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Abstract 
We present techniques which may be used to perform 
computations of very high accuracy using only straight- 
forward floating point arithmetic operations of limited 
precision, and we prove the validity of these techniques 
under very general hypotheses satisfied by most imple- 
mentations of floating point arithmetic. 
To illustrate the application of these techniques, we 
present an algorithm which computes the intersection of 
a line and a line segment. The algorithm is guaranteed 
to correctly decide whether an intersection exists and, if 
so, to produce the coordinates of the intersection point 
accurate to full precision. Moreover, the algorithm is 
usually quite efficient; only in a few cases does guaran- 
teed accuracy necessitate an expensive computation. 

1 Introduction 
“HOW accurate is a computed result if each intermediate 
quantity is computed using floating point arithmetic of 
a given precision?” The casual reader of Wilkinson’s 
famous treatise 211 and similar roundoff error analyses 
might conclude t 6 a t  the most one can hope to say about 
the accuracy of a computation carried out in fixed pre- 
cision floating point arithmetic is that the computed so- 
lution is close to  the exact solution of a problem close to 
the given problem, where the precise meaning of “close” 
depends on the precision of the arithmetic. He might 
further surmise that if he wishes to compute a result 
with more accuracy than such an analysis can guarantee 
based on the widest precision of arithmetic supported 
in whatever computing environment is available, then 
he must instead resort to  a subroutine library such as 
Brent’s MP package [3] in order to  compute with higher 
precision arithmetic. 
That both conclusions are wrong follows from the exis- 
tence of techniques which allow a program to compute to 
arbitrarily high accuracy using only fixed precision float- 
ing point arithmetic operations. These techniques can 
be used in virtually any computing environment which 
incorporates a “reasonable” floating point arithmetic, 
and they do not rely on dirty tricks such as accessing a 
floating point number as though it were an integer value, 
nor on inefficient conversions such as extracting the ex- 
ponent field of a floating point number. Instead they 
use only floating point additions, comparisons, multipli- 
cations, and divisions, which are commonly supported 
in hardware and often greatly optimized. Armed with 

such techniques, a programmer can write code which 
performs none but straightforward floating point opera- 
tions, looks entirely ordinary both to  the eye and to the 
compiler, runs almost as efficiently as any other float- 
ing point computation, and produces a result whose ac- 
curacy is limited only by the overflow and underflow 
t hreshholds. 

Of course, extra accuracy is not free: a program guar- 
anteed to produce an accurate answer must be more 
expensive than one which is allowed to emit erroneous 
results. How much more expensive must such a program 
be? In this paper, we present algorithms which suggest 
that the cost of extra accuracy may be quite reasonable 
for many problems-at least, reasonable enough that we 
are obliged to consider more carefully the trade-offs be- 
tween cost and accuracy. Our a1 orithms are based on 
an approach pioneered by Mdler /?7 , Kahan [7], Dekker r], Pichat [19], Linnainmaa [13, 141, and several others 
10, 1 2 ,  but our hypotheses are slightly more general 

the accuracy to approximately twice the working preci- 
sion, as do most of the aforementioned references, our 
algorithms expand U on methods developed by Bohlen- 
der [l] and Kahan [Srwhich compute to arbitrarily high 
accuracy. 

Below, we give algorithms for exact addition and mul- 
tiplication and arbitrarily accurate division of extended 
precision numbers using only fixed precision floating 
point arithmetic operations. We express the cost of 
these algorithms in terms of the number of fixed pre- 
cision operations required. Section 2 describes floating 
point arithmetics and defines the criteria which an arith- 
metic must satisfy for our results to be valid. Lemma 
1 in this section generalizes results from [4, 9, 10, 13, 
17, 191. Sections 3 and 4 focus on addition algorithms 
for extended precision numbers: section 3 considers the 
exact addition of two such numbers, while section 4 
presents an algorithm for the problem Kahan [9] has 
called “distillation”, namely, expressing the exact sum 
of n arbitrary fixed precision floating point numbers as a 
single extended precision number. Kahan gives an algo- 
rithm which requires at most O(n log n fixed precision 
operations; we present another, very di B erent algorithm 
which nevertheless has the same cost bound. Sections 
5 and 6 present algorithms for multiplication and divi- 
sion, respectively. Although the techniques motivating 
these algorithms are well known, we present the algo- 
rithms both for completeness and to obtain explicit cost 

than t L eirs. Moreover, rather than simply extending 
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bounds. Section 7 gives an example of an algorithm 
which uses several of our extended precision arithmetic 
routines to compute to full accuracy the point of inter- 
section of a line and a line segment. Finally, section 8 
summarizes our results and discusses some related top- 

With the exception of section 7 and several remarks in 
section 8, we ignore the possibility of overflow and un- 
derflow. Therefore, unless otherwise noted, the phrase 
“provided no overflow or underflow occurs” should be 
appended to each result stated below. We stress, how- 
ever, that we are not advocating a complete, self- 
contained software package upon which a user must 
rely if he wishes to perform extended precision arith- 
metic, but rather a paradigm for numerical computa- 
tion in which each intermediate quantity is computed 
to such precision as is necessary to guarantee the de- 
sired accuracy in the final result. Our intent is merely 
to demonstrate the feasibility of such a paradigm up to 
the limits imposed by overflow and underflow; in most 
cases, those limits are not particularly constraining, as 
our example in section 7 illustrates. 

2 Properties of Floating Point Arith- 

ICs. 

metics 
We begin by defining floating point arithmetic and not- 
ing several important properties. For integers t and /? 
both greater than 1, let Rp,t denote the set of all ra- 
tional numbers of the form mpk where m and k are 
integers and Iml < /?‘. These numbers are called the 
t-digit, radiz p floating point numbers. A floating point 
arithmetic of radix ,8 and t-di it precision is one which, 
given any a, b E Rp,* and o E f+, -, x ,  /}, determines a 
quantity c E Rp,t (assuming b # 0 if o = /, and subject 
to the usual caveats regarding overflow and underflow). 
We write c = fl(a ob)  to denote the result of computing 
a 0 b in floating point arithmetic. 
We view arbitrary precision arithmetic in the following 
context. Let Rp denote the subring of Q generated by 
Rp,t. Note that each x E Rp may be written as a finite 
sum x = c x i  with xi E Rp,t. In particular, if x # 0 
we can choose the xi satisfying a non-overlapping con- 
dition: writing xi = miPk* with /?‘-I < !mil < /?‘, we 
require that ki-k, 2 t for i < j .  (In other words, if i < j 
then the most significant digit of xj is at  least one order 
of magnitude smaller than the least significant digit of 
xi.) Such an expression is called a t-digit ezpansion for 
z; each term of the sum is a component of the expan- 
sion. A t-digit expansion for zero consists of a single 
zero component. Our goal is to show that all arithmetic 
operations over the ring Rp may be computed using 
only t-digit floating point arithmetic on components of 
t-digit expansions. Here the “arithmetic” operations 

tion as well as an approximate division which produces 
a quotient as an expansion accurate to a specified num- 
ber of components.) 
To guarantee that we can reduce arithmetic over Rp to 
fixed precision floating point arithmetic, we must make 
some assumptions about the nature of the floating point 

over Rp consist of t 6 e usual addition and multiplica- 

arithmetic we are using. The most important assump- 
tion we shall make is embodied in the following defini- 
tion. 
Definition: For t-digit numbers a and b and o E 
{+, -, x , / } ,  let c = a o b exactly (assuming b # 0 if 
o = /).. Suppose z and y are consecutive t-digit float- 

point numbers with the same sign as c such that 
< 1.1 < Iy). Then the floating point arithmetic is 

faithful if fl(aob) = x whenever c = x and fl(a0 b) 
is either z or y whenever c # x.  
All of the results which follow assume that the floating 
point arithmetic is faithful. In fact, most results assume 
nothing else; only the multiplication and division algo- 
rithms of sections 5 and 6 require additional hypotheses 
in the form of modest lower limits on the precision of the 
arithmetic. As we shall see, faithfulness is a powerful 
property, yet our assumption does not severely limit the 
applicability of our algorithms. Any arithmetic which 
conforms to  the IEEE 754 or 854 standard is faithful, 
as are DEC VAX and IBM 370 arithmetics. In fact, 
any arithmetic in which subtraction is performed us- 
ing at  least one guard digit possesses faithful addition; 
faithful multiplication and division are not much more 
difficult to achieve. (In fairness, however, we must warn 
the reader that a number of machines still lack faithful 
arithmetic: notable exceptions include Crays and CDC 
Cybers. Of course, with somewhat more complicated 
algorithms and substantially more complicated proofs, 
our results could be extended to those machines as well.) 
We now prove a crucial lemma which says that we can 
compute exactly the error incurred in the k e d  precision 
addition of two t-digit numbers. This technique forms 
the basis of the algorithms presented in subsequent sec- 
tions. As we will note below, the proof given here gen- 
eralizes various special cases which are considered in 
4, 9, 10, 13, 17, 1 9 .  In addition to the hypothesis of 

property of floating point numbers (see Sterbenz [20]): 
if a and b are t-digit floating point numbers such that 
1/2 5 a/b 5 2 then a - b is also a t-digit floatin point 
number. In particular, if the floating point arittmetic 
is faithful, fl(a - b) = a - b exactly. 
Lemma 1: Let a and b be any t-digit numbers. If 
the floating point arithmetic is faithful then the t-digit 
numbers c and d calculated by the following algorithm 
satisfy c + d = a + b and either d = 0 or c + d is an 
expansion for a + b (i.e., c = mCPkc and d = mdPkd 
with pt-’ 5 Imcll lmdl < pt and k, - kd 1 t ) .  
Algorithm 1: (Addition of two t-digit numbers with 
explicit error term) 

f aithfulness, we rely h eavily on the following well-known 

1 procedure sum-err( a, b ) 
2 begin 
3 if la1 < lbl 
4 swap( a, b )  
5 c := fl(a + b), e := fl(c - a) 
6 g := fl(c - e), h := fl(g - a), f := fl(b - h) 
7 d := f l ( f - e )  
8 i f f l ( d + e ) # f  
9 c : = a , d : = b  
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10 return c, d 
11 end 

Proof: Without loas, assume 1.1 2 lbl. If b = 0 then 
clearly the algorithm produces c = a, d = 0, so the 
lemma holds. For the general case, assume a > 0; the 
proof when a < 0 is essentially identical. Let c = fl(a+b) 
as above and define r = a + b - c, so r is the error in 
computing c. We prove the lemma by establishing three 
claims. 
Claim 1: d = r if and only if r is a t-digit floating point 
number. Of course, if r is not a t-digit number, then 
we cannot have d = r .  For the converse, suppose first 
that -a 5 b 5 -a/2. Then 1 5 a/(-b) 5 2 so a + 
b = a - (-b) is a t-digit number; hence, by faithfulness, 
c = fl a + 6) = a + b exactly and r = 0. Again by 

h = 0, f = b, and d = 0 = r ,  a t-digit number. 
Now suppose - 4 2  < b < 0. Let a' denote the largest t- 
digit number not greater than a/2, and note that a - at 
is the smallest t-digit number not less than a/2. Since 
Jbl 5 a', we must have a + b 2 a - a', so by faithfulness, 
c = fl(a + b) > a - a' 2 a/2. But then 1 2 5 c/a 5 1, 
so e = fl(c - 4 = c - a = b - r exactly. d gain we have 
g = a ,  h = 0, and f = b, so if r is a t-digit number then 
d=fl(f  - e ) = r .  
Finally, suppose b > 0. If c 5 2a then 1 5 c/a 5 2 
so e = fl(c - a) = c - a = b - r exactly. As before, 
g = a, h = 0, f = b, and thus d = r if r is a t-digit 
number. If instead c > 2a, then e = fl(c - a )  may not 
be computed exactly; let s = c-a-e, so s is the roundoff 
error incurred in computing e. By arguments similar to 
those of the preceding paragraph, we have e 2 c/2, so 
1 5 c/e 5 2 and g = fl(c-e) = c-e = a+sexactly. Now 
write a = mpk and b = nPJ with pt-' 5 Iml < p' and 
likewise for n. We can obtain c > 2a only when j = k, 
so all computed quantities must be integer multiples of 
p k .  Likewise r is a multiple of p k ,  but we must have 
IrI < pk+' ,  so r is a t-digit number. (In fact, r is a one- 
digit multiple of p k  .) We also see that Is1 < pk+',  hence 
h = fl(g-a) = s exactly, and clearly f = fl(b-h) = b-s 
is also exact. Thus d = fl(f - e) = r ,  and the claim 
holds. 
Claim 2: fl(d + e) is always computed exactly. Recall 
that fl(d+e) = f exactly whenever r is a t-digit number. 
Suppose r is not a t-digit number. Then we must have 
e = fl(c - a) = c - a = b - r ,  g = a, h = 0 and f = b, so 
d = fl(b - e). Write b = n$ with p'-l 5 1.1 <,pt and 
note that a, b, and c are all integer multiples of pl , so r is 
an integer multiple of pl . If b r  2 0 then clearly 1.1 5 lbl, 
so r would be a t-digit number; therefore suppose b r  < 0 
and also Irl > lbl. Then de < 0 and 1/2 5 d/(-e) 1 
so fl(d + e) = fl(d - (-e ) = d + e exactly (although we 
need not have d + e = 1 ). 
Claim 3: If r is not a t-digit number then a and b satisfy 
the non-overlapping condition. To see this, assume that 
r is not a t-digit number, and write c = mpk, a = 
npl with p t - l  5 m < p' and likewise for n; we must 
show lbl < $. Suppose lbl 2 pl and recall that d # r 

faithfu I ness, we must have e = fl(c - a) = b, g = a ,  

only if Ibl < 1.1. By faithfulness, 1.1 < p k ,  so we must 
have j < k, but since lbl 5 1.1 this can happen only if 
j .= k - 1. Now a, b, and c are all integer multiples of 
pt-'+l = pk-', so r is an integer multiple of pk-' and 
1.1 < p k .  Thus r is a t-digit number, a contradiction. 
From the preceding claims, the proof of the lemma pro- 
ceeds as follows. If r is a t-digit number then d = r and 
the condition in line 8 must fail because fl(d+e) = f ex- 
actly; in this case, the algorithm outputs the computed 
sum and the roundoff error which, by faithfulness, must 
satisfy the non-overlapping condition. Otherwise, the 
condition in line 8 must succeed because fl(d + e) is 
computed exactly but d + e # f ,  80 the algorithm sim- 
ply returns a and b; but in this case a and b already 

By examining the preceding proof, we can easily ob- 
tain several corollaries which show that the algorithm 
may be simplified substantially when the floating point 
arithmetic possesses additional properties besides faith- 
fulness. Many of these special cases have been consid- 
ered separately in some of the references; to clarify the 
relationship to our results, we introduce several defini- 
tions. Let a ,  b be any t-digit floating point numbers 
and o one of {+, -, x ,  /} (with b # 0 if o = /). Let 
c = a o b and x and y two consecutive t-digit numbers 
with 1x1 5 IC! < Iyl. Then the floating point arithmetic 
is correctly roundtng if it is faithful and also fl(ao b) = x 
whenever I C  - X I  < I C  - yI and fl(a o b) = y whenever 
I C  - yl < I C  - X I .  The arithmetic's addition is properly 
truncating if fl(a + b = x whenever c = x or ab > 0, 

have borrowed the last definition from Dekker [4]; the 
reader should not confuse this term, as Linnainmaa did 
[13], with the notion of correctly chopping, in which 
fl(a + b) = x always. 
The following simplification was established by Knuth 
[lo for correctly rounding arithmetic; here we prove 

truncating arithmetics. (Maller [17] obtained a similar 
but weaker result using still different hypotheses.) 
Corollary 1: If the arithmetic has the property that 
the roundoff error of a sum is always a t-digit number 
(as it is in correctly rounding and properly truncating 
arithmetics), then lines 8 and 9 may be eliminated from 
the above algorithm. 
Proof: Returning to the proof of the lemma, we are 
assuming that r is always a t-digit number; hence the 
test in line 8 never succeeds. I 

Dekker 4 and Linnainmaa [13] consider a different vari- 

a slightly more general result which follows easily from 
the preceding lemma. 
Corollary 2: If the arithmetic has the property that 
Jfl(a + a)I 5.21~~1 for all a as it  is in properly truncat- 

faithful binary arithmetics), then line 6 may be elim- 
inated and b substituted for f in lines 7 and 8 of the 
above algorithm. In particular, if the arithmetic also 
has the property of the preceding corollary, that the 
roundoff error of a sum is a t-digit number (e.g., in 

satisfy the non-overlapping condition. I 

but fl(a + b) = y w h enever c # x and ab < 0. We 

a s l ightly more general result which includes properly 

ation, w 6' ich also appears in Pichat [19]. Again, we state 

ing arithmetics, correctly c 6 opping arithmetics, and all 
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a properly truncating arithmetic or a binary correctly 
rounding arithmetic), then lines 6, 8, and 9 may all be 
eliminated and b substituted for f in line 7. 
Proof: For the first statement, note that if Ifl(a + a ) ]  5 
21.1 for all a then IcI 5 21.1, so we always have g = a,  
h = 0, and f = b. The second statement follows by 

I 

Although the original algorithm is an interesting theo- 
retical result, in practice virtually every computer which 
provides a faithful floating point arithmetic can take 
advantage of one of the simplifications described in the 
corollaries. For example, arithmetic which conforms to 
the IEEE 754 standard is binary and correctly round- 
ing, so the simplest version suggested in corollary 2 may 
be used. For different reasons, the same version may 
be used on DEC VAX, IBM 370, and similar comput- 
ers. The only faithful arithmetics which arise in practice 
and for which neither simplification applies are decimal 
correctly rounding arithmetics found on some hand cal- 
culators. 
In the results which follow, we state the cost of our algo- 
rithms as the maximum number of t-digit floating point 
arithmetic operations performed; note that the number 
of operations required in the preceding algorithms is at 
most eleven, but may be reduced to as few as six if a sim- 
plified version may be used. (Here and below we count 
a comparison of two numbers as one floating point op- 
eration, since comparison implies subtraction. We also 
count the absolute value operation as one t-digit float- 
ing point operation, namely a comparison against zero. 
One may regard this as pessimistic, since the sign of a 
floating point number can be, and often is, represented 
in one bit. On the other hand, separate counts for each 
type of operation may easily be obtained from the algo- 
rithms presented; we have chosen to combine the counts 
of different operations only for simplicity.) 

combining the first with the previous corollary. 

3 Addition 
The addition algorithm we present is a simple varia- 
tion of the classical algorithm in which the radix points 
are aligned and digits are summed pairwise from right 
to left. The difference is that we are summing compo- 
nents rather than digits, and we regard the error of the 
computed sum as the “sum” of the components and the 
computed sum itself as a “carry”. Since we can only 
add two components at once, we always add the carry 
of the last addition to the next smaller component not 
yet added. (In effect, we are merge-sorting the com- 
ponents of the two expansions by increasing magnitude 
and adding in this order.) The exact sum is then the 
sum of the final carry and the error terms from each pre- 
ceding addition. Since the error terms need not satisfy 
the non-overlapping condition for expansions, we must 
renormalize their sum to  obtain the result as a t-digit 
expansion. 
We present the addition and renormalization algorithms 
separately since we will reuse the renormalization pro- 
cess later. To facilitate the proofs we need one more 
definition: for 0 5 d < t ,  a finite sequence z1,22,. . . , Z n  
of t-digit floating point numbers is said to overlap by at 
most d digits if for each j = 1,2 , .  . . , n - 1 there exist 

i 5 j and k such that 21, . . . , zi-1 are integer multiples 
of p k ,  zi is an integer multiple of p k - d ,  ti+l, . . . , X j  are 
all zero, and Izi+ll < P k .  (Loosely speaking, this condi- 
tion says that if the zi were written in positional nota- 
tion, the significant digits of any two successive non-zero 
terms would coincide in at most d digit positions, and 
moreover, no three terms would mutually coincide in 
any position. For example, in four digit decimal float- 
ing point, the sequence 12340,5678,9.123 overlaps by at 
most three digits, but the sequence 12340,5678,91.23 
does not because all three numbers coincide in the tens 
place.) Note in particular that if Pk-’ 5 1z11 < pk 
and the sequence 21, . . . , zn overlaps by at most d dig- 
its then I zj I < Pk+l ; that is, the sum can carry over 
to at most one larger place than the largest term. Note 
also that the components of a t-digit expansion do not 
overlap at all (i.e., they overlap by at most zero digits). 
Proposition 2.1: Let z = Cy=l zj be a t-digit expan- 
sion with n components and y = yi a t-digit ex- 
pansion with m components. If the azthmetic is faith- 
ful then the following algorithm computes a sequence 
e l ,  . . . , en+m which overlaps by at most one digit and 
satisfies z + y = 
Algorithm 2.1: (Addition) 

ej.  

procedure add( n, 21,.  . . ,z,, m, y1,. . . , ym ) 
begin 
a := n, 3 := m 
if Izil < lyjl 

while i > 1 and Izi-11 5 lyj l  
ei+j := xi, i := i - 1 

while j > 1 and Iyj-11 I. Izil 
e i+ j  := y j ,  j := j - 1 

else if Izil > lvjl 

a := zi, b := y, 
while i > 1 or j > 1 

( c, e i+ j  ) := sum-err( a, b ) 
a := c 
if i = 1 or ( j > 1 and Iyj-11 < Izi-11 ) 

else 
b := yj-1, j := j - 1 

b := ~ i - 1 ,  i := i - 1 
( c, e2 ) := sum-err( a ,  b ) 
e l  := c 
return n + m, e l , .  . . , en+m 
end 

Proof: Clearly z + y = e,. To prove that 
the ej overlap by at most one digit, we proceed by 
induction on the number of times the algorithm calls 
sum-err. In particular, we show that after each exe- 
cution of sum-err there exists k such that lej+jI < pk 
and C, 21, . . . , zi-1, y1, . . . , yj- 1 are all integer multiples 
of Pa-’ with all but one being multiples of p*. The 
proposition will follow easily. 
First observe that prior to the first call to sum-err, we 
have i = n or j = m or both. If i = n but j < m then 
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the final loop starts with e,+j+l , . . . , en+,,, equal to the 
last m - j components of y, which do not overlap by 
assumption. Since this case can occur only if y # 0, 
we may write yj = pp” with j?*-l 5 IpI < j?*. Then 
!znl 2 IYjl, 80 z~,z~,..-,zn and Y1ry2,*-*,Uj are all 
integer multiples of p” , while Jen+j+l I = lyj+l I < @”. 
A similar argument applies if i < n and j = m. Hence 
in any case we may begin the induction assuming that 
the algorithm has entered the final loop; in particular, if 
i > 1 then Izi-11 > Iyjl, whereas i f j  > 1 then IYj-11 > 

To start the induction, let a = t i ,  b = yjl and ( C, 

ei+j ) denote the result returned from the first call to 
sum-err. If c = 0 then ei+j = 0 and the initial case 
holds. Otherwise write c = qp” with p*-’ 5 141 < 
P‘ and note that (ei+jl < p. S u p p m  1.1 1 lbl; the 
case 1.1 < 161 is similar. Write a = zi = pp” with 
/3’-’ _< lpl < p‘. Then 21,. . . , zi-1 are multiples of 
p”+‘, and since Iyj-11 > Izil then yj-1 is a multiple 
of p” so yl, . . . , yj-2 are also multiples of p”+‘. Since 
u > v - l , w e f i n d  t h a t c , z l  ,... , z i - 1 , ~ 1  ,... ,yj-1 are 
all multiples of p - l  and all but yj-1 are multiples of 
p”-ltt 2 p” so again the initial case holds. Thus the 
proposition is established for the first call to sum-err. 
Now suppose we have returned from the end of the final 
loop. Then the current value of a is the previous value of 
c and the current value of b is one of {z;, yj . Let c and 

and note that c = c:=~ 21: + ek. If 
c = 0 then eitj = 0 and we need only appeal to the 
induction hypothesis. Otherwise write c = qp” with 
/3‘-’ _< lql < P* and again note lei+,I < /?’. Assume 
b = z;; the case b = yj is similar. Note that Ibl 5 
Iyj-11 (otherwise we would have chosen b = yj-1 in 
the previous iteration of the loop) and that lbl >_ lyjl 
(otherwise we would have chosen b = xi prior to the 
previous iteration). Write b = pp” with /3‘-l 5 IpI < 
P‘. Then 

I 4  

e;+j be the quantities calculated in this cal ! to sum-err 
yk - 

< p.+t + P+‘ + p”+’ 

where the bounds on the first two terms follow from 
the non-overlapping conditions on z and y and the in- 
equality lyjl < lbl = Izil, and the bound for the last 
term follows from the induction hypothesis. Conse- 
quently, @”+’-’ < p”+:+l + p+1, so w + t - 1 < 
max(u + t + 2 , v  + 2 ) .  Since t 2 3 we must have 
U + t - 1 < U + t + 2 so v < U + 3 and hence U 5 U + 2 .  
Now z1 , . . . , zi-1 are multiples of p”+‘ and thus of p”. 
To complete the induction it suffices to show that yj-1 
is a multiple of p-’; then y l , .  . . , yj-2 will be multiples 
of p-l” 2 p. Write yj-1 = rp” with Pt-l 5 1.1 < P’ 
so that I yk( < p”. Then the previous inequality 

becomes /?’+t-l < /3”+* + p” + /?’+I. Since v 5 U + 2 ,  if 
s < u + t t h e n w e h a v e u + t - 1  < u + t + l m u < u + 2  
and hence w 5 U + 1, and since Iyj-11 2 Jbl this implies 
yj-1 is a multiple of p” = p”-’ and the induction step 
follows. If instead s 3 U + t then clearly s 2 v - 1, so 
again yj-l is a multiple of /?’-’. 
From the above argument, we clearly must have either 
c, 21 , . . . , zi-1, yl , . . . , yj-1 all multiples of p” or else ex- 
actly one of {Zi-l, yj-1 is a multiple of /?’-’ but not of 

Then clearly Iyj-11 < Izi-11 80 the next iteration of the 
loop will c h o m  6 = yj-1. Consequently, either all of 
the quantities e l , .  . . , ei+j-1 are multiplesof p” or there 
exists 1 5 i + j - 1 such that e l , .  . . , el-1 are multiples 
of p,  el is a multiple of /?’-’, and er+l,. . . , ei+j-1 are 

I 

Proposition 2.2: Let e l , .  . . , e,! overlap by at most 
t - 2 digits. If the arithmetic is faithful then khe follow- 
ing algorithm computes an expansion s = cj=l sj with 
m 5 n such that s = Cej. 
Algorithm 2.2: (Renormalization) 

p”. Suppose as above t h at yj-1 is not a multiple of p”. 

zero. This completes the proof. 

procedure renorm( n, e l ,  . . . , en ) 
begin 
C := en 
for i := n - 1,  n - 2, .  . . , 1 

( c, fi+l ) := sum-err( c, e; ) 
fi : = c  
s1 := f1,  k := 1 
for j := 2,3,  . . . , n 

( c, d ) := sum-err( Sk, fj ) 

i f d # O  
s k  : = c  

I := k - 1, k := k + 1 
while 12 1 

( c’, d’ ) := sum-err( SI, sl+l ) 
if d’ = 0 

else 
SI := c’, I := I - 1, k := k - 1 

1 := 1 
Sk := d 

return k, SI,.. . , S k  
end 

Proof: After the first for loop terminates, we clearly 
have fj = ej. Furthermore, we claim that the fj 
do not overlap at all. We again argue by induction. 
Specifically, let c and fi+l be the return values from a 
call to sum-err in the first loop. If c = 0 then fi+l = 0 
so the induction holds; otherwise write c = q/?’ wlth 
P*-l < 1q1 < pt so that Ifi+l I < /?’. Also write ei = pp” 
with P - l  5 lpl < P*.  Then since the e, overlap by at 
most t - 2 digits, we have U 5 U + 1. Consequently, 
e l ,  . . . , ei-1 are all multiples of p”+’ 2 /?’ , SO f1, . . . , fi 
must be multiples of ,@ while Ifi+l I < ,@ . This estab- 
lishes the claim. 
Proceeding to the rest of the algorithm, we note that the 
output s1 , .. . , s k  clearly satisfies Cj=l sj = E,”=, fj. 

k 
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We need only show that the output qualifies as an ex- 
pansion. Induct on k: let c and d be the return val- 
ues from a call to  sum-err in the outer for loop. If 
d = 0 there is nothing to prove, so assume d # 0. 
Then also = c # 0 so we may write 8k = qp” with 
p t - l  5 1q1 < p’ and we have [dl < p”. Since the fi do 
not overlap, we also have Id + ci>j fi I < p”. Therefore 
each subsequent call to sum-err in the outer for loop 
must yield IcI 5 p” with equality only if c is rounded 
(so that a ain d 0). If we always have 1.1 < p” then 
clearly Isif< p” f,r i > k so the induction holds. If in- 
stead we obtain 1.1 = p” at some later step, then by the 
induction hypothesis, upon completion of the predicate 
of the outer if statement, we still find 81, . . . ,8k for the 

we then have Id1 < p”-‘, so again the induction holds, 
I 

It follows from the proof above that sum-err is never 
called from the innermost while loop more than n - 1 
times. An easy operation count yields the following. 
Corollary: Let z and y be t-digit expansions having n 
and m components, respectively. Then the composition 
of algorithms 2.1 and 2.2 computes a t-digit expansion 
s = z + y = E:=, si with k 5 n + m using at most 
49(n + m - 1) + 9 t-digit floating point operations. 

4 Distillation 
In this section we consider the following problem: given 
any t-digit floating point numbers 11,z2, . . . , Zn, com- 
pute a t-digit expansion y such that y = En z i .  Ka- 
han has coined the term “distillation” to  &xibe the 
process by which the components of y may be obtained 
from the z i .  

The first algorithm to implement distillation was given 
by Pichat [19], who was only interested in obtaining the 
first component of y. Pichat’s algorithm simply passes 
through each of the z i  in turn applying the basic sum-err 
procedure. 6“ fact, the first loop in our renormalization 
procedure a ove constitutes one pass of Pichat’s algo- 
rithm. Pichat showed that this method converges; i.e., 

first component of y. Bohlender [l then showed that 
Pichat’s algorithm can be used to o L tain the entire ex- 
pansion for y with at most n - 1 passes, and he added a 
stopping criterion for the case where only a given num- 
ber of leading components of y are desired. 
Many other algorithms which evaluate a sum or an in- 
ner product to working precision (i.e., yielding the first 
component of an expansion) have been developed; see 
Bohlender [2] for a survey of several approaches. Un- 
fortunately, many of these techniques rely on special 
features, such as an extra wide fixed point accumulator, 
directed roundings, or interval arithmetic, which must 
be implemented in a combination of hardware and low- 
level software to be efficient. Other techniques, such as 
one proposed by Kulisch and Miranker [ll , require di- 
rect access to the exponent and significand f! elds of float- 
ing point numbers, and obtaining these quantities, even 
when the programming environment provides a conve- 
nient way to do so, is much too time-consuming com- 

value of k then in effect) is an expansion. In a 6 dition, 

and the proof is complete. 

that a i ter a sufficient number of passes, one obtains the 

pared to the highly optimized and streamlined floating 
point additions and comparisons of Pichat’s algorithm, 
at least for the modest values of n one typically encoun- 
ters. 
On the other hand, Pichat’s algorithm is not the only 
way to implement distillation using only faithful float- 
ing point addition and comparison. Kahan [9] gives a 
distillation algorithm which first sorts the z i  by decreas- 
ing magnitude, then uses successive passes like Pichat’s 
algorithm, but alternating in order: first smallest to 
largest, then largest to smallest. Whereas Pichat’s al- 
korithm requires O(n2) t-digit floating point operations 
in the worst case (i.e., n - 1 passes through n numbers), 
Kahan claims his algorithm requires at most O(n log n) 
operations. We now present yet another algorithm 
which is easily seen to have the same worst-case bound. 
Our method, a straightforward divide-and-conquer ap- 
proach using the algorithms developed above, recur- 
sively adds successive pairs of partially distilled sums 
in a binary treelike reduction. A similar approach was 
proposed for some parallel computer architectures by 
Leuprecht and Oberaigner [12]. 
Proposition 3: Given t-digit floating point numbers 
z 1 , 2 2 , .  . . , 2,. Then the following algorithm carried out 
with faithful arithmetic computes a t-digit expansion 
y = yi with m 5 n such that y = C z i .  The 
algorithm requires at most 49n Fog n1 t-digit floating 
point operations. 
Algori thm 3: (Distillation) 

procedure distill( n,  2 1 ,  . . . , zn ) 
begin 
i f n = 1  

else 
1 := 1 

m := 
( j j y l  

I 

w1 := 2 1  

421 
. . . , yj ) := distill( m, 21 , .  . ., Zm ) 
. . . , %k ) := distill( n - m, zm+l ,  . . . , I, 

( 1,201,. . . , 201 ) := renorm( add( j , y l , .  . . , yj, 
k, z1 , .  . ., zk ) ) 

return I ,  w1,.  . . , W I  

end 

Ti is 
Proof:  That the output is an expansion for 
obvious. As for the cost, note that the number o com- 
ponents of a sum as computed by the renormalize and 
add algorithms does not exceed the sum of the numbers 
of components of the summands; hence for each level of 
the binary tree, the total number of components of the 
expansions added a t  that level is at most n. Therefore 
the cost of each level is at most 49n, and since the num- 
ber of such levels is clearly pognl ,  the total cost is at 

Kahan’s algorithm in [9], though very different from the 
algorithm above, also incurs a cost at most proportional 
to nlogn, presumably with a modest constant, as op- 
posed to a worst case cost of lln(n - 1) for Pichat’s 
algorithm (assuming the first version of the sum-err pro- 
cedure is used). Although algorithms are known which 

most 49n pog n1. I 
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have asymptotic cost at  most proportional to n, they 
are impractical for most purposes since they explicitly 
refer to the exponent and significand fields of the num- 
bers to be added; as noted above, these quantities are 
very expensive to obtain compared with the cost of a 
few additions and comparisons. Moreover, Kahan notes 
that the actual cost of these algorithms in practice is 
usually far less than the worst case bound, 80 we are 
not likely to gain anything by continuin to look for 
asymptotically cheaper distillation metho % s. 

5 Multiplication 
To compute the exact product of two t-digit expansions, 
we must guarantee that no significant digits are lost 
when the product of two components is computed in t- 
digit arithmetic. We accomplish this by splitting each 
component into a sum of either two or three numbers, 
each with fewer nonzero digits than the original com- 
ponents. We may then multiply these split components 
with no error, finally adding all the partial products 
and renormalizing to obtain a t-digit expansion. The 
method of splitting components was first proposed by 
Dekker [4 , and we shall rely on the proof given by Lin- 
nainmaa 1141. To clarify the statements and proofs, we 
define the number of leading nonzero digits of a t-digit 
number z to be the smallest integer d such that 2: = mpk 
with pd-l 5 Iml < pd, or zero if z = 0. 
Proposition 4.1: Let z be a t-digit floating point num- 
ber. For 1 < k < t ,  define ak = p*-)  + 1. Provided the 
floating point arithmetic is faithful, the following a lge  
rithm computes t-digit numbers z’ and 2” such that 
z = 2’ + z“, 2’ has at  most k leading nonzero digits, 
and 2’’ has at  most t - k + 1 leading nonzero digits. 
Algorithm 4.1 (Splitting of a t-digit number) 

procedure split( z, k ) 
begin 
y := fl(ak x z), z := fl(y - z) 

return z’, zl’ 
end 

2’ 1- .- fl(y - z ) ,  2” := fl(2 - 2’) 

Proof: This is Theorem 1 in [14]. Linnainmaa actually 
states the theorem with an additional hypothesis which 
guarantees that in fact 2’‘ has at  most t - k leading 
nonzero digits; in a remark following his proof, however, 
he shows that even if the additional hypothesis is not 
satisfied, z’ will be computed with k - 1 leading nonzero 
digits and z” will have t - k + 1 leading nonzero digits.l 
We are now ready to give the multiplication algorithm. 
Note that we choose to split each component of the first 
expansion into two parts and each component of the 
second expansion into three parts. Dekker [4] shows 
that with binary correctly rounding arithmetic it suf- 
fices to split each factor into just two parts; Linnain- 
maa [14] gives other criteria under which splitting into 
two parts is sufficient. Consequently, the following a lge  
rithm can be improved in many cases. Note that we also 
do not sum the partial products into one net accumu- 
lator but instead separate them into groups (denoted 
a(’), . . . , d6)) which are guaranteed to overlap by at  

most two digits 90 that they may be renormalized with- 
out first being processed through the add algorithm. We 
then accumulate these renormalized expansions into a 
smaller accumulator (b) which in turn is added to the 
overall product accumulator. This nesting of additions 
significantly reduces the coefficient of the largest order 
term in the cost estimate. 
Proposition 4.2: Let z = C,“=,zj be a t-digit ex- 
pansion with n components and y = xpl yj a t-digit 
expansion with m components. Assume tfie arithmetic 
is faithful and that t 2 7 ,  and set k2 = t/2] + 1 and 

the product zy  expressed as a t-digit expansion with at 
most 2nm components. The algorithm requires at most 
98n2m + 1049nm + 8m - 446n t-digit floating point op- 
er at  ions. 
Algorithm 4.2: (Multiplication) 

k~ = Lt/3J + 1. Then the following algorit L m computes 

procedure multiply( n, 2 1 , .  . . , zn, m, y1, .  . . , ym ) 
begin 
fo r i :=  1,2,  ..., n 

fo r i :=  1,2,  ..., m 
( z:, zy ) := split( zi, kz ) 

( d ,  z ) := split( w, k.3 ) 
( $, ~’ ) := split( z ,  k3 ) 

p1 := 0, k := 1 
for i :=  1,2,  ..., n 

f o r j : =  1,2, ..., m 
a!’) := fl(z: x G )  
ay) := fl(z: x 

a!3) := fl(z: x q) 
a y )  := fl(zy x 4 )  
aj5) := fl(zy x c) 
ay) := fl(zy x q) 

( j ,  6 1 , .  . . , bj  ) := renorm( m, all), . . . , a c )  ) 
( I, c1,. . . , cI 
( j , b l , . .  . , b j  ) := renorm( add( l , c1 , .  . . , c l ,  

( I ,  c1,.  . . , cI 
( j , b 1 , .  . . , b j  ) := renorm( add( l , q , .  . . , c l ,  

(4) ) ( I ,  ~ 1 , .  . . , cI ) := renorm( m, ay’, . . . , a m  
( j , 6 1 , .  . . , bj ) := renorm( add( l,c1, . . . , cl, 
j , b l , . . . , b j  ) )  
( I ,  c l , .  . . , cI 
( j, bl, . . . , bj  ) := renorm( add( I, c l , . .  . , CI, 

( I ,  c l , .  . . , cI 
( j , b l , .  . . , b j  ) := renorm( add( l , ~ ,  . . .,CI, 

( 2 )  ) := renorm( m, ay), . . . , a m  

j , b ~ , . . . , b j  ) )  
:= renorm( m, a?), . . . , ag) 

j , b ~ , . * . , b j  ) )  

:= renorm( m, ay) ,  . . .,a:) 

. i , h , - . . , b j  ) )  
( 6 )  ) := renorm( m, ay), . . .,a, 

j r h , - . . r b j  ) ) 
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( k,pl,. . . , p k  ) := renorm( add( j, bl, . . . , bj , 
k , P l , . . . , P k  1 )  

return k, p1,. . . ,PI :  
end 

Proof: Note that for each i both t:,zy have at 
most [t/2J + 1 leading nonzero digits, and for each j ,  
4 ,  #, #' have at most [t/3J + 1 leading nonzero digits. 
Since t 2 7, each of the six products in the innermost for 
loop is computed exactly. By the non-overlapping con- 
dition for expansions together with the bounds on the 
number of leading nonzero digits of split components, 
we see that the six sequences ai'), . . . , al6), j = 1, . . . , m 
computed in the inner loop overlap by at most two dig- 
its. Hence the renormalization and addition procedures 
in the outer loop succeed without error, 80 the output 
satisfies p = zy. Note that €or each i the sums accu- 
mulated in b form expansions with at most 2m compe  
nents. Therefore p never exceeds 2nm components. A 
straightforward operation count completes the proof. I 
The above multiplication algorithm is based on the clas- 
sical algorithm of multiplying digits pairwise; hence, the 
number of multiplications is proportional to the prod- 
uct of the numbers of components in each expansion. In 
particular, if both expansions have n components, the 
number of basic multiply-and-add steps is O(n2) .  Al- 
gorithms which multiply n-digit numbers in fewer than 
O(nlog2 n) steps are known (see Knuth [lo]), but we 
have elected not to use them for several reasons. Specif- 
ically, most of these algorithms improve upon the clas- 
sical method only for very large n, while in practice we 
would expect to apply the above algorithm only to ex- 
pansions with relatively few components e.g., at most 
39 for a typical implementation of binary B oating point 
arithmetic using 64 bit storage; see the remarks on un- 
derflow in section 8 below). In addition, some of these 
algorithms are based on integer arithmetic, so that the 
input is assumed to consist of a contiguous string of 
n digits representing each multiplicand. Since we are 
given input in the form of t-digit expansions, the digits 
of which need not be contiguous, we cannot always ben- 
efit from the application of the techniques suggested. 
Notice that although the total number of multiplications 
is only proportional to nm, the total cost is proportional 
to n2m. This extra factor of n in the total cost arises 
from the cost of adding the partial products. Using 
slightly more intermediate storage, we can rearrange the 
order of the additions in the form of a binary tree, much 
like the arrangement in algorithm 3 above, and reduce 
this term to nm log n. The remark following algorithm 
3 suggests, however, that reducing the cost to O(nm) is 
not practical. 

6 Division 
Our division algorithm is analogous to the usual method 
of long division. In that algorithm, we take the quotient 
of the most significant digits of the current dividend 
and divisor as a guess for the next digit of the overall 
quotient. If the product of this guess with the divisor 
is larger than the dividend, however, we must choose a 

smaller digit. For our algorithm, however, since we do 
not require the components of an expansion to have the 
same sign, we do not need to  adjust the guess in this 
way. We simply take the quotient of the most significant 
components as computed by t-digit arithmetic) as the 
next term o 1 the quotient, and we show that once a 
sufficient number of terms have been computed, we can 
renormalize to express the quotient as an expansion. 
Proposition 5: Let t = CyEl zi be a t-digit expansion 
with n components and y = yi a t-digit expansion 
with m components, and suppose y # 0. Assume the 
arithmetic is faithful and t 2 9; for d > 0 let k = 
[(t - 4)d/tJ. Then the following algorithm computes a 
t-digit expansion q = Cqi with at most d components 
such that Iq-t/yl c pl-'lt/yI. The algorithm requires 
at most 98(d - 1)2m + (d - 1)(1255m + 49n - 479) + 7 
t-digit floating point operations. 
Algorithm 5: (Division) 

procedure divide( d, n, zl, . . . , t,, m, y l , . .  . , y, ) 
begin 

for i := 1 , 2 , . . . , n 
j ( 1 )  := n 

e!') := ti 

qj := g(e?)/yl) 
i f i < d  

fo r i :=  1,2,  ..., d 

( k , f i , .  . . ,6 ) := multiply( l I q i ,  

for1:=1,2,  ..., k 

( j(i+'), e?"), . . . ) := renorm( add( 
k,f1,. . . , f k ,  j ( i ) , er) ,  . . . ) 

~ , Y I , . * * , Y ~  ) 

f l  := - f r  

( k, 61,. . . ,8k ) := renorm( i, q1,. , . , qi ) 
return k, 61,. . . , S k  

end 

Proof: The result is trivial if t = 0; for t # 0 it suf- 
fices to show that the sequence q1,. . . , qi computed in 
the main loop overlaps by a t  most four digits. Pro- 
ceeding by induction on i ,  let pi be the quantity com- 
puted in the i-th iteration of the loop for some i and 
write qi = pp" with p'-l 5 IpI < p'. Note that 
qi = (e?'/yl)(l + c), f = qiy = qiyl(1 + 6) and 
e?) = e(')(l + q )  where lcl,)61,1q1 < p'-'. Hence writ- 
ing a = 1 - (1 + c)(1 + 6)(l + q)  we have e(i+') = 
e(') - f = e(')a and la1 < /I3-'. Similarly, er") = 
e(i+')(l +/A) = e(')a(l + p )  = ef )a( l  +p) ( l  + q ) - l  and 
hence qi+l = qia ( l+  p) ( l  + v)( l  + q)-' ( l+ 6)-' with 

ince t 2 9, the induction hypothesis implies that 
q 1 , .  . . , qi-1 are multiples of p"+t-4 > y+4 and the 
proof is complete, save for an easy operation count. I 

kl, IvI < p'-t.  Con*quently, Iqi+ll < IqiIP-' < P"+4. 
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7 Example: Intersecting a Line Seg- 
ment and a Line 

We illustrate the application of our algorithms to  a 
well-studied problem in computational geometry, that 
of computing the intersection of a line segment and a 
line. For the purpose of this section, we assume that 
we have an arithmetic conforming to  the IEEE Stan- 
dard for Binary Floating Point Arithmetic. In partic- 
ular, the arithmetic is binary and correctly rounding, 
so the simplest form of sum-err may be used through- 
out; in addition, we assume that two different precisions 
are available, corresponding to two different values o f t :  
single precision, for which the precision is 21 (tl = 24 in 
the IEEE standard), and double precision, with a preci- 
sion 22 (the standard specifies t2  = 53). The arithmetic 
includes operations between single precision operands 
yielding a single precision result, operations between 
double precision operands yielding a double precision 
result, and two conversion operations: one which con- 
verts a single precision number to  double precision (ex- 
actly), and one which correctly rounds a double preci- 
sion number to single precision provided no overflow or 
underflow occurs. Most importantly, we suppose that 
double precision, as the name implies, carries at least 
twice as many digits as single precision, i.e., 22 2 221; 
this assumption guarantees that we can multiply single 
precision numbers exactly by converting to and multi- 
plying with double precision. 
The general problem is this: given the coordinates of 
four points in the plane, PI, P2, P3, and P4, decide 
whether the line segment PIP2 intersects the line con- 
taining P3 and P4, and if so, compute the coordinates 
of the intersection point. This problem arises in many 
computer graphics and computer-aided design applica- 
tions; numerous authors have recognized both the im- 
portance and difficulty of solving the problem accurately 
see [6, 15, 16, 181 and references therein). Milenkovic 

1161 , in particular, has shown that if the single and dou- 
le precision arithmetics satisfy t z  2 221 + 1 then line 

and line segment intersection calculations may be com- 
puted to full accuracy provided lines and line segments 
are defined by the coefficients of line equations given as 
single precision numbers. Unfortunately, his approach 
requires that line segments defined by endpoint coordi- 
nates be perturbed and replaced by new line segments 
defined by line equation coefficients; he apparently over- 
looks the fact that perturbing two nearly parallel lines 
may move their intersection point a large distance. An- 
other practical drawback of Milenkovic's method stems 
from the fact that intersections are characterized ex- 
actly, but each intersection point, once computed, is 
rounded to single precision, 80 that subsequent tests fail 
to indicate that the computed intersection point actu- 
ally belongs to the lines determining the intersection. 
Milenkovic sidesteps this problem by arguing that any 
efficient algorithm would not make such a test because 
it would be redundant (i.e., the point has already been 
found to be the intersection of the two lines, so we need 
not test for its inclusion in either line). In practice, how- 
ever, many otherwise simple applications of line and 
segment intersection calculations become much more 
complicated when non-redundancy is required, due to 

the overhead of maintaining all accumulated topologi- 
cal knowledge. 
We propose instead to compute line and line seg- 
ment intersections to full accuracy-i.e., correct to sin- 
gle precision-directly from endpoint coordinates using 
the algorithms presented above as necessary. Unlike 
Milenkovic's method, our algorithm may easily be mod- 
ified to  allow approximate endpoint intersections to be 
recognized; in this way, we obtain a consistent set of cal- 
culations and no lon er need to  assume non-redundancy. 
Ottman, et al, [18fpropose essentially the same ap- 
proach for the intersection problem and other geometric 
problems. In fact, they show how to compute intersec- 
tion points to full accuracy using only single precision 
arithmetic and a means of computing inner products to 
full precision. Their method, however, relies on interval 
arithmetic, which in turn requires directed roundings, 
to obtain the final result to full accuracy. In contrast, 
our method uses only the faithfulness of the arithmetic 
and could easily be implemented entirely in single preci- 
sion by using the multiplication and division algorithms 
of sections 5 and 6. Before presenting the algorithm, we 
formulate a concise statement of the problem. 
Problem: Given single precision numbers ( 2 1 ,  y l ) ,  
(22 ,  y2), (23, B), and 2 4 ,  y4). Decide whether the line 
segment ( 2 1 ,  yl)(zz,  y$ intersects the line determined 
by (23,y3) and (24,y4) at a unique point, and if so, 
compute the coordinates (2, y) of the intersection point 
accurate to single precision. (That is, if the exact inter- 
section point is (z',y'), then return a point (z ,y)  such 
that z is the nearest single precision number to 2' and 
y is the nearest single precision number to y'.) 
We first devise a straightforward but somewhat costly 
algorithm which is easily seen to solve the problem. 
Writing the intersection problem as a system of two lin- 
ear equations, we see that the line segment intersects 
the line at a unique point if and only if d # 0, where 

the coordinates of the intersection point are given by 
d = ( ~ 4  -Y3)(21- 22)  + (23 - zp)(yl- YZ). In this case, 

1 
Y = ;i K Y l  - Y2)t + (Y3 - Y4)Sl 

where s = ( 2 2 ~ 1  - 2 1 ~ 2 )  and t = (23314 - 2 4 ~ 3 ) .  We 
can compute d by rewriting the previous expression as 
a sum of products, multiplying each term using dou- 
ble precision, then distilling the terms to obtain an ex- 
pansion for d.  (This is precisely the manner in which 
Ottman, et al, use the accurate inner product evalua- 
tion.) Then d vanishes if and only if the first component 
of the expansion vanishes, and otherwise this compe 
nent is accurate to double precision. Similarly, we can 
express the numerators of the expressions for 5 and y as 
sums of products, then multiply these terms (although 
since each term has degree three, we need to use the 
Dekker/Linnainmaa splitting method), distill, and use 
the leading components, which are again accurate to 
double precision. Taking the quotient of these leading 
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components with the leading component of d gives CO- 
ordinates which are accurate to near double precision, 
and at any rate sufficiently accurate to  round to  the 
correct single precision quantities, provided no under- 
flow occurs. We formalize these ideas in the following 
proposition; we omit the straightforward proof. (Since 
the number of terms being distilled is never larger than 
sixteen, we have assumed for the operation count that 
Pichat’s distillation algorithm is used.) 
Proposition: The following algorithm solves the above 
problem using at most 3301 IEEE 754compatible dou- 
ble precision floating point arithmetic operations includ- 
ing precision conversions. Moreover, no computation 
overflows, and the only computation which can under- 
flow is the final conversion to single precision. (Here fl 
denotes double precision computation.) 
Algorithm: (Intersect line and segment, version 1) 

procedure intersectl( 11, y l , .  . . ,z4, y4 ) 
begin 
convert 2 1 ,  yl, . . . , 2 4 ,  y4 to double precision num- 

el := fl(zi x A), e2 := fl(-zi x A) 
e3 := fl(-zi x A), e4 := fl(z5 x &) 
e5 := fl(z$ x Y;), e6 := fl(-z$ x yi) 
e7 := fl(-zI, x Y;), ea := fl(z: x yi) 
( n, d l , .  . ., d,  ) := distill( 8, e l , .  . . , eg ) 
if dl = 0 

else 

bers z:,Y;,...,z:,5/4 

return “No unique intersection” 

( e;, e: ) := split( e l ,  t l  ), . . . , ( e;, e! ) := 
SPllt( ea, tl ) 
61 := fl(ei x zi), . . . $16 := fl(e; x zi) 
( j ,  bl, .  . . , bj ) := distill( 16, b 1 , .  . . , b16 ) 
c1 := fl(e: x A), . . . $16 := fl(eY x &) 
( k, C 1 , .  . . , Ck ) := distill( 16, C 1 , .  . . , C16 ) 

convert z‘, y‘ to single precision numbers z, y 
return z , y  

2’ := fl(bl/dl), y‘ := fl(Cl/dl) 

end 
The preceding algorithm is easy to deduce, but seems 
rather costly. Can we do better? For a global algorithm, 
the answer seems to be “no”, since we must avoid de- 
structive cancellation in computing sums. Nevertheless, 
we can rearrange the computation slightly to guarantee 
that only two sums can incur destructive cancellation, 
and then only rarely, by proceeding as follows. Note 
that we may write the coordinates of the intersection 
point as z = z1+0(22-21) and y = y1+a(yz-y1) where 

of U and U, we have the following possibilities: if uv > 0, 
the line segment does not intersect the line; if U = 0 and 
v = 0, the line segment coincides with the line; if U = 0 
but v # 0, the line segment intersects the line at P I ,  
and similarly if U # 0 but v = 0; finally, if uv < 0, the 
line segment intersects the line at some point between 
PI and P2. 

= u/(u-v), = (Y4-Y3)(21-23)+(23-z4) Y1-y3)1 
and v = ( ~ 4 - ~ 3 ) ( z 2 - 2 3 ) + ( z 3 - ~ 4 ) ( ~ 2 - ~ 3 ) .  \ n terms 

Suppose we compute U and v accurate to double preci- 
sion, by means described above. We can test for each of 
the aforementioned casea, and we need only perform ad- 
ditional computations if uv < 0. In this case, however, 
no cancellation occurs when we compute U - U, so a can 
be computed to near double precision. Likewise, we can 
compute 2 2  - z1 and y2 - y1 to near double precision, 
and therefore the products 4 2 2 - 2 1 )  and a(y2-yl) may 
be computed to near double precision. Specifically, each 
of these quantities will be accurate to all but the last 
two significant bits. Thus if neither sum z l  +a(z2 - z1) 
and yl +a(% - y1) cancels in more than t2 - 2 - tl lead- 
ing bits, then both will be sufficiently accurate to round 
to  the correct single precision values. Moreover, we can 
test whether this much cancellation has occurred, and 
if SO, we can always resort to the lengthy algorithm pre- 
sented above. To summarize, we state our results (again 
without proof). 
Proposition: Let c = 2*2-’-*1 . The following algo- 
rithm solves the above problem using at  most 721 IEEE 
754-compatible double precision floating point opera- 
tions including conversions, provided the condition in 
the last if statement fails. Moreover, no computation 
overflows, and the only computation which can under- 
flow is the final conversion to single precision. (Again, 
fl denotes computation in double precision.) 
Algorithm: (Intersect line and segment, version 2) 

procedure intersect2( 2 1 ,  y1, .  . . ,z4, y4 ) 
begin 
convert 2 1 ,  y1, . . . , z4, y4 to double precision num- 
bers 4,y: , . . . , ”  :,A 
U1 := fl(& x zi), . . . , ua = fl(zl, x 6) 

v1 := fl(& x zi), . . . , vg = fl(zi x &) 
( k, V I , .  . . , Vk ) := distill( 8, V I , .  . . , v g  ) 
if u1 = 0 

( j ,  2 1 1 , .  . . , uj ) := distill( 8, u1, .  . ., ) 

else 

else 
) 

if v1 = 0 

else 

if v1 = 0 
return x2,y2 

i f ( u ~ < O a n d v ~ < O ) o r ( u ~ > O a n d v ~ > O  

return “No intersection” 

return “Intersection not unique” 

return 2 1 ,  yl 

a := fl(ul/fl(ul- VI) )  

t’ := fl(zi + fl(a x fl(z’, - zi))), y‘ := fl(d + fl(a x 
fl(yi - 4))) 
if 14 5 fl(c x 141) or Iy’l L fl(c x MI) 

( z, y ) := intersectl( t l ,  y1, .  . . ,z4, y4 ) 

convert z’, y’ to single precision numbers z, y 
else 

return z , y  
end 

The last if test fails only when either the z or y coordi- 
nate of the intersection point is much closer to zero than 
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21, respectively ~ 1 .  We cannot expect to give a mean- 
ingful estimate of the probability with which the test 
fails, but we can say loosely that it will happen “only 
rarely”. Even then, we simply resort to the longer com- 
putation given as version 1, and here we could exercise 
greater care and reuse some of the quantities already 
computed in version 2, so that the overall cost will be 
slightly less than the sum of the costs of each version 
alone. (In this respect, our approach is similar to that 
suggested by Dobkin and Silver [SI.) Moreover, the most 
pessimistic quantities in the cost estimates arise from 
the distillation procedure, which, as Kahan [9] notes, 
often takes far less time than we can predict. There- 
fore, we suggest that the preceding algorithm is not only 
provably accurate and robust, but usually very efficient 
as well. 

8 Further Remarks 
We have exhibited algorithms which perform exact ad- 
dition and multiplication and arbitrarily precise division 
using only fixed precision floating point arithmetic oper- 
ations by expressing extended precision numbers as un- 
evaluated sums of t-digit floating point numbers. The 
algorithms are based on a simple property possessed 
by most “reasonable” implementations of floating point 
arithmetic. Ao an application of these algorithms, we 
have given a provably robust, accurate, and reasonably 
efficient a1 orithm for computing the intersection of a 
line and a fine segment. Unlike many algorithms which 
are backwards stable in that they actually compute the 
intersection of a nearby line and line segment, our algo- 
rithm is forwards stable: it  computes the point nearest 
the exact intersection of the given line and segment. 
We express the cost of our algorithms as the number 
of t-digit floating point arithmetic operations required 
as a function of the number of components of the input 
expansions. Note that a typical number in Rp does not 
have a unique t-digit expansion; in fact, even the num- 
ber of components is not uniquely determined. Since 
the cost of each operation depends on the number of 
components, we could in principle demand that we al- 
ways compute minimal t-digit expansions. We choose 
not to do so, however, since this would require the de- 
velopment of an algorithm which finds a minimal ex- 
pansion given an arbitrary one, and such algorithms 
are difficult to formulate in a machine-independent way. 
Instead we only require that an expansion satisfy the 
non-overlapping condition; i.e., that significant digits of 
successive components do not overlap. This requirement 
incurs additional cost in the form of the renormalization 
steps following each operation, but it provides a conve- 
nient form for subsequent rounding and usually leads 
to “nearly minimal” expansions. We conjecture that 
for many applications, the cost of producing minimal 
expansions outweighs the cost of working with nearly 
minimal ones. (In fact, for some applications we may 
save time by renormalizing even less frequently; our al- 
gorithms could easily be made more efficient in this re- 
spect, although some of the proofs would need to be 
refined.) 
In designing our algorithms, we have tacitly assumed 
that the exponent range of the arithmetic is unlimited, 

so that no overflow or underflow occurs. In fact, al- 
though it is possible for our distillation and multipli- 
cation algorithms to overflow when the exact results 
lie within representable range, such overflow can oc- 
cur only when the inputs are already very close to the 
overflow threshhold and is therefore not likely. On the 
other hand, since the trailing components of expan- 
sions quickly become very small, underflow imposes a 
certain limitation on the accuracy of these algorithms. 
(For example, IEEE standard double precision with a 
64 bit storage format contains eleven bits of exponent 
and 53 bits of fraction. Hence the net exponent range 
is 211 = 2048, so the maximum number of representable 
components in an expansion is r2048/531 = 39. Ex- 
act calculations can easily exceed this limit after sev- 
eral operations.) Nevertheless, we believe that in most 
applications, intermediate results may be rounded or 
rescaled so that underflow does not pose a serious prob- 
lem. Even when underflow cannot be avoided, Demmel 
[5] points out that the cumulative effect of the result- 
ing errors can often be estimated by extending the error 
analysis to  include an underflow term whose magnitude 
is bounded by the underflow threshhold, if underflow is 
gradual, or by the ratio of this threshhold to  the unit 
roundoff otherwise. 
In conclusion we note that the techniques we have pro- 
posed for calculating to arbitrary precision can be used 
equally well to  simulate either floating point or fixed 
point arithmetic. Specifically, if after each calculation 
we truncate the resulting expansion to  a fixed number 
of components, then the relative error of each interme- 
diate result will be bounded by a corresponding con- 
stant, as is true of single precision floating point arith- 
metic. Alternatively, if we drop only trailing compo- 
nents whose magnitude is below a given threshhold (as 
with underflow), then we can instead bound the abso- 
lute error of each operation, thereby emulating fixed 
point arithmetic. More importantly, in either case we 
may adjust the precision dynamically, calculating cer- 
tain intermediate results to very high precision and oth- 
ers to lower precision, to obtain the desired accuracy in 
the solution; the cost of the computation, not the preci- 
sion of the arithmetic, determines the size of acceptable 
errors. We should then rephrase the traditional question 
of roundoff error analysis, “How accurate is a computed 
result if we calculate each intermediate quantity using 
fixed precision arithmetic?”, as the more natural ques- 
tion, “What is the cheapest way to compute a result to 
a specified accuracy?’’ We believe further study in this 
direction will provide both practical and theoretically 
useful results. 
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