xxxxxxxxxxxxxxxxx

(page 1) |_

-

The TEXbook

DONALD E. KNUTH Stanford University

Tlustrations by
DUANE BIBBY

v
ADDISON-WESLEY
Boston, Massachusetts

San Francisco - New York
Toronto - Montréal

London - Munich

Paris - Madrid

Capetown - Sydney - Tokyo
Singapore - Mexico City

Knuth, Donald Ervin
Bibby, Duane Robert

(page ii) |_ _|

Knuth, Donald Ervin
copyright

This manual describes TEX Version 3.0. Some of the advanced features mentioned here are
absent from earlier versions.

The quotation on page 7?77 is copyright (© 1970 by Sesame Street, Inc., and used by permission
of the Children’s Television Workshop.

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison—Wesley Publishing Company.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938-
The TeXbook.

(Computers & Typesetting ; A)

Includes index.

1. TeX (Computer system). 2. Computerized
typesetting. 3. Mathematics printing. I. Title.
ITI. Series: Knuth, Donald Ervin, 1938-

Computers & typesetting ; A.

7253.4.T47K58 1986 686.2'2544 85-30845
ISBN 0-201-13447-0

ISBN 0-201-13448-9 (soft)

Incorporates the final corrections made in 1996, and a few dozen more.

Internet page http://wwuw-cs-faculty.stanford.edu/ knuth/abcde.html contains current in-
formation about this book and related books.

Copyright (© 1984, 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison—Wesley
Publishing Company. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior written permission of the
publishers. Printed in the United States of America.

ISBN 0-201-13447-0
31 32 33 34 35 36 37 DOC 04 03 02 01 00

(page iii) |_ _|

Knuth, Jill Carter

To Jill:
For your books and brochures

(page iv) |_

(page v) |_ _|

P r efa C e dangerous bend

GENTLE READER: This is a handbook about TEX, a new typesetting system
intended for the creation of beautiful books—and especially for books
that contain a lot of mathematics. By preparing a manuscript in TEX format,
you will be telling a computer exactly how the manuscript is to be transformed
into pages whose typographic quality is comparable to that of the world’s finest
printers; yet you won’t need to do much more work than would be involved if
you were simply typing the manuscript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to revise a typewritten manuscript, since computer text files are so easy
to change and to reprocess. (If such claims sound too good to be true, keep in
mind that they were made by TEX’s designer, on a day when TEX happened to
be working, so the statements may be biased; but read on anyway.)
This manual is intended for people who have never used TEX before,
as well as for experienced TEX hackers. In other words, it’s supposed to be a
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you
need to know about TEX is explained here somewhere, and so are a lot of things
that most users don’t care about. If you are preparing a simple manuscript, you
won’t need to learn much about TEX at all; on the other hand, some things that
go into the printing of technical books are inherently difficult, and if you wish to
achieve more complex effects you will want to penetrate some of TEX’s darker
corners. In order to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:
When the symbol

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TEX will gradually enter more and more
of these hazardous areas, but for most applications the details won’t matter.
All that you really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
explains what that file ought to look like so that TEX will understand it, but basic
computer usage is not explained here. Some previous experience with technical
typing will be quite helpful if you plan to do heavily mathematical work with
TEX, although it is not absolutely necessary. TEX will do most of the necessary

vi

Preface

formatting of equations automatically; but users with more experience will be
able to obtain better results, since there are so many ways to deal with formulas.
Some of the paragraphs in this manual are so esoteric that they are rated

L

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with TEX before you
attempt to fathom such doubly dangerous depths of the system; in fact, most
people will never need to know TEX in this much detail, even if they use it every
day. After all, it’s possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. (About TEX, not cars.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use TEX,
you’ll find that some parts of it are very easy, while other things will take some
getting used to. A day or so later, after you have successfully typeset a few
pages, you’ll be a different person; the concepts that used to bother you will now
seem natural, and you’ll be able to picture the final result in your mind before it
comes out of the machine. But you’ll probably run into challenges of a different
kind. After another week your perspective will change again, and you’ll grow in
yet another way; and so on. As years go by, you might become involved with
many different kinds of typesetting; and you’ll find that your usage of TEX will
keep changing as your experience builds. That’s the way it is with any powerful
tool: There’s always more to learn, and there are always better ways to do what
you’ve done before. At every stage in the development you’ll want a slightly
different sort of manual. You may even want to write one yourself. By paying
attention to the dangerous bend signs in this book you’ll be better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t al-
ways tell the truth. When certain concepts of TEX are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the

JOKES
truth

Preface

earlier ones do. The author feels that this technique of deliberate lying will ac-
tually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

The TEX language described in this book is similar to the author’s first
attempt at a document formatting language, but the new system differs from
the old one in literally thousands of details. Both languages have been called
TEX; but henceforth the old language should be called TEX78, and its use should
rapidly fade away. Let’s keep the name TEX for the language described here,
since it is so much better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of the TEX language, based on their experiences with
preliminary versions of the system. My work at Stanford has been generously
supported by the National Science Foundation, the Office of Naval Research, the
IBM Corporation, and the System Development Foundation. I also wish to thank
the American Mathematical Society for its encouragement, for establishing the
TEX Users Group, and for publishing the TUGboat newsletter (see Appendix J).

Stanford, California — D.E. K.
June 1983

‘Tis pleasant, sure, to see one’s name in print;
A book’s a book, although there’s nothing in 't.

— BYRON, English Bards and Scotch Reviewers (1809)

A question arose as to whether we were covering the field
that it was intended we should fill with this manual.

— RICHARD R. DONNELLEY, Proceedings, United Typothetse of America (1897)

vii

EXERCISES

TeX78

National Science Foundation
Office of Naval Research

IBM Corporation

System Development Foundation
American Mathematical Society
TUGDboat

Knuth, Don

BYRON

DONNELLEY

(page viii) |_

© 0 N O s W N =

NN NN R e e e e e e e e
W N B O © WO ;A W N R O

-

Contents

The Name of the Game

Book Printing versus Ordinary Typing
Controlling TEX .

Fonts of Type .

Grouping

Running TEX .

How TEX Reads What You Type
The Characters You Type

TEX’s Roman Fonts

Dimensions

Boxes

Glue .

Modes

How TEX Breaks Paragraphs into Lines
How TEX Makes Lines into Pages
Typing Math Formulas .

More about Math

Fine Points of Mathematics Typing
Displayed Equations

Definitions (also called Macros)
Making Boxes

Alignment

Output Routines

13
19
23
37
43
o1
57
63
69
85
91
109
127
139
161
185
199
221
231
251

Contents of this manual, table

24
25
26

“ -~ O Q=" H OQ®m »

Summary of Vertical Mode
Summary of Horizontal Mode .
Summary of Math Mode

Recovery from Errors

Appendices

Answers to All the Exercises
Basic Control Sequences
Character Codes

Dirty Tricks .

Example Formats

Font Tables .

Generating Boxes from Formulas
Hyphenation

Index

Joining the TEX Community

Contents

267
285
289
295

305
339
367
373
403
427
441
449
457
483

ix

-

1

The Name of
the Game

Chapter 1: The Name ofthe Game

English words like ‘technology’ stem from a Greek root beginning with the letters
Tex ...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an uppercase form of Tey.

Insiders pronounce the x of TEX as a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like
loch or German words like ach; it’s a Spanish ‘j” and a Russian ‘kh’. When you
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX
is primarily concerned with high-quality technical manuscripts: Its emphasis is
on art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document—something acceptable and basically read-
able but not really beautiful—a simpler system will usually suffice. With TEX
the goal is to produce the finest quality; this requires more attention to detail,
but you will not find it much harder to go the extra distance, and you’ll be able
to take special pride in the finished product.

On the other hand, it’s important to notice another thing about TEX’s
name: The ‘E’ is out of kilter. This displaced ‘E’ is a reminder that TEX is about
typesetting, and it distinguishes TEX from other system names. In fact, TEX
(pronounced tecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names are pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn’t allow
lowering of the ‘E’, is to type ‘TeX’. Then there will be no confusion with similar
names, and people will be primed to pronounce everything properly.

» EXERCISE 1.1
After you have mastered the material in this book, what will you be: A TEXpert,
or a TEXnician?

They do certainly give
very strange and new-fangled names to diseases.

— PLATO, The Republic, Book 3 (c. 375 B.C.)

Technique! The very word is like the shriek
Of outraged Art. It is the idiot name
Given to effort by those who are too weak,
Too weary, or too dull to play the game.

— LEONARD BACON, Sophia Trenton (1920)

TeX (actually TEX), meaning of
tau

epsilon

chi

beauty

logo

TEX

Honeywell Information Systems
Bemer, Robert, see TEX, ASCII
TeX

PLATO

BACON

-

2

Book Printing
versus

Ordinary Typing

Chapter 2: Book PrintingversusOrdinary Typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit ‘1’ and the lowercase letter ‘I’ When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made; your eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there are two kinds of quotation marks in books,
but only one kind on the typewriter. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark ("), because the standard ASCII code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ¢ and ’; the second of these is
useful also as an apostrophe. American keyboards usually contain a left-quote
character that shows up as something like *, and an apostrophe or right-quote
that looks like ' or ~

To produce double-quote marks with TEX, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

“I understand.”
(including the quotation marks) you should type
¢‘I understand.’’

to your computer.

A typewriter-like style of type will be used throughout this manual to
indicate TEX constructions that you might type on your terminal, so that the
symbols actually typed are readily distinguishable from the output TEX would
produce and from the comments in the manual itself. Here are the symbols to
be used in the examples:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789"#$%&Q*+-=, . :;7!
OS> N/

If your computer terminal doesn’t happen to have all of these, don’t despair;
TEX can make do with the ones you have. An additional symbol

W}

is used to stand for a blank space, in case it is important to emphasize that a
blank space is being typed; thus, what you really type in the example above is

¢ ‘I understand.’’

Without such a symbol you would have difficulty seeing the invisible parts of
certain constructions. But we won’t be using ‘,” very often, because spaces are
usually visible enough.

quotation marks
ASCII
apostrophe
blank space

Chapter 2: Book PrintingversusOrdinary Typing

Book printing differs significantly from ordinary typing with respect to
dashes, hyphens, and minus signs. In good math books, these symbols are all
different; in fact there usually are at least four different symbols:

a hyphen (-);

an en-dash (—);
an em-dash (—);
a minus sign (—).

Hyphens are used for compound words like ‘daughter-in-law’ and ‘X-rated’. En-
dashes are used for number ranges like ‘pages 13-34’, and also in contexts like
‘exercise 1.2.6-52’. Em-dashes are used for punctuation in sentences—they are
what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (--);

for an em-dash, type three hyphens (---);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn’t worry about it now.)

» EXERCISE 2.1
Explain how to type the following sentence to TEX: Alice said, “I always use an
en-dash instead of a hyphen when specifying page numbers like ‘480491’ in a
bibliography.”

» EXERCISE 2.2
What do you think happens when you type four hyphens in a row?

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the
‘t” and the ‘i’ of ‘find’. Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as £f, fi, f1, £fi, and ££f1. (The reason is that words like ‘find’ don’t look
very good in most styles of type unless a ligature is substituted for the letters
that clash. It’s somewhat surprising how often the traditional ligatures appear
in English; other combinations are important in other languages.)

» EXERCISE 2.3
Think of an English word that contains two ligatures.

The good news is that you do not have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ‘==’ into ‘—’. In fact, TEX will also look for combi-
nations of adjacent letters (like ‘A’ next to ‘V’) that ought to be moved closer

together for better appearance; this is called kerning.

dashes
hyphens
minus signs
En-dash
Em-dash
bibliography
ligatures
kerning

Chapter 2: Book PrintingversusOrdinary Typing

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
automatically take care of other niceties like ligatures and kerning.

@ (Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn you about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ If your keyboard does not contain a left-quote symbol, you can type \1lgq,
followed by a space if the next character is a letter, or followed by a \ if the
next character is a space. Similarly, \rq yields a right-quote character. Is that clear?

\1g\1lq I understand.\rq\rq\,

@ In case you need to type quotes within quotes, for example a single quote

followed by a double quote, you can’t simply type ’’’ because TEX will
interpret this as 7’ (namely, double quote followed by single quote). If you have already
read Chapter 5, you might expect that the solution will be to use grouping—namely,
to type something like {’}’’. But it turns out that this doesn’t produce the desired
result, because there is usually less space following a single right quote than there is
following a double right quote: What you get is ", which is indeed a single quote
followed by a double quote (if you look at it closely enough), but it looks almost
like three equally spaced single quotes. On the other hand, you certainly won’t want
to type ’.’’, because that space is much too large—it’s just as large as the space
between words—and TEX might even start a new line at such a space when making up

a paragraph! The solution is to type ’\thinspace’’, which produces ’” as desired.
@ » EXERCISE 2.4
OK, now you know how to produce ”’ and ’”; how do you get “‘ and ‘“7

@ » EXERCISE 2.5

Why do you think the author introduced the control sequence \thinspace to
solve the adjacent-quotes problem, instead of recommending the trickier construction
’$\,$’’ (which also works)?

In modern Wit all printed Trash, is
Set off with num’rous Breaks and Dashes—

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

Some compositors still object to work
in offices where type-composing machines are introduced.

— WILLIAM STANLEY JEVONS, Political Economy (1878)

dangerous bend

Iq

rq

quotes within quotes
thinspace

SWIFT
JEVONS

-

3

Controlling
TeX

Chapter 3: ControllingTEX

Your keyboard has very few keys compared to the large number of symbols
that you may want to specify. In order to make a limited keyboard sufficiently
versatile, one of the characters that you can type is reserved for special use,
and it is called the escape character. Whenever you want to type something
that controls the format of your manuscript, or something that doesn’t use the
keyboard in the ordinary way, you should type the escape character followed by
an indication of what you want to do.

Note: Some computer terminals have a key marked ‘ESC’, but that is not
your escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape.”

TEX allows any character to be used for escapes, but the “backslash”
character ‘\’ is usually adopted for this purpose, since backslashes are reasonably
convenient to type and they are rarely needed in ordinary text. Things work out
best when different TEX users do things consistently, so we shall escape via
backslashes in all the examples of this manual.

Immediately after typing ‘\’ (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands
are called control sequences. For example, you might type

\input MS

which (as we will see later) causes TEX to begin reading a file called ‘MS.tex’;
the string of characters ‘\input’ is a control sequence. Here’s another example:

George P\’olya and Gabor Szeg\"o.

TEX converts this to ‘George Polya and Gabor Szego.” There are two control
sequences, \’ and \", here; these control sequences have been used to place
accents over some of the letters.

Control sequences come in two flavors. The first kind, like \input, is
called a control word; it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. (TEX has to know
where the control sequence ends, so you must put a space after a control word
if the next character is a letter. For example, if you type ‘\inputMS’, TEX will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a “letter” is, the answer is that TEX normally regards the 52
symbols A...Z and a. ..z as letters. The digits 0. ..9 are not considered to be
letters, so they don’t appear in control sequences of the first kind.

A control sequence of the other kind, like \?, is called a control symbol;
it consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have exactly one symbol after
the escape character.

» EXERCISE 3.1
What are the control sequences in ‘\I’m \exercise3.1\\!’?

escape character

backslash

control sequences

markup commands, see control sequences
input

Polya

Szego

acute

umlaut

”»

accents

control word
letter

control symbol

8 Chapter 3: ControllingTEX

» EXERCISE 3.2 space
We’ve seen that the input P\’ olya yields ‘Pélya’. Can you guess how the French return;
words ‘mathématique’ and ‘centimetre’ should be specified? jtaby,
carriage-return, see jreturng
When a space comes after a control word (an all-letter control sequence), logo

it is ignored by TgX; i.e., it is not considered to be a “real” space belonging to Tex

the manuscript that is being typeset. But when a space comes after a control
symbol, it’s truly a space.

Now the question arises, what do you do if you actually want a space
to appear after a control word? We will see later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be “type two
spaces.” The correct answer is to type “control space,” namely

\u

(the escape character followed by a blank space); TEX will treat this as a space
that is not to be ignored. Notice that _ is a control sequence of the second
kind, namely a control symbol, since there is a single nonletter (,,) following the
escape character. Two consecutive spaces are considered to be equivalent to a
single space, so further spaces immediately following \., will be ignored. But if
you want to enter, say, three consecutive spaces into a manuscript you can type
\u\u\L’. Incidentally, typists are often taught to put two spaces at the ends of
sentences; but we will see later that TEX has its own way to produce extra space
in such cases. Thus you needn’t be consistent in the number of spaces you type.

@ Nonprinting control characters like (return) might follow an escape character,

and these lead to distinct control sequences according to the rules. TEX is
initially set up to treat \(return) and \(tab) the same as _ (control space); these
special control sequences should probably not be redefined, because you can’t see the
difference between them when you look at them in a file.

It is usually unnecessary for you to use “control space,” since control
sequences aren’t often needed at the ends of words. But here’s an example that
might shed some light on the matter: This manual itself has been typeset by
TEX, and one of the things that occurs fairly often is the tricky logo ‘TEX’, which
requires backspacing and lowering the E. There’s a special control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ‘TEX’. When
a phrase like ‘TEX ignores spaces after control words.’ is desired, the manuscript
renders it as follows:

\TeX\ ignores spaces after control words.

Notice the extra \ following \TeX; this produces the control space that is neces-
sary because TEX ignores spaces after control words. Without this extra \, the
result would have been

TgXignores spaces after control words.

Chapter 3: ControllingTEX

On the other hand, you can’t simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo ‘\TeX’.

In this case an extra backslash doesn’t work at all; in fact, you get a curious
result if you type

the logo ‘\TeX\’.

Can you guess what happens? Answer: The \’ is a control sequence denoting
an acute accent, as in our P\’olya example above; the effect is therefore to put
an accent over the next nonblank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo ‘TEX:

Computers are good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in
vocabulary, and all of them are explained in this manual somewhere. But you
needn’t worry about learning so many different things, because you won’t really
be needing very many of them unless you are faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences are simply the names of special characters used
in math formulas; you type ‘\pi’ to get ‘m’, ‘\Pi’ to get ‘II’, ‘\aleph’ to get ‘N’
‘\infty’ to get ‘00’, ‘\1e’ to get ‘<’) ‘\ge’ to get ‘>’, ‘\ne’ to get ‘#’, ‘\oplus’ to
get ‘@, ‘\otimes’ to get ‘®’. Appendix F contains several tables of such symbols.
@ There’s no built-in relationship between uppercase and lowercase letters in

control sequence names. For example, ‘\pi’ and ‘\Pi’ and ‘\PI’ and ‘\pI’ are
four different control words.

The 900 or so control sequences that were just mentioned actually aren’t
the whole story, because it’s easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it; Chapter 20 explains how.

About 300 of TEX’s control sequences are called primitive; these are the
low-level atomic operations that are not decomposable into simpler functions.
All other control sequences are defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but \’ and \" are not; the
latter are defined in terms of an \accent primitive.

People hardly ever use TEX’s primitive control sequences in their man-
uscripts, because the primitives are ... well ... so primitive. You have to type
a lot of instructions when you are trying to make TEX do low-level things; this
takes time and invites mistakes. It is generally better to make use of higher-level
control sequences that state what functions are desired, instead of typing out
the way to achieve each function each time. The higher-level control sequences

pi

Pi

aleph
infty

le

ge

ne

oplus
otimes
uppercase
lowercase
primitive
input

”»

accent

10 Chapter 3: ControllingTEX

need to be defined only once in terms of primitives. For example, \TeX is a con- exercise
trol sequence that means “typeset the TEX logo”; \’ is a control sequence that :ﬁ;)r‘:;pace
means “put an acute accent over the next character”; and both of these con- kern
trol sequences might require different combinations of primitives when the style log file
K plain TEX
of type changes. If TEX’s logo were to change, the author would simply have basic control sequences

to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives each time.

At a still higher level, there are control sequences that govern the overall
format of a document. For example, in the present book the author typed
‘\exercise’ just before stating each exercise; this \exercise command was
programmed to make TEX do all of the following things:

= compute the exercise number (e.g., ‘3.2’ for the second exercise in Chap-
ter 3);

» typeset ‘» EXERCISE 3.2’ with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the left margin;

» leave a little extra space just before that line, or begin a new page at
that line if appropriate;

= prohibit beginning a new page just after that line;

» suppress indentation on the following line.

It is obviously advantageous to avoid typing all of these individual instructions
each time. And since the manual is entirely described in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

@ How can a person distinguish a TEX primitive from a control sequence that

has been defined at a higher level? There are two ways: (1) The index to this
manual lists all of the control sequences that are discussed, and each primitive is marked
with an asterisk. (2) You can display the meaning of a control sequence while running
TEX. If you type ‘\show\cs’ where \cs is any control sequence, TEX will respond
with its current meaning. For example, ‘\show\input’ results in ‘> \input=\input.’,
because \input is primitive. On the other hand, ‘\show\thinspace’ yields

> \thinspace=macro:
->\kern .16667em .

This means that \thinspace has been defined as an abbreviation for ‘\kern .16667em ’.
By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TEX.

@ » EXERCISE 3.3
Which of the control sequences \y and \(return) is primitive?

In the following chapters we shall frequently discuss “plain TEX” for-
mat, which is a set of about 600 basic control sequences that are defined in
Appendix B. These control sequences, together with the 300 or so primitives,

Chapter 3: ControllingTEX

are usually present when TEX begins to process a manuscript; that is why TEX
claims to know roughly 900 control sequences when it starts. We shall see how
plain TEX can be used to create documents in a flexible format that meets many
people’s needs, using some typefaces that come with the TEX system. However,
you should keep in mind that plain TEX is only one of countless formats that
can be designed on top of TEX’s primitives; if you want some other format, it
will usually be possible to adapt TEX so that it will handle whatever you have in
mind. The best way to learn is probably to start with plain TEX and to change
its definitions, little by little, as you gain more experience.

@ Appendix E contains examples of formats that can be added to Appendix B

for special applications; for example, there is a set of definitions suitable for
business correspondence. A complete specification of the format used to typeset this
manual also appears in Appendix E. Thus, if your goal is to learn how to design TEX
formats, you will probably want to study Appendix E while mastering Appendix B.
After you have become skilled in the lore of control-sequence definition, you will prob-
ably have developed some formats that other people will want to use; you should then
write a supplement to this manual, explaining your style rules.

The main point of these remarks, as far as novice TEX users are con-
cerned, is that it is indeed possible to define nonstandard TEX control sequences.
When this manual says that something is part of “plain TEX,” it means that TEX
doesn’t insist on doing things exactly that way; a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you become an experienced

TgEXnical typist.

» EXERCISE 3.4
How many different control sequences of length 2 (including the escape character)
are possible? How many of length 37

Syllables govern the world.
— JOHN SELDEN, Table Talk (1689)

| claim not to have controlled events,
but confess plainly that events have controlled me.

— ABRAHAM LINCOLN (1864)

11

formats
SELDEN
LINCOLN

Fonts
of Type

Chapter 4: Fontsof Type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. TEX deals with sets of up
to 256 characters called “fonts” of type, and control sequences are used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TEX format of Appendix B:

to be \bf bold \rm or to \sl emphasize \rm something.

Plain TEX provides the following control sequences for changing fonts:

\rm switches to the normal “roman” typeface: Roman

\s1 switches to a slanted roman typeface: Slanted

\it switches to italic style: Ttalic

\tt switches to a typewriter-like face: Typewriter
\bf switches to an extended boldface style: Bold

At the beginning of a run you get roman type (\rm) unless you specify otherwise.

Notice that two of these faces have an “oblique” slope for emphasis:
Slanted type is essentially the same as roman, but the letters are slightly skewed,
while the letters in italic type are drawn in a different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that are in an unslanted italic face.) Typographic conventions are
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive; people are wrestling with
the question of how much to use their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it first became widely used as
an alternative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical texts, since slanted letters are distinguishable from the
italic letters in math formulas. The double use of italic type for two different
purposes—for example, when statements of theorems are italicized as well as the
names of variables in those theorems—has led to some confusion, which can now
be avoided with slanted type. People are not generally agreed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts are effective for emphasis, but not for sustained reading;
your eyes would tire if long portions of this manual were entirely set in a bold
or slanted or italic face. Therefore roman type accounts for the bulk of most
typeset material. But it’s a nuisance to say ‘\rm’ every time you want to go
back to the roman style, so TEX provides an easier way to do it, using “curly
brace” symbols: You can switch fonts inside the special symbols { and }, without
affecting the fonts outside. For example, the displayed phrase at the beginning
of this chapter is usually rendered

to be {\bf bold} or to {\sl emphasize} something.

This is a special case of the general idea of “grouping” that we shall discuss in
the next chapter. It’s best to forget about the first way of changing fonts, and

13

typeface
bold

fonts

rm

sl

it

tt

bf
typewriter type
face

roman type
oblique
Slanted type
italic type
curly brace
brace

grouping

14 Chapter 4: Fontsof Type

to use grouping instead; then your TEX manuscripts will look more natural, and Dieter
9 k ¢ ? /
you’ll probably never* have to type ‘\rm’. Lalic correction
punctuation
» EXERCISE 4.1 nullfont

Explain how to type the bibliographic reference ‘Ulrich Dieter, Journal fiir die
reine und angewandte Mathematik 201 (1959), 37-70.” [Use grouping.]

We have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the italicized and slanted words in this sentence.
Since italic and slanted styles slope to the right, the d’s stick into the spaces that
separate these words from the roman type that follows; as a result, the spaces
appear to be too skimpy, although they are correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence ‘\/’ just before switching back to unslanted letters. When you type

{\it italicized\/} and {\sl slanted\/} words

you get italicized and slanted words that look better. The ‘\/’ tells TEX to add an
“italic correction” to the previous letter, depending on that letter; this correction
is about four times as much for an ‘f’ as for a ‘c’, in a typical italic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to use \/ just before
switching from slanted or italic to roman or bold, unless the next character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. When an italicized word occurs just before a semicolon, the author
recommends typing ‘{\it word\/};’.

» EXERCISE 4.2
Ezplain how to typeset a roman word in the midst of an italicized sentence.

@ Every letter of every font has an italic correction, which you can bring to life

by typing \/. The correction is usually zero in unslanted styles, but there are
exceptions: To typeset a bold ‘f’ in quotes, you should say a bold ‘{\bf £\/}’, lest
you get a bold ‘f".

» EXERCISE 4.3
Define a control sequence \ic such that ‘\ic c’ puts the italic correction of character
c into TEX’s register \dimenO.

The primitive control sequence \nullfont stands for a font that has no characters.
This font is always present, in case you haven’t specified any others.

* Well ..., hardly ever.

Chapter 4: Fontsof Type

Fonts vary in size as well as in shape. For example, the font you are
now reading is called a “10-point” font, because certain features of its design are
10 points apart, when measured in printers’ units. (We will study the point
system later; for now, it should suffice to point out that the parentheses around
this sentence are exactly 10 points tall-—and the em-dash is just 10 points wide.)
The “dangerous bend” sections of this manual are set in 9-point type, the foot-
notes in 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point.

Each font used in a TEX manuscript is associated with a control se-
quence; for example, the 10-point font in this paragraph is called \tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm are called \tensl and \ninesl. These control sequences
are not built into TEX, nor are they the actual names of the fonts; TEX users are
just supposed to make up convenient names, whenever new fonts are introduced
into a manuscript. Such control sequences are used to change typefaces.

When fonts of different sizes are used simultaneously, TEX will line the
letters up according to their “baselines.” For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\sixrm and smaller \fiverm and smaller \tenrm

the result is smaller and smaller and smaller and smaller and smaller and smatier. Of course
this is something that authors and readers aren’t accustomed to, because printers
couldn’t do such things with traditional lead types. Perhaps poets who wish
to speak in a still sman voice Will cause future books to make use of frequent font
variations, but nowadays it’s only an occasional font freak qike the author of this manual)
who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confused at this point because we started
out this chapter by saying that ‘\rm’ is the command that switches to roman
type, but later on we said that ‘\tenrm’ is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
“switch to roman type in the current size” while \tenrm means “switch to roman
type in the 10-point size.” In plain TEX format, nothing but 10-point fonts are
provided, so \rm will always get you \tenrm; but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format used by the author to typeset this manual, there’s a control sequence
‘\tenpoint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while ‘\ninepoint’ changes the definitions so that \rm means \ninerm, etc.
There’s another control sequence used to introduce the quotations at the end of
each chapter; when the quotations are typed, \rm and \sl temporarily stand for
8-point unslanted sans-serif type and 8-point slanted sans-serif type, respectively.
This device of constantly redefining the abbreviations \rm and \s1, behind the
scenes, frees the typist from the need to remember what size or style of type is
currently being used.

15

points
dangerous bend
subscripts
tenrm

ninerm

tensl

ninesl

baseline
tenpoint
ninepoint

16 Chapter 4: Fontsof Type

» EXERCISE 4.4 Computer Modern
Why do you think the author chose the names ‘\tenpoint’ and ‘\tenrm’, etc., ?(inntfonts
instead of ‘\10point’ and ‘\10rm’? design size
@ » EXERCISE 4.5 ?rfagniﬁcation

Suppose that you have typed a manuscript using slanted type for emphasis, reduction

but your editor suddenly tells you to change all the slanted to italic. What’s an easy
way to do this?

@ Each font has an external name that identifies it with respect to all other fonts

in a particular library. For example, the font in this sentence is called ‘cmr9’,
which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare
TEX for using this font, the command

\font\ninerm=cmr9

appears in Appendix E. In general you say ‘\font\cs=(external font name)’ to load
the information about a particular font into TEX’s memory; afterwards the control
sequence \cs will select that font for typesetting. Plain TEX makes only sixteen fonts
available initially (see Appendix B and Appendix F), but you can use \font to access
anything that exists in your system’s font library.

@ It is often possible to use a font at several different sizes, by magnifying or

shrinking the character images. Each font has a so-called design size, which
reflects the size it normally has by default; for example, the design size of cmr9 is
9 points. But on many systems there is also a range of sizes at which you can use
a particular font, by scaling its dimensions up or down. To load a scaled font into
TEX’s memory, you simply say ‘\font\cs=(external font name) at (desired size)’. For
example, the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5-point Computer Modern Roman at twice its normal size. (Caution: Before
using this ‘at’ feature, you should check to make sure that your typesetter supports
the font at the size in question; TEX will accept any (desired size) that is positive and
less than 2048 points, but the final output will not be right unless the scaled font really
is available on your printing device.)

g% What’s the difference between cmr5 at 10pt and the normal 10-point font,

cmr10? Plenty; a well-designed font will be drawn differently at different point
sizes, and the letters will often have different relative heights and widths, in order to
enhance readability.

Ten-point type is different from magnified five-point type.

It is usually best to scale fonts only slightly with respect to their design size, unless
the final product is going to be photographically reduced after TEX has finished with
it, or unless you are trying for an unusual effect.

@ Another way to magnify a font is to specify a scale factor that is relative to
the design size. For example, the command

\font\magnifiedfiverm=cmr5 scaled 2000

Chapter 4: Fontsof Type

is another way to bring in the font cmr5 at double size. The scale factor is specified
as an integer that represents a magnification ratio times 1000. Thus, a scale factor of
1200 specifies magnification by 1.2, etc.

@ » EXERCISE 4.6
State two ways to load font cmr10 into TEX’s memory at half its normal size.

@ At many computer centers it has proved convenient to supply fonts at magnifi-

cations that grow in geometric ratios—something like equal-tempered tuning
on a piano. The idea is to have all fonts available at their true size as well as at
magnifications 1.2 and 1.44 (which is 1.2 x 1.2); perhaps also at magnification 1.728
(= 1.2 x 1.2 x 1.2) and even higher. Then you can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain TEX provides the abbre-
viations \magstepO for a scale factor of 1000, \magstep1l for a scaled factor of 1200,
\magstep2 for 1440, and so on up to \magstep5. You say, for example,

\font\bigtenrm=cmri0 scaled\magstep2
to load font cmr10 at 1.2 x 1.2 times its normal size.
“This is cmr10 at normal size (\magstep0).”

“This is cmr10 scaled once by 1.2 (\magstep1).”
“This is cmr10 scaled twice by 1.2 (\magstep2).”

(Notice that a little magnification goes a long way.) There’s also \magstephalf, which
magnifies by /1.2, i.e., halfway between steps 0 and 1.

@ Chapter 10 explains how to apply magnification to an entire document, over
and above any magnification that has been specified when fonts are loaded.
For example, if you have loaded a font that is scaled by \magstepl and if you also
specify \magnification=\magstep2, the actual font used for printing will be scaled by
\magstep3. Similarly, if you load a font scaled by \magstephalf and if you also say
\magnification=\magstephalf, the printed results will be scaled by \magstepl.

Type faces—Ilike people’s faces—have distinctive features
indicating aspects of character.

— MARSHALL LEE, Bookmaking (1965)

This was the Noblest Roman of them all.
— WILLIAM SHAKESPEARE, The Tragedie of Julius Caesar (1599)

17

cmrb

piano

magstep
magstephalf
magnification
LEE
SHAKESPEARE

-

5

Grouping

Chapter 5: Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so you
need to indicate somehow where that part begins and where it ends. For this
purpose TEX gives special interpretation to two “grouping characters,” which
(like the escape character) are treated differently from the normal symbols that
you type. We assume in this manual that { and } are the grouping characters,
since they are the ones used in plain TEX.

We saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will see later; for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group; since the changes are invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construction has been finished. Computer scientists have a name for this aspect
of grouping, because it’s an important aspect of programming languages in gen-
eral; they call it “block structure,” and definitions that are in force only within
a group are said to be “local” to that group.

You might want to use grouping even when you don’t care about block
structure, just to have better control over spacing. For example, let’s consider
once more the control sequence \TeX that produces the logo “TEX’ in this manual:
We observed in Chapter 3 that a blank space after this control sequence will be
gobbled up unless one types ‘\TeX\ ’, yet it is a mistake to say ‘\TeX\’ when the
following character is not a blank space. Well, in all cases it would be correct to
specify the simple group

{\Tex}

whether or not the following character is a space, because the } stops TEX from
absorbing an optional space into \TeX. This might come in handy when you’re
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TeX{}

using an empty group for the same purpose: The ‘{}’ here is a group of no
characters, so it produces no output, but it does have the effect of stopping TEX
from skipping blanks.

» EXERCISE 5.1
Sometimes you run into a rare word like ‘shelfful’ that looks better as ‘shelfful’
without the ‘ff’ ligature. How can you fool TEX into thinking that there aren’t
two consecutive f’s in such a word?

@ » EXERCISE 5.2
Explain how to get three blank spaces in a row without using ‘\.,’.

19

grouping characters
curly braces, see braces
block structure

local

TeX

space

empty group

Ibrace rbrace

ligature

control space

20

Chapter 5: Grouping

But TEX also uses grouping for another, quite different, purpose, namely
to determine how much of your text is to be governed by certain control se-
quences. For example, if you want to center something on a line you can type

\centerline{This information should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of TEX’s more intricate instructions;

and it’s possible to have groups within groups within groups, as you can see by

glancing at Appendix B. Complex grouping is generally unnecessary, however,

in ordinary manuscripts, so you needn’t worry about it. Just don’t forget to

finish each group that you've started, because a lost ‘}’ might cause trouble.
Here’s an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}
As you might expect, TEX will produce a centered line that also contains italics:
This information should be centered.

But let’s look at the example more closely: ‘\centerline’ appears outside the
curly braces, while ‘\it’ appears inside. Why are the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
you want to put braces around the text that is to be centered (unless that text
consists of a single symbol or control sequence). For example, to center the TEX
logo on a line, it would suffice to type ‘\centerline\TeX’, but to center the
phrase ‘TEX has groups’ you need braces: ‘\centerline{\TeX\ has groups}’.
On the other hand, \it is a control sequence that simply means “change the
current font”; it acts without looking ahead, so it affects everything that follows,
at least potentially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this example actually have
different functions: One serves to treat several words of the text as if they were
a single object, while the other provides local block structure.

» EXERCISE 5.3
What do you think happens if you type the following:
\centerline{This information should be {centered}.}
\centerline So should this.

» EXERCISE 5.4
And how about this one?

\centerline{This information should be \it centered.}
@ » EXERCISE 5.5

Define a control sequence \ital so that a user could type ‘\ital{text}’ in-
stead of ‘{\it text\/}’. Discuss the pros and cons of \ital versus \it.

centerline
nested

Chapter 5: Grouping

% Subsequent chapters describe many primitive operations of TEX for which the locality

of grouping is important. For example, if one of TEX’s internal parameters is changed
within a group, the previous contents of that parameter will be restored when the group ends.
Sometimes, however, it’s desirable to make a definition that transcends its current group. This
effect can be obtained by prefixing ‘\global’ to the definition. For example, TEX keeps the
current page number in a register called \count0, and the routine that outputs a page wants to
increase the page number. Output routines are always protected by enclosing them in groups,
so that they do not inadvertently mess up the rest of TEX; but the change to \count0 would
disappear if it were kept local to the output group. The command

\global\advance\countO by 1

solves the problem; it increases \count0 and makes this value stick around at the end of the
output routine. In general, \global makes the immediately following definition pertain to all
existing groups, not just to the innermost one.

%» EXERCISE 5.6

If you think you understand local and global definitions, here’s a little test to make
sure: Suppose \c stands for ‘\count1=’; \g stands for ‘\globall\count1=’, and \s stands for
“\showthe\count1’. What values will be shown?

{\c1\s\g2{\s\c3\s\g4\s\c5\s}\s\c6\s}\s

% Another way to obtain block structure with TEX is to use the primitives \begingroup

and \endgroup. These control sequences make it easy to begin a group within one
control sequence and end it within another. The text that TEX actually executes, after control
sequences have been expanded, must have properly nested groups, i.e., groups that don’t
overlap. For example,

{ \begingroup } \endgroup

is not legitimate.

» EXERCISE 5.7
Define control sequences \beginthe(block name) and \endthe(block name) that pro-
vide a “named” block structure. In other words,

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine}
should be permissible, but not

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

| have had recourse to varieties of type,
and to braces.

— JAMES MUIRHEAD, The Institutes of Gaius (1880)

An encounter group is a gathering, for a few hours or a few days,
of twelve or eighteen personable, responsible, certifiably normal
and temporarily smelly people.

— JANE HOWARD, Please Touch (1970)

21

global

page number
Output routines
advance
begingroup
endgroup
nested groups
MUIRHEAD
HOWARD

22222222 [N

6

Running
TeX

Chapter 6: RunningTpX

The best way to learn how to use TEX is to use it. Thus, it’s high time for you
to sit down at a computer terminal and interact with the TEX system, trying
things out to see what happens. Here are some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. Why don’t you stop reading
now, and come back fresh tom