a dictionary is subject to an
implementation limit on the number of entries it can contain.)

A name tree is constructed of nodes, each of which is a dictionary object.
Table 3.33 shows the entries in a node dictionary. The nodes are of three kinds,
depending on the specific entries they contain. The tree always has exactly one
root node, which contains a single entry: either Kids or Names but not both. If the
root node has a Names entry, it is the only node in the tree. If it has a Kids entry,
each of the remaining nodes is either an intermediate node, containing a Limits
entry and a Kids entry, or a leaf node, containing a Limits entry and a Names
entry.

TABLE 3.33 Entries in a name tree node dictionary

KEY

TYPE VALUE

Kids

Names

Limits

array (Root and intermediate nodes only; required in intermediate nodes; present in the root
node if and only if Names is not present) An array of indirect references to the immediate

children of this node. The children may be intermediate or leaf nodes.

array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids

is not present) An array of the form

[key, value, key, value, ... key, value,]

where each key; is a string and the corresponding value; is the object associated with that

key. The keys are sorted in lexical order, as described below.

array (Intermediate and leaf nodes only; required) An array of two strings, specifying the (lexi-
cally) least and greatest keys included in the Names array of a leaf node or in the Names

arrays of any leaf nodes that are descendants of an intermediate node.

The Kids entries in the root and intermediate nodes define the tree’s structure by
identifying the immediate children of each node. The Names entries in the leaf
(or root) nodes contain the tree’s keys and their associated values, arranged in
key-value pairs and sorted lexically in ascending order by key. Shorter keys
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appear before longer ones beginning with the same byte sequence. The encoding
of the keys is immaterial as long as it is self-consistent; keys are compared for
equality on a simple byte-by-byte basis.

The keys contained within the various nodes’ Names entries do not overlap; each
Names entry contains a single contiguous range of all the keys in the tree. In a leaf
node, the Limits entry specifies the least and greatest keys contained within the
node’s Names entry. In an intermediate node, it specifies the least and greatest
keys contained within the Names entries of any of that node’s descendants. The
value associated with a given key can thus be found by walking the tree in order,
searching for the leaf node whose Names entry contains that key.

Example 3.17 is an abbreviated outline, showing object numbers and nodes, of a
name tree that maps the names of all the chemical elements, from actinium to
zirconium, to their atomic numbers. Example 3.18 shows the representation of
this tree in a PDF file.

Example 3.17 Example of a name tree

1: Root node
2: Intermediate node: Actinium to Gold
5. Leaf node: Actinium =25, ..., Astatine = 31
25:Integer: 89

31:Integer: 85

11: Leaf node: Gadolinium =56, ..., Gold =59
56:Integer: 64

59:Integer: 79
3: Intermediate node: Hafnium to Protactinium
12: Leaf node: Hafnium =60, ..., Hydrogen = 65
60:Integer: 72

65:Integer: 1

19: Leaf node: Palladium =92, ..., Protactinium = 100
92:Integer: 46

100:Integer: 91
4: Intermediate node: Radium to Zirconium
20: Leaf node: Radium =101, ..., Ruthenium = 107
101:Integer: 89
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107:Integer: 85

24:Leaf node: Xenon =129, ..., Zirconium = 133
129:Integer: 54

133:Integer: 40

Example 3.18
1 0 obj
<< /Kids [ 20R % Root node
30R
40R
1
>>
endobj
2 0 obj
<< /Limits [(Actinium) (Gold)] % Intermediate node
/Kids [ 50R
60R
70R
80R
90R
100R
110R
]
>>
endobj
3 0 obj
<< /Limits [(Hafnium) (Protactinium)] % Intermediate node
/Kids [ 120R
130R
140R
150R
16 0R
170R
180R
190R
1
>>

endobj
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4 0 obj
<< /Limits [(Radium) (Zirconium)] % Intermediate node
/Kids [ 200R
210R
220R
230R
240R
1
>>
endobj
5 0 obj
<< /Limits [(Actinium) (Astatine)] % Leaf node

/Names [ (Actinium) 250R
(Aluminum) 26 0R
(Americium) 270R
(Antimony) 280R
(Argon) 290R
(Arsenic) 300R
(Astatine) 310R
>>
endobj

24 0 obj
<< /Limits [(Xenon) (Zirconium)] % Leaf node
/Names [ (Xenon) 1290R
(Ytterbium) 1300R
(Yttrium) 1310R
(Zinc) 1320R
(Zirconium) 1330R
]
>>
endobj

25 0 obj
89 % Atomic number (Actinium)

endobj

133 0 obj
40 % Atomic number (Zirconium)

endobj
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3.8.6 Number Trees

A number tree is similar to a name tree (see Section 3.8.5, “Name Trees”), except
that its keys are integers instead of strings and are sorted in ascending numerical
order. The entries in the leaf (or root) nodes containing the key-value pairs are
named Nums instead of Names as in a name tree. Table 3.34 shows the entries in a
number tree’s node dictionaries.

TABLE 3.34 Entries in a number tree node dictionary
KEY TYPE VALUE

Kids array (Root and intermediate nodes only; required in intermediate nodes; present in the root
node if and only if Nums is not present) An array of indirect references to the immediate
children of this node. The children may be intermediate or leaf nodes.

Nums array (Root and leaf nodes only; required in leaf nodes; present in the root node if and only if Kids
is not present) An array of the form

[key, value, key,value, ... key, value,]

where each key; is an integer and the corresponding value; is the object associated with
that key. The keys are sorted in numerical order, analogously to the arrangement of keys
in a name tree as described in Section 3.8.5, “Name Trees”

Limits array (Intermediate and leaf nodes only; required) An array of two integers, specifying the
(numerically) least and greatest keys included in the Nums array of a leaf node or in the
Nums arrays of any leaf nodes that are descendants of an intermediate node.

3.9 Functions

PDF is not a programming language, and a PDF file is not a program. However,
PDF does provide several types of function objects (PDF 1.2) that represent
parameterized classes of functions, including mathematical formulas and
sampled representations with arbitrary resolution. Functions are used in various
ways in PDE including device-dependent rasterization information for high-
quality printing (halftone spot functions and transfer functions), color transform
functions for certain color spaces, and specification of colors as a function of
position for smooth shadings.
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Functions in PDF represent static, self-contained numerical transformations. A
function to add two numbers has two input values and one output value:

f(xo, xl) = xytx;

Similarly, a function that computes the arithmetic and geometric mean of two
numbers could be viewed as a function of two input values and two output
values:

Xy T X
f(xy, x;) = jz—l, [ X0 X X,

In general, a function can take any number (m) of input values and produce any
number (1) of output values:

f(xXgs s X 1) = Voo s V1

In PDF functions, all the input values and all the output values are numbers, and
functions have no side effects.

Each function definition includes a domain, the set of legal values for the input.
Some types of functions also define a range, the set of legal values for the output.
Input values passed to the function are clipped to the domain, and output values
produced by the function are clipped to the range. For example, suppose the
function

f(x) = x+2

is defined with a domain of [-1 1]. If the function is called with the input value 6,
that value is replaced with the nearest value in the defined domain, 1, before the
function is evaluated; the resulting output value is therefore 3. Similarly, if the
function

f(xg, %)) = 3Xx5 + x;

is defined with a range of [0 100], and if the input values —6 and 4 are passed to
the function (and are within its domain), then the output value produced by the
function, —14, is replaced with 0, the nearest value in the defined range.

A function object may be a dictionary or a stream, depending on the type of
function. The term function dictionary is used generically in this section to refer
to either a dictionary object or the dictionary portion of a stream object. A
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function dictionary specifies the function’s representation, the set of attributes
that parameterize that representation, and the additional data needed by that
representation. Four types of functions are available, as indicated by the
dictionary’s FunctionType entry:

¢ (PDF 1.2) A sampled function (type 0) uses a table of sample values to define the
function. Various techniques are used to interpolate values between the sample
values (see Section 3.9.1, “Type 0 (Sampled) Functions™).

o (PDF 1.3) An exponential interpolation function (type 2) defines a set of coef-
ficients for an exponential function (see Section 3.9.2, “Type 2 (Exponential In-
terpolation) Functions™).

o (PDF 1.3) A stitching function (type 3) is a combination of other functions, par-
titioned across a domain (see Section 3.9.3, “Type 3 (Stitching) Functions”).

e (PDF 1.3) A PostScript calculator function (type 4) uses operators from the
PostScript language to describe an arithmetic expression (see Section 3.9.4,
“Type 4 (PostScript Calculator) Functions™).

All function dictionaries share the entries listed in Table 3.35.

TABLE 3.35 Entries common to all function dictionaries

KEY TYPE VALUE
FunctionType integer (Required) The function type:
0  Sampled function
2 Exponential interpolation function
3 Stitching function
4 PostScript calculator function
Domain array (Required) An array of 2 X m numbers, where m is the number of input val-
ues. For each i from 0 to m — 1, Domain,; must be less than or equal to
Domain,; ;, and the ith input value, x;, must lie in the interval
Domain,, < x; < Domain,; ;. Input values outside the declared domain are
clipped to the nearest boundary value.
Range array (Required for type 0 and type 4 functions, optional otherwise; see below) An

array of 2 X n numbers, where n is the number of output values. For each j
from0ton—1, Range,; must be less than or equal to Range,;,,, and the jth
output value, y,, must lie in the interval Range,; <y;<Range,;, ;. Output
values outside the declared range are clipped to the nearest boundary value. If

this entry is absent, no clipping is done.
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In addition, each type of function dictionary must include entries appropriate to
the particular function type. The number of output values can usually be inferred
from other attributes of the function; if not (as is always the case for type 0 and
type 4 functions), the Range entry is required. The dimensionality of the function
implied by the Domain and Range entries must be consistent with that implied by
other attributes of the function.

Type 0 (Sampled) Functions

Type 0 functions use a sequence of sample values (contained in a stream) to
provide an approximation for functions whose domains and ranges are bounded.
The samples are organized as an m-dimensional table in which each entry has »
components.

Sampled functions are highly general and offer reasonably accurate
representations of arbitrary analytic functions at low expense. For example, a
1-input sinusoidal function can be represented over the range [0 180] with an
average error of only 1 percent, using just ten samples and linear interpolation.
Two-input functions require significantly more samples but usually not a
prohibitive number if the function does not have high frequency variations.

The dimensionality of a sampled function is restricted only by implementation
limits. However, the number of samples required to represent functions with high
dimensionality multiplies rapidly unless the sampling resolution is very low. Also,
the process of multilinear interpolation becomes computationally intensive if the
number of inputs m is greater than 2. The multidimensional spline interpolation
is even more computationally intensive.

In addition to the entries in Table 3.35, a type 0 function dictionary includes
those shown in Table 3.36.

The Domain, Encode, and Size entries determine how the function’s input
variable values are mapped into the sample table. For example, if Size is [21 31],
the default Encode array is [0 20 0 30], which maps the entire domain into the
full set of sample table entries. Other values of Encode may be used.
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To explain the relationship between Domain, Encode, Size, Decode, and Range,
we use the following notation:

Y

Interpolate (x, x

Y min * [(x_xmin) X

xmax’ J min’ y max)

ymaxymin]

max ~ *min

min’

For a given value of x, Interpolate calculates the y value on the line defined by the

two

points (x

min’> Ymin

) and (x

max’ ymax)'

TABLE 3.36 Additional entries specific to a type 0 function dictionary

KEY TYPE VALUE

Size array (Required) An array of m positive integers specifying the number of samples
in each input dimension of the sample table.

BitsPerSample integer (Required) The number of bits used to represent each sample. (If the function
has multiple output values, each one occupies BitsPerSample bits.) Valid
values are 1, 2, 4, 8, 12, 16, 24, and 32.

Order integer (Optional) The order of interpolation between samples. Valid values are 1 and
3, specifying linear and cubic spline interpolation, respectively. (See imple-
mentation note 40 in Appendix H.) Default value: 1.

Encode array (Optional) An array of 2 X m numbers specifying the linear mapping of input
values into the domain of the function’s sample table. Default value:
[0 (Sizej—1) O (Size;—1) ...].

Decode array (Optional) An array of 2 X n numbers specifying the linear mapping of sam-
ple values into the range appropriate for the function’s output values. Default
value: same as the value of Range.

other stream (various) (Optional) Other attributes of the stream that provides the sample values, as

attributes appropriate (see Table 3.4 on page 62).

When a sampled function is called, each input value x;, for 0 <i <m, is clipped to
the domain:

x ’
i

= min (max (x;, Domain,, ; ), Domain

2i+1)
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That value is encoded:

e; = Interpolate (xl. » Domain, ;, Domain EncodezZ., Encodezl. N 1)

2i+1°

That value is clipped to the size of the sample table in that dimension:

e;/ = min(max (e;, 0), Size;— 1)

The encoded input values are real numbers, not restricted to integers.
Interpolation is used to determine output values from the nearest surrounding
values in the sample table. Each output value T for 0 <j < n, is then decoded:

r;” = Interpolate (r i 0, 2BitsPerSample _ 1 Decodezj, Decode

j 2j+1)

Finally, each decoded value is clipped to the range:

yi = min(max(r].', Rangezj ), Rangezj+ D

Sample data is represented as a stream of unsigned 8-bit bytes (integers in the
range 0 to 255). The bytes constitute a continuous bit stream, with the high-order
bit of each byte first. Each sample value is represented as a sequence of
BitsPerSample bits. Successive values are adjacent in the bit stream; there is no
padding at byte boundaries.

For a function with multidimensional input (more than one input variable), the
sample values in the first dimension vary fastest, and the values in the last
dimension vary slowest. For example, for a function f(a, b, c), where a, b, and ¢
vary from 0 to 9 in steps of 1, the sample values would appear in this order:
£(0,0,0), f(1,0,0), ..., f(9,0,0), f(0,1,0), f(1,1,0), ..., f(9,1,0), f(0,2,0),
f(1,2,0),...,f(9,9,0),£0,0,1), f(1, 0, 1), and so on.

For a function with multidimensional output (more than one output value), the
values are stored in the same order as Range.

The stream data must be long enough to contain the entire sample array, as
indicated by Size, Range, and BitsPerSample; see “Stream Extent” on page 61.

Example 3.19 illustrates a sampled function with 4-bit samples in an array
containing 21 columns and 31 rows (651 values). The function takes two
arguments, x and y, in the domain [-1.0 1.0], and returns one value, z, in that
same range. The x argument is linearly transformed by the encoding to the
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domain [0 20] and the y argument to the domain [0 30]. Using bilinear
interpolation between sample points, the function computes a value for z, which
(because BitsPerSample is 4) will be in the range [0 15], and the decoding
transforms z to a number in the range [-1.0 1.0] for the result. The sample array
is stored in a string of 326 bytes, calculated as follows (rounded up):

326 bytes = 31 rows X 21 samples/row X 4 bits/sample + 8 bits/byte

The first byte contains the sample for the point (-1.0,-1.0) in the high-order 4
bits and the sample for the point (—0.9, —1.0) in the low-order 4 bits.

Example 3.19

14 0 obj
<< /FunctionType 0
/Domain [-1.0 1.0 -1.0 1.0]
/Size [21 31]
/Encode [0 20 0 30]
/BitsPerSample 4
/Range [-1.0 1.0]
/Decode [-1.0 1.0]
/Length ...
/Filter ...
>>
stream
...651sample values...
endstream
endobj

The Decode entry can be used creatively to increase the accuracy of encoded
samples corresponding to certain values in the range. For example, if the range of
the function is [-1.0 1.0] and BitsPerSample is 4, the usual value of Decode
would be [-1.0 1.0] and the sample values would be integers in the interval
[0 15] (as shown in Figure 3.8). But if these values are used, the midpoint of the
range, 0.0, is not represented exactly by any sample value, since it falls halfway
between 7 and 8. However, if the Decode array is [-1.0 +1.1429] (1.1429 being
approximately equal to 16 + 14) and the sample values supplied are in the interval
[0 14], the effective range of [-1.0 1.0] is achieved, and the range value 0.0 is
represented by the sample value 7.
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The Size value for an input dimension can be 1, in which case all input values in
that dimension will be mapped to the single allowed value. If Size is less than 4,
cubic spline interpolation is not possible and Order 3 will be ignored if specified.

+ 1+ + 1

7 8
Samples

7 8
Samples

/Decode [-1 1] /Decode [-1 1.1429]

FIGURE 3.8 Mapping with the Decode array

3.9.2 Type 2 (Exponential Interpolation) Functions

Type 2 functions (PDF 1.3) include a set of parameters that define an exponential
interpolation of one input value and n output values:

f) = Yoo s Y1

In addition to the entries in Table 3.35 on page 168, a type 2 function dictionary
includes those listed in Table 3.37. (See implementation note 41 in Appendix H.)

TABLE 3.37 Additional entries specific to a type 2 function dictionary
KEY TYPE VALUE

co array (Optional) An array of n numbers defining the function result when x = 0.0. Default value:
[0.0].

al array (Optional) An array of n numbers defining the function result when x = 1.0. Default value:
[1.0].

N number  (Required) The interpolation exponent. Each input value x will return »n values, given by

=0, + N .—CO. <
y;=C0;+x ><(C1J COJ),forO_]<n.

Values of Domain must constrain x in such a way that if N is not an integer, all
values of x must be non-negative, and if N is negative, no value of x may be zero.
Typically, Domain is declared as [0.0 1.0], and N is a positive number. The Range
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attribute is optional and can be used to clip the output to a specified range. Note
that when N is 1, the function performs a linear interpolation between C0 and C1;
therefore, the function can also be expressed as a sampled function (type 0).

3.9.3 Type 3 (Stitching) Functions

Type 3 functions (PDF 1.3) define a stitching of the subdomains of several 1-input
functions to produce a single new 1-input function. Since the resulting stitching
function is a 1-input function, the domain is given by a two-element array,
[Domain, Domain,].

In addition to the entries in Table 3.35 on page 168, a type 3 function dictionary
includes those listed in Table 3.38. (See implementation note 42 in Appendix H.)

TABLE 3.38 Additional entries specific to a type 3 function dictionary

KEY TYPE VALUE

Functions array (Required) An array of k 1-input functions making up the stitching function. The out-
put dimensionality of all functions must be the same, and compatible with the value of
Range if Range is present.

Bounds array (Required) An array of k—1 numbers that, in combination with Domain, define the
intervals to which each function from the Functions array applies. Bounds elements
must be in order of increasing value, and each value must be within the domain
defined by Domain.

Encode array (Required) An array of 2 X k numbers that, taken in pairs, map each subset of the do-
main defined by Domain and the Bounds array to the domain of the corresponding
function.

Domain must be of size 2 (that is, m = 1), and Domain must be strictly less than
Domain, unless k = 1. The domain is partitioned into k subdomains, as indicated
by the dictionary’s Bounds entry, which is an array of k — 1 numbers that obey the
following relationships (with exceptions as noted below):

Domain, < Bounds, < Bounds; <... <Bounds, _, < Domain;

The Bounds array describes a series of half-open intervals, closed on the left and
open on the right (except the last, which is closed on the right as well). The value
of the Functions entry is an array of k functions. The first function applies to x
values in the first subdomain, Domain, <x <Bounds; the second function
applies to x values in the second subdomain, Bounds; < x <Bounds; and so on.
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The last function applies to x values in the last subdomain, which includes the
upper bound: Bounds;_, < x < Domain,. The value of k may be 1, in which case
the Bounds array is empty and the single item in the Functions array applies to all
x values, Domain, < x < Domain, .

The Encode array contains 2 X k numbers. A value x from the ith subdomain is
encoded as follows:

x” = Interpolate (x, Boundsi_ 1’ Boundsi, EncodeZi, Encodezl. n 1)

for 0 <i<k. In this equation, Bounds_; means Domain,, and Bounds;_; means

Domain, . If the last bound, Bounds,_,, is equal to Domain,, then x” is defined to
be Encode,;.

The stitching function is designed to make it easy to combine several functions to
be used within one shading pattern over different parts of the shading’s domain.
(Shading patterns are discussed in Section 4.6.3, “Shading Patterns”) The same
effect could be achieved by creating a separate shading dictionary for each of the
functions, with adjacent domains. However, since each shading would have
similar parameters, and because the overall effect is one shading, it is more con-
venient to have a single shading with multiple function definitions.

Also, type 3 functions provide a general mechanism for inverting the domains of
1-input functions. For example, consider a function f with a Domain of [0.0 1.0]
and a stitching function ¢ with a Domain of [0.0 1.0], a Functions array
containing f, and an Encode array of [1.0 0.0]. In effect, g(x) = f(1 — x).

Type 4 (PostScript Calculator) Functions

A type 4 function (PDF 1.3), also called a PostScript calculator function, is
represented as a stream containing code written in a small subset of the PostScript
language. Although any function can be sampled (in a type 0 PDF function) and
others can be described with exponential functions (type 2 in PDF), type 4
functions offer greater flexibility and potentially greater accuracy. For example, a
tint transformation function for a hexachrome (six-component) DeviceN color
space with an alternate color space of DeviceCMYK (see “DeviceN Color Spaces”
on page 268) requires a 6-in, 4-out function. If such a function were sampled with
m values for each input variable, the number of samples, 4 x m®, could be
prohibitively large. In practice, such functions are often written as short, simple
PostScript functions. (See implementation note 43 in Appendix H.)
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Type 4 functions also make it possible to include a wide variety of halftone spot
functions without the loss of accuracy that comes from sampling, and without
adding to the list of predefined spot functions (see Section 6.4.2, “Spot
Functions”). All of the predefined spot functions can be written as type 4
functions.

The language that can be used in a type 4 function contains expressions involving
integers, real numbers, and boolean values only. There are no composite data
structures such as strings or arrays, no procedures, and no variables or names.
Table 3.39 lists the operators that can be used in this type of function. (For more
information on these operators, see Appendix B of the PostScript Language
Reference, Third Edition.) Although the semantics are those of the corresponding
PostScript operators, a PostScript interpreter is not required.

TABLE 3.39 Operators in type 4 functions

OPERATOR TYPE OPERATORS

Arithmetic operators  abs cvi floor mod sin
add cvr idiv mul sqrt
atan div In neg sub
ceiling exp log round truncate
cos

Relational, boolean, and false le not true

and bitwise operators  bitshift ge It or xor
eq gt ne

Conditional operators if ifelse

Stack operators copy exch pop
dup index roll

The operand syntax for type 4 functions follows PDF conventions rather than
PostScript conventions. The entire code stream defining the function is enclosed
in braces { }. Braces also delimit expressions that are executed conditionally by the
if and ifelse operators:

boolean {expression} if
boolean {expression,} {expression,} ifelse

This construct is purely syntactic; unlike in PostScript, no “procedure objects” are
involved.
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A type 4 function dictionary includes the entries in Table 3.35 on page 168, as
well as other appropriate stream attributes (see Table 3.4 on page 62). Example
3.20 shows a type 4 function equivalent to the predefined spot function
DoubleDot (see Section 6.4.2, “Spot Functions™).

Example 3.20

10 0 obj
<< /FunctionType 4
/Domain [-1.0 1.0 —1.0 1.0]
/Range [-1.0 1.0]
/Length 71
>>
stream
{ 360 mul sin
2 div
exch 360 mul sin
2 div
add
}

endstream
endobj

The Domain and Range entries are both required. The input variables constitute
the initial operand stack; the items remaining on the operand stack after
execution of the function are the output variables. It is an error for the number of
remaining operands to differ from the number of output variables specified by
Range or for any of them to be objects other than numbers.

Implementations of type 4 functions must provide a stack with room for at least
100 entries. No implementation is required to provide a larger stack, and it is an
error to overflow the stack.

Although any integers or real numbers that may appear in the stream fall under
the same implementation limits (defined in Appendix C) as in other contexts, the
intermediate results in type 4 function computations do not. An implementation
may use a representation that exceeds those limits. Operations on real numbers,
for example, might use single-precision or double-precision floating-point
numbers. (See implementation note 44 in Appendix H.)
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Errors in Type 4 Functions

The code that reads a type 4 function (analogous to the PostScript scanner) must
detect and report syntax errors. It may also be able to detect some errors that will
occur when the function is used, although this is not always possible. Any errors
detected by the scanner are considered to be errors in the PDF file and are
handled like other errors in the file.

The code that executes a type 4 function (analogous to the PostScript interpreter)
must detect and report errors. PDF does not define a representation for the
errors; those details are provided by the application that processes the PDF file.
The following types of errors can occur (among others):

e Stack overflow
e Stack underflow
o A type error (for example, applying not to a real number)

¢ A range error (for example, applying sqrt to a negative number)

¢ An undefined result (for example, dividing by 0)

File Specifications

A PDF file can refer to the contents of another file by using a file specification
(PDF 1.1), which can take either of two forms:

o A simple file specification gives just the name of the target file in a standard for-
mat, independent of the naming conventions of any particular file system. It
can take the form of either a string or a dictionary

o A full file specification includes information related to one or more specific file
systems. It can only be represented as a dictionary.

Although the file designated by a file specification is normally external to the
PDF file referring to it, PDF 1.3 permits a copy of the external file to be
embedded within the referring PDF file, allowing its contents to be stored or
transmitted along with the PDF file. However, embedding a file does not change
the presumption that it is external to the PDF file. Consequently, to ensure that
the PDF file can be processed correctly, it may be necessary to copy its embedded
files back into a local file system.
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File Specification Strings

The standard format for representing a simple file specification in string form
divides the string into component substrings separated by the slash character (/).
The slash is a generic component separator that is mapped to the appropriate
platform-specific separator when generating a platform-dependent file name.
Any of the components may be empty. If a component contains one or more
literal slashes, each must be preceded by a backslash (\), which in turn must be
preceded by another backslash to indicate that it is part of the string and not an
escape character. For example, the string

(in\\/out)
represents the file name
in/out

The backslashes are removed in processing the string; they are needed only to
distinguish the component values from the component separators. The
component substrings are stored as bytes and are passed to the operating system
without interpretation or conversion of any sort.

Absolute and Relative File Specifications

A simple file specification that begins with a slash is an absolute file specification.
The last component is the file name; the preceding components specify its
context. In some file specifications, the file name may be empty; for example,
URL (uniform resource locator) specifications can specify directories instead of
files. A file specification that does not begin with a slash is a relative file
specification giving the location of the file relative to that of the PDF file
containing it.

In the case of a URL-based file system, the rules of Internet RFC 1808, Relative
Uniform Resource Locators (see the Bibliography), are used to compute an
absolute URL from a relative file specification and the specification of the PDF
file. Prior to this process, the relative file specification is converted to a relative
URL by using the escape mechanism of RFC 1738, Uniform Resource Locators, to
represent any bytes that would be either unsafe according to RFC 1738 or not
representable in 7-bit U.S. ASCII. In addition, such URL-based relative file
specifications are limited to paths as defined in RFC 1808. The scheme, network
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location/login, fragment identifier, query information, and parameter sections
are not allowed.

In the case of other file systems, a relative file specification is converted to an
absolute file specification by removing the file name component from the
specification of the containing PDF file and appending the relative file
specification in its place. For example, the relative file specification

ArtFiles/Figure1.pdf
appearing in a PDF file whose specification is
/HardDisk/PDFDocuments/AnnualReport/Summary.pdf
yields the absolute specification
/HardDisk/PDFDocuments/AnnualReport/ArtFiles/Figure.pdf

The special component .. (two periods) can be used in a relative file specification
to move up a level in the file system hierarchy. When the component immediately
preceding .. is not another .., the two cancel each other; both are eliminated from
the file specification and the process is repeated. Thus, in the example above, the
relative file specification

../../ ArtFiles/Figure1.pdf
would yield the absolute specification

/HardDisk/ArtFiles/Figurel.pdf

Conversion to Platform-Dependent File Names

The conversion of a file specification to a platform-dependent file name depends
on the specific file naming conventions of each platform:

¢ For DOS, the initial component is either a physical or logical drive identifier or
a network resource name as returned by the Microsoft Windows function
WNetGetConnection, and is followed by a colon (:). A network resource name is
constructed from the first two components; the first component is the server
name and the second is the share name (volume name). All components are
then separated by backslashes. It is possible to specify an absolute DOS path
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without a drive by making the first component empty. (Empty components are
ignored by other platforms.)

e For Mac OS, all components are separated by colons (:).
e For UNIX, all components are separated by slashes (/). An initial slash, if

present, is preserved.

Strings used to specify a file name are interpreted in the standard encoding for
the platform on which the document is being viewed. Table 3.40 shows examples
of file specifications on the most common platforms.

TABLE 3.40 Examples of file specifications

SYSTEM SYSTEM-DEPENDENT PATHS WRITTEN FORM

DOS \pdfdocs\spec.pdf (no drive) (//pdfdocs/spec.pdf)
r:\pdfdocs\spec.pdf (/r/pdfdocs/spec.pdf)
pclib/eng:\pdfdocs\spec.pdf (/pclib/eng/pdfdocs/spec.pdf)

Mac OS Mac HD:PDFDocs:spec.pdf (/Mac HD/PDFDocs/spec.pdf)

UNIX /user/fred/pdfdocs/spec.pdf (/user/fred/pdfdocs/spec.pdf)
pdfdocs/spec.pdf (relative) (pdfdocs/spec.pdf)

When creating documents that are to be viewed on multiple platforms, care must
be taken to ensure file name compatibility. Only a subset of the U.S. ASCII
character set should be used in file specifications: the uppercase alphabetic
characters (A-Z), the numeric characters (0-9), and the underscore (_). The
period (.) has special meaning in DOS and Windows file names, and as the first
character in a Mac OS pathname. In file specifications, the period should be used
only to separate a base file name from a file extension.

Some file systems are case-insensitive, and names within a directory should
remain distinguishable if lowercase letters are changed to uppercase or vice
versa. On DOS and Windows 3.1 systems and on some CD-ROM file systems,
file names are limited to 8 characters plus a 3-character extension. File system
software typically converts long names to short names by retaining the first 6 or
7 characters of the file name and the first 3 characters after the last period, if any.
Since characters beyond the sixth or seventh are often converted to other values
unrelated to the original value, file names must be distinguishable from the first
6 characters.
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Multiple-Byte Strings in File Specifications

In PDF 1.2 or higher, a file specification may contain multiple-byte character
codes, represented in hexadecimal form between angle brackets (< and >). Since
the slash character <2F> is used as a component delimiter and the backslash
<5C> is used as an escape character, any occurrence of either of these bytes in a
multiple-byte character must be preceded by the ASCII code for the backslash
character. For example, a file name containing the 2-byte character code
<89 5C> must write it as <89 5C 5C>. When the application encounters this
sequence of bytes in a file name, it replaces the sequence with the original 2-byte
code.

File Specification Dictionaries

The dictionary form of file specification provides more flexibility than the string
form, allowing different files to be specified for different file systems or
platforms, or for file systems other than the standard ones (DOS/Windows, Mac
OS, and UNIX). Table 3.41 shows the entries in a file specification dictionary.

Regardless of the platform, consumer applications should use the F and
(beginning with PDF 1.7) UF entries to specify files. The UF entry is optional, but
it is also recommended because it enables cross-platform and cross-language
compatibility.

TABLE 3.41 Entries in a file specification dictionary

KEY TYPE VALUE

Type name (Required if an EF or RF entry is present; recommended always) The type of PDF object
that this dictionary describes; must be Filespec for a file specification dictionary (see
implementation note 45 in Appendix H).

FS name (Optional) The name of the file system to be used to interpret this file specification. If

this entry is present, all other entries in the dictionary are interpreted by the desig-
nated file system. PDF defines only one standard file system name, URL (see Section
3.10.4, “URL Specifications”); an application or plug-in extension can register other
names (see Appendix E). This entry is independent of the F, UF, DOS, Mac, and Unix

entries.
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KEY

TYPE

VALUE

UF

DOS

Mac

Unix

string

text string

byte string

byte string

byte string

array

boolean

(Required if the DOS, Mac, and Unix entries are all absent; amended with the UF entry
for PDF 1.7) A file specification string of the form described in Section 3.10.1, “File
Specification Strings,” or (if the file system is URL) a uniform resource locator, as de-
scribed in Section 3.10.4, “URL Specifications.”

Note: It is recommended that the UF entry be used in addition to the F entry. The UF en-
try provides cross-platform and cross-language compatibility and the F entry provides
backwards compatibility.

(Optional, but recommended if the F entry exists in the dictionary; PDF 1.7) A Unicode
text string that provides file specification of the form described in Section 3.10.1, “File
Specification Strings” Note that this is a Unicode text string encoded using PDFDocEn-
coding or UTF-16BE with a leading byte-order marker (as defined in Section , “Text
String Type”). The F entry should always be included along with this entry for back-
wards compatibility reasons.

(Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a DOS file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

(Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a Mac OS file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

(Optional) A file specification string (see Section 3.10.1, “File Specification Strings”)
representing a UNIX file name.

Note: Beginning with PDF 1.7, use of the F entry and optionally the UF entry is recom-
mended in place of the DOS, Mac or Unix entries.

(Optional) An array of two byte strings constituting a file identifier (see Section 10.3,
“File Identifiers”) that is also included in the referenced file. The use of this entry im-
proves an application’s chances of finding the intended file and allows it to warn the
user if the file has changed since the link was made.

(Optional; PDF 1.2) A flag indicating whether the file referenced by the file specifica-
tion is volatile (changes frequently with time). If the value is true, applications should
never cache a copy of the file. For example, a movie annotation referencing a URL to
a live video camera could set this flag to true to notify the application that it should
reacquire the movie each time it is played. Default value: false.
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KEY TYPE VALUE
EF dictionary (Required if RF is present; PDF 1.3; amended to include the UF key in PDF 1.7) A dictio-

nary containing a subset of the keys F, UF, DOS, Mac, and Unix, corresponding to the
entries by those names in the file specification dictionary. The value of each such key
is an embedded file stream (see Section 3.10.3, “Embedded File Streams”) containing
the corresponding file. If this entry is present, the Type entry is required and the file
specification dictionary must be indirectly referenced. (See implementation note 46
in Appendix H.)

Note: It is recommended that the F and UF entries be used in place of the DOS, Mac, or
Unix entries.

RF dictionary (Optional; PDF 1.3) A dictionary with the same structure as the EF dictionary, which
must also be present. Each key in the RF dictionary must also be present in the EF dic-
tionary. Each value is a related files array (see “Related Files Arrays” on page 186)
identifying files that are related to the corresponding file in the EF dictionary. If this
entry is present, the Type entry is required and the file specification dictionary must
be indirectly referenced.

Desc text string (Optional; PDF 1.6) Descriptive text associated with the file specification. It is used
for files in the EmbeddedFiles name tree (see Section 3.6.3, “Name Dictionary”).

al dictionary (Optional; must be indirect reference; PDF 1.7) A collection item dictionary, which is
used to create the user interface for portable collections (see Section 3.10.5, “Collec-
tion Items).

3.10.3 Embedded File Streams

File specifications ordinarily refer to files external to the PDF file in which they
occur. When a PDF file is archived or transmitted, all external files it refers to
must accompany it to preserve the file’s integrity. Embedded file streams (PDF 1.3)
address this problem by allowing the contents of referenced files to be embedded
directly within the body of the PDF file. For example, if the file contains OPI
(Open Prepress Interface) dictionaries that refer to externally stored high-
resolution images (see Section 10.10.6, “Open Prepress Interface (OPI)”), the
image data can be incorporated into the PDF file with embedded file streams.
This makes the PDF file a self-contained unit that can be stored or transmitted as
a single entity. (The embedded files are included purely for convenience and need
not be directly processed by any PDF consumer application.)
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An embedded file stream can be included in a PDF document in the following
ways:

¢ Any file specification dictionary in the document may have an EF entry that

specifies an embedded file stream. The stream data must still be associated with
a location in the file system. In particular, this method is used for file attach-
ment annotations (see “File Attachment Annotations” on page 637), which as-
sociate the embedded file with a location on a page in the document.

e Embedded file streams can be associated with the document as a whole

through the EmbeddedFiles entry (PDF 1.4) in the PDF document’s name dic-
tionary (see Section 3.6.3, “Name Dictionary”). The associated name tree maps
name strings to file specifications that refer to embedded file streams through
their EF entries. (See implementation note 45 in Appendix H.)

Note: Beginning with PDF 1.6, the Desc entry of the file specification dictionary
(see Table 3.41) can be used to provide a textual description of the embedded file,
which can be displayed in the user interface of a viewer application. Previously, it
was necessary to identify document-level embedded files by the name string pro-
vided in the name dictionary associated with an embedded file stream in much
the same way that the JavaScript name tree associates name strings with docu-
ment-level JavaScript actions (see “JavaScript Actions” on page 709).

The stream dictionary describing an embedded file contains the standard entries
for any stream, such as Length and Filter (see Table 3.4 on page 62), as well as the
additional entries shown in Table 3.42.

TABLE 3.42 Additional entries in an embedded file stream dictionary

KEY

TYPE VALUE

Type

Subtype

Params

name (Optional) The type of PDF object that this dictionary describes; if present,

must be EmbeddedFile for an embedded file stream.

name (Optional) The subtype of the embedded file. The value of this entry must be
a first-class name, as defined in Appendix E. Names without a registered pre-
fix must conform to the MIME media type names defined in Internet RFC
2046, Multipurpose Internet Mail Extensions (MIME), Part Two: Media Types
(see the Bibliography), with the provision that characters not allowed in
names must use the 2-character hexadecimal code format described in Sec-

tion 3.2.4, “Name Objects”

dictionary (Optional) An embedded file parameter dictionary containing additional, file-

specific information (see Table 3.43).
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TABLE 3.43 Entries in an embedded file parameter dictionary

KEY TYPE VALUE

Size integer (Optional) The size of the embedded file, in bytes.

CreationDate date (Optional) The date and time when the embedded file was created.

ModDate date (Optional) The date and time when the embedded file was last modified.
Mac dictionary (Optional) A subdictionary containing additional information specific to

Mac OS files (see Table 3.44).

CheckSum string (Optional) A 16-byte string that is the checksum of the bytes of the uncom-
pressed embedded file. The checksum is calculated by applying the standard
MD?5 message-digest algorithm (described in Internet RFC 1321, The MD5
Message-Digest Algorithm; see the Bibliography) to the bytes of the embedded
file stream.

For Mac OS files, the Mac entry in the embedded file parameter dictionary holds
a further subdictionary containing Mac OS-specific file information. Table 3.44
shows the contents of this subdictionary.

TABLE 3.44 Entries in a Mac OS file information dictionary
KEY TYPE VALUE

Subtype integer  (Optional) The embedded file’ file type. It is encoded as an integer according to Mac
OS conventions: a 4-character ASCII text literal, converted to a 32-bit integer, with the
high-order byte first. For example, the file type 'CARO" is represented as the hexadeci-
mal integer 4341524F, which is expressed in decimal as 1128354383.

Creator integer  (Optional) The embedded file’s creator signature, encoded in the same way as Subtype.

ResFork stream (Optional) The binary contents of the embedded file’s resource fork.

Related Files Arrays

In some circumstances, a PDF file can refer to a group of related files, such as the
set of five files that make up a DCS 1.0 color-separated image. The file
specification explicitly names only one of the files; the rest are identified by some
systematic variation of that file name (such as by altering the extension). When
such a file is to be embedded in a PDF file, the related files must be embedded as
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well. This is accomplished by including a related files array (PDF 1.3) as the value
of the RF entry in the file specification dictionary. The array has 2 X n elements,
which are paired in the form

[ string, stream,
string, stream,

string,, stream,,

]

The first element of each pair is a string giving the name of one of the related files;
the second element is an embedded file stream holding the file’s contents.

In Example 3.21, objects 21, 31, and 41 are embedded file streams containing the
DOS file SUNSET.EPS, the Mac OS file Sunset.eps, and the UNIX file Sunset.eps,
respectively. The file specification dictionary’s RF entry specifies an array, object
30, identifying a set of embedded files related to the Mac OS file, forming a
DCS 1.0 set. The example shows only the first two embedded file streams in the
set; an actual PDF file would, of course, include all of them.

Example 3.21

10 0 obj % File specification dictionary
<< /[Type /Filespec
/DOS (SUNSET.EPS)
/Mac (Sunset.eps) % Name of Mac OS file
/Unix (Sunset.eps)
/EF << /DOS 210R

/Mac 310R % Embedded Mac OS file
/Unix 410R
>>
/RF << /Mac 300R >> % Related files array for Mac OS file
>>
endobj
30 0 obj % Related files array for Mac OS file

[ (Sunset.eps) 310R % Includes file Sunset.eps itself
(Sunset.C) 320R

(Sunset.M) 330R

(Sunset.Y) 340R

(Sunset.K) 350R

]

endobj
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31 0 obj % Embedded file stream for Mac OS file
<< /Type /EmbeddedFile % Sunset.eps
/Length ...
[Filter ...
>>
stream
...Data for Sunset.eps...
endstream
endobj

32 0 obj % Embedded file stream for related file
<< /Type /EmbeddedFile % Sunset.C
/Length ...
/Filter ...
>>
stream
...Data for Sunset.C...
endstream
endobj

3.10.4 URL Specifications

When the FS entry in a file specification dictionary has the value URL, the value of
the F entry in that dictionary is not a file specification string, but a uniform
resource locator (URL) of the form defined in Internet RFC 1738, Uniform
Resource Locators (see the Bibliography). Example 3.22 shows a URL
specification.

Example 3.22

<< /FS /URL
/F (ftp://www.beatles.com/Movies/AbbeyRoad.mov)
>>

The URL must adhere to the character-encoding requirements specified in RFC
1738. Because 7-bit U.S. ASCII is a strict subset of PDFDocEncoding, this value
may also be considered to be in that encoding.
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3.10.5 Collection Items

Beginning with PDF 1.7, a collection item dictionary contains the data described
by the collection schema dictionary for a particular file in a collection (see
Section 8.2.4, “Collections). Table 3.45 describes the entries in a collection item

dictionary.
TABLE 3.45 Entries in a collection item dictionary
KEY TYPE VALUE
Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
Collectionltem for a collection item dictionary.

Other text string,  (Optional) Provides the data corresponding to the related fields in the collection dic-

keys date, tionary. If the entry is a dictionary, then it is a collection subitem dictionary (see

chosen by number or  Table 3.46).

d dicti
producer ICHORAY e type of each entry must match the type of data identified by the collection field
dictionary (see Table 8.8 on page 591). For example, if the corresponding collection
field has a Subtype entry of S, then the entry is a text string.
A single collection item dictionary may contain multiple entries, with one entry rep-
resenting each key (see Example 8.3 on page 593).
A collection subitem dictionary provides the data corresponding to the related
fields in the collection dictionary, and it provides a means of associating a prefix
string with that data value. The prefix is ignored by the sorting algorithm.
Table 3.46 describes the entries in a collection subitem dictionary.
TABLE 3.46 Entries in a collection subitem dictionary
KEY TYPE VALUE
Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
CollectionSubitem for a collection item dictionary.

D text string,  (Optional) The data corresponding to the related entry in the collection field dictio-
date, or nary (see Table 8.8 on page 591). The type of data must match the data type identified
number by the collection field dictionary. Default: none.

P text string  (Optional) A prefix string that is concatenated with the text string presented to the

user. This entry is ignored when a PDF viewer application sorts the items in the col-
lection. Default: none.
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3.10.6 Maintenance of File Specifications

The techniques described in this section can be used to maintain the integrity of
the file specifications within a PDF file during the following types of operations:

¢ Updating the relevant file specification when a referenced file is renamed

¢ Determining the complete collection of files that must be copied to a mirror
site

e When creating new links to external files, discovering existing file specifica-
tions that refer to the same files and sharing them

e Finding the file specifications associated with embedded files to be packed or
unpacked

It is not possible, in general, to find all file specification strings in a PDF file
because there is no way to determine whether a given string is a file specification
string. It is possible, however, to find all file specification dictionaries, provided
that they meet the following conditions:

e They are indirect objects.

o They contain a Type entry whose value is the name Filespec.

An application can locate all of the file specification dictionaries by traversing the
PDF file’s cross-reference table (see Section 3.4.3, “Cross-Reference Table”) and
finding all dictionaries with Type keys whose value is Filespec. For this reason, it
is highly recommended that all file specifications be expressed in dictionary form
and meet the conditions stated above. Note that any file specification dictionary
specifying embedded files (that is, one that contains an EF entry) must satisfy
these conditions (see Table 3.41 on page 182).

Note: It may not be possible to locate file specification dictionaries that are direct
objects, since they are neither self-typed nor necessarily reachable by any standard
path of object references.

Files may be embedded in a PDF file either directly, using the EF entry in a file
specification dictionary, or indirectly, using related files arrays specified in the RF
entry. If a file is embedded indirectly, its name is given by the string that precedes
the embedded file stream in the related files array. If it is embedded directly, its
name is obtained from the value of the corresponding entry in the file
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specification dictionary. In Example 3.21 on page 187, for instance, the EF
dictionary has a DOS entry identifying object number 21 as an embedded file
stream. The name of the embedded DOS file, SUNSET.EPS, is given by the DOS
entry in the file specification dictionary.

A given external file may be referenced from more than one file specification.
Therefore, when embedding a file with a given name, it is necessary to check for
other occurrences of the same name as the value associated with the
corresponding key in other file specification dictionaries. This requires finding
all embeddable file specifications and, for each matching key, checking for both
of the following conditions:

e The string value associated with the key matches the name of the file being em-
bedded.

o A value has not already been embedded for the file specification. (If there is
already a corresponding key in the EF dictionary, a file has already been em-
bedded for that use of the file name.)

Note that there is no requirement that the files associated with a given file name
be unique. The same file name, such as readme.txt, may be associated with
different embedded files in distinct file specifications.
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CHAPTER 4

Graphics

The graphics operators used in PDF content streams describe the appearance of
pages that are to be reproduced on a raster output device. The facilities described
in this chapter are intended for both printer and display applications.

The graphics operators form six main groups:

o Graphics state operators manipulate the data structure called the graphics state,
the global framework within which the other graphics operators execute. The
graphics state includes the current transformation matrix (CTM), which maps
user space coordinates used within a PDF content stream into output device
coordinates. It also includes the current color, the current clipping path, and
many other parameters that are implicit operands of the painting operators.

e Path construction operators specify paths, which define shapes, line trajectories,
and regions of various sorts. They include operators for beginning a new path,
adding line segments and curves to it, and closing it.

e Path-painting operators fill a path with a color, paint a stroke along it, or use it
as a clipping boundary.

o Other painting operators paint certain self-describing graphics objects. These
include sampled images, geometrically defined shadings, and entire content
streams that in turn contain sequences of graphics operators.

o Text operators select and show character glyphs from fonts (descriptions of type-
faces for representing text characters). Because PDF treats glyphs as general
graphical shapes, many of the text operators could be grouped with the graph-
ics state or painting operators. However, the data structures and mechanisms
for dealing with glyph and font descriptions are sufficiently specialized that
Chapter 5 focuses on them.
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e Marked-content operators associate higher-level logical information with ob-
jects in the content stream. This information does not affect the rendered ap-
pearance of the content (although it may determine if the content should be
presented at all; see Section 4.10, “Optional Content”); it is useful to applica-
tions that use PDF for document interchange. Marked content is described in
Section 10.5, “Marked Content”

This chapter presents general information about device-independent graphics in
PDF: how a PDF content stream describes the abstract appearance of a page.
Rendering—the device-dependent part of graphics—is covered in Chapter 6. The
Bibliography lists a number of books that give details of these computer graphics
concepts and their implementation.

Graphics Objects

As discussed in Section 3.7.1, “Content Streams,” the data in a content stream is
interpreted as a sequence of operators and their operands, expressed as basic data
objects according to standard PDF syntax. A content stream can describe the
appearance of a page, or it can be treated as a graphical element in certain other
contexts.

The operands and operators are written sequentially using postfix notation.
Although this notation resembles the sequential execution model of the Post-
Script language, a PDF content stream is not a program to be interpreted; rather,
it is a static description of a sequence of graphics objects. There are specific rules,
described below, for writing the operands and operators that describe a graphics
object.

PDF provides five types of graphics objects:

o A path object is an arbitrary shape made up of straight lines, rectangles, and
cubic Bézier curves. A path may intersect itself and may have disconnected
sections and holes. A path object ends with one or more painting operators that
specify whether the path is stroked, filled, used as a clipping boundary, or some
combination of these operations.

e A text object consists of one or more character strings that identify sequences of
glyphs to be painted. Like a path, text can be stroked, filled, or used as a clip-
ping boundary.
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e An external object (XObject) is an object defined outside the content stream
and referenced as a named resource (see Section 3.7.2, “Resource Diction-
aries”). The interpretation of an XObject depends on its type. An image XOb-
ject defines a rectangular array of color samples to be painted; a form XObject is
an entire content stream to be treated as a single graphics object. Specialized
types of form XObjects are used to import content from one PDF file into an-
other (reference XObjects) and to group graphical elements together as a unit
for various purposes (group XObjects). In particular, the latter are used to de-
fine transparency groups for use in the transparent imaging model (transparen-
cy group XObjects, discussed in detail in Chapter 7). There is also a PostScript
XObject, whose use is discouraged.

o An inline image object uses a special syntax to express the data for a small image
directly within the content stream.

o A shading object describes a geometric shape whose color is an arbitrary func-
tion of position within the shape. (A shading can also be treated as a color
when painting other graphics objects; it is not considered to be a separate
graphics object in that case.)

PDF 1.3 and earlier versions use an opaque imaging model in which each graphics
object is painted in sequence, completely obscuring any previous marks it may
overlay on the page. PDF 1.4 introduces a transparent imaging model in which ob-
jects can be less than fully opaque, allowing previously painted marks to show
through. Each object is painted on the page with a specified opacity, which may
be constant at every point within the object’s shape or may vary from point to
point. The previously existing contents of the page form a backdrop with which
the new object is composited, producing results that combine the colors of the
object and backdrop according to their respective opacity characteristics. The ob-
jects at any given point on the page can be thought of as forming a transparency
stack, where the stacking order is defined to be the order in which the objects are
specified, bottommost object first. All objects in the stack can potentially contrib-
ute to the result, depending on their colors, shapes, and opacities.

PDF’s graphics parameters are so arranged that objects are painted by default
with full opacity, reducing the behavior of the transparent imaging model to that
of the opaque model. Accordingly, the material in this chapter applies to both the
opaque and transparent models except where explicitly stated otherwise; the
transparent model is described in its full generality in Chapter 7.
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Although the painting behavior described above is often attributed to individual
operators making up an object, it is always the object as a whole that is painted.
Figure 4.1 shows the ordering rules for the operations that define graphics
objects. Some operations are permitted only in certain types of graphics objects
or in the intervals between graphics objects (called the page description level in
the figure). Every content stream begins at the page description level, where
changes can be made to the graphics state, such as colors and text attributes, as

discussed in the following sections.

In the figure, arrows indicate the operators that mark the beginning or end of
each type of graphics object. Some operators are identified individually, others by

general category. Table 4.1 summarizes these categories for all PDF operators.

TABLE 4.1 Operator categories

CATEGORY OPERATORS TABLE PAGE
General graphics state w, J,j, M, d,ri, i,gs 4.7 219
Special graphics state g,Q cm 4.7 219
Path construction m,l,c,v,y, h, re 4.9 226
Path painting S, s, f, F, f*, B, B*, b, b*, n 4.10 230
Clipping paths W, W# 4.11 235
Text objects BT, ET 5.4 405
Text state Tc, Tw, Tz, TL, Tf, Tr, Ts 5.2 398
Text positioning Td, TD, Tm, T* 5.5 406
Text showing Tj, T),%" 5.6 407
Type 3 fonts do, d1 5.10 423
Color CS, cs, SC, SCN, sc, sen, G, g, RG, rg, K, k.~ 4.24 287
Shading patterns sh 4.27 303
Inline images BI, ID, EI 4.42 352
XObjects Do 4.37 332
Marked content MP, DP, BMC, BDC, EMC 10.7 851
Compatibility BX, EX 3.29 152




| SECTION 4.1 | Graphics Objects |
Path object Text object
Allowed operators: Allowed operators:
« Path construction « General graphics state
« Color

« Text state

« Text-showing

« Text-positioning
> « Marked-content

A
A

W, W# Path-painting m, re BT ET
operators
\d
Clipping path object > Page description level [ Shading object
Allowed operators: Allowed operators: sh Allowed operators:
« None Path-painting - General graphics state > . None
operators « Special graphics state
+ Color (immediate)
- Text state <
+ Marked-content
> ~
El BI Do (immediate)
In-line image object External object
gl | -
Allowed operators: - o Allowed operators:
. ID - None

FIGURE 4.1 Graphics objects
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For example, the path construction operators m and re signal the beginning of a
path object. Inside the path object, additional path construction operators are
permitted, as are the clipping path operators W and W*, but not general graphics
state operators such as w or J. A path-painting operator, such as S or f, ends the
path object and returns to the page description level.

Note: A content stream whose operations violate these rules for describing graphics
objects can produce unpredictable behavior, even though it may display and print
correctly. Applications that attempt to extract graphics objects for editing or other
purposes depend on the objects’ being well formed. The rules for graphics objects are
also important for the proper interpretation of marked content (see Section 10.5,
“Marked Content”).

A graphics object also implicitly includes all graphics state parameters that affect
its behavior. For instance, a path object depends on the value of the current color
parameter at the moment the path object is defined. The effect is as if this param-
eter were specified as part of the definition of the path object. However, the oper-
ators that are invoked at the page description level to set graphics state
parameters are not considered to belong to any particular graphics object. Graph-
ics state parameters need to be specified only when they change. A graphics
object may depend on parameters that were defined much earlier.

Similarly, the individual character strings within a text object implicitly include
the graphics state parameters on which they depend. Most of these parameters
may be set inside or outside the text object. The effect is as if they were separately
specified for each text string.

The important point is that there is no semantic significance to the exact arrange-
ment of graphics state operators. An application that reads and writes a PDF con-
tent stream is not required to preserve this arrangement, but is free to change it to
any other arrangement that achieves the same values of the relevant graphics state
parameters for each graphics object. An application should not infer any higher-
level logical semantics from the arrangement of tokens constituting a graphics
object. A separate mechanism, marked content (see Section 10.5, “Marked Con-
tent”), allows such higher-level information to be explicitly associated with the
graphics objects.



SECTION 4.2 | Coordinate Systems

4.2 Coordinate Systems

4.2.1

Coordinate systems define the canvas on which all painting occurs. They deter-
mine the position, orientation, and size of the text, graphics, and images that
appear on a page. This section describes each of the coordinate systems used in
PDF, how they are related, and how transformations among them are specified.

Note: The coordinate systems discussed in this section apply to two-dimensional
graphics. PDF 1.6 introduces the ability to display 3D artwork, in which objects are
described in a three-dimensional coordinate system, as described in Section 9.5.4,
“Coordinate Systems for 3D.”

Coordinate Spaces

Paths and positions are defined in terms of pairs of coordinates on the Cartesian
plane. A coordinate pair is a pair of real numbers x and y that locate a point hori-
zontally and vertically within a two-dimensional coordinate space. A coordinate
space is determined by the following properties with respect to the current page:

¢ The location of the origin
e The orientation of the x and y axes

¢ The lengths of the units along each axis

PDF defines several coordinate spaces in which the coordinates specifying graph-
ics objects are interpreted. The following sections describe these spaces and the
relationships among them.

Transformations among coordinate spaces are defined by transformation matri-
ces, which can specify any linear mapping of two-dimensional coordinates, in-
cluding translation, scaling, rotation, reflection, and skewing. Transformation
matrices are discussed in Sections 4.2.2, “Common Transformations,” and 4.2.3,
“Transformation Matrices”

Device Space

The contents of a page ultimately appear on a raster output device such as a dis-
play or a printer. Such devices vary greatly in the built-in coordinate systems they
use to address pixels within their imageable areas. A particular device’s coordi-
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nate system is called its device space. The origin of the device space on different
devices can fall in different places on the output page; on displays, the origin can
vary depending on the window system. Because the paper or other output me-
dium moves through different printers and imagesetters in different directions,
the axes of their device spaces may be oriented differently. For instance, vertical
(y) coordinates may increase from the top of the page to the bottom on some
devices and from bottom to top on others. Finally, different devices have different
resolutions; some even have resolutions that differ in the horizontal and vertical
directions.

If coordinates in a PDF file were specified in device space, the file would be
device-dependent and would appear differently on different devices. For exam-
ple, images specified in the typical device spaces of a 72-pixel-per-inch display
and a 600-dot-per-inch printer would differ in size by more than a factor of 8; an
8-inch line segment on the display would appear less than 1 inch long on the
printer. Figure 4.2 shows how the same graphics object, specified in device space,
can appear drastically different when rendered on different output devices.

| | |
1A

p
L]

Device space for Device space for
72-dpi screen 300-dpi printer

FIGURE 4.2 Device space

User Space

To avoid the device-dependent effects of specifying objects in device space, PDF
defines a device-independent coordinate system that always bears the same rela-
tionship to the current page, regardless of the output device on which printing or
displaying occurs. This device-independent coordinate system is called user
space.
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The user space coordinate system is initialized to a default state for each page of a
document. The CropBox entry in the page dictionary specifies the rectangle of
user space corresponding to the visible area of the intended output medium (dis-
play window or printed page). The positive x axis extends horizontally to the
right and the positive y axis vertically upward, as in standard mathematical prac-
tice (subject to alteration by the Rotate entry in the page dictionary). The length
of a unit along both the x and y axes is set by the UserUnit entry (PDF 1.6) in the
page dictionary (see Table 3.27). If that entry is not present or supported, the de-
fault value of 1/72 inch is used. This coordinate system is called default user space.

Note: In PostScript, the origin of default user space always corresponds to the lower-
left corner of the output medium. While this convention is common in PDF docu-
ments as well, it is not required; the page dictionary’s CropBox entry can specify any
rectangle of default user space to be made visible on the medium.

Note: The default for the size of the unit in default user space (172 inch) is approx-
imately the same as a point, a unit widely used in the printing industry. It is not ex-
actly the same, however; there is no universal definition of a point.

Conceptually, user space is an infinite plane. Only a small portion of this plane
corresponds to the imageable area of the output device: a rectangular region de-
fined by the CropBox entry in the page dictionary. The region of default user
space that is viewed or printed can be different for each page and is described in
Section 10.10.1, “Page Boundaries.”

Note: Because coordinates in user space (as in any other coordinate space) may be
specified as either integers or real numbers, the unit size in default user space does
not constrain positions to any arbitrary grid. The resolution of coordinates in user
space is not related in any way to the resolution of pixels in device space.

The transformation from user space to device space is defined by the current
transformation matrix (CTM), an element of the PDF graphics state (see Section
4.3, “Graphics State”). A PDF consumer application can adjust the CTM for the
native resolution of a particular output device, maintaining the device-
independence of the PDF page description. Figure 4.3 shows how this allows an
object specified in user space to appear the same regardless of the device on
which it is rendered.

The default user space provides a consistent, dependable starting place for PDF
page descriptions regardless of the output device used. If necessary, a PDF con-
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tent stream may modify user space to be more suitable to its needs by applying
the coordinate transformation operator, cm (see Section 4.3.3, “Graphics State Op-
erators”). Thus, what may appear to be absolute coordinates in a content stream
are not absolute with respect to the current page because they are expressed in a
coordinate system that may slide around and shrink or expand. Coordinate sys-
tem transformation not only enhances device-independence but is a useful tool
in its own right. For example, a content stream originally composed to occupy an
entire page can be incorporated without change as an element of another page by
shrinking the coordinate system in which it is drawn.

| B |
1 8}

Device space for
72-dpi screen

| B By
1 § |

User space

Device space for
300-dpi printer

FIGURE 4.3 User space
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Other Coordinate Spaces

In addition to device space and user space, PDF uses a variety of other coordinate
spaces for specialized purposes:

o The coordinates of text are specified in fext space. The transformation from text
space to user space is defined by a text matrix in combination with several text-
related parameters in the graphics state (see Section 5.3.1, “Text-Positioning
Operators”).

o Character glyphs in a font are defined in glyph space (see Section 5.1.3, “Glyph
Positioning and Metrics”). The transformation from glyph space to text space
is defined by the font matrix. For most types of fonts, this matrix is predefined
to map 1000 units of glyph space to 1 unit of text space; for Type 3 fonts, the
font matrix is given explicitly in the font dictionary (see Section 5.5.4, “Type 3
Fonts”).

o All sampled images are defined in image space. The transformation from image
space to user space is predefined and cannot be changed. All images are 1 unit
wide by 1 unit high in user space, regardless of the number of samples in the
image. To be painted, an image is mapped to a region of the page by temporari-
ly altering the CTM.

Note: In PostScript, unlike PDE, the relationship between image space and user
space can be specified explicitly. The fixed transformation prescribed in PDF cor-
responds to the convention that is recommended for use in PostScript.

¢ A form XObject (discussed in Section 4.9, “Form XObjects”) is a self-contained
content stream that can be treated as a graphical element within another con-
tent stream. The space in which it is defined is called form space. The transfor-
mation from form space to user space is specified by a form matrix contained
in the form XObject.

e PDF 1.2 defines a type of color known as a pattern, discussed in Section 4.6,
“Patterns” A pattern is defined either by a content stream that is invoked
repeatedly to tile an area or by a shading whose color is a function of position.
The space in which a pattern is defined is called pattern space. The transforma-
tion from pattern space to user space is specified by a pattern matrix contained
in the pattern.

e PDF 1.6 introduces embedded 3D artwork, which is described in three-dimen-
sional coordinates (see Section 9.5.4, “Coordinate Systems for 3D”) that are
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projected into an annotation’s target coordinate system (see Section 9.5.1, “3D
Annotations”).

Relationships among Coordinate Spaces

Figure 4.4 shows the relationships among the coordinate spaces described above.
Each arrow in the figure represents a transformation from one coordinate space
to another. PDF allows modifications to many of these transformations.

Because PDF coordinate spaces are defined relative to one another, changes made
to one transformation can affect the appearance of objects defined in several
coordinate spaces. For example, a change in the CTM, which defines the trans-
formation from user space to device space, affects forms, text, images, and pat-
terns, since they are all upstream from user space.

4.2.2 Common Transformations

A transformation matrix specifies the relationship between two coordinate spac-
es. By modifying a transformation matrix, objects can be scaled, rotated, translat-
ed, or transformed in other ways.

Form
space

Glyph Text
space space

User Device
space space

Image
space

o

Pattern
space

FIGURE 4.4 Relationships among coordinate systems
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A transformation matrix in PDF is specified by six numbers, usually in the form
of an array containing six elements. In its most general form, this array is denoted
[a b ¢ d e f]; it can represent any linear transformation from one coordinate
system to another. This section lists the arrays that specify the most common
transformations; Section 4.2.3, “Transformation Matrices,” discusses more math-
ematical details of transformations, including information on specifying transfor-
mations that are combinations of those listed here:

e Translations are specified as[1 0 0 1 ¢, ty], where t, and t, are the distances
to translate the origin of the coordinate system in the horizontal and vertical
dimensions, respectively.

e Scaling is obtained by [s, 0 0 s, 0 0]. This scales the coordinates so that 1
unit in the horizontal and vertical dimensions of the new coordinate system is
the same size as s, and oy units, respectively, in the previous coordinate system.

¢ Rotations are produced by [cos & sin € —sin @ cos € 0 0], which has the effect
of rotating the coordinate system axes by an angle @ counterclockwise.

e Skew is specified by [1 tan & tan # 1 0 0], which skews the x axis by an angle
o and the y axis by an angle A

Figure 4.5 shows examples of each transformation. The directions of translation,
rotation, and skew shown in the figure correspond to positive values of the array
elements.

Translation Scaling Rotation Skewing

FIGURE 4.5 Effects of coordinate transformations
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If several transformations are combined, the order in which they are applied is
significant. For example, first scaling and then translating the x axis is not the
same as first translating and then scaling it. In general, to obtain the expected
results, transformations should be done in the following order:

1. Translate

2. Rotate
3. Scale or skew
Figure 4.6 shows the effect of the order in which transformations are applied. The

figure shows two sequences of transformations applied to a coordinate system.
After each successive transformation, an outline of the letter n is drawn.

Original Step 1: Translation Step 2: Rotation Step 3: Scaling

<
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! ! < —_ ~
' ' N — ~
' ' ~ ~

------ 1 1 - - ~
' ' P SO
' ' N
' '
'

Original Step 1: Scaling Step 2: Rotation Step 3: Translation

FIGURE 4.6 Effect of transformation order
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The following transformations are shown in the figure:

e A translation of 10 units in the x direction and 20 units in the y direction
¢ A rotation of 30 degrees

e A scaling by a factor of 3 in the x direction

In the figure, the axes are shown with a dash pattern having a 2-unit dash and a
2-unit gap. In addition, the original (untransformed) axes are shown in a lighter
color for reference. Notice that the scale-rotate-translate ordering results in a
distortion of the coordinate system, leaving the x and y axes no longer perpendic-
ular; the recommended translate-rotate-scale ordering results in no distortion.

4.2.3 Transformation Matrices

This section discusses the mathematics of transformation matrices. It is not
necessary to read this section to use the transformations described previously;
the information is presented for the benefit of readers who want to gain a deeper
understanding of the theoretical basis of coordinate transformations.

To understand the mathematics of coordinate transformations in PDF it is vital
to remember two points:

o Transformations alter coordinate systems, not graphics objects. All objects paint-
ed before a transformation is applied are unaffected by the transformation. Ob-
jects painted after the transformation is applied are interpreted in the
transformed coordinate system.

o Transformation matrices specify the transformation from the new (transformed)
coordinate system to the original (untransformed) coordinate system. All coor-
dinates used after the transformation are expressed in the transformed coordi-
nate system. PDF applies the transformation matrix to find the equivalent
coordinates in the untransformed coordinate system.

Note: Many computer graphics textbooks consider transformations of graphics ob-
jects rather than of coordinate systems. Although either approach is correct and self-
consistent, some details of the calculations differ depending on which point of view
is taken.
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PDF represents coordinates in a two-dimensional space. The point (x, y) in such
a space can be expressed in vector form as [x y 1]. The constant third element of
this vector (1) is needed so that the vector can be used with 3-by-3 matrices in the
calculations described below.

The transformation between two coordinate systems is represented by a 3-by-3
transformation matrix written as follows:

a

Q O
- o O

b
d
f

Because a transformation matrix has only six elements that can be changed, it is
usually specified in PDF as the six-element array [a b ¢ d e f].

Coordinate transformations are expressed as matrix multiplications:

[x"y 1] =[xy 1] X

N o

~~ a -
- o O

Because PDF transformation matrices specify the conversion from the trans-
formed coordinate system to the original (untransformed) coordinate system, x”
and y” in this equation are the coordinates in the untransformed coordinate sys-
tem, and x and y are the coordinates in the transformed system. The multiplica-
tion is carried out as follows:

4

X" =axXxtcXyte
Yy =bxx+dxy+f

If a series of transformations is carried out, the matrices representing each of the
individual transformations can be multiplied together to produce a single equiva-
lent matrix representing the composite transformation.

Matrix multiplication is not commutative—the order in which matrices are mul-
tiplied is significant. Consider a sequence of two transformations: a scaling trans-
formation applied to the user space coordinate system, followed by a conversion
from the resulting scaled user space to device space. Let Mg be the matrix specify-
ing the scaling and M- the current transformation matrix, which transforms user
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space to device space. Recalling that coordinates are always specified in the trans-
formed space, the correct order of transformations must first convert the scaled
coordinates to default user space and then the default user space coordinates to
device space. This can be expressed as

Xp = XyxMc = (XS><MS)><MC = XSx(MSxMC)

where
X[, denotes the coordinates in device space
X, denotes the coordinates in default user space

Xg denotes the coordinates in scaled user space

This shows that when a new transformation is concatenated with an existing one,
the matrix representing it must be multiplied before (premultiplied with) the
existing transformation matrix.

This result is true in general for PDF: when a sequence of transformations is car-
ried out, the matrix representing the combined transformation (M) is calculated
by premultiplying the matrix representing the additional transformation (M)
with the one representing all previously existing transformations (M):

M = MpxM

Note: When rendering graphics objects, it is sometimes necessary for an application
to perform the inverse of a transformation—that is, to find the user space coordi-
nates that correspond to a given pair of device space coordinates. Not all transfor-
mations are invertible, however. For example, if a matrix contains a, b, ¢, and d
elements that are all zero, all user coordinates map to the same device coordinates
and there is no unique inverse transformation. Such noninvertible transformations
are not very useful and generally arise from unintended operations, such as scaling
by 0. Use of a noninvertible matrix when painting graphics objects can result in un-
predictable behavior.
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4.3 Graphics State

A PDF consumer application maintains an internal data structure called the
graphics state that holds current graphics control parameters. These parameters
define the global framework within which the graphics operators execute. For ex-
ample, the f (fill) operator implicitly uses the current color parameter, and the S
(stroke) operator additionally uses the current line width parameter from the
graphics state.

The graphics state is initialized at the beginning of each page with the values
specified in Tables 4.2 and 4.3. Table 4.2 lists those graphics state parameters that
are device-independent and are appropriate to specify in page descriptions. The
parameters listed in Table 4.3 control details of the rendering (scan conversion)
process and are device-dependent; a page description that is intended to be de-
vice-independent should not modify these parameters.

TABLE 4.2 Device-independent graphics state parameters

PARAMETER TYPE VALUE

CTM

clipping path (internal) The current clipping path, which defines the boundary against
ping Path
Operators”). Initial value: the boundary of the entire imageable

color space name or array The current color space in which color values are to be interpreted
(see Section 4.5, “Color Spaces”). There are two separate color space
parameters: one for stroking and one for all other painting opera-

color

array The current transformation matrix, which maps positions from user
coordinates to device coordinates (see Section 4.2, “Coordinate Sys-
tems”). This matrix is modified by each application of the coordi-
nate transformation operator, cm. Initial value: a matrix that

transforms default user coordinates to device coordinates.

which all output is to be cropped (see Section 4.4.3, “Clip

portion of the output page.

tions. Initial value: DeviceGray.

(various) The current color to be used during painting operations (see Section
4.5, “Color Spaces”). The type and interpretation of this parameter
depend on the current color space; for most color spaces, a color
value consists of one to four numbers. There are two separate color
parameters: one for stroking and one for all other painting opera-

tions. Initial value: black.
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VALUE

I SECTION 4.3
PARAMETER TYPE
text state (various)
line width number
line cap integer
line join integer

miter limit

dash pattern

rendering intent

stroke adjustment

blend mode

number

array and number

name

boolean

name or array

A set of nine graphics state parameters that pertain only to the
painting of text. These include parameters that select the font, scale
the glyphs to an appropriate size, and accomplish other effects. The
text state parameters are described in Section 5.2, “Text State
Parameters and Operators.”

The thickness, in user space units, of paths to be stroked (see “Line
Width” on page 215). Initial value: 1.0.

A code specifying the shape of the endpoints for any open path that
is stroked (see “Line Cap Style” on page 216). Initial value: 0, for
square butt caps.

A code specifying the shape of joints between connected segments
of a stroked path (see “Line Join Style” on page 216). Initial value: 0,
for mitered joins.

The maximum length of mitered line joins for stroked paths (see
“Miter Limit” on page 217). This parameter limits the length of
“spikes” produced when line segments join at sharp angles. Initial
value: 10.0, for a miter cutoff below approximately 11.5 degrees.

A description of the dash pattern to be used when paths are stroked
(see “Line Dash Pattern” on page 217). Initial value: a solid line.

The rendering intent to be used when converting CIE-based colors
to device colors (see “Rendering Intents” on page 260). Initial value:
RelativeColorimetric.

(PDF 1.2) A flag specifying whether to compensate for possible ras-
terization effects when stroking a path with a line width that is
small relative to the pixel resolution of the output device (see Sec-
tion 6.5.4, “Automatic Stroke Adjustment”). Note that this is consid-
ered a device-independent parameter, even though the details of its
effects are device-dependent. Initial value: false.

(PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Speci-
fying Blending Color Space and Blend Mode”). This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: Normal.
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PARAMETER TYPE VALUE
soft mask dictionary (PDF 1.4) A soft-mask dictionary (see “Soft-Mask Dictionaries” on
or name page 552) specifying the mask shape or mask opacity values to be

alpha constant

alpha source

number

boolean

used in the transparent imaging model (see “Source Shape and
Opacity” on page 526 and “Mask Shape and Opacity” on page 550),
or the name None if no such mask is specified. This parameter is
implicitly reset to its initial value at the beginning of execution of a
transparency group XObject (see Section 7.5.5, “Transparency
Group XObjects”). Initial value: None.

(PDF 1.4) The constant shape or constant opacity value to be used
in the transparent imaging model (see “Source Shape and Opacity”
on page 526 and “Constant Shape and Opacity” on page 551). There
are two separate alpha constant parameters: one for stroking and
one for all other painting operations. This parameter is implicitly
reset to its initial value at the beginning of execution of a transpar-
ency group XObject (see Section 7.5.5, “Transparency Group
XObjects”). Initial value: 1.0.

(PDF 1.4) A flag specifying whether the current soft mask and al-
pha constant parameters are to be interpreted as shape values (true)
or opacity values (false). This flag also governs the interpretation of
the SMask entry, if any, in an image dictionary (see Section 4.8.4,
“Image Dictionaries”). Initial value: false.

TABLE 4.3 Device-dependent graphics state parameters

PARAMETER

TYPE

VALUE

overprint

overprint mode

boolean

number

(PDF 1.2) A flag specifying (on output devices that support the
overprint control feature) whether painting in one set of colorants
should cause the corresponding areas of other colorants to be
erased (false) or left unchanged (true); see Section 4.5.6, “Overprint
Control” In PDF 1.3, there are two separate overprint parameters:
one for stroking and one for all other painting operations. Initial
value: false.

(PDF 1.3) A code specifying whether a color component value of 0
in a DeviceCMYK color space should erase that component (0) or
leave it unchanged (1) when overprinting (see Section 4.5.6, “Over-
print Control”). Initial value: 0.
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PARAMETER TYPE VALUE
black generation function or name (PDF 1.2) A function that calculates the level of the black color

undercolor removal

transfer

halftone

flatness

smoothness

function or name

function,
array, or name

dictionary,

stream, or name

number

number

component to use when converting RGB colors to CMYK (see Sec-
tion 6.2.3, “Conversion from DeviceRGB to DeviceCMYK?”). Initial
value: installation-dependent.

(PDF 1.2) A function that calculates the reduction in the levels of
the cyan, magenta, and yellow color components to compensate for
the amount of black added by black generation (see Section 6.2.3,
“Conversion from DeviceRGB to DeviceCMYK?”). Initial value: in-
stallation-dependent.

(PDF 1.2) A function that adjusts device gray or color component
levels to compensate for nonlinear response in a particular output
device (see Section 6.3, “Transfer Functions”). Initial value:
installation-dependent.

(PDF 1.2) A halftone screen for gray and color rendering, specified
as a halftone dictionary or stream (see Section 6.4, “Halftones”).
Initial value: installation-dependent.

The precision with which curves are to be rendered on the output
device (see Section 6.5.1, “Flatness Tolerance”). The value of this
parameter gives the maximum error tolerance, measured in output
device pixels; smaller numbers give smoother curves at the expense
of more computation and memory use. Initial value: 1.0.

(PDF 1.3) The precision with which color gradients are to be ren-
dered on the output device (see Section 6.5.2, “Smoothness Toler-
ance”). The value of this parameter gives the maximum error
tolerance, expressed as a fraction of the range of each color compo-
nent; smaller numbers give smoother color transitions at the
expense of more computation and memory use. Initial value:
installation-dependent.

Some graphics state parameters are set with specific PDF operators, some are set
by including a particular entry in a graphics state parameter dictionary, and some
can be specified either way. The current line width, for example, can be set either
with the w operator or (in PDF 1.3) with the LW entry in a graphics state parame-
ter dictionary, whereas the current color is set only with specific operators, and
the current halftone is set only with a graphics state parameter dictionary. It is
expected that all future graphics state parameters will be specified with new
entries in the graphics state parameter dictionary rather than with new operators.
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In general, the operators that set graphics state parameters simply store them un-
changed for later use by the painting operators. However, some parameters have
special properties or behavior:

e Most parameters must be of the correct type or have values that fall within a
certain range.

e Parameters that are numeric values, such as the current color, line width, and
miter limit, are forced into valid range, if necessary. However, they are not ad-
justed to reflect capabilities of the raster output device, such as resolution or
number of distinguishable colors. Painting operators perform such adjust-
ments, but the adjusted values are not stored back into the graphics state.

e Paths are internal objects that are not directly represented in PDE

Note: As indicated in Tables 4.2 and 4.3, some of the parameters—color space, color,
and overprint—have two values, one used for stroking (of paths and text objects)
and one for all other painting operations. The two parameter values can be set inde-
pendently, allowing for operations such as combined filling and stroking of the same
path with different colors. Except where noted, a term such as current color should
be interpreted to refer to whichever color parameter applies to the operation being
performed. When necessary, the individual color parameters are distinguished ex-
plicitly as the stroking color and the nonstroking color.

Graphics State Stack

A well-structured PDF document typically contains many graphical elements
that are essentially independent of each other and sometimes nested to multiple
levels. The graphics state stack allows these elements to make local changes to the
graphics state without disturbing the graphics state of the surrounding environ-
ment. The stack is a LIFO (last in, first out) data structure in which the contents
of the graphics state can be saved and later restored using the following operators:

¢ The q operator pushes a copy of the entire graphics state onto the stack.

¢ The Q operator restores the entire graphics state to its former value by popping
it from the stack.
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These operators can be used to encapsulate a graphical element so that it can
modify parameters of the graphics state and later restore them to their previous
values. Occurrences of the q and Q operators must be balanced within a given
content stream (or within the sequence of streams specified in a page dictionary’s
Contents array).

Details of Graphics State Parameters

This section gives details of several of the device-independent graphics state pa-
rameters listed in Table 4.2.

Line Width

The line width parameter specifies the thickness of the line used to stroke a path.
It is a non-negative number expressed in user space units; stroking a path entails
painting all points whose perpendicular distance from the path in user space is
less than or equal to half the line width. The effect produced in device space
depends on the current transformation matrix (CTM) in effect at the time the
path is stroked. If the CTM specifies scaling by different factors in the horizontal
and vertical dimensions, the thickness of stroked lines in device space will vary
according to their orientation. The actual line width achieved can differ from the
requested width by as much as 2 device pixels, depending on the positions of lines
with respect to the pixel grid. Automatic stroke adjustment can be used to ensure
uniform line width; see Section 6.5.4, “Automatic Stroke Adjustment”

A line width of 0 denotes the thinnest line that can be rendered at device resolu-
tion: 1 device pixel wide. However, some devices cannot reproduce 1-pixel lines,
and on high-resolution devices, they are nearly invisible. Since the results of ren-
dering such zero-width lines are device-dependent, their use is not recommend-

ed.
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Line Cap Style

The line cap style specifies the shape to be used at the ends of open subpaths (and
dashes, if any) when they are stroked. Table 4.4 shows the possible values.

TABLE 4.4 Line cap styles

STYLE APPEARANCE DESCRIPTION
0 U Butt cap. The stroke is squared off at the endpoint of the path. There is no
SR projection beyond the end of the path.
1 — Round cap. A semicircular arc with a diameter equal to the line width is
drawn around the endpoint and filled in.
2 _ Projecting square cap. The stroke continues beyond the endpoint of the path
for a distance equal to half the line width and is squared off.
Line Join Style
The line join style specifies the shape to be used at the corners of paths that are
stroked. Table 4.5 shows the possible values. Join styles are significant only at
points where consecutive segments of a path connect at an angle; segments that
meet or intersect fortuitously receive no special treatment.
TABLE 4.5 Line join styles
STYLE APPEARANCE DESCRIPTION
0 Miter join. The outer edges of the strokes for the two segments are extended

until they meet at an angle, as in a picture frame. If the segments meet at too
sharp an angle (as defined by the miter limit parameter—see “Miter Limit,
above), a bevel join is used instead.

Round join. An arc of a circle with a diameter equal to the line width is drawn
around the point where the two segments meet, connecting the outer edges of
the strokes for the two segments. This pieslice-shaped figure is filled in, pro-
ducing a rounded corner.

Bevel join. The two segments are finished with butt caps (see “Line Cap Style”
on page 216) and the resulting notch beyond the ends of the segments is filled
with a triangle.

555
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Note: The definition of round join was changed in PDF 1.5. In rare cases, the imple-
mentation of the previous specification could produce unexpected results.

Miter Limit

When two line segments meet at a sharp angle and mitered joins have been spec-
ified as the line join style, it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miter limit imposes a maximum on
the ratio of the miter length to the line width (see Figure 4.7). When the limit is
exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle @ between
the segments in user space by the following formula:

miterLength _ 1
lineWidth i, ( Sé’)
2

For example, a miter limit of 1.414 converts miters to bevels for ¢ less than 90
degrees, a limit of 2.0 converts them for @less than 60 degrees, and a limit of 10.0
converts them for @less than approximately 11.5 degrees.

Line width

FIGURE 4.7 Miter length

Line Dash Pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
It is specified by a dash array and a dash phase. The dash array’s elements are
numbers that specify the lengths of alternating dashes and gaps; the numbers
must be nonnegative and not all zero. The dash phase specifies the distance into
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the dash pattern at which to start the dash. The elements of both the dash array
and the dash phase are expressed in user space units.

Before beginning to stroke a path, the dash array is cycled through, adding up the
lengths of dashes and gaps. When the accumulated length equals the value speci-
fied by the dash phase, stroking of the path begins, and the dash array is used cy-
clically from that point onward. Table 4.6 shows examples of line dash patterns.
As can be seen from the table, an empty dash array and zero phase can be used to
restore the dash pattern to a solid line.

TABLE 4.6 Examples of line dash patterns

DASH ARRAY APPEARANCE DESCRIPTION

AND PHASE

(10 B o dash; solid, unbroken lines
(310 B B B 3unitson,3unitsoff, ...

[21 1 H B B B 1on2off,2on,20ff ...
2110 B B B B B 2onloff,2on1off ...

[3 516 CNEEEEEEE 20ff30n,50ff 3 0n, 5 off, ..
[2 3] 11 B BN EE | lon3off2on3off2on,...

Dashed lines wrap around curves and corners just as solid stroked lines do. The
ends of each dash are treated with the current line cap style, and corners within
dashes are treated with the current line join style. A stroking operation takes no
measures to coordinate the dash pattern with features of the path; it simply dis-
penses dashes and gaps along the path in the pattern defined by the dash array.

When a path consisting of several subpaths is stroked, each subpath is treated in-
dependently—that is, the dash pattern is restarted and the dash phase is reapplied
to it at the beginning of each subpath.

Graphics State Operators

Table 4.7 shows the operators that set the values of parameters in the graphics
state. (See also the color operators listed in Table 4.24 and the text state operators
in Table 5.2 on page 398.)
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TABLE 4.7 Graphics state operators

OPERANDS OPERATOR DESCRIPTION

— q Save the current graphics state on the graphics state stack (see “Graphics
State Stack” on page 214).

— Q Restore the graphics state by removing the most recently saved state from
the stack and making it the current state (see “Graphics State Stack” on
page 214).

abcdef cm Modify the current transformation matrix (CTM) by concatenating the
specified matrix (see Section 4.2.1, “Coordinate Spaces”). Although the
operands specify a matrix, they are written as six separate numbers, not as
an array.

lineWidth w Set the line width in the graphics state (see “Line Width” on page 215).

lineCap J Set the line cap style in the graphics state (see “Line Cap Style” on page
216).

lineJoin j Set the line join style in the graphics state (see “Line Join Style” on page
216).

miterLimit M Set the miter limit in the graphics state (see “Miter Limit” on page 217).

dashArray dashPhase d

intent ri
flatness i
dictName gs

Set the line dash pattern in the graphics state (see “Line Dash Pattern” on
page 217).

(PDF 1.1) Set the color rendering intent in the graphics state (see “Render-
ing Intents” on page 260).

Set the flatness tolerance in the graphics state (see Section 6.5.1, “Flatness
Tolerance”). flatness is a number in the range 0 to 100; a value of 0 speci-
fies the output device’s default flatness tolerance.

(PDF 1.2) Set the specified parameters in the graphics state. dictName is
the name of a graphics state parameter dictionary in the ExtGState subdic-
tionary of the current resource dictionary (see the next section).

4.3.4 Graphics State Parameter Dictionaries

While some parameters in the graphics state can be set with individual operators,
as shown in Table 4.7, others cannot. The latter can only be set with the generic
graphics state operator gs (PDF 1.2). The operand supplied to this operator is the
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name of a graphics state parameter dictionary whose contents specify the values of
one or more graphics state parameters. This name is looked up in the ExtGState
subdictionary of the current resource dictionary. (The name ExtGState, for
extended graphics state, is a vestige of earlier versions of PDE.)

Note: The graphics state parameter dictionary is also used by type 2 patterns, which
do not have a content stream in which the graphics state operators could be invoked
(see Section 4.6.3, “Shading Patterns”).

Each entry in the parameter dictionary specifies the value of an individual graph-
ics state parameter, as shown in Table 4.8. All entries need not be present for ev-
ery invocation of the gs operator; the supplied parameter dictionary may include
any combination of parameter entries. The results of gs are cumulative; parame-
ter values established in previous invocations persist until explicitly overridden.
Note that some parameters appear in both Tables 4.7 and 4.8; these parameters
can be set either with individual graphics state operators or with gs. It is expected
that any future extensions to the graphics state will be implemented by adding
new entries to the graphics state parameter dictionary rather than by introducing
new graphics state operators.

TABLE 4.8 Entries in a graphics state parameter dictionary

KEY TYPE DESCRIPTION

Type name (Optional) The type of PDF object that this dictionary describes; must be
ExtGState for a graphics state parameter dictionary.

Lw number (Optional; PDF 1.3) The line width (see “Line Width” on page 215).

LC integer (Optional; PDF 1.3) The line cap style (see “Line Cap Style” on page 216).

L integer (Optional; PDF 1.3) The line join style (see “Line Join Style” on page 216).

ML number (Optional; PDF 1.3) The miter limit (see “Miter Limit” on page 217).

D array (Optional; PDF 1.3) The line dash pattern, expressed as an array of the form
[dashArray dashPhase], where dashArray is itself an array and dashPhase is an
integer (see “Line Dash Pattern” on page 217).

RI name (Optional; PDF 1.3) The name of the rendering intent (see “Rendering

Intents” on page 260).
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KEY

TYPE

DESCRIPTION

OoP

op

OPM

Font

BG

BG2

UCR

UCR2

boolean

boolean

integer

array

function

function or name

function

function or name

(Optional) A flag specifying whether to apply overprint (see Section 4.5.6,
“Overprint Control”). In PDF 1.2 and earlier, there is a single overprint
parameter that applies to all painting operations. Beginning with PDF 1.3,
there are two separate overprint parameters: one for stroking and one for all
other painting operations. Specifying an OP entry sets both parameters un-
less there is also an op entry in the same graphics state parameter dictionary,
in which case the OP entry sets only the overprint parameter for stroking.

(Optional; PDF 1.3) A flag specifying whether to apply overprint (see Section
4.5.6, “Overprint Control”) for painting operations other than stroking. If
this entry is absent, the OP entry, if any, sets this parameter.

(Optional; PDF 1.3) The overprint mode (see Section 4.5.6, “Overprint Con-
trol”).

(Optional; PDF 1.3) An array of the form [font size], where font is an indirect
reference to a font dictionary and size is a number expressed in text space
units. These two objects correspond to the operands of the Tf operator (see
Section 5.2, “Text State Parameters and Operators”); however, the first oper-
and is an indirect object reference instead of a resource name.

(Optional) The black-generation function, which maps the interval [0.0 1.0]
to the interval [0.0 1.0] (see Section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK?”).

(Optional; PDF 1.3) Same as BG except that the value may also be the name
Default, denoting the black-generation function that was in effect at the start
of the page. If both BG and BG2 are present in the same graphics state param-
eter dictionary, BG2 takes precedence.

(Optional) The undercolor-removal function, which maps the interval
[0.0 1.0] to the interval [—1.0 1.0] (see Section 6.2.3, “Conversion from
DeviceRGB to DeviceCMYK”).

(Optional; PDF 1.3) Same as UCR except that the value may also be the name
Default, denoting the undercolor-removal function that was in effect at the
start of the page. If both UCR and UCR2 are present in the same graphics state
parameter dictionary, UCR2 takes precedence.
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KEY

TYPE

DESCRIPTION

TR

TR2

HT

FL

SM

SA

BM

SMask

CA

Ca

function, array, or
name

function, array, or
name

dictionary, stream,
or name

number

number

boolean

name or array

dictionary or name

number

number

(Optional) The transfer function, which maps the interval [0.0 1.0] to the in-
terval [0.0 1.0] (see Section 6.3, “Transfer Functions”). The value is either a
single function (which applies to all process colorants) or an array of four
functions (which apply to the process colorants individually). The name
Identity may be used to represent the identity function.

(Optional; PDF 1.3) Same as TR except that the value may also be the name
Default, denoting the transfer function that was in effect at the start of the
page. If both TR and TR2 are present in the same graphics state parameter dic-
tionary, TR2 takes precedence.

(Optional) The halftone dictionary or stream (see Section 6.4, “Halftones”) or
the name Default, denoting the halftone that was in effect at the start of the

page.

(Optional; PDF 1.3) The flatness tolerance (see Section 6.5.1, “Flatness Toler-
ance”).

(Optional; PDF 1.3) The smoothness tolerance (see Section 6.5.2, “Smooth-
ness Tolerance”).

(Optional) A flag specifying whether to apply automatic stroke adjustment
(see Section 6.5.4, “Automatic Stroke Adjustment”).

(Optional; PDF 1.4) The current blend mode to be used in the transparent
imaging model (see Sections 7.2.4, “Blend Mode,” and 7.5.2, “Specifying
Blending Color Space and Blend Mode”).

(Optional; PDF 1.4) The current soft mask, specifying the mask shape or
mask opacity values to be used in the transparent imaging model (see
“Source Shape and Opacity” on page 526 and “Mask Shape and Opacity” on
page 550).

Note: Although the current soft mask is sometimes referred to as a “soft clip,”
altering it with the gs operator completely replaces the old value with the new
one, rather than intersecting the two as is done with the current clipping path
parameter (see Section 4.4.3, “Clipping Path Operators”).

(Optional; PDF 1.4) The current stroking alpha constant, specifying the con-
stant shape or constant opacity value to be used for stroking operations in the
transparent imaging model (see “Source Shape and Opacity” on page 526 and
“Constant Shape and Opacity” on page 551).

(Optional; PDF 1.4) Same as CA, but for nonstroking operations.
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KEY TYPE DESCRIPTION
AlS boolean (Optional; PDF 1.4) The alpha source flag (“alpha is shape”), specifying

whether the current soft mask and alpha constant are to be interpreted as
shape values (true) or opacity values (false).

TK boolean (Optional; PDF 1.4) The text knockout flag, which determines the behavior of
overlapping glyphs within a text object in the transparent imaging model (see
Section 5.2.7, “Text Knockout™).

Example 4.1 shows two graphics state parameter dictionaries. In the first, auto-
matic stroke adjustment is turned on, and the dictionary includes a transfer func-
tion that inverts its value, f(x) = 1 —x. In the second, overprint is turned off, and
the dictionary includes a parabolic transfer function, f(x) = (2x — 1) 2 with a sam-
ple of 21 values. The domain of the transfer function, [0.0 1.0], is mapped to
[0 20], and the range of the sample values, [0 255], is mapped to the range of
the transfer function, [0.0 1.0].

Example 4.1

10 0 obj % Page object
<< /[Type /Page
/Parent 50R
/Resources 200R
/Contents 40 0R
>>
endobj

20 0 obj % Resource dictionary for page
<< /ProcSet [/PDF /Text]
/Font << /F1 250R >>
/ExtGState << /GS1 300R
/GS2 350R
>>
>>
endobj

30 0 obj % First graphics state parameter dictionary
<< /Type /ExtGState
/SA true
/TR 310R
>>
endobj
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31 0 obj % First transfer function
<< /FunctionType 0
/Domain [0.0 1.0]
/Range [0.0 1.0]
/Size 2
/BitsPerSample 8
/Length 7
/Filter /ASClIHexDecode
>>
stream
01 00 >
endstream
endobj

35 0 obj % Second graphics state parameter dictionary
<< /Type /ExtGState
/OP false
/TR 360R
>>
endobj

36 0 obj % Second transfer function
<< /FunctionType 0
/Domain [0.0 1.0]
/Range [0.0 1.0]

/Size 21
/BitsPerSample 8
/Length 63
/Filter /ASClIHexDecode
>>
stream
FF CE A3 7C 5B 3F 28 16 0OA 02 00 02 OA 16 28 3F 5B 7C A3 CE FF >
endstream
endobj

4.4 Path Construction and Painting

Paths define shapes, trajectories, and regions of all sorts. They are used to draw
lines, define the shapes of filled areas, and specify boundaries for clipping other
graphics. The graphics state includes a current clipping path that defines the clip-
ping boundary for the current page. At the beginning of each page, the clipping
path is initialized to include the entire page.
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A path is composed of straight and curved line segments, which may connect to
one another or may be disconnected. A pair of segments are said to connect only
if they are defined consecutively, with the second segment starting where the first
one ends. Thus, the order in which the segments of a path are defined is signifi-
cant. Nonconsecutive segments that meet or intersect fortuitously are not consid-
ered to connect.

A path is made up of one or more disconnected subpaths, each comprising a se-
quence of connected segments. The topology of the path is unrestricted: it may be
concave or convex, may contain multiple subpaths representing disjoint areas,
and may intersect itself in arbitrary ways. The h operator explicitly connects the
end of a subpath back to its starting point; such a subpath is said to be closed. A
subpath that has not been explicitly closed is open.

As discussed in Section 4.1, “Graphics Objects,” a path object is defined by a se-
quence of operators to construct the path, followed by one or more operators to
paint the path or to use it as a clipping boundary. PDF path operators fall into
three categories:

o Path construction operators (Section 4.4.1) define the geometry of a path. A
path is constructed by sequentially applying one or more of these operators.

e Path-painting operators (Section 4.4.2) end a path object, usually causing the
object to be painted on the current page in any of a variety of ways.

o Clipping path operators (Section 4.4.3), invoked immediately before a path-
painting operator, cause the path object also to be used for clipping of sub-
sequent graphics objects.

Path Construction Operators

A page description begins with an empty path and builds up its definition by in-
voking one or more path construction operators to add segments to it. The path
construction operators may be invoked in any sequence, but the first one invoked
must be m or re to begin a new subpath. The path definition concludes with the
application of a path-painting operator such as S, f, or b (see Section 4.4.2, “Path-
Painting Operators”); this operator may optionally be preceded by one of the
clipping path operators W or W* (Section 4.4.3, “Clipping Path Operators”). Note
that the path construction operators do not place any marks on the page; only the
painting operators do that. A path definition is not complete until a path-painting
operator has been applied to it.
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The path currently under construction is called the current path. In PDF (unlike
PostScript), the current path is not part of the graphics state and is not saved and
restored along with the other graphics state parameters. PDF paths are strictly in-
ternal objects with no explicit representation. Once a path has been painted, it is
no longer defined; there is then no current path until a new one is begun with the
m or re operator.

The trailing endpoint of the segment most recently added to the current path is
referred to as the current point. If the current path is empty, the current point is
undefined. Most operators that add a segment to the current path start at the cur-
rent point; if the current point is undefined, an error is generated.

Table 4.9 shows the path construction operators. All operands are numbers de-
noting coordinates in user space.

TABLE 4.9 Path construction operators

OPERANDS

OPERATOR

DESCRIPTION

Xy

Xy

X9 Y1 X2 Y2 X3 )3

X2 Y2 X3 Y3

X1 V1 X3 )3

m

I (lowercase L)

Begin a new subpath by moving the current point to coordinates
(x, y), omitting any connecting line segment. If the previous path
construction operator in the current path was also m, the new m
overrides it; no vestige of the previous m operation remains in the
path.

Append a straight line segment from the current point to the point
(%, ¥). The new current point is (x, y).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x5,y;), using (x;,y;) and
(x5, y,) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x5, y5).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x5, y;), using the current point
and (x,, y,) as the Bézier control points (see “Cubic Bézier Curves,”
below). The new current point is (x5, y;).

Append a cubic Bézier curve to the current path. The curve extends
from the current point to the point (x5,y;), using (x;,y;) and
(x5, y3) as the Bézier control points (see “Cubic Bézier Curves,” be-
low). The new current point is (x5, y5).



227

| SECTION 4.4 | Path Construction and Painting |
OPERANDS OPERATOR DESCRIPTION
— h Close the current subpath by appending a straight line segment

from the current point to the starting point of the subpath. If the
current subpath is already closed, h does nothing.

This operator terminates the current subpath. Appending another
segment to the current path begins a new subpath, even if the new
segment begins at the endpoint reached by the h operation.

X y width height re Append a rectangle to the current path as a complete subpath, with
lower-left corner (x,y) and dimensions width and height in user
space. The operation

X y width height re
is equivalent to

Xym

(x + width) y |

(x + width) (y + height) |
x (y+ height) |

h

Cubic Bézier Curves

Curved path segments are specified as cubic Bézier curves. Such curves are de-
fined by four points: the two endpoints (the current point P, and the final point
P3) and two control points P and P, . Given the coordinates of the four points, the
curve is generated by varying the parameter ¢ from 0.0 to 1.0 in the following
equation:

R(t) = (1-0)°Py+3t(1—1)° P, +3C(1- )P, + P,

When ¢ = 0.0, the value of the function R() coincides with the current point P,;
when t = 1.0, R(#) coincides with the final point P;. Intermediate values of ¢ gen-
erate intermediate points along the curve. The curve does not, in general, pass
through the two control points P, and P,.
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Cubic Bézier curves have two useful properties:

e The curve can be very quickly split into smaller pieces for rapid rendering.

e The curve is contained within the convex hull of the four points defining the
curve, most easily visualized as the polygon obtained by stretching a rubber
band around the outside of the four points. This property allows rapid testing
of whether the curve lies completely outside the visible region, and hence does
not have to be rendered.

The Bibliography lists several books that describe cubic Bézier curves in more

depth.

The most general PDF operator for constructing curved path segments is the c
operator, which specifies the coordinates of points P;, P,, and P; explicitly, as
shown in Figure 4.8. (The starting point, P, is defined implicitly by the current
point.)

P, (current point)

X1 Y1 X Y2X3)5C

FIGURE 4.8 Cubic Bézier curve generated by the c operator
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Two more operators, v and y, each specify one of the two control points implic-
itly (see Figure 4.9). In both of these cases, one control point and the final point
of the curve are supplied as operands; the other control point is implied:

e For the v operator, the first control point coincides with initial point of the
curve.

e For the y operator, the second control point coincides with final point of the
curve.

(2, ¥5)

(%3, 3)

Current point Current point

X3 Y2 X3 Y3V X1 Y1 X3Y3Y

FIGURE 4.9 Cubic Bézier curves generated by the v and y operators

4.4.2 Path-Painting Operators

The path-painting operators end a path object, causing it to be painted on the
current page in the manner that the operator specifies. The principal path-
painting operators are S (for stroking) and f (for filling). Variants of these opera-
tors combine stroking and filling in a single operation or apply different rules for
determining the area to be filled. Table 4.10 lists all the path-painting operators.
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TABLE 4.10 Path-painting operators

OPERANDS

OPERATOR

DESCRIPTION

S

f*

B*

b*

Stroke the path.
Close and stroke the path. This operator has the same effect as the sequence h S.

Fill the path, using the nonzero winding number rule to determine the region to fill
(see “Nonzero Winding Number Rule” on page 232). Any subpaths that are open
are implicitly closed before being filled.

Equivalent to f; included only for compatibility. Although PDF consumer applica-
tions must be able to accept this operator, PDF producer applications should use f
instead.

Fill the path, using the even-odd rule to determine the region to fill (see “Even-Odd
Rule” on page 233).

Fill and then stroke the path, using the nonzero winding number rule to determine
the region to fill. This operator produces the same result as constructing two identi-
cal path objects, painting the first with f and the second with S. Note, however, that
the filling and stroking portions of the operation consult different values of several
graphics state parameters, such as the current color. See also “Special Path-Painting
Considerations” on page 569.

Fill and then stroke the path, using the even-odd rule to determine the region to fill.
This operator produces the same result as B, except that the path is filled as if with
f* instead of f. See also “Special Path-Painting Considerations” on page 569.

Close, fill, and then stroke the path, using the nonzero winding number rule to de-
termine the region to fill. This operator has the same effect as the sequence h B. See
also “Special Path-Painting Considerations” on page 569.

Close, fill, and then stroke the path, using the even-odd rule to determine the re-
gion to fill. This operator has the same effect as the sequence h B*. See also “Special
Path-Painting Considerations” on page 569.

End the path object without filling or stroking it. This operator is a path-painting
no-op, used primarily for the side effect of changing the current clipping path (see
Section 4.4.3, “Clipping Path Operators”).
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Stroking

The S operator paints a line along the current path. The stroked line follows each
straight or curved segment in the path, centered on the segment with sides paral-
lel to it. Each of the path’s subpaths is treated separately.

The results of the S operator depend on the current settings of various parameters
in the graphics state (see Section 4.3, “Graphics State,” for further information on
these parameters):

o The width of the stroked line is determined by the current line width parameter
(“Line Width” on page 215).

¢ The color or pattern of the line is determined by the current color and color
space for stroking operations.

o The line can be painted either solid or with a dash pattern, as specified by the
current line dash pattern (“Line Dash Pattern” on page 217).

o If a subpath is open, the unconnected ends are treated according to the current
line cap style, which may be butt, rounded, or square (“Line Cap Style” on page
216).

o Wherever two consecutive segments are connected, the joint between them is
treated according to the current line join style, which may be mitered, rounded,
or beveled (“Line Join Style” on page 216). Mitered joins are also subject to the
current miter limit (“Miter Limit” on page 217).

Note: Points at which unconnected segments happen to meet or intersect receive
no special treatment. In particular, using an explicit | operator to give the appear-
ance of closing a subpath, rather than using h, may result in a messy cornet, be-
cause line caps are applied instead of a line join.

e The stroke adjustment parameter (PDF 1.2) specifies that coordinates and line
widths be adjusted automatically to produce strokes of uniform thickness
despite rasterization effects (Section 6.5.4, “Automatic Stroke Adjustment”).

If a subpath is degenerate (consists of a single-point closed path or of two or
more points at the same coordinates), the S operator paints it only if round line
caps have been specified, producing a filled circle centered at the single point. If
butt or projecting square line caps have been specified, S produces no output, be-
cause the orientation of the caps would be indeterminate. (This rule applies only
to zero-length subpaths of the path being stroked, and not to zero-length dashes



232
CHAPTER 4 | Graphics |

in a dash pattern. In the latter case, the line caps are always painted, since their
orientation is determined by the direction of the underlying path.) A single-
point open subpath (specified by a trailing m operator) produces no output.

Filling

The f operator uses the current nonstroking color to paint the entire region en-
closed by the current path. If the path consists of several disconnected subpaths, f
paints the insides of all subpaths, considered together. Any subpaths that are open
are implicitly closed before being filled.

If a subpath is degenerate (consists of a single-point closed path or of two or more
points at the same coordinates), f paints the single device pixel lying under that
point; the result is device-dependent and not generally useful. A single-point
open subpath (specified by a trailing m operator) produces no output.

For a simple path, it is intuitively clear what region lies inside. However, for a
more complex path—for example, a path that intersects itself or has one subpath
that encloses another—it is not always obvious which points lie inside the path.
The path machinery uses one of two rules for determining which points lie inside
a path: the nonzero winding number rule and the even-odd rule, both discussed in
detail below.

The nonzero winding number rule is more versatile than the even-odd rule and is
the standard rule the f operator uses. Similarly, the W operator uses this rule to
determine the inside of the current clipping path. The even-odd rule is occasion-
ally useful for special effects or for compatibility with other graphics systems; the
f* and W* operators invoke this rule.

Nonzero Winding Number Rule

The nonzero winding number rule determines whether a given point is inside a
path by conceptually drawing a ray from that point to infinity in any direction
and then examining the places where a segment of the path crosses the ray. Start-
ing with a count of 0, the rule adds 1 each time a path segment crosses the ray
from left to right and subtracts 1 each time a segment crosses from right to left.
After counting all the crossings, if the result is 0, the point is outside the path;
otherwise, it is inside.
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Note: The method just described does not specify what to do if a path segment coin-
cides with or is tangent to the chosen ray. Since the direction of the ray is arbitrary,
the rule simply chooses a ray that does not encounter such problem intersections.

For simple convex paths, the nonzero winding number rule defines the inside
and outside as one would intuitively expect. The more interesting cases are those
involving complex or self-intersecting paths like the ones shown in Figure 4.10.
For a path consisting of a five-pointed star, drawn with five connected straight
line segments intersecting each other, the rule considers the inside to be the en-
tire area enclosed by the star, including the pentagon in the center. For a path
composed of two concentric circles, the areas enclosed by both circles are consid-
ered to be inside, provided that both are drawn in the same direction. If the circles
are drawn in opposite directions, only the doughnut shape between them is in-
side, according to the rule; the doughnut hole is outside.

x® O

FIGURE 4.10 Nonzero winding number rule

Even-Odd Rule

An alternative to the nonzero winding number rule is the even-odd rule. This rule
determines whether a point is inside a path by drawing a ray from that point in
any direction and simply counting the number of path segments that cross the
ray, regardless of direction. If this number is odd, the point is inside; if even, the
point is outside. This yields the same results as the nonzero winding number rule
for paths with simple shapes, but produces different results for more complex
shapes.

Figure 4.11 shows the effects of applying the even-odd rule to complex paths. For
the five-pointed star, the rule considers the triangular points to be inside the path,
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but not the pentagon in the center. For the two concentric circles, only the dough-
nut shape between the two circles is considered inside, regardless of the direc-
tions in which the circles are drawn.

A

FIGURE 4.11 Even-odd rule

4.4.3 Clipping Path Operators

The graphics state contains a current clipping path that limits the regions of the
page affected by painting operators. The closed subpaths of this path define the
area that can be painted. Marks falling inside this area are applied to the page;
those falling outside it are not. (“Filling” on page 232 discusses precisely what is
considered to be inside a path.)

Note: In the context of the transparent imaging model (PDF 1.4), the current clipping
path constrains an object’s shape (see Section 7.1, “Overview of Transparency”). The
effective shape is the intersection of the object’s intrinsic shape with the clipping path;
the source shape value is 0.0 outside this intersection. Similarly, the shape of a trans-
parency group (defined as the union of the shapes of its constituent objects) is influ-
enced both by the clipping path in effect when each of the objects is painted and by the
one in effect at the time the group’s results are painted onto its backdrop.

The initial clipping path includes the entire page. A clipping path operator (W or
W, shown in Table 4.11) may appear after the last path construction operator
and before the path-painting operator that terminates a path object. Although the
clipping path operator appears before the painting operator, it does not alter the
clipping path at the point where it appears. Rather, it modifies the effect of the
succeeding painting operator. After the path has been painted, the clipping path
in the graphics state is set to the intersection of the current clipping path and the
newly constructed path.
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TABLE 4.11 Clipping path operators
OPERANDS OPERATOR DESCRIPTION

— w Modify the current clipping path by intersecting it with the current path, using the
nonzero winding number rule to determine which regions lie inside the clipping
path.

— W# Modify the current clipping path by intersecting it with the current path, using the

even-odd rule to determine which regions lie inside the clipping path.

Note: In addition to path objects, text objects can also be used for clipping; see Sec-
tion 5.2.5, “Text Rendering Mode.”

The n operator (see Table 4.10) is a no-op path-painting operator; it causes no
marks to be placed on the page, but can be used with a clipping path operator to
establish a new clipping path. That is, after a path has been constructed, the se-
quence W n intersects that path with the current clipping path to establish a new
clipping path.

There is no way to enlarge the current clipping path or to set a new clipping path
without reference to the current one. However, since the clipping path is part of
the graphics state, its effect can be localized to specific graphics objects by en-
closing the modification of the clipping path and the painting of those objects
between a pair of q and Q operators (see Section 4.3.1, “Graphics State Stack”).
Execution of the Q operator causes the clipping path to revert to the value that
was saved by the q operator before the clipping path was modified.

4.5 Color Spaces

PDF includes powerful facilities for specifying the colors of graphics objects to be
painted on the current page. The color facilities are divided into two parts:

e Color specification. A PDF file can specify abstract colors in a device-
independent way. Colors can be described in any of a variety of color systems,
or color spaces. Some color spaces are related to device color representation
(grayscale, RGB, CMYK), others to human visual perception (CIE-based). Cer-
tain special features are also modeled as color spaces: patterns, color mapping,
separations, and high-fidelity and multitone color.
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o Color rendering. The application reproduces colors on the raster output device
by a multiple-step process that includes some combination of color conversion,
gamma correction, halftoning, and scan conversion. Some aspects of this pro-
cess use information that is specified in PDF. However, unlike the facilities for
color specification, the color-rendering facilities are device-dependent and or-
dinarily should not be included in a page description.

Figures 4.12 and 4.13 on pages 238 and 239 illustrate the division between PDF’s
(device-independent) color specification and (device-dependent) color-render-
ing facilities. This section describes the color specification features, covering
everything that most PDF documents need to specify colors. The facilities for
controlling color rendering are described in Chapter 6; a PDF document should
use these facilities only to configure or calibrate an output device or to achieve
special device-dependent effects.

Color Values

As described in Section 4.4.2, “Path-Painting Operators,” marks placed on the
page by operators such as f and S have a color that is determined by the current
color parameter of the graphics state. A color value consists of one or more color
components, which are usually numbers. For example, a gray level can be speci-
fied by a single number ranging from 0.0 (black) to 1.0 (white). Full color values
can be specified in any of several ways; a common method uses three numeric
values to specify red, green, and blue components.

Color values are interpreted according to the current color space, another pa-
rameter of the graphics state. A PDF content stream first selects a color space by
invoking the CS operator (for the stroking color) or the cs operator (for the non-
stroking color). It then selects color values within that color space with the SC
operator (stroking) or the sc operator (nonstroking). There are also conve-
nience operators—G, g, RG, rg, K, and k—that select both a color space and a
color value within it in a single step. Table 4.24 on page 287 lists all the color-
setting operators.

Sampled images (see Section 4.8, “Images”) specify the color values of individual
samples with respect to a color space designated by the image object itself. While
these values are independent of the current color space and color parameters in
the graphics state, all later stages of color processing treat them in exactly the
same way as color values specified with the SC or sc operator.
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4.5.2 Color Space Families

Color spaces can be classified into color space families. Spaces within a family
share the same general characteristics; they are distinguished by parameter values
supplied at the time the space is specified. The families fall into three broad cate-
gories:

e Device color spaces directly specify colors or shades of gray that the output
device is to produce. They provide a variety of color specification methods,
including grayscale, RGB (red-green-blue), and CMYK (cyan-magenta-yellow-
black), corresponding to the color space families DeviceGray, DeviceRGB, and
DeviceCMYK. Since each of these families consists of just a single color space
with no parameters, they are often loosely referred to as the DeviceGray,
DeviceRGB, and DeviceCMYK color spaces.

o CIE-based color spaces are based on an international standard for color specifi-
cation created by the Commission Internationale de I'Eclairage (International
Commission on Illumination). These spaces specify colors in a way that is in-
dependent of the characteristics of any particular output device. Color space
families in this category include CalGray, CalRGB, Lab, and ICCBased. Individu-
al color spaces within these families are specified by means of dictionaries con-
taining the parameter values needed to define the space.

e Special color spaces add features or properties to an underlying color space.
They include facilities for patterns, color mapping, separations, and high-
fidelity and multitone color. The corresponding color space families are
Pattern, Indexed, Separation, and DeviceN. Individual color spaces within
these families are specified by means of additional parameters.

Table 4.12 summarizes the color space families supported by PDE (See imple-
mentation note 47 in Appendix H.)

TABLE 4.12 Color space families

DEVICE CIE-BASED SPECIAL

DeviceGray (PDF 1.1) CalGray (PDF 1.1) Indexed (PDF 1.1)
DeviceRGB (PDF 1.1) CalRGB (PDF 1.1) Pattern (PDF 1.2)
DeviceCMYK (PDF 1.1) Lab (PDF 1.1) Separation (PDF 1.2)

ICCBased (PDF 1.3) DeviceN (PDF 1.3)
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FIGURE 4.12 Color specification
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FIGURE 4.13 Color rendering
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A color space is defined by an array object whose first element is a name object
identifying the color space family. The remaining array elements, if any, are
parameters that further characterize the color space; their number and types vary
according to the particular family. For families that do not require parameters,
the color space can be specified simply by the family name itself instead of an
array.

A color space can be specified in two principal ways:

e Within a content stream, the CS or cs operator establishes the current color
space parameter in the graphics state. The operand is always a name object,
which either identifies one of the color spaces that need no additional parame-
ters (DeviceGray, DeviceRGB, DeviceCMYK, or some cases of Pattern) or is used
as a key in the ColorSpace subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). In the latter case, the value of the dic-
tionary entry is in turn a color space array or name. A color space array is never
permitted inline within a content stream.

¢ Outside a content stream, certain objects, such as image XObjects, specify a
color space as an explicit parameter, often associated with the key ColorSpace.
In this case, the color space array or name is always defined directly as a PDF
object, not by an entry in the ColorSpace resource subdictionary. This conven-
tion also applies when color spaces are defined in terms of other color spaces.

The following operators set the current color space and current color parameters
in the graphics state:

e CS sets the stroking color space; cs sets the nonstroking color space.

e SC and SCN set the stroking color; sc and scn set the nonstroking color. De-
pending on the color space, these operators require one or more operands, each
specifying one component of the color value.

® G, RG, and K set the stroking color space implicitly and the stroking color as
specified by the operands; g, rg, and k do the same for the nonstroking color
space and color.
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4.5.3 Device Color Spaces

The device color spaces enable a page description to specify color values that are
directly related to their representation on an output device. Color values in these
spaces map directly (or by simple conversions) to the application of device colo-
rants, such as quantities of ink or intensities of display phosphors. This enables a
PDF document to control colors precisely for a particular device, but the results
may not be consistent from one device to another.

Output devices form colors either by adding light sources together or by subtract-
ing light from an illuminating source. Computer displays and film recorders typi-
cally add colors; printing inks typically subtract them. These two ways of forming
colors give rise to two complementary methods of color specification, called ad-
ditive and subtractive color (see Plate 1). The most widely used forms of these two
types of color specification are known as RGB and CMYK, respectively, for the
names of the primary colors on which they are based. They correspond to the fol-
lowing device color spaces:

¢ DeviceGray controls the intensity of achromatic light, on a scale from black to
white.

¢ DeviceRGB controls the intensities of red, green, and blue light, the three addi-
tive primary colors used in displays.

¢ DeviceCMYK controls the concentrations of cyan, magenta, yellow, and black
inks, the four subtractive process colors used in printing.

Although the notion of explicit color spaces is a PDF 1.1 feature, the operators for
specifying colors in the device color spaces—G, g, RG, rg, K, and k—are available
in all versions of PDE Beginning with PDF 1.2, colors specified in device color
spaces can optionally be remapped systematically into other color spaces; see
“Default Color Spaces” on page 257.

Note: In the transparent imaging model (PDF 1.4), the use of device color spaces is
subject to special treatment within a transparency group whose group color space is
CIE-based (see Sections 7.3, “Transparency Groups,” and 7.5.5, “Transparency
Group XObjects”). In particular, the device color space operators should be used
only if device color spaces have been remapped to CIE-based spaces by means of the
default color space mechanism. Otherwise, the results are implementation-
dependent and unpredictable.
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DeviceGray Color Space

Black, white, and intermediate shades of gray are special cases of full color. A
grayscale value is represented by a single number in the range 0.0 to 1.0, where
0.0 corresponds to black, 1.0 to white, and intermediate values to different gray
levels. Example 4.2 shows alternative ways to select the DeviceGray color space
and a specific gray level within that space for stroking operations.

Example 4.2
/DeviceGray CS % Set DeviceGray color space
gray SC % Set gray level
gray G % Set both in one operation

The €S and SC operators select the current stroking color space and current
stroking color separately; G sets them in combination. (The cs, sc, and g opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceGray initializes the corresponding current color to 0.0.

DeviceRGB Color Space

Colors in the DeviceRGB color space are specified according to the additive RGB
(red-green-blue) color model, in which color values are defined by three compo-
nents representing the intensities of the additive primary colorants red, green,
and blue. Each component is specified by a number in the range 0.0 to 1.0, where
0.0 denotes the complete absence of a primary component and 1.0 denotes maxi-
mum intensity. If all three components have equal intensity, the perceived result
theoretically is a pure gray on the scale from black to white. If the intensities are
not all equal, the result is some color other than a pure gray.

Example 4.3 shows alternative ways to select the DeviceRGB color space and a
specific color within that space for stroking operations.

Example 4.3
/DeviceRGB CS % Set DeviceRGB color space
red green blue SC % Set color

red green blue RG % Set both in one operation
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The CS and SC operators select the current stroking color space and current
stroking color separately; RG sets them in combination. (The cs, sc, and rg opera-
tors perform the same functions for nonstroking operations.) Setting either cur-
rent color space to DeviceRGB initializes the red, green, and blue components of
the corresponding current color to 0.0.

DeviceCMYK Color Space

The DeviceCMYK color space allows colors to be specified according to the sub-
tractive CMYK (cyan-magenta-yellow-black) model typical of printers and other
paper-based output devices. In theory, each of the three standard process colorants
used in printing (cyan, magenta, and yellow) absorbs one of the additive primary
colors (red, green, and blue, respectively). Black, a fourth standard process colo-
rant, absorbs all of the additive primaries in equal amounts. The four components
in a DeviceCMYK color value represent the concentrations of these process colo-
rants. Each component is specified by a number in the range 0.0 to 1.0, where 0.0
denotes the complete absence of a process colorant (that is, absorbs none of the
corresponding additive primary) and 1.0 denotes maximum concentration (ab-
sorbs as much as possible of the additive primary). Note that the sense of these
numbers is opposite to that of RGB color components.

Example 4.4 shows alternative ways to select the DeviceCMYK color space and a
specific color within that space for stroking operations.

Example 4.4
/DeviceCMYK CS % Set DeviceCMYK color space
cyan magenta yellow black SC % Set color
cyan magenta yellow black K % Set both in one operation

The CS and SC operators select the current stroking color space and current strok-
ing color separately; K sets them in combination. (The cs, sc, and k operators per-
form the same functions for nonstroking operations.) Setting either current color
space to DeviceCMYK initializes the cyan, magenta, and yellow components of the
corresponding current color to 0.0 and the black component to 1.0.
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4.5.4 CIE-Based Color Spaces

Calibrated color in PDF is defined in terms of an international standard used in
the graphic arts, television, and printing industries. CIE-based color spaces enable
a page description to specify color values in a way that is related to human visual
perception. The goal is for the same color specification to produce consistent re-
sults on different output devices, within the limitations of each device; Plate 2 il-
lustrates the kind of variation in color reproduction that can result from the use
of uncalibrated color on different devices. PDF 1.1 supports three CIE-based col-
or space families, named CalGray, CalRGB, and Lab; PDF 1.3 adds a fourth, named
ICCBased.

Note: In PDF 1.1, a color space family named CalCMYK was partially defined, with
the expectation that its definition would be completed in a future version. However,
this is no longer being considered. PDF 1.3 and later versions support calibrated
four-component color spaces by means of ICC profiles (see “ICCBased Color Spaces”
on page 252). PDF consumer applications should ignore CalCMYK color space at-
tributes and render colors specified in this family as if they had been specified using
DeviceCMYK.

The details of the CIE colorimetric system and the theory on which it is based are
beyond the scope of this book; see the Bibliography for sources of further in-
formation. The semantics of CIE-based color spaces are defined in terms of the
relationship between the space’s components and the tristimulus values X, Y, and
Z of the CIE 1931 XYZ space. The CalRGB and Lab color spaces (PDF 1.1) are
special cases of three-component CIE-based color spaces, known as CIE-based
ABC color spaces. These spaces are defined in terms of a two-stage, nonlinear
transformation of the CIE 1931 XYZ space. The formulation of such color spaces
models a simple zone theory of color vision, consisting of a nonlinear trichro-
matic first stage combined with a nonlinear opponent-color second stage. This
formulation allows colors to be digitized with minimum loss of fidelity, an impor-
tant consideration in sampled images.

Color values in a CIE-based ABC color space have three components, arbitrarily
named A, B, and C. The first stage transforms these components by first forcing
their values to a specified range, then applying decoding functions, and then mul-
tiplying the results by a 3-by-3 matrix, producing three intermediate components
arbitrarily named L, M, and N. The second stage transforms these intermediate
components in a similar fashion, producing the final X, ¥; and Z components of
the CIE 1931 XYZ space (see Figure 4.14).
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Decode ABC Decode LMN

B — I:' —» | MatrixABC | . 4 —» I:' . Matrix LMN | _, y

FIGURE 4.14 Component transformations in a CIE-based ABC color space

Color spaces in the CIE-based families are defined by an array

[name dictionary]

where name is the name of the family and dictionary is a dictionary containing
parameters that further characterize the space. The entries in this dictionary have
specific interpretations that depend on the color space; some entries are required
and some are optional. See the sections on specific color space families, below, for
details.

Setting the current stroking or nonstroking color space to any CIE-based color
space initializes all components of the corresponding current color to 0.0 (unless
the range of valid values for a given component does not include 0.0, in which
case the nearest valid value is substituted.)

Note: The model and terminology used here—CIE-based ABC (above) and CIE-
based A (below)—are derived from the PostScript language, which supports these
color space families in their full generality. PDF supports specific useful cases of CIE-
based ABC and CIE-based A spaces; most others can be represented as ICCBased
spaces.

CalGray Color Spaces

A CalGray color space (PDF 1.1) is a special case of a single-component CIE-
based color space, known as a CIE-based A color space. This type of space is the
one-dimensional (and usually achromatic) analog of CIE-based ABC spaces.
Color values in a CIE-based A space have a single component, arbitrarily named
A. Figure 4.15 illustrates the transformations of the A component to X, Y; and Z
components of the CIE 1931 XYZ space.



CHAPTER 4

246
| Graphics |

Decode A

A—[]—

Decode LMN

Matrix A M — |:| _» | MatrixLMN | _ y

FIGURE 4.15

Component transformations in a CIE-based A color space

A CalGray color space is a CIE-based A color space with only one transformation
stage instead of two. In this type of space, A represents the gray component of a

calibrated gray space.

This component must be in the range 0.0 to 1.0. The decod-

ing function (denoted by “Decode A” in Figure 4.15) is a gamma function whose
coefficient is specified by the Gamma entry in the color space dictionary (see Ta-
ble 4.13). The transformation matrix denoted by “Matrix A” in the figure is de-
rived from the dictionary’s WhitePoint entry, as described below. Since there is no
second transformation stage, “Decode LMN” and “Matrix LMN” are implicitly
taken to be identity transformations.

TABLE

4.13 Entries in a CalGray color space dictionary

KEY

TYPE

VALUE

WhitePoint

BlackPoint

Gamma

array

array

number

(Required) An array of three numbers [Xy, Y}, Zy,] specifying the tri-
stimulus value, in the CIE 1931 XYZ space, of the diffuse white point; see
“CalRGB Color Spaces,” below, for further discussion. The numbers Xy, and
Z,, must be positive, and Yy, must be equal to 1.0.

(Optional) An array of three numbers [Xp Y Zp] specifying the tristimulus
value, in the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB
Color Spaces,” below, for further discussion. All three of these numbers must
be non-negative. Default value: [0.0 0.0 0.0].

(Optional) A number G defining the gamma for the gray (A) component. G
must be positive and is generally greater than or equal to 1. Default value: 1.
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The transformation defined by the Gamma and WhitePoint entries is

X =1 =X, xAa°®
G
Y=M=Y,xA
G
Z=N=2Z,xA

In other words, the A component is first decoded by the gamma function, and the
result is multiplied by the components of the white point to obtain the L, M, and
N components of the intermediate representation. Since there is no second stage,
the L, M, and N components are also the X, Y, and Z components of the final rep-
resentation.

The following examples illustrate interesting and useful special cases of CalGray
spaces. Example 4.5 establishes a space consisting of the Y dimension of the CIE
1931 XYZ space with the CCIR XA/11-recommended D65 white point.

Example 4.5

[ /CalGray
<< /WhitePoint [0.9505 1.0000 1.0890] >>
1

Example 4.6 establishes a calibrated gray space with the CCIR XA/11-
recommended D65 white point and opto-electronic transfer function.

Example 4.6

[ /CalGray
<< /WhitePoint [0.9505 1.0000 1.0890]
/Gamma 2.222
>>

CalRGB Color Spaces

A CalRGB color space is a CIE-based ABC color space with only one transforma-
tion stage instead of two. In this type of space, A, B, and C represent calibrated
red, green, and blue color values. These three color components must be in the
range 0.0 to 1.0; component values falling outside that range are adjusted to the
nearest valid value without error indication. The decoding functions (denoted by
“Decode ABC” in Figure 4.14 on page 245) are gamma functions whose coeffi-
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cients are specified by the Gamma entry in the color space dictionary (see Table
4.14). The transformation matrix denoted by “Matrix ABC” in Figure 4.14 is de-
fined by the dictionary’s Matrix entry. Since there is no second transformation
stage, “Decode LMN” and “Matrix LMN” are implicitly taken to be identity trans-
formations.

TABLE 4.14 Entries in a CalRGB color space dictionary

KEY TYPE VALUE

WhitePoint array (Required) An array of three numbers [Xy,, Yy, Z;,]specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see below for further discus-
sion. The numbers Xy, and Z;,, must be positive, and Yy, must be equal to 1.0.

BlackPoint array (Optional) An array of three numbers [X; Y Zp] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see below for further discussion.
All three of these numbers must be non-negative. Default value: [0.0 0.0 0.0].

Gamma array (Optional) An array of three numbers [Gp G Gl specifying the gamma for the red,
green, and blue (A, B, and C) components of the color space. Default value:
[1.0 1.0 1.0].

Matrix array (Optional) An array of nine numbers [X, Y, Z, X Y, Z; X Y. Z] specifying

the linear interpretation of the decoded A, B, and C components of the color space
with respect to the final XYZ representation. Default value: the identity matrix

[T0O0O0O1000O0T1]L

The WhitePoint and BlackPoint entries in the color space dictionary control the
overall effect of the CIE-based gamut mapping function described in Section 6.1,
“CIE-Based Color to Device Color” Typically, the colors specified by WhitePoint
and BlackPoint are mapped to the nearly lightest and nearly darkest achromatic
colors that the output device is capable of rendering in a way that preserves color
appearance and visual contrast.

WhitePoint is assumed to represent the diffuse achromatic highlight, not a specu-
lar highlight. Specular highlights, achromatic or otherwise, are often reproduced
lighter than the diffuse highlight. BlackPoint is assumed to represent the diffuse
achromatic shadow; its value is typically limited by the dynamic range of the in-
put device. In images produced by a photographic system, the values of
WhitePoint and BlackPoint vary with exposure, system response, and artistic in-
tent; hence, their values are image-dependent.
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The transformation defined by the Gamma and Matrix entries in the CalRGB color
space dictionary is

G G Gy

X=1L=X,xA +XpXxB "+ X-XxC
G G Gp

Y=M=7Y,xA "+ Y;xB "+ Y.xC
G G G

_ _ R G B
Z =N —ZA><A +ZB><B +ZC><C

In other words, the A, B, and C components are first decoded individually by the
gamma functions. The results are treated as a three-element vector and multi-
plied by Matrix (a 3-by-3 matrix) to obtain the L, M, and N components of the in-
termediate representation. Since there is no second stage, these are also the X, Y,
and Z components of the final representation.

Example 4.7 shows an example of a CalRGB color space for the CCIR XA/11-
recommended D65 white point with 1.8 gammas and Sony Trinitron phosphor
chromaticities.

Example 4.7

[ /CalRGB
<< /WhitePoint [0.9505 1.0000 1.0890]
/Gamma [1.8000 1.8000 1.8000]
/Matrix [ 0.4497 0.2446 0.0252
0.3163 0.6720 0.1412
0.1845 0.0833 0.9227
]

>>

In some cases, the parameters of a CalRGB color space may be specified in terms
of the CIE 1931 chromaticity coordinates (xp, yz), (Xi» ¥g)» (xp, yg) of the red,
green, and blue phosphors, respectively, and the chromaticity (xy,, yy,,) of the dif-
fuse white point corresponding to some linear RGB value (R, G, B), where usually
R =G =B =1.0. Note that standard CIE notation uses lowercase letters to specify
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chromaticity coordinates and uppercase letters to specify tristimulus values. Giv-
en this information, Matrix and WhitePoint can be found as follows:

zZ = yy X ((foxB)xyR — (foxB)XyG + (foxG)xyB)

VR y (xG—xB)xyW - (xW—xB)xyG + (xW—xG)xyB

A R z

Xp [l—xR j
X, =Y, x— Z, =Y, X -1
A A yR A A yR
. ny(foxB)xny(foxB)xyR+(foxR)XyB
B G z

X 1—-x
Xp = Ypx -2 Zy = YBx[ G—1]

e YG
v VB (XR—xg)X)’W—(xW—Xg)X)’R+(XW—XR)X)’G

= =X

C B z

Xpg [l—xB j
X.=Y.x— Z~ =Y X -1
C C Vg C C Vg
XW=XA><R+XB><G+XC><B
YW= YAxR+YB><G+YC><B
ZW=ZA><R+ZB><G+ZC><B

Lab Color Spaces

A Lab color space is a CIE-based ABC color space with two transformation stages
(see Figure 4.14 on page 245). In this type of space, A, B, and C represent the L*,
a*, and b* components of a CIE 1976 L*a*b* space. The range of the first (L*)
component is always 0 to 100; the ranges of the second and third (a* and b*)
components are defined by the Range entry in the color space dictionary (see
Table 4.15).

Plate 3 illustrates the coordinates of a typical Lab color space; Plate 4 compares
the gamuts (ranges of representable colors) for L*a*b*, RGB, and CMYK spaces.
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TABLE 4.15 Entries in a Lab color space dictionary

KEY

TYPE

VALUE

WhitePoint array

BlackPoint

Range

array

array

(Required) An array of three numbers [X;,, Yy, Zy,/1 specifying the tristimulus value,
in the CIE 1931 XYZ space, of the diffuse white point; see “CalRGB Color Spaces” on
page 247 for further discussion. The numbers Xy, and Z;,, must be positive, and Y7,
must be equal to 1.0.

(Optional) An array of three numbers [X} Y, Z] specifying the tristimulus value, in
the CIE 1931 XYZ space, of the diffuse black point; see “CalRGB Color Spaces” on
page 247 for further discussion. All three of these numbers must be non-negative.
Default value: [0.0 0.0 0.0].

(Optional) An array of four numbers [a,; a . b . b - 1specifying the range of

valid values for the a* and b* (B and C) components of the color space—that is,

. < a*<
Imin = % = Imax

bon Sb* b

min X

Component values falling outside the specified range are adjusted to the nearest valid
value without error indication. Default value: [-100 100 —100 100].

A Lab color space does not specify explicit decoding functions or matrix coef-
ficients for either stage of the transformation from L*a*b* space to XYZ space
(denoted by “Decode ABC;” “Matrix ABC;” “Decode LMN,” and “Matrix LMN” in

Figure 4.14 on

page 245). Instead, these parameters have constant implicit values.

The first transformation stage is defined by the equations

*

I = L +16+a_*
116 500
*

M = L+ 16
116

_ L*+16 b*

116 200

The second transformation stage is given by

X =Xyxg
Y =Y, xg
Z=Zyxg

(L)
(M)
(N)
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where the function g(x) is defined as

6

= 3 1 > =

g(x) = x if x2 25
g(x) = 81—2? X (x— 2——49) otherwise

Example 4.8 defines the CIE 1976 L*a*b* space with the CCIR XA/11-
recommended D65 white point. The a* and b* components, although theoretical-
ly unbounded, are defined to lie in the useful range —128 to +127.

Example 4.8

[ /Lab
<< /WhitePoint [0.9505 1.0000 1.0890]
/Range [-128 127 —128 127]
>>

ICCBased Color Spaces

ICCBased color spaces (PDF 1.3) are based on a cross-platform color profile as
defined by the International Color Consortium (ICC). Unlike the CalGray,
CalRGB, and Lab color spaces, which are characterized by entries in the color
space dictionary, an ICCBased color space is characterized by a sequence of bytes
in a standard format. Details of the profile format can be found in the ICC speci-
fication (see the Bibliography).

An ICCBased color space is specified as an array:
[/ICCBased stream]

The stream contains the ICC profile. Besides the usual entries common to all
streams (see Table 3.4 on page 62), the profile stream has the additional entries
listed in Table 4.16.
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TABLE 4.16 Additional entries specific to an ICC profile stream dictionary

KEY

TYPE

VALUE

Alternate

Range

Metadata

integer

array or
name

array

stream

(Required) The number of color components in the color space described by the ICC
profile data. This number must match the number of components actually in the ICC
profile. As of PDF 1.4, N must be 1, 3, or 4.

(Optional) An alternate color space to be used in case the one specified in the stream
data is not supported (for example, by applications designed for earlier versions of
PDF). The alternate space may be any valid color space (except a Pattern color space)
that has the number of components specified by N. If this entry is omitted and the ap-
plication does not understand the ICC profile data, the color space used is
DeviceGray, DeviceRGB, or DeviceCMYK, depending on whether the value of Nis 1, 3,
or 4, respectively.

Note: There is no conversion of source color values, such as a tint transformation, when
using the alternate color space. Color values within the range of the ICCBased color space
might not be within the range of the alternate color space. In this case, the nearest values
within the range of the alternate space are substituted.

(Optional) An array of 2 X N numbers [min, max, min, max; ...] specifying the min-
imum and maximum valid values of the corresponding color components. These val-
ues must match the information in the ICC profile. Default value:
[0.01.0 0.01.0 ...].

(Optional; PDF 1.4) A metadata stream containing metadata for the color space (see
Section 10.2.2, “Metadata Streams”).

The ICC specification is an evolving standard. Table 4.17 shows the versions of
the ICC specification on which the ICCBased color spaces supported by PDF ver-
sions 1.3 and later are based. (Earlier versions of the ICC specification are also

supported.)

TABLE 4.17 ICC specification versions supported by ICCBased color spaces

PDF VERSION ICC SPECIFICATION VERSION

1.3 33

1.4 ICC.1:1998-09 and its addendum ICC.1A:1999-04
1.5 ICC.1:2001-12

1.6 ICC.1:2003-09
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PDF VERSION ICC SPECIFICATION VERSION

1.7 ICC.1:2004-10

PDF producers and consumers should follow these guidelines:

¢ A consumer that supports a given PDF version is required to support ICC pro-

files conforming to the corresponding version (and earlier versions) of the ICC
specification, as described above. It may optionally support later ICC versions.

For the most predictable and consistent results, a producer of a given PDF ver-
sion should embed only profiles conforming to the corresponding version of
the ICC specification.

A PDF producer may embed profiles conforming to a later ICC version, with
the understanding that the results will vary depending on the capabilities of the
consumer. The consumer might process the profile while ignoring newer
features, or it might fail altogether to process the profile. Therefore, it is recom-
mended that the producer provide an alternate color space (Alternate entry in
the ICCBased color space dictionary) containing a profile that is appropriate for
the PDF version.

PDF supports only the profile types shown in Table 4.18; other types may be sup-
ported in the future. (In particular, note that XYZ and 16-bit L*a*b* profiles are
not supported.) Each of the indicated fields must have one of the values listed for
that field in the second column of the table. (Profiles must satisfy both the criteria
shown in the table.) The terminology is taken from the ICC specifications.

TABLE 4.18 ICC profile types

HEADER FIELD REQUIRED VALUE

deviceClass icSiglnputClass ('scnr’)
icSigDisplayClass ('mntr')
icSigOutputClass ('prtr")

icSigColorSpaceClass ('spac’)

colorSpace icSigGrayData ('GRAY')

icSigRgbData ('RGB ')
icSigCmykData ('CMYK)
icSigLabData ('Lab )
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The terminology used in PDF color spaces and ICC color profiles is similar, but
sometimes the same terms are used with different meanings. For example, the
default value for each component in an ICCBased color space is 0. The range of
each color component is a function of the color space specified by the profile and
is indicated in the ICC specification. The ranges for several ICC color spaces are
shown in Table 4.19.

TABLE 4.19 Ranges for typical ICC color spaces
ICC COLOR SPACE COMPONENT RANGES

Gray [0.0 1.0]
RGB (0.0 1.0]
CMYK (0.0 1.0]
L*a*b* L*: [0 100]; a* and b*: [-128 127]

Since the ICCBased color space is being used as a source color space, only the “to
CIE” profile information (AToB in ICC terminology) is used; the “from CIE”
(BToA) information is ignored when present. An ICC profile may also specify a
rendering intent, but PDF consumer applications ignore this information; the ren-
dering intent is specified in PDF by a separate parameter (see “Rendering Intents”
on page 260).

Note: The requirements stated above apply to an ICCBased color space that is used
to specify the source colors of graphics objects. When such a space is used as the
blending color space for a transparency group in the transparent imaging model
(see Sections 7.2.3, “Blending Color Space”; 7.3, “Transparency Groups”; and 7.5.5,
“Transparency Group XObjects”), it must have both “to CIE” (AToB) and “from
CIE” (BToA) information. This is because the group color space is used as both the
destination for objects being painted within the group and the source for the
group’s results. ICC profiles are also used in specifying output intents for matching
the color characteristics of a PDF document with those of a target output device or
production environment. When used in this context, they are subject to still other
constraints on the “to CIE” and “from CIE” information; see Section 10.10.4,
“Output Intents,” for details.

The representations of ICCBased color spaces are less compact than CalGray,
CalRGB, and Lab, but can represent a wider range of color spaces. In those cases
where a given color space can be expressed by more than one of the CIE-based



256
| CHAPTER 4 | Graphics |

color space families, the resulting colors are expected to be rendered similarly,
regardless of the method selected for representation.

One particular color space is the so-called “standard RGB” or sRGB, defined in
the International Electrotechnical Commission (IEC) document Colour Measure-
ment and Management in Multimedia Systems and Equipment (see the Bibliogra-
phy). In PDE the sRGB color space can be expressed precisely only as an
ICCBased space, although it can be approximated by a CalRGB space.

Example 4.9 shows an ICCBased color space for a typical three-component RGB
space. The profile’s data has been encoded in hexadecimal representation for
readability; in actual practice, a lossless decompression filter such as FlateDecode
should be used.

Example 4.9
10 0 obj % Color space
[/ICCBased 150R]
endobj
15 0 obj % ICC profile stream
<< /N 3

/Alternate /DeviceRGB

/Length 1605

/Filter /ASClIHexDecode

>>

stream
00 00 02 0C 61 70 70 6C 02 00 00 00 6D 6E 74 72
52 47 42 20 58 59 5A 20 07 CB 00 02 00 16 00 OE
00 22 00 2C 61 63 73 70 41 50 50 4C 00 00 00 00
61 70 70 6C 00 00 04 01 00 00 00 00 00 00 0O 02
00 00 00 00 00 00 F6 D4 00 01 00 00 00 00 D3 2B
00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 00 00
00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 00 00
00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00
00 00 00 09 64 65 73 63 00 00 00 FO 00 00 00 71
72 58 59 5A 00 00 01 64 00 00 00 14 67 58 59 5A
00 00 01 78 00 00 00 14 62 58 59 5A 00 00 01 8C
00 00 00 14 72 54 52 43 00 00 01 A0 00 00 00 OE
67 54 52 43 00 00 01 BO 00 00 00 OE 62 54 52 43
00 00 01 CO 00 00 00 OE 77 74 70 74 00 00 01 DO
00 00 00 14 63 70 72 74 00 00 01 E4 00 00 00 27
64 65 73 63 00 00 00 00 00 00 00 17 41 70 70 6C
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65 20 31 33 22 20 52 47 42 20 53 74 61 6E 64 61
72 64 00 00 00 00 00 00 00 OO 00 00 00 17 41 70
70 6C 65 20 31 33 22 20 52 47 42 20 53 74 61 6E
64 61 72 64 00 00 00 00 00 OO0 00 00 OO0 OO 00 00
00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 00 00
00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 00 00
00 58 59 5A 58 59 5A 20 00 00 00 00 00 00 63 OA
00 00 35 OF 00 00 03 30 58 59 5A 20 00 00 00 00
00 00 53 3D 00 00 AE 37 00 00 15 76 58 59 5A 20
00 00 00 00 00 00 40 89 00 00 1C AF 00 00 BA 82
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 63 75
63 75 72 76 00 00 00 00 00 00 00 01 01 CC 58 59
58 59 5A 20 00 00 00 00 00 00 F3 1B 00 01 00 00
00 01 67 E7 74 65 78 74 00 00 00 00 20 43 6F 70
79 72 69 67 68 74 20 41 70 70 6C 65 20 43 6F 6D
70 75 74 65 72 73 20 31 39 39 34 00 >

endstream

endobj

Default Color Spaces

Colors that are specified in a device color space (DeviceGray, DeviceRGB, or
DeviceCMYK) are device-dependent. By setting default color spaces (PDF 1.1), a
PDF document can request that such colors be systematically transformed
(remapped) into device-independent CIE-based color spaces. This capability can
be useful in a variety of circumstances:

¢ A document originally intended for one output device is redirected to a differ-
ent device.

¢ A document is intended to be compatible with applications designed for earlier
versions of PDF and thus cannot specify CIE-based colors directly.

¢ Color corrections or rendering intents need to be applied to device colors (see
“Rendering Intents” on page 260).

A color space is selected for painting each graphics object. This is either the cur-
rent color space parameter in the graphics state or a color space given as an entry
in an image XObject, inline image, or shading dictionary. Regardless of how the
color space is specified, it may be subject to remapping as described below.
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When a device color space is selected, the ColorSpace subdictionary of the cur-
rent resource dictionary (see Section 3.7.2, “Resource Dictionaries”) is checked
for the presence of an entry designating a corresponding default color space
(DefaultGray, DefaultRGB, or DefaultCMYK, corresponding to DeviceGray,
DeviceRGB, or DeviceCMYK, respectively). If such an entry is present, its value is
used as the color space for the operation currently being performed. (If the appli-
cation does not recognize this color space, no remapping occurs; the original de-
vice color space is used.)

Color values in the original device color space are passed unchanged to the
default color space, which must have the same number of components as the
original space. The default color space should be chosen to be compatible with
the original, taking into account the components’ ranges and whether the compo-
nents are additive or subtractive. If a color value lies outside the range of the de-
fault color space, it is adjusted to the nearest valid value.

Note: Any color space other than a Lab, Indexed, or Pattern color space may be used
as a default color space provided that it is compatible with the original device color
space as described above.

If the selected space is a special color space based on an underlying device color
space, the default color space is used in place of the underlying space. This applies
to the following color spaces:

o The underlying color space of a Pattern color space
o The base color space of an Indexed color space

o The alternate color space of a Separation or DeviceN color space (but only if the
alternate color space is actually selected)

See Section 4.5.5, “Special Color Spaces,” for details on these color spaces.

Note: There is no conversion of color values, such as a tint transformation, when us-
ing the default color space. Color values that are within the range of the device color
space might not be within the range of the default color space (particularly if the de-
fault is an ICCBased color space). In this case, the nearest values within the range of
the default space are used. For this reason, a Lab color space is not permitted as the
DefaultRGB color space.
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Implicit Conversion of CIE-Based Color Spaces

In workflows in which PDF documents are intended for rendering on a specific
target output device (such as a printing press with particular inks and media), it is
often useful to specify the source colors for some or all of a document’s objects in
a CIE-based color space that matches the calibration of the intended device. The
resulting document, although tailored to the specific characteristics of the target
device, remains device-independent and will produce reasonable results if re-
targeted to a different output device. However, the expectation is that if the docu-
ment is printed on the intended target device, source colors that have been
specified in a color space matching the calibration of the device will pass through
unchanged, without conversion to and from the intermediate CIE 1931 XYZ
space as depicted in Figure 4.14 on page 245.

In particular, when colors intended for a CMYK output device are specified in an
ICCBased color space using a matching CMYK printing profile, converting such
colors from four components to three and back is unnecessary and results in a
loss of fidelity in the black component. In such cases, PDF consumer applications
may provide the ability for the user to specify a particular calibration to use for
printing, proofing, or previewing. This calibration is then considered to be that of
the native color space of the intended output device (typically DeviceCMYK), and
colors expressed in a CIE-based source color space matching it can be treated as if
they were specified directly in the device’s native color space. Note that the condi-
tions under which such implicit conversion is done cannot be specified in PDF,
since nothing in PDF describes the calibration of the output device (although an
output intent dictionary, if present, may suggest such a calibration; see Section
10.10.4, “Output Intents”). The conversion is completely hidden by the applica-
tion and plays no part in the interpretation of PDF color spaces.

When this type of implicit conversion is done, all of the semantics of the device
color space should also apply, even though they do not apply to CIE-based spaces
in general. In particular:

e The nonzero overprint mode (see Section 4.5.6, “Overprint Control”) deter-
mines the interpretation of color component values in the space.

o If the space is used as the blending color space for a transparency group in the
transparent imaging model (see Sections 7.2.3, “Blending Color Space”; 7.3,
“Transparency Groups”; and 7.5.5, “Transparency Group XObjects”), compo-
nents of the space, such as Cyan, can be selected in a Separation or DeviceN col-
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or space used within the group (see “Separation Color Spaces” on page 264 and
“DeviceN Color Spaces” on page 268).

o Likewise, any uses of device color spaces for objects within such a transparency
group have well-defined conversions to the group color space.

Note: A source color space can be specified directly (for example, with an ICCBased
color space) or indirectly using the default color space mechanism (for example,
DefaultCMYK; see “Default Color Spaces” on page 257). The implicit conversion of a
CIE-based color space to a device space should not depend on whether the CIE-
based space is specified directly or indirectly.

Rendering Intents

Although CIE-based color specifications are theoretically device-independent,
they are subject to practical limitations in the color reproduction capabilities of
the output device. Such limitations may sometimes require compromises to be
made among various properties of a color specification when rendering colors for
a given device. Specifying a rendering intent (PDF 1.1) allows a PDF file to set pri-
orities regarding which of these properties to preserve and which to sacrifice. For
example, the PDF file might request that colors falling within the output device’s
gamut (the range of colors it can reproduce) be rendered exactly while sacrificing
the accuracy of out-of-gamut colors, or that a scanned image such as a photo-
graph be rendered in a perceptually pleasing manner at the cost of strict colori-
metric accuracy.

Rendering intents are specified with the ri operator (see Section 4.3.3, “Graphics
State Operators”), the Rl entry in a graphics state parameter dictionary (see Sec-
tion 4.3.4), and with the Intent entry in image dictionaries (Section 4.8.4, “Image
Dictionaries”). The value is a name identifying the rendering intent. Table 4.20
lists the standard rendering intents recognized in the initial release of PDF viewer
applications from Adobe Systems; Plate 5 illustrates their effects. These intents
have been deliberately chosen to correspond closely to those defined by the Inter-
national Color Consortium (ICC), an industry organization that has developed
standards for device-independent color. Note, however, that the exact set of ren-
dering intents supported may vary from one output device to another; a particu-
lar device may not support all possible intents or may support additional ones
beyond those listed in the table. If the application does not recognize the speci-
fied name, it uses the RelativeColorimetric intent by default.
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See Section 7.6.4, “Rendering Parameters and Transparency, and in particular
“Rendering Intent and Color Conversions” on page 574, for further discussion of
the role of rendering intents in the transparent imaging model.

TABLE 4.20 Rendering intents

NAME

DESCRIPTION

AbsoluteColorimetric

RelativeColorimetric

Saturation

Colors are represented solely with respect to the light source; no
correction is made for the output medium’s white point (such as
the color of unprinted paper). Thus, for example, a monitor’s
white point, which is bluish compared to that of a printer’s pa-
per, would be reproduced with a blue cast. In-gamut colors are
reproduced exactly; out-of-gamut colors are mapped to the
nearest value within the reproducible gamut. This style of repro-
duction has the advantage of providing exact color matches
from one output medium to another. It has the disadvantage of
causing colors with Y values between the medium’s white point
and 1.0 to be out of gamut. A typical use might be for logos and
solid colors that require exact reproduction across different me-
dia.

Colors are represented with respect to the combination of the
light source and the output medium’s white point (such as the
color of unprinted paper). Thus, for example, a monitor’s white
point would be reproduced on a printer by simply leaving the
paper unmarked, ignoring color differences between the two
media. In-gamut colors are reproduced exactly; out-of-gamut
colors are mapped to the nearest value within the reproducible
gamut. This style of reproduction has the advantage of adapting
for the varying white points of different output media. It has the
disadvantage of not providing exact color matches from one me-
dium to another. A typical use might be for vector graphics.

Colors are represented in a manner that preserves or emphasizes
saturation. Reproduction of in-gamut colors may or may not be
colorimetrically accurate. A typical use might be for business
graphics, where saturation is the most important attribute of the
color.
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Perceptual Colors are represented in a manner that provides a pleasing per-

ceptual appearance. To preserve color relationships, both in-
gamut and out-of-gamut colors are generally modified from
their precise colorimetric values. A typical use might be for
scanned images.

4.5.5 Special Color Spaces

Special color spaces add features or properties to an underlying color space.
There are four special color space families: Pattern, Indexed, Separation, and
DeviceN.

Pattern Color Spaces

A Pattern color space (PDF 1.2) enables a PDF content stream to paint an area
with a pattern rather than a single color. The pattern may be either a tiling pattern
(type 1) or a shading pattern (type 2). Section 4.6, “Patterns,” discusses patterns in
detail.

Indexed Color Spaces

An Indexed color space allows a PDF content stream to use small integers as indi-
ces into a color map or color table of arbitrary colors in some other space. A PDF
consumer application treats each sample value as an index into the color table
and uses the color value it finds there. This technique can considerably reduce the
amount of data required to represent a sampled image—for example, by using
8-bit index values as samples instead of 24-bit RGB color values.

An Indexed color space is defined by a four-element array:
[/Indexed base hival lookup]

The first element is the color space family name Indexed. The remaining ele-
ments are parameters that an Indexed color space requires; their meanings are
discussed below. Setting the current stroking or nonstroking color space to an
Indexed color space initializes the corresponding current color to 0.
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The base parameter is an array or name that identifies the base color space in
which the values in the color table are to be interpreted. It can be any device or
CIE-based color space or (in PDF 1.3) a Separation or DeviceN space, but not a
Pattern space or another Indexed space. For example, if the base color space is
DeviceRGB, the values in the color table are to be interpreted as red, green, and
blue components; if the base color space is a CIE-based ABC space such as a
CalRGB or Lab space, the values are to be interpreted as A, B, and C components.

Note: Attempting to use a Separation or DeviceN color space as the base for an
Indexed color space generates an error in PDF 1.2.

The hival parameter is an integer that specifies the maximum valid index value. In
other words, the color table is to be indexed by integers in the range 0 to hival.
hival can be no greater than 255, which is the integer required to index a table
with 8-bit index values.

The color table is defined by the lookup parameter, which can be either a stream
or (in PDF 1.2) a byte string. It provides the mapping between index values and
the corresponding colors in the base color space.

The color table data must be m X (hival + 1) bytes long, where m is the number of
color components in the base color space. Each byte is an unsigned integer in the
range 0 to 255 that is scaled to the range of the corresponding color component in
the base color space; that is, 0 corresponds to the minimum value in the range for
that component, and 255 corresponds to the maximum.

Note: PostScript uses a different interpretation of an Indexed color space’s color ta-
ble. In PostScript, the component value is always scaled to the range 0.0 to 1.0, re-
gardless of the range of color values in the base color space.

The color components for each entry in the table appear consecutively in the
string or stream. For example, if the base color space is DeviceRGB and the
indexed color space contains two colors, the order of bytes in the string or stream
is Ry Gy By, Ry G, B,, where letters denote the color component and numeric
subscripts denote the table entry.

Example 4.10 illustrates the specification of an Indexed color space that maps
8-bit index values to three-component color values in the DeviceRGB color space.
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Example 4.10

[ /Indexed
/DeviceRGB
255
<000000 FFO000 OOFFOO OOOOFF B57342 ...>

The example shows only the first five color values in the lookup string; in all, there
should be 256 color values and the string should be 768 bytes long. Having
established this color space, the program can now specify colors as single-compo-
nent values in the range 0 to 255. For example, a color value of 4 selects an RGB
color whose components are coded as the hexadecimal integers B5, 73, and 42.
Dividing these by 255 and scaling the results to the range 0.0 to 1.0 yields a color
with red, green, and blue components of 0.710, 0.451, and 0.259, respectively.

Although an Indexed color space is useful mainly for images, index values can
also be used with the color selection operators SC, SCN, sc, and scn. For example:

123 sc

selects the same color as does an image sample value of 123. The index value
should be an integer in the range 0 to hival. If the value is a real number, it is
rounded to the nearest integer; if it is outside the range 0 to hival, it is adjusted to
the nearest value within that range.

Separation Color Spaces

Color output devices produce full color by combining primary or process
colorants in varying amounts. On an additive color device such as a display, the
primary colorants consist of red, green, and blue phosphors; on a subtractive de-
vice such as a printer, they typically consist of cyan, magenta, yellow, and some-
times black inks. In addition, some devices can apply special colorants, often
called spot colorants, to produce effects that cannot be achieved with the standard
process colorants alone. Examples include metallic and fluorescent colors and
special textures.

When printing a page, most devices produce a single composite page on which all
process colorants (and spot colorants, if any) are combined. However, some de-
vices, such as imagesetters, produce a separate, monochromatic rendition of the
page, called a separation, for each colorant. When the separations are later com-
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bined—on a printing press, for example—and the proper inks or other colorants
are applied to them, the result is a full-color page.

A Separation color space (PDF 1.2) provides a means for specifying the use of
additional colorants or for isolating the control of individual color components of
a device color space for a subtractive device. When such a space is the current
color space, the current color is a single-component value, called a tint, that con-
trols the application of the given colorant or color components only.

Note: The term separation is often misused as a synonym for an individual device
colorant. In the context of this discussion, a printing system that produces separa-
tions generates a separate piece of physical medium (generally film) for each color-
ant. It is these pieces of physical medium that are correctly referred to as separations.
A particular colorant properly constitutes a separation only if the device is generat-
ing physical separations, one of which corresponds to the given colorant. The
Separation color space is so named for historical reasons, but it has evolved to the
broader purpose of controlling the application of individual colorants in general, re-
gardless of whether they are actually realized as physical separations.

Note also that the operation of a Separation color space itself is independent of the
characteristics of any particular output device. Depending on the device, the space
may or may not correspond to a true, physical separation or to an actual colorant.
For example, a Separation color space could be used to control the application of a
single process colorant (such as cyan) on a composite device that does not produce
physical separations, or could represent a color (such as orange) for which no specif-
ic colorant exists on the device. A Separation color space provides consistent, pre-
dictable behavior, even on devices that cannot directly generate the requested color.

A Separation color space is defined as follows:

[/Separation name alternateSpace tintTransform]

In other words, it is a four-element array whose first element is the color space
family name Separation. The remaining elements are parameters that a
Separation color space requires; their meanings are discussed below.

A color value in a Separation color space consists of a single tint component in
the range 0.0 to 1.0. The value 0.0 represents the minimum amount of colorant
that can be applied; 1.0 represents the maximum. Tints are always treated as
subtractive colors, even if the device produces output for the designated compo-
nent by an additive method. Thus, a tint value of 0.0 denotes the lightest color
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that can be achieved with the given colorant, and 1.0 is the darkest. (This conven-
tion is the same as for DeviceCMYK color components but opposite to the one for
DeviceGray and DeviceRGB.) The initial value for both the stroking and non-
stroking color in the graphics state is 1.0. The SCN and scn operators respectively
set the current stroking and nonstroking color to a tint value. A sampled image
with single-component samples can also be used as a source of tint values.

The name parameter is a name object specifying the name of the colorant that
this Separation color space is intended to represent (or one of the special names
All or None; see below). Such colorant names are arbitrary, and there can be any
number of them, subject to implementation limits.

The special colorant name All refers collectively to all colorants available on an
output device, including those for the standard process colorants. When a
Separation space with this colorant name is the current color space, painting
operators apply tint values to all available colorants at once. This is useful for pur-
poses such as painting registration targets in the same place on every separation.
Such marks are typically painted as the last step in composing a page to ensure
that they are not overwritten by subsequent painting operations.

The special colorant name None never produces any visible output. Painting op-
erations in a Separation space with this colorant name have no effect on the cur-
rent page.

All devices support Separation color spaces with the colorant names All and
None, even if they do not support any others. Separation spaces with either of
these colorant names ignore the alternateSpace and tintTransform parameters (dis-
cussed below), although valid values must still be provided.

At the moment the color space is set to a Separation space, the consumer applica-
tion determines whether the device has an available colorant corresponding to
the name of the requested space. If so, the application ignores the alternateSpace
and tintTransform parameters; subsequent painting operations within the space
apply the designated colorant directly, according to the tint values supplied.

Note: The preceding paragraph applies only to subtractive output devices such as
printers and imagesetters. For an additive device such as a computer display, a
Separation color space never applies a process colorant directly; it always reverts to
the alternate color space as described below. This is because the model of applying
process colorants independently does not work as intended on an additive device; for
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instance, painting tints of the Red component on a white background produces a
result that varies from white to cyan.

Note that this exception applies only to colorants for additive devices, not to the spe-
cific names Red, Green, and Blue. In contrast, a printer might have a (subtractive)
ink named, for example, Red, which should work as a Separation color space just
the same as any other supported colorant.

If the colorant name associated with a Separation color space does not cor-
respond to a colorant available on the device, the application arranges for subse-
quent painting operations to be performed in an alternate color space. The
intended colors can be approximated by colors in a device or CIE-based color
space, which are then rendered with the usual primary or process colorants:

¢ The alternateSpace parameter must be an array or name object that identifies
the alternate color space, which can be any device or CIE-based color space but
not another special color space (Pattern, Indexed, Separation, or DeviceN).

e The tintTransform parameter must be a function (see Section 3.9, “Functions”).
During subsequent painting operations, an application calls this function to
transform a tint value into color component values in the alternate color space.
The function is called with the tint value and must return the corresponding
color component values. That is, the number of components and the interpre-
tation of their values depend on the alternate color space.

Note: Painting in the alternate color space may produce a good approximation of
the intended color when only opaque objects are painted. However, it does not cor-
rectly represent the interactions between an object and its backdrop when the object
is painted with transparency or when overprinting (see Section 4.5.6, “Overprint
Control”) is enabled.

Example 4.11 illustrates the specification of a Separation color space (object 5)
that is intended to produce a color named LogoGreen. If the output device has no
colorant corresponding to this color, DeviceCMYK is used as the alternate color
space, and the tint transformation function (object 12) maps tint values linearly
into shades of a CMYK color value approximating the LogoGreen color.
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Example 4.11

5 0 obj % Color space
[ /Separation
/LogoGreen
/DeviceCMYK
120R

1
endobj

12 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 62
>>
stream
{ dup 0.84 mul
exch 0.00 exch dup 0.44 mul
exch 0.21 mul

}
endstream
endobj

See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of Separation color spaces in the transparent imaging model.

DeviceN Color Spaces

DeviceN color spaces (PDF 1.3) can contain an arbitrary number of color compo-
nents. They provide greater flexibility than is possible with standard device color
spaces such as DeviceCMYK or with individual Separation color spaces. For ex-
ample, it is possible to create a DeviceN color space consisting of only the cyan,
magenta, and yellow color components, with the black component excluded.

DeviceN color spaces are used in applications such as these:

e High-fidelity color is the use of more than the standard CMYK process colo-
rants to produce an extended gamut, or range of colors. A popular example is
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the PANTONE Hexachrome system, which uses six colorants: the usual cyan,
magenta, yellow, and black, plus orange and green.

o Multitone color systems use a single-component image to specify multiple color
components. In a duotone, for example, a single-component image can be used
to specify both the black component and a spot color component. The tone
reproduction is generally different for the different components. For example,
the black component might be painted with the exact sample data from the sin-
gle-component image; the spot color component might be generated as a
nonlinear function of the image data in a manner that emphasizes the shadows.
Plate 6 shows an example that uses black and magenta color components. In
Plate 7, a single-component grayscale image is used to generate a quadtone re-
sult that uses four colorants: black and three PANTONE spot colors. See Exam-
ple 4.21 on page 282 for the code used to generate this image.

DeviceN was designed to represent color spaces containing multiple components
that correspond to colorants of some target device. As with Separation color
spaces, PDF consumer applications must be able to approximate the colorants if
they are not available on the current output device, such as a display. To accom-
plish this, the color space definition provides a tint transformation function that
can be used to convert all the components to an alternate color space.

PDF 1.6 extends the meaning of DeviceN to include color spaces that are referred
to as NChannel color spaces. Such color spaces may contain an arbitrary number
of spot and process components, which may or may not correspond to specific
device colorants (the process components must be from a single process color
space). They provide information about each component that allows applications
more flexibility in converting colors. For example, they may use their own blend-
ing algorithms for on-screen viewing and composite printing, rather than being
required to use a specified tint transformation function. These color spaces are
identified by a value of NChannel for the Subtype entry of the attributes dictio-
nary (see Table 4.21). A value of DeviceN for the Subtype entry, or no value,
means that only the previous features are supported. PDF consumer applications
that do not support PDF 1.6 treat these color spaces as normal DeviceN color
spaces and use the tint transformation function as appropriate. Producer applica-
tions using the NChannel features should follow certain guidelines, as noted
throughout this section, to achieve good backward compatibility.

DeviceN color spaces are defined in a similar way to Separation color spaces—in
fact, a Separation color space can be defined as a DeviceN color space with only
one component.
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A DeviceN color space is specified as follows:
[/DeviceN names alternateSpace tintTransform]
or

[/DeviceN names alternateSpace tintTransform attributes]

It is a four- or five-element array whose first element is the color space family
name DeviceN. The remaining elements are parameters that a DeviceN color
space requires.

The names parameter is an array of name objects specifying the individual color
components. The length of the array determines the number of components in
the DeviceN color space, which is subject to an implementation limit; see Appen-
dix C.The component names must all be different from one another, except for
the name None, which can be repeated as described later in this section. (The
special name All, used by Separation color spaces, is not allowed.)

Color values are tint components in the range 0.0 to 1.0:

¢ For DeviceN color spaces that do not have a subtype of NChannel, 0.0 always
represents the minimum amount of colorant; 1.0 represents the maximum.
Tints are always treated as subtractive colors, even if the device produces out-
put for the designated component by an additive method. Thus, a tint value of
0.0 denotes the lightest color that can be achieved with the given colorant, and
1.0 the darkest. (This convention is the same one as for DeviceCMYK color
components but opposite to the one for DeviceGray and DeviceRGB.)

¢ For NChannel color spaces, values for additive process colors (such as RGB) are
specified in their natural form, where 1.0 represents maximum intensity of col-
or.

When this space is set to the current color space (using the CS or cs operators),
each component is given an initial value of 1.0. The SCN and scn operators re-
spectively set the current stroking and nonstroking color. Operand values sup-
plied to SCN or scn are interpreted as color component values in the order in
which the colors are given in the names array, as are the values in a sampled im-
age that uses a DeviceN color space.

The alternateSpace parameter is an array or name object that can be any device or
CIE-based color space but not another special color space (Pattern, Indexed,
Separation, or DeviceN). When the color space is set to a DeviceN space, if any of
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the component names in the color space do not correspond to a colorant avail-
able on the device, the PDF consumer application can perform subsequent paint-
ing operations in the alternate color space specified by this parameter.

Note: For NChannel color spaces, the components are evaluated individually; that
is, only the ones not present on the output device use the alternate color space.

The tintTransform parameter specifies a function (see Section 3.9, “Functions”)
that is used to transform the tint values into the alternate color space. It is called
with # tint values and returns m color component values, where 7 is the number
of components needed to specify a color in the DeviceN color space and m is the
number required by the alternate color space.

Note: Painting in the alternate color space may produce a good approximation of
the intended color when only opaque objects are painted. However, it does not cor-
rectly represent the interactions between an object and its backdrop when the object
is painted with transparency or when overprinting (see Section 4.5.6, “Overprint
Control”) is enabled.

The color component name None, which may be present only for DeviceN color
spaces that do not have the NChannel subtype, indicates that the corresponding
color component is never painted on the page, as in a Separation color space for
the None colorant. (However, see implementation note 48 in Appendix H.) When
a DeviceN color space is painting the named device colorants directly, color com-
ponents corresponding to None colorants are discarded. However, when the
DeviceN color space reverts to its alternate color space, those components are
passed to the tint transformation function, which can use them as desired.

Note: A DeviceN color space whose component colorant names are all None always
discards its output, just the same as a Separation color space for None; it never
reverts to the alternate color space. Reversion occurs only if at least one color com-
ponent (other than None) is specified and is not available on the device.

The optional attributes parameter is a dictionary (see Table 4.21) containing addi-
tional information about the components of color space that PDF consumer ap-
plications may use. PDF consumers are not required to use the alternateSpace and
tintTransform parameters, and may instead use custom blending algorithms, along
with other information provided in the attributes dictionary if present. (If the val-
ue of the Subtype entry in the attributes dictionary is NChannel, such informa-
tion must be present.) However, alternateSpace and tintTransform must always be
provided for applications that want to use them or do not support PDF 1.6.



I CHAPTER 4

272
| Graphics |

TABLE 4.21 Entries in a DeviceN color space attributes dictionary

KEY

TYPE

VALUE

Subtype

Colorants

Process

MixingHints

name

dictionary

dictionary

dictionary

(Optional; PDF 1.6) A name specifying the preferred treatment for the color
space. Possible values are DeviceN and NChannel. Default value: DeviceN.

(Required if Subtype is NChannel and the color space includes spot colorants; other-
wise optional) A dictionary describing the individual colorants used in the
DeviceN color space. For each entry in this dictionary, the key is a colorant name
and the value is an array defining a Separation color space for that colorant (see
“Separation Color Spaces” on page 264). The key must match the colorant name
given in that color space.

This dictionary provides information about the individual colorants that may be
useful to some applications. In particular, the alternate color space and tint trans-
formation function of a Separation color space describe the appearance of that
colorant alone, whereas those of a DeviceN color space describe only the appear-
ance of its colorants in combination.

If Subtype is NChannel, this dictionary must have entries for all spot colorants in
this color space. This dictionary may also include additional colorants not used
by this color space.

(Required if Subtype is NChannel and the color space includes components of a pro-
cess color space, otherwise optional; PDF 1.6) A dictionary (see Table 4.22) that de-
scribes the process color space whose components are included in this color
space.

(Optional; PDF 1.6) A dictionary (see Table 4.23) that specifies optional attributes
of the inks to be used in blending calculations when used as an alternative to the
tint transformation function.

A value of NChannel for the Subtype entry indicates that some of the other en-
tries in this dictionary are required rather than optional. The Colorants entry
specifies a colorants dictionary that contains entries for all the spot colorants in
the color space; they are defined using individual Separation color spaces. The
Process entry specifies a process dictionary (see Table 4.22) that identifies the pro-
cess color space that is used by this color space and the names of its components.
It must be present if Subtype is NChannel and the color space has process color
components. (An NChannel color space may contain components from at most
one process color space.)
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For color spaces that have a value of NChannel for the Subtype entry in the at-
tributes dictionary (see Table 4.21), the following restrictions apply to process
colors:

e There can be color components from at most one process color space, which

can be any device or CIE-based color space.

For a non-CMYK color space, the names of the process components must ap-
pear sequentially in the names array, in the normal color space order (for exam-
ple, Red, Green, and Blue). However, the names in the names array need not
match the actual color space names (for example, a Red component need not be
named Red).The mapping of names is specified in the process dictionary (see
Table 4.22 and discussion below), which is required to be present.

Definitions for process colorants should not appear in the colorants dictionary.
Any such definition should be ignored if the colorant is also present in the pro-
cess dictionary. Any component not specified in the process dictionary is con-
sidered to be a spot colorant.

For a CMYK color space, a subset of the components may be present, and they
may appear in any order in the names array. The reserved names Cyan,
Magenta, Yellow, and Black are always considered to be process colors, which
do not necessarily correspond to the colorants of a specific device; they are not
required to have entries in the process dictionary.

The values associated with the process components must be stored in their nat-
ural form (that is, subtractive color values for CMYK and additive color values
for RGB), since they are interpreted directly as process values by consumers
making use of the process dictionary. (For additive color spaces, this is the re-
verse of how color values are specified for DeviceN, as described above in the
discussion of the names parameter.)

The MixingHints entry in the attributes dictionary specifies a mixing hints dictio-
nary (see Table 4.23) that provides information about the characteristics of colo-
rants that can be used in blending calculations when the actual colorants are not
available on the target device. Applications are not required to use this informa-
tion.
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TABLE 4.22 Entriesin a DeviceN process dictionary
KEY TYPE VALUE
ColorSpace  name or (Required) A name or array identifying the process color space, which may be any
array device or CIE-based color space. If an ICCBased color space is specified, it must
provide calibration information appropriate for the process color components
specified in the names array of the DeviceN color space.

Components array (Required) An array of component names that correspond, in order, to the com-
ponents of the process color space specified in ColorSpace. For example, an RGB
color space must have three names corresponding to red, green, and blue. The
names may be arbitrary (that is, not the same as the standard names for the color
space components) and must match those specified in the names array of the
DeviceN color space, even if all components are not present in the names array.

TABLE 4.23 Entries in a DeviceN mixing hints dictionary
KEY TYPE VALUE
Solidities dictionary (Optional) A dictionary specifying the solidity of inks to be used in blending

PrintingOrder

array

calculations when used as an alternative to the tint transformation function.
For each entry, the key is a colorant name, and the value is a number between
0.0 and 1.0. This dictionary need not contain entries for all colorants used in
this color space; it may also include additional colorants not used by this color
space.

A value of 1.0 simulates an ink that completely covers the inks beneath; a value
of 0.0 simulates a transparent ink that completely reveals the inks beneath. An
entry with a key of Default specifies a value to be used by all components in the
associated DeviceN color space for which a solidity value is not explicitly pro-
vided. If Default is not present, the default value for unspecified colorants is
0.0; applications may choose to use other values.

If this entry is present, PrintingOrder must also be present.

(Required if Solidities is present) An array of colorant names, specifying the or-
der in which inks are laid down. Each component in the names array of the
DeviceN color space must appear in this array (although the order is unrelated
to the order specified in the names array). This entry may also list colorants
unused by this specific DeviceN instance.
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KEY TYPE VALUE
DotGain dictionary (Optional) A dictionary specifying the dot gain of inks to be used in blending

calculations when used as an alternative to the tint transformation function.
Dot gain (or loss) represents the amount by which a printer’s halftone dots
change as the ink spreads and is absorbed by paper.

For each entry, the key is a colorant name, and the value is a function that maps
values in the range 0 to 1 to values in the range 0 to 1. The dictionary may list
colorants unused by this specific DeviceN instance and need not list all colo-
rants. An entry with a key of Default specifies a function to be used by all colo-
rants for which a dot gain function is not explicitly specified.

PDF consumer applications may ignore values in this dictionary when other
sources of dot gain information are available, such as ICC profiles associated
with the process color space or tint transformation functions associated with
individual colorants.

Each entry in the mixing hints dictionary refers to colorant names, which include
spot colorants referenced by the Colorants dictionary. Under some circumstanc-
es, they may also refer to one or more individual process components called
Cyan, Magenta, Yellow, or Black when DeviceCMYK is specified as the process col-
or space in the process dictionary. However, applications should ignore these pro-
cess component entries if they can obtain the information from an ICC profile.

Note: The mixing hints subdictionaries (as well as the colorants dictionary) may
specify colorants that are not used in any given instance of a DeviceN color space.
This allows them to be referenced from multiple DeviceN color spaces, which can
produce smaller file sizes as well as consistent color definitions across instances.

For consistency of color, PDF consumers should follow these guidelines:

o The consumer should apply either the specified tint transformation function or
invoke the same alternative blending algorithm for all DeviceN instances in the
document.

Note: When the tint transformation function is used, the burden is on the produc-
er to guarantee that the individual function definitions chosen for all DeviceN in-
stances produce similar color appearances throughout the document.

e Blending algorithms should produce a similar appearance for colors when they
are used as separation colors or as a component of a DeviceN color space.
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Example 4.12 shows a DeviceN color space consisting of three color components
named Orange, Green, and None. In this example, the DeviceN color space,
object 30, has an attributes dictionary whose Colorants entry is an indirect refer-
ence to object 45 (which might also be referenced by attributes dictionaries of
other DeviceN color spaces). tintTransform1, whose definition is not shown, maps
three color components (tints of the colorants Orange, Green, and None) to four
color components in the alternate color space, DeviceCMYK. tintTransform2 maps
a single color component (an orange tint) to four components in DeviceCMYK.
Likewise, tintTransform3 maps a green tint to DeviceCMYK, and tintTransform4
maps a tint of PANTONE 131 to DeviceCMYK.

Example 4.12

30 0 obj % Color space
[ /DeviceN
[/Orange /Green /None]
/DeviceCMYK
tintTransform1
<< /Colorants 450R >>

]

endobj
45 0 obj % Colorants dictionary
<< /Orange [ /Separation
/Orange
/DeviceCMYK
tintTransform2

1
/Green [ /Separation
/Green
/DeviceCMYK
tintTransform3
1
/PANTONE#20131 [ /Separation
/PANTONE#20131
/DeviceCMYK
tintTransform4

>>
endobj
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Examples 4.13 through 4.16 show the use of NChannel color spaces. Example 4.13
shows the use of calibrated CMYK process components. Example 4.14 shows the
use of Lab process components.

Example 4.13

10 0 obj % Color space
[ /DeviceN
[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary
/Subtype /NChannel
/Process
<< /ColorSpace [/ICCBased CMYK_ICC profile ]
/Components [/Cyan /Magenta /Yellow /Black]
>>
/Colorants
<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]
>>
>>
]
endobj

Example 4.14

10 0 obj % Color space
[ /DeviceN
[/L /a /b /Spot1 /Spot2]
alternateSpace
tintTransform1
<< % Attributes dictionary
/Subtype /NChannel
/Process
<< /ColorSpace [ /Lab << /WhitePoint ... /Range ... >>]
/Components [/L /a /b]
>>
/Colorants
<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2 ]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform3]
>>
>>
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Example 4.15 shows the recommended convention for dealing with situations
where a spot colorant and a process color component have the same name. Since
the names array may not have duplicate names, the process colors should be given
different names, which are mapped to process components in the Components
entry of the process dictionary. In this case, Red refers to a spot colorant;
ProcessRed, ProcessGreen, and ProcessBlue are mapped to the components of an
RGB color space.

Example 4.15

10 0 obj % Color space
[ /DeviceN
[/ProcessRed /ProcessGreen /ProcessBlue /Red]
alternateSpace
tintTransform1
<< % Attributes dictionary
/Subtype /NChannel
/Process
<< /ColorSpace [ /ICCBased RGB_ICC profile ]
/Components [/ProcessRed /ProcessGreen /ProcessBlue]
>>
/Colorants
<< /Red [/Separation /Red alternateSpace tintTransform2] >>
>>

Example 4.16 shows the use of a mixing hints dictionary.

Example 4.16

10 0 obj % Color space
[/DeviceN
[/Magenta /Spot1 /Yellow /Spot2]
alternateSpace
tintTransform1
<<
/Subtype /NChannel
/Process
<< /ColorSpace [ /ICCBased CMYK_ICC profile ]
/Components [/Cyan /Magenta /Yellow /Black]
>>
/Colorants
<< /Spot1 [/Separation /Spot1 alternateSpace tintTransform2 ]
/Spot2 [/Separation /Spot2 alternateSpace tintTransform2 ]
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>>
/MixingHints
<<
/Solidities
<< /Spot1 1.0
/Spot2 0.0
>>
/DotGain
<< /Spot1 function1
/Spot2 function2
/Magenta function3
/Yellow function4
>>
/PrintingOrder [/Magenta /Yellow /Spot1 /Spot2]
>>
>>

See Section 7.6.2, “Spot Colors and Transparency,” for further discussion of the
role of DeviceN color spaces in the transparent imaging model.

Multitone Examples

The following examples illustrate various interesting and useful special cases of
the use of Indexed and DeviceN color spaces in combination to produce multi-
tone colors.

Examples 4.17 and 4.18 illustrate the use of DeviceN to create duotone color spac-
es. In Example 4.17, an Indexed color space maps index values in the range 0 to
255 to a duotone DeviceN space in cyan and black. In effect, the index values are
treated as if they were tints of the duotone space, which are then mapped into
tints of the two underlying colorants. Only the beginning of the lookup table
string for the Indexed color space is shown; the full table would contain 256 two-
byte entries, each specifying a tint value for cyan and black, for a total of 512
bytes. If the alternate color space of the DeviceN space is selected, the tint trans-
formation function (object 15 in the example) maps the two tint components for
cyan and black to the four components for a DeviceCMYK color space by supply-
ing zero values for the other two components. Example 4.18 shows the definition
of another duotone color space, this time using black and gold colorants (where
gold is a spot colorant) and using a CalRGB space as the alternate color space. This
could be defined in the same way as in the preceding example, with a tint trans-
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formation function that converts from the two tint components to colors in the
alternate CalRGB color space.

Example 4.17

10 0 obj % Color space
[ /Indexed
[ /DeviceN
[/Cyan /Black]
/DeviceCMYK
150R
1
255
<6605 6806 6907 6B09 6COA ...>
1
endobj

15 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 16
>>
stream
{0 0 3 -1 roll}
endstream
endobj

Example 4.18

30 0 obj % Color space
[ /Indexed
[ /DeviceN

[/Black /Gold]

[ /CalRGB
<< /WhitePoint [1.0 1.0 1.0]

/Gamma [2.2 2.2 2.2]

>>

350R % Tint transformation function

]
255
...Lookup table...

endobj
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Given a formula for converting any combination of black and gold tints to cali-
brated RGB, a 2-in, 3-out type 4 (PostScript calculator) function could be used for
the tint transformation. Alternatively, a type 0 (sampled) function could be used,
but this would require a large number of sample points to represent the function
accurately; for example, sampling each input variable for 256 tint values between
0.0 and 1.0 would require 2562 = 65,536 samples. But since the DeviceN color
space is being used as the base of an Indexed color space, there are actually only
256 possible combinations of black and gold tint values. A more compact way to
represent this information is to put the alternate color values directly into the
lookup table alongside the DeviceN color values, as in Example 4.19.

Example 4.19

10 0 obj % Color space
[ /Indexed
[ /DeviceN
[/Black /Gold /None /None /Nonel
[ /CalRGB

<< /WhitePoint [1.0 1.0 1.0]
/Gamma [2.2 2.2 2.2]
>>

200R % Tint transformation function
1
255
...Lookup table...

]
endobj

In this example, each entry in the lookup table has five components: two for the
black and gold colorants and three more (specified as None) for the equivalent
CalRGB color components. If the black and gold colorants are available on the
output device, the None components are ignored; if black and gold are not
available, the tint transformation function is used to convert a five-component
color into a three-component equivalent in the alternate CalRGB color space.
But because, by construction, the third, fourth, and fifth components are the
CalRGB components, the tint transformation function can merely discard the
first two components and return the last three. This can be easily expressed
with a type 4 (PostScript calculator) function, as shown in Example 4.20.
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Example 4.20
20 0 obj % Tint transformation function

<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0]
/Length 27
>>
stream
{5 3 roll pop pop}
endstream
endobj

Example 4.21 uses an extension of the techniques described above to produce the
quadtone (four-component) image shown in Plate 7.

Example 4.21

5 0 obj % Image XObject
<< /Type /XObject
/Subtype /Image
/Width 288
/Height 288
/ColorSpace 100R
/BitsPerComponent 8
/Length 105278
/Filter /ASCII85Decode

>>
stream
... Data for grayscale image...
endstream
endobj
10 0 obj % Indexed color space forimage
[ /Indexed
150R % Base color space
255 % Table has 256 entries
300R % Lookup table

endobj
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15 0 obj % Base color space (DeviceN) for Indexed space
[ /DeviceN
[ /Black % Four colorants (black plus three spot colors)
/PANTONE#20216#20CVC
/PANTONE#20409#20CVC
/PANTONE#202985#20CVC
/None % Three components for alternate space
/None
/None
1
160R % Alternate color space
200R % Tint transformation function
1
endobj
16 0 obj % Alternate color space for DeviceN space
[ /CalRGB

<< /WhitePoint [1.0 1.0 1.0] >>

1
endobj

20 0 obj % Tint transformation function for DeviceN space
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0]
/Length 44
>>
stream
{7 3 roll % Just discard first four values
pop pop pop pop
}
endstream
endobj

30 0 obj % Lookup table for Indexed color space
<< /Length 1975
/Filter [/ASCII85Decode /FlateDecode]
>>
stream
8, T1BB2"M7*!"psYBt1k\gY1T<D&tOlr*F7Hga*
... Additional data (seven components for each table entry)...
endstream
endobj
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As in the preceding examples, an Indexed color space based on a DeviceN space is
used to paint the grayscale image shown on the left in the plate with four colo-
rants: black and three PANTONE spot colors. The alternate color space is a sim-
ple calibrated RGB. Thus, the DeviceN color space has seven components: the
four desired colorants plus the three components of the alternate space. The ex-
ample shows the image XObject (see Section 4.8.4, “Image Dictionaries”) repre-
senting the quadtone image, followed by the color space used to interpret the
image data. (See implementation note 49 in Appendix H.)

Overprint Control

The graphics state contains an overprint parameter, controlled by the OP and op
entries in a graphics state parameter dictionary. Overprint control is useful main-
ly on devices that produce true physical separations, but it is available on some
composite devices as well. Although the operation of this parameter is device-
dependent, it is described here rather than in the chapter on color rendering,
because it pertains to an aspect of painting in device color spaces that is impor-
tant to many applications.

Any painting operation marks some specific set of device colorants, depending
on the color space in which the painting takes place. In a Separation or DeviceN
color space, the colorants to be marked are specified explicitly; in a device or
CIE-based color space, they are implied by the process color model of the output
device (see Chapter 6). The overprint parameter is a boolean flag that determines
how painting operations affect colorants other than those explicitly or implicitly
specified by the current color space.

If the overprint parameter is false (the default value), painting a color in any color
space causes the corresponding areas of unspecified colorants to be erased (paint-
ed with a tint value of 0.0). The effect is that the color at any position on the page
is whatever was painted there last, which is consistent with the normal painting
behavior of the opaque imaging model.

If the overprint parameter is true and the output device supports overprinting, no
such erasing actions are performed; anything previously painted in other colo-
rants is left undisturbed. Consequently, the color at a given position on the page
may be a combined result of several painting operations in different colorants.
The effect produced by such overprinting is device-dependent and is not defined
by the PDF language.
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Note: Not all devices support overprinting. Furthermore, many PostScript printers
support it only when separations are being produced, and not for composite output.
If overprinting is not supported, the value of the overprint parameter is ignored.

An additional graphics state parameter, the overprint mode (PDF 1.3), affects the
interpretation of a tint value of 0.0 for a color component in a DeviceCMYK color
space when overprinting is enabled. This parameter is controlled by the OPM
entry in a graphics state parameter dictionarys; it has an effect only when the over-
print parameter is true, as described above.

When colors are specified in a DeviceCMYK color space and the native color space
of the output device is also DeviceCMYK, each of the source color components
controls the corresponding device colorant directly. Ordinarily, each source color
component value replaces the value previously painted for the corresponding de-
vice colorant, no matter what the new value is; this is the default behavior, speci-
fied by overprint mode 0.

When the overprint mode is 1 (also called nonzero overprint mode), a tint value of
0.0 for a source color component leaves the corresponding component of the
previously painted color unchanged. The effect is equivalent to painting in a
DeviceN color space that includes only those components whose values are non-
zero. For example, if the overprint parameter is true and the overprint mode is 1,
the operation

0.2 0.3 0.0 1.0 k
is equivalent to
0.2 0.3 1.0 scn
in the color space shown in Example 4.22.

Example 4.22

10 0 obj % Color space
[ /DeviceN
[/Cyan /Magenta /Black]
/DeviceCMYK
150R

endobj
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15 0 obj % Tint transformation function
<< /FunctionType 4
/Domain [0.0 1.0 0.0 1.0 0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
/Length 13
>>
stream
{0 exch}
endstream
endobj

Nonzero overprint mode applies only to painting operations that use the current
color in the graphics state when the current color space is DeviceCMYK (or is im-
plicitly converted to DeviceCMYK; see “Implicit Conversion of CIE-Based Color
Spaces” on page 259). It does not apply to the painting of images or to any colors
that are the result of a computation, such as those in a shading pattern or conver-
sions from some other color space. It also does not apply if the device’s native col-
or space is not DeviceCMYK; in that case, source colors must be converted to the
device’s native color space, and all components participate in the conversion,
whatever their values. (This is shown explicitly in the alternate color space and
tint transformation function of the DeviceN color space in Example 4.22.)

See Section 7.6.3, “Overprinting and Transparency,” for further discussion of the
role of overprinting in the transparent imaging model.

4.5.7 Color Operators

Table 4.24 lists the PDF operators that control color spaces and color values. (Also
color-related is the graphics state operator ri, listed in Table 4.7 on page 219 and
discussed under “Rendering Intents” on page 260.) Color operators may appear at
the page description level or inside text objects (see Figure 4.1 on page 197).
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TABLE 4.24 Color operators

OPERANDS

OPERATOR

DESCRIPTION

name

cs

(PDF 1.1) Set the current color space to use for stroking operations. The operand
name must be a name object. If the color space is one that can be specified by a
name and no additional parameters (DeviceGray, DeviceRGB, DeviceCMYK, and
certain cases of Pattern), the name may be specified directly. Otherwise, it must
be a name defined in the ColorSpace subdictionary of the current resource dic-
tionary (see Section 3.7.2, “Resource Dictionaries”); the associated value is an
array describing the color space (see Section 4.5.2, “Color Space Families”).

Note: The names DeviceGray, DeviceRGB, DeviceCMYK, and Pattern always iden-
tify the corresponding color spaces directly; they never refer to resources in the
ColorSpace subdictionary.

The CS operator also sets the current stroking color to its initial value, which de-
pends on the color space:

¢ In a DeviceGray, DeviceRGB, CalGray, or CalRGB color space, the initial color
has all components equal to 0.0.

e In a DeviceCMYK color space, the initial color is [0.0 0.0 0.0 1.0].

e In a Lab or ICCBased color space, the initial color has all components equal to
0.0 unless that falls outside the intervals specified by the space’s Range entry,
in which case the nearest valid value is substituted.

¢ In an Indexed color space, the initial color value is 0.

e In a Separation or DeviceN color space, the initial tint value is 1.0 for all colo-
rants.

¢ In a Pattern color space, the initial color is a pattern object that causes nothing
to be painted.

(PDF 1.1) Same as CS but used for nonstroking operations.

(PDF 1.1) Set the color to use for stroking operations in a device, CIE-based
(other than ICCBased), or Indexed color space. The number of operands re-
quired and their interpretation depends on the current stroking color space:

e For DeviceGray, CalGray, and Indexed color spaces, one operand is required
(n=1).

e For DeviceRGB, CalRGB, and Lab color spaces, three operands are required
(n=23).

e For DeviceCMYK, four operands are required (n =4).
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OPERANDS OPERATOR

DESCRIPTION

Cc ...C
1

1

SCN

n
C ...Cn name SCN

scC

scn

C ...C name SCn

gray

rgb

rgb

cmyk

cmyk

RG

rg

(PDF 1.2) Same as SC but also supports Pattern, Separation, DeviceN, and
ICCBased color spaces.

If the current stroking color space is a Separation, DeviceN, or ICCBased color
space, the operands ¢ |---C are numbers. The number of operands and their in-
terpretation depends on the color space.

If the current stroking color space is a Pattern color space, name is the name of
an entry in the Pattern subdictionary of the current resource dictionary (see
Section 3.7.2, “Resource Dictionaries”). For an uncolored tiling pattern
(PatternType = 1 and PaintType = 2), c,...c_are component values specifying a
color in the pattern’s underlying color space. For other types of patterns, these
operands must not be specified.

(PDF 1.1) Same as SC but used for nonstroking operations.

(PDF 1.2) Same as SCN but used for nonstroking operations.

Set the stroking color space to DeviceGray (or the DefaultGray color space; see
“Default Color Spaces” on page 257) and set the gray level to use for stroking op-
erations. gray is a number between 0.0 (black) and 1.0 (white).

Same as G but used for nonstroking operations.

Set the stroking color space to DeviceRGB (or the DefaultRGB color space; see
“Default Color Spaces” on page 257) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (minimum intensity) and 1.0
(maximum intensity).

Same as RG but used for nonstroking operations.

Set the stroking color space to DeviceCMYK (or the DefaultCMYK color space; see
“Default Color Spaces” on page 257) and set the color to use for stroking opera-
tions. Each operand must be a number between 0.0 (zero concentration) and 1.0
(maximum concentration). The behavior of this operator is affected by the over-
print mode (see Section 4.5.6, “Overprint Control”).

Same as K but used for nonstroking operations.

Invoking operators that specify colors or other color-related parameters in the
graphics state is restricted in certain circumstances. This restriction occurs when
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defining graphical figures whose colors are to be specified separately each time
they are used. Specifically, the restriction applies in these circumstances:

e In any glyph description that uses the d1 operator (see Section 5.5.4, “Type 3
Fonts™)

e In the content stream of an uncolored tiling pattern (see “Uncolored Tiling Pat-
terns” on page 298)

In these circumstances, the following actions cause an error:

e Invoking any of the following operators:

(&) scn

cs G k
SC g ri
SCN RG sh
sC rg

o Invoking the gs operator with any of the following entries in the graphics state
parameter dictionary:

TR BG UCR
TR2 BG2 UCR2
HT

e Painting an image. However, painting an image mask (see “Stencil Masking” on
page 350) is permitted because it does not specify colors; instead, it designates
places where the current color is to be painted.

Patterns

When operators such as S (stroke), f (fill), and Tj (show text) paint an area of the
page with the current color, they ordinarily apply a single color that covers the
area uniformly. However, it is also possible to apply “paint” that consists of a re-
peating graphical figure or a smoothly varying color gradient instead of a simple
color. Such a repeating figure or smooth gradient is called a pattern. Patterns are
quite general, and have many uses; for example, they can be used to create various
graphical textures, such as weaves, brick walls, sunbursts, and similar geometrical
and chromatic effects. (See implementation note 50 in Appendix H.)
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Patterns come in two varieties:

o Tiling patterns consist of a small graphical figure (called a pattern cell) that is
replicated at fixed horizontal and vertical intervals to fill the area to be painted.
The graphics objects to use for tiling are described by a content stream.

o Shading patterns define a gradient fill that produces a smooth transition
between colors across the area. The color to use is specified as a function of
position using any of a variety of methods.

Note: The ability to paint with patterns is a feature of PDF 1.2 (tiling patterns) and
PDF 1.3 (shading patterns). With some effort, it is possible to achieve a limited form
of tiling patterns in PDF 1.1 by defining them as character glyphs in a special font
and painting them repeatedly with the Tj operator. Another technique, defining
patterns as halftone screens, is not recommended because the effects produced are
device-dependent.

Patterns are specified in a special family of color spaces named Pattern. These
spaces use pattern objects as the equivalent of color values instead of the numeric
component values used with other spaces. A pattern object may be a dictionary
or a stream, depending on the type of pattern; the term pattern dictionary is used
generically throughout this section to refer to either a dictionary object or the
dictionary portion of a stream object. (Those pattern objects that are streams are
specifically identified as such in the descriptions of particular pattern types; un-
less otherwise stated, they are understood to be simple dictionaries instead.) This
section describes Pattern color spaces and the specification of color values within
them. See Section 4.5, “Color Spaces,” for information about color spaces and col-
or values in general and Section 7.5.6, “Patterns and Transparency, for further
discussion of the treatment of patterns in the transparent imaging model.

General Properties of Patterns

A pattern dictionary contains descriptive information defining the appearance
and properties of a pattern. All pattern dictionaries contain an entry named
PatternType, whose value identifies the kind of pattern the dictionary describes:
type 1 for a tiling pattern or type 2 for a shading pattern. The remaining contents
of the dictionary depend on the pattern type and are detailed below in the sec-
tions on individual pattern types.
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All patterns are treated as colors; a Pattern color space is established with the CS
or cs operator just like other color spaces, and a particular pattern is installed as
the current color with the SCN or scn operator (see Table 4.24 on page 287).

A pattern’s appearance is described with respect to its own internal coordinate
system. Every pattern has a pattern matrix, a transformation matrix that maps the
pattern’s internal coordinate system to the default coordinate system of the pat-
tern’s parent content stream (the content stream in which the pattern is defined as
a resource). The concatenation of the pattern matrix with that of the parent con-
tent stream establishes the pattern coordinate space, within which all graphics ob-
jects in the pattern are interpreted.

For example, if a pattern is used on a page, the pattern appears in the Pattern sub-
dictionary of that page’s resource dictionary, and the pattern matrix maps pattern
space to the default (initial) coordinate space of the page. Changes to the page’s
transformation matrix that occur within the page’s content stream, such as rota-
tion and scaling, have no effect on the pattern; it maintains its original relation-
ship to the page no matter where on the page it is used. Similarly, if a pattern is
used within a form XObject (see Section 4.9, “Form XObjects”), the pattern ma-
trix maps pattern space to the form’s default user space (that is, the form co-
ordinate space at the time the form is painted with the Do operator). A pattern
may be used within another pattern; the inner pattern’s matrix defines its
relationship to the pattern space of the outer pattern.

Note: PostScript allows a pattern to be defined in one context but used in another.
For example, a pattern might be defined on a page (that is, its pattern matrix maps
the pattern coordinate space to the user space of the page) but be used in a form on
that page, so that its relationship to the page is independent of each individual
placement of the form. PDF does not support this feature; in PDE all patterns are
local to the context in which they are defined.

4.6.2 Tiling Patterns

A tiling pattern consists of a small graphical figure called a pattern cell. Painting
with the pattern replicates the cell at fixed horizontal and vertical intervals to fill
an area. The effect is as if the figure were painted on the surface of a clear glass
tile, identical copies of which were then laid down in an array covering the area
and trimmed to its boundaries. This process is called tiling the area.
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The pattern cell can include graphical elements such as filled areas, text, and sam-
pled images. Its shape need not be rectangular, and the spacing of tiles can differ
from the dimensions of the cell itself. When performing painting operations such
as S (stroke) or f (fill), the application paints the cell on the current page as many
times as necessary to fill an area. The order in which individual tiles (instances of
the cell) are painted is unspecified and unpredictable; it is inadvisable for the fig-
ures on adjacent tiles to overlap.

The appearance of the pattern cell is defined by a content stream containing the
painting operators needed to paint one instance of the cell. Besides the usual en-
tries common to all streams (see Table 3.4 on page 62), this stream’s dictionary
has the additional entries listed in Table 4.25.

TABLE 4.25 Additional entries specific to a type 1 pattern dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary de-
scribes; must be 1 for a tiling pattern.

PaintType integer (Required) A code that determines how the color of the pattern cell is to be
specified:

1 Colored tiling pattern. The pattern’s content stream specifies the col-
ors used to paint the pattern cell. When the content stream begins ex-
ecution, the current color is the one that was initially in effect in the
pattern’s parent content stream. (This is similar to the definition of
the pattern matrix; see Section 4.6.1, “General Properties of Pat-
terns.”)

2 Uncolored tiling pattern. The pattern’s content stream does not specify
any color information. Instead, the entire pattern cell is painted with
a separately specified color each time the pattern is used. Essentially,
the content stream describes a stencil through which the current col-
or is to be poured. The content stream must not invoke operators that
specify colors or other color-related parameters in the graphics state;
otherwise, an error occurs (see Section 4.5.7, “Color Operators”).
The content stream may paint an image mask, however, since it does
not specify any color information (see “Stencil Masking” on page
350).
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KEY

TYPE

VALUE

TilingType

BBox

XStep

YStep

Resources

Matrix

integer

rectangle

number

number

dictionary

array

(Required) A code that controls adjustments to the spacing of tiles relative to
the device pixel grid:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a
multiple of a device pixel. To achieve this, the application may need
to distort the pattern cell slightly by making small adjustments to
XStep, YStep, and the transformation matrix. The amount of distor-
tion does not exceed 1 device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing
between pattern cells may vary by as much as 1 device pixel, both
horizontally and vertically, when the pattern is painted. This achieves
the spacing requested by XStep and YStep on average but not neces-
sarily for each individual pattern cell.

3 Constant spacing and faster tiling. Pattern cells are spaced consistently
as in tiling type 1 but with additional distortion permitted to enable a
more efficient implementation.

(Required) An array of four numbers in the pattern coordinate system giving
the coordinates of the left, bottom, right, and top edges, respectively, of the
pattern cell's bounding box. These boundaries are used to clip the pattern
cell.

(Required) The desired horizontal spacing between pattern cells, measured in
the pattern coordinate system.

(Required) The desired vertical spacing between pattern cells, measured in
the pattern coordinate system. Note that XStep and YStep may differ from the
dimensions of the pattern cell implied by the BBox entry. This allows tiling
with irregularly shaped figures. XStep and YStep may be either positive or
negative but not zero.

(Required) A resource dictionary containing all of the named resources
required by the pattern’s content stream (see Section 3.7.2, “Resource Dic-
tionaries™).

(Optional) An array of six numbers specifying the pattern matrix (see Section
4.6.1, “General Properties of Patterns”). Default value: the identity matrix
[1T0O0 100l

The pattern dictionary’s BBox, XStep, and YStep values are interpreted in the pat-
tern coordinate system, and the graphics objects in the pattern’s content stream
are defined with respect to that coordinate system. The placement of pattern cells
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in the tiling is based on the location of one key pattern cell, which is then dis-
placed by multiples of XStep and YStep to replicate the pattern. The origin of the
key pattern cell coincides with the origin of the pattern coordinate system. The
phase of the tiling can be controlled by the translation components of the Matrix
entry in the pattern dictionary.

The first step in painting with a tiling pattern is to establish the pattern as the cur-
rent color in the graphics state. Subsequent painting operations tile the painted
areas with the pattern cell described by the pattern’s content stream. To obtain the
pattern cell, the application performs these steps:

1. Saves the current graphics state (as if by invoking the q operator)

2. Installs the graphics state that was in effect at the beginning of the pattern’s
parent content stream, with the current transformation matrix altered by the
pattern matrix as described in Section 4.6.1, “General Properties of Patterns”

3. Paints the graphics objects specified in the pattern’s content stream

4. Restores the saved graphics state (as if by invoking the Q operator)

Note: The patterns content stream should not set any of the device-dependent
parameters in the graphics state (see Table 4.3 on page 212) because it may result in
incorrect output.

Colored Tiling Patterns

A colored tiling pattern is a pattern whose color is self-contained. In the course of
painting the pattern cell, the pattern’s content stream explicitly sets the color of
each graphical element it paints. A single pattern cell can contain elements that
are painted different colors; it can also contain sampled grayscale or color images.
This type of pattern is identified by a pattern type of 1 and a paint type of 1 in the
pattern dictionary.

When the current color space is a Pattern space, a colored tiling pattern can be
selected as the current color by supplying its name as the single operand to the
SCN or scn operator. This name must be the key of an entry in the Pattern subdic-
tionary of the current resource dictionary (see Section 3.7.2, “Resource Diction-
aries”), whose value is the stream object representing the pattern. Since the
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pattern defines its own color information, no additional operands representing
color components are specified to SCN or scn. For example, if P1 is the name of a
pattern resource in the current resource dictionary, the following code establishes
it as the current nonstroking color:

/Pattern cs
/P1scn

Subsequent executions of nonstroking painting operators, such as f (fill), Tj (show
text), or Do (paint external object) with an image mask, use the designated pat-
tern to tile the areas to be painted.

Example 4.23 defines a page (object 5) that paints three circles and a triangle
using a colored tiling pattern (object 15) over a yellow background. The pattern
consists of the symbols for the four suits of playing cards (spades, hearts, dia-
monds, and clubs), which are character glyphs taken from the ZapfDingbats font
(see Section D.5, “ZapfDingbats Set and Encoding”); the pattern’s content stream
specifies the color of each glyph. Plate 8 shows the results.

Example 4.23

5 0 obj % Page object
<< /Type /Page
/Parent 20R
/Resources 100R
/Contents 300R
/CropBox [0 0 225 225]
>>
endobj

10 0 obj % Resource dictionary for page
<< /Pattern << /P1 150R >>
>>

endobj
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15 0 obj

<<

>>

/Type /Pattern

/PatternType 1

/PaintType 1

[TilingType 2

/BBox [0 0 100 100]

/XStep 100

/YStep 100

/Resources 16 0R

/Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
/Length 183

stream

BT

ET

/F1 1 Tf

64 0 0 64 7.1771 24414 Tm
0 Tc

0 Tw

1.0 0.0 0.0 rg
(\001) Tj

0.7478 —0.007 TD
0.0 1.0 0.0 rg
(\002) Tj

—0.7323 0.7813 TD
0.0 0.0 1.0 rg
(\003) Tj

0.6913 0.007 TD
0.0 0.0 0.0 rg
(\004) Tj

endstream
endobj

16 0 obj

<<
>>

/Font << /F1 200R >>

endobj

20 0 obj

<<

>>

/Type /Font

/Subtype /Typel
/Encoding 21 0R
/BaseFont /ZapfDingbats

endobj

% Pattern definition

% Tiling pattern
% Colored

% Begin text object

% Set text font and size

% Set text matrix

% Set character spacing

% Set word spacing

% Set nonstroking color to red
% Show spade glyph

% Move text position

% Set nonstroking color to green
% Show heart glyph

% Move text position

% Set nonstroking color to blue
% Show diamond glyph

% Move text position

% Set nonstroking color to black
% Show club glyph

% End text object

% Resource dictionary for pattern

% Font for pattern
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21 0 obj % Font encoding
<< /Type /Encoding
/Differences [1 /a109 /a110 /a111 /a112]

>>
endobj
30 0 obj % Contents of page
<< /Length 1252 >>
stream
00 G % Set stroking color to black
1.0 1.0 0.0 rg % Set nonstroking color to yellow
25 175 175 =150 re % Construct rectangular path
f % Fill path
/Pattern cs % Set pattern color space
/P1 scn % Set pattern as nonstroking color
99.92 4992 m % Start new path
99.92 77.52 77.52 99.92 49.92 99.92 ¢ % Construct lower-left circle

22.32 99.92 -0.08 77.52 —0.08 49.92 c

—0.08 22.32 22.32 -0.08 49.92 —0.08 ¢

77.52 —0.08 99.92 22.32 99.92 49.92 ¢

B % Fill and stroke path
22496 49.92 m % Start new path
224.96 77.52 202.56 99.92 174.96 99.92 ¢ % Construct lower-right circle
147.36 99.92 12496 77.52 124.96 49.92 c

124.96 22.32 147.36 -0.08 174.96 —0.08 ¢

202.56 —0.08 224.96 22.32 224.96 49.92 c

B % Fill and stroke path
87.56 201.70 m % Start new path

63.66 187.90 55.46 157.32 69.26 133.40 ¢ % Construct upper circle
83.06 109.50 113.66 101.30 137.56 115.10 c

161.46 128.90 169.66 159.50 155.86 183.40 ¢

142.06 207.30 111.46 215.50 87.56 201.70 c

B % Fill and stroke path

50 50 m % Start new path

175 50 | % Construct triangular path

112.5 158.253 |

b % Close, fill, and stroke path
endstream

endobj
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Several features of Example 4.23 are noteworthy:

o The three circles and the triangle are painted with the same pattern. The pat-
tern cells align, even though the circles and triangle are not aligned with re-
spect to the pattern cell. For example, the position of the blue diamonds varies
relative to the three circles.

o The pattern cell does not completely cover the tile: it leaves the spaces between
the glyphs unpainted. When the tiling pattern is used as a color, the existing
background (the yellow rectangle) shows through these unpainted areas.

Uncolored Tiling Patterns

An uncolored tiling pattern is a pattern that has no inherent color: the color must
be specified separately whenever the pattern is used. It provides a way to tile dif-
ferent regions of the page with pattern cells having the same shape but different
colors. This type of pattern is identified by a pattern type of 1 and a paint type of
2 in the pattern dictionary. The pattern’s content stream does not explicitly speci-
fy any colors; it can paint an image mask (see “Stencil Masking” on page 350) but
no other kind of image.

A Pattern color space representing an uncolored tiling pattern requires a parame-
ter: an object identifying the underlying color space in which the actual color of
the pattern is to be specified. The underlying color space is given as the second
element of the array that defines the Pattern color space. For example, the array

[/Pattern /DeviceRGB]
defines a Pattern color space with DeviceRGB as its underlying color space.
Note: The underlying color space cannot be another Pattern color space.

Operands supplied to the SCN or scn operator in such a color space must include
a color value in the underlying color space, specified by one or more numeric
color components, as well as the name of a pattern object representing an un-
colored tiling pattern. For example, if the current resource dictionary (see Section
3.7.2, “Resource Dictionaries”) defines Cs3 as the name of a ColorSpace resource
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whose value is the Pattern color space shown above and P2 as a Pattern resource
denoting an uncolored tiling pattern, the code

/Cs3 cs
0.30 0.75 0.21 /P2 scn

establishes Cs3 as the current nonstroking color space and P2 as the current non-
stroking color, to be painted in the color represented by the specified components
in the DeviceRGB color space. Subsequent executions of nonstroking painting op-
erators, such as f (fill), Tj (show text), and Do (paint external object) with an im-
age mask, use the designated pattern and color to tile the areas to be painted. The
same pattern can be used repeatedly with a different color each time.

Example 4.24 is similar to Example 4.23 on page 295, except that it uses an uncol-
ored tiling pattern to paint the three circles and the triangle, each in a different
color (see Plate 9). To do so, it supplies four operands each time it invokes the scn
operator: three numbers denoting the color components in the underlying
DeviceRGB color space, along with the name of the pattern.

Example 4.24

5 0 obj % Page object
<< /Type /Page
/Parent 20R
/Resources 100R
/Contents 300R
/CropBox [0 0 225 225]
>>
endobj

10 0 obj % Resource dictionary for page
<< /ColorSpace << /Cs12 120R >>
/Pattern << /P1 150R >>
>>
endobj

12 0 obj % Color space
[/Pattern /DeviceRGB]
endobj
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15 0 obj

<<

>>

/Type /Pattern

/PatternType 1

/PaintType 2

/TilingType 2

/BBox [0 0 100 100]

/XStep 100

/YStep 100

/Resources 16 0R

/Matrix [0.4 0.0 0.0 0.4 0.0 0.0]
/Length 127

stream

BT

ET

/F1 1 Tf

64 0 0 64 71771 24414 Tm
0 Tc

0 Tw

(\001) Tj

0.7478 —-0.007 TD
(\002) Tj

—-0.7323 0.7813 TD
(\003) Tj

0.6913 0.007 TD
(\004) Tj

endstream

endobj

16 0 obj

<<
>>

/Font << /F1 200R >>

endobj

20 0 obj

<<

>>

/Type /Font

/Subtype /Typel
/Encoding 210R
/BaseFont /ZapfDingbats

endobj

% Pattern definition

% Tiling pattern
% Uncolored

% Begin text object

% Set text font and size
% Set text matrix

% Set character spacing
% Set word spacing

% Show spade glyph

% Move text position

% Show heart glyph

% Move text position

% Show diamond glyph
% Move text position

% Show club glyph

% End text object

% Resource dictionary for pattern

% Font for pattern



I SECTION 4.6 I

Patterns

21 0 obj

<< /Type /Encoding

/Differences [1 /a109 /a110 /a111 /a112]

>>
endobj

30 0 obj

<< /Length 1316 >>

stream
00 G
1.0 1.0

0.0 rg

25 175 175 =150 re

f

/Cs12 ¢s

0.77 0.20 0.00 /P1 scn

99.92 4992 m

99.92 77.52 77.52 99.92 49.92 99.92 ¢
22.32 99.92 -0.08 77.52 —0.08 49.92 ¢
—0.08 22.32 22.32 -0.08 49.92 -0.08 ¢
77.52 —0.08 99.92 22.32 99.92 49.92 ¢

B

0.2 0.8
224.96
224.96
147.36
124.96
202.56
B

03 0.7

0.4 /P1 scn

4992 m

77.52 202.56 99.92 174.96 99.92 ¢
99.92 124.96 77.52 124.96 49.92 c
22.32 147.36 -0.08 174.96 —0.08 ¢
—0.08 224.96 22.32 224.96 49.92 c

1.0 /P1 scn

87.56 201.70 m
63.66 187.90 55.46 157.30 69.26 133.40 ¢

83.06 109.50 113.66 101.30 137.56 115.10 ¢
161.46 128.90 169.66 159.50 155.86 183.40 c
142.06 207.30 111.46 215.50 87.56 201.70 c

B
05 0.2

1.0 /P1 scn

50 50 m

175 50

112.5 158.253 |

b
endstream
endobj

% Font encoding

% Contents of page

% Set stroking color to black

% Set nonstroking color to yellow
% Construct rectangular path

% Fill path

% Set pattern color space

% Set nonstroking color and pattern
% Start new path

% Construct lower-left circle

% Fill and stroke path

% Change nonstroking color
% Start new path

% Construct lower-right circle

% Fill and stroke path

% Change nonstroking color
% Start new path

% Construct upper circle

% Fill and stroke path

% Change nonstroking color
% Start new path

% Construct triangular path

% Close, fill, and stroke path
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4.6.3 Shading Patterns

Shading patterns (PDF 1.3) provide a smooth transition between colors across an
area to be painted, independent of the resolution of any particular output device
and without specifying the number of steps in the color transition. Patterns of
this type are described by pattern dictionaries with a pattern type of 2. Table 4.26
shows the contents of this type of dictionary.

TABLE 4.26 Entries in a type 2 pattern dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present,
must be Pattern for a pattern dictionary.

PatternType integer (Required) A code identifying the type of pattern that this dictionary de-
scribes; must be 2 for a shading pattern.

Shading dictionary (Required) A shading object (see below) defining the shading pattern’s gradi-

or stream ent fill. The contents of the dictionary consist of the entries in Table 4.28 and

those in one of Tables 4.29 to 4.34.

Matrix array (Optional) An array of six numbers specifying the pattern matrix (see Section
4.6.1, “General Properties of Patterns”). Default value: the identity matrix
[1T0OO0100]

ExtGState dictionary (Optional) A graphics state parameter dictionary (see Section 4.3.4, “Graph-

ics State Parameter Dictionaries”) containing graphics state parameters to be
put into effect temporarily while the shading pattern is painted. Any parame-
ters that are not so specified are inherited from the graphics state that was in
effect at the beginning of the content stream in which the pattern is defined
as a resource.

The most significant entry is Shading, whose value is a shading object defining
the properties of the shading pattern’s gradient fill. This is a complex “paint” that
determines the type of color transition the shading pattern produces when paint-
ed across an area. A shading object may be a dictionary or a stream, depending
on the type of shading; the term shading dictionary is used generically throughout
this section to refer to either a dictionary object or the dictionary portion of a
stream object. (Those shading objects that are streams are specifically identified
as such in the descriptions of particular shading types; unless otherwise stated,
they are understood to be simple dictionaries instead.)
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By setting a shading pattern as the current color in the graphics state, a PDF con-
tent stream can use it with painting operators such as f (fill), S (stroke), Tj (show
text), or Do (paint external object) with an image mask to paint a path, character
glyph, or mask with a smooth color transition. When a shading is used in this
way, the geometry of the gradient fill is independent of that of the object being
painted.

Shading Operator

When the area to be painted is a relatively simple shape whose geometry is the
same as that of the gradient fill itself, the sh operator can be used instead of the
usual painting operators. sh accepts a shading dictionary as an operand and
applies the corresponding gradient fill directly to current user space. This opera-
tor does not require the creation of a pattern dictionary or a path and works with-
out reference to the current color in the graphics state. Table 4.27 describes the sh
operator.

Note: Patterns defined by type 2 pattern dictionaries do not tile. To create a tiling
pattern containing a gradient fill, invoke the sh operator from within the content
stream of a type 1 (tiling) pattern.

TABLE 4.27 Shading operator

OPERANDS

OPERATOR DESCRIPTION

name

sh (PDF 1.3) Paint the shape and color shading described by a shading dictionary, sub-
ject to the current clipping path. The current color in the graphics state is neither
used nor altered. The effect is different from that of painting a path using a shading

pattern as the current color.

name is the name of a shading dictionary resource in the Shading subdictionary of
the current resource dictionary (see Section 3.7.2, “Resource Dictionaries”). All co-
ordinates in the shading dictionary are interpreted relative to the current user
space. (By contrast, when a shading dictionary is used in a type 2 pattern, the
coordinates are expressed in pattern space.) All colors are interpreted in the color
space identified by the shading dictionary’s ColorSpace entry (see Table 4.28). The

Background entry, if present, is ignored.

This operator should be applied only to bounded or geometrically defined shad-
ings. If applied to an unbounded shading, it paints the shading’s gradient fill across

the entire clipping region, which may be time-consuming.
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Shading Dictionaries

A shading dictionary specifies details of a particular gradient fill, including the
type of shading to be used, the geometry of the area to be shaded, and the geome-
try of the gradient fill. Various shading types are available, depending on the val-
ue of the dictionary’s ShadingType entry:

o Function-based shadings (type 1) define the color of every point in the domain
using a mathematical function (not necessarily smooth or continuous).

o Axial shadings (type 2) define a color blend along a line between two points,
optionally extended beyond the boundary points by continuing the boundary
colors.

e Radial shadings (type 3) define a blend between two circles, optionally ex-
tended beyond the boundary circles by continuing the boundary colors. This
type of shading is commonly used to represent three-dimensional spheres and
cones.

e Free-form Gouraud-shaded triangle meshes (type 4) define a common construct
used by many three-dimensional applications to represent complex colored
and shaded shapes. Vertices are specified in free-form geometry.

o Lattice-form Gouraud-shaded triangle meshes (type 5) are based on the same
geometrical construct as type 4 but with vertices specified as a pseudo-
rectangular lattice.

o Coons patch meshes (type 6) construct a shading from one or more color
patches, each bounded by four cubic Bézier curves.

o Tensor-product patch meshes (type 7) are similar to type 6 but with additional
control points in each patch, affording greater control over color mapping.

Table 4.28 shows the entries that all shading dictionaries share in common;
entries specific to particular shading types are described in the relevant sections
below.

Note: The term target coordinate space, used in many of the following descriptions,
refers to the coordinate space into which a shading is painted. For shadings used
with a type 2 pattern dictionary, this is the pattern coordinate space, discussed in
Section 4.6.1, “General Properties of Patterns.” For shadings used directly with the
sh operator, it is the current user space.
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TABLE 4.28 Entries common to all shading dictionaries

KEY

TYPE

VALUE

ShadingType

ColorSpace

Background

BBox

AntiAlias

integer

name or
array

array

rectangle

boolean

(Required) The shading type:

1  Function-based shading

Axial shading

Radial shading

Free-form Gouraud-shaded triangle mesh
Lattice-form Gouraud-shaded triangle mesh
Coons patch mesh

NG e W

Tensor-product patch mesh

(Required) The color space in which color values are expressed. This may be
any device, CIE-based, or special color space except a Pattern space. See
“Color Space: Special Considerations” on page 306 for further information.

(Optional) An array of color components appropriate to the color space,
specifying a single background color value. If present, this color is used, be-
fore any painting operation involving the shading, to fill those portions of the
area to be painted that lie outside the bounds of the shading object. In the
opaque imaging model, the effect is as if the painting operation were
performed twice: first with the background color and then with the shading.

Note: The background color is applied only when the shading is used as part of
a shading pattern, not when it is painted directly with the sh operator.

(Optional) An array of four numbers giving the left, bottom, right, and top
coordinates, respectively, of the shading’s bounding box. The coordinates are
interpreted in the shading’s target coordinate space. If present, this bounding
box is applied as a temporary clipping boundary when the shading is painted,
in addition to the current clipping path and any other clipping boundaries in
effect at that time.

(Optional) A flag indicating whether to filter the shading function to prevent
aliasing artifacts. The shading operators sample shading functions at a rate
determined by the resolution of the output device. Aliasing can occur if the
function is not smooth—that is, if it has a high spatial frequency relative to
the sampling rate. Anti-aliasing can be computationally expensive and is usu-
ally unnecessary, since most shading functions are smooth enough or are
sampled at a high enough frequency to avoid aliasing effects. Anti-aliasing
may not be implemented on some output devices, in which case this flag is
ignored. Default value: false.
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Shading types 4 to 7 are defined by a stream containing descriptive data charac-
terizing the shading’s gradient fill. In these cases, the shading dictionary is also a
stream dictionary and can contain any of the standard entries common to all
streams (see Table 3.4 on page 62). In particular, it always includes a Length en-
try, which is required for all streams.

In addition, some shading dictionaries also include a Function entry whose value
is a function object (dictionary or stream) defining how colors vary across the
area to be shaded. In such cases, the shading dictionary usually defines the geom-
etry of the shading, and the function defines the color transitions across that
geometry. The function is required for some types of shading and optional for
others. Functions are described in detail in Section 3.9, “Functions”

Note: Discontinuous color transitions, or those with high spatial frequency, may ex-
hibit aliasing effects when painted at low effective resolutions.

Color Space: Special Considerations

Conceptually, a shading determines a color value for each individual point within
the area to be painted. In practice, however, the shading may actually be used to
compute color values only for some subset of the points in the target area, with
the colors of the intervening points determined by interpolation between the
ones computed. Consumer applications are free to use this strategy as long as the
interpolated color values approximate those defined by the shading to within the
smoothness tolerance specified in the graphics state (see Section 6.5.2, “Smooth-
ness Tolerance”). The ColorSpace entry common to all shading dictionaries not
only defines the color space in which the shading specifies its color values but
also determines the color space in which color interpolation is performed.

Note: Some shading types (4 to 7) perform interpolation on a parametric value sup-
plied as input to the shading’s color function, as described in the relevant sections
below. This form of interpolation is conceptually distinct from the interpolation
described here, which operates on the output color values produced by the color
function and takes place within the shading’s target color space.

Gradient fills between colors defined by most shadings are implemented using a
variety of interpolation algorithms, and these algorithms are sensitive to the char-
acteristics of the color space. Linear interpolation, for example, may have observ-
ably different results when applied in a DeviceCMYK color space than in a Lab
color space, even if the starting and ending colors are perceptually identical. The
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difference arises because the two color spaces are not linear relative to each other.
Shadings are rendered according to the following rules:

o If ColorSpace is a device color space different from the native color space of the

output device, color values in the shading are converted to the native color
space using the standard conversion formulas described in Section 6.2, “Con-
versions among Device Color Spaces.” To optimize performance, these conver-
sions may take place at any time (before or after any interpolation on the color
values in the shading). Thus, shadings defined with device color spaces may
have color gradient fills that are less accurate and somewhat device-dependent.
(This does not apply to axial and radial shadings—shading types 2 and 3—be-
cause those shading types perform gradient fill calculations on a single variable
and then convert to parametric colors.)

If ColorSpace is a CIE-based color space, all gradient fill calculations are per-
formed in that space. Conversion to device colors occurs only after all interpo-
lation calculations have been performed. Thus, the color gradients are device-
independent for the colors generated at each point.

If ColorSpace is a Separation or DeviceN color space and the specified colo-
rants are supported, no color conversion calculations are needed. If the speci-
fied colorants are not supported (so that the space’s alternate color space must
be used), gradient fill calculations are performed in the designated Separation
or DeviceN color space before conversion to the alternate space. Thus, non-
linear tint transformation functions are accommodated for the best possible
representation of the shading.

If ColorSpace is an Indexed color space, all color values specified in the shading
are immediately converted to the base color space. Depending on whether the
base color space is a device or CIE-based space, gradient fill calculations are
performed as stated above. Interpolation never occurs in an Indexed color
space, which is quantized and therefore inappropriate for calculations that as-
sume a continuous range of colors. For similar reasons, an Indexed color space
is not allowed in any shading whose color values are generated by a function;
this rule applies to any shading dictionary that contains a Function entry.

Shading Types

In addition to the entries listed in Table 4.28, all shading dictionaries have entries
specific to the type of shading they represent, as indicated by the value of their
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ShadingType entry. The following sections describe the available shading types
and the dictionary entries specific to each.

Type 1 (Function-Based) Shadings

In type 1 (function-based) shadings, the color at every point in the domain is
defined by a specified mathematical function. The function need not be smooth
or continuous. This type is the most general of the available shading types and is
useful for shadings that cannot be adequately described with any of the other
types. Table 4.29 shows the shading dictionary entries specific to this type of
shading, in addition to those common to all shading dictionaries (Table 4.28).

Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.29 Additional entries specific to a type 1 shading dictionary

KEY

TYPE VALUE

Domain

Matrix

Function

array (Optional) An array of four numbers [x_; X, .« Ymin Vmax

rectangular domain of coordinates over which the color function(s) are defined.

Default value: [0.0 1.0 0.0 1.0].

array (Optional) An array of six numbers specifying a transformation matrix mapping
the coordinate space specified by the Domain entry into the shading’s target co-
ordinate space. For example, to map the domain rectangle [0.0 1.0 0.0 1.0]toa
1-inch square with lower-left corner at coordinates (100, 100) in default user
space, the Matrix value would be [72 0 0 72 100 100]. Default value: the iden-

tity matrix [1 0 0 1 0 O].

function (Required) A 2-in, n-out function or an array of #n 2-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). Each
function’s domain must be a superset of that of the shading dictionary. If the val-
ue returned by the function for a given color component is out of range, it is ad-

justed to the nearest valid value.

1 specifying the

The domain rectangle (Domain) establishes an internal coordinate space for the
shading that is independent of the target coordinate space in which it is to be
painted. The color function(s) (Function) specify the color of the shading at each
point within this domain rectangle. The transformation matrix (Matrix) then
maps the domain rectangle into a corresponding rectangle or parallelogram in
the target coordinate space. Points within the shading’s bounding box (BBox) that
fall outside this transformed domain rectangle are painted with the shading’s
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background color (Background); if the shading dictionary has no Background
entry, such points are left unpainted. If the function is undefined at any point
within the declared domain rectangle, an error may occur, even if the corre-
sponding transformed point falls outside the shading’s bounding box.

Type 2 (Axial) Shadings

Type 2 (axial) shadings define a color blend that varies along a linear axis be-
tween two endpoints and extends indefinitely perpendicular to that axis. The
shading may optionally be extended beyond either or both endpoints by continu-
ing the boundary colors indefinitely. Table 4.30 shows the shading dictionary en-
tries specific to this type of shading, in addition to those common to all shading
dictionaries (Table 4.28).

Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.30 Additional entries specific to a type 2 shading dictionary

KEY TYPE VALUE

Coords array (Required) An array of four numbers [x, y, x; y,]1 specifying the starting and
ending coordinates of the axis, expressed in the shading’s target coordinate
space.

Domain array (Optional) An array of two numbers [, ¢,] specifying the limiting values of a

parametric variable f. The variable is considered to vary linearly between these
two values as the color gradient varies between the starting and ending points of
the axis. The variable t becomes the input argument to the color function(s). De-
fault value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). The
function(s) are called with values of the parametric variable ¢ in the domain de-
fined by the Domain entry. Each function’s domain must be a superset of that of
the shading dictionary. If the value returned by the function for a given color
component is out of range, it is adjusted to the nearest valid value.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending points of the axis, respectively. Default
value: [false false].

The color blend is accomplished by linearly mapping each point (x, y) along the
axis between the endpoints (x;, y,) and (x;, y;) to a corresponding point in the
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domain specified by the shading dictionary’s Domain entry. The points (0, 0) and
(1, 0) in the domain correspond respectively to (x,, y,) and (x;, y;) on the axis.
Since all points along a line in domain space perpendicular to the line from (0, 0)
to (1, 0) have the same color, only the new value of x needs to be computed:

(xy = x0) X (x = x5) + (y1 = y9) X (y = ¥)

(xl *xo)z + ()/1 7)/0)2

x =

The value of the parametric variable ¢ is then determined from x” as follows:

. ForOSx'S1,t=t0+(t1—t0)><x’.

¢ For x” <0, if the first element of the Extend array is true, then ¢ = tos otherwise,
t is undefined and the point is left unpainted.

e For x” > 1, if the second element of the Extend array is true, then ¢ =t ; other-
wise, t is undefined and the point is left unpainted.

The resulting value of t is passed as input to the function(s) defined by the shad-
ing dictionary’s Function entry, yielding the component values of the color with
which to paint the point (x, y).

Plate 10 shows three examples of the use of an axial shading to fill a rectangle and
display text. The area to be filled extends beyond the shading’s bounding box.
The shading is the same in all three cases, except for the values of the Background
and Extend entries in the shading dictionary. In the first example, the shading is
not extended at either end and no background color is specified; therefore, the
shading is clipped to its bounding box at both ends. The second example still has
no background color specified, but the shading is extended at both ends; the re-
sult is to fill the remaining portions of the filled area with the colors defined at the
ends of the shading. In the third example, the shading is extended at both ends
and a background color is specified; therefore, the background color is used for
the portions of the filled area beyond the ends of the shading.

Type 3 (Radial) Shadings

Type 3 (radial) shadings define a color blend that varies between two circles.
Shadings of this type are commonly used to depict three-dimensional spheres
and cones. Shading dictionaries for this type of shading contain the entries shown
in Table 4.31, as well as those common to all shading dictionaries (Table 4.28).
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Note: This type of shading cannot be used with an Indexed color space.

TABLE 4.31 Additional entries specific to a type 3 shading dictionary
KEY TYPE VALUE

Coords array (Required) An array of six numbers [x, y, 1, X; ¥, ;1 specifying the centers and
radii of the starting and ending circles, expressed in the shading’s target coor-
dinate space. The radii r; and r; must both be greater than or equal to 0. If one
radius is 0, the corresponding circle is treated as a point; if both are 0, nothing is
painted.

Domain array (Optional) An array of two numbers [, ¢,] specifying the limiting values of a
parametric variable f. The variable is considered to vary linearly between these
two values as the color gradient varies between the starting and ending circles.
The variable ¢ becomes the input argument to the color function(s). Default
value: [0.0 1.0].

Function function (Required) A 1-in, n-out function or an array of n 1-in, 1-out functions (where n
is the number of color components in the shading dictionary’s color space). The
function(s) are called with values of the parametric variable ¢ in the domain de-
fined by the shading dictionary’s Domain entry. Each function’s domain must be
a superset of that of the shading dictionary. If the value returned by the function
for a given color component is out of range, it is adjusted to the nearest valid val-
ue.

Extend array (Optional) An array of two boolean values specifying whether to extend the
shading beyond the starting and ending circles, respectively. Default value:
[false false].

The color blend is based on a family of blend circles interpolated between the

starting and ending circles that are defined by the shading dictionary’s Coords

entry. The blend circles are defined in terms of a subsidiary parametric variable
t—1t,

-t

1 "0
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which varies linearly between 0.0 and 1.0 as ¢ varies across the domain from ¢ to
t,» as specified by the dictionary’s Domain entry. The center and radius of each
blend circle are given by the following parametric equations:

x(8) = xytsx(x; —xp)

Y (8) = yotsx(y;—yy)
r(s) = rotsx(r;—ry)

Each value of s between 0.0 and 1.0 determines a corresponding value of ¢, which
is passed as the input argument to the function(s) defined by the shading dictio-
nary’s Function entry. This yields the component values of the color with which
to fill the corresponding blend circle. For values of s not lying between 0.0 and
1.0, the boolean elements of the shading dictionary’s Extend array determine
whether and how the shading is extended. If the first of the two elements is true,
the shading is extended beyond the defined starting circle to values of s less than
0.0; if the second element is true, the shading is extended beyond the defined
ending circle to s values greater than 1.0.

Note that either of the starting and ending circles may be larger than the other. If
the shading is extended at the smaller end, the family of blend circles continues as
far as that value of s for which the radius of the blend circle 7(s) = 0. If the shading
is extended at the larger end, the blend circles continue as far as that s value for
which r(s) is large enough to encompass the shadings entire bounding box
(BBox). Extending the shading can thus cause painting to extend beyond the
areas defined by the two circles themselves. The two examples in the rightmost
column of Plate 11 depict the results of extending the shading at the smaller and
larger ends, respectively.

Conceptually, all of the blend circles are painted in order of increasing values of s,
from smallest to largest. Blend circles extending beyond the starting circle are
painted in the same color defined by the shading dictionary’s Function entry for
the starting circle (t=t, s=0.0). Blend circles extending beyond the ending cir-
cle are painted in the color defined for the ending circle (t=t,s=1.0). The
painting is opaque, with the color of each circle completely overlaying those pre-
ceding it. Therefore, if a point lies within more than one blend circle, its final col-
or is that of the last of the enclosing circles to be painted, corresponding to the
greatest value of s.
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Note the following points:

o If one of the starting and ending circles entirely contains the other, the shading
depicts a sphere, as in Plates 12 and 13. In Plate 12, the inner circle has zero ra-
dius; it is the starting circle in the figure on the left and the ending circle in the
figure on the right. Neither shading is extended at either the smaller or larger
end. In Plate 13, the inner circle in both figures has a nonzero radius and the
shading is extended at the larger end. In each plate, a background color is spec-
ified for the figure on the right but not for the figure on the left.

o If neither circle contains the other, the shading depicts a cone. If the starting
circle is larger, the cone appears to point out of the page. If the ending circle is
larger, the cone appears to point into the page (see Plate 11).

Example 4.25 paints the leaf-covered branch shown in Plate 14. Each leaf is filled
with the same radial shading (object number 5). The color function (object 10) is
a stitching function (described in Section 3.9.3, “Type 3 (Stitching) Functions™)
whose two subfunctions (objects 11 and 12) are both exponential interpolation
functions (see Section 3.9.2, “Type 2 (Exponential Interpolation) Functions”).
Each leaf is drawn as a path and then filled with the shading, using code such as
that shown in Example 4.26 (where the name Sh1 is associated with object 5 by
the Shading subdictionary of the current resource dictionary; see Section 3.7.2,
“Resource Dictionaries”).

Example 4.25

5 0 obj % Shading dictionary
<< /ShadingType 3
/ColorSpace /DeviceCMYK
/Coords [0.0 0.0 0.096 0.0 0.0 1.000] % Concentric circles
/Function 100R
/Extend [true true]
>>
endobj

10 0 obj % Color function
<< /FunctionType 3
/Domain [0.0 1.0]
/Functions [1TTOR 120R]
/Bounds [0.708]
/Encode [1.0 0.0 0.0 1.0]
>>
endobj
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11 0 obj % First subfunction
<< /FunctionType 2
/Domain [0.0 1.0]
/CO [0.929 0.357 1.000 0.298]
/C1 [0.631 0.278 1.000 0.027]
/N 1.048
>>
endobj

12 0 obj % Second subfunction
<< /FunctionType 2
/Domain [0.0 1.0]
/CO [0.929 0.357 1.000 0.298]
/C1 [0.941 0.400 1.000 0.102]

/N 1374
>>
endobj
Example 4.26
316.789 140.311 m % Move to start of leaf
303.222 146.388 282.966 136.518 279.122 121.983 ¢ % Curved segment
277.322 120.182 | % Straight line
285.125 122.688 291.441 121.716 298.156 119.386 ¢ % Curved segment
336.448 119.386 | % Straight line
331.072 128.643 323.346 137.376 316.789 140.311 ¢ % Curved segment
W n % Set clipping path
q % Save graphics state
27.7843 0.0000 0.0000 —27.7843 310.2461 121.1521 cm % Set matrix
/Sh1 sh % Paint shading
Q % Restore graphics state

Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)

Type 4 shadings (free-form Gouraud-shaded triangle meshes) are commonly
used to represent complex colored and shaded three-dimensional shapes. The
area to be shaded is defined by a path composed entirely of triangles. The color at
each vertex of the triangles is specified, and a technique known as Gouraud
interpolation is used to color the interiors. The interpolation functions defining
the shading may be linear or nonlinear. Table 4.32 shows the entries specific to
this type of shading dictionary, in addition to those common to all shading dic-
tionaries (Table 4.28) and stream dictionaries (Table 3.4 on page 62).
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TABLE 4.32 Additional entries specific to a type 4 shading dictionary

KEY

TYPE

VALUE

BitsPerCoordinate

BitsPerComponent

BitsPerFlag

Decode

Function

integer

integer

integer

array

function

(Required) The number of bits used to represent each vertex coordinate.
Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

(Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

(Required) The number of bits used to represent the edge flag for each ver-
tex (see below). Valid values of BitsPerFlag are 2, 4, and 8, but only the
least significant 2 bits in each flag value are used. Valid values for the edge
flag are 0, 1, and 2.

(Required) An array of numbers specifying how to map vertex coordinates
and color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin *max YminYmax Cl,min Cl,max o Cn,min Cn,max]

Note that only one pair of ¢ values should be specified if a Function entry
is present.

(Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where #n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

Unlike shading types 1 to 3, types 4 to 7 are represented as streams. Each stream
contains a sequence of vertex coordinates and color data that defines the triangle
mesh. In a type 4 shading, each vertex is specified by the following values, in the
order shown:

fxyc..c,
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where
fis the vertex’s edge flag (discussed below)
x and y are its horizontal and vertical coordinates

¢, ...c, are its color components

All vertex coordinates are expressed in the shading’s target coordinate space. If
the shading dictionary includes a Function entry, only a single parametric value,
t, is permitted for each vertex in place of the color components ¢, ...c,,.

The edge flag associated with each vertex determines the way it connects to the
other vertices of the triangle mesh. A vertex v, with an edge flag value f,=0
begins a new triangle, unconnected to any other. At least two more vertices (v,
and v_) must be provided, but their edge flags are ignored. These three vertices
define a triangle (va, Vpo vc), as shown in Figure 4.16.

f,=0

(Start new triangle)

Previous
triangle

Vo Ve

FIGURE 4.16 Starting a new triangle in a free-form Gouraud-shaded triangle mesh

Subsequent triangles are defined by a single new vertex combined with two verti-
ces of the preceding triangle. Given triangle (v , v, v.), where vertex v precedes
vertex v, in the data stream and v, precedes v, a new vertex v, can form a new
triangle on side v, or side v, , as shown in Figure 4.17. (Side v, is assumed to be
shared with a preceding triangle and therefore is not available for continuing the
mesh.) If the edge flag is f;=1 (side v, ), the next vertex forms the triangle
(v v, vy)s if the edge flag is f;=2 (side v, ), the next vertex forms the triangle
(v, v vz). An edge flag of f ;= 0 would start a new triangle, as described above.
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fqg=0 fg=1 fg=2
Vg Va Va Vd
One new
vertex
Vp Ve Vp Ve Vp Ve
Vd
One new
Three new v, vertex
vertices d
Ve Ve

FIGURE 4.17 Connecting triangles in a free-form Gouraud-shaded triangle mesh

Complex shapes can be created by using the edge flags to control the edge on
which subsequent triangles are formed. Figure 4.18 shows two simple examples.
Mesh 1 begins with triangle 1 and uses the following edge flags to draw each suc-
ceeding triangle:

L(f,=f,=f.=0) 7 (f;=2)
2(f;=1) 8(]‘].=2)
3(,=1) 9 (f=2)
4 (f=1) 10 (f;=1)
5 (f,=1) 11 (f, =1)
6 (f,=1)

Mesh 2 again begins with triangle 1 and uses the following edge flags:

L(,=fp,=f.=0) 4 (fr=2)
2(f;=1 5(fg:2)
3(f,=2) 6 (f, =2)

The stream must provide vertex data for a whole number of triangles with appro-
priate edge flags; otherwise, an error occurs.
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Vg Ve Ve Vg v, Va Ve
V=V,
1 3 5
2 \y, 4 v,/ 6 6 2
Vb Vh Vg Vd
Vv,
m 11 Yk\ 9 7 5 3
Ym=Vp
10 8
V/ Vj V, Vf Ve
Vk=Vd
Mesh 1 Mesh 2

FIGURE 4.18 Varying the value of the edge flag to create different shapes

The data for each vertex consists of the following items, reading in sequence from
higher-order to lower-order bit positions:

¢ An edge flag, expressed in BitsPerFlag bits

¢ A pair of horizontal and vertical coordinates, expressed in BitsPerCoordinate
bits each

o A set of n color components (where n is the number of components in the
shading’s color space), expressed in BitsPerComponent bits each, in the order
expected by the sc operator

Each set of vertex data must occupy a whole number of bytes. If the total number
of bits required is not divisible by 8, the last data byte for each vertex is padded at
the end with extra bits, which are ignored. The coordinates and color values are
decoded according to the Decode array in the same way as in an image dictionary
(see “Decode Arrays” on page 344).

If the shading dictionary contains a Function entry, the color data for each vertex
must be specified by a single parametric value ¢ rather than by n separate color
components. All linear interpolation within the triangle mesh is done using the ¢
values. After interpolation, the results are passed to the function(s) specified in
the Function entry to determine the color at each point.
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Type 5 Shadings (Lattice-Form Gouraud-Shaded Triangle Meshes)

Type 5 shadings (lattice-form Gouraud-shaded triangle meshes) are similar to
type 4, but instead of using free-form geometry, their vertices are arranged in a
pseudorectangular lattice, which is topologically equivalent to a rectangular grid.
The vertices are organized into rows, which need not be geometrically linear (see
Figure 4.19).

(.

(i+1,))

(i, j+1)

(i+1, j+1)

Ideal lattice Pseudorectangular lattice

FIGURE 4.19 Lattice-form triangle meshes

Table 4.33 shows the shading dictionary entries specific to this type of shading, in
addition to those common to all shading dictionaries (Table 4.28) and stream dic-
tionaries (Table 3.4 on page 62).

The data stream for a type 5 shading has the same format as for type 4, except that
type 5 does not use edge flags to define the geometry of the triangle mesh. The
data for each vertex thus consists of the following values, in the order shown:

XY €p...c,
where

x and y are the vertex’s horizontal and vertical coordinates

¢;...c, are its color components
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TABLE 4.33 Additional entries specific to a type 5 shading dictionary

KEY

TYPE

VALUE

BitsPerCoordinate

BitsPerComponent

VerticesPerRow

Decode

Function

integer

integer

integer

array

function

(Required) The number of bits used to represent each vertex coordinate.
Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

(Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

(Required) The number of vertices in each row of the lattice; the value
must be greater than or equal to 2. The number of rows need not be
specified.

(Required) An array of numbers specifying how to map vertex coordinates
and color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin *max YminYmax Cl,min Cl,max o Cn,min Cn,max]

Note that only one pair of ¢ values should be specified if a Function entry
is present.

(Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where #n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry cannot be used with an Indexed color space.

All vertex coordinates are expressed in the shading’s target coordinate space. If
the shading dictionary includes a Function entry, only a single parametric value,
t, is permitted for each vertex in place of the color components ¢, ...c,,.

The VerticesPerRow entry in the shading dictionary gives the number of vertices
in each row of the lattice. All of the vertices in a row are specified sequentially,
followed by those for the next row. Given m rows of k vertices each, the triangles
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of the mesh are constructed using the following triplets of vertices, as shown in
Figure 4.19:

Vij Vijur V

%

i+1,j) for 0<i<m-2,0<j<k-2
1%

ij+

v i+1,j+1)

ijtr Vit
See “Type 4 Shadings (Free-Form Gouraud-Shaded Triangle Meshes)” on page

314 for further details on the format of the vertex data.

Type 6 Shadings (Coons Patch Meshes)

Type 6 shadings (Coons patch meshes) are constructed from one or more color
patches, each bounded by four cubic Bézier curves. Degenerate Bézier curves are
allowed and are useful for certain graphical effects. At least one complete patch
must be specified.

A Coons patch generally has two independent aspects:

e Colors are specified for each corner of the unit square, and bilinear interpola-
tion is used to fill in colors over the entire unit square (see the upper figure in
Plate 15).

¢ Coordinates are mapped from the unit square into a four-sided patch whose
sides are not necessarily linear (see the lower figure in Plate 15). The mapping
is continuous: the corners of the unit square map to corners of the patch and
the sides of the unit square map to sides of the patch, as shown in Figure 4.20.

The sides of the patch are given by four cubic Bézier curves, C,, C,, D, and D,,
defined over a pair of parametric variables, u and v, that vary horizontally and
vertically across the unit square. The four corners of the Coons patch satisfy the
following equations:

C,(0) = Dy(0)
Ci(1) = D,(0)
C,(0) = Dy(1)
C,(1) = D,(1)
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FIGURE 4.20 Coordinate mapping from a unit square to a four-sided Coons patch

Two surfaces can be described that are linear interpolations between the bound-
ary curves. Along the u axis, the surface S is defined by

Sc(u,v) = (1=v) X Cy(u) +vx Cy(u)

Along the v axis, the surface S, is given by

Spu,v) = (1—u) XD (v) +uxD,(v)

A third surface is the bilinear interpolation of the four corners:

S, v) = (1-v)x [(1-u)x C,(0) + ux C (1)]
+v X [(1-u) % Cy(0) +ux Cy(1)]

The coordinate mapping for the shading is given by the surface S, defined as
§=8-*+5,-S8p

This defines the geometry of each patch. A patch mesh is constructed from a
sequence of one or more such colored patches.

Patches can sometimes appear to fold over on themselves—for example, if a
boundary curve intersects itself. As the value of parameter u or v increases in
parameter space, the location of the corresponding pixels in device space may
change direction so that new pixels are mapped onto previous pixels already
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mapped. If more than one point (1, v) in parameter space is mapped to the same
point in device space, the point selected is the one with the largest value of v. If
multiple points have the same v, the one with the largest value of u is selected. If
one patch overlaps another, the patch that appears later in the data stream paints
over the earlier one.

Note also that the patch is a control surface rather than a painting geometry. The
outline of a projected square (that is, the painted area) might not be the same as
the patch boundary if, for example, the patch folds over on itself, as shown in
Figure 4.21.

Appearance Painted area Patch boundary

FIGURE 4.21 Painted area and boundary of a Coons patch

Table 4.34 shows the shading dictionary entries specific to this type of shading, in
addition to those common to all shading dictionaries (Table 4.28) and stream dic-
tionaries (Table 3.4 on page 62).
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TABLE 4.34 Additional entries specific to a type 6 shading dictionary

KEY

TYPE

VALUE

BitsPerCoordinate

BitsPerComponent

BitsPerFlag

Decode

Function

integer

integer

integer

array

function

(Required) The number of bits used to represent each geometric coordi-
nate. Valid values are 1, 2, 4, 8, 12, 16, 24, and 32.

(Required) The number of bits used to represent each color component.
Valid values are 1, 2, 4, 8, 12, and 16.

(Required) The number of bits used to represent the edge flag for each
patch (see below). Valid values of BitsPerFlag are 2, 4, and 8, but only the
least significant 2 bits in each flag value are used. Valid values for the edge
flag are 0, 1, 2, and 3.

(Required) An array of numbers specifying how to map coordinates and
color components into the appropriate ranges of values. The decoding
method is similar to that used in image dictionaries (see “Decode Arrays”
on page 344). The ranges are specified as follows:

[xmin *max YminYmax Cl,min Cl,max o Cn,min Cn,max]

Note that only one pair of ¢ values should be specified if a Function entry
is present.

(Optional) A 1-in, n-out function or an array of n 1-in, 1-out functions
(where #n is the number of color components in the shading dictionary’s
color space). If this entry is present, the color data for each vertex must be
specified by a single parametric variable rather than by n separate color
components. The designated function(s) are called with each interpolated
value of the parametric variable to determine the actual color at each
point. Each input value is forced into the range interval specified for the
corresponding color component in the shading dictionary’s Decode array.
Each function’s domain must be a superset of that interval. If the value re-
turned by the function for a given color component is out of range, it is
adjusted to the nearest valid value.

This entry may not be used with an Indexed color space.

The data stream provides a sequence of Bézier control points and color values
that define the shape and colors of each patch. All of a patch’s control points are
given first, followed by the color values for its corners. Note that this differs from
a triangle mesh (shading types 4 and 5), in which the coordinates and color of
each vertex are given together. All control point coordinates are expressed in the
shading’s target coordinate space. See “Type 4 Shadings (Free-Form Gouraud-
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Shaded Triangle Meshes)” on page 314 for further details on the format of the da-
ta.

As in free-form triangle meshes (type 4), each patch has an edge flag that indi-
cates which edge, if any, it shares with the previous patch. An edge flag of 0 begins
a new patch, unconnected to any other. This must be followed by 12 pairs of co-
ordinates, x; y; X, ¥, ... X, Y15, Which specify the Bézier control points that
define the four boundary curves. Figure 4.22 shows how these control points cor-
respond to the cubic Bézier curves C 1» Gy Dy, and D, identified in Figure 4.20 on
page 322. Color values are given for the four corners of the patch, in the same or-
der as the control points corresponding to the corners. Thus, ¢, is the color at co-
ordinates (x;, y,), ¢, at (x4, y4), ¢5 at (x,, y,), and ¢, at (x,, ¥;,)> as shown in the
figure.

Use this side when next f=1.

This side already attached
to previous patch. Start a
new patch when next f=0.

Use this side when next f= 2.

! 1 11

Use this side when next f= 3.

FIGURE 4.22 Color values and edge flags in Coons patch meshes

Figure 4.22 also shows how nonzero values of the edge flag (f= 1, 2, or 3) connect
a new patch to one of the edges of the previous patch. In this case, some of the
previous patch’s control points serve implicitly as control points for the new patch
as well (see Figure 4.23), and therefore are not explicitly repeated in the data
stream. Table 4.35 summarizes the required data values for various values of the
edge flag.
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FIGURE 4.23 Edge connections in a Coons patch mesh

If the shading dictionary contains a Function entry, the color data for each corner
of a patch must be specified by a single parametric value t rather than by » sepa-
rate color components ¢, ...c,. All linear interpolation within the mesh is done
using the ¢ values. After interpolation, the results are passed to the function(s)
specified in the Function entry to determine the color at each point.
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TABLE 4.35 Data values in a Coons patch mesh

EDGE FLAG NEXT SET OF DATA VALUES

f=0 X1 V1 X2 Vo X3 V3 Xy Vg X5 V5 Xg Vs
X7 Y7 X8 Vg X9 Vo X190 Y10 *11 V11 *12 V12
€ 6 G 4

New patch; no implicit values

f=1 X5 V5 X6 Yo X7 V7 X8 Vg X9 Yo X190 Y10 *11 Y11 *12 V12
(3 &4
Implicit values:
(x1> ;) = (x4, y,) previous ¢, = ¢, previous
(x5, ¥,) = (x5, y5) previous ¢, = ¢, previous
(x5, ¥3) = (%, ¥) previous
(x4>¥4) = (x5, y,) previous

f=2 X5 Y5 X Yo X7 V7 X8 Vg X9 Vo X109 Y10 *11 Y11 *12 V12
€3¢
Implicit values:
(%15 1) = (x5, y,) previous ¢, = ¢ previous
(%55 y,) = (xg, yg) previous ¢, = ¢, previous

(%3, y3) = (xg, yy) previous
(%45 y4) = (%105 ¥10) previous

f=3 X5 V5 Xg Ve X7 V7 X8 Vg X9 Vg X10 V10 *11 Y11 *12 V12
€3¢y

Implicit values:

(%15 y1) = (x> ¥10) previous ¢, = ¢4 previous
(%5, y,) = (x> y1,) previous ¢, = ¢, previous
(x5, y3) = (x5, ¥1,) previous

(%4> y4) = (x;, y;) previous

Type 7 Shadings (Tensor-Product Patch Meshes)

Type 7 shadings (tensor-product patch meshes) are identical to type 6, except that
they are based on a bicubic tensor-product patch defined by 16 control points in-
stead of the 12 control points that define a Coons patch. The shading dictionaries
representing the two patch types differ only in the value of the ShadingType entry
and in the number of control points specified for each patch in the data stream.
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Although the Coons patch is more concise and easier to use, the tensor-product
patch affords greater control over color mapping.

Note: The data format for type 7 shadings (as for types 4 through 6) is the same in
PDF as it is in PostScript. Howevet, the numbering and order of control points was
described incorrectly in the first printing of the PostScript Language Reference,
Third Edition. That description has been corrected here.

Like the Coons patch mapping, the tensor-product patch mapping is controlled
by the location and shape of four cubic Bézier curves marking the boundaries of
the patch. However, the tensor-product patch has four additional, “internal”
control points to adjust the mapping. The 16 control points can be arranged in a
4-by-4 array indexed by row and column, as follows (see Figure 4.24):

Pos P13 P23 Pss
P2 P12 P22 P32
Por P11 P21 P3
Poo Pio P2 P30

FIGURE 4.24 Control points in a tensor-product patch
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As in a Coons patch mesh, the geometry of the tensor-product patch is described
by a surface defined over a pair of parametric variables, u and v, which vary hori-
zontally and vertically across the unit square. The surface is defined by the equa-
tion

3 3
S(u,v) = Z Z Pij % Bj(w) X B,(v)

i=0j=0

where pijis the control point in column i and row j of the tensor, and B; and B;are
the Bernstein polynomials

By(f) = (1-1)°
B,(t) = 3tx(1-1)°
B,(t) = 3 x (1-1)

By(t) = £

Since each point Py is actually a pair of coordinates (xij’ yij)’ the surface can also
be expressed as

3 3

x(u,v) = Z iniji(u)xBj(v)
i=0j=0
3 3

y(u,v) = Z Zyiiji(u)xBj(v)
i=0j=0

The geometry of the tensor-product patch can be visualized in terms of a cubic
Bézier curve moving from the bottom boundary of the patch to the top. At the
bottom and top, the control points of this curve coincide with those of the patch’s
bottom (py,...p3y) and top (pys...p;3) boundary curves, respectively. As the
curve moves from the bottom edge of the patch to the top, each of its four control
points follows a trajectory that is in turn a cubic Bézier curve defined by the four
control points in the corresponding column of the array. That is, the starting
point of the moving curve follows the trajectory defined by control points
Poo---Po3> the trajectory of the ending point is defined by points ps...ps5, and
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those of the two intermediate control points by p,...p;5 and p,;...p,;. Equiva-
lently, the patch can be considered to be traced by a cubic Bézier curve moving
from the left edge to the right, with its control points following the trajectories
defined by the rows of the coordinate array instead of the columns.

The Coons patch (type 6) is actually a special case of the tensor-product patch
(type 7) in which the four internal control points (p;, P55 P51 Py,) are implicitly
defined by the boundary curves. The values of the internal control points are giv-
en by these equations:

Py = 1/9%

[=4Xpog T 6 X (Poy +P19) =2 X (Po3 T P39) T3 X (p3; +P13) 1 X P33l
Py = 1/9%

[=4XPpo3 T 6 X (Poy TP13) =2 X (Pog T P33) T3 X (p3y +P1g) = 1 X Pl
Py = 179X

[=4XP3g +6X (P31 T Py) =2X (P33 T Pgg) T3 X (Poy T Pp3) —1XPy3]
Py = 1/9X%

[=4X P33 76X (P35 +Py3) =2 X (p3g T Po3) T3 X (Pgy TPy0) =1 X Pyl

In the more general tensor-product patch, the values of these four points are un-
restricted.

The coordinates of the control points in a tensor-product patch are actually spec-
ified in the shading’s data stream in the following order:

4 5 6 7
3 14 15 8
2 13 16 9
1 12 11 10

All control point coordinates are expressed in the shading’s target coordinate
space. These are followed by the color values for the four corners of the patch, in
the same order as the corners themselves. If the patch’s edge flag f is 0, all 16
control points and four corner colors must be explicitly specified in the data
stream. If fis 1, 2, or 3, the control points and colors for the patch’s shared edge
are implicitly understood to be the same as those along the specified edge of the
previous patch and are not repeated in the data stream. Table 4.36 summarizes
the data values for various values of the edge flag f, expressed in terms of the row
and column indices used in Figure 4.24 above. See “Type 4 Shadings (Free-Form
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Gouraud-Shaded Triangle Meshes)” on page 314 for further details on the format

of the data.

TABLE 4.36 Data values in a tensor-product patch mesh

EDGE FLAG

NEXT SET OF DATA VALUES

f=0

f=1

f=3

%00 Yoo *o1 Yo1 %02 Yo2 *o3 Yo3 *13 V13
X31 Y31 %30 Y30 %20 Y20 *10 Y10 *11 Y11

€0 €03 €33 C30

New patch; no implicit values

X13 Y13 %23 V23 X33 V33 X33 V32 %31 V31
%20 Y20 *10 Y10 *11 Y11 *12 V12 *22 V22

€33 €39

Implicit values:

(%005 Y0o) = (X3 Yp3) previous
(%015 Yo1) = (x13> ¥13) previous
(%025 Yo2) = (X33 ¥53) previous
(%035 Yo3) = (X33, ¥33) previous

X13 Y13 %23 V23 X33 V33 X33 V3p X35 V31
X0 Y20 *10 Y10 *11 Y11 *12 V12 *22 V22

€33 €39

Implicit values:

(%90> Yoo) = (X335 ¥33) previous
(%915 Yo1) = (X35> ¥3,) previous
(%925 Yo2) = (x3,> ¥3,) previous
(%935 Yo3) = (X305 ¥3¢) previous

X13 Y13 %23 Y23 X33 V33 X3p V32 %31 V31
*20 Y20 *10 Y10 *11 Y11 *12 V12 *22 V22

C33 C39

Implicit values:

(xo(y }’oo) = (X30,y30) previous
(%015 Yo1) = (X595 ¥5) Previous
(%025 Yo2) = (X105 ¥10) Previous
(%035 Y03) = (Xg0> Yoo ) Previous

%23 V23 X33 V33 X33 V32
X12 Y12 %22 Y22 %21 V21

%30 V30
21 Va1

COO = C03 previous
C03 = C33 previous

X30 Y30
X1 V21

COO = C33 previous
603 = C30 previous

X30 V30
X1 Y21

Coo = €30 Previous
Co3 = Cop Previous
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4.7

External Objects

An external object (commonly called an XObject) is a graphics object whose con-
tents are defined by a self-contained content stream, separate from the content
stream in which it is used. There are three types of external objects:

o An image XObject (Section 4.8.4, “Image Dictionaries”) represents a sampled
visual image such as a photograph.

e A form XObject (Section 4.9, “Form XObjects”) is a self-contained description
of an arbitrary sequence of graphics objects.

o A PostScript XObject (Section 4.7.1, “PostScript XObjects”) contains a fragment
of code expressed in the PostScript page description language. PostScript XOb-
jects are no longer recommended to be used.

Two further categories of external objects, group XObjects and reference XObjects
(both PDF 1.4), are actually specialized types of form XObjects with additional
properties. See Sections 4.9.2, “Group XObjects,” and 4.9.3, “Reference XObjects,”
for additional information.

Any XObject can be painted as part of another content stream by means of the Do
operator (see Table 4.37). This operator applies to any type of XObject—image,
form, or PostScript. The syntax is the same in all cases, although details of the
operator’s behavior differ depending on the type. (See implementation note 51 in
Appendix H.)

TABLE 4.37 XObject operator

OPERANDS

OPERATOR DESCRIPTION

name

Do Paint the specified XObject. The operand name must appear as a key in the
XObject subdictionary of the current resource dictionary (see Section 3.7.2, “Re-
source Dictionaries”). The associated value must be a stream whose Type entry,
if present, is XObject. The effect of Do depends on the value of the XObject’s
Subtype entry, which may be Image (see Section 4.8.4, “Image Dictionaries”),
Form (Section 4.9, “Form XObjects”), or PS (Section 4.7.1, “PostScript XOb-

jects”).
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PostScript XObjects

Beginning with PDF 1.1, a content stream can include PostScript language frag-
ments. These fragments are used only when printing to a PostScript output de-
vice; they have no effect either when viewing the document on-screen or when
printing it to a non-PostScript device. In addition, applications that understand
PDF are unlikely to be able to interpret the PostScript fragments. Hence, this ca-
pability should be used with extreme caution and only if there is no other way to
achieve the same result. Inappropriate use of PostScript XObjects can cause PDF
files to print incorrectly.

Note: Since PDF 1.4 encompasses all of the Adobe imaging model features of the
PostScript language, there is no longer any reason to use PostScript XObjects. This
feature is likely to be removed from PDF in a future version.

A PostScript XObject is an XObject stream whose Subtype entry has the value PS.
A PostScript XObject dictionary can contain the entries shown in Table 4.38 in
addition to the usual entries common to all streams (see Table 3.4 on page 62).

TABLE 4.38 Additional entries specific to a PostScript XObject dictionary

KEY TYPE VALUE

Type name (Optional) The type of PDF object that this dictionary describes; if present, must be
XObject for a PostScript XObject.

Subtype name (Required) The type of XObject that this dictionary describes; must be PS for a Post-
Script XObject.
Note: Alternatively, the value of this entry may be Form, with an additional Subtype2
entry whose value is PS.

Levell stream (Optional) A stream whose contents are to be used in place of the PostScript

XObject’s stream when the target PostScript interpreter is known to support only

LanguageLevel 1.

When a PDF content stream is translated into the PostScript language, any Do
operation that references a PostScript XObject is replaced by the contents of the
XObject stream itself. The stream is copied without interpretation. The PostScript
fragment may use Type 1 and TrueType fonts listed in the Font subdictionary of
the current resource dictionary (see Section 3.7.2, “Resource Dictionaries”), ac-
cessing them by their BaseFont names using the PostScript findfont operator. The
fragment may not use other types of fonts listed in the Font subdictionary. It
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should not reference the PostScript definitions corresponding to PDF procedure
sets (see Section 10.1, “Procedure Sets”), which are subject to change.

Images

PDF’s painting operators include general facilities for dealing with sampled im-
ages. A sampled image (or just image for short) is a rectangular array of sample
values, each representing a color. The image may approximate the appearance of
some natural scene obtained through an input scanner or a video camera, or it
may be generated synthetically.

FIGURE 4.25 Typical sampled image

An image is defined by a sequence of samples obtained by scanning the image
array in row or column order. Each sample in the array consists of as many color
components as are needed for the color space in which they are specified—for
example, one component for DeviceGray, three for DeviceRGB, four for
DeviceCMYK, or whatever number is required by a particular DeviceN space.
Each component is a 1-, 2-, 4-, 8-, or (in PDF 1.5) 16-bit integer, permitting the
representation of 2, 4, 16, 256, or (in PDF 1.5) 65536 distinct values for each com-
ponent. (Other component sizes can be accommodated when a JPXDecode filter
is used; see Section 3.3.8, “JPXDecode Filter.)
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PDF provides two means for specifying images:

e An image XObject (described in Section 4.8.4, “Image Dictionaries”) is a
stream object whose dictionary specifies attributes of the image and whose
data contains the image samples. Like all external objects, it is painted on the
page by invoking the Do operator in a content stream (see Section 4.7, “Exter-
nal Objects”). Image XObjects have other uses as well, such as for alternate im-
ages (see “Alternate Images” on page 347), image masks (Section 4.8.5,
“Masked Images”), and thumbnail images (Section 8.2.3, “Thumbnail
Images”).

o An inline image is a small image that is completely defined—both attributes
and data—directly inline within a content stream. The kinds of images that can
be represented in this way are limited; see Section 4.8.6, “Inline Images,” for
details.

Image Parameters

The properties of an image—resolution, orientation, scanning order, and so
forth—are entirely independent of the characteristics of the raster output device
on which the image is to be rendered. A PDF consumer application usually ren-
ders images by a sampling technique that attempts to approximate the color val-
ues of the source as accurately as possible. The actual accuracy achieved depends
on the resolution and other properties of the output device.

To paint an image, four interrelated items must be specified:

¢ The format of the image: number of columns (width), number of rows (height),
number of color components per sample, and number of bits per color compo-
nent

e The sample data constituting the image’s visual content

e The correspondence between coordinates in user space and those in the image’s
own internal coordinate space, defining the region of user space that will re-
ceive the image

¢ The mapping from color component values in the image data to component

values in the image’s color space

All of these items are specified explicitly or implicitly by an image XObject or an
inline image.
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Note: For convenience, the following sections refer consistently to the object defining
an image as an image dictionary. Although this term properly refers only to the
dictionary portion of the stream object representing an image XObject, it should be
understood to apply equally to the stream’s data portion or to the parameters and
data of an inline image.

4.8.2 Sample Representation
The source format for an image can be described by four parameters:

e The width of the image in samples
e The height of the image in samples
e The number of color components per sample

o The number of bits per color component

The image dictionary specifies the width, height, and number of bits per compo-
nent explicitly. The number of color components can be inferred from the color
space specified in the dictionary.

Note: For images using the JPXDecode filter (see Section 3.3.8, “JPXDecode Filter”),
the number of bits per component is determined from the image data and not speci-
fied in the image dictionary. The color space may or may not be specified in the dic-
tionary.

Sample data is represented as a stream of bytes, interpreted as 8-bit unsigned
integers in the range 0 to 255. The bytes constitute a continuous bit stream, with
the high-order bit of each byte first. This bit stream, in turn, is divided into units
of n bits each, where # is the number of bits per component. Each unit encodes a
color component value, given with high-order bit first; units of 16 bits are given
with the most significant byte first. Byte boundaries are ignored, except that each
row of sample data must begin on a byte boundary. If the number of data bits per
row is not a multiple of 8, the end of the row is padded with extra bits to fill out
the last byte. A PDF consumer application ignores these padding bits.

Each #»-bit unit within the bit stream is interpreted as an unsigned integer in the
range 0 to 2" — 1, with the high-order bit first. The image dictionary’s Decode
entry maps this integer to a color component value, equivalent to what could be
used with color operators such as sc or g. Color components are interleaved sam-
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ple by sample; for example, in a three-component RGB image, the red, green, and
blue components for one sample are followed by the red, green, and blue compo-
nents for the next.

Normally, the color samples in an image are interpreted according to the color
space specified in the image dictionary (see Section 4.5, “Color Spaces”), without
reference to the color parameters in the graphics state. However, if the image dic-
tionary’s ImageMask entry is true, the sample data is interpreted as a stencil mask
for applying the graphics state’s nonstroking color parameters (see “Stencil Mask-
ing” on page 350).

4.8.3 Image Coordinate System

Each image has its own internal coordinate system, or irmage space. The image oc-
cupies a rectangle in image space w units wide and £ units high, where w and h
are the width and height of the image in samples. Each sample occupies one
square unit. The coordinate origin (0, 0) is at the upper-left corner of the image,
with coordinates ranging from 0 to w horizontally and 0 to h vertically.

The image’s sample data is ordered by row, with the horizontal coordinate varying
most rapidly. This is shown in Figure 4.26, where the numbers inside the squares
indicate the order of the samples, counting from 0. The upper-left corner of the
first sample is at coordinates (0, 0), the second at (1, 0), and so on through the last
sample of the first row, whose upper-left corner is at (w — 1, 0) and whose upper-
right corner is at (w, 0). The next samples after that are at coordinates (0, 1),
(1, 1), and so on to the final sample of the image, whose upper-left corner is at
(w—1, h— 1) and whose lower-right corner is at (w, h).

Note: The image coordinate system and scanning order imposed by PDF do not pre-
clude using different conventions in the actual image. Coordinate transformations
can be used to map from other conventions to the PDF convention.

The correspondence between image space and user space is constant: the unit
square of user space, bounded by user coordinates (0, 0) and (1, 1), corresponds
to the boundary of the image in image space (see Figure 4.27). Following the
normal convention for user space, the coordinate (0, 0) is at the lower-left corner
of this square, corresponding to coordinates (0, k) in image space. The transfor-
mation from image space to user space could be described by the matrix
[w 0 0 =1/h 0 1].
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FIGURE 4.26 Source image coordinate system
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FIGURE 4.27 Mapping the source image

An image can be placed on the output page in any position, orientation, and size
by using the cm operator to modify the current transformation matrix (CTM) so
as to map the unit square of user space to the rectangle or parallelogram in which
the image is to be painted. Typically, this is done within a pair of q and Q opera-
tors to isolate the effect of the transformation, which can include translation, ro-
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tation, reflection, and skew (see Section 4.2, “Coordinate Systems”). For example,
if the XObject subdictionary of the current resource dictionary defines the name
Image1 to denote an image XObject, the code shown in Example 4.27 paints the
image in a rectangle whose lower-left corner is at coordinates (100, 200), that is
rotated 45 degrees counterclockwise, and that is 150 units wide and 80 units high.

Example 4.27

q % Save graphics state
100 1 100 200 cm % Translate
0.7071 0.7071 —0.7071 0.7071 0 0 cm % Rotate
150 0 0 80 0 0 cm % Scale
/Image1 Do % Paintimage
Q % Restore graphics state

(As discussed in Section 4.2.3, “Transformation Matrices,” these three transfor-
mations could be combined into one.) Of course, if the aspect ratio (width to
height) of the original image in this example is different from 150:80, the result
will be distorted.

4.8.4 Image Dictionaries

An image dictionary—that is, the dictionary portion of a stream representing an
image XObject—can contain the entries listed in Table 4.39 in addition to the
usual entries common to all streams (see Table 3.4 on page 62). There are many
relationships among these entries, and the current color space may limit the
choices for some of them. Attempting to use an image dictionary whose entries
are inconsistent with each other or with the current color space causes an error.

Note: The entries described here are appropriate for a base image—one that is in-
voked directly with the Do operator. Some of the entries are not relevant for images
used in other ways, such as for alternate images (see “Alternate Images” on page
347), image masks (Section 4.8.5, “Masked Images”), or thumbnail images (Section
8.2.3, “Thumbnail Images”). Except as noted, such irrelevant entries are simply ig-
nored.



I CHAPTER 4

340
| Graphics |

TABLE 4.39 Additional entries specific to an image dictionary

KEY

TYPE

VALUE

Type

Subtype

Width
Height

ColorSpace

BitsPerComponent

Intent

name

name

integer
integer

name or
array

integer

name

(Optional) The type of PDF object that this dictionary describes; if
present, must be XObject for an image XObject.

(Required) The type of XObject that this dictionary describes; must be
Image for an image XObject.

(Required) The width of the image, in samples.
(Required) The height of the image, in samples.

(Required for images, except those that use the JPXDecode filter; not allowed
for image masks) The color space in which image samples are specified; it
can be any type of color space except Pattern.

If the image uses the JPXDecode filter, this entry is optional:

e If ColorSpace is present, any color space specifications in the JPEG2000
data are ignored.

e If ColorSpace is absent, the color space specifications in the JPEG2000
data are used. The Decode array is also ignored unless ImageMask is
true.

(Required except for image masks and images that use the JPXDecode filter)
The number of bits used to represent each color component. Only a single
value may be specified; the number of bits is the same for all color compo-
nents. Valid values are 1, 2, 4, 8, and (in PDF 1.5) 16. If ImageMask is true,
this entry is optional, and if specified, its value must be 1.

If the image stream uses a filter, the value of BitsPerComponent must be
consistent with the size of the data samples that the filter delivers. In par-
ticular, a CCITTFaxDecode or JBIG2Decode filter always delivers 1-bit sam-
ples, a RunLengthDecode or DCTDecode filter delivers 8-bit samples, and
an LZWDecode or FlateDecode filter delivers samples of a specified size if
a predictor function is used.

If the image stream uses the JPXDecode filter, this entry is optional and ig-
nored if present. The bit depth is determined in the process of decoding
the JPEG2000 image.

(Optional; PDF 1.1) The name of a color rendering intent to be used in
rendering the image (see “Rendering Intents” on page 260). Default value:
the current rendering intent in the graphics state.
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VALUE

I SECTION 4.8
KEY TYPE
ImageMask boolean
Mask stream
or array
Decode array
Interpolate boolean
Alternates array
SMask stream

(Optional) A flag indicating whether the image is to be treated as an image
mask (see Section 4.8.5, “Masked Images”). If this flag is true, the value of
BitsPerComponent must be 1 and Mask and ColorSpace should not be
specified; unmasked areas are painted using the current nonstroking col-
or. Default value: false.

(Optional except for image masks; not allowed for image masks; PDF 1.3)
An image XObject defining an image mask to be applied to this image (see
“Explicit Masking” on page 351), or an array specifying a range of colors
to be applied to it as a color key mask (see “Color Key Masking” on page
351). If ImageMask is true, this entry must not be present. (See
implementation note 52 in Appendix H.)

(Optional) An array of numbers describing how to map image samples
into the range of values appropriate for the image’s color space (see
“Decode Arrays” on page 344). If ImageMask is true, the array must be
either [0 1] or [1 0]; otherwise, its length must be twice the number of
color components required by ColorSpace. If the image uses the
JPXDecode filter and ImageMask is false, Decode is ignored.

Default value: see “Decode Arrays” on page 344.

(Optional) A flag indicating whether image interpolation is to be per-
formed (see “Image Interpolation” on page 346). Default value: false.

(Optional; PDF 1.3) An array of alternate image dictionaries for this image
(see “Alternate Images” on page 347). The order of elements within the
array has no significance. This entry may not be present in an image XOb-
ject that is itself an alternate image.

(Optional; PDF 1.4) A subsidiary image XObject defining a soft-mask
image (see “Soft-Mask Images” on page 553) to be used as a source of
mask shape or mask opacity values in the transparent imaging model. The
alpha source parameter in the graphics state determines whether the mask
values are interpreted as shape or opacity.

If present, this entry overrides the current soft mask in the graphics state,
as well as the image’s Mask entry, if any. (However, the other transparency-
related graphics state parameters—blend mode and alpha constant—
remain in effect.) If SMask is absent, the image has no associated soft
mask (although the current soft mask in the graphics state may still ap-

ply).
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VALUE

I CHAPTER 4
KEY TYPE
SMaskinData integer
Name name
StructParent integer
ID byte string
OPI dictionary
Metadata stream

(Optional for images that use the JPXDecode filter, meaningless otherwise;
PDF 1.5) A code specifying how soft-mask information (see “Soft-Mask
Images” on page 553) encoded with image samples should be used:

0  If present, encoded soft-mask image information should be ig-
nored.

1  The image’s data stream includes encoded soft-mask values. An
application can create a soft-mask image from the information to
be used as a source of mask shape or mask opacity in the transpar-
ency imaging model.

2 The image’s data stream includes color channels that have been
preblended with a background; the image data also includes an
opacity channel. An application can create a soft-mask image with
a Matte entry from the opacity channel information to be used as
a source of mask shape or mask opacity in the transparency mod-
el

If this entry has a nonzero value, SMask should not be specified. See also
Section 3.3.8, “TPXDecode Filter”

Default value: 0.

(Required in PDF 1.0; optional otherwise) The name by which this image
XObject is referenced in the XObject subdictionary of the current resource
dictionary (see Section 3.7.2, “Resource Dictionaries”).

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 53 in Appendix H.)

(Required if the image is a structural content item; PDF 1.3) The integer key
of the image’s entry in the structural parent tree (see “Finding Structure
Elements from Content Items” on page 868).

(Optional; PDF 1.3; indirect reference preferred) The digital identifier of
the image’s parent Web Capture content set (see Section 10.9.5, “Object
Attributes Related to Web Capture”).

(Optional; PDF 1.2) An OPI version dictionary for the image (see Section
10.10.6, “Open Prepress Interface (OPI)”). If ImageMask is true, this entry
is ignored.

(Optional; PDF 1.4) A metadata stream containing metadata for the image
(see Section 10.2.2, “Metadata Streams”).
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KEY TYPE VALUE
ocC dictionary (Optional; PDF 1.5) An optional content group or optional content mem-

bership dictionary (see Section 4.10, “Optional Content”), specifying the
optional content properties for this image XObject. Before the image is
processed, its visibility is determined based on this entry. If it is deter-
mined to be invisible, the entire image is skipped, as if there were no Do
operator to invoke it.

Example 4.28 defines an image 256 samples wide by 256 high, with 8 bits per
sample in the DeviceGray color space. It paints the image on a page with its lower-
left corner positioned at coordinates (45, 140) in current user space and scaled to
a width and height of 132 user space units.

Example 4.28

20 0 obj % Page object
<< /[Type /Page
/Parent 10R
/Resources 210R
/MediaBox [0 0 612 792]
/Contents 230R
>>
endobj

21 0 obj % Resource dictionary for page
<< /ProcSet [/PDF /ImageB]
/XObject << /Im1 220R >>
>>
endobj

22 0 obj % Image XObject
<< /[Type /XObject
/Subtype /Image
/Width 256
/Height 256
/ColorSpace /DeviceGray
/BitsPerComponent 8
/Length 83183
/Filter /ASClI85Decode
>>
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stream
9LhZI9h\GY9i+bb;,p:e;GISP92/)X9MJ>A:f14d;,U(X8P;cO;G9e];c$=k9Mn\]
...Image data representing 65,536 samples...

8P;c0;G9e];c$=kOMn\]~>

endstream
endobj
23 0 obj % Contents of page
<< /Length 56 >>
stream
q % Save graphics state
132 0 0 132 45 140 cm % Translate to (45,140) and scale by 132
/Im1 Do % Paintimage
Q % Restore graphics state
endstream
endobj

Decode Arrays

An image’s data stream is initially decomposed into integers in the domain 0 to
2" — 1, where n is the value of the image dictionary’s BitsPerComponent entry.
The image’s Decode array specifies a linear mapping of each integer component
value to a number that would be appropriate as a component value in the image’s
color space.

Each pair of numbers in a Decode array specifies the lower and upper values to
which the domain of sample values in the image is mapped. A Decode array con-
tains one pair of numbers for each component in the color space specified by the
image’s ColorSpace entry. The mapping for each color component is a linear
transformation; that is, it uses the following formula for linear interpolation:

y = Interpolate (x, x X

max’ Ymin ’ Ymax)

Yimax ~ Ymin]

min’

= Ymin * ((X - Xmin) X —x

max min
Generally, this formula is used to convert a value x between x_. and Xpax tO @
corresponding value y between y_. and y_ .., projecting along the line defined
by the points (x,; s Yiin) and (X000 Vinax)- While this formula applies to values
outside the domain x_; to x . _and does not require that x; <x note that

min min max’
interpolation used for color conversion, such as the Decode array, does require
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thatx . <x . and clips x values to this domain so that y=y_. forallx<x_. ,

andy=y . forallx>x_. . .

For a Decode array of the form [D_.  D_ ], this can be written as

min ~max
_ n
y = Interpolate (x, 0,2 —1, D v Doax)
- D " Dmax B Dmin
~ “min x X n
2 -1
where

n is the value of BitsPerComponent
x is the input value, in the domain 0 to 2" — 1
D, and D, are the values specified in the Decode array

y is the output value, to be interpreted in the image’s color space

Samples with a value of 0 are mapped to D_ ., those with a value of 2" — 1 are
mapped to D, .., and those with intermediate values are mapped linearly be-
tween D, and D_ .. . Table 4.40 lists the default Decode arrays for use with the
various color spaces. For most color spaces, the Decode arrays listed in the table
map into the full range of allowed component values. For an Indexed color space,
the default Decode array ensures that component values that index a color table
are passed through unchanged.

TABLE 4.40 Default Decode arrays

COLOR SPACE Decode ARRAY

DeviceGray [0.0 1.0]

DeviceRGB [0.0 1.0 0.0 1.0 0.0 1.0]

DeviceCMYK (0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

CalGray [0.0 1.0]

CalRGB [0.0 1.0 0.0 1.0 0.0 1.0]

Lab [0 100 ai oy Omin Omax] Where a o a, ., b ., and b

correspond to the values in the Range array of the image’s color
space
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COLOR SPACE Decode ARRAY

ICCBased Same as the value of Range in the ICC profile of the image’s color
space

Indexed [0 N], where N=2"—1

Pattern (Not permitted with images)

Separation [0.0 1.0]

DeviceN [00 1.0 0.0 1.0 ... 0.0 1.0] (one pair of elements for each color
component)

It is possible to specify a mapping that inverts sample color intensities by specify-
ing a D, value greater than D_ . For example, if the image’s color space is
DeviceGray and the Decode array is [1.0 0.0], an input value of 0 is mapped to 1.0
(white); an input value of 2" — 1 is mapped to 0.0 (black).

The D, ;, and D . parameters for a color component are not required to fall
within the range of values allowed for that component. For instance, if an applica-
tion uses 6-bit numbers as its native image sample format, it can represent those
samples in PDF in 8-bit form, setting the two unused high-order bits of each
sample to 0. The image dictionary should then specify a Decode array of
[0.00000 4.04762], which maps input values from 0 to 63 into the range 0.0 to 1.0
(4.04762 being approximately equal to 255 + 63). If an output value falls outside
the range allowed for a component, it is automatically adjusted to the nearest al-

lowed value.

Image Interpolation

When the resolution of a source image is significantly lower than that of the out-
put device, each source sample covers many device pixels. As a result, images can
appear jaggy or blocky. These visual artifacts can be reduced by applying an im-
age interpolation algorithm during rendering. Instead of painting all pixels cov-
ered by a source sample with the same color, image interpolation attempts to
produce a smooth transition between adjacent sample values. Image interpola-
tion is enabled by setting the Interpolate entry in the image dictionary to true. It
is disabled by default because it may increase the time required to render the im-
age.
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Note: The interpolation algorithm is implementation-dependent and is not specified
by PDE Image interpolation may not always be performed for some classes of imag-
es or on some output devices.

Alternate Images

Alternate images (PDF 1.3) provide a straightforward and backward-compatible
way to include multiple versions of an image in a PDF file for different purposes.
These variant representations of the image may differ, for example, in resolution
or in color space. The primary goal is to reduce the need to maintain separate
versions of a PDF document for low-resolution on-screen viewing and high-
resolution printing.

In PDF 1.3, a base image (that is, the image XObject referred to in a resource
dictionary) can contain an Alternates entry. The value of this entry is an array of
alternate image dictionaries specifying variant representations of the base image.
Each alternate image dictionary contains an image XObject for one variant and
specifies its properties. Table 4.41 shows the contents of an alternate image dictio-
nary.

TABLE 4.41 Entries in an alternate image dictionary

KEY TYPE VALUE

Image stream (Required) The image XObject for the alternate image.

DefaultForPrinting  boolean (Optional) A flag indicating whether this alternate image is the default ver-
sion to be used for printing. At most one alternate for a given base image may
be so designated. If no alternate has this entry set to true, the base image is
used for printing.

ocC dictionary (Optional; PDF 1.5) An optional content group (see Section 4.10.1, “Optional

Content Groups”) or optional content membership dictionary (see “Optional
Content Membership Dictionaries” on page 365”) that facilitates the selec-
tion of which alternate image to use.

Example 4.29 shows an image with a single alternate. The base image is a gray-
scale image, and the alternate is a high-resolution RGB image stored on a Web
server.
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Example 4.29

10 0 obj % Image XObject
<< /Type /XObject
/Subtype /Image
/Width 100
/Height 200
/ColorSpace /DeviceGray
/BitsPerComponent 8
/Alternates 150R
/Length 2167
/Filter /DCTDecode
>>
stream
...Imagedata...
endstream
endobj

15 0 obj % Alternate images array
[ << /Image 160R
/DefaultForPrinting true
>>
1
endobj

16 0 obj % Alternate image
<< /Type /XObject
/Subtype /Image
/Width 1000
/Height 2000
/ColorSpace /DeviceRGB
/BitsPerComponent 8
/Length 0 % This is an external stream
/F << /FS /URL
/F (http://www.myserver.mycorp.com/images/exttest.jpg)
>>
/FFilter /DCTDecode
>>
stream
endstream
endobj
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In PDF 1.5, optional content (see Section 4.10) can be used to facilitate selection
between alternate images. If an image XObject contains both an Alternates entry
and an OC entry, the choice of which image to use is determined as follows:

1. If the image’s OC entry specifies that the base image is visible, that image is dis-
played.

2. Otherwise, the list of alternates specified by the Alternates entry is examined,
and the first alternate containing an OC entry specifying that its content
should be visible is shown. (Alternate images that have no OC entry are not
shown.)

4.8.5 Masked Images

Ordinarily, in the opaque imaging model, images mark all areas they occupy on
the page as if with opaque paint. All portions of the image, whether black, white,
gray, or color, completely obscure any marks that may previously have existed in
the same place on the page. In the graphic arts industry and page layout appli-
cations, however, it is common to crop or mask out the background of an image
and then place the masked image on a different background so that the existing
background shows through the masked areas. A number of PDF features are
available for achieving such masking effects (see implementation note 54 in Ap-
pendix H):

e The ImageMask entry in the image dictionary, available in all versions of PDE,
specifies that the image data is to be used as a stencil mask for painting in the
current color.

o The Mask entry in the image dictionary (PDF 1.3) may specify a separate image
XObject to be used as an explicit mask specifying which areas of the image to
paint and which to mask out.

o Alternatively, the Mask entry (PDF 1.3) may specify a range of colors to be
masked out wherever they occur within the image. This technique is known as
color key masking.

Note: Although the Mask entry is a PDF 1.3 feature, its effects are commonly simu-
lated in earlier versions of PDF by defining a clipping path enclosing only those of an
image’s samples that are to be painted. However, implementation limits can cause
errors if the clipping path is very complex (or if there is more than one clipping
path). An alternative way to achieve the effect of an explicit mask in PDF 1.2 is to
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define the image being clipped as a pattern, make it the current color, and then
paint the explicit mask as an image whose ImageMask entry is true. In any case, the
PDF 1.3 features allow masked images to be placed on the page regardless of the
complexity of the clipping path.

In the transparent imaging model, a fourth type of masking effect, soft masking, is
available through the SMask entry (PDF 1.4) or the SMaskInData entry (PDF 1.5)
in the image dictionary; see Section 7.5.4, “Specifying Soft Masks,” for further
discussion.

Stencil Masking

An image mask (an image XObject whose ImageMask entry is true) is a mono-
chrome image in which each sample is specified by a single bit. However, instead
of being painted in opaque black and white, the image mask is treated as a stencil
mask that is partly opaque and partly transparent. Sample values in the image do
not represent black and white pixels; rather, they designate places on the page that
should either be marked with the current color or masked out (not marked at all).
Areas that are masked out retain their former contents. The effect is like applying
paint in the current color through a cut-out stencil, which lets the paint reach the
page in some places and masks it out in others.

An image mask differs from an ordinary image in the following significant ways:

e The image dictionary does not contain a ColorSpace entry because sample
values represent masking properties (1 bit per sample) rather than colors.

o The value of the BitsPerComponent entry must be 1.

¢ The Decode entry determines how the source samples are to be interpreted. If
the Decode array is [0 1] (the default for an image mask), a sample value of 0
marks the page with the current color, and a 1 leaves the previous contents un-
changed. If the Decode array is [1 0], these meanings are reversed.

One of the most important uses of stencil masking is for painting character
glyphs represented as bitmaps. Using such a glyph as a stencil mask transfers only
its “black” bits to the page, leaving the “white” bits (which are really just back-
ground) unchanged. For reasons discussed in Section 5.5.4, “Type 3 Fonts,” an
image mask, rather than an image, should almost always be used to paint glyph
bitmaps.
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Note: If image interpolation (see “Image Interpolation” on page 346) is requested
during stencil masking, the effect is to smooth the edges of the mask, not to interpo-
late the painted color values. This effect can minimize the jaggy appearance of a
low-resolution stencil mask.

Explicit Masking

In PDF 1.3, the Mask entry in an image dictionary may be an image mask, as de-
scribed above under “Stencil Masking,” which serves as an explicit mask for the
primary (base) image. The base image and the image mask need not have the
same resolution (Width and Height values), but since all images are defined on
the unit square in user space, their boundaries on the page will coincide; that is,
they will overlay each other. The image mask indicates which places on the page
are to be painted and which are to be masked out (left unchanged). Unmasked ar-
eas are painted with the corresponding portions of the base image; masked areas
are not.

Color Key Masking

In PDF 1.3, the Mask entry in an image dictionary may alternatively be an array
specifying a range of colors to be masked out. Samples in the image that fall with-
in this range are not painted, allowing the existing background to show through.
The effect is similar to that of the video technique known as chroma-key.

For color key masking, the value of the Mask entry is an array of 2 X n integers,
[min; max, ... min, max,], where 7 is the number of color components in the
image’s color space. Each integer must be in the range 0 to 2BitsPerComponent _
representing color values before decoding with the Decode array. An image sam-
ple is masked (not painted) if all of its color components before decoding, ¢ ...c,,,
fall within the specified ranges (that is, if min; < ¢; < max; for all 1 <i<n).

Note: When color key masking is specified, the use of a DCTDecode filter for the
stream is not recommended. DCTDecode is a lossy filter, meaning that the output is
only an approximation of the original input data. Therefore, the use of this filter can
lead to slight changes in the color values of image samples, possibly causing samples
that were intended to be masked to be unexpectedly painted instead, in colors slight-
ly different from the mask color.
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4.8.6

Inline Images

As an alternative to the image XObjects described in Section 4.8.4, “Image Dic-
tionaries,” a sampled image may be specified in the form of an inline image. This
type of image is defined directly within the content stream in which it will be
painted rather than as a separate object. Because the inline format gives the appli-
cation less flexibility in managing the image data, it should be used only for small
images (4 KB or less).

An inline image object is delimited in the content stream by the operators Bl
(begin image), ID (image data), and El (end image). These operators are summa-
rized in Table 4.42. Bl and ID bracket a series of key-value pairs specifying the
characteristics of the image, such as its dimensions and color space; the image
data follows between the ID and El operators. The format is thus analogous to that
of a stream object such as an image XObject:

BI

... Key-value pairs...
ID

...Imagedata...

El

TABLE 4.42 Inline image operators

OPERANDS

OPERATOR DESCRIPTION

BI Begin an inline image object.
ID Begin the image data for an inline image object.
El End an inline image object.

Inline image objects may not be nested; that is, two Bl operators may not appear
without an intervening El to close the first object. Similarly, an ID operator may
appear only between a Bl and its balancing El. Unless the image uses
ASClIHexDecode or ASCII85Decode as one of its filters, the ID operator should be
followed by a single white-space character, and the next character is interpreted
as the first byte of image data.

The key-value pairs appearing between the Bl and ID operators are analogous to
those in the dictionary portion of an image XObject (though the syntax is differ-
ent). Table 4.43 shows the entries that are valid for an inline image, all of which
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have the same meanings as in a stream dictionary (Table 3.4 on page 62) or an
image dictionary (Table 4.39). Entries other than those listed are ignored; in par-
ticular, the Type, Subtype, and Length entries normally found in a stream or im-
age dictionary are unnecessary. For convenience, the abbreviations shown in the
table may be used in place of the fully spelled-out keys. Table 4.44 shows addi-
tional abbreviations that can be used for the names of color spaces and filters.
Note, however, that these abbreviations are valid only in inline images; they may
not be used in image XObjects. Also note that JBIG2Decode and JPXDecode are
not listed in Table 4.44 because those filters can be applied only to image
XObjects.

TABLE 4.43 Entries in aninline image object

FULL NAME ABBREVIATION
BitsPerComponent BPC
ColorSpace cs

Decode D
DecodeParms DP

Filter F

Height H

ImageMask IM

Intent (PDF 1.1) No abbreviation
Interpolate I (uppercase I)
Width w

TABLE 4.44 Additional abbreviations in an inline image object

FULL NAME ABBREVIATION
DeviceGray G

DeviceRGB RGB
DeviceCMYK CMYK

Indexed I (uppercase I)
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FULL NAME ABBREVIATION
ASClIHexDecode AHXx
ASClI85Decode A85
LZWDecode LZW
FlateDecode (PDF 1.2) FI (uppercase F, lowercase L)
RunLengthDecode RL
CCITTFaxDecode CCF
DCTDecode DCT

The color space specified by the ColorSpace (or CS) entry may be any of the stan-
dard device color spaces (DeviceGray, DeviceRGB, or DeviceCMYK). It may not be
a CIE-based color space or a special color space, with the exception of a limited
form of Indexed color space whose base color space is a device space and whose
color table is specified by a byte string (see “Indexed Color Spaces” on page 262).
Beginning with PDF 1.2, the value of the ColorSpace entry may also be the name
of a color space in the ColorSpace subdictionary of the current resource dictio-
nary (see Section 3.7.2, “Resource Dictionaries”). In this case, the name may des-
ignate any color space that can be used with an image XObject.

Note: The names DeviceGray, DeviceRGB, and DeviceCMYK (as well as their abbre-
viations G, RGB, and CMYK) always identify the corresponding color spaces directly;
they never refer to resources in the ColorSpace subdictionary.

The image data in an inline image may be encoded by using any of the standard
PDF filters. The bytes between the ID and El operators are treated much the same
as a stream object’s data (see Section 3.2.7, “Stream Objects”), even though they
do not follow the standard stream syntax. (This is an exception to the usual rule
that the data in a content stream is interpreted according to the standard PDF
syntax for objects.)

Example 4.30 shows an inline image 17 samples wide by 17 high with 8 bits per
component in the DeviceRGB color space. The image has been encoded using
LZW and ASCII base-85 encoding. The cm operator is used to scale it to a width
and height of 17 units in user space and position it at coordinates (298, 388). The
g and Q operators encapsulate the cm operation to limit its effect to resizing the
image.
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Example 4.30
q % Save graphics state
17 0 0 17 298 388 cm % Scale and translate coordinate space
BI % Begin inline image object
/W 17 % Width in samples
/H 17 % Height in samples
/CS /RGB % Color space
/BPC 8 % Bits per component
/F [/A85 /LZW] % Filters
ID % Begin image data

J1/gKA>.JAN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ

...Omitted data...

R.s(4KE3&d&7hb*7[%Ct2HCqC~>

El % End inline image object
Q % Restore graphics state

4.9 Form XObjects

A form XObject is a PDF content stream that is a self-contained description of any
sequence of graphics objects (including path objects, text objects, and sampled
images). A form XObject may be painted multiple times—either on several pages
or at several locations on the same page—and produces the same results each
time, subject only to the graphics state at the time it is invoked. Not only is this
shared definition economical to represent in the PDF file, but under suitable cir-
cumstances the PDF consumer application can optimize execution by caching the
results of rendering the form XObject for repeated reuse.

Note: The term form also refers to a completely different kind of object, an inter-
active form (sometimes called an AcroForm), discussed in Section 8.6, “Interactive
Forms.” Whereas the form XObjects described in this section correspond to the no-
tion of forms in the PostScript language, interactive forms are the PDF equivalent of
the familiar paper instrument. Any unqualified use of the word form is understood
to refer to an interactive form; the type of form described here is always referred to
explicitly as a form XObject.
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Form XObjects have various uses:

e As its name suggests, a form XObject can serve as the template for an entire
page. For example, a program that prints filled-in tax forms can first paint the
fixed template as a form XObject and then paint the variable information on
top of it.

¢ Any graphical element that is to be used repeatedly, such as a company logo or
a standard component in the output from a computer-aided design system, can
be defined as a form XObject.

e Certain document elements that are not part of a page’s contents, such as
annotation appearances (see Section 8.4.4, “Appearance Streams”), are repre-
sented as form XObjects.

e A specialized type of form XObject, called a group XObject (PDF 1.4), can be
used to group graphical elements together as a unit for various purposes (see
Section 4.9.2, “Group XObjects”). In particular, group XObjects are used to de-
fine transparency groups and soft masks for use in the transparent imaging
model (see “Soft-Mask Dictionaries” on page 552 and Section 7.5.5, “Transpar-
ency Group XObjects”).

¢ Another specialized type of form XObject, a reference XObject (PDF 1.4), can
be used to import content from one PDF document into another (see Section
4.9.3, “Reference XObjects”).

The use of form XObjects requires two steps:

1. Define the appearance of the form XObject. A form XObject is a PDF content
stream. The dictionary portion of the stream (called the form dictionary)
contains descriptive information about the form XObject; the body of the
stream describes the graphics objects that produce its appearance. The con-
tents of the form dictionary are described in Section 4.9.1, “Form Diction-
aries!

2. Paint the form XObject. The Do operator (see Section 4.7, “External Objects”)
paints a form XObject whose name is supplied as an operand. (The name is
defined in the XObject subdictionary of the current resource dictionary.)
Before invoking this operator, the content stream in which it appears should
set appropriate parameters in the graphics state. In particular, it should alter
the current transformation matrix to control the position, size, and orientation
of the form XObject in user space.
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Each form XObject is defined in its own coordinate system, called form space.
The BBox entry in the form dictionary is expressed in form space, as are any
coordinates used in the form XObject’s content stream, such as path coordinates.
The Matrix entry in the form dictionary specifies the mapping from form space to
the current user space. Each time the form XObject is painted by the Do operator,
this matrix is concatenated with the current transformation matrix to define the
mapping from form space to device space. (This differs from the Matrix entry in a
pattern dictionary, which maps pattern space to the initial user space of the con-
tent stream in which the pattern is used.)

When the Do operator is applied to a form XObject, it does the following tasks:
1. Saves the current graphics state, as if by invoking the q operator (see Section

4.3.3, “Graphics State Operators”)

2. Concatenates the matrix from the form dictionary’s Matrix entry with the cur-
rent transformation matrix (CTM)

3. Clips according to the form dictionary’s BBox entry
4. Paints the graphics objects specified in the form’s content stream
5. Restores the saved graphics state, as if by invoking the Q operator (see Section

4.3.3, “Graphics State Operators”)

Except as described above, the initial graphics state for the form is inherited from
the graphics state that is in effect at the time Do is invoked.

Form Dictionaries

Every form XObject has a form type, which determines the format and meaning
of the entries in its form dictionary. At the time of publication, only one form
type, type 1, has been defined. Form XObject dictionaries may contain the entries
shown in Table 4.45, in addition to the usual entries common to all streams (see
Table 3.4 on page 62).
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TABLE 4.45 Additional entries specific to a type 1 form dictionary

KEY

TYPE

VALUE

Type

Subtype

FormType

BBox

Matrix

Resources

name

name

integer

rectangle

array

dictionary

(Optional) The type of PDF object that this dictionary describes; if present,
must be XObject for a form XObject.

(Required) The type of XObject that this dictionary describes; must be Form
for a form XObject.

(Optional) A code identifying the type of form XObject that this dictionary
describes. The only valid value defined at the time of publication is 1. Default
value: 1.

(Required) An array of four numbers in the form coordinate system (see
above), giving the coordinates of the left, bottom, right, and top edges,
respectively, of the form XObject’s bounding box. These boundaries are used
to clip the form XObject and to determine its size for caching.

(Optional) An array of six numbers specifying the form matrix, which maps
form space into user space (see Section 4.2.3, “Transformation Matrices”).
Default value: the identity matrix [1 0 0 1 0 0].

(Optional but strongly recommended; PDF 1.2) A dictionary specifying any
resources (such as fonts and images) required by the form XObject (see Sec-
tion 3.7, “Content Streams and Resources”).

In PDF 1.1 and earlier, all named resources used in the form XObject must be
included in the resource dictionary of each page object on which the form
XObject appears, regardless of whether they also appear in the resource dic-
tionary of the form XObject. It can be useful to specify these resources in the
form XObject’s resource dictionary as well, to determine which resources are
used inside the form XObject. If a resource is included in both dictionaries, it
should have the same name in both locations.

In PDF 1.2 and later versions, form XObjects can be independent of the
content streams in which they appear, and this is strongly recommended
although not required. In an independent form XObject, the resource dictio-
nary of the form XObject is required and contains all named resources used
by the form XObject. These resources are not promoted to the outer content
stream’s resource dictionary, although that stream’s resource dictionary refers
to the form XObject.
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KEY TYPE VALUE

Group dictionary (Optional; PDF 1.4) A group attributes dictionary indicating that the contents
of the form XObject are to be treated as a group and specifying the attributes
of that group (see Section 4.9.2, “Group XObjects”).
Note: If a Ref entry (see below) is present, the group attributes also apply to the
external page imported by that entry, which allows such an imported page to be
treated as a group without further modification.

Ref dictionary (Optional; PDF 1.4) A reference dictionary identifying a page to be imported
from another PDF file, and for which the form XObject serves as a proxy (see
Section 4.9.3, “Reference XObjects”).

Metadata stream (Optional; PDF 1.4) A metadata stream containing metadata for the form
XObject (see Section 10.2.2, “Metadata Streams”).

Piecelnfo dictionary (Optional; PDF 1.3) A page-piece dictionary associated with the form

LastModified

StructParent

StructParents

OPI

date

integer

integer

dictionary

XObject (see Section 10.4, “Page-Piece Dictionaries”).

(Required if Piecelnfo is present; optional otherwise; PDF 1.3) The date and
time (see Section 3.8.3, “Dates”) when the form XObject’s contents were most
recently modified. If a page-piece dictionary (Piecelnfo) is present, the modi-
fication date is used to ascertain which of the application data dictionaries it
contains correspond to the current content of the form (see Section 10.4,
“Page-Piece Dictionaries”).

(Required if the form XObject is a structural content item; PDF 1.3) The inte-
ger key of the form XObject’s entry in the structural parent tree (see “Finding
Structure Elements from Content Items” on page 868).

(Required if the form XObject contains marked-content sequences that are
structural content items; PDF 1.3) The integer key of the form XObject’s entry
in the structural parent tree (see “Finding Structure Elements from Content
Items” on page 868).

Note: At most one of the entries StructParent or StructParents may be present. A
form XObject can be either a content item in its entirety or a container for
marked-content sequences that are content items, but not both.

(Optional; PDF 1.2) An OPI version dictionary for the form XObject (see
Section 10.10.6, “Open Prepress Interface (OPI)”).
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KEY TYPE VALUE
ocC dictionary (Optional; PDF 1.5) An optional content group or optional content member-

ship dictionary (see Section 4.10, “Optional Content”) specifying the option-
al content properties for the form XObject. Before the form is processed, its
visibility is determined based on this entry. If it is determined to be invisible,
the entire form is skipped, as if there were no Do operator to invoke it.

Name name (Required in PDF 1.0; optional otherwise) The name by which this form
XObject is referenced in the XObject subdictionary of the current resource
dictionary (see Section 3.7.2, “Resource Dictionaries”).

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 55 in Appendix H.)

Example 4.31 shows a simple form XObject that paints a filled square 1000 units
on each side.

Example 4.31

6 0 obj % Form XObject
<< /[Type /XObject
/Subtype /Form
/FormType 1
/BBox [0 O 1000 1000]
/Matrix [1 0 0 1 0 0]
/Resources << /ProcSet [/PDF] >>
/Length 58
>>
stream
00m
0 1000 |
1000 1000 |
1000 O |
f
endstream
endobj

49.2 Group XObjects

A group XObject (PDF 1.4) is a special type of form XObject that can be used to
group graphical elements together as a unit for various purposes. It is distin-
guished by the presence of the optional Group entry in the form dictionary (see
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Section 4.9.1, “Form Dictionaries”). The value of this entry is a subsidiary group
attributes dictionary describing the properties of the group.

As shown in Table 4.46, every group XObject has a group subtype (specified by
the S entry in the group attributes dictionary) that determines the format and
meaning of the dictionary’s remaining entries. Only one such subtype is currently
defined, a transparency group XObject (subtype Transparency) representing a
transparency group for use in the transparent imaging model (see Section 7.3,
“Transparency Groups”). The remaining contents of this type of dictionary are
described in Section 7.5.5, “Transparency Group XObjects.”

TABLE 4.46 Entries common to all group attributes dictionaries

KEY

TYPE VALUE

Type

name (Optional) The type of PDF object that this dictionary describes; if present, must

be Group for a group attributes dictionary.

name (Required) The group subtype, which identifies the type of group whose at-
tributes this dictionary describes and determines the format and meaning of the
dictionary’s remaining entries. The only group subtype defined in PDF 1.4 is
Transparency; see Section 7.5.5, “Transparency Group XObjects,” for the re-
maining contents of this type of dictionary. Other group subtypes may be added

in the future.

4.9.3

Reference XObjects

Reference XObjects (PDF 1.4) enable one PDF document to import content from
another. The document in which the reference occurs is called the containing
document; the one whose content is being imported is the target document. The
target document may reside in a file external to the containing document or may
be included within it as an embedded file stream (see Section 3.10.3, “Embedded
File Streams”).

The reference XObject in the containing document is a form XObject containing
the optional Ref entry in its form dictionary, as described below. This form XOb-
ject serves as a proxy that can be displayed or printed in place of the imported
content. The proxy might consist of a low-resolution image of the imported con-
tent, a piece of descriptive text referring to it, a gray box to be displayed in its
place, or any other similar placeholder. PDF consumers that do not recognize the
Ref entry simply display or print the proxy as an ordinary form XObject (see im-
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plementation note 56 in Appendix H). Those that do implement reference XOb-
jects can use the proxy in place of the imported content if the latter is unavailable.
An application may also provide a user interface to allow editing and updating of
imported content links.

The imported content consists of a single, complete PDF page in the target docu-
ment. It is designated by a reference dictionary, which in turn is the value of the
Ref entry in the reference XObject’s form dictionary (see Section 4.9.1, “Form
Dictionaries”). The presence of the Ref entry distinguishes reference XObjects
from other types of form XObjects. Table 4.47 shows the contents of the reference
dictionary.

TABLE 4.47 Entries in a reference dictionary

KEY TYPE VALUE

F file specification (Required) The file containing the target document.

Page integer or (Required) A page index or page label (see Section 8.3.1, “Page Labels”) iden-

text string tifying the page of the target document containing the content to be

imported. Note that the reference is a weak one and can be inadvertently in-
validated if the referenced page is changed or replaced in the target document
after the reference is created.

ID array (Optional) An array of two byte strings constituting a file identifier (see Sec-

tion 10.3, “File Identifiers”) for the file containing the target document. The
use of this entry improves an application’s chances of finding the intended file
and allows it to warn the user if the file has changed since the reference was

created.

When the imported content replaces the proxy, it is transformed according to the
proxy object’s transformation matrix and clipped to the boundaries of its bound-
ing box, as specified by the Matrix and BBox entries in the proxy’s form dictionary
(see Section 4.9.1, “Form Dictionaries”). The combination of the proxy object’s
matrix and bounding box thus implicitly defines the bounding box of the import-
ed page. This bounding box typically coincides with the imported page’s crop box
or art box (see Section 10.10.1, “Page Boundaries”), but it is not required to corre-
spond to any of the defined page boundaries. If the proxy object’s form dictionary
contains a Group entry, the specified group attributes apply to the imported page
as well, which allows the imported page to be treated as a group without further
modification.
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Printing Reference XObjects

When printing a page containing reference XObjects, an application may emit
any of the following items, depending on the capabilities of the application, the
user’s preferences, and the nature of the print job:

¢ The imported content designated by the reference XObject
o The reference XObject as a proxy for the imported content

¢ An OPI proxy or substitute image taken from the reference XObject’s OPI dic-
tionary, if any (see Section 10.10.6, “Open Prepress Interface (OPI)”)

The imported content or the reference XObject may also be emitted in place of an
OPI proxy when generating OPI comments in a PostScript output stream.

Special Considerations

Certain special considerations arise when reference XObjects interact with other
PDF features:

e When the page imported by a reference XObject contains annotations (see Sec-
tion 8.4, “Annotations”), all annotations that contain a printable, unhidden,
visible appearance stream (Section 8.4.4, “Appearance Streams”) must be in-
cluded in the rendering of the imported page. If the proxy is a snapshot image
of the imported page, it must also include the annotation appearances. These
appearances must therefore be converted into part of the proxy’s content
stream, either as subsidiary form XObjects or by flattening them directly into
the content stream.

e Logical structure information associated with a page (see Section 10.6, “Logical
Structure”) should normally be ignored when importing the page into another
document with a reference XObject. In a target document with multiple pages,
structure elements occurring on the imported page are typically part of a larger
structure pertaining to the document as a whole; such elements cannot mean-
ingfully be incorporated into the structure of the containing document. In a
one-page target document or one made up of independent, structurally unre-
lated pages, the logical structure for the imported page may be wholly self-con-
tained; in this case, it may be possible to incorporate this structure information
into that of the containing document. However, PDF provides no mechanism
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for the logical structure hierarchy of one document to refer indirectly to that of
another.

4.10 Optional Content

4.10.1

Optional content (PDF 1.5) refers to sections of content in a PDF document that
can be selectively viewed or hidden by document authors or consumers. This ca-
pability is useful in items such as CAD drawings, layered artwork, maps, and
multi-language documents.

The following sections describe the PDF structures used to implement optional
content:

e Section 4.10.1, “Optional Content Groups,” describes the primary structures
used to control the visibility of content.

e Section 4.10.2, “Making Graphical Content Optional,” describes how individu-
al pieces of content in a document may declare themselves as belonging to one
or more optional content groups.

e Section 4.10.3, “Configuring Optional Content,” describes how the states of op-
tional content groups are set.

Optional Content Groups

An optional content group is a dictionary representing a collection of graphics
that can be made visible or invisible dynamically by users of viewer applications.
The graphics belonging to such a group can reside anywhere in the document:
they need not be consecutive in drawing order, nor even belong to the same con-
tent stream. Table 4.48 shows the entries in an optional content group dictionary.

TABLE 4.48 Entries in an optional content group dictionary

KEY

TYPE VALUE

Type

Name

name (Required) The type of PDF object that this dictionary describes; must be OCG

for an optional content group dictionary.

text string (Required) The name of the optional content group, suitable for presentation in

a viewer application’s user interface.
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KEY TYPE VALUE
Intent name or array  (Optional) A single intent name or an array containing any combination of

names. PDF 1.5 defines two names, View and Design, that indicate the intended
use of the graphics in the group. Future versions may define others. A process-
ing application can choose to use only groups that have a specific intent and ig-
nore others.

Default value: View. See “Intent” on page 368 for more information.

Usage dictionary (Optional) A usage dictionary describing the nature of the content controlled by
the group. It may be used by features that automatically control the state of the
group based on outside factors. See “Usage and Usage Application Dictionaries”
on page 380 for more information.

In its simplest form, each dictionary contains a Type entry and a Name for pre-
sentation in a user interface. It may also have an Intent entry that describes its in-
tended use (see “Intent” on page 368) and a Usage entry that describes the nature
of its content (see “Usage and Usage Application Dictionaries” on page 380).

Individual content elements in a document specify the optional content group or
groups that affect their visibility (see Section 4.10.2, “Making Graphical Content
Optional”). Any content whose visibility can be affected by a given optional con-
tent group is said to belong to that group.

A group is assigned a state, which is either ON or OFF. States are not themselves
part of the PDF document but can be set programmatically or through the viewer
user interface to change the visibility of content. When a document is first
opened, the groups’ states are initialized based on the document’s default config-
uration dictionary (see “Optional Content Configuration Dictionaries” on page
375).

In the typical case, content belonging to a group is visible when the group is ON
and invisible when it is OFF. In more complex cases, content can belong to multi-
ple groups, which may have conflicting states. These cases are described by the
use of optional content membership dictionaries, described in the next section.

Optional Content Membership Dictionaries

As mentioned above, content typically belongs to a single optional content group
and is visible when the group is ON and invisible when it is OFF. To express more
complex visibility policies, content should declare itself not to belong directly to
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an optional content group but rather to an optional content membership dictio-
nary, whose entries are shown in Table 4.49. (Section 4.10.2 describes how con-
tent declares its membership in a group or membership dictionary.)

TABLE 4.49 Entries in an optional content membership dictionary

KEY TYPE VALUE
Type name (Required) The type of PDF object that this dictionary describes; must be OCMD
for an optional content membership dictionary.
0OCGs dictionaryor  (Optional) A dictionary or array of dictionaries specifying the optional content
array groups whose states determine the visibility of content controlled by this member-

ship dictionary.

Note: Null values or references to deleted objects are ignored. If this entry is not
present, is an empty array, or contains references only to null or deleted objects, the
membership dictionary has no effect on the visibility of any content.

P name (Optional) A name specifying the visibility policy for content belonging to this
membership dictionary. Valid values are:

AlIOn: visible only if all of the entries in OCGs are ON

AnyOn: visible if any of the entries in OCGs are ON

AnyOff: visible if any of the entries in OCGs are OFF

AlIOff: visible only if all of the entries in OCGs are OFF

Default value: AnyOn

VE array (Optional; PDF 1.6) An array specifying a visibility expression, used to compute
visibility of content based on a set of optional content groups; see discussion be-
low.

An optional content membership dictionary can express its visibility policy in
two ways:

o The P entry specifies a simple boolean expression indicating how the optional
content groups specified by the OCGs entry determine the visibility of content
controlled by the membership dictionary.

¢ PDF 1.6 introduces the VE entry, which is a visibility expression that can specify
an arbitrary boolean expression for computing the visibility of content from the
states of optional content groups.
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Note: Since the VE entry is more general, if it is present and supported by the PDF
consumer software, it should be used in preference to OCGs and P. However, for
compatibility purposes, PDF creators should use OCGs and P entries where possible.
When the use of VE is necessary to express the intended behavior, OCGs and P en-
tries should also be provided to approximate the behavior in older consumer soft-
ware.

A visibility expression is an array with the following characteristics:

o Its first element is a name representing a boolean operator (And, Or, or Not).

¢ Subsequent elements are either optional content groups or other visibility ex-
pressions.

o If the first element is Not, it should have only one subsequent element. If the
first element is And or Or, it may have one or more subsequent elements.

o In evaluating a visibility expression, the ON state of an optional content group is
equated to the boolean value true; OFF is equated to false.

Examples 4.33 and 4.34 illustrate the use of visibility expressions.

Membership dictionaries are useful in cases such as these:

¢ Some content may choose to be invisible when a group is ON and visible when it
is OFF. In this case, the content would belong to a membership dictionary
whose OCGs entry consists of a single optional content group and whose P en-
try is AnyOff or AlIOff.

Note: It is legal to have an OCGs entry consisting of a single group and a P entry
that is AnyOn or AllOn. However, in this case it is preferable to use an optional
content group directly because it uses fewer objects.

e Some content may belong to more than one group and must specify its policy
when the groups are in conflicting states. In this case, the content would belong
to a membership dictionary whose OCGs entry consists of an array of optional
content groups and whose P entry specifies the visibility policy, as illustrated in
Example 4.32 below. (Example 4.33 shows the equivalent policy using visibility
expressions.)
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Example 4.32
<< /Type /OCMD % Content belonging to this optional content

% membership dictionary is controlled by the states
/OCGs[120R130R140R] % of three optional content groups.

/P /AlIOn % Content is visible only if the state of all three
>> % groups is ON; otherwise it’s hidden.
Example 4.33
<< /Type /OCMD
/VE[/And 120R130R140R] % Visibility expression equivalent to Example 4.32.
>>

Example 4.34 shows a more complicated visibility expression based on five op-
tional content groups, represented by objects 1 through 5. It is equivalent to

“OCG 1”7 OR (NOT “OCG 2”) OR (“OCG 3” AND “OCG 4” AND “OCG 5”)

Example 4.34

<< /Type /OCMD
/VE[/Or % Visibility expression: OR
10R % OCG 1
[/Not 2 0 R] % NOT OCG 2

[/And30R40R50R] % OCG 3 AND OCG 4 AND OCG 5

>>

Intent

The Intent entry in Table 4.48 provides a way to distinguish between different in-
tended uses of optional content. For example, many document design applica-
tions, such as CAD packages, offer layering features for collecting groups of
graphics together and selectively hiding or viewing them for the convenience of
the author. However, this layering may be different (at a finer granularity, for ex-
ample) than would be useful to consumers of the document. Therefore, it is pos-
sible to specify different intents for optional content groups within a single
document. A given application may decide to use only groups that are of a specif-
ic intent.

PDF 1.5 defines two intents: Design, which is intended to represent a document
designer’s structural organization of artwork, and View, which is intended for in-
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teractive use by document consumers. More intents may be added in future PDF
versions; for compatibility with future versions, PDF consumers should allow un-
recognized Intent values.

Configuration dictionaries (see “Optional Content Configuration Dictionaries”
on page 375) also contain an Intent entry. If one or more of a group’s intents is
contained in the current configuration’s set of intents, the group is used in deter-
mining visibility. If there is no match, the group has no effect on visibility.

Note: If the configuration’s Intent is an empty array, no groups are used in determin-
ing visibility; therefore, all content is considered visible.

Making Graphical Content Optional

Graphical content in a PDF file can be made optional by specifying membership
in an optional content group or optional content membership dictionary. Two
primary mechanisms are available:

e Sections of content streams delimited by marked-content operators can be
made optional, as described in “Optional Content in Content Streams,” below.

¢ Form and image XObjects and annotations can be made optional in their en-
tirety by means of a dictionary entry, as described in “Optional Content in
XObjects and Annotations” on page 374.

When a piece of optional content in a PDF file is determined to be hidden, the
following occurs:

e The content is not drawn.

o Graphics state operations, such as setting the color, transformation matrix, and
clipping, are still applied. In addition, graphics state side effects that arise from
drawing operators are applied; in particular, the current text position is updat-
ed even for text wrapped in optional content. In other words, graphics state pa-
rameters that persist past the end of a marked-content section must be the
same whether the optional content is visible or not. For example, hiding a sec-
tion of optional content does not change the color of objects that do not belong
to the same optional content group.

Note: This rule also applies to operators that set state that is not strictly graphics
state; for example, BX and EX.
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¢ Objects such as form XObjects and annotations that are made optional may be
skipped entirely, because their contents are encapsulated such that no changes
to the graphics state (or other state) persist beyond the processing of their con-
tent stream.

Other features in PDF consuming applications, such as searching and editing,
may be affected by the ability to selectively show or hide content. Features must
choose whether to use the document’s current state of optional content groups
(and, correspondingly, the document’s visible graphics) or to supply their own
states of optional content groups to control the graphics they process. For exam-
ple, tools to select and move annotations should honor the current on-screen vis-
ibility of annotations when performing cursor tracking and mouse-click
processing. A full text search engine, however, may need to process all content in
a document, regardless of its current visibility on-screen. Export filters might
choose the current on-screen visibility, the full content, or present the user with a
selection of OCGs to control visibility.

Note: All optional content-related PDF structures are unknown to, and hence ig-
nored by, PDF 1.4 and earlier consumers, which therefore draw and otherwise pro-
cess all content in the document.

Optional Content in Content Streams

Sections of content in a content stream (including a page's Contents stream, a
form or pattern’s content stream, glyph descriptions a Type 3 font as specified by
its CharProcs entry, or an annotation’s appearance) can be made optional by en-
closing them between the marked-content operators BDC and EMC (see Section
10.5, “Marked Content”) with a marked-content tag of OC. In addition, a DP
marked-content operator can be placed in a page’s content stream to force a refer-
ence to an optional content group or groups on the page, even when the page has
no current content in that layer.

The property list associated with the marked content specifies either an optional
content group or optional content membership dictionary to which the content
belongs. Because a group must be an indirect object and a membership dictio-
nary contains references to indirect objects, the property list must be a named re-
source listed in the Properties subdictionary of the current resource dictionary
(see Section 10.5.1, “Property Lists”), as shown in Examples 4.35 and 4.36.
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Note: Although the marked-content tag must be OC, other applications of marked
content are not precluded from using OC as a tag. The marked content is considered
to be for optional content only if the tag is OC and the dictionary operand is a valid
optional content group or optional content membership dictionary.

To avoid conflict with other features that used marked content (such as logical
structure; see Section 10.6, “Logical Structure”), the following strategy is recom-
mended:

e Where content is to be tagged with optional content markers as well as other
markers, the optional content markers should be nested inside the other
marked content.

e Where optional content and the other markers would overlap but there is not
strict containment, the optional content should be broken up into two or more
BDC/EMC sections, nesting the optional content sections inside the others as
necessary. Breaking up optional content spans does not damage the nature of
the visibility of the content, whereas the same guarantee cannot be made for all
other uses of marked content.

Note: Any marked content tagged for optional content that is nested inside other
marked content tagged for optional content is visible only if all the levels indicate
visibility. In other words, if the settings that apply to the outer level indicate that the
content should be hidden, the inner level is hidden regardless of its settings.

In the following example, the state of the Show Greeting optional content group
directly controls the visibility of the text string “Hello” on the page. When the
group is ON, the text is visible; when the group is OFF, the text is hidden.

Example 4.35

% Within a content stream

/0C/oc1 BDC % Optional content follows
BT
/F11Tf
120012100 600 Tm
(Hello) Tj
ET
EMC % End of optional content
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<< % In the resources dictionary
/Properties << /oc150R >> % This dictionary maps the name oc1 to an
% optional content group (object 5)
>>
50 obj % The OCG controlling the visibility
<< % of the text.
/Type /0CG
/Name (Show Greeting)
>>
endobj

The example above shows one piece of content associated with one optional con-
tent group. There are other possibilities:

¢ More than one section of content can refer to the same group or membership
dictionary, in which case the visibility of both sections is always the same.

e Equivalently, although less space-efficient, different sections can have separate
membership dictionaries with the same OCGs and P entries. The sections will
have identical visibility behavior.

¢ Two sections of content can belong to membership dictionaries that refer to the
same group(s) but with different P settings. For example, if one section has no P
entry, and the other has a P entry of AlIOff, the visibility of the two sections of
content are opposite. That is, the first section is visible when the second is hid-
den, and vice versa.

The following example demonstrates both the direct use of optional content
groups and the indirect use of groups through a membership dictionary. The
content (a black rectangle frame) is drawn if either of the images controlled by
the groups named Image A or Image B is shown. If both groups are hidden, the
rectangle frame is hidden.

Example 4.36

% Within a content stream

/OC/0C2 BDC % Draws a black rectangle frame
0g
4w
100100412592res

EMC
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/0C/0C3 BDC % Draws an image XObject
q
41200592100 100 cm
/Im3 Do
Q
EMC
/OC /0C4 BDC % Draws an image XObject
q
41200592100 100 cm
/Im4 Do
Q
EMC

<< % The resource dictionary
/Properties << /OC2200R/OC3300R/OC4400R >>
/XObject <</Im3500R/Im4 /60 0 R >>

>>

200 obj
<< % Optional content membership dictionary
/Type /OCMD
/OCGs [300R 40 0R]
/P /AnyOn
>>
endobj
300 obj % Optional content group “Image A"
<<
/Type /0CG
/Name (Image A)
>>
endobj
40 0 obj % Optional content group “Image B”
<<
/Type /0CG
/Name (Image B)
>>
endobj
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Optional Content in XObjects and Annotations

In addition to marked content within content streams, form XObjects and image
XObjects (see Section 4.7, “External Objects”) and annotations (see Section 8.4,
“Annotations”) may contain an OC entry, which is an optional content group or
an optional content membership dictionary.

A form or image XObject's visibility is determined by the state of the group or
those of the groups referenced by the membership dictionary in conjunction with
its P (or VE) entry, along with the current visibility state in the context in which
the XObject is invoked (that is, whether objects are visible in the contents stream
at the place where the Do operation occurred).

Annotations have various flags controlling on-screen and print visibility (see Sec-
tion 8.4.2, “Annotation Flags”). If an annotation contains an OC entry, it is visible
for screen or print only if the flags have the appropriate settings and the group or
membership dictionary indicates it is visible.

Configuring Optional Content

A PDF document containing optional content can specify the default states for
the optional content groups in the document and indicate which external factors
should be used to alter the states. The following sections describe the PDF struc-
tures that are used to specify this information.

¢ “Optional Content Properties Dictionary” on page 375 describes the structure
that lists all the optional content groups in the document and their possible
configurations.

* “Optional Content Configuration Dictionaries” on page 375 describes the
structures that specify initial state settings and other information about the
groups in the document.

o “Usage and Usage Application Dictionaries” on page 380 and “Determining the
State of Optional Content Groups” on page 385 describe how the states of
groups can be affected based on external factors.
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Optional Content Properties Dictionary

The optional OCProperties entry in the document catalog (see Section 3.6.1,
“Document Catalog”) holds the optional content properties dictionary, which con-
tains a list of all the optional content groups in the document, as well as informa-
tion about the default and alternate configurations for optional content. This
dictionary is required if the file contains any optional content; if it is missing, a
PDF consumer should ignore any optional content structures in the document.

This dictionary contains the following entries:

TABLE 4.50 Entries in the optional content properties dictionary
KEY TYPE VALUE

OCGs array (Required) An array of indirect references to all the optional content groups in
the document (see Section 4.10.1, “Optional Content Groups”), in any order.
Every optional content group must be included in this array.

D dictionary (Required) The default viewing optional content configuration dictionary (see
“Optional Content Configuration Dictionaries,” below).

Configs array (Optional) An array of alternate optional content configuration dictionaries (see
“Optional Content Configuration Dictionaries,” below) for PDF processing ap-
plications or features.

Optional Content Configuration Dictionaries

The D and Configs entries in Table 4.50 are configuration dictionaries, which rep-
resent different presentations of a document’s optional content groups for use by
PDF processing applications or features. The D configuration dictionary specifies
the initial state of the optional content groups when a document is first opened.
Configs lists other configurations that may be used under particular circumstanc-
es. The entries in a configuration dictionary are shown in Table 4.51.
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TABLE 4.51 Entries in an optional content configuration dictionary

KEY

TYPE

VALUE

Name

Creator

BaseState

ON

OFF

Intent

text string

text string

name

array

array

name or array

(Optional) A name for the configuration, suitable for presentation in a user
interface.

(Optional) Name of the application or feature that created this configuration
dictionary.

(Optional) Used to initialize the states of all the optional content groups in a
document when this configuration is applied. The value of this entry must
be one of the following names:

® ON: The states of all groups are turned ON.
e OFF: The states of all groups are turned OFF.
¢ Unchanged: The states of all groups are left unchanged.

After this initialization, the contents of the ON and OFF arrays are processed,
overriding the state of the groups included in the arrays.

Default value: ON.

Note: If BaseState is present in the documents default configuration dictio-
nary, its value must be ON.

(Optional) An array of optional content groups whose state should be set to
ON when this configuration is applied.

Note: If the BaseState entry is ON, this entry is redundant.

(Optional) An array of optional content groups whose state should be set to
OFF when this configuration is applied.

Note: If the BaseState entry is OFF, this entry is redundant.

(Optional) A single intent name or an array containing any combination of
names. It is used to determine which optional content groups’ states to con-
sider and ignore in calculating the visibility of content (see “Intent” on page
368).

PDF 1.5 defines two intent names, View and Design. Future versions may de-
fine others. In addition, the name All indicates the set of all intents, including
those not yet defined. Default value: View. The value must be View for the
document’s default configuration.
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KEY TYPE VALUE
AS array (Optional) An array of usage application dictionaries (see Table 4.53) speci-

fying which usage dictionary categories (see Table 4.52) should be consulted
by viewer applications to automatically set the states of optional content
groups based on external factors, such as the current system language or
viewing magnification, and when they should be applied.

Order array (Optional) An array specifying the recommended order for presentation of
optional content groups in a user interface. The array elements may include
the following objects:

e Optional content group dictionaries, whose Name entry is to be displayed
in the user interface.

e Arrays of optional content groups to allow nesting as in a tree or outline
structure. Each nested array may optionally have as its first element a text
string to be used as a non-selectable label in the user interface.

Note: Text labels in nested arrays should be used to present collections of relat-
ed optional content groups, and not to communicate actual nesting of content
inside multiple layers of groups (see Example 4.37). To reflect actual nesting of
groups in the content, such as for layers with sublayers, nested arrays of groups
without a text label should be used (see Example 4.38).

An empty array [] explicitly specifies that no groups should be presented.

In the default configuration dictionary, the default value is an empty array;
in other configuration dictionaries, the default is the Order value from the
default configuration dictionary.

Note: Any groups not listed in this array should not be presented in any user
interface that uses the configuration.

ListMode name (Optional) A name specifying which optional content groups in the Order
array should be displayed to the user. Valid values are:

e AllPages: Display all groups in the Order array.

e VisiblePages: Display only those groups in the Order array that are refer-
enced by one or more visible pages.

Default value: AllPages.
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KEY

TYPE

VALUE

RBGroups

Locked

array

array

(Optional) An array consisting of one or more arrays, each of which repre-
sents a collection of optional content groups whose states are intended to fol-
low a radio button paradigm. That is, the state of at most one optional
content group in each array should be ON at a time. If one group is turned
ON, all others must be turned OFF. However, turning a group from ON to
OFF does not force any other group to be turned ON.

An empty array [] explicitly indicates that no such collections exist.

In the default configuration dictionary, the default value is an empty array;
in other configuration dictionaries, the default is the RBGroups value from
the default configuration dictionary.

(Optional; PDF 1.6) An array of optional content groups that should be
locked when this configuration is applied. The state of a locked group cannot
be changed through the user interface of a viewer application. Producers can
use this entry to prevent the visibility of content that depends on these
groups from being changed by users.

Default value: an empty array.

Note: This entry does not prevent the states of optional content groups from be-
ing changed by means other than the user interface, such as JavaScript or items
in the AS entry of a configuration dictionary.

Examples 4.37 and 4.38 illustrates the use of the Order entry to control the display
of groups in a user interface.

Example 4.37

Given the following PDF objects:

10 obj <</Type /0CG /Name
2 0 obj <</Type /0CG /Name
3 0 obj <</Type /OCG /Name
40 obj <</Type /OCG /Name

50 obj

Skin)>> endobj % Optional content groups
Bones)>> endobj

Bark)>> endobj

Wood)>> endobj

— o~ o~ —~

% Configuration dictionary

<< /Order [[(Frog Anatomy) 1 0 R 2 0 R] [(Tree Anatomy) 30R4 0R] ] >>
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A PDF viewer should display the optional content groups as follows:

Frog Anatomy
Skin
Bones
Tree Anatomy
Bark
Wood

Example 4.38

Given the following PDF objects:
% Page contents
/OC/L1 BDC % Layer 1
/OC/L1a BDC % Sublayer A of layer 1
00100100ref
EMC
/OC/L1b BDC % Sublayer B of layer 1
0100100 100 re f
EMC
EMC

<</LT10R % Resource names
/L1a20R
/L1b30OR

>>

%Optional content groups

1 0 obj <</Type /OCG /Name (Layer 1)>> endobj

2 0 obj <</Type /OCG /Name (Sublayer A)>> endobj

3 0 obj <</Type /OCG /Name (Sublayer B)>> endobj

40 obj % Configuration dictionary
<< /Order[TOR[20R3 ORI >>

A PDF viewer should display the OCGs as follows:

Layer 1
Sublayer A
Sublayer B

The AS entry is an auto state array consisting of one or more usage application
dictionaries that specify how viewer applications should automatically set the
state of optional content groups based on external factors, as discussed in the fol-
lowing section.
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Usage and Usage Application Dictionaries

Optional content groups are typically constructed to control the visibility of
graphic objects that are related in some way. Objects can be related in several
ways; for example, a group may contain content in a particular language or con-
tent suitable for viewing at a particular magnification.

An optional content group’s usage dictionary (the value of the Usage entry in an
optional content group dictionary; see Table 4.48) contains information describ-
ing the nature of the content controlled by the group. This dictionary can contain
any combination of the entries shown in Table 4.52.

TABLE 4.52 Entries in an optional content usage dictionary

KEY

TYPE

VALUE

Creatorinfo

Language

dictionary

dictionary

(Optional) A dictionary used by the creating application to store application-spe-
cific data associated with this optional content group. It contains two required en-
tries:

e Creator: A text string specifying the application that created the group.

¢ Subtype: A name defining the type of content controlled by the group. Suggest-
ed values include but are not limited to Artwork, for graphic-design or publish-
ing applications, and Technical, for technical designs such as building plans or
schematics.

Additional entries may be included to present information relevant to the creat-
ing application or related applications.

Note: Groups whose Intent entry contains Design typically include a Creatorinfo en-
try.

(Optional) A dictionary specifying the language of the content controlled by this
optional content group. It has two entries:

® Lang (required): A text string that specifies a language and possibly a locale (see
Section 10.8.1, “Natural Language Specification”). For example, es-MX repre-
sents Mexican Spanish.

e Preferred (optional): A name whose values may be ON or OFF. Default value:
OFF. It is used by viewer applications when there is a partial match but no exact
match between the system language and the language strings in all usage dic-
tionaries. See “Usage and Usage Application Dictionaries” on page 380 for
more information.
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VALUE

KEY TYPE

Export dictionary
Zoom dictionary
Print dictionary
View dictionary
User dictionary

PageElement  dictionary

(Optional) A dictionary containing one entry, ExportState, a name whose value
may be ON or OFF. This value indicates the recommended state for content in this
group when the document (or part of it) is saved by a viewer application to a for-
mat that does not support optional content (for example, an earlier version of
PDF or a raster image format).

(Optional) A dictionary specifying a range of magnifications at which the content
in this optional content group is best viewed. It may contain one or both of the
following entries:

e min: The minimum recommended magnification factor at which the group
should be ON. Default value: 0.

e max: The magnification factor below which the group should be ON. Default
value: infinity.

(Optional) A dictionary specifying that the content in this group is intended for
use in printing. It contains the following optional entries:

e Subtype: A name object specifying the kind of content controlled by the group;
for example, Trapping, PrintersMarks and Watermark.

e PrintState: A name that may be ON or OFF, indicating that the group should be
set to that state when the document is printed from a viewer application.

(Optional) A dictionary that has a single entry, ViewState, a name that may have a
value of ON or OFF, indicating that the group should be set to that state when the
document is opened in a viewer application.

(Optional) A dictionary specifying one or more users for whom this optional con-
tent group is primarily intended. Each dictionary has two required entries:

e Type: A name object that can be Ind (individual), Ttl (title), or Org (organiza-
tion).

e Name: A text string or array of text strings representing the name(s) of the in-
dividual, position or organization.

(Optional) A dictionary declaring that the group contains a pagination artifact. It
contains one entry, Subtype, whose value is a name that can be HF (header/foot-
er), FG (foreground image or graphic), BG (background image or graphic), or L
(logo).

While the data in the usage dictionary can be viewed as information for a docu-
ment user to examine, it can also be used by viewer applications to automatically
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manipulate the state of optional content groups based on external factors such as
current system language settings or zoom level. Document authors can use usage
application dictionaries to specify which entries in the usage dictionary should be
consulted to automatically set the state of optional content groups based on such
factors. Usage application dictionaries are listed in the AS entry in an optional
content configuration dictionary (see Table 4.51). If no AS entry is present, states
are not automatically adjusted based on usage information.

A usage application dictionary specifies the rules for which usage entries should
be used by viewer applications to automatically manipulate the state of optional
content groups, which groups should be affected, and under which circumstanc-
es. Table 4.53 shows the entries in a usage application dictionary.

Note: Usage application dictionaries are only intended for use by interactive viewer
applications, not for applications that use PDF as final form output (see “Determin-
ing the State of Optional Content Groups” on page 385 for more information).

TABLE 4.53 Entries in a usage application dictionary

KEY TYPE VALUE

Event name (Required) A name defining the situation in which this usage application dictio-
nary should be used. May be View, Print, or Export.

0CGs array (Optional) An array listing the optional content groups that should have their
states automatically managed based on information in their usage dictionary
(see “Usage and Usage Application Dictionaries” on page 380). Default value: an
empty array, indicating that no groups are affected.

Category array (Required) An array of names, each of which corresponds to a usage dictionary

entry (see Table 4.52). When managing the states of the optional content groups
in the OCGs array, each of the corresponding categories in the group’s usage dic-

tionary should be considered.

The Event entry specifies whether the usage settings should be applied during
viewing, printing, or exporting the document. The OCGs entry specifies the set of
optional content groups to which usage settings should be applied. For each of
the groups in OCGs, the entries in its usage dictionary (see Table 4.52) specified
by Category are examined to yield a recommended state for the group. If all the
entries yield a recommended state of ON, the group’s state is set to ON; otherwise,
its state is set to OFF.
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The entries in the usage dictionary are used as follows:

e View: The recommended state is the value of the ViewState entry. This entry al-

lows a document to contain content that is relevant only when the document is
viewed interactively, such as instructions for how to interact with the docu-
ment.

Print: The recommended state is the value of the PrintState entry. If PrintState
is not present, the state of the optional content group is left unchanged.

Export: The recommended state is the value of the ExportState entry.

Zoom: If the current magnification level of the document is greater than or
equal to min and less than max, an ON state is reccommended; otherwise, OFF is
recommended.

User: The Name entry specifies a name or names to match with the user’s iden-
tification. The Type entry determines how the Name entry is interpreted
(name, title, or organization). If there is an exact match, an ON state is recom-
mended; otherwise OFF is recommended.

Language: This category allows the selection of content based on the language
and locale of the application. If an exact match to the language and locale is
found among the Lang entries of the optional content groups in the usage ap-
plication dictionary’s OCGs list, all groups that have exact matches receive an
ON recommendation. If no exact match is found, but a partial match is found
(that is, the language matches but not the locale), all partially matching groups
that have Preferred entries with a value of ON receive an ON recommendation.
All other groups receive an OFF recommendation.

Example 4.39 shows the use of an auto state array with usage application dictio-
naries. The AS entry in the default configuration dictionary is an array of three
usage application dictionaries, one for each of the Event values View, Print, and
Export.

Note: While this case is typical, there is no restriction on multiple entries with the
same value of Event, which allows documents with incompatible usage application
dictionaries to be combined into larger documents and have their behavior pre-
served. If a given optional content group appears in more than one OCGs array, its
state is ON only if all categories in all the usage application dictionaries it appears in
recommend a state of ON.
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Example 4.39
/OCProperties % OCProperties dictionary in document catalog
<</OCGs[TOR20R30R40R]
/D << /BaseState /OFF % The default configuration
/ON[10R]
/AS [ % Auto state array of usage application dictionaries

<< /Event /View /Category [/Zoom] /OCGs [TOR20R3 0R40R] >>
<< /Event /Print /Category [/Print] /OCGs [4 O R] >>
<< /Event /Export /Category [/Export] /OCGs [30R 4 0 R] >>
]
>>
>>

10 obj
<< /Type /0CG
/Name (20000 foot view)
/Usage << /Zoom << /max 1.0 >> >>
>>
endobj
20 obj
<< /Type /0CG
/Name (10000 foot view)
/Usage << /Zoom << /min 1.0 /max 2.0 >> >>
>>
endobj
300bj
<< /Type /0CG
/Name (1000 foot view)
/Usage << /Zoom << /min 2.0 /max 20.0 >>
/Export << /ExportState /OFF >> >>
>>
endobj
40 obj
<< /Type /0CG
/Name (Copyright notice)
/Usage << /Print << /PrintState /ON >>
/Export << /ExportState /ON>> >>
>>
endobj

In the example, the usage application dictionary with event type View specifies
that all optional content groups are to have their states managed based on zoom
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level when viewing. Three groups (objects 1, 2, and 3) contain Zoom usage infor-
mation. Object 4 has none; therefore, it is not affected by zoom level changes. Ob-
ject 3 receives an OFF recommendation when exporting. When printing or
exporting, object 4 receives an ON recommendation.

Determining the State of Optional Content Groups

This section summarizes the rules by which applications make use of the config-
uration and usage application dictionaries to set the state of optional content
groups. For purposes of this discussion, it is useful to distinguish the following
types of applications:

e Viewer applications, such as Acrobat, which allow users to interact with the
document in various ways.

e Design applications, which offer layering features for collecting groups of
graphics together and selectively hiding or viewing them.

Note: The following rules are not meant to apply to design applications; they may
manage their states in an entirely different manner if they choose.

o Aggregating applications, which import PDF files as graphics.

e Printing applications, which print PDF files.

When a document is first opened, its optional content groups are assigned a state
based on the D (default) configuration dictionary in the OCProperties dictionary:

1. The value of BaseState is applied to all the groups.

2. The groups listed in either the ON or OFF array (depending on which one is
opposite to BaseState) have their states adjusted.

This state is the recommended state for printing and aggregating applications,
which should not apply the changes based on usage application dictionaries de-
scribed below. However, for more advanced functionality, they may provide user
control for manipulating the individual states of optional content groups.

Note: Viewer applications should also provide users with an option to view docu-
ments in this state (that is, to disable the automatic adjustments discussed below).
This option permits an accurate preview of the content as it will appear when placed
into an aggregating application or sent to a stand-alone printing system.
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The remaining discussion in this section applies only to viewer applications. Such
applications should examine the AS array for usage application dictionaries that
have an Event of type View. For each one found, the groups listed in its OCGs ar-
ray should be adjusted as described in “Usage and Usage Application Dictionar-
ies” on page 380.

Subsequently, the document is ready for interactive viewing by a user. Whenever
there is a change to a factor that the usage application dictionaries with event type
View depend on (such as zoom level), the corresponding dictionaries should be
reapplied.

The user may manipulate optional content group states manually or by triggering
SetOCGState actions (see “Set-OCG-State Actions” on page 667) by, for example,
clicking links or bookmarks. Manual changes override the states that were set au-
tomatically. The states of these groups remain overridden and are not readjusted
based on usage application dictionaries with event type View as long as the docu-
ment is open (or until the user reverts the document to its original state).

When a document is printed by a viewer application, usage application dictionar-
ies with an event type Print are applied over the current states of optional content
groups. These changes persist only for the duration of the print operation; then
all groups revert to their prior states.

Similarly, when a document is exported to an earlier version of PDF or other for-
mat that does not support optional content, usage application dictionaries with
an event type Export are applied over the current states of optional content
groups. Changes persist only for the duration of the export operation; then all
groups revert to their prior states.

Note: Although the event types Print and Export have identically named counter-
parts that are usage categories, the corresponding usage application dictionaries are
permitted to specify that other categories may be applied.
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Text

This chapter describes the special facilities in PDF for dealing with text— specifi-
cally, for representing characters with glyphs from fonts. A glyph is a graphical
shape and is subject to all graphical manipulations, such as coordinate transfor-
mation. Because of the importance of text in most page descriptions, PDF pro-
vides higher-level facilities that permit an application to describe, select, and
render glyphs conveniently and efficiently.

The first section is a general description of how glyphs from fonts are painted on
the page. Subsequent sections cover the following topics in detail:

o Text state. A subset of the graphics state parameters pertain to text, including
parameters that select the font, scale the glyphs to an appropriate size, and
accomplish other graphical effects.

o Text objects and operators. The text operators specify the glyphs to be painted,
represented by string objects whose values are interpreted as sequences of char-
acter codes. A text object encloses a sequence of text operators and associated
parameters.

o Font data structures. Font dictionaries and associated data structures provide
information that a consumer application needs to interpret the text and posi-
tion the glyphs properly. The definitions of the glyphs themselves are contained
in font programs, which may be embedded in the PDF file, built into the appli-
cation, or obtained from an external font file.

387
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5.1 Organization and Use of Fonts

A character is an abstract symbol, whereas a glyph is a specific graphical render-
ing of a character. For example, the glyphs A, A, and A are renderings of the ab-
stract “A” character. Historically these two terms have often been used
interchangeably in computer typography (as evidenced by the names chosen for
some PDF dictionary keys and PostScript operators), but advances in this area
have made the distinction more meaningful. Consequently, this book distin-
guishes between characters and glyphs, though with some residual names that are
inconsistent.

Glyphs are organized into fonts. A font defines glyphs for a particular character
set; for example, the Helvetica and Times fonts define glyphs for a set of standard
Latin characters. A font for use with a PDF consumer application is prepared in
the form of a program. Such a font program is written in a special-purpose lan-
guage, such as the Type I or TrueType font format, that is understood by a special-
ized font interpreter.

In PDE the term font refers to a font dictionary, a PDF object that identifies the
font program and contains additional information about it. There are several dif-
ferent font types, identified by the Subtype entry of the font dictionary.

For most font types, the font program is defined in a separate font file, which may
be either embedded in a PDF stream object or obtained from an external source.
The font program contains glyph descriptions that generate glyphs.

A content stream paints glyphs on the page by specifying a font dictionary and a
string object that is interpreted as a sequence of one or more character codes
identifying glyphs in the font. This operation is called showing the text string; the
text strings drawn in this way are called show strings. The glyph description con-
sists of a sequence of graphics operators that produce the specific shape for that
character in this font. To render a glyph, the application executes the glyph de-
scription.

Programmers who have experience with scan conversion of general shapes may
be concerned about the amount of computation that this description seems to
imply. However, this is only the abstract behavior of glyph descriptions and font
programs, not how they are implemented. In fact, an efficient implementation
can be achieved through careful caching and reuse of previously rendered glyphs.
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Basics of Showing Text

Example 5.1 illustrates the most straightforward use of a font. The text ABC is
placed 10 inches from the bottom of the page and 4 inches from the left edge, us-
ing 12-point Helvetica.

Example 5.1

BT
/F13 12 Tf
288 720 Td
(ABC) Tj
ET

The five lines of this example perform the following steps:

1. Begin a text object.

2. Set the font and font size to use, installing them as parameters in the text state.
(The font resource identified by the name F13 specifies the font externally
known as Helvetica.)

3. Specity a starting position on the page, setting parameters in the text object.
4. Paint the glyphs for a string of characters at that position.

5. End the text object.
The following paragraphs explain these operations in more detail.

To paint glyphs, a content stream must first identify the font to be used. The Tf
operator specifies the name of a font resource—that is, an entry in the Font
subdictionary of the current resource dictionary. The value of that entry is a font
dictionary. The font dictionary identifies the font’s externally known name, such
as Helvetica, and supplies some additional information that the application needs
to paint glyphs from that font. The font dictionary optionally provides the defini-
tion of the font program itself.

Note: The font resource name presented to the Tf operator is arbitrary, as are the
names for all kinds of resources. It bears no relationship to an actual font name,
such as Helvetica.

Example 5.2 illustrates an excerpt from the current page’s resource dictionary,
which defines the font dictionary that is referenced as F13 in Example 5.1.
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Example 5.2

/Resources
<< /Font << /F13 230R >>
>>
23 0 obj
<< /Type /Font
/Subtype /Typel
/BaseFont /Helvetica
>>
endobj

A font defines the glyphs for one standard size. This standard is arranged so that
the nominal height of tightly spaced lines of text is 1 unit. In the default user
coordinate system, this means the standard glyph size is 1 unit in user space, or
1/72 inch. (In PDF 1.6, the size of this unit may be specified as greater than 1/72
inch by means of the UserUnit entry of the page dictionary; see Table 3.27.) The
standard-size font must then be scaled to be usable. The scale factor is specified
as the second operand of the Tf operator, thereby setting the text font size param-
eter in the graphics state. Example 5.1 establishes the Helvetica font with a 12-
unit size in the graphics state.

Once the font has been selected and scaled, it can be used to paint glyphs. The Td
operator adjusts the current text position (actually, the translation components of
the text matrix, as described in Section 5.3.1, “Text-Positioning Operators”).
When executed for the first time after BT, Td establishes the text position in the
current user coordinate system. This determines the position on the page at
which to begin painting glyphs.

The Tj operator takes a string operand and paints the corresponding glyphs, us-
ing the current font and other text-related parameters in the graphics state. In Ex-
ample 5.1, the Tj operator treats each element of the string (an integer in the
range 0 to 255) as a character code. Each code selects a glyph description in the
font, and the glyph description is executed to paint that glyph on the page. This is
the behavior of Tj for simple fonts, such as ordinary Latin text fonts. Interpreta-
tion of the string as a sequence of character codes is more complex for composite
fonts, described in Section 5.6, “Composite Fonts.”

Note: What these steps produce on the page is not a 12-point glyph, but rather a
12-unit glyph, where the unit size is that of the text space at the time the glyphs are
rendered on the page. The actual size of the glyph is determined by the text matrix
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(T,,,) in the text object, several text state parameters, and the current transforma-
tion matrix (CTM) in the graphics state; see Section 5.3.3, “Text Space Details.” If
the text space is later scaled to make the unit size 1 centimeter, painting glyphs from
the same 12-unit font generates results that are 12 centimeters high.

Achieving Special Graphical Effects

Normal uses of Tj and other glyph-painting operators cause black-filled glyphs to
be painted. Other effects can be obtained by combining font operators with gen-
eral graphics operators.

The color used for painting glyphs is the current color in the graphics state: either
the nonstroking color or the stroking color (or both), depending on the text ren-
dering mode (see Section 5.2.5, “Text Rendering Mode”). The default color is
black, but other colors can be obtained by executing an appropriate color-setting
operator or operators (see Section 4.5.7, “Color Operators”) before painting the
glyphs. Example 5.3 uses text rendering mode 0 and the g operator to fill glyphs
in 50 percent gray, as shown in Figure 5.1.

Example 5.3

BT
/F13 48 Tf
20 40 Td
0 Tr
05 g
(ABC) Tj
ET

FIGURE 5.1 Glyphs painted in 50% gray
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Other graphical effects can be achieved by treating the glyph outline as a path in-
stead of filling it. The text rendering mode parameter in the graphics state speci-
fies whether glyph outlines are to be filled, stroked, used as a clipping boundary,
or some combination of these effects. (This parameter does not apply to Type 3
fonts.)

Example 5.4 treats glyph outlines as a path to be stroked. The Tr operator sets the
text rendering mode to 1 (stroke). The w operator sets the line width to 2 units in
user space. Given those graphics state parameters, the Tj operator strokes the
glyph outlines with a line 2 points thick (see Figure 5.2).

Example 5.4

BT
/F13 48 Tf
20 38 Td
1 Tr
2w
(ABC) Tj
ET

00

A

FIGURE 5.2 Glyph outlines treated as a stroked path

Example 5.5 treats the glyphs’ outlines as a clipping boundary. The Tr operator
sets the text rendering mode to 7 (clip), causing the subsequent Tj operator to
impose the glyph outlines as the current clipping path. All subsequent painting
operations mark the page only within this path, as illustrated in Figure 5.3. This
state persists until some earlier clipping path is reinstated by the Q operator.
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Example 5.5

BT
/F13 48 Tf
20 38 Td
7 Tr
(ABC) Tj
ET
... Graphics operators to draw a starburst...

\
)

\\\\\\\

=

|
|

l
Il

FIGURE 5.3 Graphics clipped by a glyph path

5.1.3 Glyph Positioning and Metrics

A glyph’s width—formally, its horizontal displacement—is the amount of space it
occupies along the baseline of a line of text that is written horizontally. In other
words, it is the distance the current text position moves (by translating text space)
when the glyph is painted. Note that the width is distinct from the dimensions of
the glyph outline.

In some fonts, the width is constant; it does not vary from glyph to glyph. Such
fonts are called fixed-pitch or monospaced. They are used mainly for typewriter-
style printing. However, most fonts used for high-quality typography associate a
different width with each glyph. Such fonts are called proportional or variable-
pitch fonts. In either case, the Tj operator positions the consecutive glyphs of a
string according to their widths.

The width information for each glyph is stored both in the font dictionary and in
the font program itself. (The two sets of widths must be identical; storing this in-
formation in the font dictionary, although redundant, enables a consumer appli-
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cation to determine glyph positioning without having to look inside the font
program.) The operators for showing text are designed on the assumption that
glyphs are ordinarily positioned according to their standard widths. However,
means are provided to vary the positioning in certain limited ways. For example,
the TJ operator enables the text position to be adjusted between any consecutive
pair of glyphs corresponding to characters in a text string. There are graphics
state parameters to adjust character and word spacing systematically.

In addition to width, a glyph has several other metrics that influence glyph posi-
tioning and painting. For most font types, this information is largely internal to
the font program and is not specified explicitly in the PDF font dictionary. How-
ever, in a Type 3 font, all metrics are specified explicitly (see Section 5.5.4, “Type
3 Fonts”).

The glyph coordinate system is the space in which an individual character’s glyph
is defined. All path coordinates and metrics are interpreted in glyph space. For all
font types except Type 3, the units of glyph space are one-thousandth of a unit of
text space; for a Type 3 font, the transformation from glyph space to text space is
defined by a font matrix specified in an explicit FontMatrix entry in the font.
Figure 5.4 shows a typical glyph outline and its metrics.

Glyph
bounding - --- —==<_ -
box
Next
Glyph glyph

l«— Glyph width —»|

FIGURE 5.4 Glyph metrics

The glyph origin is the point (0, 0) in the glyph coordinate system. Tj and other
text-showing operators position the origin of the first glyph to be painted at the
origin of text space. For example, the following code adjusts the origin of text
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space to (40, 50) in the user coordinate system and then places the origin of the A
glyph at that point:

BT
40 50 Td
(ABC) Tj

ET

The glyph displacement is the distance from the glyph’s origin to the point at
which the origin of the next glyph should normally be placed when painting the
consecutive glyphs of a line of text. This distance is a vector (called the displace-
ment vector) in the glyph coordinate system; it has horizontal and vertical com-
ponents. (A displacement that is horizontal is usually called a width.) Most
Western writing systems, including those based on the Latin alphabet, have a
positive horizontal displacement and a zero vertical displacement. Some Asian
writing systems have a nonzero vertical displacement. In all cases, the text-show-
ing operators transform the displacement vector into text space and then trans-
late text space by that amount.

The glyph bounding box is the smallest rectangle (oriented with the axes of the
glyph coordinate system) that just encloses the entire glyph shape. The bounding
box is expressed in terms of its left, bottom, right, and top coordinates relative to
the glyph origin in the glyph coordinate system.

In some writing systems, text is frequently aligned in two different directions. For
example, it is common to write Japanese and Chinese glyphs either horizontally
or vertically. To handle this, a font can optionally contain a second set of metrics
for each glyph. Which set of metrics to use is selected according to a writing
mode, where 0 specifies horizontal writing and 1 specifies vertical writing. This
feature is available only for composite fonts, discussed in Section 5.6, “Composite
Fonts.”

When a glyph has two sets of metrics, each set specifies a glyph origin and a dis-
placement vector for that writing mode. In vertical writing, the glyph position is
described by a position vector from the origin used for horizontal writing
(origin 0) to the origin used for vertical writing (origin 1). Figure 5.5 illustrates
the metrics for the two writing modes:

o The left diagram illustrates the glyph metrics associated with writing mode 0,
horizontal writing. The coordinates I and ur specify the bounding box of the
glyph relative to origin 0. w0 is the displacement vector that specifies how the
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text position is changed after the glyph is painted in writing mode 0; its vertical
component is always 0.

e The center diagram illustrates writing mode 1, vertical writing. wl is the dis-
placement vector for writing mode 1; its horizontal component is always 0.

o In the right diagram, v is a position vector defining the position of origin 1 rel-
ative to origin 0.

ur e Origin 1 Origin 1

Origin

I New text * wi
position New text position
Writing mode 0 Writing mode 1 Mode 1 relative to mode 0
(horizontal) (vertical)

FIGURE 5.5 Metrics for horizontal and vertical writing modes

Glyph metric information is also available separately in the form of Adobe font
metrics (AFM) and Adobe composite font metrics (ACFM) files. These files are
for use by application programs that generate PDF page descriptions and must
make formatting decisions based on the widths and other metrics of glyphs. Also
available in the AFM and ACFM files is kerning information, which allows an
application generating a PDF file to determine spacing adjustments between
glyphs depending on context. Specifications for the AFM and ACFM file formats
are available in Adobe Technical Note #5004, Adobe Font Metrics File Format
Specification; the files can be obtained from the Adobe Solutions Network Web
site (see the Bibliography).

5.2 Text State Parameters and Operators

The text state comprises those graphics state parameters that only affect text.
There are nine parameters in the text state (see Table 5.1).
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TABLE 5.1 Text state parameters

PARAMETER DESCRIPTION

T, Character spacing

T, Word spacing

T, Horizontal scaling

T; Leading

Tf Text font

Tfs Text font size

T, ode Text rendering mode
vise Text rise

T, Text knockout

Except for the self-explanatory T and T these parameters are discussed further
in the following sections. (As described in Section 5.3, “Text Objects,” three addi-
tional text-related parameters are defined only within a text object: T, , the text
matrix; T;,,, the text line matrix; and T the text rendering matrix.) The values
of the text state parameters are consulted when text is positioned and shown
(using the operators described in Sections 5.3.1, “Text-Positioning Operators,’
and 5.3.2, “Text-Showing Operators”). In particular, the spacing and scaling
parameters participate in a computation described in Section 5.3.3, “Text Space
Details” The text state parameters can be set using the operators listed in Table

5.2.

Note: The text knockout parameter, Ty, is set through the TK entry in a graphics
state parameter dictionary by using the gs operator (see Section 4.3.4, “Graphics
State Parameter Dictionaries”). There is no specific operator for setting this parame-
ter.

The text state operators can appear outside text objects, and the values they set
are retained across text objects in a single content stream. Like other graphics
state parameters, these parameters are initialized to their default values at the
beginning of each page.
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TABLE 5.2 Text state operators

OPERANDS OPERATOR DESCRIPTION

charSpace Tc Set the character spacing, T, to charSpace, which is a number expressed in un-
scaled text space units. Character spacing is used by the Tj, TJ, and ' operators.
Initial value: 0.

wordSpace Tw Set the word spacing, T, , to wordSpace, which is a number expressed in unscaled
text space units. Word spacing is used by the Tj, TJ, and ' operators. Initial
value: 0.

scale Tz Set the horizontal scaling, T;,, to (scale + 100). scale is a number specifying the
percentage of the normal width. Initial value: 100 (normal width).

leading TL Set the text leading, T}, to leading, which is a number expressed in unscaled text
space units. Text leading is used only by the T*,', and " operators. Initial value: 0.

font size Tf Set the text font, T}, to font and the text font size, Ty, to size. font is the name of a
font resource in the Font subdictionary of the current resource dictionary; size is
a number representing a scale factor. There is no initial value for either font or
size; they must be specified explicitly by using Tf before any text is shown.

render Tr Set the text rendering mode, T, ;.. to render, which is an integer. Initial value: 0.

rise Ts Set the text rise, T, to rise, which is a number expressed in unscaled text space

units. Initial value: 0.

5.2.1

Note that some of these parameters are expressed in unscaled text space units.
This means that they are specified in a coordinate system that is defined by the
text matrix, T, but is not scaled by the font size parameter, Tfs'

Character Spacing

The character-spacing parameter, T_, is a number specified in unscaled text space
units (although it is subject to scaling by the T} parameter if the writing mode is
horizontal). When the glyph for each character in the string is rendered, T, is
added to the horizontal or vertical component of the glyph’s displacement,
depending on the writing mode. (See Section 5.1.3, “Glyph Positioning and
Metrics,” for a discussion of glyph displacements.) In the default coordinate sys-
tem, horizontal coordinates increase from left to right and vertical coordinates
from bottom to top. Therefore, for horizontal writing, a positive value of T_ has
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the effect of expanding the distance between glyphs (see Figure 5.6), whereas for
vertical writing, a negative value of T, has this effect.

—wn - Character
~ ' Character

FIGURE 5.6 Character spacing in horizontal writing

5.2.2 Word Spacing

Word spacing works the same way as character spacing but applies only to the
space character, code 32. The word-spacing parameter, T, is added to the
glyph’s horizontal or vertical displacement (depending on the writing mode). For
horizontal writing, a positive value for T, has the effect of increasing the spacing
between words. For vertical writing, a positive value for T, decreases the spacing
between words (and a negative value increases it), since vertical coordinates in-
crease from bottom to top. Figure 5.7 illustrates the effect of word spacing in
horizontal writing.

s \Nord Space
-+ | Word Space

FIGURE 5.7 Word spacing in horizontal writing

Note: Word spacing is applied to every occurrence of the single-byte character code
32 in a string when using a simple font or a composite font that defines code 32 as a
single-byte code. It does not apply to occurrences of the byte value 32 in multiple-
byte codes.
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Horizontal Scaling

The horizontal scaling parameter, T;,, adjusts the width of glyphs by stretching or
compressing them in the horizontal direction. Its value is specified as a percent-
age of the normal width of the glyphs, with 100 being the normal width. The scal-
ing always applies to the horizontal coordinate in text space, independently of the
writing mode. It affects both the glyph’s shape and its horizontal displacement
(that is, its displacement vector). If the writing mode is horizontal, it also affects
the spacing parameters T, and T, as well as any positioning adjustments per-
formed by the TJ operator. Figure 5.8 shows the effect of horizontal scaling.

Word
WordWord

FIGURE 5.8 Horizontal scaling

Leading

The leading parameter, T}, is measured in unscaled text space units. It specifies
the vertical distance between the baselines of adjacent lines of text, as shown in
Figure 5.9.

i‘l’his is 12-point text with
____14.5-point leading

Leading

FIGURE5.9 Leading

The leading parameter is used by the TD, T#, ', and " operators; see Table 5.5 on
page 406 for a precise description of its effects. This parameter always applies to
the vertical coordinate in text space, independently of the writing mode.
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5.2.5 Text Rendering Mode

The text rendering mode, T,, ;.. determines whether showing text causes glyph
outlines to be stroked, filled, used as a clipping boundary, or some combination
of the three. Stroking, filling, and clipping have the same effects for a text object
as they do for a path object (see Sections 4.4.2, “Path-Painting Operators,” and
4.4.3, “Clipping Path Operators”), although they are specified in an entirely dif-
ferent way. The graphics state parameters affecting those operations, such as line
width, are interpreted in user space rather than in text space.

Note: The text rendering mode has no effect on text displayed in a Type 3 font (see
Section 5.5.4, “Type 3 Fonts”).

The text rendering modes are shown in Table 5.3. In the examples, a stroke color
of black and a fill color of light gray are used. For the clipping modes (4 to 7), a
series of lines has been drawn through the glyphs to show where the clipping
occurs.

If the text rendering mode calls for filling, the current nonstroking color in the
graphics state is used; if it calls for stroking, the current stroking color is used. In
modes that perform both filling and stroking, the effect is as if each glyph outline
were filled and then stroked in separate operations. If any of the glyphs overlap,
the result is equivalent to filling and stroking them one at a time, producing the
appearance of stacked opaque glyphs, rather than first filling and then stroking
them all at once (see implementation note 57 in Appendix H). In the transparent
imaging model, these combined filling and stroking modes are subject to further
considerations; see “Special Path-Painting Considerations” on page 569.

The behavior of the clipping modes requires further explanation. Glyph outlines
begin accumulating if a BT operator is executed while the text rendering mode is
set to a clipping mode or if it is set to a clipping mode within a text object. Glyphs
accumulate until the text object is ended by an ET operator; the text rendering
mode must not be changed back to a nonclipping mode before that point.
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TABLE 5.3 Text rendering modes
MODE EXAMPLE DESCRIPTION

0 Fill text.

Stroke text.

Fill, then stroke text.

=g 29

3 Neither fill nor stroke text (invisible).

IS

Fill text and add to path for clipping (see above).

Stroke text and add to path for clipping.

Fill, then stroke text and add to path for clipping.

)

Add text to path for clipping.

At the end of the text object, the accumulated glyph outlines, if any, are combined
into a single path, treating the individual outlines as subpaths of that path and ap-
plying the nonzero winding number rule (see “Nonzero Winding Number Rule”
on page 232). The current clipping path in the graphics state is set to the intersec-
tion of this path with the previous clipping path. As is the case for path objects,
this clipping occurs after all filling and stroking operations for the text object
have occurred. It remains in effect until some previous clipping path is restored
by an invocation of the Q operator.

Note: If no glyphs are shown or if the only glyphs shown have no outlines (for exam-
ple, if they are space characters), no clipping occurs.
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5.2.6 TextRise

Text rise, T,,,, specifies the distance, in unscaled text space units, to move the
baseline up or down from its default location. Positive values of text rise move the
baseline up. Adjustments to the baseline are useful for drawing superscripts or
subscripts. The default location of the baseline can be restored by setting the text
rise to 0. Figure 5.10 illustrates the effect of the text rise. Text rise always applies
to the vertical coordinate in text space, regardless of the writing mode.

(This text is ) Tj ]
5Ts This text is superscripted
(superscripted) Tj

(This text is ) Tj . .
5Ts This text is

subscripted
(subscripted) Tj

(This) Tj
-5Ts
(text)T]j
5Ts
(moves)Tj
0Ts
(around) Tj

. mov
This oves

text around

FIGURE 5.10 Text rise

5.2.7 Text Knockout

The text knockout parameter, T) (PDF 1.4), is a boolean flag that determines
what text elements are considered elementary objects for purposes of color com-
positing in the transparent imaging model. Unlike other text state parameters,
there is no specific operator for setting this parameter; it can be set only through
the TK entry in a graphics state parameter dictionary by using the gs operator (see
Section 4.3.4, “Graphics State Parameter Dictionaries”).

The text knockout parameter applies only to entire text objects; it may not be set
between the BT and ET operators delimiting a text object. Its initial value is true. If
its value is false, each glyph in a text object is treated as a separate elementary ob-
ject; when glyphs overlap, they composite with one another.
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If the parameter is true, all glyphs in the text object are treated together as a single
elementary object; when glyphs overlap, later glyphs overwrite (“knock out”) ear-
lier ones in the area of overlap. This behavior is equivalent to treating the entire
text object as if it were a non-isolated knockout transparency group; see Section
7.3.5, “Knockout Groups.” Transparency parameters are applied to the glyphs in-
dividually rather than to the implicit transparency group as a whole:

¢ Graphics state parameters, including transparency parameters, are inherited
from the context in which the text object appears. They are not saved and re-
stored, nor are the transparency parameters reset at the beginning of the trans-
parency group (as they are when a transparency group XObject is explicitly
invoked). Changes made to graphics state parameters within the text object
persist beyond the end of the text object.

o After the implicit transparency group for the text object has been completely
evaluated, the group results are composited with the backdrop, using the
Normal blend mode and alpha and soft mask values of 1.0.

Text Objects

A PDF text object consists of operators that can show text strings, move the text
position, and set text state and certain other parameters. In addition, three pa-
rameters are defined only within a text object and do not persist from one text
object to the next:

T, the text matrix
e T} the text line matrix

e T, the text rendering matrix, which is actually just an intermediate result that
combines the effects of text state parameters, the text matrix (7T, ), and the cur-

rent transformation matrix

A text object begins with the BT operator and ends with the ET operator, as shown
below and described in Table 5.4.

BT
... Zero or more text operators or other allowed operators...
ET
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TABLE 5.4 Text object operators
OPERANDS OPERATOR DESCRIPTION

— BT Begin a text object, initializing the text matrix, T, , and the text line matrix, Tj,, to
the identity matrix. Text objects cannot be nested; a second BT cannot appear before
an ET.

— ET End a text object, discarding the text matrix.

These specific categories of text-related operators can appear in a text object:

o Text state operators, described in Section 5.2, “Text State Parameters and Oper-
ators”

o Text-positioning operators, described in Section 5.3.1, “Text-Positioning Opera-
tors”

o Text-showing operators, described in Section 5.3.2, “Text-Showing Operators”

The latter two sections also provide further details about the text object parame-
ters described above. The other operators that can appear in a text object are
those related to the general graphics state, color, and marked content, as shown in
Figure 4.1 on page 197.

Note: If a content stream does not contain any text, the Text procedure set may be
omitted (see Section 10.1, “Procedure Sets”). In those circumstances, no text opera-
tors (including operators that merely set the text state) may be present in the content
stream, since those operators are defined in the same procedure set.

Note: Although text objects cannot be statically nested, text might be shown using a
Type 3 font whose glyph descriptions include any graphics objects, including another
text object. Likewise, the current color might be a tiling pattern whose pattern cell
includes a text object.
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5.3.1 Text-Positioning Operators

Text space is the coordinate system in which text is shown. It is defined by the
text matrix, T, , and the text state parameters Ty, Ty, and T, ,, which together
determine the transformation from text space to user space. Specifically, the ori-
gin of the first glyph shown by a text-showing operator is placed at the origin of
text space. If text space has been translated, scaled, or rotated, then the position,
size, or orientation of the glyph in user space is correspondingly altered.

TABLE 5.5 Text-positioning operators

OPERANDS OPERATOR DESCRIPTION
te t, Td Move to the start of the next line, offset from the start of the current line by
(ty> t,). t, and t, are numbers expressed in unscaled text space units. More pre-
cisely, this operator performs the following assignments:
100
Tm=T1m= 010><Tlm
tt y 1
te t, D Move to the start of the next line, offset from the start of the current line by
(t,> t,). As aside effect, this operator sets the leading parameter in the text state.
This operator has the same effect as the following code:
-t, TL
t, t, Td
abcdef Tm Set the text matrix, T, , and the text line matrix, T),,:
abo
e f1
The operands are all numbers, and the initial value for T,, and T}, is the identity
matrix, [T 0 0 1 0 0]. Although the operands specify a matrix, they are passed
to Tm as six separate numbers, not as an array.
The matrix specified by the operands is not concatenated onto the current text
matrix, but replaces it.
— T Move to the start of the next line. This operator has the same effect as the code

07, Td

where T)is the current leading parameter in the text state.
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At the beginning of a text object, T, is the identity matrix; therefore, the origin of
text space is initially the same as that of user space. The text-positioning operators,
described in Table 5.5, alter T, and thereby control the placement of glyphs that
are subsequently painted. Also, the text-showing operators, described in Table 5.6
in the next section, update T, (by altering its e and f translation components) to
take into account the horizontal or vertical displacement of each glyph painted as
well as any character or word-spacing parameters in the text state.

Additionally, a text object keeps track of a text line matrix, Ty, which captures
the value of T, at the beginning of a line of text. This is convenient for aligning
evenly spaced lines of text. The text-positioning and text-showing operators read
and set T, on specific occasions mentioned in Tables 5.5 and 5.6.

Note: The text-positioning operators can appear only within text objects.

5.3.2 Text-Showing Operators

The text-showing operators (Table 5.6) show text on the page, repositioning text
space as they do so. All of the operators interpret the text string and apply the text
state parameters as described below.

TABLE 5.6 Text-showing operators
OPERANDS OPERATOR DESCRIPTION

string Tj Show a text string.
string ! Move to the next line and show a text string. This operator has the same effect as
the code
T*
string Tj

a, a, string " Move to the next line and show a text string, using a,, as the word spacing and a,
as the character spacing (setting the corresponding parameters in the text state).
a,, and a_ are numbers expressed in unscaled text space units. This operator has

the same effect as the following code:
a, Tw
a, Tc
string '
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OPERANDS OPERATOR DESCRIPTION

array T Show one or more text strings, allowing individual glyph positioning (see imple-
mentation note 58 in Appendix H). Each element of array can be a string or a
number. If the element is a string, this operator shows the string. If it is a num-
ber, the operator adjusts the text position by that amount; that is, it translates the
text matrix, T, . The number is expressed in thousandths of a unit of text space
(see Section 5.3.3, “Text Space Details,” and implementation note 59 in Appen-
dix H). This amount is subtracted from the current horizontal or vertical coordi-
nate, depending on the writing mode. In the default coordinate system, a
positive adjustment has the effect of moving the next glyph painted either to the
left or down by the given amount. Figure 5.11 shows an example of the effect of
passing offsets to TJ.

[ (AWAY again) ] T) AWAY a g a i n
[ (A) 120 (W) 120 (A) 95 (Y again) ] TJ AWAY a g a i n

FIGURE 5.11 Operation of the TJ operator in horizontal writing

Note: The text-showing operators can appear only within text objects.

A string operand of a text-showing operator is interpreted as a sequence of char-
acter codes identifying the glyphs to be painted. With most font types, each byte
of the string is treated as a separate character code. The character code is then
looked up in the font’s encoding to select the glyph, as described in Section 5.5.5,
“Character Encoding”

Beginning with PDF 1.2, a string may be shown in a composite font that uses
multiple-byte codes to select some of its glyphs. In that case, one or more consec-
utive bytes of the string are treated as a single character code. The code lengths
and the mappings from codes to glyphs are defined in a data structure called a
CMap, described in Section 5.6, “Composite Fonts.”

The strings must conform to the syntax for string objects. When a string is writ-
ten by enclosing the data in parentheses, bytes whose values are the same as those
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of the ASCII characters left parenthesis (40), right parenthesis (41), and backslash
(92) must be preceded by a backslash character. All other byte values between 0
and 255 may be used in a string object. These rules apply to each individual byte
in a string object, whether the string is interpreted by the text-showing operators
as single-byte or multiple-byte character codes.

Strings presented to the text-showing operators may be of any length—even a
single character code per string—and may be placed on the page in any order.
The grouping of glyphs into strings has no significance for the display of text.
Showing multiple glyphs with one invocation of a text-showing operator such as
Tj produces the same results as showing them with a separate invocation for each
glyph. However, the performance of text searching (and other text extraction op-
erations) is significantly better if the text strings are as long as possible and are
shown in natural reading order.

Note: In some cases, the text that is extracted can vary depending on the grouping of
glyphs into strings. See, for example, “Reverse-Order Show Strings” on page 890.

Text Space Details

As stated in Section 5.3.1, “Text-Positioning Operators,” text is shown in text
space, which is defined by the combination of the text matrix, T, and the text
state parameters Tfs’ T, and T . This determines how text coordinates are
transformed into user space. Both the glyph’s shape and its displacement (hori-
zontal or vertical) are interpreted in text space.

Note: Glyphs are actually defined in glyph space, whose definition varies according
to the font type as discussed in Section 5.1.3, “Glyph Positioning and Metrics.” Glyph
coordinates are first transformed from glyph space to text space before being subject-
ed to the transformations described below.

The entire transformation from text space to device space can be represented by a
text rendering matrix, T, :

TstTh 0 0

T = 0 Tfso mexCTM

0 T 1

rise
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T,,, is a temporary matrix; conceptually, it is recomputed before each glyph is
painted during a text-showing operation.

After the glyph is painted, the text matrix is updated according to the glyph dis-
placement and any spacing parameters that apply. First, a combined displacement
is computed, denoted by ¢, in horizontal writing mode or ¢, in vertical writing
mode (the variable corresponding to the other writing mode is set to 0):

T.
_ J
tx = ((WO*TOO)X Tﬁ+TC+TW)XTh
!
= —— + +
y (WI 1000) X Tp+ I+ T,

where
w0 and w1l are the glyph’s horizontal and vertical displacements
Tj is a position adjustment specified by a number in a TJ array, if any

Tfs and Tj, are the current text font size and horizontal scaling parameters in the
graphics state

T. and T, are the current character- and word-spacing parameters in the
graphics state, if applicable

The text matrix is then updated as follows:

1 00
T, =10 10|xT,
te ty 1

Introduction to Font Data Structures

A font is represented in PDF as a dictionary specifying the type of font, its Post-
Script name, its encoding, and information that can be used to provide a substi-
tute when the font program is not available. Optionally, the font program can be
embedded as a stream object in the PDF file.

The font types are distinguished by the Subtype entry in the font dictionary.
Table 5.7 lists the font types defined in PDE Type 0 fonts are called composite
fonts; other types of fonts are called simple fonts. In addition to fonts, PDF sup-
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ports two classes of font-related objects, called CIDFonts and CMaps, described in
Section 5.6.1, “CID-Keyed Fonts Overview.” CIDFonts are listed in Table 5.7 be-
cause, like fonts, they are collections of glyphs; however, a CIDFont is never used

directly but only as a component of a Type 0 font.

TABLE 5.7 Fonttypes

TYPE SUBTYPE VALUE DESCRIPTION
Type 0 TypeO (PDF 1.2) A composite font—a font composed of glyphs from a descendant
CIDFont (see Section 5.6, “Composite Fonts™)
Type 1 Typel A font that defines glyph shapes using Type 1 font technology (see Section
5.5.1, “Type 1 Fonts”).
MMType1 A multiple master font—an extension of the Type 1 font that allows the gen-
eration of a wide variety of typeface styles from a single font (see “Multiple
Master Fonts” on page 416)
Type 3 Type3 A font that defines glyphs with streams of PDF graphics operators (see Sec-
tion 5.5.4, “Type 3 Fonts”)
TrueType TrueType A font based on the TrueType font format (see Section 5.5.2, “TrueType
Fonts”)
CIDFont CIDFontType0 (PDF 1.2) A CIDFont whose glyph descriptions are based on Type 1 font
technology (see Section 5.6.3, “CIDFonts”)
CIDFontType2 (PDF 1.2) A CIDFont whose glyph descriptions are based on TrueType font

technology (see Section 5.6.3, “CIDFonts”)

For all font types, the term font dictionary refers to a PDF dictionary containing
information about the font; likewise, a CIDFont dictionary contains information
about a CIDFont. Except for Type 3, this dictionary is distinct from the font pro-
gram that defines the font’s glyphs. That font program may be embedded in the
PDF file as a stream object or be obtained from some external source.

Note: This terminology differs from that used in the PostScript language. In Post-
Script, a font dictionary is a PostScript data structure that is created as a direct re-
sult of interpreting a font program. In PDEF, a font program is always treated as if it
were a separate file, even if its contents are embedded in the PDF file. The font pro-
gram is interpreted by a specialized font interpreter when necessary; its contents
never materialize as PDF objects.
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Most font programs (and related programs, such as CIDFonts and CMaps) con-
form to external specifications, such as the Adobe Type 1 Font Format. This book
does not include those specifications. See the Bibliography for more information
about the specifications mentioned in this chapter.

The most predictable and dependable results are produced when all font
programs used to show text are embedded in the PDF file. The following sections
describe precisely how to do so. If a PDF file refers to font programs that are not
embedded, the results depend on the availability of fonts in the consumer appli-
cation’s environment. The following sections specify some conventions for refer-
ring to external font programs. However, some details of font naming, font
substitution, and glyph selection are implementation-dependent and may vary
among different applications and operating system environments.

5.5 Simple Fonts
There are several types of simple fonts, all of which have the following properties:

e Glyphs in the font are selected by single-byte character codes obtained from a
string that is shown by the text-showing operators. Logically, these codes index
into a table of 256 glyphs; the mapping from codes to glyphs is called the font’s
encoding. Each font program has a built-in encoding. Under some circum-
stances, the encoding can be altered by means described in Section 5.5.5,
“Character Encoding”

¢ Each glyph has a single set of metrics, including a horizontal displacement or
width, as described in Section 5.1.3, “Glyph Positioning and Metrics;” that is,
simple fonts support only horizontal writing mode.

o Except for Type 0 fonts, Type 3 fonts in non-Tagged PDF documents, and cer-
tain standard Type 1 fonts, every font dictionary contains a subsidiary dictio-
nary, the font descriptor, containing font-wide metrics and other attributes of
the font; see Section 5.7, “Font Descriptors” Among those attributes is an op-
tional font file stream containing the font program.

5.5.1 Type 1 Fonts

A Type 1 font program is a stylized PostScript program that describes glyph
shapes. It uses a compact encoding for the glyph descriptions, and it includes hint
information that enables high-quality rendering even at small sizes and low reso-
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lutions. Details on this format are provided in a separate book, Adobe Type 1 Font
Format. An alternative, more compact but functionally equivalent representation
of a Type 1 font program is documented in Adobe Technical Note #5176, The
Compact Font Format Specification.

Note: Although a Type 1 font program uses PostScript language syntax, using it does
not require a full PostScript interpreter; a specialized Type 1 font interpreter suffices.

A Type 1 font dictionary contains the entries listed in Table 5.8. Some entries are
optional for the standard 14 fonts listed under “Standard Type 1 Fonts (Standard
14 Fonts)” on page 416, but are required otherwise.

TABLE 5.8 Entries in a Type 1 font dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a font dictionary.

Subtype name (Required) The type of font; must be Type1 for a Type 1 font.

Name name (Required in PDF 1.0; optional otherwise) The name by which this font is ref-

erenced in the Font subdictionary of the current resource dictionary.

Note: This entry is obsolescent and its use is no longer recommended. (See
implementation note 60 in Appendix H.)

BaseFont name (Required) The PostScript name of the font. For Type 1 fonts, this is usually
the value of the FontName entry in the font program; for more information,
see Section 5.2 of the PostScript Language Reference, Third Edition. The Post-
Script name of the font can be used to find the font’s definition in the con-
sumer application or its environment. It is also the name that is used when
printing to a PostScript output device.

FirstChar integer (Required except for the standard 14 fonts) The first character code defined in
the font’s Widths array.

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.
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KEY TYPE VALUE

LastChar integer (Required except for the standard 14 fonts) The last character code defined in
the font’s Widths array.
Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

Widths array (Required except for the standard 14 fonts; indirect reference preferred) An ar-

FontDescriptor

Encoding

dictionary

name or
dictionary

ray of (LastChar — FirstChar + 1) widths, each element being the glyph width
for the character code that equals FirstChar plus the array index. For charac-
ter codes outside the range FirstChar to LastChar, the value of MissingWidth
from the FontDescriptor entry for this font is used. The glyph widths are
measured in units in which 1000 units corresponds to 1 unit in text space.
These widths must be consistent with the actual widths given in the font pro-
gram. (See implementation note 61 in Appendix H.) For more information
on glyph widths and other glyph metrics, see Section 5.1.3, “Glyph Position-
ing and Metrics”

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

(Required except for the standard 14 fonts; must be an indirect reference) A font
descriptor describing the font’s metrics other than its glyph widths (see Sec-
tion 5.7, “Font Descriptors”).

Note: For the standard 14 fonts, the entries FirstChar, LastChar, Widths, and
FontDescriptor must either all be present or all be absent. Ordinarily, they are
absent; specifying them enables a standard font to be overridden (see “Standard
Type 1 Fonts (Standard 14 Fonts),” below).

Note: Beginning with PDF 1.5, the special treatment given to the standard 14
fonts is deprecated. All fonts used in a PDF document should be represented us-
ing a complete font descriptor. For backwards capability, viewer applications
must still provide the special treatment identified for the standard 14 fonts.

(Optional) A specification of the font’s character encoding if different from its
built-in encoding. The value of Encoding is either the name of a predefined
encoding (MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding,
as described in Appendix D) or an encoding dictionary that specifies differ-
ences from the font’s built-in encoding or from a specified predefined encod-
ing (see Section 5.5.5, “Character Encoding”).
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KEY TYPE VALUE
ToUnicode stream (Optional; PDF 1.2) A stream containing a CMap file that maps character

codes to Unicode values (see Section 5.9, “Extraction of Text Content”).

Example 5.6 shows the font dictionary for the Adobe Garamond® Semibold font.
The font has an encoding dictionary (object 25), although neither the encoding
dictionary nor the font descriptor (object 7) is shown in the example.

Example 5.6

14 0 obj
<< /Type /Font
/Subtype /Typel
/BaseFont /AGaramond-Semibold
/FirstChar 0
/LastChar 255
/Widths 210R
/FontDescriptor 70R
/Encoding 250R
>>
endobj

21 0 obj

[ 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 280 438 510 510 868 834 248 320 320 420 510 255 320 255 347
510 510 510 510 510 510 510 510 510 510 255 255 510 510 510 330
781 627 627 694 784 580 533 743 812 354 354 684 560 921 780 792
588 792 656 504 682 744 650 968 648 590 638 320 329 320 510 500
380 420 510 400 513 409 301 464 522 268 259 484 258 798 533 492
516 503 349 346 321 520 434 684 439 448 390 320 255 320 510 255
627 627 694 580 780 792 744 420 420 420 420 420 420 402 409 409
409 409 268 268 268 268 533 492 492 492 492 492 520 520 520 520
486 400 510 510 506 398 520 555 800 800 1044 360 380 549 846 792
713 510 549 549 510 522 494 713 823 549 274 354 387 768 615 496
330 280 510 549 510 549 612 421 421 1000 255 627 627 792 1016 730
500 1000 438 438 248 248 510 494 448 590 100 510 256 256 539 539
486 255 248 438 1174 627 580 627 580 580 354 354 354 354 792 792
790 792 744 744 744 268 380 380 380 380 380 380 380 380 380 380

endobj



416
I CHAPTER 5 | Text |

Standard Type 1 Fonts (Standard 14 Fonts)

The PostScript names of 14 Type 1 fonts, known as the standard 14 fonts, are as
follows:

Times—Roman Helvetica Courier Symbol
Times—Bold Helvetica—Bold Courier—Bold ZapfDingbats
Times—lItalic Helvetica—Oblique Courier—Oblique

Times—Boldltalic Helvetica—BoldOblique Courier—BoldOblique

These fonts, or their font metrics and suitable substitution fonts, must be avail-
able to the consumer application. The character sets and encodings for these
fonts are listed in Appendix D. The Adobe font metrics (AFM) files for the stan-
dard 14 fonts are available from the ASN Web site (see the Bibliography). For
more information on font metrics, see Adobe Technical Note #5004, Adobe Font
Metrics File Format Specification.

Ordinarily, a font dictionary that refers to one of the standard fonts should omit
the FirstChar, LastChar, Widths, and FontDescriptor entries. However, it is per-
missible to override a standard font by including these entries and embedding the
font program in the PDF file. (See implementation note 62 in Appendix H.)

Note: Beginning with PDF 1.5, the special treatment given to the standard 14 fonts
is deprecated. All fonts used in a PDF document should be represented using a com-
plete font descriptor. For backwards capability, viewer applications must still pro-
vide the special treatment identified for the standard 14 fonts.

Multiple Master Fonts

The multiple master font format is an extension of the Type 1 font format that al-
lows the generation of a wide variety of typeface styles from a single font pro-
gram. This is accomplished through the presence of various design dimensions in
the font. Examples of design dimensions are weight (light to extra-bold) and
width (condensed to expanded). Coordinates along these design dimensions
(such as the degree of boldness) are specified by numbers. A particular choice of
numbers selects an instance of the multiple master font. Adobe Technical Note
#5015, Type 1 Font Format Supplement, describes multiple master fonts in detail.
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The font dictionary for a multiple master font instance has the same entries as a
Type 1 font dictionary (Table 5.8 on page 413), with the following differences:

o The value of Subtype is MMType1.

o If the PostScript name of the instance contains spaces, the spaces are replaced
by underscores in the value of BaseFont. For instance, as illustrated in Example
5.7, the name “MinionMM 366 465 11 ” (which ends with a space character)
becomes /MinionMM_366_465_11_.

Example 5.7

7 0 obj
<< /Type /Font
/Subtype /MMTypel
/BaseFont /MinionMM_366_465_11_
/FirstChar 32
/LastChar 255
/Widths 190R
/FontDescriptor 6 0 R
/Encoding 50R
>>
endobj

19 0 obj
[ 187 235 317 430 427 717 607 168 326 326 421 619 219 317 219 282 427
...Omitted data...
569 0 569 607 607 607 239 400 400 400 400 253 400 400 400 400 400
]
endobj

This example illustrates a convention for including the numeric values of the
design coordinates as part of the instance’s BaseFont name. This convention is
commonly used for accessing multiple master font instances from an external
source in the consumer application’s environment; it is documented in Adobe
Technical Note #5088, Font Naming Issues. However, this convention is not pre-
scribed as part of the PDF specification. In particular, if the font program for this
instance is embedded in the PDF file, it must be an ordinary Type 1 font program,
not a multiple master font program. This font program is called a snapshot of the
multiple master font instance that incorporates the chosen values of the design
coordinates.
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5.5.2 TrueType Fonts

The TrueType font format was developed by Apple Computer, Inc., and has been
adopted as a standard font format for the Microsoft Windows operating system.
Specifications for the TrueType font file format are available in Apple’s TrueType
Reference Manual and Microsofts TrueType 1.0 Font Files Technical Specification.

Note: A TrueType font program can be embedded directly in a PDF file as a stream
object. The Type 42 font format that is defined for PostScript does not apply to PDE.

A TrueType font dictionary can contain the same entries as a Type 1 font dictio-
nary (Table 5.8 on page 413), with the following differences:

o The value of Subtype is TrueType.
¢ The value of BaseFont is derived differently, as described below.

o The value of Encoding is subject to limitations that are described in Section
5.5.5, “Character Encoding.”

The PostScript name for the value of BaseFont is determined in one of two ways:

o Use the PostScript name that is an optional entry in the “name” table of the
TrueType font.

e In the absence of such an entry in the “name” table, derive a PostScript name
from the name by which the font is known in the host operating system. On a
Windows system, the name is based on the IfFaceName field in a LOGFONT
structure; in the Mac OS, it is based on the name of the FOND resource. If the
name contains any spaces, the spaces are removed.

If the font in a source document uses a bold or italic style but there is no font data
for that style, the host operating system synthesizes the style. In this case, a com-
ma and the style name (one of Bold, Italic, or BoldItalic) are appended to the font
name. For example, for a TrueType font that is a bold variant of the New York
font, the BaseFont value is written as /NewYork,Bold (as illustrated in Example
5.8).
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Example 5.8

17 0 obj
<< /Type /Font
/Subtype /TrueType
/BaseFont /NewYork,Bold
/FirstChar 0
/LastChar 255
/Widths 23 0R
/FontDescriptor 70R
/Encoding /MacRomanEncoding
>>
endobj

23 0 obj
[ 0 333 333 333 333 333 333 333 0 333 333 333 333 333 333 333 333 333
...Omitted data...
803 790 803 780 780 780 340 636 636 636 636 636 636 636 636 636 636

1
endobj

Note that for CJK (Chinese, Japanese, and Korean) fonts, the host font system’s
font name is often encoded in the host operating system’s script. For instance, a
Japanese font may have a name that is written in Japanese using some (unidenti-
fied) Japanese encoding. Thus, TrueType font names may contain multiple-byte
character codes, each of which requires multiple characters to represent in a PDF
name object (using the # notation to quote special characters as needed).

Font Subsets

PDF 1.1 permits documents to include subsets of Type 1 and TrueType fonts.
The font and font descriptor that describe a font subset are slightly different
from those of ordinary fonts. These differences allow an application to recog-
nize font subsets and to merge documents containing different subsets of the
same font. (For more information on font descriptors, see Section 5.7, “Font De-
scriptors.”)

For a font subset, the PostScript name of the font—the value of the fonts
BaseFont entry and the font descriptor’s FontName entry—begins with a tag
followed by a plus sign (+). The tag consists of exactly six uppercase letters; the
choice of letters is arbitrary, but different subsets in the same PDF file must have
different tags. For example, EOODIA+Poetica is the name of a subset of Poeticam, a
Type 1 font. (See implementation note 63 in Appendix H.)
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5.5.4 Type 3 Fonts
Type 3 fonts differ from the other fonts supported by PDF. A Type 3 font dictio-
nary defines the font; font dictionaries for other fonts simply contain information
about the font and refer to a separate font program for the actual glyph descrip-
tions. In Type 3 fonts, glyphs are defined by streams of PDF graphics operators.
These streams are associated with character names. A separate encoding entry
maps character codes to the appropriate character names for the glyphs.
Type 3 fonts are more flexible than Type 1 fonts because the glyph descriptions
may contain arbitrary PDF graphics operators. However, Type 3 fonts have no
hinting mechanism for improving output at small sizes or low resolutions. A Type
3 font dictionary contains the entries listed in Table 5.9.
TABLE 5.9 Entries in a Type 3 font dictionary
KEY TYPE VALUE
Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a font dictionary.
Subtype name (Required) The type of font; must be Type3 for a Type 3 font.
Name name (Required in PDF 1.0; optional otherwise) See Table 5.8 on page 413.
FontBBox rectangle (Required) A rectangle (see Section 3.8.4, “Rectangles”) expressed in the
glyph coordinate system, specifying the font bounding box. This is the small-
est rectangle enclosing the shape that would result if all of the glyphs of the
font were placed with their origins coincident and then filled.
If all four elements of the rectangle are zero, no assumptions are made based
on the font bounding box. If any element is nonzero, it is essential that the
font bounding box be accurate. If any glyph’s marks fall outside this bounding
box, incorrect behavior may result.
FontMatrix array (Required) An array of six numbers specifying the font matrix, mapping

glyph space to text space (see Section 5.1.3, “Glyph Positioning and
Metrics”). A common practice is to define glyphs in terms of a 1000-unit
glyph coordinate system, in which case the font matrix is
[0.001 O 0 0.001 O O].
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KEY TYPE VALUE

CharProcs dictionary (Required) A dictionary in which each key is a character name and the value
associated with that key is a content stream that constructs and paints the
glyph for that character. The stream must include as its first operator either
do or d1, followed by operators describing one or more graphics objects,
which may include path, text, or image objects. See below for more details
about Type 3 glyph descriptions.

Encoding name or (Required) An encoding dictionary whose Differences array specifies the

dictionary complete character encoding for this font (see Section 5.5.5, “Character

Encoding”; also see implementation note 64 in Appendix H).

FirstChar integer (Required) The first character code defined in the font’s Widths array.

LastChar integer (Required) The last character code defined in the font’s Widths array.

Widths array (Required; indirect reference preferred) An array of (LastChar — FirstChar + 1)

FontDescriptor

Resources

ToUnicode

dictionary

dictionary

stream

widths, each element being the glyph width for the character code that equals
FirstChar plus the array index. For character codes outside the range FirstChar
to LastChar, the width is 0. These widths are interpreted in glyph space as
specified by FontMatrix (unlike the widths of a Type 1 font, which are in
thousandths of a unit of text space).

Note: If FontMatrix specifies a rotation, only the horizontal component of the
transformed width is used. That is, the resulting displacement is always hori-
zontal in text space, as is the case for all simple fonts.

(Required in Tagged PDF documents; must be an indirect reference) A font de-
scriptor describing the fonts default metrics other than its glyph widths (see
Section 5.7, “Font Descriptors”).

(Optional but strongly recommended; PDF 1.2) A list of the named resources,
such as fonts and images, required by the glyph descriptions in this font (see
Section 3.7.2, “Resource Dictionaries”). If any glyph descriptions refer to
named resources but this dictionary is absent, the names are looked up in the
resource dictionary of the page on which the font is used. (See implementa-
tion note 65 in Appendix H.)

(Optional; PDF 1.2) A stream containing a CMap file that maps character
codes to Unicode values (see Section 5.9, “Extraction of Text Content”).
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For each character code shown by a text-showing operator that uses a Type 3 font,
the consumer application does the following:

1. Looks up the character code in the font’s Encoding entry, as described in Sec-
tion 5.5.5, “Character Encoding,” to obtain a character name.

2. Looks up the character name in the font’s CharProcs dictionary to obtain a
stream object containing a glyph description. (If the name is not present as a
key in CharProcs, no glyph is painted.)

3. Invokes the glyph description, as described below. The graphics state is saved
before this invocation and restored afterward; therefore, any changes the glyph
description makes to the graphics state do not persist after it finishes.

When the glyph description begins execution, the current transformation matrix
(CTM) is the concatenation of the font matrix (FontMatrix in the current font
dictionary) and the text space that was in effect at the time the text-showing op-
erator was invoked (see Section 5.3.3, “Text Space Details”). This means that
shapes described in the glyph coordinate system are transformed into the user
coordinate system and appear in the appropriate size and orientation on the page.
The glyph description should describe the glyph in terms of absolute coordinates
in the glyph coordinate system, placing the glyph origin at (0, 0) in this space. It
should make no assumptions about the initial text position.

Aside from the CTM, the graphics state is inherited from the environment of the
text-showing operator that caused the glyph description to be invoked. To ensure
predictable results, the glyph description must initialize any graphics state
parameters on which it depends. In particular, if it invokes the S (stroke) opera-
tor, it should explicitly set the line width, line join, line cap, and dash pattern to
appropriate values. Normally, it is unnecessary and undesirable to initialize the
current color parameter because the text-showing operators are designed to paint
glyphs with the current color.

The glyph description must execute one of the operators described in Table 5.10
to pass width and bounding box information to the font machinery. This must
precede the execution of any path construction or path-painting operators de-
scribing the glyph.

Note: Type 3 fonts in PDF are very similar to those in PostScript. Some of the in-
formation provided in Type 3 font dictionaries and glyph descriptions, while seem-
ingly redundant or unnecessary, is nevertheless required for correct results when a
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PDF consumer application prints to a PostScript output device. This applies par-
ticularly to the operands of the d0 and d1 operators, which in PostScript are
named setcharwidth and setcachedevice. For further explanation, see Section 5.7
of the PostScript Language Reference, Third Edition.

TABLE 5.10 Type 3 font operators

OPERANDS OPERATOR DESCRIPTION
Wy w, do Set width information for the glyph and declare that the glyph descrip-

tion specifies both its shape and its color. (Note that this operator name
ends in the digit 0.) w, specifies the horizontal displacement in the glyph
coordinate system; it must be consistent with the corresponding width
in the font’s Widths array. w, must be 0 (see Section 5.1.3, “Glyph Posi-
tioning and Metrics”).

This operator is permitted only in a content stream appearing in a
Type 3 font’s CharProcs dictionary. It is typically used only if the glyph
description executes operators to set the color explicitly.

w, w, LI, ur ur,  d1 Set width and bounding box information for the glyph and declare that
the glyph description specifies only shape, not color. (Note that this
operator name ends in the digit 1.) w, specifies the horizontal displace-
ment in the glyph coordinate system; it must be consistent with the
corresponding width in the font’s Widths array. w, must be 0 (see Section
5.1.3, “Glyph Positioning and Metrics”).

Il and /I, are the coordinates of the lower-left corner, and ur, and ur, the
upper-right corner, of the glyph bounding box. The glyph bounding box
is the smallest rectangle, oriented with the axes of the glyph coordinate
system, that completely encloses all marks placed on the page as a result
of executing the glyph’s description. The declared bounding box must be
correct—in other words, sufficiently large to enclose the entire glyph. If
any marks fall outside this bounding box, the result is unpredictable.

A glyph description that begins with the d1 operator should not execute
any operators that set the color (or other color-related parameters) in the
graphics state; any use of such operators is ignored. The glyph descrip-
tion is executed solely to determine the glyph’s shape. Its color is deter-
mined by the graphics state in effect each time this glyph is painted by a
text-showing operator. For the same reason, the glyph description may
not include an image; however, an image mask is acceptable, since it
merely defines a region of the page to be painted with the current color.

This operator is permitted only in a content stream appearing in a
Type 3 font’s CharProcs dictionary.
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Example of a Type 3 Font

Example shows the definition of a Type 3 font with only two glyphs—a filled
square and a filled triangle, selected by the character codes a and b. Figure 5.12
shows the result of showing the string (ababab) using this font.

HANANA

FIGURE 5.12 Output from Example

4 0 obj
<< [Type /Font
/Subtype /Type3
/FontBBox [0 0 750 750]
/FontMatrix [0.001 0 0 0.001 0 0]
/CharProcs 100R
/Encoding 90R
/FirstChar 97
/LastChar 98
/Widths [1000 1000]
>>
endobj

9 0 obj
<< /Type /Encoding
/Differences [97 /square /triangle]
>>
endobj

10 0 obj
<< /square 110R
/triangle 120R
>>
endobj
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11 0 obj
<< /Length 39 >>
stream
1000 0 0 0 750 750 d1
0 0 750 750 re
f
endstream
endobj

12 0 obj
<< /Length 48 >>
stream
1000 0 0 0 750 750 d1
00m
375 750 |
750 0 |
f
endstream
endobj

5.5.5 Character Encoding

A font’s encoding is the association between character codes (obtained from text
strings that are shown) and glyph descriptions. This section describes the charac-
ter encoding scheme used with simple PDF fonts. Composite fonts (Type 0) use a
different character mapping algorithm, as discussed in Section 5.6, “Composite
Fonts.”

Except for Type 3 fonts, every font program has a built-in encoding. Under cer-
tain circumstances, a PDF font dictionary can change a font’s built-in encoding to
match the requirements of the application generating the text being shown. This
flexibility in character encoding is valuable for two reasons:

o It permits showing text that is encoded according to any of the various existing
conventions. For example, the Microsoft Windows and Apple Mac OS oper-
ating systems use different standard encodings for Latin text, and many appli-
cations use their own special-purpose encodings.

o It permits applications to specify how characters selected from a large character
set are to be encoded. Some character sets consist of more than 256 characters,
including ligatures, accented characters, and other symbols required for high-
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quality typography or non-Latin writing systems. Different encodings can se-
lect different subsets of the same character set.

Latin-text font programs produced by Adobe Systems use the Adobe standard
encoding, often referred to as StandardEncoding. The name StandardEncoding
has no special meaning in PDEF, but this encoding does play a role as a default en-
coding (as shown in Table 5.11 below). The regular encodings used for Latin-text
fonts on Mac OS and Windows systems are named MacRomanEncoding and
WinAnsiEncoding, respectively. An encoding named MacExpertEncoding is used
with “expert” fonts that contain additional characters useful for sophisticated ty-
pography. Complete details of these encodings and of the characters present in
typical fonts are provided in Appendix D.

In PDF, a font is classified as either nonsymbolic or symbolic according to whether
all of its characters are members of the Adobe standard Latin character set. This
is indicated by flags in the font descriptor; see Section 5.7.1, “Font Descriptor
Flags” Symbolic fonts contain other character sets, to which the encodings men-
tioned above ordinarily do not apply. Such font programs have built-in encodings
that are usually unique to each font. The standard 14 fonts include two symbolic
fonts, Symbol and ZapfDingbats, whose encodings and character sets are docu-
mented in Appendix D.

A font program’s built-in encoding can be overridden or altered by including an
Encoding entry in the PDF font dictionary. The possible encoding modifications
depend on the font type, as discussed below. The value of the Encoding entry is
either a named encoding (the name of one of the predefined encodings
MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding) or an encoding
dictionary. An encoding dictionary contains the entries listed in Table 5.11.
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TABLE 5.11 Entries in an encoding dictionary
KEY TYPE VALUE
Type name (Optional) The type of PDF object that this dictionary describes; if present, must

BaseEncoding

Differences

name

array

be Encoding for an encoding dictionary.

(Optional) The base encoding—that is, the encoding from which the Differences
entry (if present) describes differences—specified as the name of a predefined
encoding MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding (see
Appendix D).

If this entry is absent, the Differences entry describes differences from an im-
plicit base encoding. For a font program that is embedded in the PDF file, the
implicit base encoding is the font program’s built-in encoding, as described
above and further elaborated in the sections on specific font types below. Other-
wise, for a nonsymbolic font, it is StandardEncoding, and for a symbolic font, it
is the font’s built-in encoding.

(Optional; not recommended with TrueType fonts) An array describing the differ-
ences from the encoding specified by BaseEncoding or, if BaseEncoding is ab-
sent, from an implicit base encoding. The Differences array is described below.

The value of the Differences entry is an array of character codes and character
names organized as follows:

code; name, ; name, ; ...
code, name,, name,, ...

code, name, , name,, ...

Each code is the first index in a sequence of character codes to be changed. The
first character name after the code becomes the name corresponding to that code.
Subsequent names replace consecutive code indices until the next code appears
in the array or the array ends. These sequences may be specified in any order but
should not overlap.

For example, in the encoding dictionary in Example 5.9, the name quotesingle (")
is associated with character code 39, Adieresis (A) with code 128, Aring (A) with
129, and trademark (™) with 170.
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Example 5.9

25 0 obj
<< /Type /Encoding
/Differences
[ 39 /quotesingle

96 /grave

128 /Adieresis /Aring /Ccedilla /Eacute /Ntilde /Odieresis /Udieresis
/aacute /agrave /acircumflex /adieresis /atilde /aring /ccedilla
/eacute /egrave /ecircumflex /edieresis /iacute /igrave /icircumflex
/idieresis /ntilde /oacute /ograve /ocircumflex /odieresis /otilde
/uacute /ugrave /ucircumflex /udieresis /dagger /degree /cent
/sterling /section /bullet /paragraph /germandbls /registered
/copyright /trademark /acute /dieresis

174 /AE /Oslash

177 /plusminus

180 /yen /mu

187 /ordfeminine /ordmasculine

190 /ae /oslash /questiondown /exclamdown /logicalnot

196 /florin

199 /guillemotleft /guillemotright /ellipsis

203 /Agrave /Atilde /Otilde /OE /oe /endash /emdash /quotedblleft
/quotedblright /quoteleft /quoteright /divide

216 /ydieresis /Ydieresis /fraction /currency /qguilsinglleft /guilsinglright
/fi /fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase
/perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave
/lacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex

241 /Ograve /Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde
/macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek
/caron

>>
endobj

By convention, the name .notdef can be used to indicate that no character name
is associated with a given character code.

Encodings for Type 1 Fonts

A Type 1 font program’s glyph descriptions are keyed by character names, not by
character codes. Character names are ordinary PDF name objects. Descriptions of
Latin alphabetic characters are normally associated with names consisting of
single letters, such as A or a. Other characters are associated with names com-
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posed of words, such as three, ampersand, or parenleft. A Type 1 font’s built-in
encoding is defined by an Encoding array that is part of the font program, not to
be confused with the Encoding entry in the PDF font dictionary.

An Encoding entry can alter a Type 1 font’s mapping from character codes to
character names. The Differences array can map a code to the name of any glyph
description that exists in the font program, regardless of whether that glyph is ref-
erenced by the fonts built-in encoding or by the encoding specified in the
BaseEncoding entry.

All Type 1 font programs contain an actual glyph named .notdef. The effect pro-
duced by showing the .notdef glyph is at the discretion of the font designer; in
Type 1 font programs produced by Adobe, it is the same as the space character. If
an encoding maps to a character name that does not exist in the Type 1 font pro-
gram, the .notdef glyph is substituted.

Encodings for Type 3 Fonts

A Type 3 font, like a Type 1 font, contains glyph descriptions that are keyed by
character names; in this case, they appear as explicit keys in the font’s CharProcs
dictionary. A Type 3 font’s mapping from character codes to character names is
entirely defined by its Encoding entry, which is required in this case.

Encodings for TrueType Fonts

A TrueType font program’s built-in encoding maps directly from character codes
to glyph descriptions by means of an internal data structure called a “cmap” (not
to be confused with the CMap described in Section 5.6.4, “CMaps”). This section
describes how the PDF font dictionary’s Encoding entry is used in conjunction
with a “cmap” to map from a character code in a string to a glyph description in a
TrueType font program.

A “cmap” table may contain one or more subtables that represent multiple encod-
ings intended for use on different platforms (such as Mac OS and Windows).
Each subtable is identified by the two numbers, such as (3, 1), that represent a
combination of a platform ID and a platform-specific encoding ID, respectively.

Glyph names are not mandatory in TrueType fonts, although some font programs
have an optional “post” table listing glyph names for the glyphs. If the consumer
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application needs to select glyph descriptions by name, it translates from glyph
names to codes in one of the encodings given in the font program’s “cmap” table.
When there is no character code in the “cmap” that corresponds to a glyph name,
the “post” table is used to select a glyph description directly from the glyph name.

Because some aspects of TrueType glyph selection are dependent on the consum-
er implementation or the operating system, PDF files that use TrueType fonts
should follow certain guidelines to ensure predictable behavior across all applica-
tions:

¢ The font program should be embedded.

¢ A nonsymbolic font should specify MacRomanEncoding or WinAnsiEncoding
as the value of its Encoding entry, with no Differences array.

¢ A font that is used to display glyphs that do not use MacRomanEncoding or
WinAnsiEncoding should not specify an Encoding entry. The font descriptor’s
Symbolic flag (see Table 5.20) should be set, and its font program’s “cmap” table
should contain a (1, 0) subtable. It may also contain a (3, 0) subtable; if present,
this subtable should map from character codes in the range 0xF000 to 0xFOFF
by prepending the single-byte codes in the (1, 0) subtable with 0xF0 and map-
ping to the corresponding glyph descriptions.

Note: Some popular TrueType font programs contain incorrect encoding informa-
tion. Implementations of TrueType font interpreters have evolved heuristics for deal-
ing with such problems; those heuristics are not described here. For maximum
portability, only well-formed TrueType font programs should be used in PDF files.
Therefore, a TrueType font program in a PDF file may need to be modified to con-
form to the guidelines described above.

The following paragraphs describe the treatment of TrueType font encodings be-
ginning with PDF 1.3, as implemented in Acrobat 5.0 and later viewers. This in-
formation does not necessarily apply to earlier versions or implementations.

If the font has a named Encoding entry of either MacRomanEncoding or
WinAnsiEncoding, or if the font descriptor’s Nonsymbolic flag (see Table 5.20) is
set, the viewer creates a table that maps from character codes to glyph names:

o If the Encoding entry is one of the names MacRomanEncoding or WinAnsiEn-
coding, the table is initialized with the mappings described in Appendix D.
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o If the Encoding entry is a dictionary, the table is initialized with the entries
from the dictionary’s BaseEncoding entry (see Table 5.11). Any entries in the
Differences array are used to update the table. Finally, any undefined entries in
the table are filled using StandardEncoding.

Ifa (3, 1) “cmap” subtable (Microsoft Unicode) is present:

o A character code is first mapped to a glyph name using the table described
above.

¢ The glyph name is then mapped to a Unicode value by consulting the Adobe
Glyph List (see the Bibliography).

e Finally, the Unicode value is mapped to a glyph description according to the
(3, 1) subtable.

If no (3, 1) subtable is present but a (1, 0) subtable (Macintosh Roman) is present:

o A character code is first mapped to a glyph name using the table described
above.

e The glyph name is then mapped back to a character code according to the stan-
dard Roman encoding used on Mac OS (see note below).

e Finally, the code is mapped to a glyph description according to the (1, 0) sub-
table.

In either of the cases above, if the glyph name cannot be mapped as specified, the

glyph name is looked up in the font program’s “post” table (if one is present) and
the associated glyph description is used.

Note: The standard Roman encoding that is used on Mac OS is the same as the
MacRomanEncoding described in Appendix D, with the addition of following 15 en-
tries and the replacement of the currency glyph with the Euro glyph, as shown in Ta-
ble 5.12.

TABLE 5.12 Differences between MacRomanEncoding and Mac OS Roman encoding
NAME CODE (OCTAL) CODE (DECIMAL)

notequal 255 173

infinity 260 176
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NAME CODE (OCTAL) CODE (DECIMAL)
lessequal 262 178
greaterequal 263 179
partialdiff 266 182
summation 267 183
product 270 184
pi 271 185
integral 272 186
Omega 275 189
radical 303 195
approxequal 305 197
Delta 306 198
lozenge 327 215
Euro 333 219
apple 360 240

When the font has no Encoding entry, or the font descriptor’s Symbolic flag is set
(in which case the Encoding entry is ignored), the following occurs:

o If the font contains a (3, 0) subtable, the range of character codes must be one
of the following: 0x0000 - 0xO0FF, 0xF000 - 0xFOFE, 0xF100 - 0xF1FE, or
0xF200 - 0xF2FF. Depending on the range of codes, each byte from the string is
prepended with the high byte of the range, to form a two-byte character, which
is used to select the associated glyph description from the subtable.

e Otherwise, if the font contains a (1, 0) subtable, single bytes from the string are
used to look up the associated glyph descriptions from the subtable.

If a character cannot be mapped in any of the ways described above, the results
are implementation-dependent.
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5.6 Composite Fonts

5.6.1

A composite font, also called a Type 0 font, is one whose glyphs are obtained from
a fontlike object called a CIDFont. A composite font is represented by a font dic-
tionary whose Subtype value is Type0. The Type 0 font is known as the root font,
and its associated CIDFont is called its descendant.

Note: Composite fonts in PDF are analogous to composite fonts in PostScript but
with some limitations. In particular, PDF requires that the character encoding be
defined by a CMap (described below), which is only one of several encoding methods
available in PostScript.Also, PostScript allows a Type 0 font to have multiple descen-
dants, which might also be Type 0 fonts. PDF supports only a single descendant,
which must be a CIDFont.

When the current font is composite, the text-showing operators behave different-
ly than with simple fonts. For simple fonts, each byte of a string to be shown se-
lects one glyph, whereas for composite fonts, a sequence of one or more bytes can
be decoded to select a glyph from the descendant CIDFont. This facility supports
the use of very large character sets, such as those for the Chinese, Japanese, and
Korean languages. It also simplifies the organization of fonts that have complex
encoding requirements.

This section first introduces the architecture of CID-keyed fonts, which are the
only kind of composite font supported in PDF. Then it describes the CIDFont and
CMap dictionaries, which are the PDF objects that represent the correspondingly
named components of a CID-keyed font. Finally, it describes the Type 0 font dic-
tionary, which combines a CIDFont and a CMap to produce a font whose glyphs
can be accessed by means of variable-length character codes in a string to be
shown.

CID-Keyed Fonts Overview

CID-keyed fonts provide a convenient and efficient method for defining
multiple-byte character encodings, fonts with a large number of glyphs, and fonts
that incorporate glyphs obtained from other fonts. These capabilities provide
great flexibility for representing text in writing systems for languages with large
character sets, such as Chinese, Japanese, and Korean (CJK).

The CID-keyed font architecture specifies the external representation of certain
font programs, called CMap and CIDFont files, along with some conventions for
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combining and using those files. As mentioned earlier, PDF does not support the
entire CID-keyed font architecture, which is independent of PDF; CID-keyed
fonts can be used in other environments. For complete documentation on the ar-
chitecture and the file formats, see Adobe Technical Notes #5092, CID-Keyed
Font Technology Overview, and #5014, Adobe CMap and CIDFont Files Specifica-
tion. This section describes only the PDF objects that represent these font pro-
grams.

The term CID-keyed font reflects the fact that CID (character identifier) numbers
are used to index and access the glyph descriptions in the font. This method is
more efficient for large fonts than the method of accessing by character name, as
is used for some simple fonts. CIDs range from 0 to a maximum value that is sub-
ject to an implementation limit (see Table C.1 on page 992).

A character collection is an ordered set of all glyphs needed to support one or
more popular character sets for a particular language. The order of the glyphs in
the character collection determines the CID number for each glyph. Each CID-
keyed font must explicitly reference the character collection on which its CID
numbers are based; see Section 5.6.2, “CIDSystemInfo Dictionaries.”

A CMap (character map) file specifies the correspondence between character
codes and the CID numbers used to identify glyphs. It is equivalent to the con-
cept of an encoding in simple fonts. Whereas a simple font allows a maximum of
256 glyphs to be encoded and accessible at one time, a CMap can describe a map-
ping from multiple-byte codes to thousands of glyphs in a large CID-keyed font.
For example, it can describe Shift-JIS, one of several widely used encodings for
Japanese.

A CMap can reference an entire character collection, a subset, or multiple charac-
ter collections. It can also reference characters in other fonts by character code or
character name. The CMap mapping vields a font number (which in PDF is al-
ways 0) and a character selector (which in PDF is always a CID). Furthermore, a
CMap can incorporate another CMap by reference, without having to duplicate it.
These features enable character collections to be combined or supplemented and
make all the constituent characters accessible to text-showing operations through
a single encoding.

A CIDFont file contains the glyph descriptions for a character collection. The
glyph descriptions themselves are typically in a format similar to those used in
simple fonts, such as Type 1. However, they are identified by CIDs rather than by
names, and they are organized differently.
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In PDE the CMap and CIDFont are represented by PDF objects, which are de-
scribed below. The CMap and CIDFont programs themselves can be either refer-
enced by name or embedded as stream objects in the PDF file. As stated earlier,
the external file formats are documented in Adobe Technical Note #5014, Adobe
CMap and CIDFont Files Specification.

A CID-keyed font, then, is the combination of a CMap with a CIDFont contain-
ing glyph descriptions. It is represented as a Type 0 font. It contains an Encoding
entry whose value is a CMap dictionary, and its DescendantFonts entry refer-
ences the CIDFont dictionary with which the CMap has been combined.

5.6.2 CIDSystemlinfo Dictionaries

CIDFont and CMap dictionaries contain a CIDSystemiInfo entry specifying the
character collection assumed by the CIDFont associated with the CMap—that is,
the interpretation of the CID numbers used by the CIDFont. A character collec-
tion is uniquely identified by the Registry, Ordering, and Supplement entries in
the CIDSystemiInfo dictionary, as described in Table 5.13. Character collections
whose Registry and Ordering values are the same are compatible.

The CIDSysteminfo entry in a CIDFont is a dictionary that specifies the
CIDFont’s character collection. The CIDFont need not contain glyph descriptions
for all the CIDs in a collection; it can contain a subset. The CIDSysteminfo entry
in a CMap is either a single dictionary or an array of dictionaries, depending on
whether it associates codes with a single character collection or with multiple
character collections; see Section 5.6.4, “CMaps.”

For proper behavior, the CIDSystemInfo entry of a CMap should be compatible
with that of the CIDFont or CIDFonts with which it is used. If they are incompat-
ible, the effects produced are unpredictable.

TABLE 5.13 Entries in a CIDSystemInfo dictionary

KEY TYPE VALUE
Registry ASCII (Required) A string identifying the issuer of the character collection—for example,
string Adobe. For information about assigning a registry identifier, contact the Adobe

Solutions Network or consult the ASN Web site (see the Bibliography).

Ordering ASCII (Required) A string that uniquely names the character collection within the speci-
string fied registry—for example, Japan1.
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KEY TYPE VALUE
Supplement integer (Required) The supplement number of the character collection. An original charac-

ter collection has a supplement number of 0. Whenever additional CIDs are
assigned in a character collection, the supplement number is increased. Supple-
ments do not alter the ordering of existing CIDs in the character collection. This
value is not used in determining compatibility between character collections.

5.6.3 CIDFonts

A CIDFont program contains glyph descriptions that are accessed using a CID as
the character selector. There are two types of CIDFonts:

¢ A Type 0 CIDFont contains glyph descriptions based on the Adobe Type 1 font
format

Note: The term “Type 0” when applied to a CIDFont has a different meaning than
for a “Type 0 font”.

¢ A Type 2 CIDFont contains glyph descriptions based on the TrueType font format

A CIDFont dictionary is a PDF object that contains information about a CIDFont
program. Although its Type value is Font, a CIDFont is not actually a font. It does
not have an Encoding entry, it cannot be listed in the Font subdictionary of a re-
source dictionary, and it cannot be used as the operand of the Tf operator. It is
used only as a descendant of a Type 0 font. The CMap in the Type 0 font is what
defines the encoding that maps character codes to CIDs in the CIDFont. Table
5.14 lists the entries in a CIDFont dictionary.

TABLE 5.14 Entries in a CIDFont dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
Font for a CIDFont dictionary.

Subtype name (Required) The type of CIDFont; CIDFontType0 or CIDFontType2.

BaseFont name (Required) The PostScript name of the CIDFont. For Type 0 CIDFonts, this

is usually the value of the CIDFontName entry in the CIDFont program. For
Type 2 CIDFonts, it is derived the same way as for a simple TrueType font;
see Section 5.5.2, “TrueType Fonts” In either case, the name can have a sub-

set prefix if appropriate; see Section 5.5.3, “Font Subsets”
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KEY TYPE VALUE

CIDSysteminfo dictionary (Required) A dictionary containing entries that define the character collec-
tion of the CIDFont. See Table 5.13 on page 435.

FontDescriptor dictionary (Required; must be an indirect reference) A font descriptor describing the
CIDFont’s default metrics other than its glyph widths (see Section 5.7, “Font
Descriptors”).

DW integer (Optional) The default width for glyphs in the CIDFont (see “Glyph Metrics
in CIDFonts” on page 439). Default value: 1000.

w array (Optional) A description of the widths for the glyphs in the CIDFont. The
array’s elements have a variable format that can specify individual widths
for consecutive CIDs or one width for a range of CIDs (see “Glyph Metrics
in CIDFonts” on page 439). Default value: none (the DW value is used for all
glyphs).

DW2 array (Optional; applies only to CIDFonts used for vertical writing) An array of two
numbers specifying the default metrics for vertical writing (see “Glyph
Metrics in CIDFonts” on page 439). Default value: [880 —10001].

w2 array (Optional; applies only to CIDFonts used for vertical writing) A description
of the metrics for vertical writing for the glyphs in the CIDFont (see “Glyph
Metrics in CIDFonts” on page 439). Default value: none (the DW2 value is
used for all glyphs).

CIDToGIDMap stream (Optional; Type 2 CIDFonts only) A specification of the mapping from CIDs

or name to glyph indices. If the value is a stream, the bytes in the stream contain the

mapping from CIDs to glyph indices: the glyph index for a particular CID
value ¢ is a 2-byte value stored in bytes 2 X ¢ and 2 X ¢ + 1, where the first
byte is the high-order byte. If the value of CIDToGIDMap is a name, it must
be Identity, indicating that the mapping between CIDs and glyph indices is
the identity mapping. Default value: Identity.

This entry may appear only in a Type 2 CIDFont whose associated True-
Type font program is embedded in the PDF file (see the next section).

Glyph Selection in CIDFonts

Type 0 and Type 2 CIDFonts handle the mapping from CIDs to glyph descrip-
tions in somewhat different ways.
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For Type 0, the CIDFont program contains glyph descriptions that are identified
by CIDs. The CIDFont program identifies the character collection by a
CIDSysteminfo dictionary, which should simply be copied into the PDF CIDFont
dictionary. CIDs are interpreted uniformly in all CIDFont programs supporting a
given character collection, whether the program is embedded in the PDF file or
obtained from an external source.

When the CIDFont contains an embedded font program that is represented in
the Compact Font Format (CFF), the FontFile3 entry in the font descriptor (see
Table 5.23) can be CIDFontTypeOC or OpenType. There are two cases, depending
on the contents of the font program:

e The “CFF” font program has a Top DICT that uses CIDFont operators: The CIDs
are used to determine the GID value for the glyph procedure using the charset
table in the CFF program. The GID value is then used to look up the glyph pro-
cedure using the CharStrings INDEX table. Although in many fonts the CID val-
ue and GID value are the same, the CID and GID values may differ.

e The “CFF” font program has a Top DICT that does not use CIDFont operators:
The CIDs are used directly as GID values, and the glyph procedure is retrieved
using the CharStrings INDEX.

For Type 2, the CIDFont program is actually a TrueType font program, which has
no native notion of CIDs. In a TrueType font program, glyph descriptions are
identified by glyph index values. Glyph indices are internal to the font and are not
defined consistently from one font to another. Instead, a TrueType font program
contains a “cmap” table that provides mappings directly from character codes to
glyph indices for one or more predefined encodings.

TrueType font programs are integrated with the CID-keyed font architecture in
one of two ways, depending on whether the font program is embedded in the
PDF file:

o If the TrueType font program is embedded, the Type 2 CIDFont dictionary
must contain a CIDToGIDMap entry that maps CIDs to the glyph indices for the
appropriate glyph descriptions in that font program.

o If the TrueType font program is not embedded but is referenced by name, the
Type 2 CIDFont dictionary must not contain a CIDToGIDMap entry, since it is
not meaningful to refer to glyph indices in an external font program. In this
case, CIDs do not participate in glyph selection, and only predefined CMaps
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may be used with this CIDFont (see Section 5.6.4, “CMaps”). The consumer
application selects glyphs by translating characters from the encoding specified
by the predefined CMap to one of the encodings in the TrueType fonts “cmap”
table. The means by which this is accomplished are implementation-depen-
dent.

Even though the CIDs are sometimes not used to select glyphs in a Type 2
CIDFont, they are always used to determine the glyph metrics, as described in the
next section.

Every CIDFont must contain a glyph description for CID 0, which is analogous to
the .notdef character name in simple fonts (see “Handling Undefined Characters”
on page 454).

Glyph Metrics in CIDFonts

As discussed in Section 5.1.3, “Glyph Positioning and Metrics,” the width of a
glyph refers to the horizontal displacement between the origin of the glyph and
the origin of the next glyph when writing in horizontal mode. In this mode, the
vertical displacement between origins is always 0. Widths for a CIDFont are de-
fined using the DW and W entries in the CIDFont dictionary. These widths must
be consistent with the actual widths given in the CIDFont program. (See imple-
mentation note 61 in Appendix H.)

The DW entry defines the default width, which is used for all glyphs whose widths
are not specified individually. This entry is particularly useful for Chinese, Japa-
nese, and Korean fonts, in which many of the glyphs have the same width.

The W array allows the definition of widths for individual CIDs. The elements of
the array are organized in groups of two or three, where each group is in one of
the following two formats:

¢ lwy wy ..o w,]

Cirst Clast W

In the first format, c is an integer specifying a starting CID value; it is followed by
an array of n numbers that specify the widths for n consecutive CIDs, starting
with ¢. The second format defines the same width, w, for all CIDs in the range

Cirst to Cast:
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The following is an example of a W entry:

/W [ 120 [400 325 500]
7080 8032 1000
]

In this example, the glyphs having CIDs 120, 121, and 122 are 400, 325, and 500
units wide, respectively. CIDs in the range 7080 through 8032 all have a width of
1000 units.

Glyphs from a CIDFont can be shown in vertical writing mode. (This is selected
by the WMode entry in the associated CMap dictionary; see Section 5.6.4,
“CMaps.”) To be used in this way, the CIDFont must define the vertical dis-
placement for each glyph and the position vector that relates the horizontal and
vertical writing origins.

The default position vector and vertical displacement vector are specified by the
DW?2 entry in the CIDFont dictionary. DW2 is an array of two values: the vertical
component of the position vector v and the vertical component of the displace-
ment vector wl (see Figure 5.5 on page 396). The horizontal component of the
position vector is always half the glyph width, and that of the displacement vector
is always 0. For example, if the DW2 entry is

/DW2 [880 —1000]

then a glyph’s position vector and vertical displacement vector are

v = (w0 +2,880)
wl = (0,-1000)

where w0 is the width (horizontal displacement) for the same glyph. Note that a
negative value for the vertical component places the origin of the next glyph be-
low the current glyph because vertical coordinates in a standard coordinate sys-
tem increase from bottom to top.

The W2 array allows the definition of vertical metrics for individual CIDs. The
elements of the array are organized in groups of two or five, where each group is
in one of the following two formats:

c [W71y Vix Vay W72y Vox Voy ]

Cirst Clast Wlly Vix V1y
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In the first format, c is a starting CID and is followed by an array containing num-
bers interpreted in groups of three. Each group consists of the vertical component
of the vertical displacement vector w1 (whose horizontal component is always 0)
followed by the horizontal and vertical components for the position vector v. Suc-
cessive groups define the vertical metrics for consecutive CIDs starting with c.
The second format defines a range of CIDs from ¢, to ¢, followed by three
numbers that define the vertical metrics for all CIDs in this range. For example:

/W2 [ 120 [-1000 250 772]
7080 8032 —1000 500 900
]

This W2 entry defines the vertical displacement vector for the glyph with CID
120 as (0,—1000) and the position vector as (250, 772). It also defines the dis-
placement vector for CIDs in the range 7080 through 8032 as (0, —1000) and the
position vector as (500, 900).

CMaps

A CMap specifies the mapping from character codes to character selectors. In
PDF, the character selectors are always CIDs in a CIDFont (as mentioned earlier,
PostScript CMaps may use names or codes as well). A CMap serves a function
analogous to the Encoding dictionary for a simple font. The CMap does not refer
directly to a specific CIDFont; instead, it is combined with it as part of a CID-
keyed font, represented in PDF as a Type 0 font dictionary (see Section 5.6.5,
“Type 0 Font Dictionaries”). Within the CMap, the character mappings refer to
the associated CIDFont by font number, which in PDF is always 0.

Note: PDF also uses a special type of CMap to map character codes to Unicode val-
ues (see Section 5.9.2, “ToUnicode CMaps”).

A CMap also specifies the writing mode—horizontal or vertical—for any
CIDFont with which the CMap is combined. The writing mode determines
which metrics are to be used when glyphs are painted from that font. (Writing
mode is specified as part of the CMap because, in some cases, different shapes are
used when writing horizontally and vertically. In such cases, the horizontal and
vertical variants of a CMap specify different CIDs for a given character code.)
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A CMap may be specified in two ways:

¢ As a name object identifying a predefined CMap, whose definition is known to
the consumer application

¢ Asa stream object whose contents are a CMap file (see implementation note 66
in Appendix H)

Predefined CMaps

Table 5.15 lists the names of the predefined CMaps. These CMaps map character
codes to CIDs in a single descendant CIDFont. CMaps whose names end in H
specify horizontal writing mode; those ending in V specify vertical writing mode.

Note: Several of the CMaps define mappings from Unicode encodings to character
collections. Unicode values appearing in a text string are represented in big-endian
order (high-order byte first). CMap names containing "UCS2" use UCS-2 encoding;
names containing "UTF16" use UTF-16BE (big-endian) encoding.

TABLE 5.15 Predefined CJK CMap names

NAME DESCRIPTION

Chinese (Simplified)

GB-EUC-H Microsoft Code Page 936 (IfCharSet 0x86), GB 2312-80 character set, EUC-CN encoding
GB-EUC-V Vertical version of GB—-EUC-H

GBpc-EUC-H Mac OS, GB 2312-80 character set, EUC-CN encoding, Script Manager code 19
GBpc—EUC-V Vertical version of GBpc—EUC-H

GBK—-EUC-H Microsoft Code Page 936 (IfCharSet 0x86), GBK character set, GBK encoding
GBK-EUC-V Vertical version of GBK—EUC-H

GBKp-EUC-H Same as GBK—EUC-H but replaces half-width Latin characters with proportional forms

and maps character code 0x24 to a dollar sign ($) instead of a yuan symbol (¥)
GBKp-EUC-V Vertical version of GBKp—EUC-H

GBK2K-H GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding
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NAME DESCRIPTION
GBK2K-V Vertical version of GBK2K-H
UniGB-UCS2-H Unicode (UCS-2) encoding for the Adobe-GB1 character collection
UniGB-UCS2-V Vertical version of UniGB-UCS2—-H

UniGB-UTF16-H

UniGB-UTF16-V

Unicode (UTF-16BE) encoding for the Adobe-GB1 character collection; contains map-
pings for all characters in the GB18030-2000 character set

Vertical version of UniGB—UTF16—H

Chinese (Traditional)

B5pc—H Mac OS, Big Five character set, Big Five encoding, Script Manager code 2

B5pc-V Vertical version of B5pc—H

HKscs—B5—-H Hong Kong SCS, an extension to the Big Five character set and encoding
HKscs—B5-V Vertical version of HKscs—B5—H

ETen-B5-H Microsoft Code Page 950 (IfCharSet 0x88), Big Five character set with ETen extensions
ETen—-B5-V Vertical version of ETen-B5-H

ETenms—B5—H Same as ETen—B5-H but replaces half-width Latin characters with proportional forms
ETenms—B5-V Vertical version of ETenms—B5-H

CNS-EUC-H CNS 11643-1992 character set, EUC-TW encoding

CNS-EUC-V Vertical version of CNS—EUC—H

UniCNS-UCS2-H

UniCNS-UCS2-V

UniCNS-UTF16—H

UniCNS-UTF16-V

Unicode (UCS-2) encoding for the Adobe-CNS1 character collection
Vertical version of UniCNS—-UCS2—H

Unicode (UTF-16BE) encoding for the Adobe-CNS1 character collection; contains
mappings for all the characters in the HKSCS-2001 character set and contains both 2-
and 4-byte character codes

Vertical version of UniCNS—-UTF16—H
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NAME DESCRIPTION

Japanese

83pv—RKSJ-H Mac OS, JIS X 0208 character set with KanjiTalké extensions, Shift-JIS encoding, Script
Manager code 1

90ms—RKSJ-H Microsoft Code Page 932 (IfCharSet 0x80), JIS X 0208 character set with NEC and IBM’
extensions

90ms—RKSJ-V Vertical version of 90ms—RKSJ-H

90msp—RKSJ-H
90msp—RKSJ-V

90pv—RKSJ-H

Add—-RKSJ-H
Add—-RKSJ-V
EUC-H

EUC-V
Ext—RKSJ-H
Ext—RKSJ-V

H

Vv
UniJIS-UCS2-H

UniJIS-UCS2-V

UniJIS-UCS2-HW-H

UniJIS-UCS2-HW-V

UniJIS-UTF16-H

UniJIS-UTF16-V

Same as 90ms—RKSJ—H but replaces half-width Latin characters with proportional forms
Vertical version of 90msp—RKSJ—H

Mac OS, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS encoding, Script
Manager code 1

JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
Vertical version of Add—RKSJ-H

JIS X 0208 character set, EUC-JP encoding

Vertical version of EUC-H

JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
Vertical version of Ext—RKSJ-H

JIS X 0208 character set, ISO-2022-JP encoding

Vertical version of H

Unicode (UCS-2) encoding for the Adobe-Japan1 character collection
Vertical version of UniJIS-UCS2—-H

Same as UniJIS-UCS2-H but replaces proportional Latin characters with half-width
forms

Vertical version of UniJIS—-UCS2-HW-H

Unicode (UTF-16BE) encoding for the Adobe-Japanl character collection; contains
mappings for all characters in the JIS X 0213:1000 character set

Vertical version of UniJIS-UTF16-H
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NAME DESCRIPTION
Korean
KSC-EUC-H KS X 1001:1992 character set, EUC-KR encoding
KSC-EUC-V Vertical version of KSC-EUC—H
KSCms—UHC-H Microsoft Code Page 949 (IfCharSet 0x81), KS X 1001:1992 character set plus 8822 addi-
tional hangul, Unified Hangul Code (UHC) encoding
KSCms—UHC-V Vertical version of KSCms—UHC-H

KSCms—-UHC-HW-H
KSCms—UHC-HW-V

KSCpc—-EUC-H

UniKS—-UCS2—-H
UniKS-UCS2-V
UniKS—UTF16-H
UniKS-UTF16-V
Generic

Identity—H

Identity—V

Same as KSCms—UHC—H but replaces proportional Latin characters with half-width forms
Vertical version of KSCms—UHC-HW-H

Mac OS, KS X 1001:1992 character set with Mac OS KH extensions, Script Manager
Code 3

Unicode (UCS-2) encoding for the Adobe-Koreal character collection
Vertical version of UniKS—UCS2-H
Unicode (UTF-16BE) encoding for the Adobe-Koreal character collection

Vertical version of UniKS—UTF16—H

The horizontal identity mapping for 2-byte CIDs; may be used with CIDFonts using any
Registry, Ordering, and Supplement values. It maps 2-byte character codes ranging from
0 to 65,535 to the same 2-byte CID value, interpreted high-order byte first (see below).

Vertical version of Identity—H. The mapping is the same as for Identity—H.

The Identity—H and Identity—-V CMaps can be used to refer to glyphs directly by
their CIDs when showing a text string. When the current font is a Type 0 font
whose Encoding entry is Identity—H or Identity—V, the string to be shown is inter-
preted as pairs of bytes representing CIDs, high-order byte first. This works with
any CIDFont, independently of its character collection. Additionally, when used
in conjunction with a Type 2 CIDFont whose CIDToGIDMap entry is Identity, the
2-byte CID values represent glyph indices for the glyph descriptions in the True-
Type font program. This works only if the TrueType font program is embedded in
the PDF file.
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Table 5.16 lists the character collections referenced by the predefined CMaps for
the different versions of PDE. A dash (—) indicates that the CMap is not pre-
defined in that PDF version.

TABLE 5.16 Character collections for predefined CMaps, by PDF version

CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5
Chinese (Simplified)

GB—EUC-H/V Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBpc—EUC-H Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBpc-EUC-V — Adobe-GB1-0 Adobe-GB1-0 Adobe-GB1-0
GBK-EUC-H/V — Adobe-GB1-2 Adobe-GB1-2 Adobe-GB1-2
GBKp—-EUC-H/V — — Adobe-GB1-2 Adobe-GB1-2
GBK2K-H/V — — Adobe-GB1-4 Adobe-GB1-4
UniGB-UCS2-H/V — Adobe-GB1-2 Adobe-GB1-4 Adobe-GB1-4
UniGB-UTF16-H/V — — — Adobe-GB1-4

Chinese (Traditional)

B5pc—H/V
HKscs—B5—-H/V
ETen—-B5-H/V
ETenms—B5-H/V
CNS—-EUC-H/V
UniCNS-UCS2-H/V
UniCNS-UTF16-H/V
Japanese
83pv—RKSJ-H
90ms—RKSJ-H/V
90msp—RKSJ-H/V

90pv—RKSJ-H

Adobe-CNS1-0

Adobe-CNS1-0

Adobe-CNS1-0

Adobe-Japanl-1
Adobe-Japanl-2

Adobe-Japanl-1

Adobe-CNS1-0
Adobe-CNS1-0
Adobe-CNS1-0
Adobe-CNS1-0

Adobe-CNS1-0

Adobe-Japanl-1
Adobe-Japanl-2
Adobe-Japanl-2

Adobe-Japanl-1

Adobe-CNS1-0
Adobe-CNS1-3
Adobe-CNS1-0
Adobe-CNS1-0
Adobe-CNS1-0

Adobe-CNS1-3

Adobe-Japanl-1
Adobe-Japanl1-2
Adobe-Japanl-2

Adobe-Japanl-1

Adobe-CNS1-0
Adobe-CNS1-3
Adobe-CNS1-0
Adobe-CNS1-0
Adobe-CNS1-0
Adobe-CNS1-3

Adobe-CNS1-4

Adobe-Japanl-1
Adobe-Japanl-2
Adobe-Japanl-2

Adobe-Japanl-1
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CMAP PDF 1.2 PDF 1.3 PDF 1.4 PDF 1.5
Add—RKSJ-H/V Adobe-Japanl-1  Adobe-Japanl-1  Adobe-Japanl-1 Adobe-Japanl-1
EUC-H/V — Adobe-Japanl-1  Adobe-Japanl-1 Adobe-Japanl-1

Ext—RKSJ-H/V

H/NV

UniJIS-UCS2-H/V
UniJIS-UCS2-HW-H/V
UniJIS-UTF16—-H/V
Korean
KSC-EUC-H/V
KSCms—UHC-H/V
KSCms—UHC-HW-H/V
KSCpc—EUC-H
UniKS-UCS2-H/V
UniKS—UTF16—H/V
Generic

Identity—H/V

Adobe-Japanl-2
Adobe-Japanl-1

Adobe-Koreal-0

Adobe-Koreal-1

Adobe-Koreal-0

Adobe-Identity-0 Adobe-Identity-0  Adobe-Identity-0

Adobe-Japanl-2
Adobe-Japanl-1
Adobe-Japanl-2
Adobe-Japanl-2

Adobe-Koreal-0
Adobe-Koreal-1
Adobe-Koreal-1
Adobe-Koreal-0

Adobe-Koreal-1

Adobe-Japanl-2
Adobe-Japanl-1
Adobe-Japanl-4
Adobe-Japanl-4

Adobe-Koreal-0
Adobe-Koreal-1
Adobe-Koreal-1
Adobe-Koreal-0

Adobe-Koreal-1

Adobe-Japanl-2
Adobe-Japanl-1
Adobe-Japanl-4
Adobe-Japanl-4

Adobe-Japanl-5

Adobe-Koreal-0
Adobe-Koreal-1
Adobe-Koreal-1
Adobe-Koreal-0
Adobe-Koreal-1

Adobe-Koreal-2

Adobe-Identity-0

As noted in Section 5.6.2, “CIDSystemInfo Dictionaries,” a character collection is
identified by registry, ordering, and supplement number, and supplements are
cumulative; that is, a higher-numbered supplement includes the CIDs contained
in lower-numbered supplements, as well as some additional CIDs. Consequently,
text encoded according to the predefined CMaps for a given PDF version is valid
when interpreted by a consumer application supporting the same or a later PDF
version. When interpreted by an application supporting an earlier PDF version,
such text causes an error if a CMap is encountered that is not predefined for that
PDF version. If character codes are encountered that were added in a higher-
numbered supplement than the one corresponding to the supported PDF ver-
sion, no characters are displayed for those codes; see “Handling Undefined Char-
acters” on page 454. See also implementation note 67 in Appendix H.



448

I CHAPTER 5 | Text |

Note: If an application producing a PDF file encounters text to be included that
uses CIDs from a higher-numbered supplement than the one corresponding to the
PDF version being generated, the application should embed the CMap for the
higher-numbered supplement rather than refer to the predefined CMap (see the
next section).

The CMap programs that define the predefined CMaps are available through the
ASN Web site and are also provided in conjunction with the book CJKV Informa-
tion Processing by Ken Lunde. Details on the character collections, including sam-
ple glyphs for all the CIDs, can be found in a number of Adobe Technical Notes.
For more information about these Notes and the aforementioned book, see the
Bibliography.

Embedded CMap Files

For character encodings that are not predefined, the PDF file must contain a
stream that defines the CMap. In addition to the standard entries for streams
(listed in Table 3.4 on page 62), the CMap stream dictionary contains the entries
listed in Table 5.17. The data in the stream defines the mapping from character
codes to a font number and a character selector. The data must follow the syntax
defined in Adobe Technical Note #5014, Adobe CMap and CIDFont Files Specifi-
cation.

TABLE 5.17 Additional entries in a CMap dictionary

KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
CMap for a CMap dictionary. (Although this object is the value of an entry
named Encoding in a Type 0 font, its type is CMap.)

CMapName name (Required) The PostScript name of the CMap. It should be the same as the

CIDSysteminfo  dictionary (Required) A dictionary (see Section 5.6.2, “CIDSystemInfo Dictionaries”)
containing entries that define the character collection for the CIDFont or

value of CMapName in the CMap file.

CIDFonts associated with the CMap.

The value of this entry should be the same as the value of CIDSysteminfo in
the CMap file. (However, it does not need to match the values of

CIDSysteminfo for the Identity-H or Identity-V CMaps.)
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KEY TYPE VALUE

WMode integer (Optional) A code that determines the writing mode for any CIDFont with
which this CMap is combined. The possible values are 0 for horizontal and 1
for vertical. Default value: 0.
The value of this entry should be the same as the value of WMode in the
CMap file.

UseCMap name or (Optional) The name of a predefined CMap, or a stream containing a CMap,

stream that is to be used as the base for this CMap. This base allows the CMap to be

defined differentially, specifying only the character mappings that differ from
the base CMap.

CMap Example and Operator Summary

CMap files are fully documented in Adobe Technical Note #5014, Adobe CMap
and CIDFont Files Specification. The following example of a CMap stream object
illustrates and partially explains the contents of a CMap file. There are several
reasons for including this material here:

o It documents some restrictions on the contents of a CMap file that can be
embedded in a PDF file.

o It provides background to aid in understanding subsequent material, particu-
larly “CMap Mapping” on page 453.

o It is the basis for a PDF feature, the ToUnicode CMap, which is a minor exten-
sion of the CMap file format. This extension is described in Section 5.9,
“Extraction of Text Content.”

Example 5.10 is a sample CMap for a Japanese Shift-JIS encoding. Character
codes in this encoding can be either 1 or 2 bytes in length. This CMap could be
used with a CIDFont that uses the same CID ordering as specified in the
CIDSysteminfo entry. Note that several of the entries in the stream dictionary are
also replicated in the stream data.
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Example 5.10

22 0 obj
<< /[Type /CMap
/CMapName /90ms—RKSJ-H
/CIDSysteminfo << /Registry (Adobe)
/Ordering (Japan1)
/Supplement 2
>>
/WMode 0
/Length 230R
>>

stream

%!PS—Adobe-3.0 Resource—CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)
%%BeginResource: CMap (90ms—RKSJ-H)

%%Title: (90ms—RKSJ-H Adobe Japan1 2)

%%Version: 10.001

%%Copyright: Copyright 1990-2001 Adobe Systems Inc.
%%Copyright: All Rights Reserved.

%%EndComments

/CIDInit /ProcSet findresource begin
12 dict begin

begincmap

/CIDSysteminfo

3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def
/Supplement 2 def

end def

/CMapName /90ms—RKSJ-H def
/CMapVersion 10.001 def
/CMapType 1 def

/UIDOffset 950 def

/XUID [1 10 25343] def
/WMode 0 def

4 begincodespacerange

<00> <80>
<8140> <9FFC>
<A0> <DF>

<E040> <FCFC>
endcodespacerange
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1 beginnotdefrange
<00> <1F> 231
endnotdefrange

100 begincidrange
<20> <7D> 231
<7E> <7E> 631
<8140> <817E> 633
<8180> <81AC> 696
<81B8> <81BF> 741
<81C8> <81CE> 749
... Additional ranges...
<FB40> <FB7E> 8518
<FB80> <FBFC> 8581
<FC40> <FC4B> 8706
endcidrange

endcmap

CMapName currentdict /CMap defineresource pop
end

end

%%EndResource
%%EOF

endstream

endobj

As can be seen from this example, a CMap file conforms to PostScript language
syntax; however, a full PostScript interpreter is not needed to interpret it. Aside
from some required boilerplate, the CMap file consists of one or more occur-
rences of several special CMap construction operators, invoked in a specific
order. Following is a summary of these operators:

¢ begincmap and endcmap enclose the CMap definition.

¢ usecmap incorporates the code mappings from another CMap file. In PDF, the
other CMap must also be identified in the UseCMap entry in the CMap dictio-
nary (see Table 5.17 on page 448).

¢ begincodespacerange and endcodespacerange define codespace ranges—the
valid input character code ranges—by specifying a pair of codes of some partic-
ular length giving the lower and upper bounds of each range; see “CMap Map-
ping” on page 453.
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e usefont specifies a font number that is an implicit operand of all the character
code mapping operations that follow. In PDFE, the font number must be 0;
therefore, usefont typically does not actually appear.

¢ beginbfchar and endbfchar define mappings of individual input character
codes to character codes or character names in the associated font.
beginbfrange and endbfrange do the same for ranges of input codes. In PDEF,
these operators may not appear in a CMap that is used as the Encoding entry of
a Type 0 font; however, they may appear in the definition of a ToUnicode CMap
(see Section 5.9, “Extraction of Text Content”).

¢ begincidchar and endcidchar define mappings of individual input character
codes to CIDs in the associated CIDFont. begincidrange and endcidrange do
the same, but for ranges of input codes.

¢ beginnotdefchar, endnotdefchar, beginnotdefrange, and endnotdefrange
define notdef mappings from character codes to CIDs. As described in the
section “Handling Undefined Characters” on page 454, a notdef mapping is
used if the normal mapping produces a CID for which no glyph is present in
the associated CIDFont.

The beginrearrangedfont, endrearrangedfont, beginusematrix, and
endusematrix operators, described in Adobe Technical Note #5014, Adobe CMap

and CIDFont Files Specification, cannot be used in CMap files embedded in a
PDF file.

5.6.5 Type 0 Font Dictionaries
A Type 0 font dictionary contains the entries listed in Table 5.18.

Example 5.11 shows a Type 0 font that refers to a single CIDFont. The CMap used
is one of the predefined CMaps listed in Table 5.15 on page 442 and is referenced

by name.
TABLE 5.18 Entries in a Type 0 font dictionary
KEY TYPE VALUE
Type name (Required) The type of PDF object that this dictionary describes; must be

Font for a font dictionary.

Subtype name (Required) The type of font; must be TypeO for a Type 0 font.
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KEY TYPE
BaseFont name
Encoding name or
stream
DescendantFonts array
ToUnicode stream

(Required) The PostScript name of the font. In principle, this is an arbitrary
name, since there is no font program associated directly with a Type 0 font
dictionary. The conventions described here ensure maximum compatibility
with existing Acrobat products.

If the descendant is a Type 0 CIDFont, this name should be the concatenation
of the CIDFont’s BaseFont name, a hyphen, and the CMap name given in the
Encoding entry (or the CMapName entry in the CMap). If the descendant is a
Type 2 CIDFont, this name should be the same as the CIDFont’s BaseFont
name.

(Required) The name of a predefined CMap, or a stream containing a CMap
that maps character codes to font numbers and CIDs. If the descendant is a
Type 2 CIDFont whose associated TrueType font program is not embedded
in the PDF file, the Encoding entry must be a predefined CMap name (see
“Glyph Selection in CIDFonts” on page 437).

(Required) A one-element array specifying the CIDFont dictionary that is the
descendant of this Type 0 font.

(Optional) A stream containing a CMap file that maps character codes to
Unicode values (see Section 5.9, “Extraction of Text Content”).

Example 5.11

14 0 obj
<< /Type /Font

/Subtype /TypeO

/BaseFont /HeiseiMin—W5-90ms—RKSJ—H
/Encoding /90ms—RKSJ-H
/DescendantFonts [150R]

>>
endobj

CMap Mapping

The Encoding entry of a Type 0 font dictionary specifies a CMap that determines
how text-showing operators (such as Tj) interpret the bytes in the string to be
shown when the current font is the Type 0 font. The following paragraphs
describe how the characters in the string are decoded and mapped into character
selectors (which in PDF must always be CIDs).
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The codespace ranges in the CMap (delimited by begincodespacerange and
endcodespacerange) determine how many bytes are extracted from the string for
each successive character code. A codespace range is specified by a pair of codes
of some particular length giving the lower and upper bounds of that range. A
code is considered to match the range if it is the same length as the bounding
codes and the value of each of its bytes lies between the corresponding bytes of
the lower and upper bounds. The code length cannot exceed the number of bytes
representable in an integer (see Appendix C).

A sequence of one or more bytes is extracted from the string and matched against
the codespace ranges in the CMap. That is, the first byte is matched against 1-byte
codespace ranges; if no match is found, a second byte is extracted, and the 2-byte
code is matched against 2-byte codespace ranges. This process continues for suc-
cessively longer codes until a match is found or all codespace ranges have been
tested. There will be at most one match because codespace ranges do not overlap.

The code extracted from the string is looked up in the character code mappings
for codes of that length. (These are the mappings defined by beginbfchar,
endbfchar, begincidchar, endcidchar, and corresponding operators for ranges.)
Failing that, it is looked up in the notdef mappings, as described in the next
section.

The results of the CMap mapping algorithm are a font number and a character
selector. The font number is used as an index into the Type 0 font’s
DescendantFonts array to select a CIDFont. In PDE, the font number is always 0
and the character selector is always a CID; this is the only case described here.
The CID is then used to select a glyph in the CIDFont. If the CIDFont contains
no glyph for that CID, the notdef mappings are consulted, as described in the
next section.

Handling Undefined Characters

A CMap mapping operation can fail to select a glyph for a variety of reasons. This
section describes those reasons and what happens when they occur.

If a code maps to a CID for which no such glyph exists in the descendant
CIDFont, the notdef mappings in the CMap are consulted to obtain a substitute
character selector. These mappings (so called by analogy with the .notdef charac-
ter mechanism in simple fonts) are delimited by the operators beginnotdefchar,
endnotdefchar, beginnotdefrange, and endnotdefrange. They always map to a
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CID. If a matching notdef mapping is found, the CID selects a glyph in the associ-
ated descendant, which must be a CIDFont. If no glyph exists for that CID, the
glyph for CID 0 (which is required to be present) is substituted.

If the CMap does not contain either a character mapping or a notdef mapping for
the code, descendant 0 is selected and the glyph for CID 0 is substituted from the
associated CIDFont.

If the code is invalid—that is, the bytes extracted from the string to be shown do
not match any codespace range in the CMap—a substitute glyph is chosen as just
described. The character mapping algorithm is reset to its original position in the
string, and a modified mapping algorithm chooses the best partially matching
codespace range:

1. If the first byte extracted from the string to be shown does not match the first
byte of any codespace range, the range having the shortest codes is chosen.

2. Otherwise (that is, if there is a partial match), for each additional byte extract-
ed, the code accumulated so far is matched against the beginnings of all longer
codespace ranges until the longest such partial match has been found. If multi-
ple codespace ranges have partial matches of the same length, the one having
the shortest codes is chosen.

The length of the codes in the chosen codespace range determines the total num-
ber of bytes to consume from the string for the current mapping operation.

Font Descriptors

A font descriptor specifies metrics and other attributes of a simple font or a
CIDFont as a whole, as distinct from the metrics of individual glyphs. These font
metrics provide information that enables a consumer application to synthesize a
substitute font or select a similar font when the font program is unavailable. The
font descriptor may also be used to embed the font program in the PDF file.

Font descriptors are not used with Type 0 fonts. Beginning with PDF 1.5, font de-
scriptors may be used with Type 3 fonts in Tagged PDF documents (see Section
10.7, “Tagged PDF”).

A font descriptor is a dictionary whose entries specify various font attributes. The
entries common to all font descriptors—for both simple fonts and CIDFonts—are
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listed in Table 5.19. Additional entries in the font descriptor for a CIDFont are de-
scribed in Section 5.7.2, “Font Descriptors for CIDFonts” All integer values are
units in glyph space. The conversion from glyph space to text space is described
in Section 5.1.3, “Glyph Positioning and Metrics.”

TABLE 5.19 Entries common to all font descriptors
KEY TYPE VALUE

Type name (Required) The type of PDF object that this dictionary describes; must be
FontDescriptor for a font descriptor.

FontName name (Required) The PostScript name of the font. This name should be the same as
the value of BaseFont in the font or CIDFont dictionary that refers to this
font descriptor.

FontFamily byte string (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) A byte string specifying the preferred font family name. For example,
for the font Times Bold Italic, the FontFamily is Times.

FontStretch name (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) The font stretch value. It must be one of the following names (or-
dered from narrowest to widest): UltraCondensed, ExtraCondensed,
Condensed, SemiCondensed, Normal, SemiExpanded, Expanded, ExtraExpand-
ed or UltraExpanded.

Note: The specific interpretation of these values varies from font to font. For ex-
ample, Condensed in one font may appear most similar to Normal in another.

FontWeight number (Optional; PDF 1.5; strongly recommended for Type 3 fonts in Tagged PDF doc-
uments) The weight (thickness) component of the fully-qualified font name
or font specifier. The possible values are 100, 200, 300, 400, 500, 600, 700,
800, or 900, where each number indicates a weight that is at least as dark as its
predecessor. A value of 400 indicates a normal weight; 700 indicates bold.

Note: The specific interpretation of these values varies from font to font. For ex-
ample, 300 in one font may appear most similar to 500 in another.

Flags integer (Required) A collection of flags defining various characteristics of the font
(see Section 5.7.1, “Font Descriptor Flags™).

FontBBox rectangle (Required, except for Type 3 fonts) A rectangle (see Section 3.8.4, “Rectan-
gles”), expressed in the glyph coordinate system, specifying the font bounding
box. This is the smallest rectangle enclosing the shape that would result if all
of the glyphs of the font were placed with their origins coincident and then
filled.
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VALUE
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KEY TYPE
ItalicAngle number
Ascent number
Descent number
Leading number
CapHeight number
XHeight number
StemV number
StemH number
AvgWidth number
MaxWidth number
MissingWidth number
FontFile stream
FontFile2 stream

(Required) The angle, expressed in degrees counterclockwise from the verti-
cal, of the dominant vertical strokes of the font. (For example, the 9-oclock
position is 90 degrees, and the 3-oclock position is 90 degrees.) The value is
negative for fonts that slope to the right, as almost all italic fonts do.

(Required, except for Type 3 fonts) The maximum height above the baseline
reached by glyphs in this font, excluding the height of glyphs for accented
characters.

(Required, except for Type 3 fonts) The maximum depth below the baseline
reached by glyphs in this font. The value is a negative number.

(Optional) The spacing between baselines of consecutive lines of text. Default
value: 0.

(Required for fonts that have Latin characters, except for Type 3 fonts) The ver-
tical coordinate of the top of flat capital letters, measured from the baseline.

(Optional) The font’s x height: the vertical coordinate of the top of flat non-
ascending lowercase letters (like the letter x), measured from the baseline, in
fonts that have Latin characters. Default value: 0.

(Required, except for Type 3 fonts) The thickness, measured horizontally, of
the dominant vertical stems of glyphs in the font.

(Optional) The thickness, measured vertically, of the dominant horizontal
stems of glyphs in the font. Default value: 0.

(Optional) The average width of glyphs in the font. Default value: 0.
(Optional) The maximum width of glyphs in the font. Default value: 0.

(Optional) The width to use for character codes whose widths are not speci-
fied in a font dictionary’s Widths array. This has a predictable effect only if all
such codes map to glyphs whose actual widths are the same as the value of
the MissingWidth entry. Default value: 0.

(Optional) A stream containing a Type 1 font program (see Section 5.8,
“Embedded Font Programs”).

(Optional; PDF 1.1) A stream containing a TrueType font program (see Sec-
tion 5.8, “Embedded Font Programs”).
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KEY TYPE VALUE
FontFile3 stream (Optional; PDF 1.2) A stream containing a font program whose format is

specified by the Subtype entry in the stream dictionary (see Table 5.23 and
implementation note 68 in Appendix H).

At most, only one of the FontFile, FontFile2, and FontFile3 entries may be
present.

CharSet ASClII string  (Optional; meaningful only in Type 1 fonts; PDF 1.1) A string listing the char-
or byte string  acter names defined in a font subset. The names in this string must be in PDF
syntax—that is, each name preceded by a slash (/). The names can appear in
any order. The name .notdef should be omitted; it is assumed to exist in the
font subset. If this entry is absent, the only indication of a font subset is the
subset tag in the FontName entry (see Section 5.5.3, “Font Subsets”).

5.7.1 Font Descriptor Flags

The value of the Flags entry in a font descriptor is an unsigned 32-bit integer con-
taining flags specifying various characteristics of the font. Bit positions within the
flag word are numbered from 1 (low-order) to 32 (high-order). Table 5.20 shows
the meanings of the flags; all undefined flag bits are reserved and must be set to 0.
Figure 5.13 shows examples of fonts with these characteristics.

TABLE 5.20 Font flags

BIT POSITION NAME MEANING

1 FixedPitch All glyphs have the same width (as opposed to proportional or variable-pitch
fonts, which have different widths).

2 Serif Glyphs have serifs, which are short strokes drawn at an angle on the top and
bottom of glyph stems. (Sans serif fonts do not have serifs.)

3 Symbolic Font contains glyphs outside the Adobe standard Latin character set. This
flag and the Nonsymbolic flag cannot both be set or both be clear (see be-
low).

4 Script Glyphs resemble cursive handwriting.

6 Nonsymbolic ~ Font uses the Adobe standard Latin character set or a subset of it (see below).

7 Italic Glyphs have dominant vertical strokes that are slanted.
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BIT POSITION NAME MEANING
17 AllCap Font contains no lowercase letters; typically used for display purposes, such

as for titles or headlines.

18 SmallCap Font contains both uppercase and lowercase letters. The uppercase letters are
similar to those in the regular version of the same typeface family. The glyphs
for the lowercase letters have the same shapes as the corresponding uppercase
letters, but they are sized and their proportions adjusted so that they have the
same size and stroke weight as lowercase glyphs in the same typeface family.

19 ForceBold See below.

The Nonsymbolic flag (bit 6 in the Flags entry) indicates that the font’s character
set is the Adobe standard Latin character set (or a subset of it) and that it uses the
standard names for those glyphs. This character set is shown in Section D.1, “Lat-
in Character Set and Encodings”” If the font contains any glyphs outside this set,
the Symbolic flag should be set and the Nonsymbolic flag clear. In other words,
any font whose character set is not a subset of the Adobe standard character set is
considered to be symbolic. This influences the font’s implicit base encoding and
may affect a consumer application’s font substitution strategies.

Fixed-pitch font The quick brown fox jumped.

Serif font The quick brown fox jumped.

Sans serif font The quick brown fox jumped.

Symbolic font Kstesk L@sksksk SOUDE | OOk
Script font T /Wm/ Yrierre %yW

ftalic font The quick brown fox jumped.

All-cap font THE QUICK BROWN FOX JUMPED
Small-cap font THE QUICK BROWN FOX JUMPED.

FIGURE 5.13 Characteristics represented in the Flags entry of a font descriptor
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Note: This classification of nonsymbolic and symbolic fonts is peculiar to PDE A
font may contain additional characters that are used in Latin writing systems but
are outside the Adobe standard Latin character set; PDF considers such a font to be
symbolic. The use of two flags to represent a single binary choice is a historical acci-
dent.

The ForceBold flag (bit 19) determines whether bold glyphs are painted with
extra pixels even at very small text sizes. Typically, when glyphs are painted at
small sizes on very low-resolution devices such as display screens, features of bold
glyphs may appear only 1 pixel wide. Because this is the minimum feature width
on a pixel-based device, ordinary (nonbold) glyphs also appear with 1-pixel-wide
features and therefore cannot be distinguished from bold glyphs. If the ForceBold
flag is set, features of bold glyphs may be thickened at small text sizes.

Example 5.12 illustrates a font descriptor whose Flags entry has the Serif,
Nonsymbolic, and ForceBold flags (bits 2, 6, and 19) set.

Example 5.12

7 0 obj
<< /[Type /FontDescriptor
/FontName /AGaramond-Semibold
/Flags 262178 % Bits 2, 6,and 19
/FontBBox [-177 —269 1123 866]
/MissingWidth 255
/StemV 105
/StemH 45
/CapHeight 660
/XHeight 394
/Ascent 720
/Descent —270
/Leading 83
/MaxWidth 1212
/AvgWidth 478
/ItalicAngle 0
>>
endobj

5.7.2 Font Descriptors for CIDFonts

In addition to the entries in Table 5.19 on page 456, the FontDescriptor dictionar-
ies of CIDFonts may contain the entries listed in Table 5.21.
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TABLE 5.21 Additional font descriptor entries for CIDFonts

KEY

TYPE

VALUE

Style

Lang

FD

CIDSet

dictionary

name

dictionary

stream

(Optional) A dictionary containing entries that describe the style of the glyphs in the
font (see “Style” on page 461).

(Optional) A name specifying the language of the font, used for encodings where the
language is not implied by the encoding itself. The possible values are the codes de-
fined by Internet RFC 3066, Tags for the Identification of Languages (see the Bibliogra-
phy). If this entry is absent, the language is considered to be unknown.

Note: This specification for the allowable language codes is introduced in PDF 1.5. Prior
versions supported a subset: the 2-character language codes defined by ISO 639 (see the
Bibliography).

(Optional) A dictionary whose keys identify a class of glyphs in a CIDFont. Each value
is a dictionary containing entries that override the corresponding values in the main
font descriptor dictionary for that class of glyphs (see “FD” on page 462).

(Optional) A stream identifying which CIDs are present in the CIDFont file. If this en-
try is present, the CIDFont contains only a subset of the glyphs in the character collec-
tion defined by the CIDSystemInfo dictionary. If it is absent, the only indication of a
CIDFont subset is the subset tag in the FontName entry (see Section 5.5.3, “Font Sub-
sets”).

The stream’s data is organized as a table of bits indexed by CID. The bits should be
stored in bytes with the high-order bit first. Each bit corresponds to a CID. The most
significant bit of the first byte corresponds to CID 0, the next bit to CID 1, and so on.

Style

The Style dictionary contains entries that define style attributes and values for the
CIDFont. Currently, only the Panose entry is defined. The value of Panose is a
12-byte string consisting of the following elements:

o The font family class and subclass ID bytes, given in the sFamilyClass field of the
“0S/2” table in a TrueType font. This field is documented in Microsoft’s True-
Type 1.0 Font Files Technical Specification.

¢ Ten bytes for the PANOSE classification number for the font. The PANOSE
classification system is documented in Hewlett-Packard Company’s PANOSE
Classification Metrics Guide.

See the Bibliography for more information about these documents.
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The following is an example of a Style entry in the font descriptor:

/Style << /Panose <01 05 02 02 03 00 00 00 00 00 00 00> >>

FD

A CIDFont may be made up of different classes of glyphs, each class requiring
different sets of the font-wide attributes that appear in font descriptors. Latin
glyphs, for example, may require different attributes than kanji glyphs. The font
descriptor defines a set of default attributes that apply to all glyphs in the
CIDFont. The FD entry in the font descriptor contains exceptions to these de-
faults.

The key for each entry in an FD dictionary is the name of a class of glyphs—that
is, a particular subset of the CIDFont’s character collection. The entry’s value is a
font descriptor whose contents are to override the font-wide attributes for that
class only. This font descriptor should contain entries for metric information
only; it should not include FontFile, FontFile2, FontFile3, or any of the entries list-
ed in Table 5.21.

It is strongly recommended that the FD dictionary contain at least the metrics for
the proportional Latin glyphs. With the information for these glyphs, a more ac-
curate substitution font can be created.

The names of the glyph classes depend on the character collection, as identified
by the Registry, Ordering, and Supplement entries in the CIDSysteminfo
dictionary. Table 5.22 lists the valid keys for the Adobe-GB1, Adobe-CNS1, Ado-
be-Japanl, Adobe-Japan2, and Adobe-Koreal character collections.
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TABLE 5.22 Glyph classes in CJK fonts
CHARACTER COLLECTION CLASS GLYPHS IN CLASS
Adobe-GB1 Alphabetic Full-width Latin, Greek, and Cyrillic glyphs
Dingbats Special symbols
Generic Typeface-independent glyphs, such as line-drawing
Hanzi Full-width hanzi (Chinese) glyphs
HRoman . .
HRomanRot Half-width Latin glyphs
Kana Same as HRoman but rotated for use in vertical writing
Proportional Japanese kana (katakana and hiragana) glyphs
ProportionalRot  Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing
Adobe-CNS1 Alphabetic Full-width Latin, Greek, and Cyrillic glyphs
Dingbats Special symbols
Generic Typeface-independent glyphs, such as line-drawing
Hanzi Full-width hanzi (Chinese) glyphs
HRoman . .
HRomanRot Half-width Latin glyphs
Kana Same as HRoman but rotated for use in vertical writing

Adobe-Japanl

Adobe-Japan2

Proportional
ProportionalRot

Alphabetic
AlphaNum
Dingbats
DingbatsRot
Generic
GenericRot
HKana
HKanaRot
HRoman
HRomanRot
Kana

Kanji
Proportional
ProportionalRot
Ruby

Alphabetic
Dingbats
HojoKanji

Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs
Same as Proportional but rotated for use in vertical writing

Full-width Latin, Greek, and Cyrillic glyphs

Numeric glyphs

Special symbols

Same as Dingbats but rotated for use in vertical writing
Typeface-independent glyphs, such as line-drawing

Same as Generic but rotated for use in vertical writing
Half-width kana (katakana and hiragana) glyphs

Same as HKana but rotated for use in vertical writing
Half-width Latin glyphs

Same as HRoman but rotated for use in vertical writing
Full-width kana (katakana and hiragana) glyphs
Full-width kanji (Chinese) glyphs

Proportional Latin glyphs

Same as Proportional but rotated for use in vertical writing
Glyphs used for setting ruby (small glyphs that serve to annotate
other glyphs with meanings or readings)

Full-width Latin, Greek, and Cyrillic glyphs
Special symbols
Full-width kanji glyphs
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CHARACTER COLLECTION CLASS

GLYPHS IN CLASS

Adobe-Koreal Alphabetic
Dingbats
Generic
Hangul
Hanja
HRoman
HRomanRot
Kana
Proportional
ProportionalRot

Full-width Latin, Greek, and Cyrillic glyphs

Special symbols

Typeface-independent glyphs, such as line-drawing
Hangul and jamo glyphs

Full-width hanja (Chinese) glyphs

Half-width Latin glyphs

Same as HRoman but rotated for use in vertical writing
Japanese kana (katakana and hiragana) glyphs
Proportional Latin glyphs

Same as Proportional but rotated for use in vertical writing

Example 5.13 illustrates an FD dictionary containing two entries.

Example 5.13

/FD << /Proportional 250R
/HKana 26 O0R
>>

25 0 obj
<< /Type /FontDescriptor

/FontName /HeiseiMin—W3—Proportional

/Flags 2
/AvgWidth 478
/MaxWidth 1212
/MissingWidth 250
/StemV 105
/StemH 45
/CapHeight 660
/XHeight 394
/Ascent 720
/Descent —270
/Leading 83
>>
endobj

26 0 obj
<< /Type /FontDescriptor

/FontName /HeiseiMin—-W3—HKana

/Flags 3
/AvgWidth 500
/MaxWidth 500
/MissingWidth 500
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/StemV 50
/StemH 75
/Ascent 720
/Descent 0
/Leading 83
>>
endobj

5.8 Embedded Font Programs

A font program can be embedded in a PDF file as data contained in a PDF stream
object. Such a stream object is also called a font file by analogy with font programs
that are available from sources external to the consumer application. (See also
implementation note 69 in Appendix H.)

Font programs are subject to copyright, and the copyright owner may impose
conditions under which a font program can be used. These permissions are re-
corded either in the font program or as part of a separate license. One of the con-
ditions may be that the font program cannot be embedded, in which case it
should not be incorporated into a PDF file. A font program may allow embed-
ding for the sole purpose of viewing and printing the document but not for creat-
ing new or modified text that uses the font (in either the same document or other
documents). The latter operation would require the user performing the opera-
tion to have a licensed copy of the font program, not a copy extracted from the
PDF file. In the absence of explicit information to the contrary, a PDF consumer
should assume that any embedded font programs are to be used only to view and
print the document and not for any other purposes.

Table 5.23 summarizes the ways in which font programs are embedded in a PDF
file, depending on the representation of the font program. The key is the name
used in the font descriptor to refer to the font file stream; the subtype is the value
of the Subtype key, if present, in the font file stream dictionary. Further details of
specific font program representations are given below.

TABLE 5.23 Embedded font organization for various font types
KEY SUBTYPE DESCRIPTION

FontFile — Type 1 font program, in the original (noncompact) format described in
Adobe Type 1 Font Format. This entry can appear in the font descriptor for
a Typel or MMType1 font dictionary.
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KEY

SUBTYPE

DESCRIPTION

FontFile2

FontFile3

TypelC

CIDFontType0OC

OpenType

(PDF 1.1) TrueType font program, as described in the TrueType Reference
Manual. This entry can appear in the font descriptor for a TrueType font
dictionary or (in PDF 1.3) for a CIDFontType2 CIDFont dictionary.

(PDF 1.2) Type 1-equivalent font program represented in the Compact
Font Format (CFF), as described in Adobe Technical Note #5176, The
Compact Font Format Specification. This entry can appear in the font de-
scriptor for a Type1 or MMType1 font dictionary.

(PDF 1.3) Type 0 CIDFont program represented in the Compact Font For-
mat (CFF), as described in Adobe Technical Note #5176, The Compact
Font Format Specification. This entry can appear in the font descriptor for
a CIDFontType0 CIDFont dictionary.

(PDF 1.6) OpenType font program, as described in the OpenType Font
Specification (see the Bibliography). OpenType is an extension of True-
Type that allows inclusion of font programs that use the Compact Font
Format (CFF).

This entry can appear in the font descriptor for the following types of font
dictionaries:

e A TrueType font dictionary or a CIDFontType2 CIDFont dictionary, if
the embedded font program contains a “glyf” table.

e A CIDFontType0 CIDFont dictionary, if the embedded font program
contains a “CFF” table with a Top DICT that uses CIDFont operators
(this is equivalent to subtype CIDFontType0C above).

e A Type1l font dictionary or CIDFontType0 CIDFont dictionary, if the
embedded font program contains a “CFF” table without CIDFont oper-
ators.

The stream dictionary for a font file contains the normal entries for a stream,
such as Length and Filter (listed in Table 3.4 on page 62), plus the additional
entries listed in Table 5.24.

TABLE 5.24 Additional entries in an embedded font stream dictionary

KEY

TYPE VALUE

Length1

integer (Required for Type 1 and TrueType fonts) The length in bytes of the clear-text portion of the
Type 1 font program (see below), or the entire TrueType font program, after it has been de-

coded using the filters specified by the stream’s Filter entry, if any.
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KEY

TYPE

VALUE

Length2

Length3

Subtype

Metadata

integer

integer

name

stream

(Required for Type 1 fonts) The length in bytes of the encrypted portion of the Type 1 font
program (see below) after it has been decoded using the filters specified by the stream’s Fil-
ter entry.

(Required for Type 1 fonts) The length in bytes of the fixed-content portion of the Type 1
font program (see below) after it has been decoded using the filters specified by the stream’s
Filter entry. If Length3 is 0, it indicates that the 512 zeros and cleartomark have not been in-
cluded in the FontFile font program and must be added.

(Required if referenced from FontFile3; PDF 1.2) A name specifying the format of the embed-
ded font program. The name must be Type1C for Type 1 compact fonts, CIDFontTypeOC for
Type 0 compact CIDFonts, or OpenType for OpenType fonts. When additional font formats
are added to PDF, more values will be defined for Subtype.

(Optional; PDF 1.4) A metadata stream containing metadata for the embedded font pro-
gram (see Section 10.2.2, “Metadata Streams”).

A standard Type 1 font program, as described in the Adobe Type 1 Font Format
specification, consists of three parts: a clear-text portion (written using PostScript
syntax), an encrypted portion, and a fixed-content portion. The fixed-content
portion contains 512 ASCII zeros followed by a cleartomark operator, and per-
haps followed by additional data. Although the encrypted portion of a standard
Type 1 font may be in binary or ASCII hexadecimal format, PDF supports only the
binary format. However, the entire font program may be encoded using any filters.

Example 5.14 shows the structure of an embedded standard Type 1 font.

Example 5.14

12 0 obj
<< /Filter /ASClI85Decode
/Length 41116
/Length1 2526
/Length2 32393
/Length3 570
>>
stream
,p>"rDKJj'E+LaU0eP.@+AH9dBOuUShFD55nC
...Omitted data...
JJQ&NT)<=Ap&mGf(%:%h1%9c//K(/*0=.C>UXkbVGTrr~>
endstream
endobj
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As noted in Table 5.23, a Type 1-equivalent font program or a Type 0 CIDFont
program can be represented in the Compact Font Format (CFF). The Length1,
Length2, and Length3 entries are not needed in that case. Although CFF enables
multiple font or CIDFont programs to be bundled together in a single file, an em-
bedded CFF font file in PDF must consist of exactly one font or CIDFont (as ap-
propriate for the associated font dictionary).

Note: According to the Adobe Type 1 Font Format specification, a Type 1 font pro-
gram may contain a PaintType entry specifying whether the glyphs’ outlines are to
be filled or stroked. For fonts embedded in a PDF file, this entry is ignored; the deci-
sion whether to fill or stroke glyph outlines is entirely determined by the PDF text
rendering mode parameter (see Section 5.2.5, “Text Rendering Mode”). This also
applies to Type 1 compact fonts and Type 0 compact CIDFonts.

A TrueType font program may be used as part of either a font or a CIDFont.
Although the basic font file format is the same in both cases, there are different
requirements for what information must be present in the font program. The fol-
lowing TrueType tables are always required: “head,” “hhea,” “loca,” “maxp,” “cvt ;”
“prep, “glyfy” “hmtx,” and “fpgm” If used with a simple font dictionary, the font
program must additionally contain a “cmap” table defining one or more encod-
ings, as discussed in “Encodings for TrueType Fonts” on page 429. If used with a
CIDFont dictionary, the “cmap” table is not needed, since the mapping from

character codes to glyph descriptions is provided separately.

Note: The “vhea” and “vmtx” tables that specify vertical metrics are never used by a
PDF consumer application. The only way to specify vertical metrics in PDF is by
means of the DW2 and W2 entries in a CIDFont dictionary.

Beginning with PDF 1.6, font programs may be embedded using the OpenType
format, which is an extension of the TrueType format that allows inclusion of font
programs using the Compact Font Format (CFF). It also allows inclusion of data
to describe glyph substitutions, kerning, and baseline adjustments. In addition to
rendering glyphs, applications can use the data in OpenType fonts to do advanced
line layout, automatically substitute ligatures, provide selections of alternate
glyphs to users, and handle complicated writing scripts.

Like TrueType, OpenType font programs contain a number of tables, as defined
in the OpenType Font Specification (see the Bibliography). For OpenType fonts
based on TrueType, the “glyf” table contains the glyph descriptions. For Open-
Type fonts based on CFF, the “CFF” table is a complete font program containing
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the glyph descriptions. These tables, as well as the “cmap” table, are required to be
present when embedding fonts. In addition, for OpenType fonts based on True-

Type, the “head,” “hhea,” “loca,” “maxp,” “cvt ,” “prep,” “hmtx,” and “fpgm” tables
are required.

Note: Other tables, such as those used for advanced line layout, need not be present;
however, their absence may prevent editing of text containing the font.

The process of finding glyph descriptions in OpenType fonts is the following:

e For Type 1 fonts using “CFF” tables, the process is as described in “Encodings
for Type 1 Fonts” on page 428.

¢ For TrueType fonts using “glyf” tables, the process is as described in “Encod-
ings for TrueType Fonts” on page 429. Since this process sometimes produces
ambiguous results, it is strongly recommended that PDF creators, instead of us-
ing a simple font, use a Type 0 font with an Identity-H encoding and use the
glyph indices as character codes, as described following Table 5.15 on page 442.

¢ For CIDFontTypeO fonts using “CFF” tables, the process is as described in the
discussion of embedded Type 0 CIDFonts in “Glyph Selection in CIDFonts” on
page 437.

¢ For CIDFontType2 fonts using “glyf” tables, the process is as described in the
discussion of embedded Type 2 CIDFonts in “Glyph Selection in CIDFonts” on
page 437.

As discussed in Section 5.5.3, “Font Subsets,” an embedded font program may
contain only the subset of glyphs that are used in the PDF document. This may be
indicated by the presence of a CharSet or CIDSet entry in the font descriptor that
refers to the font file, although subset fonts are not always so identified.

Extraction of Text Content

The preceding sections describe all the facilities for showing text and causing
glyphs to be painted on the page. In addition to displaying text, consumer appli-
cations sometimes need to determine the information content of text—that is, its
meaning according to some standard character identification as opposed to its
rendered appearance. This need arises during operations such as searching, in-
dexing, and exporting of text to other applications.
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The Unicode standard defines a system for numbering all of the common charac-
ters used in a large number of languages. It is a suitable scheme for representing
the information content of text, but not its appearance, since Unicode values
identify characters, not glyphs. For information about Unicode, see the Unicode
Standard by the Unicode Consortium (see the Bibliography).

When extracting character content, a consumer application can easily convert
text to Unicode values if a font’s characters are identified according to a standard
character set that is known to the application. This character identification can
occur if either the font uses a standard named encoding or the characters in the
font are identified by standard character names or CIDs in a well-known collec-
tion. Section 5.9.1, “Mapping Character Codes to Unicode Values,” describes in
detail the overall algorithm for mapping character codes to Unicode values.

If a font is not defined in one of these ways, the glyphs can still be shown, but the
characters cannot be converted to Unicode values without additional informa-
tion:

e This information can be provided as an optional ToUnicode entry in the font
dictionary (PDF 1.2; see Section 5.9.2, “ToUnicode CMaps”), whose value is a
stream object containing a special kind of CMap file that maps character codes
to Unicode values.

¢ An ActualText entry for a structure element or marked-content sequence (see
Section 10.8.3, “Replacement Text”) can be used to specify the text content di-
rectly.

5.9.1 Mapping Character Codes to Unicode Values

A consumer application can use the following methods, in the priority given, to
map a character code to a Unicode value. Tagged PDF documents, in particular,
must provide at least one of these methods (see “Unicode Mapping in Tagged
PDF” on page 892):

e If the font dictionary contains a ToUnicode CMap (see Section 5.9.2,
“ToUnicode CMaps”), use that CMap to convert the character code to Unicode.

o If the font is a simple font that uses one of the predefined encodings
MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding, or that has an
encoding whose Differences array includes only character names taken from



471

[ SECTION 5.9 I Extraction of Text Content |

the Adobe standard Latin character set and the set of named characters in the
Symbol font (see Appendix D):

1.

Map the character code to a character name according to Table D.1 on
page 996 and the font’s Differences array.

Look up the character name in the Adobe Glyph List (see the Bibliography)
to obtain the corresponding Unicode value.

o If the font is a composite font that uses one of the predefined CMaps listed in
Table 5.15 on page 442 (except Identity-H and Identity-V) or whose descendant
CIDFont uses the Adobe-GB1, Adobe-CNS1, Adobe-Japanl, or Adobe-Koreal
character collection:

1.

Map the character code to a character identifier (CID) according to the
font’s CMap.

Obtain the registry and ordering of the character collection used by the
font’s CMap (for example, Adobe and Japan1) from its CIDSysteminfo dic-
tionary.

. Construct a second CMap name by concatenating the registry and order-

ing obtained in step 2 in the format registry-ordering-UCS2 (for example,
Adobe-Japan1-UCS2).

Obtain the CMap with the name constructed in step 3 (available from the
ASN Web site; see the Bibliography).

Map the CID obtained in step 1 according to the CMap obtained in step 4,
producing a Unicode value.

Note: Type 0 fonts whose descendant CIDFonts use the Adobe-GBI1, Adobe-CNS1,
Adobe-Japanl, or Adobe-Koreal character collection (as specified in the
CIDSysteminfo dictionary) must have a supplement number corresponding to the
version of PDF supported by the application. See Table 5.16 on page 446 for a list of
the character collections corresponding to a given PDF version. (Other supplements
of these character collections can be used, but if the supplement is higher-numbered
than the one corresponding to the supported PDF version, only the CIDs in the latter
supplement are considered to be standard CIDs.)

If these methods fail to produce a Unicode value, there is no way to determine
what the character code represents.
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5.9.2 ToUnicode CMaps

The CMap defined in the ToUnicode entry of the font dictionary must follow the
syntax for CMaps introduced in Section 5.6.4, “CMaps” and fully documented in
Adobe Technical Note #5014, Adobe CMap and CIDFont Files Specification. Addi-
tional guidance regarding the CMap defined in this entry is provided in Adobe
Technical Note #5411, ToUnicode Mapping File Tutorial. This CMap differs from
an ordinary one in the following ways:

e The only pertinent entry in the CMap stream dictionary (see Table 5.17 on
page 448) is UseCMap, which may be used if the CMap is based on another
ToUnicode CMap.

e The CMap file must contain begincodespacerange and endcodespacerange
operators that are consistent with the encoding that the font uses. In particular,
for a simple font, the codespace must be one byte long.

e It must use the beginbfchar, endbfchar, beginbfrange, and endbfrange opera-
tors to define the mapping from character codes to Unicode character sequenc-
es expressed in UTF-16BE encoding.

Example 5.15 illustrates a Type 0 font that uses the Identity—H CMap to map from
character codes to CIDs and whose descendant CIDFont uses the Identity map-
ping from CIDs to TrueType glyph indices. Text strings shown using this font
simply use a 2-byte glyph index for each glyph. In the absence of a ToUnicode en-
try, no information would be available about what the glyphs mean.

Example 5.15

14 0 obj
<< /Type /Font
/Subtype /TypeO
/BaseFont /Ryumin—Light
/Encoding /Identity-H
/DescendantFonts [150R]
/ToUnicode 16 0R
>>
endobj

15 0 obj
<< /Type /Font
/Subtype /CIDFontType2
/BaseFont /Ryumin—Light
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/CIDSystemiInfo 17 0R
/FontDescriptor 18 0R
/CIDToGIDMap /lIdentity
>>
endobj

The value of the ToUnicode entry is a stream object that contains the definition of
the CMap, as shown in Example 5.16.

Example 5.16

16 0 obj
<< /Length 433 >>
stream
/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSysteminfo
<< /Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def
/CMapName /Adobe—Identity—UCS def
/CMapType 2 def
1 begincodespacerange
<0000> <FFFF>
endcodespacerange
2 beginbfrange
<0000> <O005E> <0020>
<005F> <0061> [<00660066> <00660069> <00660066006C>]
endbfrange
1 beginbfchar
<3A51> <D840DC3E>
endbfchar
endcmap
CMapName currentdict /CMap defineresource pop
end
end
endstream
endobj
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The begincodespacerange and endcodespacerange operators in Example 5.16
define the source character code range to be the 2-byte character codes from
<00 00> to <FF FF>. The specific mappings for several of the character codes are
shown. For example, <00 00> to <00 5E> are mapped to the Unicode values
U+0020 to U+007E (where Unicode values are conventionally written as U+ fol-
lowed by four to six hexadecimal digits). This is followed by the definition of a
mapping where each character code represents more than one Unicode value:

<005F> <0061> [<00660066> <00660069> <00660066006C>]

In this case, the original character codes are the glyph indices for the ligatures ff,
fi, and ffl. The entry defines the mapping from the character codes <00 5F>,
<00 60>, and <00 61> to the strings of Unicode values with a Unicode scalar val-
ue for each character in the ligature: U+0066 U+0066 are the Unicode values for
the character sequence f f, U+0066 U+0069 for f i, and U+0066 U+0066 U+006c¢ for
ffl

Finally, the character code <3A 51> is mapped to the Unicode value U+2003E,
which is expressed by the byte sequence <D840DC3E> in UTF-16BE encoding.

Example 5.16 illustrates several extensions to the way destination values can be
defined. To support mappings from a source code to a string of destination codes,
the following extension has been made to the ranges defined after a beginbfchar
operator:

n beginbfchar
srcCode dstString
endbfchar

where dstString can be a string of up to 512 bytes. Likewise, mappings after the
beginbfrange operator may be defined as

n beginbfrange
srcCode, srcCode, dstString
endbfrange

In this case, the last byte of the string is incremented for each consecutive code in
the source code range. When defining ranges of this type, care must be taken to
ensure that the value of the last byte in the string is less than or equal to 255 —
(srcCode, — srcCode,). This ensures that the last byte of the string is not incre-
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mented past 255; otherwise, the result of mapping is undefined and an error oc-
curs.

To support more compact representations of mappings from a range of source
character codes to a discontiguous range of destination codes, the CMaps used
for the ToUnicode entry can use the following syntax for the mappings following
a beginbfrange definition:

n beginbfrange
srcCode, srcCode, [dstString, dstString, ... dstString, ]
endbfrange

Consecutive codes starting with srcCode, and ending with srcCode, are mapped to
the destination strings in the array starting with dstString, and ending with
dstString,,,. The value of dstString can be a string of up to 512 bytes. The value of
m represents the number of continuous character codes in the source character
code range:

m = srcCode, - srcCode; + 1
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CHAPTER 6

Rendering

The Adobe imaging model separates graphics (the specification of shapes and col-
ors) from rendering (controlling a raster output device). Figures 4.12 and 4.13 on
pages 238 and 239 illustrate this division. Chapter 4 describes the facilities for
specifying the appearance of pages in a device-independent way. This chapter de-
scribes the facilities for controlling how shapes and colors are rendered on the
raster output device. All of the facilities discussed here depend on the specific
characteristics of the output device. PDF documents that are intended to be de-
vice-independent should limit themselves to the general graphics facilities de-
scribed in Chapter 4.

Nearly all of the rendering facilities that are under the control of a PDF document
pertain to the reproduction of color. Colors are rendered by a multiple-step pro-
cess outlined below. (Depending on the current color space and on the character-
istics of the device, it is not always necessary to perform every step.)

1. If a color has been specified in a CIE-based color space (see Section 4.5.4,
“CIE-Based Color Spaces”), it must first be transformed to the native color
space of the raster output device (also called its process color model).

2. Ifa color has been specified in a device color space that is inappropriate for the
output device (for example, RGB color with a CMYK or grayscale device), a
color conversion function is invoked.

3. The device color values are now mapped through transfer functions, one for
each color component. The transfer functions compensate for peculiarities of
the output device, such as nonlinear gray-level response. This step is some-
times called gamma correction.

4. If the device cannot reproduce continuous tones, but only certain discrete
colors such as black and white pixels, a halftone function is invoked, which
approximates the desired colors by means of patterns of pixels.

477
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5. Finally, scan conversion is performed to mark the appropriate pixels of the ras-
ter output device with the requested colors.

Once these operations have been performed for all graphics objects on the page,
the resulting raster data is used to mark the physical output medium, such as
pixels on a display or ink on a printed page. A PDF document specifies very little
about the properties of the physical medium on which the output will be pro-
duced; that information is obtained from the following sources:

e The media box and a few other entries in the page dictionary (see Section
10.10.1, “Page Boundaries”).

¢ An interactive dialog conducted when the user requests viewing or printing.

o A job ticket, either embedded in the PDF file or provided separately, specifying
detailed instructions for imposing PDF pages onto media and for controlling
special features of the output device. Various standards exist for the format of
job tickets. Two of them, JDF (Job Definition Format) and PJTF (Portable Job
Ticket Format), are described in the CIP4 document JDF Specification and in
Adobe Technical Note #5620, Portable Job Ticket Format (see the Bibliography).

Some of the rendering facilities described in this chapter are controlled by device-
dependent graphics state parameters, listed in Table 4.3 on page 212. These pa-
rameters can be changed by invoking the gs operator with a parameter dictionary
containing entries shown in Table 4.8 on page 220.

CIE-Based Color to Device Color

To render CIE-based colors on an output device, the consumer application must
convert from the specified CIE-based color space to the device’s native color
space (typically DeviceGray, DeviceRGB, or DeviceCMYK), taking into account the
known properties of the device. As discussed in Section 4.5.4, “CIE-Based Color
Spaces,” CIE-based color is based on a model of human color perception. The
goal of CIE-based color rendering is to produce output in the device’s native color
space that accurately reproduces the requested CIE-based color values as per-
ceived by a human observer. CIE-based color specification and rendering are a
feature of PDF 1.1 (CalGray, CalRGB, and Lab) and PDF 1.3 (ICCBased).

The conversion from CIE-based color to device color is complex, and the theory
on which it is based is beyond the scope of this book; see the Bibliography for
sources of further information. The algorithm has many parameters, including an
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optional, full three-dimensional color lookup table. The color fidelity of the out-
put depends on having these parameters properly set, usually by a method that
includes some form of calibration. The colors that a device can produce are char-
acterized by a device profile, which is usually specified by an ICC profile associat-
ed with the device (and entirely separate from the profile that is specified in an
ICCBased color space).

Note: PDF has no equivalent of the PostScript color rendering dictionary. The
means by which a device profile is associated with a consumer application’s output
device are implementation-dependent and cannot be specified in a PDF file. Typi-
cally, this is done through a color management system (CMS) that is provided by the
operating system. Beginning with PDF 1.4, a PDF document can also specify one or
more output intents providing possible profiles that might be used to process the
document (see Section 10.10.4, “Output Intents”).

Conversion from a CIE-based color value to a device color value requires two
main operations:

1. Adjust the CIE-based color value according to a CIE-based gamut mapping
function. A gamut is a subset of all possible colors in some color space. A page
description has a source gamut consisting of all the colors it uses. An output
device has a device gamut consisting of all the colors it can reproduce. This
step transforms colors from the source gamut to the device gamut in a way that
attempts to preserve color appearance, visual contrast, or some other explicitly
specified rendering intent (see “Rendering Intents” on page 260).

2. Generate a corresponding device color value according to a CIE-based color
mapping function. For a given CIE-based color value, this function computes a
color value in the device’s native color space.

The CIE-based gamut and color mapping functions are applied only to color
values presented in a CIE-based color space. By definition, color values in device
color spaces directly control the device color components (though this can be al-
tered by the DefaultGray, DefaultRGB, and DefaultCMYK color space resources;
see “Default Color Spaces” on page 257).

The source gamut is specified by a page description when it selects a CIE-based
color space. This specification is device-independent. The corresponding proper-
ties of the output device are given in the device profile associated with the device.
The gamut mapping and color mapping functions are part of the implementation
of the consumer application.
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6.2 Conversions among Device Color Spaces

Each raster output device has a native color space, which typically is one of the
standard device color spaces (DeviceGray, DeviceRGB, or DeviceCMYK). In other
words, most devices support reproduction of colors according to a grayscale
(monochrome), RGB (red-green-blue), or CMYK (cyan-magenta-yellow-black)
model. If the device supports continuous-tone output, reproduction occurs di-
rectly. Otherwise, it is accomplished by means of halftoning.

A device’s native color space is also called its process color model. Process colors
are ones that are produced by combinations of one or more standard process
colorants. Colors specified in any device or CIE-based color space are rendered as
process colors. (A device can also support additional spot colorants, which can be
painted only by means of Separation or DeviceN color spaces. They are not in-
volved in the rendering of device or CIE-based color spaces, nor are they subject
to the conversions described below.)

Note: Some devices provide a native color space that is not one of the three named
above but consists of a different combination of colorants. In that case, conversion
from the standard device color spaces to the device’s native color space is performed
by device-dependent means.

Knowing the native color space and other output capabilities of the device, the
consumer application can automatically convert the color values specified in a
document to those appropriate for the device’s native color space. For example, if
a document specifies colors in the DeviceRGB color space but the device supports
grayscale (such as a monochrome display) or CMYK (such as a color printer), the
consumer application performs the necessary conversions. If the document spec-
ifies colors directly in the device’s native color space, no conversions are neces-
sary.

The algorithms used to convert among device color spaces are very simple. As
perceived by a human viewer, the conversions produce only crude approxima-
tions of the original colors. More sophisticated control over color conversion can
be achieved by means of CIE-based color specification and rendering. Addition-
ally, device color spaces can be remapped into CIE-based color spaces (see
“Default Color Spaces” on page 257).
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6.2.1 Conversion between DeviceGray and DeviceRGB

Black, white, and intermediate shades of gray can be considered special cases of
RGB color. A grayscale value is described by a single number: 0.0 corresponds to
black, 1.0 to white, and intermediate values to different gray levels.

A gray level is equivalent to an RGB value with all three components the same. In
other words, the RGB color value equivalent to a specific gray value is simply

red = gray
green = gray
blue = gray

The gray value for a given RGB value is computed according to the NTSC video
standard, which determines how a color television signal is rendered on a black-
and-white television set:

gray = 0.3 X red + 0.59 X green + 0.11 X blue

6.2.2 Conversion between DeviceGray and DeviceCMYK

Nominally, a gray level is the complement of the black component of CMYK.
Therefore, the CMYK color value equivalent to a specific gray level is simply

cyan = 0.0
magenta = 0.0
yellow = 0.0

black = 1.0 — gray

To obtain the equivalent gray level for a given CMYK value, the contributions of
all components must be taken into account:

gray = 1.0—min(1.0, 0.3 X cyan + 0.59 X magenta + 0.11 X yellow + black)

The interactions between the black component and the other three are elaborated
below.

6.2.3 Conversion from DeviceRGB to DeviceCMYK

Conversion of a color value from RGB to CMYK is a two-step process. The first
step is to convert the red-green-blue value to equivalent cyan, magenta, and yel-
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low components. The second step is to generate a black component and alter the
other components to produce a better approximation of the original color.

The subtractive color primaries cyan, magenta, and yellow are the complements
of the additive primaries red, green, and blue. For example, a cyan ink subtracts
the red component of white light. In theory, the conversion is very simple:

cyan = 1.0 —red
magenta = 1.0 — green
yellow = 1.0 — blue

For example, a color that is 0.2 red, 0.7 green, and 0.4 blue can also be expressed
as 1.0 —0.2=0.8 cyan, 1.0 — 0.7 = 0.3 magenta, and 1.0 — 0.4 = 0.6 yellow.

Logically, only cyan, magenta, and yellow are needed to generate a printing color.
An equal level of cyan, magenta, and yellow should create the equivalent level of
black. In practice, however, colored printing inks do not mix perfectly; such com-
binations often form dark brown shades instead of true black. To obtain a truer
color rendition on a printer, true black ink is often substituted for the mixed-
black portion of a color. Most color printers support a black component (the K
component of CMYK). Computing the quantity of this component requires some
additional steps:

1. Black generation calculates the amount of black to be used when trying to re-
produce a particular color.

2. Undercolor removal reduces the amounts of the cyan, magenta, and yellow
components to compensate for the amount of black that was added by black
generation.

The complete conversion from RGB to CMYK is as follows, where BG(k) and
UCR (k) are invocations of the black-generation and undercolor-removal func-
tions, respectively:

c=10-red
m = 1.0 —green
y = 1.0 —Dblue

k = min(c, m, y)
cyan = min (1.0, max (0.0, c — UCR(k)))
magenta = min (1.0, max (0.0, m — UCR(k)))
yellow = min (1.0, max (0.0, y — UCR(k)))
black = min (1.0, max (0.0, BG(k)))
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In PDF 1.2, the black-generation and undercolor-removal functions are defined
as PDF function dictionaries (see Section 3.9, “Functions”) that are parameters in
the graphics state. They are specified as the values of the BG and UCR (or BG2 and
UCR2) entries in a graphics state parameter dictionary (see Table 4.8 on page
220). Each function is called with a single numeric operand and is expected to
return a single numeric result.

The input of both the black-generation and undercolor-removal functions is k,
the minimum of the intermediate ¢, m, and y values that have been computed by
subtracting the original red, green, and blue components from 1.0. Nominally, k is
the amount of black that can be removed from the cyan, magenta, and yellow
components and substituted as a separate black component.

The black-generation function computes the black component as a function of
the nominal k value. It can simply return its k operand unchanged, or it can re-
turn a larger value for extra black, a smaller value for less black, or 0.0 for no
black at all.

The undercolor-removal function computes the amount to subtract from each of
the intermediate ¢, m, and y values to produce the final cyan, magenta, and yellow
components. It can simply return its k operand unchanged, or it can return 0.0
(so that no color is removed), some fraction of the black amount, or even a nega-
tive amount, thereby adding to the total amount of colorant.

The final component values that result after applying black generation and un-
dercolor removal are expected to be in the range 0.0 to 1.0. If a value falls outside
this range, the nearest valid value is substituted automatically without error indi-
cation. This substitution is indicated explicitly by the min and max operations in
the formulas above.

The correct choice of black-generation and undercolor-removal functions de-
pends on the characteristics of the output device—for example, how inks mix.
Each device is configured with default values that are appropriate for that device.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular,
“Rendering Intent and Color Conversions” on page 574, for further discussion of
the role of black-generation and undercolor-removal functions in the transparent
imaging model.
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6.2.4 Conversion from DeviceCMYK to DeviceRGB

Conversion of a color value from CMYK to RGB is a simple operation that does
not involve black generation or undercolor removal:

red = 1.0 — min (1.0, cyan + black)
green = 1.0 — min (1.0, magenta + black)
blue = 1.0 — min (1.0, yellow + black)

In other words, the black component is simply added to each of the other compo-
nents, which are then converted to their complementary colors by subtracting
them each from 1.0.

6.3 Transfer Functions

In PDF 1.2, a transfer function adjusts the values of color components to compen-
sate for nonlinear response in an output device and in the human eye. Each com-
ponent of a device color space—for example, the red component of the
DeviceRGB space—is intended to represent the perceived lightness or intensity of
that color component in proportion to the component’s numeric value. Many de-
vices do not actually behave this way, however; the purpose of a transfer function
is to compensate for the device’s actual behavior. This operation is sometimes
called gamma correction (not to be confused with the CIE-based gamut mapping
function performed as part of CIE-based color rendering).

In the sequence of steps for processing colors, the consumer application applies
the transfer function after performing any needed conversions between color
spaces, but before applying a halftone function, if necessary. Each color compo-
nent has its own separate transfer function; there is no interaction between com-
ponents.

Transfer functions always operate in the native color space of the output device,
regardless of the color space in which colors were originally specified. (For exam-
ple, for a CMYK device, the transfer functions apply to the device’s cyan, magen-
ta, yellow, and black color components, even if the colors were originally
specified in, for example, a DeviceRGB or CalRGB color space.) The transfer func-
tion is called with a numeric operand in the range 0.0 to 1.0 and must return a
number in the same range. The input is the value of a color component in the de-
vice’s native color space, either specified directly or produced by conversion from
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some other color space. The output is the transformed component value to be
transmitted to the device (after halftoning, if necessary).

Both the input and the output of a transfer function are always interpreted as if
the corresponding color component were additive (red, green, blue, or gray): the
greater the numeric value, the lighter the color. If the component is subtractive
(cyan, magenta, yellow, black, or a spot color), it is converted to additive form by
subtracting it from 1.0 before it is passed to the transfer function. The output of
the function is always in additive form and is passed on to the halftone function
in that form.

In PDF 1.2, transfer functions are defined as PDF function objects (see Section
3.9, “Functions”). There are two ways to specify transfer functions:

o The current transfer function parameter in the graphics state consists of either a
single transfer function or an array of four separate transfer functions, one each
for red, green, blue, and gray or their complements cyan, magenta, yellow, and
black. (If only a single function is specified, it applies to all components.) An
RGB device uses the first three, a monochrome device uses the gray transfer
function only, and a CMYK device uses all four. The current transfer function
can be specified as the value of the TR or TR2 entry in a graphics state parameter
dictionary; see Table 4.8 on page 220.

o The current halftone parameter in the graphics state can specify transfer func-
tions as optional entries in halftone dictionaries (see Section 6.4.4, “Halftone
Dictionaries”). This is the only way to set transfer functions for nonprimary
color components or for any component in devices whose native color space
uses components other than the ones listed above. A transfer function specified
in a halftone dictionary overrides the corresponding one specified by the cur-
rent transfer function parameter in the graphics state.

In addition to their intended use for gamma correction, transfer functions can be
used to produce a variety of special, device-dependent effects. For example, on a
monochrome device, the PostScript calculator function

{1 exch sub}

inverts the output colors, producing a negative rendition of the page. In general,
this method does not work for color devices; inversion can be more complicated
than merely inverting each of the components. Because transfer functions pro-
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duce device-dependent effects, a page description that is intended to be device-
independent should not alter them.

Note: When the current color space is DeviceGray and the output devices native
color space is DeviceCMYK, the interpreter uses only the gray transfer function. The
normal conversion from DeviceGray to DeviceCMYK produces 0.0 for the cyan,
magenta, and yellow components. These components are not passed through their
respective transfer functions but are rendered directly, producing output containing
no colored inks. This special case exists for compatibility with existing applications
that use a transfer function to obtain special effects on monochrome devices, and
applies only to colors specified in the DeviceGray color space.

See Section 7.6.4, “Rendering Parameters and Transparency,” and in particular,
“Halftone and Transfer Function” on page 573, for further discussion of the role
of transfer functions in the transparent imaging model.

Halftones

Halftoning is a process by which continuous-tone colors are approximated on an
output device that can achieve only a limited number of discrete colors. Colors
that the device cannot produce directly are simulated by using patterns of pixels
in the colors available. Perhaps the most familiar example is the rendering of gray
tones with black and white pixels, as in a newspaper photograph.

Some output devices can reproduce continuous-tone colors directly. Halftoning is
not required for such devices; after gamma correction by the transfer functions,
the color components are transmitted directly to the device. On devices that do
require halftoning, it occurs after all color components have been transformed by
the applicable transfer functions. The input to the halftone function consists of
continuous-tone, gamma-corrected color components in the device’s native color
space. Its output consists of pixels in colors the device can reproduce.

PDF provides a high degree of control over details of the halftoning process. For
example, in color printing, independent halftone screens can be specified for each
of several colorants. When rendering on low-resolution displays, fine control
over halftone patterns is needed to achieve the best approximations of gray levels
or colors and to minimize visual artifacts.

Note: Remember that everything pertaining to halftones is, by definition, device-
dependent. In general, when a PDF document provides its own halftone specifica-
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tions, it sacrifices portability. Associated with every output device is a default half-
tone definition that is appropriate for most purposes. Only relatively sophisticated
documents need to define their own halftones to achieve special effects.

All halftones are defined in device space, unaffected by the current transforma-
tion matrix. For correct results, a PDF document that defines a new halftone
must make assumptions about the resolution and orientation of device space. The
best choice of halftone parameters often depends on specific physical properties
of the output device, such as pixel shape, overlap between pixels, and the effects of
electronic or mechanical noise.

Halftone Screens

In general, halftoning methods are based on the notion of a halftone screen, which
divides the array of device pixels into cells that can be modified to produce the
desired halftone effects. A screen is defined by conceptually laying a uniform
rectangular grid over the device pixel array. Each pixel belongs to one cell of the
grid; a single cell typically contains many pixels. The screen grid is defined entire-
ly in device space and is unaffected by modifications to the current transforma-
tion matrix. This property is essential to ensure that adjacent areas colored by
halftones are properly stitched together without visible seams.

On a bilevel (black-and-white) device, each cell of a screen can be made to ap-
proximate a shade of gray by painting some of the cell’s pixels black and some
white. Numerically, the gray level produced within a cell is the ratio of white pix-
els to the total number of pixels in the cell. A cell containing # pixels can render
n+ 1 different gray levels, ranging from all pixels black to all pixels white. A gray
value g in the range 0.0 to 1.0 is produced by making i pixels white, where
i =floor(g X n).

The foregoing description also applies to color output devices whose pixels con-
sist of primary colors that are either completely on or completely off. Most color
printers, but not color displays, work this way. Halftoning is applied to each color
component independently, producing shades of that color.

Color components are presented to the halftoning machinery in additive form,
regardless of whether they were originally specified additively (RGB or gray) or
subtractively (CMYK or tint). Larger values of a color component represent light-
er colors—greater intensity in an additive device such as a display or less ink in a
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subtractive device such as a printer. Transfer functions produce color values in
additive form; see Section 6.3, “Transfer Functions.”

6.4.2 Spot Functions

A common way of defining a halftone screen is by specifying a frequency, angle,
and spot function. The frequency is the number of halftone cells per inch; the
angle indicates the orientation of the grid lines relative to the device coordinate
system. As a cell’s desired gray level varies from black to white, individual pixels
within the cell change from black to white in a well-defined sequence: if a partic-
ular gray level includes certain white pixels, lighter grays will include the same
white pixels along with some additional ones. The order in which pixels change
from black to white for increasing gray levels is determined by a spot function,
which specifies that order in an indirect way that minimizes interactions with the
screen frequency and angle.

Consider a halftone cell to have its own coordinate system: the center of the cell is
the origin and the corners are at coordinates £1.0 horizontally and vertically.
Each pixel in the cell is centered at horizontal and vertical coordinates that both
lie in the range —1.0 to +1.0. For each pixel, the spot function is invoked with the
pixel’s coordinates as input and must return a single number in the range —1.0 to
+1.0, defining the pixel’s position in the whitening order.

The specific values the spot function returns are not significant; all that matters
are the relative values returned for different pixels. As a cell's gray level varies
from black to white, the first pixel whitened is the one for which the spot function
returns the lowest value, the next pixel is the one with the next higher spot func-
tion value, and so on. If two pixels have the same spot function value, their rela-
tive order is chosen arbitrarily.

PDF provides built-in definitions for many of the most commonly used spot
functions. A halftone can simply specify any of these predefined spot functions
by name instead of giving an explicit function definition. For example, the name
SimpleDot designates a spot function whose value is inversely related to a pixel’s
distance from the center of the halftone cell. This produces a “dot screen” in
which the black pixels are clustered within a circle whose area is inversely pro-
portional to the gray level. The predefined function Line is a spot function whose
value is the distance from a given pixel to a line through the center of the cell,
producing a “line screen” in which the white pixels grow away from that line.
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Table 6.1 shows the predefined spot functions. The table gives the mathematical
definition of each function along with the corresponding PostScript language
code as it would be defined in a PostScript calculator function (see Section 3.9.4,
“Type 4 (PostScript Calculator) Functions”). The image accompanying each
function shows how the relative values of the function are distributed over the
halftone cell, indicating the approximate order in which pixels are whitened. Pix-
els corresponding to darker points in the image are whitened later than those cor-
responding to lighter points. (See implementation note 70 in Appendix H.)

TABLE 6.1 Predefined spot functions

NAME

APPEARANCE

DEFINITION

SimpleDot

InvertedSimpleDot

DoubleDot

InvertedDoubleDot

1= (x*+y%)

{ dup mul exch dup mul add 1 exchsub }

x? +y2—1

{ dup mul exch dup mul add 1sub }

sin(3620 X X) n sin(SgO X y)

{ 360 mul sin 2div exch 360 mulsin 2div add }

3 (sin(360 X x) N sin (360 Xy))
2 2

{ 360 mul sin 2div exch 360 mul sin 2div add neg }
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NAME APPEARANCE DEFINITION
CosineDot cos(180 X x) , cos(180 X y)
2 2
{ 180 mul cos exch 180 mul cos add 2 div }
Double

sin (360 X )_ZC) )
n sin (360 X y)
2 2

{ 360 mulsin 2div exch2div 360 mulsin 2div add }

InvertedDouble

sin (360 X )_ZC)
n sin (360 X y)
2 2

{ 360 mul sin 2div exch 2div 360 mulsin 2div add neg }

Line =y

{ exch pop abs neg }
LineX X

{ pop }

wiMue
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NAME APPEARANCE DEFINITION
LineY y
{ exchpop }
Round if|x|+|y| < 1 then1— (x2 +y2)

else (|x| =12+ (|y] - 1)? -1

{ abs exch abs
2 copyadd 1le
{ dup mul exch dup mul add 1 exchsub }
{ 1 sub dup mul exch 1 subdup mul add 1sub }

ifelse }
Ellipse let w=(3x|x|)+ (4 x|y]) -3
2
2 (L)
0.75
if w <0 then 1*T
2 1*|y|)2
(-l + (g
else if w> 1 then n -1

else 0.5 —w

{ abs exchabs 2 copy 3 mul exch4 mul add 3 sub dupOlt
{ pop dup mul exch 0.75 div dup mul add
4 div 1 exchsub }
{ dup1gt
{ pop 1exchsub dup mul
exch 1 exch sub 0.75div dup mul add
4div 1sub }
{ 0.5 exch sub exch pop exch pop }
ifelse }
ifelse }
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NAME

APPEARANCE

DEFINITION

EllipseA

InvertedEllipseA

EllipseB

EllipseC

InvertedEllipseC

-
L]
.
.
L]

1-(x>+09xy?)

{ dup mul 0.9 mul exchdup mul add 1 exchsub }

x2+09xy? -1

{ dup mul 0.9 mul exchdup mul add 1sub }

[ 2,5 2
1- +=X
xHgxy

{ dup 5 mul 8div mul exch dup mul exchadd sqrt
1 exchsub }

1-(0.9%xx*+y%)
{ dup mul exch dup mul 0.9 mul add 1 exchsub }

09xx*+y*-1

{ dup mul exch dup mul 0.9 mul add 1sub }
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NAME APPEARANCE DEFINITION
Square _maX(|x|’|J’|)
{ abs exchabs 2 copy It
. { eXCh }
if
pop neg }
Cross —min(|x|, |}’|)
{ abs exchabs 2 copy gt
{ exch }
if
pop neg }
Rhomboid 0.9 x | x| + |)’|
2
{ abs exchabs 0.9 mul add 2div }
Diamond if|x| +|y| £ 0.75 then 1 - (x2 +)/2)

else if |x| + |y| < 1.23 then 1 — (0.85 X | x| + |y|)
else (|x| - 1)*+ (Jy|-1D?-1

{ abs exchabs 2 copyadd 0.75le
{ dup mul exch dup mul add 1exchsub }