
On the Design of Fast IEEE Floating-point Adders
(Extended Abstract)

Peter-Michael Seidel
Southern Methodist University

Computcr Sci&Eng Department
Dallas, TX, 75275

seidel@ seas.smu.edu

Abstract

We present an IEEE floating-point adder (FP-adder) de-
sign. The adder accepts normalized numbers, supports all
four IEEE rounding modes, and outputs the correctly nor-
malized rounded sumidifference in the format required by
the IEEE Standard. The latency of the design for double
precision is roughly 24 logic levels, not including delays of
latches between pipeline stages. Moreover; the design can
be easilypariitioned into 2 stages consisting of 12 logic lev-
els each, and hence, can be used with clock periods that
allow for 12 logic levels between latches. The FP-adder de-
sign achieves a low latency by combining various optimiza-
tion techniques such as: a non-standard separation into
two paths, a simple rounding algorithm, unifying rounding
cases for addition and subtraction, sign-magnitude com-
putation of a difference based on one’s complement sub-
traction, compound adders, and fast circuits for approxi-
mate counting of leading zeros from borrow-save represen-
tation. A comparison of our design with other implementa-
tions suggests a reduction in the latency by at least two logic
levels as well as simplified rounding implementation. A re-
duced precision version of our algorithm has been verijied
by exhaustive testing.

1 Introduction and Summary

Floating-point addition and subtraction are the most fre-
quent floaling-point operations. Both operations use a
floating-point adder (--adder). Therefore, a lot of effort
has been spent on reducing the latency of FP-adders (see
[3, 8, 16, 18, 19,20, 21,22, 231 and the references that ap-
pear there). Many patents deal with FP-adder design (see
[6,9, 10, 12, 13, 14, 15, 17, 24,25, 271).

We present an FP-adder design that accepts normalized
double precision significands, supports all IEEE rounding
modes, and outputs the normalized suddifference that is
rounded according to the IEEE FP standard 754 [111. The

Guy Even
Tel-Aviv University

Electrical Engineering Department
69978 Tel-Aviv, Israel

guy @eng.tau.ac.il

latency of our design is analyzed in technology-independent
terms (i.e. logic levels) to facilitate comparisons with other
designs. The latency of the design for double precision is
roughly 24 logic levels, not including delays of latches be-
tween pipeline stages. This design is amenable to pipelin-
ing with short clock periods; in particular, it can be easily
partitioned into 2 stages consisting of 12 logic levels each.
Extensions of the algorithm that deal with dcnormal inputs
and outputs are discussed in [l, 221. It is shown that the
delay overhead can be reduced to 1-2 logic levels.

We employ several optimization techniques in our algo-
rithm. A detailed examination of these techniques enables
us to demonstrate how these techniques can be combined
to achieve an overall fast FP-adder design. In particular,
effective reduction of latency by parallel paths requires bal-
ancing the delay of the paths. We achieve such a balance by
a gate-level consideration of the design. The optimization
techniques that we use include the following techniques:
(a) A two path design with a non-standard separation cri-
terion. Instead of separation based on the magnitude of the
exponent difference [9], we define a separation criterion that
also considers whether the operation is effective subtrac-
tion and the value of the significand difference. This sep-
aration criterion maintains the advantages of the standard
two-path designs, namely, alignment shift and normaliza-
tion shift take place only in one of the paths and the full
exponent difference is computed only in one path. In ad-
dition, this separation technique requires rounding to lake
place only in one path. (b) Reduction of rounding modes
and injection based rounding. Following Quach ei al. [21],
the IEEE rounding modes are reduced to 3 modes, and fol-
lowing [7], injection based rounding is employed to design
the rounding circuitry. (c) A simpler design is obtained by
using unconditional pre-shifts for effective subtractions to
reduce to 2 the number of binades that the significand sum
and difference could belong to. (d) One’s complement rep-
resentation is uscd to compute the sign-magnitude repre-
sentation of the difference of the exponents and the signif-
icands. (e) A parallel-prefix adder is used to compute the

184
0-7695-1 150-3/01 $10.00 0 2001 IEEE

http://seas.smu.edu

sum and the incremented sum of the significands [26]. (0
Recodings are used to estimate the number of leading ze-
ros in the non-redundant representation of a number repre-
sented as a borrow-save number 1161. (h) Due to the la-
tency of the rounding decision signal, the computation of
the post-normalization is advanced and takes placc bcfore
the rounding decision is ready.

To relate the proposed implementation to previous FP-
adder designs, we give an overview about other FP-adder
implementations from technical papers or patents, and sum-
marize the optimization techniques that are used in each of
these designs. We analyze two particular implementations
from litcraturc in some more detail [lo, 171. To allow for
a “fair”comparison, the functionality of these designs were
adopted to match the functionality of our design. A com-
parison of these designs with our design suggests that our
design is faster by at least 2 logic levels. In addition, our de-
sign uses simpler rounding circuitry and is more amenable
to partitioning into two pipeline stages of equal latency.

This paper focuscs on double precision FP-adder imple-
mentations. Many FP-adders support multiple precisions
(e.g. x86 architectures support single, double, and extended
double precision). In 1221 it is shown that by aligning the
rounding position (i.e. 23 positions to the right of the binary
point in single precision and 52 positions to the right of the
binary point in double precision) of the significands before
they are input to the design and post-aligning the outcome
of the FP-adder, it is possible to use the FP-adder presented
in this paper for multiplc precisions. Hence, the FP-addition
algorithm presented in this paper can be used to support
multiple precisions.

The correctness of our FP-adder design was verified by
conducting exhaustive testing on a reduced precision ver-
sion of our design [21.

Many details are omitted from this extended abstract and
appear in the full version.

2 Notation

We denote binary strings in upper caye letters (e.g.
, s,E,F). The value represented by a binary string is repre-
sented in italics (e.g. s, e, f).

We consider normalized IEEE FP-numbers. In dou-
ble precision IEEE FP-numbers are represcntcd by thrce
fields (~ , ~ [1 0 : 0] , ~ [0 : 5 2]) with sign bit s E (0, l}, ex-
ponent string ~ [1 0 : 0] f (0 , l)” and significand string
F[O :53] E (0, l}? The values of exponent and significand
are defined by:

10
E[i] . zi - 1023, f = xS2 F[i] . 2-i

1=0

Since we only consider normalized FP-numbers, we have
f E [l, 2). A FP-number (s , ~ [1 0 : 01, F[O: 521) represents
the value: fp-val(s, E, F) = (- I) ~ . ze . f.

Given an IEEE FP-number (s, U , v), we refer to the triple
(s, e, f) a$ thefactoring of the FP-number. Note that s = s
since s is a single bit. The advantage of using factorings
is thc ability to ignore reprcsentation details and focus on
valucs. The inputs of a FP-additionlsubtraction are:

1. operands denoted by (SA, E A [~ O : 01, PA[O : 521) and

2. an operation S O P E (0 , l) where S O P = 0 denotes an

3. IEEE rounding mode.

(SB, EB [10 : 01 , FB [o : 521);

addition and S O P = 1 denotes a subtraction;

The output is a FP-number (s, ~[10:0], F[O: 521). The value
represented by the output equals the IEEE roundcd valuc of

fpsum = ~~-~u~(S.~,EA[~O:O],FA[O:~~]) +
(-1)’ oPfp-Vd (SB, EB [lo : 01, FB [o : 521)

3 Naive FP-adder Algorithm

In this section we overview the “vanilla” FP-addition al-
gorithm. To simplify notation, we ignore represcntation and
deal only with the values of the inputs, outputs, and inter-
mediate results. Throughout the paper we use the notation
defined for the naive algorithm.

Let (sa , ea, fa) and (sb, eb, f b) denote the factorings of
the operands with a sign-bit, an exponent, and a significand
and let S O P indicate whether the operation is an addition or
a subtraction. The requested computation is the IEEE FP
representation of the rounded sum:

Let S.EFF = sa @ sb @ S O P . The case that s.mz17 = 0
is called effective addition and the case that S.EFF = 1 is
called effective subtraction.

We define the exponent difference 6 = ea - eb. The
“large” operand, (sl , el, fl), and the “small” operand,
(ss, es, fs), are defined as follows:

(sa, ea, fa)
(S O P @ sb, eb, f b)

if 6 2 0
otherwise (sl ,el , fl) =

{ (~ ~ ~ @ s b , e b , f b) i f 6 2 0 (s s , e s , f s) = (sa, ea, fa) otherwise.

The sum can bc writtcn as

Sum (-1)” . 2 e ’ . (f l + (-l)”.“’”(js. 2-161)).

To simplify the description of the datapaths. we focus on the
computation of the result’s significand, which is assumed to
be normalized (i.e. in the range [l, 2)). Thc significand sum
is defined by

fsum = f l + (-1) S.EFF (f s . 2-161).

The significand sum is computed, normalized, and rounded
as follows:

185

1.
2.
3.

4.
5.
6.
7.
8.
9.

exponent subtraction 6 = ea - eb,
operand swapping (compute sl,el, f 1 and f s),
limitation of the alignment shift amount: S-lim =
min{a, abs(S)), where a is a constant greater than
or equal to 55,
alignment shift o f f s: f sa = f s . 2-&_lim,
significand negation fsan = (-l)S.EPFfsa.
significand addition Bum =jl +fsan,
conversion absfsum=abs(fium). S =sZ&fium < O \ .
normalization &urn= n&m(absfsum),v
rounding and post-normalization of nJsum.

The naive FP-adder implements the 9 steps from above se-
quentially, where the delay of steps 4,6,7,8,9 is logarith-
mic in the significand’s length. Therefore, this is a slow
FP-adder implementation.

4 Optimization Techniques

In this section we outline optimization techniques that
were employed in the design of our FP-adder.

4.1 Separation of FP-adder into two parallel paths

The FP-adder pipeline is separated into two parallel
paths that work under different assumptions. The partition-
ing into two parallel paths enables one to optimize each
path separately by simplifying and skipping some of the
steps of the naive addition algorithm (Sec. 3). Such a
dual path approach for FP-addition was first described by
Farmwald [SI. Since Farmwald’s dual path FP-addition al-
gorithm, the common criterion for partitioning the com-
putation into two paths has been the exponent difference.
The exponent difference criterion is defined as follows: the
near path is defined for small exponent differences (i.e.
- 1 , O , +l), and the fur path is defined for the remaining
cases.

We use a different partitioning criterion for partitioning
the algorithm into two paths: we define the N-path for the
computation of all effective subtractions with small signifi-
cand sums f sum E (-1,l) and small exponent differences
161 5 1, and we define the R-path for all the remaining
cases. We define the path selection signal IS-R as follows:

IS-R U S.EFF OR IS1 2 2 OR fsum E [1,2). (1)

The outcome of the R-path is selected for the final result if
IS-R = 1, otherwise the outcome of the N-path is selected.
This partitioning has the following advantages:

1. In the R-path, the normalization shift is limited to a
shift by one position (in Sec, 4.2 we show how the
normalization shift may be restricted to one direc-
tion). Moreover, the addition or subtraction of the
significands in the R-path always results with a pos-
itive significand, and therefore, the conversion step
can be skipped.

2. In the N-path, the alignment shift is litnited to a shift
by one position to the right. Under the assumptions
of the N-path, the exponent difference is in the range
{ - l , O , 1). Therefore, a 2-bit subtraction suffices for
extracting the exponent difference. Moreover, in the
N-path, the significand difference can be exactly rep-
resented with 53 bits, hence, no rounding is required.

Note that the N-path applies only to effective subtractions in
which the significand difference f sum is less than 1. Thus,
in the N-path i t is assumed that f sum E (-1,l).

The advantages of our partitioning criterion compared to
the exponent difference criterion stem from the following
two observations: (a) a conventional implementation of a
far path can be used to implement also the R-path; and (b)
the N-path is simpler than the near path since no rounding
is required and the N-path applies only to effective subtrac-
tions. Hence, we were able to implement the N-path simpler
and faster than the near-path presented in [23].

4.2 Unification of significand result ranges

In the R-path, the range of the resulting significand is
different in effective addition and effective subtraction. Us-
ing the notation of S e c . 3, in effective addition, fZ E [l, 2)
and fsan E [0,2). Therefore, fsum E [1,4). It follows
from the definition of the path selection condition that in ef-
fective subtractions f sum E (i, 2) in the R-path. We unify
the ranges of f sum in these two cases to [l, 4) by multiply-
ing the significands by 2 in the case of effective subtraction
(i.e. pre-shifting by one position to the left). The unification
of the range of the significand sum in effective subtraction
and effective addition simplifies the rounding circuitry. To
simplify the notation and the implementation of the path se-
lection condition we also pre-shift the operands for effective
subtractions in the N-path. Note, that in this way the pre-
shift is computed in the N-path unconditionally, because in
the N-path all operations are effective subtractions. In the
following we give a few examples of values that include the
conditional pre-shift (note that an additional ’p’ is included
in the names of the pre-shifted versions):

if S.EFF
otherwise

2 .fsan if S.EPF
fsan otherwise jipan =

2 .fsum if S.EPF
Bum otherwise.

fpsum =

Note, that based on the significand sum fpsum, which in-
cludes the conditional pre-shift, the path selection condition
can be rewritten as

IS-R S.EFF OR 161 2 2 OR fpsum E [2,4).(2)

186

4 3 Reduction of IEEE rounding modes

The IEEE-754-1985 Standard defines four rounding
modes: round toward 0, round toward +oo, round toward
-oo, and round to nearest (even) I1 11. Following Quach et
al. 1211, we reduce the four IEEE rounding modes to three
rounding modes: round-to-zero E, round-to-infinity RI,
and round-to-nearest-up RNU. The discrepancy between
round-to-nearest-even and RNU is fixed by pulling down
the LSB of the fraction (see [7] for more details).

In the rounding implementation in the R-path, the three
rounding modes RZ, RNU and RI are further reduced to
truncation using injection based rounding [7]. The reduc-
tion is based on adding an injection that depends only on
the rounding mode. Let x = xo.x1x2 . . . x k denote the
binary represcntation of a significand with the value x =
1x1 E [l, 2) for which k 2 53 (double precision rounding is
trivial for k < 53), then the injection is defined by:

if RZ
if RNU

2 p k i f N 2-52 - INJ = { i-53
For double precision and male E {RZ , RNU, RI}, the ef-
fect of adding INJ is summarized in the following equation:

1x1 E [1,2) * Tndmode(IX I) = TndR.Z(lXI+INJ). (3)

4.4 Sign-magnitude computation of a difference

In this technique the sign-magnitude computation of a
difference is computed using one's complement representa-
tion [181. This technique is applied in two situations:

1. Exponent difference. The sign-magnitude represen-
tation of the exponent differencc is used for two pur-
poses: (a) the sign determines which operand is se-
lected as the "large" operand; and (b) the magnitude
determines the amount of the alignment shift.

2. Significand difference. In case the exponent differ-
ence is zero and an effective subtraction takes place,
the signifieand differcnce might be negativc. Thc sign
of the significand difference is used to update the sign
of the result and the magnitude is normalized to be-
come the result's significand.

Let A and B denote binary strings and let I A ~ denote the
value represented by A (i.e. I A ~ = xi ~ [i] . 2 9 . The tech-
nique is based on the following observation:

The actual computation proceeds as follows: The binary
string D is computed such that I D I = I A ~ + [El. We refer

to D as the one's complement luzy difference of A and B .
We consider two cases:

1. If the difference is positive, then I D I is off by an ulp
and we need to increment I D I . However, to save delay,
we avoid the increment a$ follows: (a) In the case of
the exponent difference that determines the amount
of the alignment shift, the significands are pre-shifted
by one position to compensate for the error. (b) In
the case of the significand difference, the missing ulp
is provided by computing the incremented sum of 1 ~ 1
and IEI using a compound adder.

2. If the exponent difference is negative, then the bits of
D are negated to obtain an exact representation of the
magnitude of the diffcrence.

4.5 Compound addition

The technique of computing in parallel the sum of the
significands as well as the incremented sum is well known.
The rounding decision controls which of the sums is se-
lected for the final result, thus enabling the computation of
the sum and the rounding decision in parallel ,

Technique. We follow the technique suggested by
Tyagi [26] for implementing a compound adder. This tech-
nique is based on a parallel prefix adder in which the carry-
generate and carry-propagate strings, denoted by GenC
and PTW-C, are computed 141. Let Gen-C[i] equal the
carry bit that is fed to position i. The bits of the sum S of
the addends A and B are obtaincd as usual by:

S[i] = xor(A[i],B[i],Gen-C[i]).

The bits of the incremented sum SI are obtained by:

Sl[i] = xor(A[i],B[i],or(Gen-C[i],Prqp_C[i])).

Application. There are two instances of a compound
adder in our FP-addition algorithm. One instance appears
in the second pipeline stage of the R-path where our delay
analysis relies on the assumption that the MSB of the sum
is valid one logic level prior to the slowest sum bit.

The second instance of a compound adder appears in the
N-path. In this caSe we also address the problem that the
compound adder does not "fit" in the first pipeline stage
according to our delay analysis. We break this critical
path by partitioning the compound adder between the first
and second pipeline stages a$ follows: A parallel prefix
adder placed in the first pipeline stage computes the carry-
generate and carry-propagate signals as well as the bitwise
xor of the addends. From these three binary strings the sum
and incremented sum are computed within two logic levels

187

as described above. However, thesc two logic levels must
bclong to different pipeline stages. We thcrefore compule
first thc thrcc binary strings S[i], P[i] = A[i] xor B[i] and
GP-C[i] = or(Gen-C[i], Prop-C[i]) which are passed to
the sccond pipeline stage. In this way the computation of
the sum is already completed in thc first pipeline stage and
only an xor-line is required in the second pipeline stage to
compute also the incrcmented sum.

4.6 Approximate counting of leading zeros

In the N-path a resulting sibmificand in the range (- 1 , l)
must be normalized. The amount of the normalization shift
is determined by approximating the number of leading ze-
ros. Following Nielscn er al. [16], we approximate the
number of leading zeros so that a normali7ation shift by
this amount yields a significand in the range [l, 4). The fi-
nal normalization is then performed by post-normalization.
There are various other implementations for the leading-
zero approximation in literature. Thc input used for count-
ing leading zeros in our design is a borrow-save representa-
tion of the difference. This design is amenablc to partition-
ing into pipeline stages, and admits an elegant correctness
proof that avoids a tedious case analysis.

Nielsen et a2. [16] presented the following technique
for approximately counting the number of leading zcros.
The input consists of a borrow-save cncoded digit string
F[-1 : 521 E { -1,O, l}54. We compute the borrow-save en-
coded string F‘[-Z : 521 = P (N (F [- ~ : 52])) , where P ()
and N () denote P-recoding and N-recoding [5, 161. (P-
recoding is like a “signcd half-adder’’ in which the carry
output has a positive sign, N-recoding is similar but has an
output carry with a negative sign). The correctncss of the
technique is based on the following claim.

Claim 1 [I61 Suppose the borrow-save encoded string
F’[-2:52] isoftheformF’[-2:52] = Ok . u . t [l : 5 4 - k] ,
where . denoles concatenation of strings, Ok denotes a block
o f k z e r o s , ~ E (- l , l } , a n d t E {-l,0,1}54-k. Thenthe
following ho Ids:

(1.) rfu = 1, then the value represented by the borrow
encodedstring u.t satisjes: U + ~ : i ; ~ t[i] .2-’ E (f , 1).

(2.) rfu = -1, then the value represented by the borrow
encodedstring u.t satisjes: U + Cf=yt[i].2i E (3, -;).

The implication of Claim 1 is that aftcr PN-recoding, the
number of leading zeros in the borrow-save encoded string
~ ~ c - 2 : 531 (denoted by k in the claim) can be used as
the normalization shift amount to bring the normalizcd rc-
sult into one of two binadcs (i.e. in the positive case either
(i, i) or [i, l) , and in the negativc case after negation ei-
ther (f , 1) or [l , %)).

We implemented this technique so that the normalized
significand is in thc range [l, 4) as follows:

(1.) In the positive case, the shift amount is 122 = k =

(2.) In the negative case, the shift amount is 121 = IC-1 =
Zzero(r;’[-2:52]). (See signal LZP2[5:O] inFig. 4).

izero(Ff[-l: 521). (See signal LZP1[5: 01 in Fig. 4).

4.7 Pre-computation of post-normalization shift

In the R-path two choices for the rounded significand
sum are computed by the compound adder (see section 4.5).
Either the ’sum’ or the ’incremented sum’ output of the
compound adder is chosen for the rounded result. Because
the significand after the rounding selection is in the range
[l, 4) (due to the pre-shifts from section 4.2 only these two
binades have to bc considered for rounding and for the post-
normalization shift), post-normalization requircs at most a
right-shift by one bit position. Because the outputs of the
compound adder have to wait for the computation of the
rounding decision (selection based on the range of thc sum
output), we pre-compute the post-normalization shift on
both outputs of the compound adder before the rounding
selection, so that the rounding selection alrcady outputs the
normalized significand result of the R-path.

5 Our FP-adder Implementation

In this section we give an overview of our FP-adder im-
plementation. We describe the partitioning of the design im-
plemcnting the oplimiwtion techniques from the previous
section. The algorithm is a dual path two-staged pipeline.
The final result is selected between the outcomcs of the two
paths based on the signal IS-R (SCC equation 2). A high-
level block diagram of algorithm is depictcd in Figure 1.
Details about thc implementation of the stagcs arc provided
by detailed block diagrams. A detailed dcscription of the
implementation can be found in the full version of this pa-
per.

R-Path. The R-path works under the assumption that (a)
an effective addition takes place; or (b) an effective subtrac-
tion with a significand differencc (after pre-shifting) greater
than or equal to 2 takes place; or (c) the absolute value of
thc cxponent difference 161 is larger than or equal to 2. Note
that these assumptions imply that the sign-bit of the sum
equals S L.

The R-path is divided into two pipeline stages. Looscly
speaking, in the first pipeline stage, the cxponent difference
is computed, the significands arc swapped and pre-shifted
if an effective subtraction takes place, and the subtrahend is
negated and aligned. In the SignGCand One’s Complement
box, the significand to become h e subtrahend is negated
(recall that one’s complemcnt representation is used). In
the Align I box, the significand to become the subtrahend is
(a) pre-shifted to the right if an effective subtraction takes

188

’R’ path ’N’ path

r

I
I
I
I
I
I
I
I
I
I
I
I
I

exponeat

1 1st wck

I

Figure 1. High level structure of the new FP-
adder algorithm. Vertical dashed line sepa-
rates two pipelines: R-path and N-path. Hori-
zontal dashed line separates pipeline stages.

I
I

Figure 1. High level structure of the new FP-
adder algorithm. Vertical dashed line sepa-
rates two pipelines: R-path and N-path. Hori-
zontal dashed line separates pipeline stages.

place; and (b) aligned to the left by one position if thc cxpo-
nent difference is positive. This alignment by one position
compensates for the error in the computation of the expo-
nent differcncc when the difference is positive due to the
one’s complcment representation (see Sec. 4.4). In the Swap
box, the significands are swappcd according to the sign of
the exponent difference. In the Align2 box, the subtrahend
is aligned according to the computed exponent diffcrcncc.
The exponent dlference box computes the swap decision
and signals for the alignment shift. This box is further par-
titioned into two paths for medium and large exponent dif-
ferences. A detailed block diagram for the implementation
of the first cycle of the R-path is depicted in Figurc 2.

The input to thc second pipeline stage consists of lhe sig-
nificand of the ’larger’ operand and the aligned significand
of the ’smaller’ operand which is inverted for effective sub-
tractions. The goal is to compute their sum and round it
whilc taking into account the error due to the one’s comple-
ment representation for effective subtractions. The second
pipeline stage is very similar to the rounding algorithm pre-
scnted in our companion paper [7]. The significands are
divided into a low part and a high part that are processed in
parallel. The low part computes the LSB of the final result
based on the low part and the range of thc sum. The high
part computes the rest of the final result (which is eithcr
the sum or the incremented sum or the high part). The out-
pu6 of thc compound adder are post-normalized before the
rounding sclection is performed. A detailed block diagram
for the implementation of the second cycle of the R-path is
depicted in Figure 3.

barge : medium ! 1’s complement
:EA1601 PBIbO] ! F4IOSlI SA SOP SB FBO-521

Exponent Difference : Align 2

Figure 2. Detailed block diagram of the 1st
clock cycle of the R-path annotated with tim-
ing estimates (“5LL” next to a signal means
that the signal is valid after 5 logic levels).

N-Path. The N-path works under thc assumption that an
effective subtraction takcs place, the significand difference
(after the swapping of the addends and pre-shifting) is less
that 2 and the absolute value of the exponent difference 161
is less than 2. The N-path h a the following properties:

1. Theexponentdifferencemustbein theset { - l , O , 1).
Hence, the exponent difference can be computed by
subtracting the twoLSBs of the exponent strings. The
alignment shift is by at most one position. This is im-
plcmcnted in the exponent difference prediction box.

2. An effective subtraction takes place, hence, thc sig-
nificand corresponding to the subtrahend is always
ncgatcd. We use one’s complement representation for
the negated subtrahend.

3. The significand difference (after swapping and pre-
shifting) is in thc range (-2,2) and can be exactly
represented using 52 bits to the right of the binary
point. Hcncc, no rounding is required.

Based on the exponent diffcrcnce prediction the signifi-
cands are swapped and aligned by at most one bit position
in the align and swap box. Thc leading zero approximation
and the significand difference are then computed in paral-
lel. The result of the leading zero approximation is selccted
bascd on the sign of the significand difference according to
Sec. 4.6 in the leading zero selection box. The conversion
box computes the absolute value of the difference (Sec. 4.4)
and the normalization & post-normalization box normalizcs
the absolute significand difference as a result of the N-path.
Figure 4 depicts a dctailcd block diagram of the N-path.

189

Significand Significand
Addition Addition
high low

- - - - - -
Post-norm
Shift

Rounding
Selection

. - - - - -

Figure 3. Detailed block diagram of the 2nd
clock cycle of the R-path annotated with tim-
ing estimates.

Path Selection We select between the R-path and the N-
path result depending on the signal IS-R . The implemen-
tation of this condition is based on the three signals I S - R ~ ,
I%R2 and S.EFF, where I S A l e (&(delta) 2 2) is the
part of the path selection condition that is computed in the
R-path and IS-R2 is the part of the path selection condition
that is computed in the N-path. With the definition of I S B ~
we get according to Eq. 1:

IS-R = S.EFF V IS-Rl V (fpsum E [2,4))
= m V I S - R I V

((fpsum E [2,4)) A N D S.EFF AND Z X) .

We define IS-RP = (fpsumE [2, d))AS.EFFA=, SO that

-
Because the assumptions S.EI'P = 1 and IS-RI are ex-
actly the assumptions that we use during the computation
of fpsum in the N-path, the condition IS-R2 is easily im-
plemented in the N-path by the bit at position [-11 of the
absolute significand difference. The condition IS-Rl and
the signal S.EFF are computed in the R-path. After IS-R is
computed from the three components according to equation
4, the valid result is selected either from the R-path or the
N-path accordingly. Because the N-path result is valid a few
logic levels before the R-path result, the path selection can
be integrated with the final rounding selection in the R-path.

Small
Exponent
Difference

-------.
Large sig:
select &
Pre-shift

1's Compl

.-----.--,

Small sig:
Select

&Align
& Pre-shift

Signifiednd
Addition

i*LL"l*l.b*.

IILLlpdl"r*nl"

&Conversion
selection

Path
Selection

Condition
part2

Normalization +

Post-norm Shift

Figure 4. Detailed block diagram of the N-path
annotated with timing estimates.

6 Delay Analysis of Our FP-adder

In this section we analyze the delay of our FP-adder im-
plementation in technology-independent terms (logic lev-
els). Our delay analysis is bas& on the detailed description
of our algorithm in the full version of this paper and on the
assumptions on delays of basic boxes used in [7, 231. We
discuss the delay analysis separately for the stages that are
depicted in Figures 2,3 and 4.

For the first stage of the R-path the timing estimates are
annotated in the block diagram in Figure 2, where "5LL"
next to a signal means that the signal is valid after 5 logic
levels. Our delay analysis suggests that the latest signals
in this stage are valid after 12 logic levels. For the second
stage of the R-path the timing estimates are annotated in
the block diagram in Figure 3. Because the implementaiion
of this stage is almost identical to the implementation of
multiplication rounding from [7], also the timing estimates
are almost identical and we get the latest signals in this stage
after 12 logic levels, so that the whole R-path has a delay of
24 logic levels.

For the N-path the timing estimates are annotated in the
block diagram in Figure 4. Corresponding to this delay
analysis the latcst signals in the whole N-path are valid af-
ter 21 logic levels, so that this path is not time critical. The
delay analysis depicted in Fig. 4 suggests two pipeline bor-
ders: one after 12 logic levels and one after 13 logic lev-

190

els. As already discussed in section 4.5, a partitioning after
12 logic levels requires to partition the implementition of
the compound adder between 1wo stages. This can be done
with the implementation of the compound adder from sec-
tion 4.5, so that we get a first stage of the N-path that is valid
after 12 logic levels and a second stage of the N-path where
the signals are valid after 9 logic levels. This leaves some
time in the second stage for routing the N-path result to the
path selection mux in the R-path.

Hence, our FP-adder can be realized in 24 logic levels
that can be partitionedinto two pipeline stages with 12 logic
levels between latches.

7 Verification and Testing of Our Algorithm

The FP addition and subtraction algorithm presented in
this paper was verified and tested by Bar-Or et al. [2l. They
used the following novel methodology. Two parametric al-
gorithms for FP-addition were designed, each with p bits
for the significand string and n bits for the exponent string.
One algorithm is the naive algorithm, and the other algo-
rithm is the FP-addition algorithm presented in this paper.
Small values of p and n enable exhaustive testing (i.e. input
all 2 . 2pfnf1 binary strings). This exhaustive set of inputs
was simulated on both algorithms. Mismatches between the
results indicated mistakes in the design. The mismatches
were analyzed using assertions specified in the description
of the algorithm, and the mistakes were located. Interest-
ingly, most of the mistakes were due to omissions of fill bits
in alignment shifts. The algorithm presented in this paper
passed this verification without any errors. The algorithm
was also extended to deal with denormal inputs and out-
puts [1,221.

8 Other FP-adder Implementations

In this section, we are looking at several other FP-adder
implementations that are described in literature. In addition
to the technical papers [3, 8, 16, 18, 19,20,21,22,23] there
are also several patents [6, 9, 10, 12, 13, 14, 15, 17. 24,
25, 271 that deal with the implementation of an FP-adder.
To overview the designs from all of these publications, we
summarize the optimization techniques that were used in
each of the implementations in Table 1. The entries in this
table are ordered from top to bottom corresponding to the
year of publication.

The laqt two entries in this list correspond to our pro-
posed FP-adder implementation, where the bottom-most
entry is aqsumed to use an additional optimization of the
alignment shift in the R-Path to be implemented by dupli-
cating the shifter hardware (like also used in [171) and use
one shifter for the case that S > 0 and the other shifter for

the case that 6 < 0. On the one hand this optimization has
the additional cost of more than a 53-bit shifter, on the other
hand it can save one logic levcl in the latency of our imple-
mentation to reduce it to 23 logic levels. Even with this opti-
mization our algorithm is to be partitioned into two pipeline
stages with 12 logic levels between latches, although the
first stage then only requires 11 logic levels.

Although many of the designs use two paths for the com-
putations, not in every eaSe these two paths really refer to
one path with a simplified alignment shift and the other path
with a simplified normalization shift and without the nced
to complement the significand sum like originally suggested
by [8]. In some cayes the two paths are just used for differ-
ent rounding cases. In other c%es rounding i s not dealt with
in the two paths at all, but computed in a separate rounding
step that is combined for both paths after the sum is normal-
ized. These implementations can be recognized in Table 1
by the fact that they do not pre-compute the possible round-
ing results and only have to consider one result binade to be
rounded.

Among the 'two-path' implementations from literature
there are mainly three different path selection conditions:

0 The first group uses the 'original' path selection con-
dition from [SI which is only based on the absolute
value of the exponent difference. A 'far'-path is then
selected for 16) > 1 and a 'near'-path is selected for
IS1 5 1. This path selection condition is used by
the implemenbtions from [3, 14, 18, 21, 231. All of
them have to consider four different result binades for
rounding.

0 A second version of the path selection condition is
used by [171. In this case the far path is addibonally
used for all effective additions. This allows to uncon-
ditionally negate the smaller operand in the 'near'-
path. Also this implementation has to consider four
different result binades for rounding.

0 In the implementation of [lo] a third version of the
path selection condition is used. In this case addi-
tionally the cases where only a normalization shift by
at most one position to the right or one position to
the left arc computed in the 'far'-path. In this way,
thc design could get rid of the rounding in the 'near'-
path. Still there are three different result binades to
be considered for rounding and normalization in the
'far'-path of this implementation.

Our path selection condition is different from these three
and was developed independently from the later two. Its
advantages are described in section 4.1. Not only that by
our path selection condition no additions and no rounding
have to be considered in the 'near' path. We were also able

191

ll f
implementation I(P

Table 1. Overview of optimization techniques used by different FP-adder implementations.

to reduce thc number of binades to 2 that have to be con-
sidered for rounding and normalization in the 'far' path. As
shown in section 5 there is a very simple implementation for
the path selection condition in our design that only requircs
very fcw gatcs to be added in the R-path.

Beside the implementation in 'two paths', the optimiza-
tion techniqucs most cotnmonly uscd in previous designs
are: the use of one's complement negation for the signifi-
cand, the pxallel pre-computation of all possible rounding
results in an upper and a lower part, and the parallel approx-
imate leading zero count for an early preparation of the nor-
malization shift. Especially for the leading zero approxima-
tion there are many different implementations suggested in
literature. The main difference of our algorithm for leading
zero approximation is that it opcrates on a borrow-save en-
coding with Recodings. Its correctness can be proven very
elegantly based on bounds of fraction ranges.

We pick two from the implemcntations in Table 1 and
describe them in detail: (a) an implcmentation bascd on

the 2000 patent 1171 from AMD and (b) an implementa-
tion based on the 1998 patent [IO] from SUN. The union of
the optimization techniques used by these two implemen-
tations to reduce delay form a superset of the main opti-
mization techniques from the previously published designs.
Only our proposed designs add some additional optimiza-
tion techniques to reduce delay and to simplify the design as
pointed out in Table 1. Therefore, it is likely that the AMD
dcsign and the SUN design are the iastcst implementations
that were previously published. For this reason we have
chosen to analyze and comparc their latency with the la-
tency or our design. Although some of the other designs ad-
ditionally address other issues likc for cxample 120, 241 try
to reduce cost by sharing hardware between the two paths
or like 1161 demonstrates an implementation Pollowing the
pipelined-packet forwarding paradigm, thesc implementa-
tions are not optimized for speed and do not belong to the
fastest dcriigns. We thcrefore do not further discuss them in
this study.

192

:,:I

G& I P a h r l m l o P Y L n : 0 ,
i l

Figure 5. Block diagram of the AMD FP-adder
implementation according to [17] adopted to
accept double precision operands and to im-
plement all 4 IEEE rounding modes.

8.1 FP-adder implementation corresponding to
the AMD patent[l7]

The patent from 1171 describes an implementation of an
FP-adder for single precision operands that only considers
the rounding mode round to nearest up. To be able to com-
pare this design with our implementation, we had to extend
i t to double precision and we had to add hardware for the
implementation of the 4 IEEE rounding modes. The tnain
changes that were required for the IEEE rounding imple-
mentation was the 'large shift distance selection'-mux in the
'far-path to be able to deal also with exponent differences
161 > 63. Then, the half adder line in the far path before
the compound adder had to be added to be able also to pre-
compute all possible rounding results for rounding mode
round-to-infinity. Moreover, some additional logic had to
be used for a L-bit fix in the case of a tie in rounding mode
round-to-nearest in order to implemcnt the IEEE rounding
mode RNE instead of RNU. Figure 5 shows a block di-
agram of the adopted FP-addcr implementation based on
[171. This block diagram is annotated with timing eslimatcs
in logic levels. These timing estimates wcre determined
along the same lines like in the delay analysis of our FP-
adder implementation. In this way the analysis suggests
that the adopted AMD implementation has a delay of 26
logic levels.

One main optimization technique in this design is the use
of two parallel alignment shifters at the beginning of the
'far'-path. This technique makcs it possible to begin with
the alignment shifts very early, so that the first part of the
'far'-path is accelerated. On this basis the block diagram

I ~~-
&">,O&. 7

Figure 6. Block diagram of the SUN FP-adder
implementation according to [lo] adopted to
work only on unpacked normalized double
precision operands and to implement all 4
IEEE rounding modes.

5 suggests to split the first stage of the 'far'-path after 11
resp. 12 logic levels, leaving 15 r a p . 14 logic levels for
a sccond stage. Thus, the design is not very balanced for
double precision and it would not be casy to partition the
implementation into two clock cycles that contain 13 logic
levels between latches.

In the last entry of Table 1 we also considered the tech-
nique to use two parallel alignment shifters in our imple-
mentation. Because also in this case the first stage of the
R-path could be reduced to 11 logic levels, we would get a
total latency of 23 logic levels for this optimized version of
our implementation.

8.2 FP-adder implementation corresponding to
the SUN patent[lO]

The patent from [lo] describes an implementation of an
FP-adder for double precision operands considering all four
IEEE rounding modes. This implementation also considers
the unpacking of the operands, denormalized numbers, spc-
cial values and overflows. The implementation targets a par-
titioning into three pipeline stages. For the comparison with
our implementation and the adopted Ah4D implementation,
we reduce the functionality of this implementation also to
consider only normalized double precision operands. Wc
get rid of all additional hardware that is only required for
the unpacking or the special cases.

Like mentioned above the FP-adder implementation cor-
responding to this SUN patent uses a special path selection
condition that simplifies the 'near'-path by getting rid of

193

effective additions and of the rounding computations. In
this way the implementation of the ’near’-path in this imple-
mentation and our N-path implementation are very similar.
Therc are only some differences regarding the implementa-
tion of the approximate leading zero count and regarding the
possible ranges of the significand sum that have to be con-
sidered. Additionally, we employ unconditional pre-shifts
for the significands in the N-path that do not requirc any
additional delay.

In the ’far’-path it is the main contribution of this patent
to integrate the computation of the rounding decision and
the rounding selection into a spccial CP adder implementa-
tion. On the one hand this simplifies to partition this design
into three pipeline stages like suggested in the patent, be-
cause this modified CP adder design can be e a d y split in
thc middle. In [101, the delay of the modified CP adder im-
plementation is estimated to be the delay of a conventional
CP adder plus one additional logic level. The implementa-
tion of the path-selection condition secms to be more com-
plicated than in other design and is depicted in [IO] by two
large boxes to analyze the operands in both paths.

Figure 6 depicts a block diagram of this adopted design.
This figure is annotated with timing estimates. For this es-
timate we aSsume the modified CP adder to have a delay of
10 logic levels as discussed above. In this way our delay
analysis suggests, that the adopted R-adder implementa-
tion corresponding to the SUN patent has a delay of 28 logic
levels. In this case the implementation of the first stage is
not very fast and requires 14 logic levcls.

Thus, in comparison with our design, the FP-adder im-
plementations corresponding to the AMD patent and corre-
sponding to the SUN patent both seem to be slower by at
least two logic levels. Additionally, they have a more com-
plicated IEEE rounding implementation and can not as eaqy
be partitioned into two balanced stages as our design. Be-
cause the two implementations were chosen to be the fa$test
from literature, our implementations seem to be the fa$test
FP-adder implementations published to date.

References

[l] S. Bar-Or, Y. I,evin, and G. Even. On the delay overheads of’
the supporting denormal inputs and outputs in floating point
adders and multipliers. in preparation.

[2] S. Bar-Or, Y. Levin, and G. Even. Verification of scalable
algorithms: case study of an IEEE floating point addition al-
gorithm. in preparation.

[3] A. Beaumont-Smith, N. Burgess, S. Lefrere, and C. Lim. Re-
duced latency IEEE floating-point standard adder architec-
tures. Proc. 14th Symp. on Computer Arithmetic, 14, 1999.

[4] R. Brent and H. Kung. A Regular Layout for Parallel Adders.
IEEE Trans. on Computers, C-31(3):260-264, Mar. 1982.

[5] M. Daumas and D. Matula. Recoders for partial compression
and rounding. Technical Report RR97-01, Ecole Normale
Superieure de Lyon, LIP, 1996.

[6] L. Eisen, T. Elliott, R. Golla, and C. Olson. Method and sys-
tem for performing a high speed floating point add operation.
IBM Corporation, U.S. patent 5790445, 1998.

[7] G. Even and P.-M. Seidel. A comparison of three rounding al-
gorithms for IEEB floating-point multiplication. IEEE Trans-
actions on Computers, Special Issue on Computer Arith-
metic, pages 638-650, July 2000.

[8] P. Farmwald. On the design of high performance digital
arithmetic units. PhD thesis, Stanford Univ., Aug. 1981.

[Y] P. Farmwald. Bifurcated method and apparatus for floating-
point addition with decreased latency time. U S . patent
4639887, 1987.

[lo] V. Gorshtein, A. Grushin, and S. Shevtsov. Floating point ad-
dition methods and apparatus. Sun Microsystems, 1J.S.patent
5808926, 1998.

[l l] IEEE standard for binary floating point arithmetic.
ANSJXEEE754- 1985.

[12] T. Ishikawa. Method for addingkubtracting floating-point
representation data and apparatus for the same. Toshiba,K.K.,
U.S. patent 5063530, 1991.

[13] T. Kawaguchi. Floating point addition and subtraction arith-
metic circuit performing preprocessing of addition or sub-
traction operation rapidly. NEC, U.S. patent 5931896, 1999.

141 T. Nakayama. Hardware arrangement for floating-point ad-
dition and subtraction. NEC, U.S. patent 5197023, 1993.

151 K. Ng. Floating-point ALU with parallel paths. Weitek Cor-
poration, U.S. patent 5136536, 1992.

161 A. Nielsen, D. Matula, C.-N. Lyu, and G. Even. IEEE com-
pliant floating-point adder that confirms with the pipelined
packet-fonvarding paradigm. IEEE Transacrions on Com-
puters, 49(1) : 3 3 4 Jan. 2000.

171 S. Oberman. Floating-point arithmetic unit including an ef-
ficient close data path. AMD, U.S. patent 6094668, 2000.

181 S. Oberman, H. A1-Twajjry, and M. Plynn. The SNAP
project: Design of floating point arithmetic units. In Proc.
13th IEEESymp. on Comp. Arith., pages 156-165, 1997.

191 W.-C. Park, T.-D. Han, S.-D. Kim, and S.-B. Yang. Float-
ing Point Adder/Suhtractor Performing IEEEE Rounding and
AdditiodSuhtraction in Parallel. IEICE Transactions on In-
formation and Systems, E79-D(4):297-305, 1996.

[20] N. Quach and M. Flynn. Design and implementation of the
SNAP floating-point adder. Technical Report CSL-TR-91-
501, Stanford University, Dec. 1991.

[21] N. Quach, N. Takagi, and M. Flynn. On fast IEEE rounding.
Technical Report CSL-TR-91-459, Stanford, Jan. 199 1.

[22] P.-M. Seidel. On The Design of IEEE Compliant F l o a h g -
Point Units and Their Quantitative Analysis. PhD thesis, Uni-
versity of the Saarland, Germany, Deccmber 1999.

How many logic levels does
floating-point addition require? In Proceedings of the 1998
International Conference on Computer Design (ICCD’YR):
VLSI in Computers & Processors, pages 142-149, Oct. 1998.

[24] H. Sit, D. Galbi, and A. Chan. Circuit for adding/subtracting
two floating-point operands. Intel, U.S.patent 5027308, 1991.

[25] D. Stiles. Method and apparatus for performing foating-
point addition. AMD, U.S. patent 5764556, 1998.

[26] A. Tyagi. A Reduced-Area Scheme for Carry-Select Adders.
IEEE 7ransacrions on Compuiers, C42(lo), October 1993.

[27] H. Yamada, E Murabayashi, T. Yamauchi, T. Hotta,
H. Sawamoto, T. Nishiyama, Y. Kiyoshige, and N. Ido.
Floating-point additiodsubtraction processing apparatus and
method thereof. Hitachi, U.S. patent 5684729, 1997.

[23] P.-M. Seidcl and G. Even.

194

