xxxxxxxxxxxxxxxxx

(page 1) |_

-

The TEXbook

DONALD E. KNUTH Stanford University

Tlustrations by
DUANE BIBBY

v
ADDISON-WESLEY
Boston, Massachusetts

San Francisco - New York
Toronto - Montréal

London - Munich

Paris - Madrid

Capetown - Sydney - Tokyo
Singapore - Mexico City

Knuth, Donald Ervin
Bibby, Duane Robert

(page ii) |_ _|

Knuth, Donald Ervin
copyright

This manual describes TEX Version 3.0. Some of the advanced features mentioned here are
absent from earlier versions.

The quotation on page 7?77 is copyright (© 1970 by Sesame Street, Inc., and used by permission
of the Children’s Television Workshop.

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison—Wesley Publishing Company.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938-
The TeXbook.

(Computers & Typesetting ; A)

Includes index.

1. TeX (Computer system). 2. Computerized
typesetting. 3. Mathematics printing. I. Title.
ITI. Series: Knuth, Donald Ervin, 1938-

Computers & typesetting ; A.

7253.4.T47K58 1986 686.2'2544 85-30845
ISBN 0-201-13447-0

ISBN 0-201-13448-9 (soft)

Incorporates the final corrections made in 1996, and a few dozen more.

Internet page http://wwuw-cs-faculty.stanford.edu/ knuth/abcde.html contains current in-
formation about this book and related books.

Copyright (© 1984, 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison—Wesley
Publishing Company. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior written permission of the
publishers. Printed in the United States of America.

ISBN 0-201-13447-0
31 32 33 34 35 36 37 DOC 04 03 02 01 00

(page iii) |_ _|

Knuth, Jill Carter

To Jill:
For your books and brochures

(page iv) |_

(page v) |_ _|

P r efa C e dangerous bend

GENTLE READER: This is a handbook about TEX, a new typesetting system
intended for the creation of beautiful books—and especially for books
that contain a lot of mathematics. By preparing a manuscript in TEX format,
you will be telling a computer exactly how the manuscript is to be transformed
into pages whose typographic quality is comparable to that of the world’s finest
printers; yet you won’t need to do much more work than would be involved if
you were simply typing the manuscript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to revise a typewritten manuscript, since computer text files are so easy
to change and to reprocess. (If such claims sound too good to be true, keep in
mind that they were made by TEX’s designer, on a day when TEX happened to
be working, so the statements may be biased; but read on anyway.)
This manual is intended for people who have never used TEX before,
as well as for experienced TEX hackers. In other words, it’s supposed to be a
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you
need to know about TEX is explained here somewhere, and so are a lot of things
that most users don’t care about. If you are preparing a simple manuscript, you
won’t need to learn much about TEX at all; on the other hand, some things that
go into the printing of technical books are inherently difficult, and if you wish to
achieve more complex effects you will want to penetrate some of TEX’s darker
corners. In order to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:
When the symbol

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TEX will gradually enter more and more
of these hazardous areas, but for most applications the details won’t matter.
All that you really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
explains what that file ought to look like so that TEX will understand it, but basic
computer usage is not explained here. Some previous experience with technical
typing will be quite helpful if you plan to do heavily mathematical work with
TEX, although it is not absolutely necessary. TEX will do most of the necessary

vi

Preface

formatting of equations automatically; but users with more experience will be
able to obtain better results, since there are so many ways to deal with formulas.
Some of the paragraphs in this manual are so esoteric that they are rated

L

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with TEX before you
attempt to fathom such doubly dangerous depths of the system; in fact, most
people will never need to know TEX in this much detail, even if they use it every
day. After all, it’s possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. (About TEX, not cars.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use TEX,
you’ll find that some parts of it are very easy, while other things will take some
getting used to. A day or so later, after you have successfully typeset a few
pages, you’ll be a different person; the concepts that used to bother you will now
seem natural, and you’ll be able to picture the final result in your mind before it
comes out of the machine. But you’ll probably run into challenges of a different
kind. After another week your perspective will change again, and you’ll grow in
yet another way; and so on. As years go by, you might become involved with
many different kinds of typesetting; and you’ll find that your usage of TEX will
keep changing as your experience builds. That’s the way it is with any powerful
tool: There’s always more to learn, and there are always better ways to do what
you’ve done before. At every stage in the development you’ll want a slightly
different sort of manual. You may even want to write one yourself. By paying
attention to the dangerous bend signs in this book you’ll be better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t al-
ways tell the truth. When certain concepts of TEX are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the

JOKES
truth

Preface

earlier ones do. The author feels that this technique of deliberate lying will ac-
tually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you're reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

The TEX language described in this book is similar to the author’s first
attempt at a document formatting language, but the new system differs from
the old one in literally thousands of details. Both languages have been called
TEX; but henceforth the old language should be called TEX78, and its use should
rapidly fade away. Let’s keep the name TEX for the language described here,
since it is so much better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of the TEX language, based on their experiences with
preliminary versions of the system. My work at Stanford has been generously
supported by the National Science Foundation, the Office of Naval Research, the
IBM Corporation, and the System Development Foundation. I also wish to thank
the American Mathematical Society for its encouragement, for establishing the
TEX Users Group, and for publishing the TUGboat newsletter (see Appendix J).

Stanford, California — D.E. K.
June 1983

‘Tis pleasant, sure, to see one’s name in print;
A book’s a book, although there’s nothing in 't.

— BYRON, English Bards and Scotch Reviewers (1809)

A question arose as to whether we were covering the field
that it was intended we should fill with this manual.

— RICHARD R. DONNELLEY, Proceedings, United Typothetse of America (1897)

vii

EXERCISES

TeX78

National Science Foundation
Office of Naval Research

IBM Corporation

System Development Foundation
American Mathematical Society
TUGDboat

Knuth, Don

BYRON

DONNELLEY

(page viii) |_

© 0 N O s W N =

NN NN R e e e e e e e e
W N B O © WO ;A W N R O

-

Contents

The Name of the Game

Book Printing versus Ordinary Typing
Controlling TEX .

Fonts of Type .

Grouping

Running TEX .

How TEX Reads What You Type
The Characters You Type

TEX’s Roman Fonts

Dimensions

Boxes

Glue .

Modes

How TEX Breaks Paragraphs into Lines
How TEX Makes Lines into Pages
Typing Math Formulas .

More about Math

Fine Points of Mathematics Typing
Displayed Equations

Definitions (also called Macros)
Making Boxes

Alignment

Output Routines

13
19
23
37
43
o1
57
63
69
85
91
109
127
139
161
185
199
221
231
251

Contents of this manual, table

24
25
26

“ -~ O Q=" H OQ®m »

Summary of Vertical Mode
Summary of Horizontal Mode .
Summary of Math Mode

Recovery from Errors

Appendices

Answers to All the Exercises
Basic Control Sequences
Character Codes

Dirty Tricks .

Example Formats

Font Tables .

Generating Boxes from Formulas
Hyphenation

Index

Joining the TEX Community

Contents

267
285
289
295

305
339
367
373
403
427
441
449
457
483

ix

-

1

The Name of
the Game

Chapter 1: The Name ofthe Game

English words like ‘technology’ stem from a Greek root beginning with the letters
Tex ...; and this same Greek word means art as well as technology. Hence the
name TEX, which is an uppercase form of Tey.

Insiders pronounce the x of TEX as a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like
loch or German words like ach; it’s a Spanish ‘j” and a Russian ‘kh’. When you
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TEX
is primarily concerned with high-quality technical manuscripts: Its emphasis is
on art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document—something acceptable and basically read-
able but not really beautiful—a simpler system will usually suffice. With TEX
the goal is to produce the finest quality; this requires more attention to detail,
but you will not find it much harder to go the extra distance, and you’ll be able
to take special pride in the finished product.

On the other hand, it’s important to notice another thing about TEX’s
name: The ‘E’ is out of kilter. This displaced ‘E’ is a reminder that TEX is about
typesetting, and it distinguishes TEX from other system names. In fact, TEX
(pronounced tecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names are pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn’t allow
lowering of the ‘E’, is to type ‘TeX’. Then there will be no confusion with similar
names, and people will be primed to pronounce everything properly.

» EXERCISE 1.1
After you have mastered the material in this book, what will you be: A TEXpert,
or a TEXnician?

They do certainly give
very strange and new-fangled names to diseases.

— PLATO, The Republic, Book 3 (c. 375 B.C.)

Technique! The very word is like the shriek
Of outraged Art. It is the idiot name
Given to effort by those who are too weak,
Too weary, or too dull to play the game.

— LEONARD BACON, Sophia Trenton (1920)

TeX (actually TEX), meaning of
tau

epsilon

chi

beauty

logo

TEX

Honeywell Information Systems
Bemer, Robert, see TEX, ASCII
TeX

PLATO

BACON

-

2

Book Printing
versus

Ordinary Typing

Chapter 2: Book PrintingversusOrdinary Typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit ‘1’ and the lowercase letter ‘I’ When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made; your eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there are two kinds of quotation marks in books,
but only one kind on the typewriter. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark ("), because the standard ASCII code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ¢ and ’; the second of these is
useful also as an apostrophe. American keyboards usually contain a left-quote
character that shows up as something like *, and an apostrophe or right-quote
that looks like ' or ~

To produce double-quote marks with TEX, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

“I understand.”
(including the quotation marks) you should type
¢‘I understand.’’

to your computer.

A typewriter-like style of type will be used throughout this manual to
indicate TEX constructions that you might type on your terminal, so that the
symbols actually typed are readily distinguishable from the output TEX would
produce and from the comments in the manual itself. Here are the symbols to
be used in the examples:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789"#$%&Q*+-=, . :;7!
OS> N/

If your computer terminal doesn’t happen to have all of these, don’t despair;
TEX can make do with the ones you have. An additional symbol

W}

is used to stand for a blank space, in case it is important to emphasize that a
blank space is being typed; thus, what you really type in the example above is

¢ ‘I understand.’’

Without such a symbol you would have difficulty seeing the invisible parts of
certain constructions. But we won’t be using ‘,” very often, because spaces are
usually visible enough.

quotation marks
ASCII
apostrophe
blank space

Chapter 2: Book PrintingversusOrdinary Typing

Book printing differs significantly from ordinary typing with respect to
dashes, hyphens, and minus signs. In good math books, these symbols are all
different; in fact there usually are at least four different symbols:

a hyphen (-);

an en-dash (—);
an em-dash (—);
a minus sign (—).

Hyphens are used for compound words like ‘daughter-in-law’ and ‘X-rated’. En-
dashes are used for number ranges like ‘pages 13-34’, and also in contexts like
‘exercise 1.2.6-52’. Em-dashes are used for punctuation in sentences—they are
what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (--);

for an em-dash, type three hyphens (---);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn’t worry about it now.)

» EXERCISE 2.1
Explain how to type the following sentence to TEX: Alice said, “I always use an
en-dash instead of a hyphen when specifying page numbers like ‘480491’ in a
bibliography.”

» EXERCISE 2.2
What do you think happens when you type four hyphens in a row?

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the
‘t” and the ‘i’ of ‘find’. Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as £f, fi, f1, £fi, and ££f1. (The reason is that words like ‘find’ don’t look
very good in most styles of type unless a ligature is substituted for the letters
that clash. It’s somewhat surprising how often the traditional ligatures appear
in English; other combinations are important in other languages.)

» EXERCISE 2.3
Think of an English word that contains two ligatures.

The good news is that you do not have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ‘==’ into ‘—’. In fact, TEX will also look for combi-
nations of adjacent letters (like ‘A’ next to ‘V’) that ought to be moved closer

together for better appearance; this is called kerning.

dashes
hyphens
minus signs
En-dash
Em-dash
bibliography
ligatures
kerning

Chapter 2: Book PrintingversusOrdinary Typing

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
automatically take care of other niceties like ligatures and kerning.

@ (Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn you about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ If your keyboard does not contain a left-quote symbol, you can type \1lgq,
followed by a space if the next character is a letter, or followed by a \ if the
next character is a space. Similarly, \rq yields a right-quote character. Is that clear?

\1g\1lq I understand.\rq\rq\,

@ In case you need to type quotes within quotes, for example a single quote

followed by a double quote, you can’t simply type ’’’ because TEX will
interpret this as 7’ (namely, double quote followed by single quote). If you have already
read Chapter 5, you might expect that the solution will be to use grouping—namely,
to type something like {’}’’. But it turns out that this doesn’t produce the desired
result, because there is usually less space following a single right quote than there is
following a double right quote: What you get is ", which is indeed a single quote
followed by a double quote (if you look at it closely enough), but it looks almost
like three equally spaced single quotes. On the other hand, you certainly won’t want
to type ’.’’, because that space is much too large—it’s just as large as the space
between words—and TEX might even start a new line at such a space when making up

a paragraph! The solution is to type ’\thinspace’’, which produces ’” as desired.
@ » EXERCISE 2.4
OK, now you know how to produce ”’ and ’”; how do you get “‘ and ‘“7

@ » EXERCISE 2.5

Why do you think the author introduced the control sequence \thinspace to
solve the adjacent-quotes problem, instead of recommending the trickier construction
’$\,$’’ (which also works)?

In modern Wit all printed Trash, is
Set off with num’rous Breaks and Dashes—

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

Some compositors still object to work
in offices where type-composing machines are introduced.

— WILLIAM STANLEY JEVONS, Political Economy (1878)

dangerous bend

Iq

rq

quotes within quotes
thinspace

SWIFT
JEVONS

-

3

Controlling
TeX

Chapter 3: ControllingTEX

Your keyboard has very few keys compared to the large number of symbols
that you may want to specify. In order to make a limited keyboard sufficiently
versatile, one of the characters that you can type is reserved for special use,
and it is called the escape character. Whenever you want to type something
that controls the format of your manuscript, or something that doesn’t use the
keyboard in the ordinary way, you should type the escape character followed by
an indication of what you want to do.

Note: Some computer terminals have a key marked ‘ESC’, but that is not
your escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape.”

TEX allows any character to be used for escapes, but the “backslash”
character ‘\’ is usually adopted for this purpose, since backslashes are reasonably
convenient to type and they are rarely needed in ordinary text. Things work out
best when different TEX users do things consistently, so we shall escape via
backslashes in all the examples of this manual.

Immediately after typing ‘\’ (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands
are called control sequences. For example, you might type

\input MS

which (as we will see later) causes TEX to begin reading a file called ‘MS.tex’;
the string of characters ‘\input’ is a control sequence. Here’s another example:

George P\’olya and Gabor Szeg\"o.

TEX converts this to ‘George Polya and Gabor Szego.” There are two control
sequences, \’ and \", here; these control sequences have been used to place
accents over some of the letters.

Control sequences come in two flavors. The first kind, like \input, is
called a control word; it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. (TEX has to know
where the control sequence ends, so you must put a space after a control word
if the next character is a letter. For example, if you type ‘\inputMS’, TEX will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a “letter” is, the answer is that TEX normally regards the 52
symbols A...Z and a. ..z as letters. The digits 0. ..9 are not considered to be
letters, so they don’t appear in control sequences of the first kind.

A control sequence of the other kind, like \?, is called a control symbol;
it consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have exactly one symbol after
the escape character.

» EXERCISE 3.1
What are the control sequences in ‘\I’m \exercise3.1\\!’?

escape character

backslash

control sequences

markup commands, see control sequences
input

Polya

Szego

acute

umlaut

”»

accents

control word
letter

control symbol

8 Chapter 3: ControllingTEX

» EXERCISE 3.2 space
We’ve seen that the input P\’ olya yields ‘Pélya’. Can you guess how the French return;
words ‘mathématique’ and ‘centimetre’ should be specified? jtaby,
carriage-return, see jreturng
When a space comes after a control word (an all-letter control sequence), logo

it is ignored by TgX; i.e., it is not considered to be a “real” space belonging to Tex

the manuscript that is being typeset. But when a space comes after a control
symbol, it’s truly a space.

Now the question arises, what do you do if you actually want a space
to appear after a control word? We will see later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be “type two
spaces.” The correct answer is to type “control space,” namely

\u

(the escape character followed by a blank space); TEX will treat this as a space
that is not to be ignored. Notice that _ is a control sequence of the second
kind, namely a control symbol, since there is a single nonletter (,,) following the
escape character. Two consecutive spaces are considered to be equivalent to a
single space, so further spaces immediately following \., will be ignored. But if
you want to enter, say, three consecutive spaces into a manuscript you can type
\u\u\L’. Incidentally, typists are often taught to put two spaces at the ends of
sentences; but we will see later that TEX has its own way to produce extra space
in such cases. Thus you needn’t be consistent in the number of spaces you type.

@ Nonprinting control characters like (return) might follow an escape character,

and these lead to distinct control sequences according to the rules. TEX is
initially set up to treat \(return) and \(tab) the same as _ (control space); these
special control sequences should probably not be redefined, because you can’t see the
difference between them when you look at them in a file.

It is usually unnecessary for you to use “control space,” since control
sequences aren’t often needed at the ends of words. But here’s an example that
might shed some light on the matter: This manual itself has been typeset by
TEX, and one of the things that occurs fairly often is the tricky logo ‘TEX’, which
requires backspacing and lowering the E. There’s a special control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ‘TEX’. When
a phrase like ‘TEX ignores spaces after control words.’ is desired, the manuscript
renders it as follows:

\TeX\ ignores spaces after control words.

Notice the extra \ following \TeX; this produces the control space that is neces-
sary because TEX ignores spaces after control words. Without this extra \, the
result would have been

TgXignores spaces after control words.

Chapter 3: ControllingTEX

On the other hand, you can’t simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo ‘\TeX’.

In this case an extra backslash doesn’t work at all; in fact, you get a curious
result if you type

the logo ‘\TeX\’.

Can you guess what happens? Answer: The \’ is a control sequence denoting
an acute accent, as in our P\’olya example above; the effect is therefore to put
an accent over the next nonblank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo ‘TEX:

Computers are good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in
vocabulary, and all of them are explained in this manual somewhere. But you
needn’t worry about learning so many different things, because you won’t really
be needing very many of them unless you are faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences are simply the names of special characters used
in math formulas; you type ‘\pi’ to get ‘m’, ‘\Pi’ to get ‘II’, ‘\aleph’ to get ‘N’
‘\infty’ to get ‘00’, ‘\1e’ to get ‘<’) ‘\ge’ to get ‘>’, ‘\ne’ to get ‘#’, ‘\oplus’ to
get ‘@, ‘\otimes’ to get ‘®’. Appendix F contains several tables of such symbols.
@ There’s no built-in relationship between uppercase and lowercase letters in

control sequence names. For example, ‘\pi’ and ‘\Pi’ and ‘\PI’ and ‘\pI’ are
four different control words.

The 900 or so control sequences that were just mentioned actually aren’t
the whole story, because it’s easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it; Chapter 20 explains how.

About 300 of TEX’s control sequences are called primitive; these are the
low-level atomic operations that are not decomposable into simpler functions.
All other control sequences are defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but \’ and \" are not; the
latter are defined in terms of an \accent primitive.

People hardly ever use TEX’s primitive control sequences in their man-
uscripts, because the primitives are ... well ... so primitive. You have to type
a lot of instructions when you are trying to make TEX do low-level things; this
takes time and invites mistakes. It is generally better to make use of higher-level
control sequences that state what functions are desired, instead of typing out
the way to achieve each function each time. The higher-level control sequences

pi

Pi

aleph
infty

le

ge

ne

oplus
otimes
uppercase
lowercase
primitive
input

”»

accent

10 Chapter 3: ControllingTEX

need to be defined only once in terms of primitives. For example, \TeX is a con- exercise
trol sequence that means “typeset the TEX logo”; \’ is a control sequence that :ﬁ;)r‘:;pace
means “put an acute accent over the next character”; and both of these con- kern
trol sequences might require different combinations of primitives when the style log file
K plain TEX
of type changes. If TEX’s logo were to change, the author would simply have basic control sequences

to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives each time.

At a still higher level, there are control sequences that govern the overall
format of a document. For example, in the present book the author typed
‘\exercise’ just before stating each exercise; this \exercise command was
programmed to make TEX do all of the following things:

= compute the exercise number (e.g., ‘3.2’ for the second exercise in Chap-
ter 3);

» typeset ‘» EXERCISE 3.2’ with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the left margin;

» leave a little extra space just before that line, or begin a new page at
that line if appropriate;

= prohibit beginning a new page just after that line;

» suppress indentation on the following line.

It is obviously advantageous to avoid typing all of these individual instructions
each time. And since the manual is entirely described in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

@ How can a person distinguish a TEX primitive from a control sequence that

has been defined at a higher level? There are two ways: (1) The index to this
manual lists all of the control sequences that are discussed, and each primitive is marked
with an asterisk. (2) You can display the meaning of a control sequence while running
TEX. If you type ‘\show\cs’ where \cs is any control sequence, TEX will respond
with its current meaning. For example, ‘\show\input’ results in ‘> \input=\input.’,
because \input is primitive. On the other hand, ‘\show\thinspace’ yields

> \thinspace=macro:
->\kern .16667em .

This means that \thinspace has been defined as an abbreviation for ‘\kern .16667em ’.
By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TEX.

@ » EXERCISE 3.3
Which of the control sequences \y and \(return) is primitive?

In the following chapters we shall frequently discuss “plain TEX” for-
mat, which is a set of about 600 basic control sequences that are defined in
Appendix B. These control sequences, together with the 300 or so primitives,

Chapter 3: ControllingTEX

are usually present when TEX begins to process a manuscript; that is why TEX
claims to know roughly 900 control sequences when it starts. We shall see how
plain TEX can be used to create documents in a flexible format that meets many
people’s needs, using some typefaces that come with the TEX system. However,
you should keep in mind that plain TEX is only one of countless formats that
can be designed on top of TEX’s primitives; if you want some other format, it
will usually be possible to adapt TEX so that it will handle whatever you have in
mind. The best way to learn is probably to start with plain TEX and to change
its definitions, little by little, as you gain more experience.

@ Appendix E contains examples of formats that can be added to Appendix B

for special applications; for example, there is a set of definitions suitable for
business correspondence. A complete specification of the format used to typeset this
manual also appears in Appendix E. Thus, if your goal is to learn how to design TEX
formats, you will probably want to study Appendix E while mastering Appendix B.
After you have become skilled in the lore of control-sequence definition, you will prob-
ably have developed some formats that other people will want to use; you should then
write a supplement to this manual, explaining your style rules.

The main point of these remarks, as far as novice TEX users are con-
cerned, is that it is indeed possible to define nonstandard TEX control sequences.
When this manual says that something is part of “plain TEX,” it means that TEX
doesn’t insist on doing things exactly that way; a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you become an experienced

TgEXnical typist.

» EXERCISE 3.4
How many different control sequences of length 2 (including the escape character)
are possible? How many of length 37

Syllables govern the world.
— JOHN SELDEN, Table Talk (1689)

| claim not to have controlled events,
but confess plainly that events have controlled me.

— ABRAHAM LINCOLN (1864)

11

formats
SELDEN
LINCOLN

Fonts
of Type

Chapter 4: Fontsof Type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. TEX deals with sets of up
to 256 characters called “fonts” of type, and control sequences are used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TEX format of Appendix B:

to be \bf bold \rm or to \sl emphasize \rm something.

Plain TEX provides the following control sequences for changing fonts:

\rm switches to the normal “roman” typeface: Roman

\s1 switches to a slanted roman typeface: Slanted

\it switches to italic style: Ttalic

\tt switches to a typewriter-like face: Typewriter
\bf switches to an extended boldface style: Bold

At the beginning of a run you get roman type (\rm) unless you specify otherwise.

Notice that two of these faces have an “oblique” slope for emphasis:
Slanted type is essentially the same as roman, but the letters are slightly skewed,
while the letters in italic type are drawn in a different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that are in an unslanted italic face.) Typographic conventions are
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive; people are wrestling with
the question of how much to use their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it first became widely used as
an alternative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical texts, since slanted letters are distinguishable from the
italic letters in math formulas. The double use of italic type for two different
purposes—for example, when statements of theorems are italicized as well as the
names of variables in those theorems—has led to some confusion, which can now
be avoided with slanted type. People are not generally agreed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts are effective for emphasis, but not for sustained reading;
your eyes would tire if long portions of this manual were entirely set in a bold
or slanted or italic face. Therefore roman type accounts for the bulk of most
typeset material. But it’s a nuisance to say ‘\rm’ every time you want to go
back to the roman style, so TEX provides an easier way to do it, using “curly
brace” symbols: You can switch fonts inside the special symbols { and }, without
affecting the fonts outside. For example, the displayed phrase at the beginning
of this chapter is usually rendered

to be {\bf bold} or to {\sl emphasize} something.

This is a special case of the general idea of “grouping” that we shall discuss in
the next chapter. It’s best to forget about the first way of changing fonts, and

13

typeface
bold

fonts

rm

sl

it

tt

bf
typewriter type
face

roman type
oblique
Slanted type
italic type
curly brace
brace

grouping

14 Chapter 4: Fontsof Type

to use grouping instead; then your TEX manuscripts will look more natural, and Dieter
9 k ¢ ? /
you’ll probably never* have to type ‘\rm’. Lalic correction
punctuation
» EXERCISE 4.1 nullfont

Explain how to type the bibliographic reference ‘Ulrich Dieter, Journal fiir die
reine und angewandte Mathematik 201 (1959), 37-70.” [Use grouping.]

We have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the italicized and slanted words in this sentence.
Since italic and slanted styles slope to the right, the d’s stick into the spaces that
separate these words from the roman type that follows; as a result, the spaces
appear to be too skimpy, although they are correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence ‘\/’ just before switching back to unslanted letters. When you type

{\it italicized\/} and {\sl slanted\/} words

you get italicized and slanted words that look better. The ‘\/’ tells TEX to add an
“italic correction” to the previous letter, depending on that letter; this correction
is about four times as much for an ‘f’ as for a ‘c’, in a typical italic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to use \/ just before
switching from slanted or italic to roman or bold, unless the next character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. When an italicized word occurs just before a semicolon, the author
recommends typing ‘{\it word\/};’.

» EXERCISE 4.2
Ezplain how to typeset a roman word in the midst of an italicized sentence.

@ Every letter of every font has an italic correction, which you can bring to life

by typing \/. The correction is usually zero in unslanted styles, but there are
exceptions: To typeset a bold ‘f’ in quotes, you should say a bold ‘{\bf £\/}’, lest
you get a bold ‘f".

» EXERCISE 4.3
Define a control sequence \ic such that ‘\ic c’ puts the italic correction of character
c into TEX’s register \dimenO.

The primitive control sequence \nullfont stands for a font that has no characters.
This font is always present, in case you haven’t specified any others.

* Well ..., hardly ever.

Chapter 4: Fontsof Type

Fonts vary in size as well as in shape. For example, the font you are
now reading is called a “10-point” font, because certain features of its design are
10 points apart, when measured in printers’ units. (We will study the point
system later; for now, it should suffice to point out that the parentheses around
this sentence are exactly 10 points tall-—and the em-dash is just 10 points wide.)
The “dangerous bend” sections of this manual are set in 9-point type, the foot-
notes in 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point.

Each font used in a TEX manuscript is associated with a control se-
quence; for example, the 10-point font in this paragraph is called \tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm are called \tensl and \ninesl. These control sequences
are not built into TEX, nor are they the actual names of the fonts; TEX users are
just supposed to make up convenient names, whenever new fonts are introduced
into a manuscript. Such control sequences are used to change typefaces.

When fonts of different sizes are used simultaneously, TEX will line the
letters up according to their “baselines.” For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\sixrm and smaller \fiverm and smaller \tenrm

the result is smaller and smaller and smaller and smaller and smaller and smatier. Of course
this is something that authors and readers aren’t accustomed to, because printers
couldn’t do such things with traditional lead types. Perhaps poets who wish
to speak in a still sman voice Will cause future books to make use of frequent font
variations, but nowadays it’s only an occasional font freak qike the author of this manual)
who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confused at this point because we started
out this chapter by saying that ‘\rm’ is the command that switches to roman
type, but later on we said that ‘\tenrm’ is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
“switch to roman type in the current size” while \tenrm means “switch to roman
type in the 10-point size.” In plain TEX format, nothing but 10-point fonts are
provided, so \rm will always get you \tenrm; but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format used by the author to typeset this manual, there’s a control sequence
‘\tenpoint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while ‘\ninepoint’ changes the definitions so that \rm means \ninerm, etc.
There’s another control sequence used to introduce the quotations at the end of
each chapter; when the quotations are typed, \rm and \sl temporarily stand for
8-point unslanted sans-serif type and 8-point slanted sans-serif type, respectively.
This device of constantly redefining the abbreviations \rm and \s1, behind the
scenes, frees the typist from the need to remember what size or style of type is
currently being used.

15

points
dangerous bend
subscripts
tenrm

ninerm

tensl

ninesl

baseline
tenpoint
ninepoint

16 Chapter 4: Fontsof Type

» EXERCISE 4.4 Computer Modern
Why do you think the author chose the names ‘\tenpoint’ and ‘\tenrm’, etc., ?(inntfonts
instead of ‘\10point’ and ‘\10rm’? design size
@ » EXERCISE 4.5 ?rfagniﬁcation

Suppose that you have typed a manuscript using slanted type for emphasis, reduction

but your editor suddenly tells you to change all the slanted to italic. What’s an easy
way to do this?

@ Each font has an external name that identifies it with respect to all other fonts

in a particular library. For example, the font in this sentence is called ‘cmr9’,
which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare
TEX for using this font, the command

\font\ninerm=cmr9

appears in Appendix E. In general you say ‘\font\cs=(external font name)’ to load
the information about a particular font into TEX’s memory; afterwards the control
sequence \cs will select that font for typesetting. Plain TEX makes only sixteen fonts
available initially (see Appendix B and Appendix F), but you can use \font to access
anything that exists in your system’s font library.

@ It is often possible to use a font at several different sizes, by magnifying or

shrinking the character images. Each font has a so-called design size, which
reflects the size it normally has by default; for example, the design size of cmr9 is
9 points. But on many systems there is also a range of sizes at which you can use
a particular font, by scaling its dimensions up or down. To load a scaled font into
TEX’s memory, you simply say ‘\font\cs=(external font name) at (desired size)’. For
example, the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5-point Computer Modern Roman at twice its normal size. (Caution: Before
using this ‘at’ feature, you should check to make sure that your typesetter supports
the font at the size in question; TEX will accept any (desired size) that is positive and
less than 2048 points, but the final output will not be right unless the scaled font really
is available on your printing device.)

g% What’s the difference between cmr5 at 10pt and the normal 10-point font,

cmr10? Plenty; a well-designed font will be drawn differently at different point
sizes, and the letters will often have different relative heights and widths, in order to
enhance readability.

Ten-point type is different from magnified five-point type.

It is usually best to scale fonts only slightly with respect to their design size, unless
the final product is going to be photographically reduced after TEX has finished with
it, or unless you are trying for an unusual effect.

@ Another way to magnify a font is to specify a scale factor that is relative to
the design size. For example, the command

\font\magnifiedfiverm=cmr5 scaled 2000

Chapter 4: Fontsof Type

is another way to bring in the font cmr5 at double size. The scale factor is specified
as an integer that represents a magnification ratio times 1000. Thus, a scale factor of
1200 specifies magnification by 1.2, etc.

@ » EXERCISE 4.6
State two ways to load font cmr10 into TEX’s memory at half its normal size.

@ At many computer centers it has proved convenient to supply fonts at magnifi-

cations that grow in geometric ratios—something like equal-tempered tuning
on a piano. The idea is to have all fonts available at their true size as well as at
magnifications 1.2 and 1.44 (which is 1.2 x 1.2); perhaps also at magnification 1.728
(= 1.2 x 1.2 x 1.2) and even higher. Then you can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain TEX provides the abbre-
viations \magstepO for a scale factor of 1000, \magstep1l for a scaled factor of 1200,
\magstep2 for 1440, and so on up to \magstep5. You say, for example,

\font\bigtenrm=cmri0 scaled\magstep2
to load font cmr10 at 1.2 x 1.2 times its normal size.
“This is cmr10 at normal size (\magstep0).”

“This is cmr10 scaled once by 1.2 (\magstep1).”
“This is cmr10 scaled twice by 1.2 (\magstep2).”

(Notice that a little magnification goes a long way.) There’s also \magstephalf, which
magnifies by /1.2, i.e., halfway between steps 0 and 1.

@ Chapter 10 explains how to apply magnification to an entire document, over
and above any magnification that has been specified when fonts are loaded.
For example, if you have loaded a font that is scaled by \magstepl and if you also
specify \magnification=\magstep2, the actual font used for printing will be scaled by
\magstep3. Similarly, if you load a font scaled by \magstephalf and if you also say
\magnification=\magstephalf, the printed results will be scaled by \magstepl.

Type faces—Ilike people’s faces—have distinctive features
indicating aspects of character.

— MARSHALL LEE, Bookmaking (1965)

This was the Noblest Roman of them all.
— WILLIAM SHAKESPEARE, The Tragedie of Julius Caesar (1599)

17

cmrb

piano

magstep
magstephalf
magnification
LEE
SHAKESPEARE

-

5

Grouping

Chapter 5: Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so you
need to indicate somehow where that part begins and where it ends. For this
purpose TEX gives special interpretation to two “grouping characters,” which
(like the escape character) are treated differently from the normal symbols that
you type. We assume in this manual that { and } are the grouping characters,
since they are the ones used in plain TEX.

We saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will see later; for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group; since the changes are invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construction has been finished. Computer scientists have a name for this aspect
of grouping, because it’s an important aspect of programming languages in gen-
eral; they call it “block structure,” and definitions that are in force only within
a group are said to be “local” to that group.

You might want to use grouping even when you don’t care about block
structure, just to have better control over spacing. For example, let’s consider
once more the control sequence \TeX that produces the logo “TEX’ in this manual:
We observed in Chapter 3 that a blank space after this control sequence will be
gobbled up unless one types ‘\TeX\ ’, yet it is a mistake to say ‘\TeX\’ when the
following character is not a blank space. Well, in all cases it would be correct to
specify the simple group

{\Tex}

whether or not the following character is a space, because the } stops TEX from
absorbing an optional space into \TeX. This might come in handy when you’re
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TeX{}

using an empty group for the same purpose: The ‘{}’ here is a group of no
characters, so it produces no output, but it does have the effect of stopping TEX
from skipping blanks.

» EXERCISE 5.1
Sometimes you run into a rare word like ‘shelfful’ that looks better as ‘shelfful’
without the ‘ff’ ligature. How can you fool TEX into thinking that there aren’t
two consecutive f’s in such a word?

@ » EXERCISE 5.2
Explain how to get three blank spaces in a row without using ‘\.,’.

19

grouping characters
curly braces, see braces
block structure

local

TeX

space

empty group

Ibrace rbrace

ligature

control space

20

Chapter 5: Grouping

But TEX also uses grouping for another, quite different, purpose, namely
to determine how much of your text is to be governed by certain control se-
quences. For example, if you want to center something on a line you can type

\centerline{This information should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of TEX’s more intricate instructions;

and it’s possible to have groups within groups within groups, as you can see by

glancing at Appendix B. Complex grouping is generally unnecessary, however,

in ordinary manuscripts, so you needn’t worry about it. Just don’t forget to

finish each group that you've started, because a lost ‘}’ might cause trouble.
Here’s an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}
As you might expect, TEX will produce a centered line that also contains italics:
This information should be centered.

But let’s look at the example more closely: ‘\centerline’ appears outside the
curly braces, while ‘\it’ appears inside. Why are the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
you want to put braces around the text that is to be centered (unless that text
consists of a single symbol or control sequence). For example, to center the TEX
logo on a line, it would suffice to type ‘\centerline\TeX’, but to center the
phrase ‘TEX has groups’ you need braces: ‘\centerline{\TeX\ has groups}’.
On the other hand, \it is a control sequence that simply means “change the
current font”; it acts without looking ahead, so it affects everything that follows,
at least potentially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this example actually have
different functions: One serves to treat several words of the text as if they were
a single object, while the other provides local block structure.

» EXERCISE 5.3
What do you think happens if you type the following:
\centerline{This information should be {centered}.}
\centerline So should this.

» EXERCISE 5.4
And how about this one?

\centerline{This information should be \it centered.}
@ » EXERCISE 5.5

Define a control sequence \ital so that a user could type ‘\ital{text}’ in-
stead of ‘{\it text\/}’. Discuss the pros and cons of \ital versus \it.

centerline
nested

Chapter 5: Grouping

% Subsequent chapters describe many primitive operations of TEX for which the locality

of grouping is important. For example, if one of TEX’s internal parameters is changed
within a group, the previous contents of that parameter will be restored when the group ends.
Sometimes, however, it’s desirable to make a definition that transcends its current group. This
effect can be obtained by prefixing ‘\global’ to the definition. For example, TEX keeps the
current page number in a register called \count0, and the routine that outputs a page wants to
increase the page number. Output routines are always protected by enclosing them in groups,
so that they do not inadvertently mess up the rest of TEX; but the change to \count0 would
disappear if it were kept local to the output group. The command

\global\advance\countO by 1

solves the problem; it increases \count0 and makes this value stick around at the end of the
output routine. In general, \global makes the immediately following definition pertain to all
existing groups, not just to the innermost one.

%» EXERCISE 5.6

If you think you understand local and global definitions, here’s a little test to make
sure: Suppose \c stands for ‘\count1=’; \g stands for ‘\globall\count1=’, and \s stands for
“\showthe\count1’. What values will be shown?

{\c1\s\g2{\s\c3\s\g4\s\c5\s}\s\c6\s}\s

% Another way to obtain block structure with TEX is to use the primitives \begingroup

and \endgroup. These control sequences make it easy to begin a group within one
control sequence and end it within another. The text that TEX actually executes, after control
sequences have been expanded, must have properly nested groups, i.e., groups that don’t
overlap. For example,

{ \begingroup } \endgroup

is not legitimate.

» EXERCISE 5.7
Define control sequences \beginthe(block name) and \endthe(block name) that pro-
vide a “named” block structure. In other words,

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine}
should be permissible, but not

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

| have had recourse to varieties of type,
and to braces.

— JAMES MUIRHEAD, The Institutes of Gaius (1880)

An encounter group is a gathering, for a few hours or a few days,
of twelve or eighteen personable, responsible, certifiably normal
and temporarily smelly people.

— JANE HOWARD, Please Touch (1970)

21

global

page number
Output routines
advance
begingroup
endgroup
nested groups
MUIRHEAD
HOWARD

22222222 [N

6

Running
TeX

Chapter 6: RunningTpX

The best way to learn how to use TEX is to use it. Thus, it’s high time for you
to sit down at a computer terminal and interact with the TEX system, trying
things out to see what happens. Here are some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. Why don’t you stop reading
now, and come back fresh tomorrow?

OK, let’s suppose that you're rested and excited about having a trial run
of TEX. Step-by-step instructions for using it appear in this chapter. First do
this: Go to the lab where the graphic output device is, since you will be wanting
to see the output that you get—it won’t really be satisfactory to run TEX from
a remote location, where you can’t hold the generated documents in your own
hands. Then log in; and start TEX. (You may have to ask somebody how to
do this on your local computer. Usually the operating system prompts you for
a command and you type ‘tex’ or ‘run tex’ or something like that.)

When you're successful, TEX will welcome you with a message such as

This is TeX, Version 3.141 (preloaded format=plain 89.7.15)
%k k

The ‘**’ is TEX’s way of asking you for an input file name.

Now type ‘\relax’ (including the backslash), and (return) (or whatever
is used to mean “end-of-line” on your terminal). TEX is all geared up for action,
ready to read a long manuscript; but you're saying that it’s all right to take
things easy, since this is going to be a real simple run. In fact, \relax is a
control sequence that means “do nothing.”

The machine will type another asterisk at you. This time type something
like ‘Hello?’ and wait for another asterisk. Finally type ‘\end’, and stand back
to see what happens.

TEX should respond with ‘[1]’ (meaning that it has finished page 1 of
your output); then the program will halt, probably with some indication that
it has created a file called ‘texput.dvi’. (TEX uses the name texput for its
output when you haven’t specified any better name in your first line of input;
and dvi stands for “device independent,” since texput.dvi is capable of being
printed on almost any kind of typographic output device.)

Now you’re going to need some help again from your friendly local com-
puter hackers. They will tell you how to produce hardcopy from texput.dvi.
And when you see the hardcopy—Oh, glorious day!—you will see a magnificent
‘Hello?’ and the page number ‘1’ at the bottom. Congratulations on your first
masterpiece of fine printing.

The point is, you understand now how to get something through the
whole cycle. It only remains to do the same thing with a somewhat longer
document. So our next experiment will be to work from a file instead of typing
the input online.

23

Running the program
Hx

relax

return

asterisk

end

il

texput

dvi

device independent

24 Chapter 6: RunningTpX

Use your favorite text editor to create a file called story.tex that con- story.tex

tains the following 18 lines of text (no more, no less): 5;;:113

1 \hrule contertine

2 \vskip lin Thor

3 \centerline{\bf A SHORT STORY} c

4 \vskip 6pt \l?éﬁf“ats

5 \centerline{\sl by A. U. Thor} eject

6 \vskip .5cm rule

. . . paragraphs

7 Once upon a time, in a distant blank line

8 galaxy called \"O\"o\c c, empty line

9 there lived a computer

10 named R.~J. Drofnats.

11

12 Mr. Drofnats---or ‘‘R. J.,’’ as

13 he preferred to be called---

14 was happiest when he was at work

15 typesetting beautiful documents.

16 \vskip lin

17 \hrule

18 \vfillleject

(Don’t type the numbers at the left of these lines, of course; they are present
only for reference.) This example is a bit long, and more than a bit silly; but
it’s no trick for a good typist like you and it will give you some worthwhile
experience, so do it. For your own good. And think about what you’re typing,
as you go; the example introduces a few important features of TEX that you can
learn as you’re making the file.

Here is a brief explanation of what you have just typed: Lines 1 and 17
put a horizontal rule (a thin line) across the page. Lines 2 and 16 skip past one
inch of space; ‘\vskip’ means “vertical skip,” and this extra space will separate
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and
the author name, centered, in boldface and in slanted type. Lines 4 and 6 put
extra white space between those lines and their successors. (We shall discuss
units of measure like ‘6pt’ and ‘.5cm’ in Chapter 10.)

The main bulk of the story appears on lines 7-15, and it consists of
two paragraphs. The fact that line 11 is blank informs TEX that line 10 is the
end of the first paragraph; and the ‘\vskip’ on line 16 implies that the second
paragraph ends on line 15, because vertical skips don’t appear in paragraphs.
Incidentally, this example seems to be quite full of TEX commands; but it is
atypical in that respect, because it is so short and because it is supposed to
be teaching things. Messy constructions like \vskip and \centerline can be
expected at the very beginning of a manuscript, unless you're using a canned
format, but they don’t last long; most of the time you will find yourself typing
straight text, with relatively few control sequences.

Chapter 6: RunningTpX

And now comes the good news, if you haven’t used computer typesetting
before: You don’t have to worry about where to break lines in a paragraph (i.e.,
where to stop at the right margin and to begin a new line), because TEX will
do that for you. Your manuscript file can contain long lines or short lines, or
both; it doesn’t matter. This is especially helpful when you make changes, since
you don’t have to retype anything except the words that changed. Every time
you begin a new line in your manuscript file it is essentially the same as typing
a space. When TEX has read an entire paragraph—in this case lines 7 to 11—it
will try to break up the text so that each line of output, except the last, contains
about the same amount of copy; and it will hyphenate words if necessary to keep
the spacing consistent, but only as a last resort.

Line 8 contains the strange concoction

\"O\"O\C c

and you already know that \" stands for an umlaut accent. The \c stands for a
“cedilla,” so you will get ‘O6¢’ as the name of that distant galaxy.

The remaining text is simply a review of the conventions that we dis-
cussed long ago for dashes and quotation marks, except that the ‘~’ signs in
lines 10 and 12 are a new wrinkle. These are called ties, because they tie words
together; i.e., TEX is supposed to treat ‘~’ as a normal space but not to break
between lines there. A good typist will use ties within names, as shown in our
example; further discussion of ties appears in Chapter 14.

Finally, line 18 tells TEX to ‘\vfill’; i.e., to fill the rest of the page with
white space; and to ‘\eject’ the page, i.e., to send it to the output file.

Now you're ready for Experiment 2: Get TEX going again. This time
when the machine says ‘**’ you should answer ‘story’, since that is the name
of the file where your input resides. (The file could also be called by its full
name ‘story.tex’, but TEX automatically supplies the suffix ‘. tex’ if no suffix
has been specified.)

You might wonder why the first prompt was ‘**’, while the subsequent
ones are ‘*’; the reason is simply that the first thing you type to TEX is slightly
different from the rest: If the first character of your response to ‘**’ is not a
backslash, TEX automatically inserts ‘\input’. Thus you can usually run TEX
by merely naming your input file. (Previous TEX systems required you to start
by typing ‘\input story’ instead of ‘story’, and you can still do that; but most
TEX users prefer to put all of their commands into a file instead of typing them
online, so TEX now spares them the nuisance of starting out with \input each
time.) Recall that in Experiment 1 you typed ‘\relax’; that started with a
backslash, so \input was not implied.

g% There’s actually another difference between ‘*x’ and ‘*’: If the first character

after ** is an ampersand (‘&’), TEX will replace its memory with a precom-
puted format file before proceeding. Thus, for example, you can type ‘&plain \input
story’ or even ‘&plain story’ in response to ‘**’ if you are running some version of
TEX that might not have the plain format preloaded.

25

umlaut
cedilla
ties

tilde

vfill

eject

file names
*k

*

input

ampersand

format file
preloaded formats

26

Chapter 6: RunningTpX

@ Incidentally, many systems allow you to invoke TEX by typing a one-liner like

‘tex story’ instead of waiting for the ‘**’; similarly, ‘tex \relax’ works for
Experiment 1, and ‘tex &plain story’ loads the plain format before inputting the
story file. You might want to try this, to see if it works on your computer, or you
might ask somebody if there’s a similar shortcut.

As TEX begins to read your story file, it types ‘(story.tex’, possibly
with a version number for more precise identification, depending on your local
operating system. Then it types ‘[1]’, meaning that page 1 is done; and ‘)’,
meaning that the file has been entirely input.

TEX will now prompt you with ‘*’, because the file did not contain
‘\end’. Enter \end into the computer now, and you should get a file story.dvi
containing a typeset version of Thor’s story. Asin Experiment 1, you can proceed
to convert story.dvi into hardcopy; go ahead and do that now. The typeset
output won’t be shown here, but you can see the results by doing the experiment
personally. Please do so before reading on.

» EXERCISE 6.1
Statistics show that only 7.43 of 10 people who read this manual actually type
the story.tex file as recommended, but that those people learn TEX best. So
why don’t you join them?

» EXERCISE 6.2
Look closely at the output of Experiment 2, and compare it to story.tex: If you
followed the instructions carefully, you will notice a typographical error. What
is it, and why did it sneak in?

With Experiment 2 under your belt, you know how to make a document
from a file. The remaining experiments in this chapter are intended to help
you cope with the inevitable anomalies that you will run into later; we will
intentionally do things that will cause TEX to “squeak.”

But before going on, it’s best to fix the error revealed by the previous
output (see exercise 6.2): Line 13 of the story.tex file should be changed to

he preferred to be called---J, error has been fixed!

The ‘%’ sign here is a feature of plain TEX that we haven’t discussed before: It ef-
fectively terminates a line of your input file, without introducing the blank space
that TEX ordinarily inserts when moving to the next line of input. Furthermore,
TEX ignores everything that you type following a %, up to the end of that line
in the file; you can therefore put comments into your manuscript, knowing that
the comments are for your eyes only.

Experiment 3 will be to make TEX work harder, by asking it to set
the story in narrower and narrower columns. Here’s how: After starting the
program, type

\hsize=4in \input story

end
percent
comments

Chapter 6: RunningTpX

in response to the ‘*x’. This means, “Set the story in a 4-inch column.” More
precisely, \hsize is a primitive of TEX that specifies the horizontal size, i.e., the
width of each normal line in the output when a paragraph is being typeset; and
\input is a primitive that causes TEX to read the specified file. Thus, you are
instructing the machine to change the normal setting of \hsize that was defined
by plain TgX, and then to process story.tex under this modification.

TEX should respond by typing something like ‘(story.tex [1])’ as
before, followed by ‘*’. Now you should type

\hsize=3in \input story
and, after TEX says ‘(story.tex [2])’ asking for more, type three more lines

\hsize=2.5in \input story
\hsize=2in \input story
\end

to complete this four-page experiment.

Don’t be alarmed when TEX screams ‘Overfull \hbox’ several times
as it works at the 2-inch size; that’s what was supposed to go wrong during
Experiment 3. There simply is no good way to break the given paragraphs into
lines that are exactly two inches wide, without making the spaces between words
come out too large or too small. Plain TEX has been set up to ensure rather
strict tolerances on all of the lines it produces:

you don’t get spaces between words narrower than this, and
you don’t get spaces between words wider than this.

If there’s no way to meet these restrictions, you get an overfull box. And with
the overfull box you also get (1) a warning message, printed on your terminal,
and (2) a big black bar inserted at the right of the offending box, in your output.
(Look at page 4 of the output from Experiment 3; the overfull boxes should stick
out like sore thumbs. On the other hand, pages 1-3 should be perfect.)

Of course you don’t want overfull boxes in your output, so TEX provides
several ways to remove them; that will be the subject of our Experiment 4. But
first let’s look more closely at the results of Experiment 3, since TEX reported
some potentially valuable information when it was forced to make those boxes
too full; you should learn how to read this data:

27

Overfull \hbox (0.98807pt too wide) in paragraph at lines 7--11

\tenrm tant galaxy called []0""70""Xc, there lived|

Overfull \hbox (0.4325pt too wide) in paragraph at lines 7--11

\tenrm a com-puter named R. J. Drof-nats. |

hsize
input
overfull box

Overfull \hbox (5.32132pt too wide) in paragraph at lines 12--16

\tenrm he pre-ferred to be called---was hap-|

Each overfull box is correlated with its location in your input file (e.g., the first
two were generated when processing the paragraph on lines 7-11 of story.tex),
and you also learn by how much the copy sticks out (e.g., 0.98807 points).

28

Chapter 6: RunningTpX

Notice that TEX also shows the contents of the overfull boxes in ab-
breviated form. For example, the last one has the words ‘he preferred to be
called—was hap-’, set in font \tenrm (10-point roman type); the first one has
a somewhat curious rendering of ‘Oég’, because the accents appear in strange
places within that font. In general, when you see ‘[]’ in one of these messages,
it stands either for the paragraph indentation or for some sort of complex con-
struction; in this particular case it stands for an umlaut that has been raised up
to cover an ‘O’.

@ » EXERCISE 6.3
Can you explain the ‘|’ that appears after ‘lived’ in that message?

» EXERCISE 6.4
Why is there a space before the ‘|’ in ‘Drof-nats. |’7

You don’t have to take out pencil and paper in order to write down the
overfull box messages that you get before they disappear from view, since TEX
always writes a “transcript” or “log file” that records what happened during each
session. For example, you should now have a file called story.log containing
the transcript of Experiment 3, as well as a file called texput.log containing
the transcript of Experiment 1. (The transcript of Experiment 2 was probably
overwritten when you did number 3.) Take a look at story.log now; you will
see that the overfull box messages are accompanied not only by the abbreviated
box contents, but also by some strange-looking data about hboxes and glue and
kerns and such things. This data gives a precise description of what’s in that
overfull box; TEX wizards will find such listings important, if they are called
upon to diagnose some mysterious error, and you too may want to understand
TEX’s internal code some day.

The abbreviated forms of overfull boxes show the hyphenations that
TEX tried before it resorted to overfilling. The hyphenation algorithm, which is
described in Appendix H, is excellent but not perfect; for example, you can see
from the messages in story.log that TEX finds the hyphen in ‘pre-ferred’, and
it can even hyphenate ‘Drof-nats’. Yet it discovers no hyphen in ‘galaxy’, and
every once in a while an overfull box problem can be cured simply by giving TEX
a hint about how to hyphenate some word more completely. (We will see later
that there are two ways to do this, either by inserting discretionary hyphens
each time as in ‘gal\-axy’, or by saying ‘\hyphenation{gal-axy}’ once at the
beginning of your manuscript.)

In the present example, hyphenation is not a problem, since TEX found
and tried all the hyphens that could possibly have helped. The only way to get
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces
between words. Indeed, the tolerance that plain TEX uses for wide lines is
completely inappropriate for 2-inch columns; such narrow columns simply can’t
be achieved without loosening the constraints, unless you rewrite the copy to fit.

TEX assigns a numerical value called “badness” to each line that it sets,
in order to assess the quality of the spacing. The exact rules for badness are

(I

transcript

log file

hyphenation
discretionary hyphens
badness

Chapter 6: RunningTgX 29

different for different fonts, and they will be discussed in Chapter 14; but here tolerance
is the way badness works for the roman font of plain TEX: hibadness

underfull box
C e 1 idth
The badness of this line is 100. o umn wi

measure, see hsize

very tight)

(
The badness of this line is 12. (somewhat tight) raggedright
The badness of this line is 0. (perfect)
The badness of this line is 12. (somewhat loose)
The badness of this line is 200. (loose)
The badness of this line is 1000. (bad)
The badness of this line is 5000. (awful)

Plain TEX normally stipulates that no line’s badness should exceed 200; but in
our case, the task would be impossible since

‘tant galaxy called Oé(;, there’ has badness 1521;
‘he preferred to be called—was’ has badness 568.

So we turn now to Experiment 4, in which spacing variations that are more
appropriate to narrow columns will be used.
Run TEX again, and begin this time by saying

\hsize=2in \tolerance=1600 \input story

so that lines with badness up to 1600 will be tolerated. Hurray! There are no
overfull boxes this time. (But you do get a message about an underfull box,
since TEX reports all boxes whose badness exceeds a certain threshold called
\hbadness; plain TEX sets \hbadness=1000.) Now make TEX work still harder
by trying

\hsize=1.5in \input story

(thus leaving the tolerance at 1600 but making the column width still skimpier).
Alas, overfull boxes return; so try typing

\tolerance=10000 \input story

in order to see what happens. TEX treats 10000 as if it were “infinite” tolerance,
allowing arbitrarily wide space; thus, a tolerance of 10000 will never produce an
overfull box, unless something strange occurs like an unhyphenatable word that
is wider than the column itself.

The underfull box that TEX produces in the 1.5-inch case is really bad;
with such narrow limits, an occasional wide space is unavoidable. But try

\raggedright \input story

for a change. (This tells TEX not to worry about keeping the right margin
straight, and to keep the spacing uniform within each line.) Finally, type

\hsize=.75in \input story

followed by ‘\end’, to complete Experiment 4. This makes the columns almost
impossibly narrow.

30

Chapter 6: RunningTpX

@ The output from this experiment will give you some feeling for the problem

of breaking a paragraph into approximately equal lines. When the lines are
relatively wide, TEX will almost always find a good solution. But otherwise you will
have to figure out some compromise, and several options are possible. Suppose you want
to ensure that no lines have badness exceeding 500. Then you could set \tolerance to
some high number, and \hbadness=500; TEX would not produce overfull boxes, but it
would warn you about the underfull ones. Or you could set \tolerance=500; then TEX
might produce overfull boxes. If you really want to take corrective action, the second
alternative is better, because you can look at an overfull box to see how much sticks
out; it becomes graphically clear what remedies are possible. On the other hand, if you
don’t have time to fix bad spacing—if you just want to know how bad it is—then the
first alternative is better, although it may require more computer time.

@ » EXERCISE 6.5

When \raggedright has been specified, badness reflects the amount of space
at the right margin, instead of the spacing between words. Devise an experiment by
which you can easily determine what badness TEX assigns to each line, when the story
is set ragged-right in 1.5-inch columns.

@ A parameter called \hfuzz allows you to ignore boxes that are only slightly
overfull. For example, if you say \hfuzz=1pt, a box must stick out more than
one point before it is considered erroneous. Plain TEX sets \hfuzz=0. 1pt.

%» EXERCISE 6.6

Inspection of the output from Experiment 4, especially page 3, shows that with
narrow columns it would be better to allow white space to appear before and after a dash,
whenever other spaces in the same line are being stretched. Define a \dash macro that does
this.

You were warned that this is a long chapter. But take heart: There’s
only one more experiment to do, and then you will know enough about TEX to
run it fearlessly by yourself forever after. The only thing you are still missing
is some information about how to cope with error messages—i.e., not just with
warnings about things like overfull boxes, but with cases where TEX actually
stops and asks you what to do next.

Error messages can be terrifying when you aren’t prepared for them;
but they can be fun when you have the right attitude. Just remember that you
really haven’t hurt the computer’s feelings, and that nobody will hold the errors
against you. Then you’ll find that running TEX might actually be a creative
experience instead of something to dread.

The first step in Experiment 5 is to plant two intentional mistakes in
the story.tex file. Change line 3 to

\centerline{\bf A SHORT \ERROR STORY}

and change ‘\vskip’ to ‘\vship’ on line 2.

Now run TgX again; but instead of ‘story’ type ‘sorry’. The computer
should respond by saying that it can’t find file sorry.tex, and it will ask you
to try again. Just hit (return) this time; you’ll see that you had better give the

breaking a paragraph
hfuzz

dash

error messages

Chapter 6: RunningTpX

name of a real file. So type ‘story’ and wait for TEX to find one of the faux pas
in that file.
Ah yes, the machine will soon stop,* after typing something like this:

! Undefined control sequence.
1.2 \vship

1in
?

TEX begins its error messages with ‘!’, and it shows what it was reading at the

time of the error by displaying two lines of context. The top line of the pair
(in this case ‘\vship’) shows what TEX has looked at so far, and where it came
from (‘1.2 i.e., line number 2); the bottom line (in this case ‘1in’) shows what
TEX has yet to read.

The ‘?’ that appears after the context display means that TEX wants
advice about what to do next. If you've never seen an error message before, or
if you’ve forgotten what sort of response is expected, you can type ‘?’ now (go
ahead and try it!); TEX will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:

1. Simply type (return). TEX will resume its processing, after attempting
to recover from the error as best it can.

¢

2. Type ‘S’. TEX will proceed without pausing for instructions if further
errors arise. Subsequent error messages will flash by on your terminal,
possibly faster than you can read them, and they will appear in your
log file where you can scrutinize them at your leisure. Thus, ‘S’ is sort
of like typing (return) to every message.

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells TEX not to stop
for any reason, not even if a file name can’t be found.

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells TEX not only to
proceed without stopping but also to suppress all further output to your
terminal. Tt is a fast, but somewhat reckless, way to proceed (intended
for running TEX with no operator in attendance).

5. Type ‘I’, followed by some text that you want to insert. TEX will read
this line of text before encountering what it would ordinarily see next.
Lines inserted in this way are not assumed to end with a blank space.

Some installations of TEX do not allow interaction. In such cases all you can do is
look at the error messages in your log file, where they will appear together with the
“help” information.

31

?

inserting text online

online interaction, see interaction
interacting with TeX

32

Chapter 6: RunningTpX

6. Type a small number (less than 100). TEX will delete this many charac-
ters and control sequences from whatever it is about to read next, and
it will pause again to give you another chance to look things over.

7. Type ‘H’. This is what you should do now and whenever you are faced
with an error message that you haven’t seen for a while. TpX has two
messages built in for each perceived error: a formal one and an informal
one. The formal message is printed first (e.g., ‘! Undefined control
sequence.’); the informal one is printed if you request more help by
typing ‘H’, and it also appears in your log file if you are scrolling error
messages. The informal message tries to complement the formal one by
explaining what TEX thinks the trouble is, and often by suggesting a
strategy for recouping your losses.

8. Type ‘X’. This stands for “exit.” It causes TEX to stop working on your
job, after putting the finishing touches on your log file and on any pages
that have already been output to your dvi file. The current (incomplete)
page will not be output.

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the
file that TEX is currently reading, at the current position, so that you
can conveniently make a change before trying again.

After you type ‘H’ (or ‘h’, which also works), youll get a message that tries
to explain that the control sequence just read by TEX (i.e., \vship) has never
been assigned a meaning, and that you should either insert the correct control
sequence or you should go on as if the offending one had not appeared.

In this case, therefore, your best bet is to type

T\vskip

(and (return)), with no space after the ‘I’; this effectively replaces \vship by
\vskip. (Do it.)

If you had simply typed (return) instead of inserting anything, TEX
would have gone ahead and read ‘1in’, which it would have regarded as part of
a paragraph to be typeset. Alternatively, you could have typed ‘3’; that would
have deleted ‘1in’ from TEX’s input. Or you could have typed ‘X’ or ‘E’ in order
to correct the spelling error in your file. But it’s usually best to try to detect
as many errors as you can, each time you run TEX, since that increases your
productivity while decreasing your computer bills. Chapter 27 explains more
about the art of steering TEX through troubled text.

g% » EXERCISE 6.7
What would have happened if you had typed ‘6’ after the \vship error?

@ You can control the level of interaction by giving commands in your file as well

as online: The TEX primitives \scrollmode, \nonstopmode, and \batchmode
correspond respectively to typing ‘S’, ‘R’, or ‘Q’ in response to an error message, and
\errorstopmode puts you back into the normal level of interaction. (Such changes are
global, whether or not they appear inside a group.) Furthermore, many installations

deleting tokens
help messages
scrollmode
nonstopmode
batchmode
errorstopmode

Chapter 6: RunningTpX

have implemented a way to interrupt TEX while it is running; such an interruption
causes the program to revert to \errorstopmode, after which it pauses and waits for
further instructions.

What happens next in Experiment 5?7 TEX will hiccup on the other
bug that we planted in the file. This time, however, the error message is more
elaborate, since the context appears on six lines instead of two:

! Undefined control sequence.
<argument> \bf A SHORT \ERROR
STORY
\centerline #1->\1line {\hss #1
\hss }
1.3 \centerline{\bf A SHORT \ERROR STORY}

?

You get multiline error messages like this when the error is detected while TEX is
processing some higher-level commands—in this case, while it is trying to carry
out \centerline, which is not a primitive operation (it is defined in plain TEX).
At first, such error messages will appear to be complete nonsense to you, because
much of what you see is low-level TEX code that you never wrote. But you can
overcome this hangup by getting a feeling for the way TEX operates.

First notice that the context information always appears in pairs of lines.
As before, the top line shows what TEX has just read (‘\bf A SHORT \ERROR’),
then comes what it is about to read (‘STORY’). The next pair of lines shows the
context of the first two; it indicates what TEX was doing just before it began to
read the others. In this case, we see that TEX has just read ‘#1’, which is a special
code that tells the machine to “read the first argument that is governed by the
current control sequence”; i.e., “now read the stuff that \centerline is supposed
to center on a line.” The definition in Appendix B says that \centerline, when
applied to some text, is supposed to be carried out by sticking that text in place
of the ‘#1’ in ‘\1ine{\hss#1\hss}’. So TEX is in the midst of this expansion of
\centerline, as well as being in the midst of the text that is to be centered.

The bottom line shows how far TEX has gotten until now in the story
file. (Actually the bottom line is blank in this example; what appears to be the
bottom line is really the first of two lines of context, and it indicates that TEX
has read everything including the ‘}’ in line 3 of the file.) Thus, the context in
this error message gives us a glimpse of how TEX went about its business. First,
it saw \centerline at the beginning of line 3. Then it looked at the definition
of \centerline and noticed that \centerline takes an “argument,” i.e., that
\centerline applies to the next character or control sequence or group that
follows. So TEX read on, and filed ‘\bf A SHORT \ERROR STORY’ away as the
argument to \centerline. Then it began to read the expansion, as defined in
Appendix B. When it reached the #1, it began to read the argument it had saved.
And when it reached \ERROR, it complained about an undefined control sequence.

33

interrupt
argument
centerline

34 Chapter 6: RunningTpX

@ » EXERCISE 6.8 editing
Why didn’t TEX complain about \ERROR being undefined when \ERROR was errorcontextlines
first encountered, i.e., before reading ‘STORY} on line 37

When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

Where should you go from here? If you type ‘H’ now, you'll just get the
same help message about undefined control sequences that you saw before. If you
respond by typing (return), TEX will go on and finish the run, producing output
virtually identical to that in Experiment 2. In other words, the conventional
responses won’t teach you anything new. So type ‘E’ now; this terminates the
run and prepares the way for you to fix the erroneous file. (On some systems,
TEX will actually start up the standard text editor, and you’ll be positioned at
the right place to delete ‘\ERROR’. On other systems, TEX will simply tell you to
edit line 3 of file story.tex.)

When you edit story.tex again, you’ll notice that line 2 still contains
\vship; the fact that you told TEX to insert \vskip doesn’t mean that your file
has changed in any way. In general, you should correct all errors in the input
file that were spotted by TEX during a run; the log file provides a handy way to
remember what those errors were.

WEell, this has indeed been a long chapter, so let’s summarize what has
been accomplished. By doing the five experiments you have learned at first
hand (1) how to get a job printed via TEX; (2) how to make a file that contains
a complete TEX manuscript; (3) how to change the plain TEX format to achieve
columns with different widths; and (4) how to avoid panic when TEX issues
stern warnings.

So you could now stop reading this book and go on to print a bunch
of documents. It is better, however, to continue bearing with the author (after
perhaps taking another rest), since you’re just at the threshold of being able
to do a lot more. And you ought to read Chapter 7 at least, because it warns
you about certain symbols that you must not type unless you want TEX to do
something special. While reading the remaining chapters it will, of course, be
best for you to continue making trial runs, using experiments of your own design.

If you use TEX format packages designed by others, your error messages may involve

many inscrutable two-line levels of macro context. By setting \errorcontextlines=0
at the beginning of your file, you can reduce the amount of information that is reported; TEX
will show only the top and bottom pairs of context lines together with up to \errorcontextlinesfii
additional two-line items. (If anything has thereby been omitted, you’ll also see ‘...’.)
Chances are good that you can spot the source of an error even when most of a large con-
text has been suppressed; if not, you can say ‘I\errorcontextlines=100\oops’ and try again.
(That will usually give you an undefined control sequence error and plenty of context.) Plain
TEX sets \errorcontextlines=5.

Chapter 6: RunningTgX 35

ARISTOTLE
HABAKKUK
COWPER

What we have to learn to do we learn by doing.
— ARISTOTLE, Ethica Nicomachea Il (c. 325 B.C.)

He may run who reads.

— HABAKKUK 2:2 (c. 600 B.C.)

He that runs may read.

— WILLIAM COWPER, Tirocinium (1785)

66666666 N B

[

How TgX Reads
What You Type

Chapter 7: How TgX ReadsWhat You Type

We observed in the previous chapter that an input manuscript is expressed in
terms of “lines,” but that these lines of input are essentially independent of the
lines of output that will appear on the finished pages. Thus you can stop typing
a line of input at any place that’s convenient for you, as you prepare or edit a
file. A few other related rules have also been mentioned:

= A (return) is like a space.
= Two spaces in a row count as one space.

» A Dblank line denotes the end of a paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by
typing (return) twice in a row, and this is different from typing two spaces in a
row. Some day you might want to know the real rules. In this chapter and the
next, we shall study the very first stage in the transition from input to output.

In the first place, it’s wise to have a precise idea of what your keyboard
sends to the machine. There are 256 characters that TEX might encounter at
each step, in a file or in a line of text typed directly on your terminal. These
256 characters are classified into 16 categories numbered 0 to 15:

Category Meaning
0 Escape character (\ in this manual)
1 Beginning of group ({ in this manual)
2 End of group (} in this manual)
3 Math shift ($ in this manual)
4 Alignment tab (& in this manual)
5 End of line ({return) in this manual)
6 Parameter (# in this manual)
7 Superscript (" in this manual)
8 Subscript (_ in this manual)
9 Ignored character ((null) in this manual)
10 Space (U in this manual)
11 Letter (A,...,Zand a, ..., 2)
12 Other character (none of the above or below)
13 Active character (* in this manual)
14 Comment character (% in this manual)
15 Invalid character ({delete) in this manual)

It’s not necessary for you to learn these code numbers; the point is only that
TEX responds to 16 different types of characters. At first this manual led you to
believe that there were just two types—the escape character and the others—
and then you were told about two more types, the grouping symbols { and }.
In Chapter 6 you learned two more: ~ and %. Now you know that there are
really 16. This is the whole truth of the matter; no more types remain to be
revealed. The category code for any character can be changed at any time, but
it is usually wise to stick to a particular scheme.

escape character
begin-group character
end-group character
math mode character
alignment tab
parameter
superscript

subscript

ignored character
space

letter

other character
active character
comment character
invalid character
category codes, table
reserved character
special character table
null

delete

38

Chapter 7: How TgX ReadsWhat You Type

The main thing to bear in mind is that each TEX format reserves certain
characters for its own special purposes. For example, when you are using plain
TEX format (Appendix B), you need to know that the ten characters

\N{}Ys$&# ™~ _%"

cannot be used in the ordinary way when you are typing; each of them will cause
TEX to do something special, as explained elsewhere in this book. If you really
need these symbols as part of your manuscript, plain TEX makes it possible for
you to type

\$ for $, \% for %, \& for &, \# for #, _ for _;

the _ symbol is useful for compound_identifiers in computer programs. In math-
ematics formulas you can use \{ and \} for { and }, while \backslash produces
a reverse slash; for example,

‘$\{a \backslash b\}$’ yields ‘{a\b}.

Furthermore \~ produces a circumflex accent (e.g., ‘\"e’ yields ‘¢’); and \~ yields
a tilde accent (e.g., ‘\"n’ yields ‘@’).

» EXERCISE 7.1
What horrible errors appear in the following sentence?

Procter & Gamble’s stock climbed to $2, a 107% gain.

» EXERCISE 7.2
Can you imagine why the designer of plain TEX decided not to make ‘\\’ the
control sequence for reverse slashes?

@ When TgEX reads a line of text from a file, or a line of text that you entered

directly on your terminal, it converts that text into a list of “tokens.” A
token is either (a) a single character with an attached category code, or (b) a control
sequence. For example, if the normal conventions of plain TEX are in force, the text
‘{\hskip 36 pt}’ is converted into a list of eight tokens:

{1 312 612 L0 P11t}

The subscripts here are the category codes, as listed earlier: 1 for “beginning of group,”
12 for “other character,” and so on. The doesn’t get a subscript, because it
represents a control sequence token instead of a character token. Notice that the space
after \hskip does not get into the token list, because it follows a control word.

g% It is important to understand the idea of token lists, if you want to gain a

thorough understanding of TEX, and it is convenient to learn the concept by
thinking of TEX as if it were a living organism. The individual lines of input in your
files are seen only by TEX’s “eyes” and “mouth”; but after that text has been gobbled
up, it is sent to TEX’s “stomach” in the form of a token list, and the digestive processes
that do the actual typesetting are based entirely on tokens. As far as the stomach is
concerned, the input flows in as a stream of tokens, somewhat as if your TEX manuscript
had been typed all on one extremely long line.

special characters
backslash

left brace

right brace

dollar sign
ampersand

hash mark

hat

underline

percent

tilde
single-character control sequences
identifiers
computer programs
backslash

reverse slash
Procter

Gamble
backslash

tokens

control word

Chapter 7: How TgX ReadsWhat You Type

@ You should remember two chief things about TEX’s tokens: (1) A control

sequence is considered to be a single object that is no longer composed of a
sequence of symbols. Therefore long control sequence names are no harder for TEX to
deal with than short ones, after they have been replaced by tokens. Furthermore, spaces
are not ignored after control sequences inside a token list; the ignore-space rule applies
only in an input file, during the time that strings of characters are being tokenized.
(2) Once a category code has been attached to a character token, the attachment is
permanent. For example, if character ‘{’ were suddenly declared to be of category 12
instead of category 1, the characters ‘{;’ already inside token lists of TEX would still
remain of category 1; only newly made lists would contain ‘{12’ tokens. In other words,
individual characters receive a fixed interpretation as soon as they have been read from
a file, based on the category they have at the time of reading. Control sequences
are different, since they can change their interpretation at any time. TEX’s digestive
processes always know exactly what a character token signifies, because the category
code appears in the token itself; but when the digestive processes encounter a control
sequence token, they must look up the current definition of that control sequence in
order to figure out what it means.

%» EXERCISE 7.3

Some of the category codes 0 to 15 will never appear as subscripts in character tokens,
because they disappear in TEX’s mouth. For example, characters of category 0 (escapes) never
get to be tokens. Which categories can actually reach TEX’s stomach?

% There’s a program called INITEX that is used to install TEX, starting from scratch;

INITEX is like TEX except that it can do even more things. It can compress hyphenationfli]
patterns into special tables that facilitate rapid hyphenation, and it can produce format files
like ‘plain.fmt’ from ‘plain.tex’. But INITEX needs extra space to carry out such tasks,
so it generally has less memory available for typesetting than you would expect to find in a
production version of TEX.

When INITEX begins, it knows nothing but TEX’s primitives. All 256 characters are

initially of category 12, except that (return) has category 5, (space) has category 10,
(null) has category 9, (delete) has category 15, the 52 letters A...Z and a. ..z have category 11,
% and \ have the respective categories 14 and 0. It follows that INITEX is initially incapable
of carrying out some of TEX’s primitives that depend on grouping; you can’t use \def or
\hbox until there are characters of categories 1 and 2. The format in Appendix B begins with
\catcode commands to provide characters of the necessary categories; e.g.,

\catcode‘\{=1

assigns category 1 to the { symbol. The \catcode operation is like many other primitives of
TEX that we shall study later; by modifying internal quantities like the category codes, you
can adapt TEX to a wide variety of applications.

» EXERCISE 7.4
Suppose that the commands
\catcode‘\<=1 \catcode‘\>=2

appear near the beginning of a group that begins with ‘{’; these specifications instruct TEX to
treat < and > as group delimiters. According to TEX’s rules of locality, the characters < and >
will revert to their previous categories when the group ends. But should the group end with }
or with >7

Although control sequences are treated as single objects, TEX does provide a way
to break them into lists of character tokens: If you write \string\cs, where \cs
is any control sequence, you get the list of characters for that control sequence’s name. For

39

INITEX
hyphenation
format
return
space

null
delete
backslash
percent
catcode
group
string

40 Chapter 7: How TgX ReadsWhat You Type

example, \string\TeX produces four tokens: \12, T12, e12, X12. Each character in this token
list automatically gets category code 12 (“other”), including the backslash that \string inserts
to represent an escape character. However, category 10 will be assigned to the character ./’

(blank space) if a space character somehow sneaks into the name of a control sequence.

% Conversely, you can go from a list of character tokens to a control sequence by saying

“\csname(tokens)\endcsname’. The tokens that appear in this construction between
\csname and \endcsname may include other control sequences, as long as those control sequences
ultimately expand into characters instead of TEX primitives; the final characters can be of any
category, not necessarily letters. For example, ‘\csname TeX\endcsname’ is essentially the same
as ‘\TeX’; but ‘\csname\TeX\endcsname’ is illegal, because \TeX expands into tokens containing
the \kern primitive. Furthermore, ‘\csname\string\TeX\endcsname’ will produce the unusual
control sequence ‘\\TeX’, i.e., the token , which you can’t ordinarily write.

» EXERCISE 7.5
Experiment with TEX to see what \string does when it is followed by an active
character like ~. (Active characters behave like control sequences, but they are not prefixed
by an escape.) What is an easy way to conduct such experiments online? What control
sequence could you put after \string to obtain the single character token \127

» EXERCISE 7.6
What tokens does ‘\expandafter\string\csname a\string\ b\endcsname’ pro-
duce? (There are three spaces before the b. Chapter 20 explains \expandafter.)

» EXERCISE 7.7
When \csname is used to define a control sequence for the first time, that control
sequence is made equivalent to \relax until it is redefined. Use this fact to design a macro
\ifundefined#1 such that, for example,

\ifundefined{TeX}(true text)\else(false text)\fi

expands to the (true text) if \TeX hasn’t previously been defined, or if \TeX has been \let
equal to \relax; it should expand to the (false text) otherwise.

% In the examples so far, \string has converted control sequences into lists of tokens

that begin with \12. But this backslash token isn’t really hardwired into TEX; there’s
a parameter called \escapechar that specifies what character should be used when control
sequences are output as text. The value of \escapechar is normally TEX’s internal code for
backslash, but it can be changed if another convention is desired.

TEX has two other token-producing operations similar to the \string command. If

you write \number(number), you get the decimal equivalent of the (number); and if
you write \romannumeral (number), you get the number expressed in lowercase roman numerals.
For example, ‘\romannumeral24’ produces ‘xxiv’, a list of four tokens each having category 12.
The \number operation is redundant when it is applied to an explicit constant (e.g., ‘\number24’
produces ‘24’); but it does suppress leading zeros, and it can also be used with numbers that
are in TEX’s internal registers or parameters. For example, ‘\number-0015’ produces ‘-15’; and
if register \count5 holds the value 316, then ‘\number\count5’ produces ‘316’.

% The twin operations \uppercase{(token list)} and \lowercase{(token list)} go throughll]

a given token list and convert all of the character tokens to their “uppercase” or “low-
ercase” equivalents. Here’s how: Each of the 256 possible characters has two associated values
called the \uccode and the \lccode; these values are changeable just as a \catcode is. Conver-
sion to uppercase means that a character is replaced by its \uccode value, unless the \uccode
value is zero (when no change is made). Conversion to lowercase is similar, using the \lccode.
The category codes aren’t changed. When INITEX begins, all \uccode and \lccode values are
zero except that the letters a to z and A to Z have \uccode values A to Z and \lccode values a
to z.

TEX performs the \uppercase and \lowercase transformations in its stomach, but
the \string and \number and \romannumeral and \csname operations are carried out
en route to the stomach (like macro expansion), as explained in Chapter 20.

backslash

space

csname
endcsname

kern

active character
expandafter
ifundefined
escapechar
number
romannumeral
roman numerals
uppercase
lowercase
uccode

lccode

INITEX

letters

Chapter 7: How TgX ReadsWhat You Type 41

» EXERCISE 7.8 year
What token list results from ‘\uppercase{a\lowercase{bC}}’? tricky macros
BACON
» EXERCISE 7.9 EMERSON

TEX has an internal integer parameter called \year that is set equal to the cur-
rent year number at the beginning of every job. Explain how to use \year, together with
\romannumeral and \uppercase, to print a copyright notice like ‘© MCMLXXXVT for all jobs
run in 1986.

%» EXERCISE 7.10

Define a control sequence \appendroman with three parameters such that \appendroman#1#2#3J}
defines control sequence #1 to expand to a control sequence whose name is the name of control
sequence #2 followed by the value of the positive integer #3 expressed in roman numerals. For
example, suppose \count20 equals 30; then ‘\appendroman\a\TeX{\count20}’ should have the
same effect as ‘\def\a{\TeXxxx}’.

Some bookes are to bee tasted,
others to bee swallowed,
and some few to bee chewed and disgested.

— FRANCIS BACON, Essayes (1597)

‘Tis the good reader that makes the good book.
— RALPH WALDO EMERSON, Society & Solitude (1870)

((((((((N B

0

The Characters
You Type

Chapter 8: The CharactersYou Type

A lot of different keyboards are used with TEX, but few keyboards can produce
256 different symbols. Furthermore, as we have seen, some of the characters that
you can type on your keyboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 256
characters per font. So how can you refer to the characters that aren’t on your
keyboard, or that have been pre-empted for formatting?

One answer is to use control sequences. For example, the plain format
of Appendix B, which defines % to be a special kind of symbol so that you can
use it for comments, defines the control sequence \% to mean a percent sign.

To get access to any character whatsoever, you can type

\char (number)

where (number) is any number from 0 to 255 (optionally followed by a space);
you will get the corresponding character from the current font. That’s how
Appendix B handles \%; it defines ‘\%’ to be an abbreviation for ‘\char37’, since
37 is the character code for a percent sign.

The codes that TEX uses internally to represent characters are based on
“ASCII,” the American Standard Code for Information Interchange. Appendix C
gives full details of this code, which assigns numbers to certain control functions
as well as to ordinary letters and punctuation marks. For example, (space) = 32
and (return) = 13. There are 94 standard visible symbols, and they have been
assigned code numbers from 33 to 126, inclusive.

It turns out that ‘b’ is character number 98 in ASCII. So you can typeset
the word bubble in a strange way by putting

\char98 u\char98\char98 le

into your manuscript, if the b-key on your keyboard is broken. (An optional
space is ignored after constants like ‘98’. Of course you need the \, c, h, a, and r
keys to type ‘\char’, so let’s hope that they are always working.)

TEX always uses the internal character code of Appendix C for the standard

ASCII characters, regardless of what external coding scheme actually appears
in the files being read. Thus, b is 98 inside of TEX even when your computer normally
deals with EBCDIC or some other non-ASCII scheme; the TEX software has been set
up to convert text files to internal code, and to convert back to the external code when
writing text files. Device-independent (dvi) output files use TEX’s internal code. In
this way, TEX is able to give identical results on all computers.

@ Character code tables like those in Appendix C often give the code numbers in

octal notation, i.e., the radix-8 number system, in which the digits are 0, 1, 2,
3, 4, 5, 6, and 7.* Sometimes hexadecimal notation is also used, in which case the digits
are 0, 1,2, 3,4,5,6,7,8,9,A B, C,D, E, and F. For example, the octal code for ‘b’ is

* The author of this manual likes to use italic digits for octal numbers, and type-
writer type for hexadecimal numbers, in order to provide a typographic clue to the
underlying radix whenever possible.

43

keyboard

terminal keyboard
percent sign

ASCII

internal character codes
character codes
space

return

char

EBCDIC

dvi

octal notation
hexadecimal notation

44 Chapter 8: The CharactersYou Type

142, and its hexadecimal code is 62. A (number) in TEX’s language can begin with a ?, number
in which case it is regarded as octal, or with a ", when it is regarded as hexadecimal. apostrophe
. .. doublequote
Thus, \char’142 and \char"62 are equivalent to \char98. The legitimate character left quote
codes in octal notation run from ‘0 to ‘377; in hexadecimal, they run from “0 to "FF. reverse apostrophe
chardef
@ But TEX actually provides another kind of (number) that makes it unnecessary def | bol
specilal symbo
for you to know ASCII at all! The token “12 (left quote), when followed by dangorons bend

any character token or by any control sequence token whose name is a single character, manfnt
stands for TEX’s internal code for the character in question. For example, \char ‘b and manual
\char ‘\b are also equivalent to \char98. If you look in Appendix B to see how \% is

defined, you’ll notice that the definition is

\def\%{\char ‘\%}
instead of \char37 as claimed above.

?2 » EXERCISE 8.1
What would be wrong with \def\%{\char ‘%}?

The preface to this manual points out that the author tells little white lies from time
to time. Well, if you actually check Appendix B you’ll find that

\chardef\%=‘\%

is the true definition of \%. Since format designers often want to associate a special character
with a special control sequence name, TEX provides the construction ‘\chardef (control sequence)=(number)’|j
for numbers between 0 and 255, as an efficient alternative to ‘\def(control sequence){\char(number)}’ i

Although you can use \char to access any character in the current font,
you can’t use it in the middle of a control sequence. For example, if you type

\\char98

TEX reads this as the control sequence \\ followed by c, h, a, etc., not as the
control sequence \b.

You will hardly ever need to use \char when typing a manuscript, since
the characters you want will probably be available as predefined control se-
quences; \char is primarily intended for the designers of book formats like those
in the appendices. But some day you may require a special symbol, and you
may have to hunt through a font catalog until you find it. Once you find it,
you can use it by simply selecting the appropriate font and then specifying the
character number with \char. For example, the “dangerous bend” sign used in
this manual appears as character number 127 of font manfnt, and that font is
selected by the control sequence \manual. The macros in Appendix E therefore
display dangerous bends by saying ‘{\manual\char127}’.

We have observed that the ASCII character set includes only 94 printable
symbols; but TEX works internally with 256 different character codes, from 0
to 255, each of which is assigned to one of the sixteen categories described in
Chapter 7. If your keyboard has additional symbols, or if it doesn’t have the
standard 94, the people who installed your local TEX system can tell you the
correspondence between what you type and the character number that TEX

Chapter 8: The CharactersYou Type

receives. Some people are fortunate enough to have keys marked ‘#’ and ‘<’ and
‘2’ it is possible to install TEX so that it will recognize these handy symbols
and make the typing of mathematics more pleasant. But if you do not have such
keys, you can get by with the control sequences \ne, \1le, and \ge.

@ TgEX has a standard way to refer to the invisible characters of ASCII: Code 0

can be typed as the sequence of three characters ~~@, code 1 can be typed
~~A, and so on up to code 31, which is ~~_ (see Appendix C). If the character following
~~ has an internal code between 64 and 127, TEX subtracts 64 from the code; if the
code is between 0 and 63, TEX adds 64. Hence code 127 can be typed ~~7, and
the dangerous bend sign can be obtained by saying {\manual~~7?}. However, you must
change the category code of character 127 before using it, since this character ordinarily
has category 15 (invalid); say, e.g., \catcode ‘\~"?=12. The "~ notation is different from
\char, because ~~ combinations are like single characters; for example, it would not
be permissible to say \catcode‘\char127, but ~~ symbols can even be used as letters
within control words.

@ One of the overfull box messages in Chapter 6 illustrates the fact that TEX

sometimes uses the funny ~~ convention in its output: The umlaut character
in that example appears as ~~7, and the cedilla appears as ~~X, because ‘"’ and ¢’
occur in positions ‘177 and ‘80 of the \tenrm font.

?2 There’s also a special convention in which ~~ is followed by two “lowercase
hexadecimal digits,” 0-9 or a—f. With this convention, all 256 characters are
obtainable in a uniform way, from ~~00 to ~~ff. Character 127 is ~~7f.

@ Most of the =~ codes are unimportant except in unusual applications. But

~"M is particularly noteworthy because it is code 13, the ASCII (return) that
TEX normally places at the right end of every line of your input file. By changing the
category of "M you can obtain useful special effects, as we shall see later.

@ The control code ~"I is also of potential interest, since it’s the ASCII (tab).
Plain TEX makes (tab) act like a blank space.

People who install TEX systems for use with non-American alphabets can make

TEX conform to any desired standard. For example, suppose you have a Norwegian
keyboard containing the letter ®, which comes in as code 241 (say). Your local format package
should define \catcode‘®=11; then you could have control sequences like \szrtrykk. Your
TEX input files could be made readable by American installations of TEX that don’t have your
keyboard, by substituting ~~f1 for character 241. (For example, the stated control sequence
would appear as \s~“firtrykk in the file; your American friends should also be provided with
the format that you used, with its \catcode‘~"f1=11.) Of course you should also arrange your
fonts so that TEX’s character 241 will print as &; and you should change TEX’s hyphenation
algorithm so that it will do correct Norwegian hyphenation. The main point is that such
changes are not extremely difficult; nothing in the design of TEX limits it to the American
alphabet. Fine printing is obtained by fine tuning to the language or languages being used.

% European languages can also be accommodated effectively with only a limited char-

acter set. For example, let’s consider Norwegian again, but suppose that you want to
use a keyboard without an = character. You can arrange the font metric file so that TEX will
interpret ae, o/, aa, AE, 0/, and AA as ligatures that produce @, ¢, , /E, @, and A, respectively;
and you could put the characters & and A into positions 128 and 129 of the font. By setting
\catcode‘/=11 you would be able to use the ligature o/ in control sequences like ‘\ho/yre’.
TEX’s hyphenation method is not confused by ligatures; so you could use this scheme to oper-
ate essentially as suggested before, but with two keystrokes occasionally replacing one. (Your

45

ne
le

ge

not-equal
less-or-equal
greater-or-equal
invalid

double hat

hat hat

tenrm

return

hat hat M

tab

Norwegian keyboard
Scandinavian letters
foreign languages
keyboards, non-ASCII
font metric file

46 Chapter 8: The CharactersYou Type

typists would have to watch out for the occasional times when the adjacent characters aa, ae, control word
and o/ should not be treated as ligatures; also, ‘\/’ would be a control word, not a control control symbol
symbol.) lines
states
The rest of this chapter is devoted to TEX’s reading rules, which define the conversion modes
from text to tokens. For example, the fact that TEX ignores spaces after control words tokens
is a consequence of the rules below, which imply among other things that spaces after control igtaffn

words never become space tokens. The rules are intended to work the way you would expect error recovery

them to, so you may not wish to bother reading them; but when you are communicating with a control sequence
computer, it is nice to understand what the machine thinks it is doing, and here’s your chance. null control sequence
csname endcsname
The input to TEX is a sequence of “lines.” Whenever TEX is reading a line of text par
% from a file, or a line of text that you entered directly on your terminal, the computer’s

reading apparatus is in one of three so-called states:

State N Beginning a new line;
State M Middle of a line;
State S Skipping blanks.

At the beginning of every line it’s in state N; but most of the time it’s in state M, and after
a control word or a space it’s in state S. Incidentally, “states” are different from the “modes”
that we will be studying later; the current state refers to TEX’s eyes and mouth as they take in
characters of new text, but the current mode refers to the condition of TEX’s gastro-intestinal
tract. Most of the things that TEX does when it converts characters to tokens are independent
of the current state, but there are differences when spaces or end-of-line characters are detected
(categories 10 and 5).

TEX deletes any (space) characters (number 32) that occur at the right end of an

input line. Then it inserts a (return) character (number 13) at the right end of the
line, except that it places nothing additional at the end of a line that you inserted with ‘T’
during error recovery. Note that (return) is considered to be an actual character that is part
of the line; you can obtain special effects by changing its catcode.

% If TEX sees an escape character (category 0) in any state, it scans the entire control

sequence name as follows. (a) If there are no more characters in the line, the name
is empty (like \csname\endcsname). Otherwise (b) if the next character is not of category 11
(letter), the name consists of that single symbol. Otherwise (c) the name consists of all letters
beginning with the current one and ending just before the first nonletter, or at the end of the
line. This name becomes a control sequence token. TEX goes into state S in case (c), or in
case (b) with respect to a character of category 10 (space); otherwise TEX goes into state M.

% If TEX sees a superscript character (category 7) in any state, and if that character is

followed by another identical character, and if those two equal characters are followed
by a character of code ¢ < 128, then they are deleted and 64 is added to or subtracted from
the code c¢. (Thus, ~"A is replaced by a single character whose code is 1, etc., as explained
earlier.) However, if the two superscript characters are immediately followed by two of the
lowercase hexadecimal digits 0123456789abcdef, the four-character sequence is replaced by a
single character having the specified hexadecimal code. The replacement is carried out also
if such a trio or quartet of characters is encountered during steps (b) or (c) of the control-
sequence-name scanning procedure described above. After the replacement is made, TEX
begins again as if the new character had been present all the time. If a superscript character
is not the first of such a trio or quartet, it is handled by the following rule.

% If TEX sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character of

category 7 that is not the first of a special sequence as just described, it converts the
character to a token by attaching the category code, and goes into state M. This is the normal
case; almost every nonblank character is handled by this rule.

If TEX sees an end-of-line character (category 5), it throws away any other informa-
tion that might remain on the current line. Then if TEX is in state N (new line), the
end-of-line character is converted to the control sequence token " (end of paragraph); if

Chapter 8: The CharactersYou Type

TEX is in state M (mid-line), the end-of-line character is converted to a token for character 32
(‘') of category 10 (space); and if TEX is in state S (skipping blanks), the end-of-line character
is simply dropped.

If TEX sees a character to be ignored (category 9), it simply bypasses that character
as if it weren’t there, and remains in the same state.

If TEX sees a character of category 10 (space), the action depends on the current
state. If TEX is in state N or S, the character is simply passed by, and TEX remains
in the same state. Otherwise TEX is in state M; the character is converted to a token of
category 10 whose character code is 32, and TEX enters state S. The character code in a space
token is always 32.

N

If TEX sees a comment character (category 14), it throws away that character and
any other information that might remain on the current line.

Finally, if TEX sees an invalid character (category 15), it bypasses that character,
prints an error message, and remains in the same state.

N

If TEX has nothing more to read on the current line, it goes to the next line and
enters state N. However, if \endinput has been specified for a file being \input, or if
an \input file has ended, TEX returns to whatever it was reading when the \input command
was originally given. (Further details of \input and \endinput are discussed in Chapter 20.)

%» EXERCISE 8.2

Test your understanding of TEX’s reading rules by answering the following quickie
questions: (a) What is the difference between categories 5 and 147 (b) What is the difference
between categories 3 and 4?7 (c) What is the difference between categories 11 and 127 (d) Are
spaces ignored after active characters? (e) When a line ends with a comment character like %,
are spaces ignored at the beginning of the next line? (f) Can an ignored character appear in
the midst of a control sequence name?

%» EXERCISE 8.3

Look again at the error message that appears on page 31. When TEX reported that
\vship was an undefined control sequence, it printed two lines of context, showing that it was
in the midst of reading line 2 of the story file. At the time of that error message, what state
was TEX in? What character was it about to read next?

» EXERCISE 8.4
Given the category codes of plain TEX format, what tokens are produced from the
input line ¢ $x"2$~ \TeX ~"62°76’7

%» EXERCISE 8.5

Consider an input file that contains exactly three lines; the first line says ‘Hi!’, while
the other two lines are completely blank. What tokens are produced when TEX reads this file,
using the category codes of plain TEX format?

%» EXERCISE 8.6

Assume that the category codes of plain TEX are in force, except that the characters
~~A, ""B, ""C, ""M belong respectively to categories 0, 7, 10, and 11. What tokens are produced
from the (rather ridiculous) input line ‘~"B~"BM""A""B~"C~"M~"@\M_’? (Remember that this
line is followed by (return), which is ~~M; and recall that ~~@ denotes the (null) character, which
has category 9 when INITEX begins.)

The special character inserted at the end of each line needn’t be (return); TEX

actually inserts the current value of an integer parameter called \endlinechar, which
normally equals 13 but it can be changed like any other parameter. If the value of \endlinechar
is negative or greater than 255, no character is appended, and the effect is as if every line ends
with % (i.e., with a comment character).

47

space
endinput
input

null

return
endlinechar

48 Chapter 8: The CharactersYou Type

Since it is possible to change the category codes, TEX might actually use several verbatim
different categories for the same character on a single line. For example, Appendices Iq
D and E contain several ways to coerce TEX to process text “verbatim,” so that the author rq

could prepare this manual without great difficulty. (Try to imagine typesetting a TEX manual;
backslashes and other special characters need to switch back and forth between their normal
categories and category 12!) Some care is needed to get the timing right, but you can make
TEX behave in a variety of different ways by judiciously changing the categories. On the other
hand, it is best not to play with the category codes very often, because you must remember
that characters never change their categories once they have become tokens. For example,
when the arguments to a macro are first scanned, they are placed into a token list, so their
categories are fixed once and for all at that time. The author has intentionally kept the category
codes numeric instead of mnemonic, in order to discourage people from making extensive use
of \catcode changes except in unusual circumstances.

» EXERCISE 8.7
Appendix B defines \1q and \rq to be abbreviations for ¢ and ’ (single left and right
quotes, respectively). Explain why the definitions

\chardef\19=96 \chardef\rq=39

would not be as good.

Chapter 8: The CharactersYou Type

for life's not a paragraph

And death i think is no parenthesis.
— e. e. cummings, since feeling is first (1926)

This coded character set is to facilitate
the general interchange of information
among information processing systems,

communication systems, and

associated equipment.

... An 8-bit set was considered

but the need for more than 128 codes

in general applications was not yet evident.

— ASA SUBCOMMITTEE X3.2, American Standard
Code for Information Interchange (1963)

49

cummings
ASCII

<<<<<<<<< [N

9

TeX's Roman Fonts

Chapter 9: TEX’s Roman Fonts 51

When you’re typing a manuscript for TEX, you need to know what symbols letters
are available. The plain TEX format of Appendix B is based on the Computer gilglizstuation
Modern fonts, which provide the characters needed to typeset a wide variety ligatures

of documents. It’s time now to discuss what a person can do with plain TEX g‘;?;‘fh ligatures

when typing straight text. We've already touched on some of the slightly subtle Semicolon

things—for example, dashes and quotation marks were considered in Chapter 2, gﬁfi?}?]:;ozxi?;;tation boint

and certain kinds of accents appeared in the examples of Chapters 3 and 6. The Question mark
purpose of this chapter is to give a more systematic summary of the possibilities, g?;iig?;scs
by putting all the facts together. Apostrophe
Let’s begin with the rules for the normal roman font (\rm or \tenrm); Ee"erse apostrophe
. K . X . X amza, see apostrophe
plain TEX will use this font for everything unless you specify otherwise. Most of Ain, see reverse apostrophe
the ordinary symbols that you need are readily available and you can type them gg}t‘en
in the ordinary way: There’s nothing special about Asterisk
At sign
the letters A to Z and a to z Virgule, see slash
.. Solidus, see slash
the dlgltS 0to9 Shilling sign, see slash
common punctuation marks : ; ' ?2 () [] ¢’ -%/ ., @ E,lisigd
. . o . Full stop, iod
except that TEX recognizes certain combinations as ligatures: Commaly 566 penoc
Plus sign
ff yields ff; fi yields fi; £f1 yields fl; ffi yields ffi; ££f1 yields fii; Equals sign
. . . . dollar si
“Cyields®; 0 yields”; !¢ yieldsj; ?7¢ yields i sharp sign, see hash mark
R _. —— i - number sign, see hash mark
yields —; yields —. pumber s
You can also type + and =, to get the corresponding symbols + and =; but it’s sg;zﬁstaign
much better to use such characters only in math mode, i.e., enclosed between backslash
.two $ signs, sincg that t.ells TEX to insert the proper spacir.lg for mathemat- E;?f;iraces, see braces
ics. Math mode is explained later; for now, it’s just a good idea to remember hat, see circumflex

that formulas and text should be segregated. A non-mathematical hyphen and leffignhizx

a non-mathematical slash should be specified by typing ‘-’ and ‘/’ outside of tilde
mathematics mode, but subtraction and division should be specified by typing
‘~>and ‘/’ between $ signs.
The previous paragraph covers 80 of the 94 visible characters of standard
ASCII; so your keyboard probably contains at least 14 more symbols, and you
should learn to watch out for the remaining ones, since they are special. Four of
these are preémpted by plain TEX; if your manuscript requires the symbols

$ # yA &
you should remember to type them as
\$ \# \} \&
respectively. Plain TEX also reserves the six symbols
\ { } - - -
but you probably don’t mind losing these, since they don’t appear in normal
copy. Braces and backslashes are available via control sequences in math mode.

52

Chapter 9: TgX’s Roman Fonts

There are four remaining special characters in the standard ASCII set:
" I < >

Again, you don’t really want them when you’re typesetting text. (Double-quote
marks should be replaced either by ¢ ¢ or by ’?; vertical lines and relation signs
are needed only in math mode.)

Scholarly publications in English often refer to other languages, so plain
TEX makes it possible to typeset the most commonly used accents:

Type to get

\‘o) (grave accent)

\’o 6 (acute accent)

\"o) (circumflex or “hat”)
\"o 0 (umlaut or dieresis)
\~o o} (tilde or “squiggle”)
\=0] (macron or “bar”)
\.o 0 (dot accent)

\u o o (breve accent)

\v o) (hacek or “check”)
\H o 6 (long Hungarian umlaut)
\t oo 6o (tie-after accent)

Within the font, such accents are designed to appear at the right height for the
letter ‘0’; but you can use them over any letter, and TEX will raise an accent that
is supposed to be taller. Notice that spaces are needed in the last four cases, to
separate the control sequences from the letters that follow. You could, however,
type ‘\H{o}’ in order to avoid putting a space in the midst of a word.

Plain TEX also provides three accents that go underneath:

Type to get

\¢c o) (cedilla accent)

\d o 0 (dot-under accent)
\b o) (bar-under accent)

And there are a few special letters:

Type to get

\oe,\OE e, (E (French ligature OE)

\ae,\AE 2,/ (Latin ligature and Scandinavian letter AE)
\aa,\AA 4,A (Scandinavian A-with-circle)

\o,\0 3,0 (Scandinavian O-with-slash)

\1,\L LL (Polish suppressed-L)

\ss N (German “es-zet” or sharp S)

The \rm font contains also the dotless letters ‘1" and ‘)’, which you can obtain by
typing ‘\i’” and ‘\j’. These are needed because ‘i’ and ‘j’ should lose their dots

double-quote mark
vertical line, see norm
norm symbol

less than sign

greater than sign
accents

¢

grave accent
5

acute accent
esc hat
circumflex accent
hat accent

»

umlaut accent
dieresis

esc tilde

tilde accent
squiggle accent
macron accent
bar accent

dot accent

v

hacek accent

check accent

u

breve accent

H

Hungarian umlaut

t

tie-after accent
embellished letters, see accents
c

cedilla accent

d

dot-under accent
emphatics, see dot-under
b

bar-under accent
Scandinavian letters
sharp S

es-zet

German

Polish

Norwegian

Danish

Swedish
suppressed-L
diphthongs, see @, o
dotless letters

i

J

Chapter 9: TgX’s Roman Fonts

when they gain an accent. For example, the right way to obtain ‘minus’ is to
type ‘m\=\1i n\u us’ or ‘m\={\iln\u{ul}s’.

This completes our summary of the \rm font. Exactly the same conven-
tions apply to \bf, \sl, and \it, so you don’t have to do things differently when
you're using a different typeface. For example, \bf\"o yields 6 and \it\& yields
&. Isn’t that nice?

@ However, \tt is slightly different. You will be glad to know that £f, fi, and so

on are not treated as ligatures when you’re using typewriter type; nor do you
get ligatures from dashes and quote marks. That’s fine, because ordinary dashes and
ordinary double-quotes are appropriate when you're trying to imitate a typewriter.
Most of the accents are available too. But \H, \., \1, and \L cannot be used—the
typewriter font contains other symbols in their place. Indeed, you are suddenly allowed
to type ", |, <, and >; see Appendix F. All of the letters, spaces, and other symbols in
\tt have the same width.

» EXERCISE 9.1
What’s the non-naive way to type ‘naive’?

» EXERCISE 9.2
List some English words that contain accented letters.

» EXERCISE 9.3
How would you type ‘Z&sop’s (Euvres en francais’ ?

» EXERCISE 9.4
Explain what to type in order to get this sentence: Commentarii Academize
scientiarum imperialis petropolitanae became Akademiia Nauk SSSR, Doklady.

» EXERCISE 9.5
And how would you specify the names Ernesto Cesaro, Pal Erdds, Dystein Ore,
Stanistaw Swierczkowski, Sergei Iur’ev, Muhammad ibn Musa al-Khwarizmi?

@ » EXERCISE 9.6
Devise a way to typeset Pal Erd8s in typewriter type.

The following symbols come out looking exactly the same whether you
are using \rm, \s1, \bf, \it, or \tt:

Type to get

\dag { (dagger or obelisk)

\ddag 1 (double dagger or diesis)
\S § (section number sign)

\P 9 (paragraph sign or pilcrow)

(They appear in just one style because plain TEX gets them from the math
symbols font. Lots of other symbols are needed for mathematics; we shall study
them later. See Appendix B for a few more non-math symbols.)

typewriter type
doublequote
vertical line

less than sign
greater than sign
Cesaro

Erdés

Ore

Swiercz...

Tur’ev
al-Khwarizmi
dagger

double dagger
obelisk

obelus, see obelisk
diesis

section number sign
paragraph sign
pilcrow, see paragraph sign

54 Chapter 9: TEX’s Roman Fonts

» EXERCISE 9.7 dollar sign
: ‘e 3 : (@ o3 Cpo : : British pound sign
In plain TEX’s italic fOI.lt, the ‘§’ sign comes out as .£ - This gives you a way pound storling
to refer to pounds sterling, but you might want an italic dollar sign. Can you sterling
think of a way to typeset a reference to the book Furope on $15.00 a day? icﬁ‘z?;ht
Appendix B shows that plain TEX handles most of the accents by using TEX’s \accent gferil;}rll languages
primitive. For example, \’#1 is equivalent to {\accent19 #1}, where #1 is the argu-

ment being accented. The general rule is that \accent(number) puts an accent over the next
character; the (number) tells where that accent appears in the current font. The accent is as-
sumed to be properly positioned for a character whose height equals the x-height of the current
font; taller or shorter characters cause the accent to be raised or lowered, taking due account of
the slantedness of the fonts of accenter and accentee. The width of the final construction is the
width of the character being accented, regardless of the width of the accent. Mode-independent
commands like font changes may appear between the accent number and the character to be
accented, but grouping operations must not intervene. If it turns out that no suitable char-
acter is present, the accent will appear by itself as if you had said \char(number) instead of
\accent(number). For example, \’{} produces *

» EXERCISE 9.8
Why do you think plain TEX defines \’#1 to be ‘{\accent19 #1}’ instead of simply
letting \’ be an abbreviation for ‘\accent19 ’? (Why the extra braces, and why the argument
#17)

% It’s important to remember that these conventions we have discussed for accents and

special letters are not built into TEX itself; they belong only to the plain TEX format,
which uses the Computer Modern fonts. Quite different conventions will be appropriate when
other fonts are involved; format designers should provide rules for how to obtain accents and
special characters in their particular systems. Plain TEX works well enough when accents are
infrequent, but the conventions of this chapter are by no means recommended for large-scale
applications of TEX to other languages. For example, a well-designed TEX font for French
might well treat accents as ligatures, so that one could e’crire de cette manie‘re nai've
en franc/ais without backslashes. (See the remarks about Norwegian in Chapter 8.)

Chapter 9: TgX’s Roman Fonts

Let’s doo'’t after the high Roman fashion.
— WILLIAM SHAKESPEARE, The Tragedie of Anthony and Cleopatra (1606)

English is a straightforward, frank, honest, open-hearted, no-nonsense language,
which has little truck with such devilish devious devices as accents;

indeed U.S. editors and printers are often thrown into a dither

when a foreign word insinuates itself into the language.

However there is one word on which Americans seem to have closed ranks,
printing it confidently, courageously, and almost invariably

complete with accent—the cheese presented to us as Miinster.

Unfortunately, Munster doesn’t take an accent.
— WAVERLEY ROOT, in the International Herald Tribune (1982)

55

SHAKESPEARE
Munster

ROOT

pppppp

Dimensions

Chapter 10: Dimensions

Sometimes you want to tell TEX how big to make a space, or how wide to make
a line. For example, the short story of Chapter 6 used the instruction ‘\vskip
.5cm’ to skip vertically by half a centimeter, and we also said ‘\hsize=4in’ to
specify a horizontal size of 4 inches. It’s time now to consider the various ways
such dimensions can be communicated to TEX.

“Points” and “picas” are the traditional units of measure for printers
and compositors in English-speaking countries, so TEX understands points and
picas. TEX also understands inches and metric units, as well as the continental
European versions of points and picas. Each unit of measure is given a two-letter
abbreviation, as follows:

pt point (baselines in this manual are 12 pt apart)
pc pica (1pc = 12pt)
in inch (1in = 72.27pt)
bp big point (72bp = 1in)
cm centimeter (2.54 cm = 1in)
mm millimeter (10 mm = 1cm)
dd didot point (1157 dd = 1238 pt)
cc cicero (1cc =12dd)
sp scaled point (65536 sp = 1 pt)
The output of TEX is firmly grounded in the metric system, using the conversion

factors shown here as exact ratios.

» EXERCISE 10.1
How many points are there in 254 centimeters?

When you want to express some physical dimension to TEX, type it as

(optional sign)(number)(unit of measure)
or
(optional sign)(digit string) . (digit string)(unit of measure)

where an (optional sign) is either a ‘+’ or a ‘-’ or nothing at all, and where a
(digit string) consists of zero or more consecutive decimal digits. The ‘.’ can
also be a ‘,’. For example, here are six typical dimensions:

3 in 29 pc
-.013837in + 42,1 dd
0.mm 123456789sp

A plus sign is redundant, but some people occasionally like extra redundancy
once in a while. Blank spaces are optional before the signs and the numbers and
the units of measure, and you can also put an optional space after the dimension;
but you should not put spaces within the digits of a number or between the letters
of the unit of measure.

» EXERCISE 10.2
Arrange those six “typical dimensions” into order, from smallest to largest.

57

dimensions
Points

picas

units of measure, table
pt

point

pc

pica

in

inch

bp

big point
cm
centimeter
mm
millimeter
dd

didot point
Didot, F. A.
cc

cicero

sp

scaled point
optional sign
digit string

58 Chapter 10: Dimensions

@ » EXERCISE 10.3 ruler
Two of the following three dimensions are legitimate according to TEX’s rules. mad:ii,ne‘independence
Which two are they? What do they mean? Why is the other one incorrect? ;?;:Hii] legal dimension
) TTpt
"Ccc
-,sp

The following “rulers” have been typeset by TEX so that you can get
some idea of how different units compare to each other. If no distortion has been
introduced during the camera work and printing processes that have taken place
after TEX did its work, these rulers are highly accurate.

T T T [T T T [T T T [T T T "]4in
L) B I 10 B0
T T [T T T T T T 1300dd
T 1 L B T LI L T 110cm

@ » EXERCISE 10.4
(To be worked after you know about boxes and glue and have read Chapter 21.)
Explain how to typeset such a 10 cm ruler, using TEX.

TEX represents all dimensions internally as an integer multiple of the tiny

units called sp. Since the wavelength of visible light is approximately 100 sp,
rounding errors of a few sp make no difference to the eye. However, TEX does all
of its arithmetic very carefully so that identical results will be obtained on different
computers. Different implementations of TEX will produce the same line breaks and
the same page breaks when presented with the same document, because the integer
arithmetic will be the same.

@ The units have been defined here so that precise conversion to sp is efficient

on a wide variety of machines. In order to achieve this, TEX’s “pt” has been
made slightly larger than the official printer’s point, which was defined to equal exactly
.013837in by the American Typefounders Association in 1886 [cf. National Bureau of
Standards Circular 570 (1956)]. In fact, one classical point is exactly .99999999 pt, so
the “error” is essentially one part in 10%. This is more than two orders of magnitude
less than the amount by which the inch itself changed during 1959, when it shrank to
2.54 cm from its former value of (1/0.3937) cm; so there is no point in worrying about
the difference. The new definition 72.27 pt = 1in is not only better for calculation, it is
also easier to remember.

TEX will not deal with dimensions whose absolute value is 23 sp or more. In
other words, the maximum legal dimension is slightly less than 16384 pt. This
is a distance of about 18.892 feet (5.7583 meters), so it won’t cramp your style.

Chapter 10: Dimensions

In a language manual like this it is convenient to use “angle brackets”
in abbreviations for various constructions like (number) and (optional sign) and
(digit string). Henceforth we shall use the term (dimen) to stand for a legitimate
TEX dimension. For example,

\hsize=(dimen)

will be the general way to define the column width that TEX is supposed to use.
The idea is that (dimen) can be replaced by any quantity like ‘4in’ that satisfies
TEX’s grammatical rules for dimensions; abbreviations in angle brackets make it
easy to state such laws of grammar.

When a dimension is zero, you have to specify a unit of measure even
though the unit is irrelevant. Don’t just say ‘0’; say ‘Opt’ or ‘Oin’ or something.

The 10-point size of type that you are now reading is normal in text-
books, but you probably will often find yourself wanting a larger font. Plain TEX
makes it easy to do this by providing magnified output. If you say

\magnification=1200

at the beginning of your manuscript, everything will be enlarged by 20%; i.e., it
will come out at 1.2 times the normal size. Similarly, ‘\magnification=2000’
doubles everything; this actually quadruples the area of each letter, since heights
and widths are both doubled. To magnify a document by the factor f, you say
\magnification=(number), where the (number) is 1000 times f. This instruc-
tion must be given before the first page of output has been completed. You
cannot apply two different magnifications to the same document.

Magnification has obvious advantages: You’ll have less eyestrain when
you're proofreading; you can easily make transparencies for lectures; and you
can photo-reduce magnified output, in order to minimize the deficiencies of a
low-resolution printer. Conversely, you might even want ‘\magnification=500’
in order to create a pocket-size version of some book. But there’s a slight catch:
You can’t use magnification unless your printing device happens to have the
fonts that you need at the magnification you desire. In other words, you need
to find out what sizes are available before you can magnify. Most installations
of TEX make it possible to print all the fonts of plain TEX if you magnify by
\magstepO, 1, 2, 3, and perhaps 4 or even 5 (see Chapter 4); but the use of large
fonts can be expensive because a lot of system memory space is often required
to store the shapes.

» EXERCISE 10.5
Try printing the short story of Chapter 6 at 1.2, 1.44, and 1.728 times the normal
size. What should you type to get TEX to do this?

@ When you say \magnification=2000, an operation like ‘\vskip.5cm’ will ac-
tually skip 1.0cm of space in the final document. If you want to specify a
dimension in terms of the final size, TEX allows you to say ‘true’ just before pt, pc, in,

59

angle brackets
dimen

magnified output
magnification
eyestrain
proofreading
transparencies
slides
low-resolution printer
pocket-size
squint print
magstep

true

60 Chapter 10: Dimensions

bp, cm, mm, dd, cc, and sp. This unmagnifies the units, so that the subsequent magni- dvi
fication will cancel out. For example, ‘\vskip.5truecm’ is equivalent to ‘\vskip.25cm’ Ia[fa ified fonts
if you have previously said ‘\magnification=2000’. Plain TEX uses this feature in the Scai‘z’ed
\magnification command itself: Appendix B includes the instruction mag

em

\hsize = 6.5 true in g)l:ad

x-height
just after a new magnification has taken effect. This adjusts the line width so that the digits
material on each page will be 65 inches wide when it is finally printed, regardless of the 22]230
magnification factor. There will be an inch of margin at both left and right, assuming cmtt10

that the paper is 8% inches wide.

@ If you use no ‘true’ dimensions, TEX’s internal computations are not affected

by the presence or absence of magnification; line breaks and page breaks will
be the same, and the dvi file will change in only two places. TEX simply tells the
printing routine that you want a certain magnification, and the printing routine will
do the actual enlargement when it reads the dvi file.

g‘% » EXERCISE 10.6

Chapter 4 mentions that fonts of different magnifications can be used in the
same job, by loading them ‘at’ different sizes. Explain what fonts will be used when
you give the commands

\magnification=\magstepl
\font\first=cmr10 scaled\magstepl
\font\second=cmr10 at 12truept

% Magnification is actually governed by TEX’s \mag primitive, which is an integer pa-

rameter that should be positive and at most 32768. The value of \mag is examined
in three cases: (1) just before the first page is shipped to the dvi file; (2) when computing a
true dimension; (3) when the dvi file is being closed. Alternatively, some implementations of
TgEX produce non-dvi output; they examine \mag in case (2) and also when shipping out each
page. Since each document has only one magnification, the value of \mag must not change
after it has first been examined.

@ TEX also recognizes two units of measure that are relative rather than absolute;
i.e., they depend on the current context:

em is the width of a “quad” in the current font;
ex is the “x-height” of the current font.

Each font defines its own em and ex values. In olden days, an “em” was the width
of an ‘M’, but this is no longer true; ems are simply arbitrary units that come with a
font, and so are exes. The Computer Modern fonts have the property that an em-dash
is one em wide, each of the digits 0 to 9 is half an em wide, and lowercase ‘x’ is one ex
high; but these are not hard-and-fast rules for all fonts. The \rm font (cmr10) of plain
TEX has 1em = 10 pt and 1ex & 4.3 pt; the \bf font (cmbx10) has 1em = 11.5pt and
lex &~ 4.44pt; and the \tt font (cmtt10) has lem = 10.5pt and lex &~ 4.3 pt. All of
these are “10-point” fonts, yet they have different em and ex values. It is generally best
to use em for horizontal measurements and ex for vertical measurements that depend
on the current font.

Chapter 10: Dimensions

@ A (dimen) can also refer to TEX’s internal registers or parameters. We shall

discuss registers later, and a complete definition of everything that a (dimen)
can be will be given in Chapter 24. For now it will suffice to give some hints about
what is to come: ‘\hsize’ stands for the current horizontal line size, and ‘.5\hsize’
is half that amount; ‘2\wd3’ denotes twice the width of register \box3; ‘-~\dimen100’ is
the negative of register \dimen100.

% Notice that the unit names in dimensions are not preceded by backslashes. The same

is true of other so-called keywords of the TEX language. Keywords can be given in
uppercase letters or in a mixture of upper and lower case; e.g., ‘Pt’ is equivalent to ‘pt’. The
category codes of these letters are irrelevant; you may, for example, be using a p of category 12
(other) that was generated by expanding ‘\the\hsize’ as explained in Chapter 20. TEX gives
a special interpretation to keywords only when they appear in certain very restricted contexts.
For example, ‘pt’ is a keyword only when it appears after a number in a (dimen); ‘at’ is a
keyword only when it appears after the external name of a font in a \font declaration. Here
is a complete list of TEX’s keywords, in case you are wondering about the full set: at, bp, by,
cc, cm, dd, depth, em, ex, fil, height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread,
to, true, width. (See Appendix I for references to the contexts in which each of these is
recognized as a keyword.)

The methods that have hitherto been taken

to discover the measure of the Roman foot,

will, upon examination, be found so unsatisfactory, that

it is no wonder the learned are not yet agreed on that point.

9 London inches are equal to 8,447 Paris inches.
— MATTHEW RAPER, in Philosophical Transactions (1760)

Without the letter U,
units would be nits.

— SESAME STREET (1970)

61

dimen

keywords

reserved words

RAPER

SESAME STREET

Children’s Television Workshop

Boxes

Chapter 11: Boxes

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so on. Conceptually, it’s a big paste-up job. The TEXnical terms used

to describe such page construction are boxes and glue.

Boxes in TEX are two-dimensional things with a rectangular shape, hav-
ing three associated measurements called height, width, and depth. Here is a
picture of a typical box, showing its so-called reference point and baseline:

height

. Baseli l
Reference point— aserne T

depth
!

«— width —

From TEX’s viewpoint, a single character from a font is a box; it’s one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character are, and what the symbol will look like when it is in
the box; TEX uses these dimensions to paste boxes together, and ultimately to
determine the locations of the reference points for all characters on a page. In
plain TEX’s \rm font (cmr10), for example, the letter ‘h’ has a height of 6.9444
points, a width of 5.5555 points, and a depth of zero; the letter ‘g’ has a height
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only certain
special characters like parentheses have height plus depth actually equal to 10
points, although cmr10 is said to be a “10-point” font. You needn’t bother to
learn these measurements yourself, but it’s good to be aware of the fact that TEX
deals with such information; then you can better understand what the computer
does to your manuscript.

The character shape need not fit inside the boundaries of its box. For
example, some characters that are used to build up larger math symbols like
matrix brackets intentionally protrude a little bit, so that they overlap properly
with the rest of the symbol. Slanted letters frequently extend a little to the right
of the box, as if the box were skewed right at the top and left at the bottom,
keeping its baseline fixed. For example, compare the letter ‘g’ in the cmr10 and
cms110 fonts (\rm and \sl):

(A figure will be inserted here; too bad you can’t see it now.
It shows two g’s, as claimed.)

In both cases TEX thinks that the box is 5 points wide, so both letters get exactly
the same treatment. TEX doesn’t have any idea where the ink will go—only the
output device knows this. But the slanted letters will be spaced properly in spite
of TEX’s lack of knowledge, because the baselines will match up.

63

boxes

glue

reference point
baseline

cmrl0

cmsl10

64

Chapter 11: Boxes

Actually the font designer also tells TEX one other thing, the so-called
italic correction: A number is specified for each character, telling roughly how
far that character extends to the right of its box boundary, plus a little to spare.
For example, the italic correction for ‘g’ in cmr10 is 0.1389 pt, while in cms110
it is 0.8565 pt. Chapter 4 points out that this correction is added to the normal
width if you type ‘\/’ just after the character. You should remember to use \/
when shifting from a slanted font to an unslanted one, especially in cases like

the so-called {\sl italic correction\/}:

since no space intervenes here to compensate for the loss of slant.

TEX also deals with another simple kind of box, which might be called
a “black box,” namely, a rectangle like ‘B’ that is to be entirely filled with ink
at printing time. You can specify any height, width, and depth you like for such
boxes—but they had better not have too much area, or the printer might get
upset. (Printers generally prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TEX uses to stand for black boxes are
\hrule and \vrule. Even when the box is square, as in ‘m’, you must call it
either an \hrule or a \vrule. We shall discuss the use of rule boxes in greater
detail later. (See Chapter 21.)

Everything on a page that has been typeset by TEX is made up of simple
character boxes or rule boxes, pasted together in combination. TEX pastes boxes
together in two ways, either horizontally or vertically. When TEX builds a
horizontal list of boxes, it lines them up so that their reference points appear
in the same horizontal row; therefore the baselines of adjacent characters will
match up as they should. Similarly, when TEX builds a vertical list of boxes, it
lines them up so that their reference points appear in the same vertical column.

Let’s take a look at what TEX does behind the scenes, by comparing
the computer’s methods with what you would do if you were setting metal type
by hand. In the time-tested traditional method, you choose the letters that
you need out of a type case—the uppercase letters are in the upper case—and
you put them into a “composing stick.” When a line is complete, you adjust
the spacing and transfer the result to the “chase,” where it joins the other rows
of type. Eventually you lock the type up tightly by adjusting external wedges
called “quoins.” This isn’t much different from what TEX does, except that
different words are used; when TEX locks up a line, it creates what is called an
“hbox” (horizontal box), because the components of the line are pieced together
horizontally. You can give an instruction like

\hbox{A line of type.}

in a TEX manuscript; this tells the computer to take boxes for the appropriate
letters in the current font and to lock them up in an hbox. As far as TEX is

italic correction

/

black box
horizontal rules
vertical rules
hrule

vrule

rule boxes
horizontal list
vertical list
upper case
composing stick
hbox
horizontal box

Chapter 11: Boxes 65

concerned, the letter ‘A’ is a box ‘0O’ and the letter ‘p’ is a box ‘Qp’. So the vbox
: : : vertical box
given instruction causes TEX to form the hbox hon
vbox
] o ol O Franklin

representing ‘A line of type.” The hboxes for individual lines of type are eventu-
ally joined together by putting them into a “vbox” (vertical box). For example,
you can say

\vbox{\hbox{Two lines}\hbox{of type.l}}
and TEX will convert this into

| . Two lines
ie.,
of type.

The principal difference between TEX’s method and the old way is that metal
types are generally cast so that each character has the same height and depth;
this makes it easy to line them up by hand. TEX’s types have variable height
and depth, because the computer has no trouble lining characters up by their
baselines, and because the extra information about height and depth helps in
the positioning of accents and mathematical symbols.

Another important difference between TEX setting and hand setting is, of
course, that TEX will choose line divisions automatically; you don’t have to insert
\hbox and \vbox instructions unless you want to retain complete control over
where each letter goes. On the other hand, if you do use \hbox and \vbox, you
can make TEX do almost everything that Ben Franklin could do in his printer’s
shop. You're only giving up the ability to make the letters come out charmingly
crooked or badly inked; for such effects you need to make a new font. (And
of course you lose the tactile and olfactory sensations, and the thrill of doing
everything by yourself. TEX will never completely replace the good old ways.)

A page of text like the one you're reading is itself a box, in TEX’s view:
It is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way; all that you
and TEX have to worry about is one list of boxes at a time. In fact, when you’re
typing straight text, you don’t have to think about boxes at all, since TEX will
automatically take responsibility for assembling the character boxes into words
and the words into lines and the lines into pages. You need to be aware of the
box concept only when you want to do something out of the ordinary, e.g., when
you want to center a heading.

@ From the standpoint of TEX’s digestive processes, a manuscript comes in as a
sequence of tokens, and the tokens are to be transformed into a sequence of
boxes. Each token of input is essentially an instruction or a piece of an instruction; for

66 Chapter 11: Bozes

example, the token ‘A;;’ normally means, “put a character box for the letter A at the

end of the current hbox, using the current font”; the token " normally means,
“skip vertically in the current vbox by the (dimen) specified in the following tokens.”

@ The height, width, or depth of a box might be negative, in which case it is a

“shadow box” that is somewhat hard to draw. TEX doesn’t balk at negative
dimensions; it just does arithmetic as usual. For example, the combined width of two
adjacent boxes is the sum of their widths, whether or not the widths are positive. A
font designer can declare a character’s width to be negative, in which case the character
acts like a backspace. (Languages that read from right to left could be handled in this
way, but only to a limited extent, since TEX’s line-breaking algorithm is based on the
assumption that words don’t have negative widths.)

@ TEX can raise or lower the individual boxes in a horizontal list; such adjust-

ments take care of mathematical subscripts and superscripts, as well as the
heights of accents and a few other things. For example, here is a way to make a box
that contains the TEX logo, putting it into TEX’s internal register \box0:

\setbox0=\hbox{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125em X}

Here ‘\kern-.1667em’ means to insert blank space of —.1667 ems in the current font,
i.e., to back up a bit; and ‘\lower.5ex’ means that the box \hbox{E} is to be lowered
by half of the current x-height, thus offsetting that box with respect to the others.
Instead of ‘\lower.5ex’ one could also say ‘\raise-.5ex’. Chapters 12 and 21 discuss
the details of how to construct boxes for special effects; our goal in the present chapter
is merely to get a taste of the possibilities.

TEX will exhibit the contents of any box register, if you ask it to. For example,
if you type ‘\showbox0’ after setting \box0 to the TEX logo as above, your log
file will contain the following mumbo jumbo:

\hbox (6.83331+2.15277)x18.6108

\tenrm T

.\kern -1.66702

.\hbox (6.83331+0.0)x6.80557, shifted 2.15277
..\tenrm E

.\kern -1.25

.\tenrm X

The first line means that \box0 is an hbox whose height, depth, and width are re-
spectively 6.83331 pt, 2.15277 pt, and 18.6108 pt. Subsequent lines beginning with *.’
indicate that they are inside of a box. The first thing in this particular box is the
letter T in font \tenrm; then comes a kern. The next item is an hbox that contains
only the letter E; this box has the height, depth, and width of an E, and it has been
shifted downward by 2.15277 pt (thereby accounting for the depth of the larger box).

@ » EXERCISE 11.1
Why are there two dots in the ‘. .\tenrm E’ line here?

@ Such displays of box contents will be discussed further in Chapters 12 and 17.
They are used primarily for diagnostic purposes, when you are trying to figure
out exactly what TEX thinks it’s doing. The main reason for bringing them up in the

shadow box
negative dimensions
backspace
Hebrew

Arabic

setbox

kern

lower

raise

box register
showbox

log file

TeX logo
diagnostic format

internal box-and-glue representation

box displays

Chapter 11: Boxes

present chapter is simply to provide a glimpse of how TEX represents boxes in its
guts. A computer program doesn’t really move boxes around; it fiddles with lists of
representations of boxes.

@ » EXERCISE 11.2
By running TEX, figure out how it actually handles italic corrections to char-
acters: How are the corrections represented inside a box?

g% » EXERCISE 11.3
The “opposite” of TEX’s logo—namely, T EX—is produced by

\setbox1=\hbox{T\kern+.1667em\raise.5ex\hbox{E}\kern+.125em X}
What would \showbox1 show now? (Try to guess, without running the machine.)

@ » EXERCISE 11.4

Why do you think the author of TEX didn’t make boxes more symmetrical
between horizontal and vertical, by allowing reference points to be inside the boundary
instead of insisting that the reference point must appear at the left edge of each box?

» EXERCISE 11.5
Construct a \demobox macro for use in writing manuals like this, so that an author
can write ‘\demobox{Tough exercise.}’ in order to typeset ‘] .

» EXERCISE 11.6
Construct a \frac macro such that ‘\frac1/2’ yields ‘1/2’.

| have several boxes in my memory
in which | will keep them all very safe,
there shall not a one of them be lost.

— IZAAK WALTON, The Compleat Angler (1653)

How very little does the amateur, dwelling at home at ease,
comprehend the labours and perils of the author.

— R. L. STEVENSON and L. OSBOURNE, The Wrong Box (1889)

67

WALTON
STEVENSON
OSBOURNE

Glue

Chapter 12: Glue

But there’s more to the story than just boxes: There’s also some magic mortar
called glue that TEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consecutive lines within a paragraph are exactly 12 points apart.
And there is space between words too; such space is not an “empty” box, it
is part of the glue between boxes. This glue can stretch or shrink so that the
right-hand margin of each page comes out looking straight.

When TEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example
of four boxes in a horizontal list separated by three globs of glue:

width 5 width 3
width 6 width 8
space 9 space 9 space 12
stretch 3 stretch 6 stretch 0
shrink 1 shrink 2 shrink 0
width 52

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one
has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the
space components of the glue, is 5+ 9+ 6 +9 4+ 3 4+ 12 + 8 = 52 units. This
is called the natural width of the horizontal list; it’s the preferred way to paste
the boxes together. Suppose, however, that TEX is told to make the horizontal
list into a box that is 58 units wide; then the glue has to stretch by 6 units.
Well, there are 3 + 6 + 0 = 9 units of stretchability present, so TEX multiplies
each unit of stretchability by 6/9 in order to obtain the extra 6 units needed.
The first glob of glue becomes 9+ (6/9) x 3 = 11 units wide, the next becomes
9+ (6/9) x 6 = 13 units wide, the last remains 12 units wide, and we obtain the
desired box looking like this:

width 58

On the other hand, if TEX is supposed to make a box 51 units wide from
the given list, it is necessary for the glue to shrink by a total of one unit. There
are three units of shrinkability present, so the first glob of glue would shrink by
1/3 and the second by 2/3.

69

glue

leading, see baselineskip
skipping space, see glue
stretch

shrink

natural width

70

Chapter 12: Glue

The process of determining glue thickness when a box is being made
from a horizontal or vertical list is called setting the glue. Once glue has been
set, it becomes rigid; it won’t stretch or shrink any more, and the resulting box
is essentially indecomposable.

Glue will never shrink more than its stated shrinkability. For example,
the first glob of glue in our illustration will never be allowed to become narrower
than 8 units wide, and TEX will never shrink the given horizontal list to make
its total width less than 49 units. But glue is allowed to stretch arbitrarily far,
whenever it has a positive stretch component.

» EXERCISE 12.1
How wide would the glue globs be if the horizontal list in the illustration were
to be made 100 units wide?

Once you understand TEX’s concept of glue, you may well decide that
it was misnamed; real glue doesn’t stretch or shrink in such ways, nor does it
contribute much space between boxes that it welds together. Another word like
“spring” would be much closer to the essential idea, since springs have a nat-
ural width, and since different springs compress and expand at different rates
under tension. But whenever the author has suggested changing TEX’s termi-
nology, numerous people have said that they like the word “glue” in spite of its
inappropriateness; so the original name has stuck.

TEX is somewhat reluctant to stretch glue more than the stated stretchability;

therefore you can decide how big to make each aspect of the glue by using the
following rules: (a) The natural glue space should be the amount of space that looks
best. (b) The glue stretch should be the maximum amount of space that can be
added to the natural spacing before the layout begins to look bad. (c¢) The glue shrink
should be the maximum amount of space that can be subtracted from the natural
spacing before the layout begins to look bad.

In most cases the designer of a book layout will have specified all the
kinds of glue that are to be used, so a typist will not need to decide how big
any glue attributes should be. For example, users of the plain TEX format of
Appendix B can type ‘\smallskip’ when they want a little extra space between
paragraphs; a \smallskip turns out to be 3 pt worth of vertical glue that can
stretch or shrink by an additional 1pt. Here is a \smallskip:

Instead of sprinkling various amounts of glue throughout a manuscript, express-
ing each of them explicitly in terms of points, you will find it much better
to explain your intentions more clearly by typing something like ‘\smallskip’
when you want abnormal spacing. The definition of \smallskip can readily
be changed later, in case you want such spaces to be smaller or larger. Plain
TEX also provides you with ‘\medskip’, which is worth two smallskips, and
“\bigskip’, which is worth two medskips.

@ A plain TEX \medskip appears before and after each “dangerous bend” section
of this manual, so you have already seen numerous examples of such spacing

setting the glue

springs

space between paragraphs
smallskip

medskip

bigskip

dangerous bend

Chapter 12: Glue

before you knew what it was called. Vertical glue is created by writing ‘\vskip(glue)’,
where (glue) is any glue specification. The usual way to specify (glue) to TEX is

(dimen) plus(dimen) minus(dimen)

where the ‘plus(dimen)’ and ‘minus({dimen)’ are optional and assumed to be zero if not
present; ‘plus’ introduces the amount of stretchability, ‘minus’ introduces the amount
of shrinkability. For example, Appendix B defines \medskip to be an abbreviation for
‘\vskip6pt plus2pt minus2pt’. The normal-space component of glue must always be
given as an explicit (dimen), even when it is zero.

@ Horizontal glue is created in the same way, but with \hskip instead of \vskip.

For example, plain TEX defines \enskip as an abbreviation for the command
‘\hskip.b5em\relax’; this skips horizontally by one “en,” i.e., by exactly half of an em
in the current font. There is no stretching or shrinking in an \enskip. The control
sequence \relax after ‘.5em’ prevents TEX from thinking that a keyword is present, in
case the text following \enskip just happens to begin with ‘plus’ or ‘minus’.

One of the interesting things that can happen when glue stretches and
shrinks at different rates is that there might be glue with infinite stretchability.
For example, consider again the four boxes we had at the beginning of this
chapter, with the same glue as before except that the glue in the middle can
stretch infinitely far. Now the total stretchability is infinite; and when the line
has to grow, all of the additional space is put into the middle glue. If, for
example, a box of width 58 is desired, the middle glue expands from 9 to 15
units, and the other spacing remains unchanged.

If such infinitely stretchable glue is placed at the left of a row of boxes,
the effect is to place them “flush right,” i.e., to move them over to the rightmost
boundary of the constructed box. And if you take two globs of infinitely stretch-
able glue, putting one at the left and one at the right, the effect is to center the
list of boxes within a larger box. This in fact is how the \centerline instruction
works in plain TEX: It places infinite glue at both ends, then makes a box whose
width is the current value of \hsize.

The short story example of Chapter 6 used infinite glue not only for
centering, but also in the \vfill instruction at the end; ‘\vfill’ essentially
means “skip vertically by zero, but with infinite stretchability.” In other words,
\vfill fills up the rest of the current page with blank space.

TEX actually recognizes several kinds of infinity, some of which are “more

infinite” than others. You can say both \vfil and \vfill; the second is
stronger than the first. In other words, if no other infinite stretchability is present,
\vfil will expand to fill the remaining space; but if both \vfil and \vfill are present
simultaneously, the \vfill effectively prevents \vfil from stretching. You can think
of it as if \vfil has one mile of stretchability, while \vfill has a trillion miles.

@ Besides \vfil and \vfill, TEX has \hfil and \hfill, for stretching indefi-

nitely in the horizontal direction. You can also say \hss or \vss, in order to
get glue that is infinitely shrinkable as well as infinitely stretchable. (The name ‘\hss’
stands for “horizontal stretch or shrink”; ‘\vss’ is its vertical counterpart.) Finally, the

71

glue
dimen
plus
minus
hskip
vskip
enskip

en

relax
keyword
infinite
right justification
centering
flush right
centerline
vfill

vfil

hfil

hfill

hss

VSsSs

72

Chapter 12: Glue

primitives \hfilneg and \vfilneg will cancel the stretchability of \hfil and \vfil;
we shall discuss applications of these curious glues later.

@ Here are some examples of \hfil, using the \1ine macro of plain TEX, which
creates an hbox whose width is the current \hsize:

\line{This text will be flush left.\hfil}

\line{\hfil This text will be flush right.}

\line{\hfil This text will be centered.\hfil}

\line{Some text flush left\hfil and some flush right.}
\line{Alpha\hfil centered between Alpha and Omega\hfil Omega}
\line{Five\hfil words\hfil equally\hfil spaced\hfil out.}

@ » EXERCISE 12.2
Describe the result of
\line{\hfil\hfil What happens now?\hfil}
\1line{\hfill\hfil and now?\hfil}

» EXERCISE 12.3
How do the following three macros behave differently?

\def\centerlinea#1{\line{\hfil#1\hfil}}
\def\centerlineb#1{\line{\hfill#1\hfill}}
\def\centerlinec#1{\line{\hss#1\hss}}

@ In order to specify such infinities, you are allowed to use the special units ‘fil’,
‘£i11’, and ‘filll’ in the (dimen) parts of a stretchability or shrinkability

component. For example, \vfil, \vfill, \vss, and \vfilneg are essentially equivalent
to the glue specifications

\vskip Opt plus 1fil

\vskip Opt plus 1fill

\vskip Opt plus 1fil minus 1fil

\vskip Opt plus -1fil

respectively. It’s usually best to stick to the first order infinity (fil) as much as you can,
resorting to second order (fill) only when you really need something extremely infinite.
Then the ultimate order (filll) is always available as a last resort in emergencies. (TEX
does not provide a ‘\vfilll’ primitive, since the use of this highest infinity is not
encouraged.) You can use fractional multiples of infinity like ‘3.25fil’, as long as
you stick to fewer than 16384 fil units. TEX actually does its calculations with integer
multiples of 271 il (or fill or filll); so 0.000007£i111 turns out to be indistinguishable
from Opt, but 0.00001£fi111 is infinitely greater than 16383.99999fil11.

Now here’s something important for all TEXnical typists to know: Plain
TEX puts extra space at the end of a sentence; furthermore, it automatically
increases the stretchability (and decreases the shrinkability) after punctuation
marks. The reason is that it’s usually better to put more space after punctua-
tion than between two ordinary words, when spreading a line out to reach the
desired margins. Consider, for example, the following sentences from a classic
kindergarten pre-primer:

‘‘Oh, oh!’’ cried Baby Sally. Dick and Jane laughed.

hfilneg
vfilneg

line

flush left

fil

fill

filll

vfilll
sentence
punctuation
Dick and Jane

Chapter 12: Glue T3

If TEX sets this at its natural width, all the spaces will be the same, except after comma
the quote and after ‘Baby Sally.”: period

exclamation point
question mark

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. ellipsis
three dots, see ellipsis
But if the line needs to be expanded by 5 points, 10 points, 15 points, or more, dot dot dot, see ellipsis
TF)(will set it as fﬁ]ﬁ"eviations
. . Drofnats

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. full stop

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. E?fde

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. control space

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after the comma stretches at 1.25 times the rate of the glue between
adjacent words; the glue after the period and after the !’ stretches at 3 times
the rate. There is no glue between adjacent letters, so individual words will
always look the same. If TEX had to shrink this line to its minimum width, the
result would be

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 percent as much as ordinary inter-word
glue, and after a period or exclamation point or question mark it shrinks by only
one third as much.

This all makes for nice-looking output, but it unfortunately adds a bit
of a burden to your job as a typist, because TEX’s rule for determining the end of
a sentence doesn’t always work. The problem is that a period sometimes comes
in the middle of a sentence ... like when it is used (as here) to make an “ellipsis”
of three dots.

Moreover, if you try to specify ‘...” by typing three periods in a row,
you get ‘... —the dots are too close together. One way to handle this is to go
into mathematics mode, using the \1dots control sequence defined in plain TEX
format. For example, if you type

Hmmm \ldots I wonder why?

the result is ‘Hmmm ... I wonder why?’. This works because math formulas are
exempt from the normal text spacing rules. Chapter 18 has more to say about
\ldots and related topics.

Abbreviations present problems too. For example, the short story in
Chapter 6 referred to ‘Mr. Drofnats’; TEX must be told somehow that the period
after ‘Mr.” or ‘Mrs.” or ‘Ms.” or ‘Prof.” or ‘Dr.” or ‘Rt. Hon.’, etc., doesn’t count
as a sentence-ending full stop.

We avoided that embarrassment in Chapter 6 by typing ‘Mr. “Drofnats’;
the “tie” mark ~ tells plain TEX to insert a normal space, and to refrain from
breaking between lines at that space. Another way to get TEX to put out a
normal space is to type ‘\.J (control space); e.g., ‘Mr.\ Drofnats’ would be
almost the same as ‘Mr. Drofnats’, except that a line might end after the ‘Mr.’.

74

Chapter 12: Glue

The tie mark is best for abbreviations within a name, and after several
other common abbreviations like ‘Fig.” and ‘cf.” and ‘vs.” and ‘resp.’; you will
find that it’s easy to train yourself to type ‘cf.”Fig.~5’. In fact, it’s usually
wise to type ~ (instead of a space) just after a common abbreviation that occurs
in the middle of a sentence. Manuals of style will tell you that the abbreviations
‘e.g.” and ‘i.e.” should always be followed by commas, never by spaces, so those
particular cases shouldn’t need any special treatment.

The only remaining abbreviations that arise with significant frequency
occur in bibliographic references; control spaces are appropriate here. If, for
example, you are typing a manuscript that refers to ‘Proc. Amer. Math. Soc.’,
you should say

Proc.\ Amer.\ Math.\ Soc.

Granted that this input looks a bit ugly, it makes the output look right. It’s one
of the things we occasionally must do when dealing with a computer that tries
to be smart.

» EXERCISE 12.4
Explain how to type the following sentence: “Mr. & Mrs. User were married by
Rev. Drofnats, who preached on Matt. 19:3-9.”

» EXERCISE 12.5

Put the following bibliographic reference into plain TEX language: Donald E.
Knuth, “Mathematical typography,” Bull. Amer. Math. Soc. 1 (1979), 337-372.

On the other hand, if you don’t care about such refinements of spacing
you can tell plain TEX to make all spaces the same, regardless of punctuation
marks, by simply typing ‘\frenchspacing’ at the beginning of your manuscript.
French spacing looks like this:

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

You can also shift back and forth between the two styles, either by saying
‘\nonfrenchspacing’ to establish sophisticated spacing, or by making your use
of \frenchspacing local to some group. For example, you might want to use
French spacing only when typing the bibliography of some document.

@ TEX doesn’t consider a period or question mark or exclamation point to be

the end of a sentence if the preceding character is an uppercase letter, since
TEX assumes that such uppercase letters are most likely somebody’s initials. Thus, for
example, the ‘\’ is unnecessary after the ‘I.’ in ‘Dr. Livingstone~I.\ Presume’; that
particular period is not assumed to be a full stop.

@ » EXERCISE 12.6
What can you do to make TEX recognize the ends of sentences that do end with
uppercase letters (e.g., ‘... launched by NASA. or ‘Did I?’ or ‘... see Appendix A.")?

control spaces
interword spacing
User

Drofnats

Knuth

frenchspacing
nonfrenchspacing
sophisticated spacing
Presume

Chapter 12: Glue

@ You can see the glue that TEX puts between words by looking at the contents

of hboxes in the internal diagnostic format that we discussed briefly in Chap-
ter 11. For example, Baby Sally’s exclamation begins as follows, after TEX has digested
it and put it into a box, assuming \nonfrenchspacing:

\tenrm \ (ligature ‘)

.\tenrm O

.\tenrm h

.\tenrm ,

.\glue 3.33333 plus 2.08331 minus 0.88889
.\tenrm o

.\tenrm h

.\tenrm !

\tenrm " (ligature ’°’)

.\glue 4.44444 plus 4.99997 minus 0.37036
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm B

.\tenrm a

.\tenrm b

.\kern-0.27779

.\tenrm y

.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\kern-0.83334

.\tenrm .

.\glue 4.44444 plus 4.99997 minus 0.37036

Qa o H KR O

< PR HP O

The normal interword glue in font \tenrm is 3.33333 pt, plus 1.66666 pt of stretchability,
minus 1.11111 pt of shrinkability. Notice that the interword \glue in this list stretches
more, and shrinks less, after the punctuation marks; and the natural space is in fact
larger at the end of each sentence. This example also shows several other things that
TEX does while it processes the sample line of text: It converts ‘¢ and ’’ into single
characters, i.e., ligatures; and it inserts small kerns in two places to improve the spacing.
A \kern is similar to glue, but it is not the same, because kerns cannot stretch or shrink;
furthermore, TEX will never break a line at a kern, unless that kern is immediately
followed by glue.

% You may be wondering what TEX’s rules for interword glue really are, exactly. For

example, how did TEX remember the effect of Baby Sally’s exclamation point, when
quotation marks intervened before the next space? The details are slightly tricky, but not
incomprehensible. When TEX is processing a horizontal list of boxes and glue, it keeps track

75

diagnostic format

internal box-and-glue representation
interword glue

ligatures

kerns

kern

76 Chapter 12: Glue

of a positive integer called the current “space factor.” The space factor is normally 1000, space factor

which means that the interword glue should not be modified. If the space factor f is different cmrl0

from 1000, the interword glue is computed as follows: Take the normal space glue for the fontdimen

current font, and add the extra space if f > 2000. (Each font specifies a normal space, normal spaceskip

stretch, normal shrink, and extra space; for example, these quantities are 3.33333 pt, 1.66666 pt, fﬁ&?ﬁjﬁps ace

1.11111 pt, and 1.11111 pt, respectively, in cmr10. We’ll discuss such font parameters in greater raggedrightp

detail later.) Then the stretch component is multiplied by f/1000, while the shrink component spacefactor

is multiplied by 1000/ f. space factor code

INITEX

However, TEX has two parameters \spaceskip and \xspaceskip that allow you to sfcode

% override the normal spacing of the current font. If f > 2000 and if \xspaceskip char

is nonzero, the \xspaceskip glue is used for an interword space. Otherwise if \spaceskip setting the glue

glue set ratio

is nonzero, the \spaceskip glue is used, with stretch and shrink components multiplied by
glue set order

/1000 and 1000/ f. For example, the \raggedright macro of plain TEX uses \spaceskip and
\xspaceskip to suppress all stretching and shrinking of interword spaces.

% The space factor f is 1000 at the beginning of a horizontal list, and it is set to 1000 just

after a non-character box or a math formula has been put onto the current horizontal
list. You can say ‘\spacefactor=(number)’ to assign any particular value to the space factor;
but ordinarily, f gets set to a number other than 1000 only when a simple character box goes
on the list. Each character has a space factor code, and when a character whose space factor
code is g enters the current list the normal procedure is simply to assign g as the new space
factor. However, if g is zero, f is not changed; and if f < 1000 < g, the space factor is set
to 1000. (In other words, f doesn’t jump from a value less than 1000 to a value greater
than 1000 in a single step.) The maximum space factor is 32767 (which is much higher than
anybody would ever want to use).

When INITEX creates a brand new TgEX, all characters have a space factor code

of 1000, except that the uppercase letters ‘A’ through ‘Z’ have code 999. (This
slight difference is what makes punctuation act differently after an uppercase letter; do you see
why?) Plain TEX redefines a few of these codes using the \sfcode primitive, which is similar
to \catcode (see Appendix B); for example, the instructions

\sfcode‘)=0 \sfcode*.=3000

make right parentheses “transparent” to the space factor, while tripling the stretchability after
periods. The \frenchspacing operation resets \sfcode‘. to 1000.

When ligatures are formed, or when a special character is specified via \char, the

space factor code is computed from the individual characters that generated the
ligature. For example, plain TEX sets the space factor code for single-right-quote to zero, so
that the effects of punctuation will be propagated. Two adjacent characters >’ combine to form
a ligature that is in character position ‘042; but the space factor code of this double-right-quote
ligature is never examined by TEX, so plain TEX does not assign any value to \sfcode’042.

» EXERCISE 12.7
What are the space factors after each token of the Dick-and-Jane example?

@ Here’s the way TEX goes about setting the glue when an hbox is being wrapped

up: The natural width, z, of the box contents is determined by adding up the
widths of the boxes and kerns inside, together with the natural widths of all the glue
inside. Furthermore the total amount of glue stretchability and shrinkability in the
box is computed; let’s say that there’s a total of yo + y1 fil + y2 fill + ys filll available
for stretching and zo + 21 fil 4+ 22 fill 4+ z3 filll available for shrinking. Now the natural
width = is compared to the desired width w. If x = w, all glue gets its natural width.
Otherwise the glue will be modified, by computing a “glue set ratio” r and a “glue set
order” i in the following way: (a) If x < w, TEX attempts to stretch the contents of
the box; the glue order is the highest subscript ¢ such that y; is nonzero, and the glue

Chapter 12: Glue

ratio is r = (w — z)/y;. (If yo = y1 = y2 = y3 = 0, there’s no stretchability; both 4
and r are set to zero.) (b) If > w, TEX attempts to shrink the contents of the box
in a similar way; the glue order is the highest subscript ¢ such that z; # 0, and the
glue ratio is normally r = (z — w)/z;. However, r is set to 1.0 in the case ¢ = 0 and
T —w > 2o, because the maximum shrinkability must not be exceeded. (c) Finally,
every glob of glue in the horizontal list being boxed is modified. Suppose the glue has
natural width wu, stretchability y, and shrinkability z, where y is a jth order infinity
and z is a kth order infinity. Then if z < w (stretching), this glue takes the new width
u+ ry if j = 4; it keeps its natural width w if j # ¢. If z > w (shrinking), this glue
takes the new width u — rz if k = 4; it keeps its natural width u if k # ¢. Notice that
stretching or shrinking occurs only when the glue has the highest order of infinity that
doesn’t cancel out.

TEX will construct an hbox that has a given width w if you issue the command

“\hbox to (dimen){(contents of box)}’, where w is the value of the (dimen).
For example, the \1ine macro discussed earlier in this chapter is simply an abbreviation
for ‘\hbox to\hsize’. TEX also allows you to specify the exact amount of stretching
or shrinking; the command ‘\hbox spread(dimen){(contents of box)}’ creates a box
whose width w is a given amount more than the natural width of the contents. For
example, one of the boxes displayed earlier in this chapter was generated by

\hbox spread 5pt{‘‘Oh, oh!’’ ... laughed.}

In the simplest case, when you just want a box to have its natural width, you don’t
have to write ‘\hbox spread Opt’; you can simply say ‘\hbox{(contents of box)}’.

@ The baseline of a constructed hbox is the common baseline of the boxes inside.

(More precisely, it’s the common baseline that they would share if they weren’t
raised or lowered.) The height and depth of a constructed hbox are determined by the
maximum distances by which the interior boxes reach above and below the baseline,
respectively. The result of \hbox never has negative height or negative depth, but the
width can be negative.

gé? » EXERCISE 12.8
Assume that \box1 is 1pt high, 1 pt deep, and 1pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide. A third box is formed by saying

\setbox3=\hbox to3pt{\hfil\lower3pt\box1l\hskip-3pt plus3fil\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

@ The process of setting glue for vboxes is similar to that for hboxes; but before

we study the \vbox operation, we need to discuss how TEX stacks boxes up
vertically so that their baselines tend to be a fixed distance apart. The boxes in a
horizontal list often touch each other, but it’s usually wrong to do this in a vertical list;
imagine how awful a page would look if its lines of type were brought closer together
whenever they didn’t contain tall letters, or whenever they didn’t contain any letters
that descended below the baseline.

TEX’s solution to this problem involves three primitives called \baselineskip,
\lineskip, and \lineskiplimit. A format designer chooses values of these

77

line

to

hbox

spread
baseline
setbox
baselineskip
lineskip
lineskiplimit

78 Chapter 12: Glue

three quantities by writing interline glue
smallskip
internal box-and-glue representation
\baselineskip=(glue)

\lineskip=(glue)
\lineskiplimit=(dimen)

and the interpretation is essentially this: Whenever a box is added to a vertical list, TEX
inserts “interline glue” intended to make the distance between the baseline of the new
box and the baseline of the previous box exactly equal to the value of \baselineskip.
But if the interline glue calculated by this rule would cause the top edge of the new
box to be closer than \lineskiplimit to the bottom edge of the previous box, then
\lineskip is used as the interline glue. In other words, the distance between adjacent
baselines will be the \baselineskip setting, unless that would bring the boxes too
close together; the \1lineskip glue will separate adjacent boxes in the latter case.

@ The rules for interline glue in the previous paragraph are carried out without

regard to other kinds of glue that might be present; all vertical spacing due
to explicit appearances of \vskip and \kern acts independently of the interline glue.
Thus, for example, a \smallskip between two lines always makes their baselines further
apart than usual, by the amount of a \smallskip; it does not affect the decision about
whether \lineskip glue is used between those lines.

@ For example, let’s suppose that \baselineskip=12pt plus 2pt, \lineskip=

3pt minus 1pt, and \lineskiplimit=2pt. (These values aren’t particularly
useful; they have simply been chosen to illustrate the rules.) Suppose further that a
box whose depth is 3 pt was most recently added to the current vertical list; we are
about to add a new box whose height is h. If h = 5pt, the interline glue will be
4 pt plus 2 pt, since this will make the baselines 12 pt plus 2 pt apart when we add h
and the previous depth to the interline glue. But if h = 8 pt, the interline glue will
be 3 pt minus 1pt, since \lineskip will be chosen in order to keep from violating the
given \lineskiplimit when stretching and shrinking are ignored.

@ When you are typesetting a document that spans several pages, it’s generally
best to define the \baselineskip so that it cannot stretch or shrink, because
this will give more uniformity to the pages. A small variation in the distance between
baselines—say only half a point—can make a substantial difference in the appearance
of the type, since it significantly affects the proportion of white to black. On the
other hand, if you are preparing a one-page document, you might want to give the
baselineskip some stretchability, so that TEX will help you fit the copy on the page.

@ » EXERCISE 12.9

What settings of \baselineskip, \lineskip, and \lineskiplimit will cause
the interline glue to be a “continuous” function of the next box height (i.e., the interline
glue will never change a lot when the box height changes only a little)?

@ A study of TEX’s internal box-and-glue representation should help to firm
up some of these ideas. Here is an excerpt from the vertical list that TEX

Chapter 12: Glue

constructed when it was typesetting this very paragraph:

\glue 6.0 plus 2.0 minus 2.0

\glue (\parskip) 0.0 plus 1.0

\glue (\baselineskip) 1.25

\hbox (7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 []
\penalty 10000

\glue (\baselineskip) 2.81252

\hbox (6.25+1.93748)x312.0, glue set 0.5816, shifted 36.0 []
\penalty 50

\glue (\baselineskip) 2.81252

\hbox (6.25+1.75)x348.0, glue set 116.70227fil []

\penalty 10000

\glue (\abovedisplayskip) 6.0 plus 3.0 minus 1.0

\glue (\lineskip) 1.0

\hbox (149.25+0.74998)x348.0 []

The first \glue in this example is the \medskip that precedes each dangerous-bend
paragraph. Then comes the \parskip glue, which is automatically supplied before
the first line of a new paragraph. Then comes some interline glue of 1.25pt; it was
calculated to make a total of 11 pt when the height of the next box (7.5pt) and the
depth of the previous box were added. (The previous box is not shown—it’s the
bottom line of exercise 12.9—but we can deduce that its depth was 2.25pt.) The
\hbox that follows is the first line of this paragraph; it has been shifted right 36 pt
because of hanging indentation. The glue set ratio for this hbox is 0.80154; i.e., the
glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking,
the ratio following ‘glue set’ would have been preceded by ‘- ’; hence we know that
stretching is involved here.) TgEX has put ‘[1” at the end of each hbox line to indicate
that there’s something in the box that isn’t shown. (The box contents would have
been displayed completely, if \showboxdepth had been set higher.) The \penalty
indications are used to discourage bad breaks between pages, as we will see later. The
third hbox has a glue ratio of 116.70227, which applies to first-order-infinite stretching
(i.e., fil); this results from an \hfil that was implicitly inserted just before the displayed
material, to fill up the third line of the paragraph. Finally the big hbox whose height
is 149.25 pt causes \lineskip to be the interline glue. This large box contains the
individual lines of typewriter type that are displayed; they have been packaged into a
single box so that they cannot be split between pages. Careful study of this example
will teach you a lot about TEX’s inner workings.

?2 Exception: No interline glue is inserted before or after a rule box. You can
also inhibit interline glue by saying \nointerlineskip between boxes.

TEX’s implementation of interline glue involves another primitive quantity called

\prevdepth, which usually contains the depth of the most recent box on the current
vertical list. However, \prevdepth is set to the sentinel value —1000 pt at the beginning of a
vertical list, or just after a rule box; this serves to suppress the next interline glue. The user
can change the value of \prevdepth at any time when building a vertical list; thus, for example,
the \nointerlineskip macro of Appendix B simply expands to ‘\prevdepth=-1000pt’.

Here are the exact rules by which TEX calculates the interline glue between boxes:
Assume that a new box of height h (not a rule box) is about to be appended
to the bottom of the current vertical list, and let \prevdepth = p, \lineskiplimit = [,

79

medskip

parskip

hanging indentation
glue set
showboxdepth
penalty
nointerlineskip
prevdepth

80 Chapter 12: Glue

\baselineskip = (b plus y minus z). If p < —1000 pt, no interline glue is added. Otherwise if User

b —p— h >, the interline glue ‘(b — p — h) plus y minus 2z’ will be appended just above the vbox

new box. Otherwise the \lineskip glue will be appended. Finally, \prevdepth is set to the mOVel“%ht
moveleft

depth of the new box.

raise
lower

» EXERCISE 12.10

c . . boxmaxdepth
Mr. B. L. User had an application in which he wanted to put a number of boxes glue set ratio
together in a vertical list, with no space between them. He didn’t want to say \nointerlineskip glue set order

after each box; so he decided to set \baselineskip, \lineskip, and \lineskiplimit all equal
to Opt. Did this work?

@ The vertical analog of \hbox is \vbox, and TEX will obey the commands ‘\vbox

to(dimen)’ and ‘\vbox spread(dimen)’ in about the way you would expect,
by analogy with the horizontal case. However, there’s a slight complication because
boxes have both height and depth in the vertical direction, while they have only width
in the horizontal direction. The dimension in a \vbox command refers to the final
height of the vbox, so that, for example, ‘\vbox to 50pt{...} produces a box that
is 50 pt high; this is appropriate because everything that can stretch or shrink inside a
vbox appears in the part that contributes to the height, while the depth is unaffected
by glue setting.

@ The depth of a constructed \vbox is best thought of as the depth of the bottom

box inside. Thus, a vbox is conceptually built by taking a bunch of boxes and
arranging them so that their reference points are lined up vertically; then the reference
point of the lowest box is taken as the reference point of the whole, and the glue is set
so that the final height has some desired value.

@ However, this description of vboxes glosses over some technicalities that come

up when you consider unusual cases. For example, TEX allows you to shift
boxes in a vertical list to the right or to the left by saying ‘\moveright(dimen)(box)’
or ‘\moveleft(dimen)(box)’; this is like the ability to \raise or \lower boxes in a
horizontal list, and it implies that the reference points inside a vbox need not always
lie in a vertical line. Furthermore, it is necessary to guard against boxes that have
too much depth, lest they extend too far into the bottom margin of a page; and later
chapters will point out that vertical lists can contain other things like penalties and
marks, in addition to boxes and glue.

% Therefore, the actual rules for the depth of a constructed vbox are somewhat TEXnical.I
Here they are: Given a vertical list that is being wrapped up via \vbox, the problem
is to determine its natural depth. (1) If the vertical list contains no boxes, the depth is zero.
(2) If there’s at least one box, but if the final box is followed by kerning or glue, possibly with
intervening penalties or other things, the depth is zero. (3) If there’s at least one box, and if
the final box is not followed by kerning or glue, the depth is the depth of that box. (4) How-
ever, if the depth computed by rules (1), (2), or (3) exceeds \boxmaxdepth, the depth will
be the current value of \boxmaxdepth. (Plain TEX sets \boxmaxdepth to the largest possible
dimension; therefore rule (4) won’t apply unless you specify a smaller value. When rule (4)
does decrease the depth, TEX adds the excess depth to the box’s natural height, essentially
moving the reference point down until the depth has been reduced to the stated maximum.)

@ The glue is set in a vbox just as in an hbox, by determining a glue set ratio

and a glue set order, based on the difference between the natural height x and
the desired height w, and based on the amounts of stretchability and shrinkability that
happen to be present.

Chapter 12: Glue

@ The width of a computed \vbox is the maximum distance by which an enclosed
box extends to the right of the reference point, taking possible shifting into
account. This width is always nonnegative.

@ » EXERCISE 12.11

Assume that \box1 is 1 pt high, 1pt deep, and 1 pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide; the baselineskip, lineskip, and lineskiplimit are all zero; and
the \boxmaxdepth is very large. A third box is formed by saying

\setbox3=\vbox to3pt{\moveright3pt\box1\vskip-3pt plus3fill\box2}

What are the height, depth, and width of \box37 Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

81

» EXERCISE 12.12
Under the assumptions of the previous exercise, but with \baselineskip=9pt minus3fil]

describe \box4 after
\setbox4=\vbox todpt{\vss\boxl\moveleftdpt\box2\vss}

» EXERCISE 12.13
Solve the previous problem but with \boxmaxdepth=-4pt.

@ We have observed that \vbox combines a bunch of boxes into a larger box that

has the same baseline as the bottom box inside. TEX has another operation
called \vtop, which gives you a box like \vbox but with the same baseline as the top
box inside. For example,

\hbox{Here are \vtop{\hbox{two lines}\hbox{of text.}}}
produces

Here are two lines
of text.

% You can say ‘\vtop to(dimen)’ and ‘\vtop spread(dimen)’ just as with \vbox, but

you should realize what such a construction means. TEX implements \vtop as follows:
(1) First a vertical box is formed as if \vtop had been \vbox, using all of the rules for \vbox
as given above. (2) The final height x is defined to be zero unless the very first item inside
the new vbox is a box; in the latter case, x is the height of that box. (3) Let h and d be the
height and depth of the vbox in step (1). TEX completes the \vtop by moving the reference
point up or down, if necessary, so that the box has height = and depth h + d — .

> EXERCISE 12.14
Describe the empty boxes that you get from ‘\vbox to(dimen){}’ and ‘\vtop to(dimen){} .}

What are their heights, depths, and widths?

%» EXERCISE 12.15
Define a macro \nullbox#1#2#3 that produces a box whose height, depth, and width
are given by the three parameters. The box should contain nothing that will show up in print.
?2 The \vbox operation tends to produce boxes with large height and small depth,
while \vtop tends to produce small height and large depth. If you're trying
to make a vertical list out of big vboxes, however, you may not be satisfied with either
\vbox or \vtop; you might well wish that a box had two reference points simultaneously,
one for the top and one for the bottom. If such a dual-reference-point scheme were in
use, one could define interline glue based on the distance between the lower reference
point of one box and the upper reference point of its successor in a vertical list. But
alas, TEX gives you only one reference point per box.

vtop

82

Chapter 12: Glue

@ There’s a way out of this dilemma, using an important idea called a “strut.”

Plain TEX defines \strut to be an invisible box of width zero that extends
just enough above and below the baseline so that you would need no interline glue at
all if every line contained a strut. (Baselines are 12pt apart in plain TEX; it turns
out that \strut is a vertical rule, 8.5 pt high and 3.5 pt deep and Opt wide.) If you
contrive to put a strut on the top line and another on the bottom line, inside your large
vboxes, then it’s possible to obtain the correct spacing in a larger assembly by simply
letting the boxes butt together. For example, the \footnote macro in Appendix B
puts struts at the beginning and end of every footnote, so that the spacing will be right
when several footnotes occur together at the bottom of some page.

@ If you understand boxes and glue, you're ready to learn the \rlap and \1llap

macros of plain TEX; these names are abbreviations for “right overlap” and
“left overlap.” Saying ‘\rlap{(something)}’ is like typesetting (something) and then
backing up as if you hadn’t typeset anything. More precisely, ‘\rlap{(something)}’
creates a box of width zero, with ‘(something)’ appearing just at the right of that
box (but not taking up any space). The \llap macro is similar, but it does the
backspacing first; in other words, ‘\1lap{(something)}’ creates a box of width zero,
with ‘(something)’ extending just to the left of that box. Using typewriter type, for
example, you can typeset ‘#’ by saying either ‘\rlap/=’ or ‘/\1lap=’. It’s possible to
put text into the left margin using \1lap, or into the right margin using \rlap, because
TEX does not insist that the contents of a box must be strictly confined within that
box’s boundaries.

@ The interesting thing about \rlap and \llap is that they can be done so
simply with infinite glue. One way to define \rlap would be

\def\rlap#1{{\setbox0=\hbox{#1}\copyO\kern-\wd0}}

but there’s no need to do such a lengthy computation. The actual definition in Appen-
dix B is much more elegant, namely,

\def\rlap#1{\hbox to Opt{#1\hssl}}

and it’s worth pondering why this works. Suppose, for example, that you're doing
\rlap{g} where the letter ‘g’ is 5 pt wide. Since \rlap makes an hbox of width 0 pt,
the glue represented by \hss must shrink by 5 pt. Well, that glue has 0 pt as its natural
width, but it has infinite shrinkability, so it can easily shrink to —5 pt; and ‘\hskip-5pt’
is exactly what \rlap wants in this case.

@ » EXERCISE 12.16
Guess the definition of \1lap, without peeking at Appendices A or B.

@ » EXERCISE 12.17
(This is a sequel to exercise 12.2, but it’s trickier.) Describe the result of

\line{\hfil A puzzle.\hfilneg}

strut

strut

footnote

fitting boxes together
rlap

llap

overlap

backspacing
marginal notes

hss

Chapter 12: Glue 83

TWAIN
Clemens
TSCHICHOLD

There was things which he stretched,
but mainly he told the truth.

— MARK TWAIN, Huckleberry Finn (1884)

Every shape exists only because of the space around it.
. Hence there is a ‘right’ position for every shape in every situation.
If we succeed in finding that position, we have done our job.

— JAN TSCHICHOLD, Typographische Gestaltung (1935)

pppppp

Modes

Chapter 13: Modes

Just as people get into different moods, TEX gets into different “modes.” (Except
that TEX is more predictable than people.) There are six modes:

» Vertical mode. [Building the main vertical list, from which the pages of
output are derived.]

= Internal vertical mode. [Building a vertical list for a vbox.]
= Horizontal mode. [Building a horizontal list for a paragraph.]
» Restricted horizontal mode. [Building a horizontal list for an hbox.]

s Math mode. [Building a mathematical formula to be placed in a hori-
zontal list.]

= Display math mode. [Building a mathematical formula to be placed on
a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don’t need to be aware of what mode TEX is in, because
the computer just does the right thing. But when you get an error message
that says ‘! You can’t do such-and-such in restricted horizontal mode’,
a knowledge of modes helps to explain why TEX thinks you goofed.

Basically TEX is in one of the vertical modes when it is preparing a list
of boxes and glue that will be placed vertically above and below one another on
the page; it’s in one of the horizontal modes when it is preparing a list of boxes
and glue that will be strung out horizontally next to each other with baselines
aligned; and it’s in one of the math modes when it is reading a formula.

A play-by-play account of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
you specify glue or a box when TEX is in vertical mode, the glue or the box
gets placed on the current page below what has already been specified. For
example, the \vskip instructions in the sample run we discussed in Chapter 6
contributed vertical glue to the page; and the \hrule instructions contributed
horizontal rules at the top and bottom of the story. The \centerline commands
also produced boxes that were included in the main vertical list; but those boxes
required a bit more work than the rule boxes: TEX was in vertical mode when
it encountered ‘\centerline{\bf A SHORT STORY}’, and it went temporarily
into restricted horizontal mode while processing the words ‘A SHORT STORY’;
then the digestive process returned to vertical mode, after setting the glue in
the \centerline box.

Continuing with the example of Chapter 6, TEX switched into horizontal
mode as soon as it read the ‘0’ of ‘Once upon a time’. Horizontal mode is the
mode for making paragraphs. The entire paragraph (lines 7 to 11 of the story
file) was input in horizontal mode; then the text was divided into output lines of
the appropriate width, those lines were put in boxes and appended to the page
(with appropriate interline glue between them), and TEX was back in vertical
mode. The ‘M’ on line 12 started up horizontal mode again.

When TgX is in vertical mode or internal vertical mode, the first token of
a new paragraph changes the mode to horizontal for the duration of a paragraph.

85

modes

Vertical mode
Internal vertical mode
Horizontal mode
Restricted horizontal mode
Math mode

Display math mode
vskip

hrule

centerline

paragraphs

86 Chapter 13: Modes

In other words, things that do not have a vertical orientation cause the mode to char

switch automatically from vertical to horizontal. This occurs when you type any igf{‘j‘gt

character, or \char or \accent or \hskip or \, or \vrule or math shift ($); control space

TEX inserts the current paragraph indentation and rereads the horizontal token ;/rfgjjxtation

as if it had occurred in horizontal mode. indent

noindent

@ You can also tell TEX explicitly to go into horizontal mode, instead of relying parindent

on such implicit mode-switching, by saying ‘\indent’ or ‘\noindent’. For ggfx

example, if line 7 of the story file in Chapter 6 had begun
\indent Once upon a time,

the same output would have been obtained, because ‘\indent’ would have instructed
TEX to begin the paragraph. And if that line had begun with

\noindent Once upon a time,

the first paragraph of the story would not have been indented. The \noindent com-
mand simply tells TEX to enter horizontal mode if the current mode is vertical or
internal vertical; \indent is similar, but it also creates an empty box whose width is
the current value of \parindent, and it puts this empty box into the current horizontal
list. Plain TEX sets \parindent=20pt. If you say \indent\indent, you get double
indentation; if you say \noindent\noindent, the second \noindent does nothing.

@ » EXERCISE 13.1

If you say ‘\hbox{...} in horizontal mode, TEX will construct the specified
box and it will contribute the result to the current paragraph. Similarly, if you say
“\hbox{. ..} in vertical mode, TEX will construct a box and contribute it to the current
page. What can you do if you want to begin a paragraph with an \hbox?

When handling simple manuscripts, TEX spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs). A paragraph is completed when you type \par or when
your manuscript has a blank line, since a blank line is converted to \par by
the reading rules of Chapter 8. A paragraph also ends when you type certain
things that are incompatible with horizontal mode. For example, the command
‘\vskip 1lin’ on line 16 of Chapter 6’s story file was enough to terminate the
paragraph about ‘...beautiful documents.’; no \par was necessary, since
\vskip introduced vertical glue that couldn’t belong to the paragraph.

If a begin-math token ($) appears in horizontal mode, TEX plunges into
math mode and processes the formula up until the closing ‘$’, then appends the
text of this formula to the current paragraph and returns to horizontal mode.
Thus, in the “I wonder why?” example of Chapter 12, TgX went into math mode
temporarily while processing \1dots, treating the dots as a formula.

However, if two consecutive begin-math tokens appear in a paragraph
($$), TEX interrupts the paragraph where it is, contributes the paragraph-so-far
to the enclosing vertical list, then processes a math formula in display math
mode, then contributes this formula to the enclosing list, then returns to hori-
zontal mode for more of the paragraph. (The formula to be displayed should

Chapter 13: Modes

end with ‘$$’.) For example, suppose you type
the number $$\pi \approx 3.1415926536$$ is important.

TEX goes into display math mode between the $$’s, and the output you get
states that the number

T~ 3.1415926536
is important.

TEX ignores blank spaces and blank lines (or \par commands) when it’s
in vertical or internal vertical mode, so you need not worry that such things
might change the mode or affect a printed document. A control space (\.) will,
however, be regarded as the beginning of a paragraph; the paragraph will start
with a blank space after the indentation.

At the end of a TEX manuscript it’s usually best to finish everything
off by typing ‘\bye’, which is plain TEX’s abbreviation for ‘\vfill\eject\end’.
The ‘\vfill’ gets TEX into vertical mode and inserts enough space to fill up the
last page; ‘\eject’ outputs that last page; and ‘\end’ sends the computer into
its endgame routine.

TEX gets into internal vertical mode when you ask it to construct something

from a vertical list of boxes (using \vbox or \vtop or \vcenter or \valign
or \vadjust or \insert). It gets into restricted horizontal mode when you ask it to
construct something from a horizontal list of boxes (using \hbox or \halign). Box
construction is discussed in Chapters 12 and 21. We will see later that there is very
little difference between internal vertical mode and ordinary vertical mode, and very
little difference between restricted horizontal mode and ordinary horizontal mode; but
they aren’t quite identical, because they have different goals.

@ Whenever TEX looks at a token of input to decide what should be done next,

the current mode has a potential influence on what that token means. For
example, \kern specifies vertical spacing in vertical mode, but it specifies horizontal
spacing in horizontal mode; a math shift character like ‘$’ causes entry to math mode
from horizontal mode, but it causes exit from math mode when it occurs in math mode;
two consecutive math shifts ($$) appearing in horizontal mode will initiate display math
mode, but in restricted horizontal mode they simply denote an empty math formula.
TEX uses the fact that some operations are inappropriate in certain modes to help you
recover from errors that might have crept into your manuscript. Chapters 24 to 26
explain exactly what happens to every possible token in every possible mode.

TEX often interrupts its work in one mode to do some task in another mode,

after which the original mode is resumed again. For example, you can say
‘\hbox{’ in any mode; when TEX digests this, it suspends whatever else it was doing
and enters restricted horizontal mode. The matching ‘}’ will eventually cause the hbox
to be completed, whereupon the postponed task will be taken up anew. In this sense
TEX can be in many modes simultaneously, but only the innermost mode influences the
calculations at any time; the other modes have been pushed out of TEX’s consciousness.

87

pi

par

control space
bye

endgame
kern

88 Chapter 13: Modes

@ One way to become familiar with TEX’s modes is to consider the following tracingcommands

curious test file called modes.tex, which exercises all the modes at once: H}‘Odel?'ttex
showlists

\tracingcommands=1
\hbox{

$

\vbox{

\noindent$$
x\showlists

$$}$}\bye

N O Gk W N

The first line of modes. tex tells TEX to log every command it receives; TEX will produce
diagnostic data whenever \tracingcommands is positive. Indeed, if you run TEX on
modes . tex you will get a modes.log file that includes the following information:

{vertical mode: \hbox}

{restricted horizontal mode: blank space 1}
{math shift character $}

{math mode: blank space }

{\vbox}

{internal vertical mode: blank space }
{\noindent}

{horizontal mode: math shift character $}
{display math mode: blank space }

{the letter x}

The meaning is that TEX first saw an \hbox token in vertical mode; this caused it to
go ahead and read the ‘{’ behind the scenes. Then TEX entered restricted horizontal
mode, and saw the blank space token that resulted from the end of line 2 in the
file. Then it saw a math shift character token (still in restricted horizontal mode),
which caused a shift to math mode; another blank space came through. Then \vbox
inaugurated internal vertical mode, and \noindent instituted horizontal mode within
that; two subsequent $ signs led to display math mode. (Only the first $ was shown
by \tracingcommands, because that one caused TEX to look ahead for another.)

@ The next thing in modes.log after the output above is ‘{\showlists}’. This

is another handy diagnostic command that you can use to find out things that
TEX ordinarily keeps to itself; it causes TEX to display the lists that are being worked
on, in the current mode and in all enclosing modes where the work has been suspended:

display math mode entered at line 5
\mathord

A\faml x

internal vertical mode entered at line 4
prevdepth ignored

math mode entered at line 3

restricted horizontal mode entered at line 2
\glue 3.33333 plus 1.66666 minus 1.11111
spacefactor 1000

vertical mode entered at line O
prevdepth ignored

Chapter 13: Modes

In this case the lists represent five levels of activity, all present at the end of line 6 of
modes.tex. The current mode is shown first, namely, display math mode, which began
on line 5. The current math list contains one “mathord” object, consisting of the
letter x in family 1. (Have patience and you will understand what that means, when
you learn about TEX’s math formulas.) Outside of display math mode comes internal
vertical mode, to which TEX will return when the paragraph containing the displayed
formula is complete. The vertical list on that level is empty; ‘prevdepth ignored’
means that \prevdepth has a value < —1000 pt, so that the next interline glue will be
omitted (cf. Chapter 12). The math mode outside of this internal vertical mode has
an empty list, likewise, but the restricted horizontal mode enclosing the math mode
contains some glue. Finally, we see the main vertical mode that encloses everything;
this mode was ‘entered at line 0’, i.e., before the file modes.tex was input; nothing
has been contributed so far to the vertical list on this outermost level.

@ » EXERCISE 13.2
Why is there glue in one of these lists but not in the others?

@ » EXERCISE 13.3
After this output of \showlists, the modes.log file contains further output
from \tracingcommands. In fact, the next two lines of that file are

{math shift character $}
{horizontal mode: end-group character }}

because the ‘$$’ on line 7 finishes the displayed formula, and this resumes horizontal
mode for the paragraph that was interrupted. What do you think are the next three
lines of modes.log?

@ » EXERCISE 13.4
Suppose TEX has generated a document without ever leaving vertical mode.
What can you say about that document?

%» EXERCISE 13.5

Some of TEX’s modes cannot immediately enclose other modes; for example, display
math mode is never directly enclosed by horizontal mode, even though displays occur within
paragraphs, because an interrupted paragraph-so-far of horizontal mode is always completed
and removed from TEX’s memory before the processing of a displayed formula begins. Give
a complete characterization of all pairs of consecutive modes that can occur in the output of
\showlists.

Every mode of life has its conveniences.
— SAMUEL JOHNSON, The Idler (1758)

[Hindu musicians] have eighty-four modes,

of which thirty-six are in general use,

and each of which, it appears, has a peculiar expression,

and the power of moving some particular sentiment or affection.

— MOUNTSTUART ELPHINSTONE, History of India (1841)

89

mathord
prevdepth ignored
JOHNSON
ELPHINSTONE

(((((((((

14

How TgX Breaks
Paragraphs into Lines

Chapter 14: How TgX BreaksParagraphs into Lines

One of a typesetting system’s chief duties is to take a long sequence of words
and to break it up into individual lines of the appropriate size. For example,
every paragraph of this manual has been broken into lines that are 29 picas wide,
but the author didn’t have to worry about such details when he composed the
manuscript. TEX chooses breakpoints in an interesting way that considers each
paragraph in its entirety; the closing words of a paragraph can actually influence
the appearance of the first line. As a result, the spacing between words is as
uniform as possible, and the computer is able to reduce the number of times that
words must be hyphenated or formulas must be split between lines.

The experiments of Chapter 6 have already illustrated the general ideas:
We discussed the notion of “badness,” and we ran into “overfull” and “underfull”
boxes in difficult situations. We also observed that different settings of TEX’s
\tolerance parameter will produce different effects; a higher tolerance means
that wider spaces are acceptable.

TEX will find the absolutely best way to typeset any given paragraph,
according to its ideas of minimum badness. But such “badness” doesn’t account
for everything, and if you rely entirely on an automatic scheme you will occasion-
ally encounter line breaks that are not really the best on psychological grounds;
this is inevitable, because computers don’t understand things the way people do
(at least not yet). Therefore youll sometimes want to tell the machine that
certain places are not good breakpoints. Conversely, you will sometimes want
to force a break at a particular spot. TEX provides a convenient way to avoid
psychologically bad breaks, so that you will be able to obtain results of the finest
quality by simply giving a few hints to the machine.

“Ties”—denoted by ‘~’ in plain TgX—are the key to successful line
breaking. Once you learn how to insert them, you will have graduated from
the ranks of ordinary TgXnical typists to the select group of Distinguished
TEXnicians. And it’s really not difficult to train yourself to insert occasional
ties, almost without thinking, as you type a manuscript.

When you type ~ it’s the same as typing a space, except that TEX won’t
break a line at this space. Furthermore, you shouldn’t leave any blanks next to
the ~, since they will count as additional spaces. If you put ~ at the very end
of a line in your input file, you’ll get a wider space than you want, because the
(return) that follows the ~ produces an extra space.

We have already observed in Chapter 12 that it’s generally a good idea
to type ~ after an abbreviation that does not come at the end of a sentence. Ties
also belong in several other places:

» In references to named parts of a document:

Chapter™12 Theorem™1.2
Appendix”A Table™\hbox{B-8}
Figure™3 Lemmas 5 and”6

(No ~ appears after ‘Lemmas’ in the final example, since there’s no harm in having
‘5 and 6 at the beginning of a line. The use of \hbox is explained below.)

91

H&J, see hyphenation, line breaking, settin,
justification, see setting glue, line breaking
quad left, see flush left

quad right, see flush right

quad middle, see :break

tolerance

Ties

auxiliary space, see tie

tilde

line breaks, avoiding

breaks, avoiding bad

92

Chapter 14: How TgX BreaksParagraphs into Lines

= Between a person’s forenames and between multiple surnames:

Donald™E. Knuth Luis™I. Trabb™Pardo
Bartel“"Leendert van“der~Waerden Charles™XII

Note that it is sometimes better to hyphenate a name than to break it be-
tween words; e.g., ‘Don-’ and ‘ald E. Knuth’ is more tolerable than ‘Donald’
and ‘E. Knuth’. The previous rule can be regarded as a special case of this one,
since we may think of ‘Chapter 12’ as a compound name; another example is
‘register”X’. Sometimes a name is so long that we dare not tie it all together,
lest there be no way to break the line:

Charles Louis Xavier~Joseph de~la Vall\’ee”Poussin.
= Between math symbols in apposition with nouns:

dimension~d width~w function™$f(x)$
string”s of length~1

However, the last example should be compared with
string”s of length 1~or more.
= Between symbols in series:

1,72, or~3
a, " b, and~c.
1,72, \dots, "n.

s When a symbol is a tightly bound object of a preposition:

of "x

from 0 to™1
increase z by~1
in common with”m.

The rule does not, however, apply to compound objects:
of u~andv.
= When mathematical phrases are rendered in words:

equals~n less than"ϵ (given™X)
mod~2 modulo”$p~e$ for all large~n

Compare ‘1s~15’ with ‘ds 15"times the height’.
= When cases are being enumerated within a paragraph:
(b) “Show that $f(x)$ is (1) continuous; (2) “bounded.

It would be nice to boil all of these rules down to one or two simple principles,
and it would be even nicer if the rules could be automated so that keyboarding

Knuth

Trabb Pardo

van der Waerden

Charles XII

Vallée Poussin

enumerated cases within a paragraph

Chapter 14: How TgX BreaksParagraphs into Lines

could be done without them; but subtle semantic considerations seem to be
involved. Therefore it’s best to use your own judgment with respect to ties. The
computer needs your help.

A tie keeps TEX from breaking at a space, but sometimes you want to
prevent the machine from breaking at a hyphen or a dash. This can be done
by using \hbox, because TEX will not split up the contents of a box; boxes are
indecomposable units, once they have been constructed. We have already il-
lustrated this principle in the ‘Table~\hbox{B-8}" example considered earlier.
Another example occurs when you are typing the page numbers in a bibliographic
reference: It doesn’t look good to put ‘22.” on a line by itself, so you can type
‘\hbox{13--22}.’ to prohibit breaking ‘13-22.” On the other hand, TEX doesn’t
often choose line breaks at hyphens, so you needn’t bother to insert \hbox com-
mands unless you need to correct a bad break that TEX has already made on a
previous run.

» EXERCISE 14.1
Here are some phrases culled from previous chapters of this manual. How do
you think the author typed them?

(cf. Chapter 12).

Chapters 12 and 21.

line 16 of Chapter 6’s story

lines 7 to 11

lines 2, 3, 4, and 5.

(2) a big black bar

All 256 characters are initially of category 12,
letter x in family 1.

the factor f, where n is 1000 times f.

» EXERCISE 14.2
How would you type the phrase ‘for all n greater than ny’?

» EXERCISE 14.3
And how would you type ‘exercise 4.3.2-15"7

» EXERCISE 14.4
Why is it better to type ‘Chapter~12’ than to type ‘\hbox{Chapter 12}’?

g% » EXERCISE 14.5
TEX will sometimes break a math formula after an equals sign. How can you
stop the computer from breaking the formula ‘x = 0’7

» EXERCISE 14.6
Explain how you could instruct TEX not to make any breaks after explicit hyphens
and dashes. (This is useful in lengthy bibliographies.)

Sometimes you want to permit a line break after a ‘/’ just as if it were
a hyphen. For this purpose plain TEX allows you to say ‘\slash’; for example,
‘input\slash output’ produces ‘input/output’ with an optional break.

93

hyphen

dash

hbox

bibliographic reference
bibliographies

slash

94 Chapter 14: How TgX BreaksParagraphs into Lines

If you want to force TEX to break between lines at a certain point in the line breaks, forcing
middle of a paragraph, just say ‘\break’. However, that might cause the line to Eizzl: forcing good
be really spaced out. underfull
If you want TgX to fill up the right-hand part of a line with blank space just ggiﬁines
before a forced line break, quad
without indenting the next line, say ‘\hfil\break’. itzil;r:nce
@ You may have several consecutive lines of input for which you want the output Z‘C'irlilrlﬂsbox

to appear line-for-line in the same way. One solution is to type ‘\par’ at the horizontal list

end of each input line; but that’s somewhat of a nuisance, so plain TEX provides the
abbreviation ‘\obeylines’, which causes each end-of-line in the input to be like \par.
After you say \obeylines you will get one line of output per line of input, unless an
input line ends with ‘)4’ or unless it is so long that it must be broken. For example, you
probably want to use \obeylines if you are typesetting a poem. Be sure to enclose
\obeylines in a group, unless you want this “poetry mode” to continue to the end of
your document.

{\obeylines\smallskip
Roses are red,

\quad Violets are blue;
Rhymes can be typeset
\quad With boxes and glue.
\smallskip}

@ » EXERCISE 14.7
Explain the uses of \quad in this poem. What would have happened if ‘\quad’
had been replaced by ‘\indent’ in both places?

Roughly speaking, TEX breaks paragraphs into lines in the following
way: Breakpoints are inserted between words or after hyphens so as to produce
lines whose badnesses do not exceed the current \tolerance. If there’s no way
to insert such breakpoints, an overfull box is set. Otherwise the breakpoints are
chosen so that the paragraph is mathematically optimal, i.e., best possible, in
the sense that it has no more “demerits” than you could obtain by any other
sequence of breakpoints. Demerits are based on the badnesses of individual lines
and on the existence of such things as consecutive lines that end with hyphens,
or tight lines that occur next to loose ones.

@ But the informal description of line breaking in the previous paragraph is

an oversimplification of what really happens. The remainder of this chapter
explains the details precisely, for people who want to apply TEX in nonstandard ways.
TEX’s line-breaking algorithm has proved to be general enough to handle a surprising
variety of different applications; this, in fact, is probably the most interesting aspect
of the whole TEX system. However, every paragraph from now on until the end of the
chapter is prefaced by at least one dangerous bend sign, so you may want to learn the
following material in easy stages instead of all at once.

@ Before the lines have been broken, a paragraph inside of TEX is actually a
horizontal list, i.e., a sequence of items that TEX has gathered while in hori-
zontal mode. We have been saying informally that a horizontal list consists of boxes

Chapter 14: How TgX BreaksParagraphs into Lines

and glue; the truth is that boxes and glue aren’t the whole story. Each item in a
horizontal list is one of the following types of things:

= a box (a character or ligature or rule or hbox or vbox);

= a discretionary break (to be explained momentarily);

= a “whatsit” (something special to be explained later);

= vertical material (from \mark or \vadjust or \insert);

= a glob of glue (or \leaders, as we will see later);

= a kern (something like glue that doesn’t stretch or shrink);

= a penalty (representing the undesirability of breaking here);

= “math-on” (beginning a formula) or “math-off” (ending a formula).

The last four types (glue, kern, penalty, and math items) are called discardable, since
they may change or disappear at a line break; the first four types are called non-
discardable, since they always remain intact. Many of the things that can appear in
horizontal lists have not been touched on yet in this manual, but it isn’t necessary to
understand them in order to understand line breaking. Sooner or later you’ll learn how
each of the gismos listed above can infiltrate a horizontal list; and if you want to get
a thorough understanding of TEX’s internal processes, you can always use \showlists
with various features of the language, in order to see exactly what TEX is doing.

?2 A discretionary break consists of three sequences of characters called the pre-

break, post-break, and no-break texts. The idea is that if a line break occurs
here, the pre-break text will appear at the end of the current line and the post-break
text will occur at the beginning of the next line; but if no break occurs, the no-break
text will appear in the current line. Users can specify discretionary breaks in complete
generality by writing

\discretionary{(pre-break text)}{(post-break text)}{(no-break text)}
where the three texts consist entirely of characters, boxes, and kerns. For example, TEX

can hyphenate the word ‘difficult’ between the f’s, even though this requires breaking
the ‘ffi’ ligature into ‘f-” followed by an ‘fi’ ligature, if the horizontal list contains

di\discretionary{f-}{fi}{ffi}cult.

Fortunately you need not type such a mess yourself; TEX’s hyphenation algorithm
works behind the scenes, taking ligatures apart and putting them into discretionary
breaks when necessary.

g% The most common case of a discretionary break is a simple discretionary
hyphen

\discretionary{-}{}{}
for which TEX accepts the abbreviation ‘\-’. The next most common case is

\discretionary{}{}{}

(an “empty discretionary”), which TEX automatically inserts after ‘-’ and after every

ligature that ends with ‘~’. In the case of plain TEX, empty discretionaries are therefore
inserted after hyphens and dashes. (Each font has an associated \hyphenchar, which
we can assume for simplicity is equal to ‘=’.)

discretionary break
break, discretionary
whatsit

mark

vadjust

insert

glue

leaders

kern

penalty

math-on

math-off
discardable
showlists

pre-break text
post-break text
no-break text
discretionary
ligatures

empty discretionary
hyphens

dashes

hyphenchar

96 Chapter 14: How TgX BreaksParagraphs into Lines

@ When TEX hyphenates words, it simply inserts discretionary breaks into the hyphenates
horizontal list. For example, the words ‘discretionary hyphens’ are trans- Gertmlan
. . pretolerance
formed into the equivalent of tolerance
. . hyphenpenalty
dis\-cre\-tionary hy\-phens exhyphenpenalty

if hyphenation becomes necessary. But TEX doesn’t apply its hyphenation algorithm
to any word that already contains a discretionary break; therefore you can use explicit
discretionaries to override TEX’s automatic method, in an emergency.

@ » EXERCISE 14.8

Before 1998, some German words changed their spelling when split between
lines. For example, ‘backen’ became ‘bak-ken’ and ‘Bettuch’ sometimes became ‘Bett-
tuch’. How can you instruct TEX to produce such effects?

@ In order to save time, TEX tries first to break a paragraph into lines without

inserting any discretionary hyphens. This first pass will succeed if a sequence
of breakpoints is found for which none of the resulting lines has a badness exceeding
the current value of \pretolerance. If the first pass fails, the method of Appendix H
is used to hyphenate each word of the paragraph by inserting discretionary breaks
into the horizontal list, and a second attempt is made using \tolerance instead of
\pretolerance. When the lines are fairly wide, as they are in this manual, experiments
show that the first pass succeeds more than 90% of the time, and that fewer than 2 words
per paragraph need to be subjected to the hyphenation algorithm, on the average.
But when the lines are very narrow the first pass usually fails rather quickly. Plain
TEX sets \pretolerance=100 and \tolerance=200 as the default values. If you make
\pretolerance=10000, the first pass will essentially always succeed, so hyphenations
will not be tried (and the spacing may be terrible); on the other hand if you make
\pretolerance=-1, TEX will omit the first pass and will try to hyphenate immediately.

@ Line breaks can occur only in certain places within a horizontal list. Roughly
speaking, they occur between words and after hyphens, but in actuality they
are permitted in the following five cases:

a) at glue, provided that this glue is immediately preceded by a non-discardable
item, and that it is not part of a math formula (i.e., not between math-on and
math-off). A break “at glue” occurs at the left edge of the glue space.

b) at a kern, provided that this kern is immediately followed by glue, and that it
is not part of a math formula.

¢) at a math-off that is immediately followed by glue.

d) at a penalty (which might have been inserted automatically in a formula).

e) at a discretionary break.

Notice that if two globs of glue occur next to each other, the second one will never be
selected as a breakpoint, since it is preceded by glue (which is discardable).

@ Each potential breakpoint has an associated “penalty,” which represents the

“aesthetic cost” of breaking at that place. In cases (a), (b), (c), the penalty is
zero; in case (d) an explicit penalty has been specified; and in case (e) the penalty is the
current value of \hyphenpenalty if the pre-break text is nonempty, or the current value
of \exhyphenpenalty if the pre-break text is empty. Plain TEX sets \hyphenpenalty=50
and \exhyphenpenalty=50.

Chapter 14: How TgX BreaksParagraphs into Lines

@ For example, if you say ‘\penalty 100’ at some point in a paragraph, that

position will be a legitimate place to break between lines, but a penalty of 100
will be charged. If you say ‘\penalty-100’ you are telling TEX that this is a rather
good place to break, because a negative penalty is really a “bonus”; a line that ends
with a bonus might even have “merits” (negative demerits).

@ Any penalty that is 10000 or more is considered to be so large that TEX will

never break there. At the other extreme, any penalty that is —10000 or less
is considered to be so small that TEX will always break there. The \nobreak macro of
plain TEX is simply an abbreviation for ‘\penalty10000’, because this prohibits a line
break. A tie in plain TEX is equivalent to ‘\nobreak\,’; there will be no break at the
glue represented by \., in this case, because glue is never a legal breakpoint when it is
preceded by a discardable item like a penalty.

@ » EXERCISE 14.9
Guess how the \break macro is defined in plain TEX.

@ » EXERCISE 14.10
What happens if you say \nobreak\break or \break\nobreak?

g% When a line break actually does occur, TEX removes all discardable items that

follow the break, until coming to something non-discardable, or until coming
to another chosen breakpoint. For example, a sequence of glue and penalty items will
vanish as a unit, if no boxes intervene, unless the optimum breakpoint sequence includes
one or more of the penalties. Math-on and math-off items act essentially as kerns that
contribute the spacing specified by \mathsurround; such spacing will disappear into the
line break if a formula comes at the very end or the very beginning of a line, because
of the way the rules have been formulated above.

% The badness of a line is an integer that is approximately 100 times the cube of the

ratio by which the glue inside the line must stretch or shrink to make an hbox of
the required size. For example, if the line has a total shrinkability of 10 points, and if the
glue is being compressed by a total of 9 points, the badness is computed to be 73 (since
100 x (9/10)2 = 72.9); similarly, a line that stretches by twice its total stretchability has a
badness of 800. But if the badness obtained by this method turns out to be more than 10000,
the value 10000 is used. (See the discussion of “glue set ratio” r and “glue set order” i in
Chapter 12; if ¢ # 0, there is infinite stretchability or shrinkability, so the badness is zero,
otherwise the badness is approximately min(100r3,10000).) Overfull boxes are considered to
be infinitely bad; they are avoided whenever possible.

% A line whose badness is 13 or more has a glue set ratio exceeding 50%. We call such

a line tight if its glue had to shrink, loose if its glue had to stretch, and very loose
if it had to stretch so much that the badness is 100 or more. But if the badness is 12 or less
we say that the line is decent. Two adjacent lines are said to be visually incompatible if their
classifications are not adjacent, i.e., if a tight line is next to a loose or very loose line, or if a
decent line is next to a very loose one.

TEX rates each potential sequence of breakpoints by totalling up demerits that are

assessed to individual lines. The goal is to choose breakpoints that yield the fewest
total demerits. Suppose that a line has badness b, and suppose that the penalty p is associated
with the breakpoint at the end of this line. As stated above, TEX will not even consider such a
line if p > 10000, or if b exceeds the current tolerance or pretolerance. Otherwise the demerits
of such a line are defined by the formula

(I+b)2 +p3, if 0 <p < 10000;

d=4q (I+b)%2—p?, if —10000 < p < 0;
(I+1b)2, if p < —10000.

97

penalty

bonus

infinite penalty
nobreak

break
mathsurround
badness

glue set ratio
glue set order
infinite badness
tight

loose

very loose
decent
demerits

98

Chapter 14: How TgX BreaksParagraphs into Lines

Here [is the current value of \linepenalty, a parameter that can be increased if you want
TEX to try harder to keep all paragraphs to the minimum number of lines; plain TEX sets
\linepenalty=10. For example, a line with badness 20 ending at glue will have (10+20)? = 900
demerits, if [= 10, since there’s no penalty for a break at glue. Minimizing the total demerits
of a paragraph is roughly the same as minimizing the sum of the squares of the badnesses
and penalties; this usually means that the maximum badness of any individual line is also
minimized, over all sequences of breakpoints.

%» EXERCISE 14.11

The formula for demerits has a strange discontinuity: It seems more reasonable at
first to define d = (I+b)2 — 100002, in the case p < —10000. Can you account for this apparent
discrepancy?

% Additional demerits are assessed based on pairs of adjacent lines. If two consecu-

tive lines are visually incompatible, in the sense explained a minute ago, the current
value of \adjdemerits is added to d. If two consecutive lines end with discretionary breaks,
the \doublehyphendemerits are added. And if the second-last line of the entire paragraph
ends with a discretionary, the \finalhyphendemerits are added. Plain TEX sets up the values
\adjdemerits=10000, \doublehyphendemerits=10000, and \finalhyphendemerits=5000. De-
merits are in units of “badness squared,” so the demerit-oriented parameters need to be rather
large if they are to have much effect; but tolerances and penalties are given in the same units
as badness.

% If you set \tracingparagraphs=1, your log file will contain a summary of TEX’s line-
breaking calculations, so you can watch the tradeoffs that occur when parameters
like \linepenalty and \hyphenpenalty and \adjdemerits are twiddled. The line-break data
looks pretty scary at first, but you can learn to read it with a little practice; this, in fact, is the
best way to get a solid understanding of line breaking. Here is the trace that results from the
second paragraph of the story file in Chapter 6, when \hsize=2.5in and \tolerance=1000:

[J\tenrm Mr. Drofnats---or ‘‘R. J.,’’ as he pre-
@\discretionary via @@0 b=0 p=50 d=2600
@@1: line 1.2- t=2600 -> @QO

ferred to be called---was hap-pi-est when
@ via @@1 b=131 p=0 d=29881

@02: line 2.0 t=32481 -> ee1

he

@ via @@1 b=25 p=0 d=1225

@@3: line 2.3 t=3825 -> @@1

was at work type-set-ting beau-ti-ful doc-
@\discretionary via @02 b=1 p=50 d=12621
@\discretionary via @@3 b=291 p=50 d=103101
Q@4: line 3.2- t=45102 -> Q@2

u-

@\discretionary via @@3 b=44 p=50 d=15416
@@5: line 3.1- t=19241 -> Q@3

ments.

@\par via @@4 b=0 p=-10000 d=5100

@\par via @@5 b=0 p=-10000 d=5100

@Q6: line 4.2- t=24341 -> Q@5

Lines that begin with ‘@@’ represent feasible breakpoints, i.e., breakpoints that can be reached
without any badness exceeding the tolerance. Feasible breakpoints are numbered consecutively,
starting with @@1; the beginning of the paragraph is considered to be feasible too, and it is
number @@0. Lines that begin with ‘@’ but not ‘@@’ are candidate ways to reach the feasible
breakpoint that follows; TEX will select only the best candidate, when there is a choice. Lines
that do not begin with ‘@ indicate how far TEX has gotten in the paragraph. Thus, for example,
we find ‘@02: line 2.0 t=32481 -> @@1’ after ‘...hap-pi-est when’ and before ‘he’, so we
know that feasible breakpoint @@2 occurs at the space between the words when and he. The
notation ‘line 2.0’ means that this feasible break comes at the end of line 2, and that this line

linepenalty
adjdemerits
doublehyphendemerits
finalhyphendemerits
tracingparagraphs
atsign atsign

feasible breakpoints

Chapter 14: How TgX BreaksParagraphs into Lines

will be very loose. (The suffixes .0, .1, .2, .3 stand respectively for very loose, loose, decent,
and tight.) A hyphen is suffixed to the line number if that line ends with a discretionary
break, or if it is the final line of the paragraph; for example, ‘line 1.2-’ is a decent line that
was hyphenated. The notation ‘t=32481" means that the total demerits from the beginning
of the paragraph to @02 are 32481, and ‘-> @@1’ means that the best way to get to @02 is to
come from @@1. On the preceding line of trace data we see the calculations for a typeset line
to this point from @@1: the badness is 131, the penalty is 0, hence there are 29881 demerits.
Similarly, breakpoint @@3 presents an alternative for the second line of the paragraph, obtained
by breaking between ‘he’ and ‘was’; this one makes the second line tight, and it has only 3825
demerits when the demerits of line 1 are added, so it appears that @@3 will work much better
than @@2. However, the next feasible breakpoint (@@4) occurs after ‘doc-’, and the line from
@02 to @@4 has only 12621 demerits, while the line from @@3 to @@4 has a whopping 103101;
therefore the best way to get from @@0 to @@4 is via ©@02. If we regard demerits as distances,
TgX is finding the “shortest paths” from @@0 to each feasible breakpoint (using a variant of a
well-known algorithm for shortest paths in an acyclic graph). Finally the end of the paragraph
comes at breakpoint @@6, and the shortest path from @@0 to @@6 represents the best sequence
of breakpoints. Following the arrows back from @@6, we deduce that the best breaks in this
particular paragraph go through @@5, @@3, and @@1.

» EXERCISE 14.12
Explain why there are 29881 demerits from @@1 to @02, and 12621 demerits from @@2
to Q4.

If ‘b=+’ appears in such trace data, it means that an infeasible breakpoint had to be
chosen because there was no feasible way to keep total demerits small.

@ We still haven’t discussed the special trick that allows the final line of a para-

graph to be shorter than the others. Just before TEX begins to choose break-
points, it does two important things: (1) If the final item of the current horizontal
list is glue, that glue is discarded. (The reason is that a blank space often gets into a
token list just before \par or just before $$, and this blank space should not be part
of the paragraph.) (2) Three more items are put at the end of the current horizontal
list: \penalty10000 (which prohibits a line break); \hskip\parfillskip (which adds
“finishing glue” to the paragraph); and \penalty-10000 (which forces the final break).
Plain TEX sets \parfillskip=0Opt plus1fil, so that the last line of each paragraph will
be filled with white space if necessary; but other settings of \parfillskip are appro-
priate in special applications. For example, the present paragraph ends flush with the
right margin, because it was typeset with \parfillskip=0pt; the author didn’t have to
rewrite any of the text in order to make this possible, since a long paragraph generally
allows so much flexibility that a line break can be forced at almost any point. You
can have some fun playing with paragraphs, because the algorithm for line breaking
occasionally appears to be clairvoyant. Just write paragraphs that are long enough.

@ » EXERCISE 14.13

Ben User decided to say ‘\hfilneg\par’ at the end of a paragraph, intending
that the negative stretchability of \hfilneg would cancel with the \parfillskip of
plain TEX. Why didn’t his bright idea work?

@ » EXERCISE 14.14
How can you set \parfillskip so that the last line of a paragraph has exactly
as much white space at the right as the first line has indentation at the left?

» EXERCISE 14.15
Since TEX reads an entire paragraph before it makes any decisions about line breaks,
the computer’s memory capacity might be exceeded if you are typesetting the works of some

99

shortest paths
*

unskip

par

finishing glue
parfillskip

User

hfilneg

paragraph, ending
capacity exceeded

100 Chapter 14: How TgX BreaksParagraphs into Lines

philosopher or modernistic novelist who writes 200-line paragraphs. Suggest a way to cope Joyce, James
with such authors. philosopher
leftskip
@ TEX has two parameters called \leftskip and \rightskip that specify glue rightskip
. narrower
to be inserted at the left and right of every line in a paragraph; this glue is parindent
taken into account when badnesses and demerits are computed. Plain TEX normally quoting
keeps \leftskip and \rightskip zero, but it has a ‘\narrower’ macro that increases istrzfi”lCISk‘p
both of their values by the current \parindent. You may want to use \narrower when slanted
quoting lengthy passages from a book. centerline
leftline
{\narrower\smallskip\noindent ;ightline
. . . me
This paragraph will have narrower lines than raggedright
the surrounding paragraphs do, because it hyphenpenalty
uses the ‘‘narrower’’ feature of plain \TeX. ind‘?ns .
The former margins will be restored after E?;:;pf;alty

this group ends.\smallskip} relpenalty

(Try it.) The second ‘\smallskip’ in this example ends the paragraph. It’s important
to end the paragraph before ending the group, for otherwise the effect of \narrower
will disappear before TEX begins to choose line breaks.

@ » EXERCISE 14.16

When an entire paragraph is typeset in italic or slanted type, it sometimes
appears to be offset on the page with respect to other paragraphs. Explain how you
could use \leftskip and \rightskip to shift all lines of a paragraph left by 1 pt.

@ » EXERCISE 14.17
The \centerline, \leftline, \rightline, and \line macros of plain TEX
don’t take \leftskip and \rightskip into account. How could you make them do so?

% If you suspect that \raggedright setting is accomplished by some appropriate ma-

nipulation of \rightskip, you are correct. But some care is necessary. For example,
a person can set \rightskip=Opt plusifil, and every line will be filled with space at the
right. But this isn’t a particularly good way to make ragged-right margins, because the in-
finite stretchability will assign zero badness to lines that are very short. To do a decent job
of ragged-right setting, the trick is to set \rightskip so that it will stretch enough to make
line breaks possible, yet not too much, because short lines should be considered bad. Further-
more the spaces between words should be fixed so that they do not stretch or shrink. (See
the definition of \raggedright in Appendix B.) It would also be possible to allow a little
variability in the interword glue, so that the right margin would not be quite so ragged but
the paragraphs would still have an informal appearance.

TEX looks at the parameters that affect line breaking only when it is breaking

lines. For example, you shouldn’t try to change the \hyphenpenalty in the
middle of a paragraph, if you want TEX to penalize the hyphens in one word more than
it does in another word. The relevant values of \hyphenpenalty, \rightskip, \hsize,
and so on, are the ones that are current at the end of the paragraph. On the other
hand, the width of indentation that you get implicitly at the beginning of a paragraph
or when you say ‘\indent’ is determined by the value of \parindent at the time the
indentation is contributed to the current horizontal list, not by its value at the end
of the paragraph. Similarly, penalties that are inserted into math formulas within a
paragraph are based on the values of \binoppenalty and \relpenalty that are current
at the end of each particular formula. Appendix D contains an example that shows how

Chapter 14: How TgX BreaksParagraphs into Lines 101

to have both ragged-right and ragged-left margins within a single paragraph, without hole
using \leftskip or \rightskip. Galileo
circle
X parshape
@ IF s possible to control the length of lines in a much more general way, if illustrations, fitting copy around
simple changes to \leftskip and \rightskip aren’t flexible enough for your Pascal
purposes. For example, a semicircular hole has been cut out of the present ‘}Clnan_glz .
. . . . anginden
paragraph, in order to make room for a circular illustration that con- The area of hangafter
tains some of Galileo’s immortal words about circles; all of the line a circle is a mean paneing indentation
proportional between any <.
breaks in this paragraph and in the circular quotation were found two regular and similar pol}S1Z€
gons of which one circumscribem
’s line- ki 1 ith Y if tiall it and the other is isoperin
ine-breaking algorithm. n specify an nti
by iIE}i S € b ca g go t . ou ca Sp y ar esse a y with it. In addition, the areargff%?ﬁieltem
arbitrary paragraph shape by saying \parshape=(number), where circle is less than that of any circum-
. V. . . scribed polygon and greater than that
the (number) is a positive integer n, followed by 2n (dimen) spec- of any isoperimetric polygon. And fur-
. s . ther, of these circumscribed polygons,
ifications. In general, ‘\parshape=n i1 1 i2 l2 ... in l,,’ specifies the one that has the greater num-
a paragraph whose first n lines will have lengths l1, l2, ..., ln, D of sides has o smallor area than
respectively, and they will be indented from the left margin by the but, on the other hand, the iso-
perimetric polygon that has
respective amounts i1, 42, ..., i,. If the paragraph has fewer than the greater number of
- o . :) 5 > sides is the larger.
n lines, the additional specifications will be ignored; if it has more [Galileo, 1638]

than n lines, the specifications for line n will be repeated ad infinitum.
You can cancel the effect of a previously specified \parshape by saying ‘\parshape=0’.

%» EXERCISE 14.18

Typeset the following Pascalian quotation in the shape of an isosceles triangle: “I
turn, in the following treatises, to various uses of those triangles whose generator is unity. But
I leave out many more than I include; it is extraordinary how fertile in properties this triangle
is. Everyone can try his hand.”

@ You probably won’t need unusual parshapes very often. But there’s a special
case that occurs rather frequently, so TEX provides a special abbreviation
for it in terms of two parameters called \hangindent and \hangafter. The command
‘\hangindent=(dimen)’ specifies a so-called hanging indentation, and the command
“\hangafter=(number)’ specifies the duration of that indentation. Let = and n be the
respective values of \hangindent and \hangafter, and let h be the value of \hsize;
then if n > 0, hanging indentation will occur on lines n 41, n+42, ... of the paragraph,
but if n < 0 it will occur on lines 1, 2, ..., |n|. Hanging indentation means that lines will
be of width h — |z| instead of their normal width h; if z > 0, the lines will be indented
at the left margin, otherwise they will be indented at the right margin. For example,
the “dangerous bend” paragraphs of this manual have a hanging indentation of 3 picas
that lasts for two lines; they were set with \hangindent=3pc and \hangafter=-2.

@ Plain TEX uses hanging indentation in its ‘\item’ macro, which produces a

paragraph in which every line has the same indentation as a normal \indent.
Furthermore, \item takes a parameter that is placed into the position of the indentation
on the first line. Another macro called ‘\itemitem’ does the same thing but with double
indentation. For example, suppose you type

\item{1.} This is the first of several cases that are being
enumerated, with hanging indentation applied to entire paragraphs.
\itemitem{a)} This is the first subcase.

\itemitem{b)} And this is the second subcase. Notice

that subcases have twice as much hanging indentation.

\item{2.} The second case is similar.

102

Chapter 14: How TgX BreaksParagraphs into Lines

Then you get the following output:

1. This is the first of several cases that are being enumerated, with hanging
indentation applied to entire paragraphs.
a) This is the first subcase.
b) And this is the second subcase. Notice that subcases have twice as
much hanging indentation.
2. The second case is similar.

(Indentations in plain TEX are not actually as dramatic as those displayed here; Appen-
dix B says ‘\parindent=20pt’, but this manual has been set with \parindent=36pt.)
It is customary to put \medskip before and after a group of itemized paragraphs, and
to say \noindent before any closing remarks that apply to all of the cases. Blank lines
are not needed before \item or \itemitem, since those macros begin with \par.

@ » EXERCISE 14.19
Suppose one of the enumerated cases continues for two or more paragraphs.
How can you use \item to get hanging indentation on the subsequent paragraphs?

@ » EXERCISE 14.20
Explain how to make a “bulleted” item that says ‘e’ instead of ‘1.”.

» EXERCISE 14.21
The ‘\item’ macro doesn’t alter the right-hand margin. How could you indent at
both sides?

» EXERCISE 14.22
Explain how you could specify a hanging indentation of —2 ems (i.e., the lines should
project into the left margin), after the first two lines of a paragraph.

?2 If \parshape and hanging indentation have both been specified, \parshape

takes precedence and \hangindent is ignored. You get the normal paragraph
shape, in which every line width is \hsize, when \parshape=0, \hangindent=0pt, and
\hangafter=1. TEX automatically restores these normal values at the end of every
paragraph, and (by local definitions) whenever it enters internal vertical mode. For
example, hanging indentation that might be present outside of a \vbox construction
won’t occur inside that vbox, unless you ask for it inside.

%» EXERCISE 14.23

Suppose you want to leave room at the right margin for a rectangular illustration
that takes up 15 lines, and you expect that three paragraphs will go by before you have typeset
enough text to get past that illustration. Suggest a good way to do this without trial and error,
given the fact that TEX resets hanging indentation.

% If displayed equations occur in a paragraph that has a nonstandard shape, TEX always

assumes that the display takes up exactly three lines. For example, a paragraph that
has four lines of text, then a display, then two more lines of text, is considered to be 44+3+2 =9
lines long; the displayed equation will be indented and centered using the paragraph shape
information appropriate to line 6.

TEX has an internal integer variable called \prevgraf that records the number of
lines in the most recent paragraph that has been completed or partially completed.
You can use \prevgraf in the context of a (number), and you can set \prevgraf to any desired
nonnegative value if you want to make TEX think that it is in some particular part of the
current paragraph shape. For example, let’s consider again a paragraph that contains four
lines plus a display plus two more lines. When TEX starts the paragraph, it sets \prevgraf=0;

medskip

enumerated cases in separate paragraphs
bullet

vbox

paragraph shape reset

hanging indentation reset

displayed equations

prevgraf

Chapter 14: How TgX BreaksParagraphs into Lines

when it starts the display, \prevgraf will be 4; when it finishes the display, \prevgraf will
be 7; and when it ends the paragraph, \prevgraf will be 9. If the display is actually one line
taller than usual, you could set \prevgraf=8 at the beginning of the two final lines; then TEX
will think that a 10-line paragraph is being made. The value of \prevgraf affects line breaking
only when TEX is dealing with nonstandard \parshape or \hangindent.

» EXERCISE 14.24
Solve exercise 14.23 using \prevgraf.

% You are probably convinced by now that TEX’s line-breaking algorithm has plenty
of bells and whistles, perhaps even too many. But there’s one more feature, called
“looseness”; some day you might find yourself needing it, when you are fine-tuning the pages
of a book. If you set \looseness=1, TEX will try to make the current paragraph one line longer
than its optimum length, provided that there is a way to choose such breakpoints without
exceeding the tolerance you have specified for the badnesses of individual lines. Similarly, if
you set \looseness=2, TEX will try to make the paragraph two lines longer; and \looseness=-1
causes an attempt to make it shorter. The general idea is that TEX first finds breakpoints as
usual; then if the optimum breakpoints produce n lines, and if the current \looseness is [, TEX
will choose the final breakpoints so as to make the final number of lines as close as possible
to n 4 [without exceeding the current tolerance. Furthermore, the final breakpoints will have
fewest total demerits, considering all ways to achieve the same number of lines.

% For example, you can set \looseness=1 if you want to avoid a lonely “club line” or

“widow line” on some page that does not have sufficiently flexible glue, or if you want
the total number of lines in some two-column document to come out to be an even number.
It’s usually best to choose a paragraph that is already pretty “full,” i.e., one whose last line
doesn’t have much white space, since such paragraphs can generally be loosened without much
harm. You might also want to insert a tie between the last two words of that paragraph, so
that the loosened version will not end with only one “widow word” on the line; this tie will
cover your tracks, so that people will find it hard to detect the fact that you have tampered
with the spacing. On the other hand, TEX can take almost any sufficiently long paragraph
and stretch it a bit, without substantial harm; the present paragraph is, in fact, one line looser
than its optimum length.

TEX resets the looseness to zero at the same time as it resets \hangindent, \hangafter,l
and \parshape.

» EXERCISE 14.25
Explain what TEX will do if you set \looseness=-1000.

@ Just before switching to horizontal mode to begin scanning a paragraph, TEX
inserts the glue specified by \parskip into the vertical list that will contain
the paragraph, unless that vertical list is empty so far. For example, ‘\parskip=3pt’
will cause 3 points of extra space to be placed between paragraphs. Plain TEX sets
\parskip=0Opt pluslpt; this gives a little stretchability, but no extra space.

@ After line breaking is complete, TEX appends the lines to the current vertical

list that encloses the current paragraph, inserting interline glue as explained in
Chapter 12; this interline glue will depend on the values of \baselineskip, \lineskip,
and \lineskiplimit that are currently in force. TEX will also insert penalties into the
vertical list, just before each glob of interline glue, in order to help control page breaks
that might have to be made later. For example, a special penalty will be assessed for
breaking a page between the first two lines of a paragraph, or just before the last line,
so that “club” or “widow” lines that are detached from the rest of a paragraph will not
appear all alone on a page unless the alternative is worse.

103

looseness
club line
widow line
tie

widow word
orphans, see widow words
parskip
baselineskip
lineskip
lineskiplimit
interline glue

104 Chapter 14: How TgX BreaksParagraphs into Lines

@ Here’s how interline penalties are calculated: TEX has just chosen the break- interlinepenalty
points for some paragraph, or for some partial paragraph that precedes a Slizllslrz)fyr;?il(ti}(;wpenalty

displayed equation; and n lines have been formed. The penalty between lines j and widowpenalty

j + 1, given a value of j in the range 1 < j < n, is the value of \interlinepenalty brokenpenalty

plus additional charges made in special cases: The \clubpenalty is added if j = 1, ‘f;‘aﬁ:?s

i.e., just after the first line; then the \displaywidowpenalty or the \widowpenalty is eject

added if j = n — 1, i.e., just before the last line, depending on whether or not the migrate

current lines immediately precede a display; and finally the \brokenpenalty is added, i;l:rgl:;:lgégfcs

if the jth line ended at a discretionary break. (Plain TEX sets \clubpenalty=150, horizontal mode

\widowpenalty=150, \displaywidowpenalty=50, and \brokenpenalty=100; the value e"er‘i’g’ar

of \interlinepenalty is normally zero, but it is increased to 100 within footnotes, so I‘Zjﬁn;‘;m

that long footnotes will tend not to be broken between pages.) bulleted lists

?2 » EXERCISE 14.26
Consider a five-line paragraph in which the second and fourth lines end with
hyphens. What penalties does plain TEX put between the lines?

@ » EXERCISE 14.27
What penalty goes between the lines of a two-line paragraph?

% If you say \vadjust{(vertical list)} within a paragraph, TgX will insert the speci-
fied internal vertical list into the vertical list that encloses the paragraph, immedi-
ately after whatever line contained the position of the \vadjust. For example, you can say
‘\vadjust{\kernlpt}’ to increase the amount of space between lines of a paragraph if those
lines would otherwise come out too close together. (The author did it in the previous line,
just to illustrate what happens.) Also, if you want to make sure that a page break will occur
immediately after a certain line, you can say ‘\vadjust{\eject}’ anywhere in that line.

Later chapters discuss \insert and \mark commands that are relevant to TEX’s

page builder. If such commands appear within a paragraph, they are removed from
whatever horizontal lines contain them and placed into the enclosing vertical list, together with
other vertical material from \vadjust commands that might be present. In the final vertical
list, each horizontal line of text is an hbox that is immediately preceded by interline glue and
immediately followed by vertical material that has “migrated out” from that line (with left
to right order preserved, if there are several instances of vertical material); then comes the
interline penalty, if it is nonzero. Inserted vertical material does not influence the interline
glue.

» EXERCISE 14.28
Design a \marginalstar macro that can be used anywhere in a paragraph. It should
use \vadjust to place an asterisk in the margin just to the left of the line where \marginalstar
occurs.

When TEX enters horizontal mode, it will interrupt its normal scanning to read

tokens that were predefined by the command \everypar={(token list)}. For example,
suppose you have said ‘\everypar={A}’. If you type ‘B’ in vertical mode, TEX will shift to
horizontal mode (after contributing \parskip glue to the current page), and a horizontal list
will be initiated by inserting an empty box of width \parindent. Then TEX will read ‘AB’, since
it reads the \everypar tokens before getting back to the ‘B’ that triggered the new paragraph.
Of course, this is not a very useful illustration of \everypar; but if you let your imagination
run you will think of better applications.

» EXERCISE 14.29
Use \everypar to define an \insertbullets macro: All paragraphs in a group of the
form ‘{\insertbullets ...\par} should have a bullet symbol ‘e’ as part of their indentation.

Chapter 14: How TgX BreaksParagraphs into Lines

A paragraph of zero lines is formed if you say ‘\noindent\par’. If \everypar is null,
such a paragraph contributes nothing except \parskip glue to the current vertical
list.

» EXERCISE 14.30
Guess what happens if you say ‘\noindent$$...$$ \par’.

% Experience has shown that TEX’s line-breaking algorithm can be harnessed to a

surprising variety of tasks. Here, for example, is an application that indicates one
of the possibilities: Articles that are published in Mathematical Reviews are generally signed
with the reviewer’s name and address, and this information is typeset flush right, i.e., at the
right-hand margin. If there is sufficient space to put such a name and address at the right of
the final line of the paragraph, the publishers can save space, and at the same time the results
look better because there are no strange gaps on the page.

This is a case where the name and address fit in nicely with
the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
N. Bourbaki (Paris)

Let’s suppose that a space of at least two ems should separate the reviewer’s name from the
text of the review, if they occur on the same line. We would like to design a macro so that the
examples shown above could be typed as follows in an input file:

. with the review. \signed A. Reviewer (Ann Arbor, Mich.)
. an extra line must be added. \signed N. Bourbaki (Paris)

Here is one way to solve the problem:

\def\signed #1 (#2){{\unskip\nobreak\hfil\penalty50
\hskip2em\hbox{}\nobreak\hfil\s1l#1\/ \rm(#2)
\parfillskip=0pt \finalhyphendemerits=0 \par}}

If a line break occurs at the \penalty50, the \hskip2em will disappear and the empty \hbox will
occur at the beginning of a line, followed by \hfil glue. This yields two lines whose badness
is zero; the first of these lines is assessed a penalty of 50. But if no line break occurs at the
\penalty50, there will be glue of 2em plus 2fil between the review and the name; this yields
one line of badness zero. TEX will try both alternatives, to see which leads to the fewest total
demerits. The one-line solution will usually be preferred if it is feasible.

» EXERCISE 14.31
Explain what would happen if ‘\hbox{}’ were left out of the \signed macro.

» EXERCISE 14.32
Why does the \signed macro say ‘\finalhyphendemerits=0’?

» EXERCISE 14.33
In one of the paragraphs earlier in this chapter, the author used \break to force a line
break in a specific place; as a result, the third line of that particular paragraph was really spaced
out.
Explain why all the extra space went into the third line, instead of being distributed im-
partially among the first three lines.

% If you want to avoid overfull boxes at all costs without trying to fix them manually,

you might be tempted to set \tolerance=10000; this allows arbitrarily bad lines to
be acceptable in tough situations. But infinite tolerance is a bad idea, because TEX doesn’t
distinguish between terribly bad and preposterously horrible lines. Indeed, a tolerance of 10000
encourages TEX to concentrate all the badness in one place, making one truly unsightly line
instead of two moderately bad ones, because a single “write-off” produces fewest total demerits
according to the rules. There’s a much better way to get the desired effect: TEX has a param-
eter called \emergencystretch that is added to the assumed stretchability of every line when

105

Mathematical Reviews
flush right

Reviewer

Bourbaki

signed
finalhyphendemerits
break
emergencystretch

106 Chapter 14: How TgX BreaksParagraphs into Lines

badness and demerits are computed, in cases where overfull boxes are otherwise unavoidable.
If \emergencystretch is positive, TEX will make a third pass over a paragraph before choosing
the line breaks, when the first passes did not find a way to satisfy the \pretolerance and
\tolerance. The effect of \emergencystretch is to scale down the badnesses so that large
infinities are distinguishable from smaller ones. By setting \emergencystretch high enough
(based on \hsize) you can be sure that the \tolerance is never exceeded; hence overfull boxes
will never occur unless the line-breaking task is truly impossible.

%» EXERCISE 14.34

Devise a \raggedcenter macro (analogous to \raggedright) that partitions the words
of a paragraph into as few as possible lines of approximately equal size and centers each
individual line. Hyphenation should be avoided if possible.

pretolerance
tolerance
raggedcenter
raggedright

Chapter 14: How TgX BreaksParagraphs into Lines

When the author objects to [a hyphenation]
he should be asked to add or cancel or substitute
a word or words that will prevent the breakage.

Authors who insist on even spacing always,
with sightly divisions always,
do not clearly understand the rigidity of types.

— T. L. DE VINNE, Correct Composition (1901)

In reprinting his own works, whenever [William Morris]
found a line that justified awkwardly, he altered the wording
solely for the sake of making it look well in print.

When a proof has been sent me with two or three

lines so widely spaced as to make a grey band across the page,

| have often rewritten the passage so as to fill up the lines better;
but | am sorry to say that my object has generally been so little
understood that the compositor has spoilt all the rest

of the paragraph instead of mending his former bad work.

— GEORGE BERNARD SHAW, in The Dolphin (1940)

107

DE VINNE
Morris
SHAW

-

15

How TgX Makes
Lines into Pages

Chapter 15: How TgX MakesLines into Pages

TEX attempts to choose desirable places to divide your document into individual
pages, and its technique for doing this usually works pretty well. But the problem
of page make-up is considerably more difficult than the problem of line breaking
that we considered in the previous chapter, because pages often have much less
flexibility than lines do. If the vertical glue on a page has little or no ability to
stretch or to shrink, TEX usually has no choice about where to start a new page;
conversely, if there is too much variability in the glue, the result will look bad
because different pages will be too irregular. Therefore if you are fussy about
the appearance of pages, you can expect to do some rewriting of the manuscript
until you achieve an appropriate balance, or you might need to fiddle with the
\looseness as described in Chapter 14; no automated system will be able to do
this as well as you.

Mathematical papers that contain a lot of displayed equations have an
advantage in this regard, because the glue that surrounds a display tends to
be quite flexible. TEX also gets valuable room to maneuver when you have
occasion to use \smallskip or \medskip or \bigskip spacing between certain
paragraphs. For example, consider a page that contains a dozen or so exercises,
and suppose that there is 3 pt of additional space between exercises, where this
space can stretch to 4pt or shrink to 2pt. Then there is a chance to squeeze
an extra line on the page, or to open up the page by removing one line, in
order to avoid splitting an exercise between pages. Similarly, it is possible to use
flexible glue in special publications like membership rosters or company telephone
directories, so that individual entries need not be split between columns or pages,
yet every column appears to be the same height.

For ordinary purposes you will probably find that TEX’s automatic
method of page breaking is satisfactory. And when it occasionally gives un-
pleasant results, you can force the machine to break at your favorite place by
typing ‘\eject’. But be careful: \eject will cause TEX to stretch the page
out, if necessary, so that the top and bottom baselines agree with those on other
pages. If you want to eject a short page, filling it with blank space at the bottom,
type ‘\vfill\eject’ instead.

@ If you say ‘\eject’ in the middle of a paragraph, the paragraph will end

first, as if you typed ‘\par\eject’. But Chapter 14 mentions that you can say
‘\vadjust{\eject}’ in mid-paragraph, if you want to force a page break after whatever
line contains your current position when the full paragraph is eventually broken up into
lines; the rest of the paragraph will go on the following page.

g% To prevent a page break, you can say ‘\nobreak’ in vertical mode, just as

\nobreak in horizontal mode prevents breaks between lines. For example, it
is wise to say \nobreak between the title of a subsection and the first line of text in that
subsection. But \nobreak does not cancel the effect of other commands like \eject
that tell TEX to break; it only inhibits a break at glue that immediately follows. You
should become familiar with TEX’s rules for line breaks and page breaks if you want to
maintain fine control over everything. The remainder of this chapter is devoted to the
intimate details of page breaking.

109

page make-up
looseness
smallskip
medskip
bigskip

eject

vadjust
nobreak

110 Chapter 15: How TgX MakesLines into Pages

TEX breaks lists of lines into pages by computing badness ratings and penal- main vertical list
ties, more or less as it does when breaking paragraphs into lines. But pages "e}f:t‘;_atl list
W 1
are made up one at a time and removed from TEX’s memory; there is no looking ahead mark
to see how one page break will affect the next one. In other words, TEX uses a special insertion
method to find the optimum breakpoints for the lines in an entire paragraph, but it il:gers
doesn’t attempt to find the optimum breakpoints for the pages in an entire document. kern
The computer doesn’t have enough high-speed memory capacity to remember the con- penalty
£ 1 . 1 h h b k best it b discardable
tents of several pages, so TEX simply chooses each page break as best it can, by a vadjust
process of “local” rather than “global” optimization. penalty

@ Let’s look now at the details of TEX’s page-making process. Everything you

contribute to the pages of your document is placed on the main vertical list,
which is the sequence of items that TEX has accumulated while in vertical mode. Each
item in a vertical list is one of the following types of things:

= a box (an hbox or vbox or rule);

= a “whatsit” (something special to be explained later);

= a mark (another thing that will be explained later);

= an insertion (yet another thing that we will get to);

= a glob of glue (or \leaders, as we will see later);

= a kern (something like glue that doesn’t stretch or shrink);
= a penalty (representing the undesirability of breaking here).

The last three types (glue, kern, and penalty items) are called discardable, for the
same reason that we called them discardable in horizontal lists. You might want to
compare these specifications with the analogous rules for the horizontal case, found
in Chapter 14; it turns out that vertical lists are just like horizontal ones except that
character boxes, discretionary breaks, \vadjust items, and math shifts cannot appear
in vertical lists. Chapter 12 exhibits a typical vertical list in TEX’s internal box-and-glue

representation.
@ Page breaks can occur only at certain places within a vertical list. The per-
missible breakpoints are exactly the same as in the horizontal case, namely

a) at glue, provided that this glue is immediately preceded by a non-discardable
item (i.e., by a box, whatsit, mark, or insertion);

b) at a kern, provided that this kern is immediately followed by glue;
¢) at a penalty (which might have been inserted automatically in a paragraph).

Interline glue is usually inserted automatically between the boxes of a vertical list, as
explained in Chapter 12, so there is usually a valid breakpoint between boxes.

g% As in horizontal lists, each potential breakpoint has an associated penalty,

which is high for undesirable breakpoints and negative for desirable ones. The
penalty is zero at glue and kern breaks, so it is nonzero only at explicit penalty breaks.
If you say ‘\penalty-100’ between two paragraphs, you are indicating that TEX should
try to break here because the penalty is negative; a bonus of 100 points for breaking at
this place will essentially cancel up to 100 units of badness that might be necessary to
achieve such a break. A penalty of 10000 or more is so large that it inhibits breaking;
a penalty of —10000 or less is so small that it forces breaking.

Chapter 15: How TgX MakesLines into Pages

@ Plain TEX provides several control sequences that help to control page breaks.

For example, \smallbreak, \medbreak, and \bigbreak specify increasingly
desirable places to break, having respective penalties of —50, —100, and —200; further-
more, they will insert a \smallskip, \medskip, or \bigskip of space, respectively, if a
break is not taken. However, \smallbreak, \medbreak, and \bigbreak do not increase
existing glue unnecessarily; for example, if you say \smallbreak just after a displayed
equation, you won’t get a \smallskip of space in addition to the glue that already
follows a display. Therefore these commands can conveniently be used before and after
the statements of theorems, in a format for mathematical papers. In the present manual
the author has used a macro that puts \medbreak before and after every dangerous-
bend paragraph; \medbreak\medbreak is equivalent to a single \medbreak, so you don’t
see two medskips when one such paragraph ends and another one begins.

@ The \goodbreak macro is an abbreviation for ‘\par\penalty-500’. This is a

good thing to insert in your manuscript when proofreading, if you are willing
to stretch some page a little bit extra in order to improve the following one. Later on
if you make another change so that this \goodbreak command does not appear near
the bottom of a page, it will have no effect; thus it is not as drastic as \eject.

@ The most interesting macro that plain TEX provides for page make-up is called
\filbreak. It means, roughly, “Break the page here and fill the bottom with
blank space, unless there is room for more copy that is itself followed by \filbreak.”
Thus if you put \filbreak at the end of every paragraph, and if your paragraphs aren’t
too long, every page break will occur between paragraphs, and TEX will fit as many
paragraphs as possible on each page. The precise meaning of \filbreak is

\vfil\penalty-200\vfilneg

according to Appendix B; and this simple combination of TEX’s primitives produces
the desired result: If a break is taken at the \penalty-200, the preceding \vfil will
fill the bottom of the page with blank space, and the \vfilneg will be discarded after
the break; but if no break is taken at the penalty, the \vfil and \vfilneg will cancel
each other and have no effect.

@ Plain TEX also provides a \raggedbottom command, which is a vertical analog
of \raggedright: It tells TEX to permit a small amount of variability in the
bottom margins on different pages, in order to make the other spacing uniform.

We saw in Chapter 14 that breakpoints for paragraphs are chosen by computing

“demerits” for each line and summing them over all lines. The situation for pages is
simpler because each page is considered separately. TEX figures the “cost” of a page break by
using the following formula:

P, if b < oo and p < —10000 and ¢ < 10000;

b+p+gq, if b< 10000 and —10000 < p < 10000 and g < 10000;
100000, if b = 10000 and —10000 < p < 10000 and g < 10000;
oo, if (b = 0o or ¢ > 10000) and p < 10000.

c=

Here b is the badness of the page that would be formed if a break were chosen here; p is the
penalty associated with the current breakpoint; and g is ‘\insertpenalties’, the sum of all
penalties for split insertions on the page, as explained below. Vertical badness is computed by
the same rules as horizontal badness; it is an integer between 0 and 10000, inclusive, except
when the box is overfull, when it is oo (infinity).

111

smallbreak
medbreak
bigbreak
smallskip
medskip
bigskip
theorems
goodbreak
filbreak
vfilneg
raggedbottom
raggedright
cost

badness
insertpenalties
infinite badness

112

Chapter 15: How TgX MakesLines into Pages

When a page is completed, it is removed from the main vertical list and passed to an

“output routine,” as we will see later; so its boxes and glue eventually disappear from
TEX’s memory. The remainder of the main vertical list exists in two parts: First comes the
“current page,” which contains all the material that TEX has considered so far as a candidate
for the next page to be broken off; then there are “recent contributions,” i.e., items that will be
moved to the current page as soon as TEX finds it convenient to do so. If you say \showlists,
TEX will display the contents of the current page and the recent contributions, if any, on your
log file. (The example in Chapter 13 doesn’t show any such lists because they were both
empty in that case. Chapter 24 explains more about TEX’s timing.)

Whenever TEX is moving an item from the top of the “recent contributions” to

the bottom of the “current page,” it discards a discardable item (glue, kern, or
penalty) if the current page does not contain any boxes. This is how glue disappears at a page
break. Otherwise if a discardable item is a legitimate breakpoint, TEX calculates the cost ¢
of breaking at this point, using the formula that we have just discussed. If the resulting c is
less than or equal to the smallest cost seen so far on the current page, TEX remembers the
current breakpoint as the best so far. And if ¢ = oo or if p < —10000, TEX seizes the initiative
and breaks the page at the best remembered breakpoint. Any material on the current page
following that best breakpoint is moved back onto the list of recent contributions, where it
will be considered again; thus the “current page” typically gets more than one page’s worth of
material before the breakpoint is chosen.

% This procedure may seem mysterious until you see it in action. Fortunately, there is

a convenient way to watch it; you can set \tracingpages=1, thereby instructing TEX
to put its page-cost calculations into your log file. For example, here is what appeared on the
log file when the author used \tracingpages=1 at the beginning of the present chapter:

%% goal height=528.0, max depth=2.2

% t=10.0 g=528.0 b=10000 p=150 c=100000%#
% t=22.0 g=528.0 b=10000 p=0 c=100000#
% t=34.0 g=528.0 b=10000 p=0 c=100000#

(25 similar lines are being omitted here)
% £=346.0 plus 2.0 g=528.0 b=10000 p=0 c=100000%
% t=358.0 plus 2.0 g=528.0 b=10000 p=150 c=100000#
% t=370.02223 plus 2.0 g=528.0 b=10000 p=-100 c=100000#

% t=398.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 c=100000#

% t=409.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 c=100000%#

% t=420.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=150 c=100000#
% t=431.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=-100 c=100000%#
% t=459.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000%#

% t=470.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000#

% t=481.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000#

% t=492.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000%#

% t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=0 c=3049#

% t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=150 c=683#

% t=525.0 plus 8.0 minus 4.0 g=528.0 b=5 p=-100 c=-95#

% t=553.0 plus 11.0 minus 6.0 g=528.0 b=* p=0 c=x%

This trace output is admittedly not “user-friendly” in appearance, but after all it comes from
deep inside TEX’s bowels where things have been reduced to numeric calculations. You can
learn to read it with a little practice, but you won’t need to do so very often unless you need
to plunge into page-breaking for special applications. Here’s what it means: The first line,
which starts with ‘%%’, is written when the first box or insertion enters the current page list;
it shows the “goal height” and the “max depth” that will be used for that page (namely, the
current values of \vsize and \maxdepth). In the present manual we have \vsize=44pc and
\maxdepth=2.2pt; dimensions in the log file are always displayed in points. The subsequent
lines, which start with a single ‘/4’, are written whenever a legal breakpoint is being moved
from the list of recent contributions to the current page list. Every % line shows ¢, which is
the total height so far if a page break were to occur, and g, which is the goal height; in this

output routine
current page
recent contributions
showlists
discardable item
tracingpages
percent percent
goal height

max depth

vsize

maxdepth
percent

Chapter 15: How TgX MakesLines into Pages

example g stays fixed at 528 pt, but g would have decreased if insertions such as footnotes
had occurred on the page. The values of ¢ are steadily increasing from 10 to 22 to 34, etc.;
baselines are 12 pt apart at the top of the page and 11 pt apart at the bottom (where material
is set in nine-point type). We are essentially seeing one % line per hbox of text being placed
on the current page. However, the % lines are generated by the penalty or glue items that
follow the hboxes, not by the boxes themselves. Each % line shows also the badness b, the
penalty p, and the cost ¢ associated with a breakpoint; if this cost is the best so far, it is
marked with a ‘#’ sign, meaning that “this breakpoint will be used for the current page if
nothing better comes along.” Notice that the first 40 or so breaks all have b = 10000, since
they are so bad that TEX considers them indistinguishable; in such cases ¢ = 100000, so TEX
simply accumulates material until the page is full enough to have b < 10000. A penalty of 150
reflects the \clubpenalty or the \widowpenalty that was inserted as described in Chapter 14.
The three lines that say p=-100 are the breakpoints between “dangerous bend” paragraphs;
these came from \medbreak commands. The notation b=+ and c=* on the final line means that
b and c are infinite; the total height of 553 pt cannot be reduced to 528 pt by shrinking the
available glue. Therefore the page is ejected at the best previous place, which turns out to be
a pretty good break: b=5 and p=-100 yield a net cost of —95.

» EXERCISE 15.1
Suppose the paragraph at the bottom of the example page had been one line shorter;
what page break would have been chosen?

» EXERCISE 15.2
The last two “% lines” of this example show the natural height of ¢ jumping by 28 pt,
from 525.0 to 553.0. Explain why there was such a big jump.

% The \maxdepth parameter tells TEX to raise the bottom box on the page if that

box has too much depth, so that the depth of the constructed page will not exceed
a specified value. (See the discussion of \boxmaxdepth in Chapter 12.) In our example
\maxdepth=2.2pt, and the influence of this parameter can be seen in the line that says ‘%
t£=370.02223’. Ordinarily ¢t would have been 370.0 at that breakpoint; but the hbox preceding
it was unusual because it contained the letter j in \tt, and a 10-point typewriter-style j
descends 2.22223 pt below the baseline. Therefore TEX figured badness as if the hbox were
.02223 pt higher and only 2.2 pt deep.

% Notice that the first “% line” of our example says t=10.0; this is a consequence
of another parameter, called \topskip. Glue disappears at a page break, but it is
desirable to produce pages whose top and bottom baselines occur in predetermined positions,
whenever possible; therefore TEX inserts special glue just before the first box on each page.
This special glue is equal to \topskip, except that the natural space has been decreased by
the height of the first box, or it has been set to zero in lieu of a negative value. For example,
if \topskip=20pt plus2pt, and if the first box on the current page is 13 pt tall, TEX inserts
‘\vskip7pt plus2pt’ just above that box. Furthermore, if the first box is more than 20 pt tall,
“\vskipOpt plus2pt’ is inserted. But this example is atypical, since the \topskip glue usually
has no stretchability or shrinkability; plain TEX sets \topskip=10pt.

%» EXERCISE 15.3

Assume that \vsize=528pt, \maxdepth=2.2pt, \topskip=10pt, and that no \insert
commands are being used. TEX will make pages that are 528 pt high, and the following two
statements will normally be true: (a) The baseline of the topmost box on the page will be
10 pt from the top, i.e., 518 pt above the baseline of the page itself. (b) The baseline of the
bottommost box on the page will coincide with the baseline of the page itself. Explain under
what circumstances (a) and (b) will fail.

% Since \vsize, \maxdepth, and \topskip are parameters, you can change them at

any time; what happens if you do? Well, TEX salts away the values of \vsize and
\maxdepth when it prints the “%7% line,” i.e., when the first box or insertion occurs on the current
page; subsequent changes to those two parameters have no effect until the next current page is
started. On the other hand, TEX looks at \topskip only when the first box is being contributed
to the current page. If insertions occur before the first box, the \topskip glue before that box

113

sharp
clubpenalty
widowpenalty
medbreak

*

maxdepth
boxmaxdepth
tt

topskip

114 Chapter 15: How TgX MakesLines into Pages

is considered to be a valid breakpoint; this is the only case in which a completed page might
not contain a box.

% You can look at the t and g values that are used in page breaking by referring
to the (dimen) values ‘\pagetotal’ and ‘\pagegoal’, respectively. You can even
change them (but let’s hope that you know what you are doing). For example, the com-
mand \pagegoal=500pt overrides the previously saved value of \vsize. Besides \pagetotal,
which represents the accumulated natural height, TEX maintains the quantities \pagestretch,

\pagefilstretch, \pagefillstretch, \pagefilllstretch, \pageshrink, and \pagedepth. When[l|

the current page contains no boxes, \pagetotal and its relatives are zero and \pagegoal is
16383.99998 pt (TEX’s largest (dimen)); changing their values has no effect at such times. The
integer ¢ in the formula for page costs is also available for inspection and change; it is called
\insertpenalties.

% Page breaking differs from line breaking in one small respect that deserves mention

here: If you say \eject\eject, the second \eject is ignored, because it is equivalent
to \penalty-10000 and penalties are discarded after a page break. But if you say \break\break
in a paragraph, the second \break causes an empty line, because penalties are discarded after
a break in a paragraph only if they do not belong to the final sequence of breakpoints. This
technicality is unimportant in practice, because \break\break isn’t a good way to make an
empty line; that line will usually be an underfull hbox, since it has only the \leftskip and
\rightskip glue in it. Similarly, ‘\eject\eject’ would not be a good way to make an empty
page, even if TEX were to change its rules somehow so that an \eject would never be ignored.
The best way to eject an empty page is to say ‘\eject\line{}\vfilleject’, and the best way
to create an empty line is ‘\break\hbox{}\hfil\break’. Both of these avoid underfull boxes.

@ You are probably wondering how page numbers and such things get attached

to pages. The answer is that TEX allows you to do further processing after
each page break has been chosen; a special “output routine” goes into action before
pages actually receive their final form. Chapter 23 explains how to construct output
routines and how to modify the output routine of plain TEX.

@ Every once in a while, TEX will produce a really awful-looking page and you

will wonder what happened. For example, you might get just one paragraph
and a lot of white space, when some of the text on the following page would easily fit
into the white space. The reason for such apparently anomalous behavior is almost
always that no good page break is possible; even the alternative that looks better to
you is quite terrible as far as TEX is concerned! TEX does not distinguish between two
choices that both have 10000 units of badness or more, even though some bad breaks
do look much worse than others. The solution in such cases is to insert \eject or
\vfill\eject in some acceptable spot, or to revise the manuscript. If this problem
arises frequently, however, you probably are using a format that sets overly strict
limitations on page format; try looking at the output of \tracingpages and modifying
some of TEX’s parameters, until you have better luck.

@ The remainder of this chapter is about insertions: things like footnotes and

illustrations, and how they interact with page breaks. Before we discuss the
primitive operations by which TEX deals with insertions, we will take a look at the
facilities that plain TEX provides at a higher level.

@ Illustrations can be inserted in several ways using plain TEX. The simplest of
these is called a “floating topinsert”; you say

\topinsert(vertical mode material)\endinsert

pagetotal
pagegoal
pagestretch
pagefilstretch
pagefillstretch
pagefilllstretch
pageshrink
pagedepth
insertpenalties
break

empty page
empty line
illustrations

floating topinsert

topinsert
endinsert

Chapter 15: How TgX MakesLines into Pages 115

and TEX will attempt to put the vertical mode material at the top of the current page. caption
If there’s no room for such an insertion on this page, TEX will insert it at the top of {)?gsgl‘:fi‘“ght
1ZSK1
the next page. The (vertical mode material) can contain embedded paragraphs that griupﬁlg
temporarily interrupt vertical mode in the usual way; for example: pageinsert
midinsert
\topinsert \vskip 2in bigskip
\hsize=3in \raggedright bigbreak
goodbreak

\noindent{\bf Figure 3.} This is the caption to the
third illustration of my paper. I have left two inches
of space above the caption so that there will be room
to introduce special artwork. \endinsert

The caption in this example will be set ragged-right in a 3-inch column at the left of
the page. Plain TEX automatically adds a “bigskip” below each topinsert; this will
separate the caption from the text. The effects of \hsize=3in and \raggedright do
not extend past the \endinsert, since grouping is implied.

@ » EXERCISE 15.4
Modify this example so that the caption is moved over next to the right margin,
instead of appearing at the left.

@ Similarly, if you say ‘\pageinsert (vertical mode material) \endinsert’, the
vertical mode material will be justified to the size of a full page (without a
bigskip below it); the result will appear on the following page.

@ There’s also ‘\midinsert (vertical mode material) \endinsert’, which tries
first to insert the material in place, wherever you happen to be, in the middle
of the current page. If there is enough room, you get the effect of

\bigskip\vbox{(vertical mode material)}\bigbreak

otherwise the \midinsert is effectively converted to a \topinsert. There is a slight
probability that \midinsert will not find the best placement, because TEX is sometimes
processing text ahead of the current page. You may want to say ‘\goodbreak’ just
before \midinsert.

@ You should use the commands \topinsert, \pageinsert, \midinsert in ver-
tical mode (i.e., between paragraphs), not inside of boxes or other insertions.

@ If you have two or more \topinsert or \pageinsert commands in quick suc-

cession, TEX may need to carry them over to several subsequent pages; but
they will retain their relative order when they are carried over. For example, suppose
you have pages that are nine inches tall, and suppose you have already specified 4 inches
of text for some page, say page 25. Then suppose you make seven topinserts in a row, of
respective sizes 1,2, 3,9, 3,2, 1 inches; the 9-inch one is actually a \pageinsert. What
happens? Well, the first and second will appear at the top of page 25, followed by the
4 inches of copy you have already typed; that copy will immediately be followed by two
more inches that you type after the seven inserts. The third topinsert will appear at
the top of page 26, followed by six more inches of text; the fourth will fill page 27; and
the remaining three will appear at the top of page 28.

@ » EXERCISE 15.5
What would happen in the example just discussed if the final 1-inch insertion
were a \midinsert instead of a \topinsert?

116 Chapter 15: How TgX MakesLines into Pages

@ At the end of a paper, you probably want to make sure that no insertions supereject
are lost; and at the end of a chapter, you probably want to make sure that footnotes
. footnote
no insertions float into the following chapter. Plain TEX will flush out all remain- reference mark
ing insertions, with blank space filling the bottom of incomplete pages, if you say textindent
¢ . . P item
\vfill\supereject’. dag
@ Besides illustrations that are inserted at the top of a page, plain TEX will also gdag
insert footnotes at the bottom of a page. The \footnote macro is provided P
for use within paragraphs;* for example, the footnote in the present sentence was typed gci;tbon
in the following way: centerline
Thor
. paragraphs;\footnote*{Like this.} for example, ... halign
vfootnote

There are two parameters to a \footnote; first comes the reference mark, which will
appear both in the paragraph** and in the footnote itself, and then comes the text of
the footnote.*> The latter text may be several paragraphs long, and it may contain
displayed equations and such things, but it should not involve other insertions. TEX
will ensure that each footnote occurs at the bottom of the same page as its reference.f
A long footnote will be split, if necessary, and continued at the bottom of the following
page, as you can see in the somewhat contrived example that appears here. Authors
who are interested in good exposition should avoid footnotes whenever possible, since
footnotes tend to be distracting.}

@ The \footnote macro should be used only in paragraphs or hboxes that are

contributed to TEX’s main vertical list; insertions will be lost if they occur
inside of boxes that are inside of boxes. Thus, for example, you should not try to put
a \footnote into a subformula of a math formula. But it’s OK to use footnotes within
\centerline, e.g.,

\centerline{A paper by A. U. Thor?
\footnote*{Supported by NSF.}}

or even on the outer level of a table entry inside an \halign.

% Topinserts work fine by themselves, and footnotes work fine by themselves, but com-

plications can arise when you try to mix them in devious ways. For example, if a
\pageinsert floats to the page that follows a long footnote that had to be broken, both of the
held-over insertions may try to force themselves onto the same page, and an overfull vbox may
result. Furthermore, insertions cannot appear within insertions, so you can’t use \footnote
within a \topinsert. If you really need a footnote in some caption, there’s a \vfootnote macro
that can be used in vertical mode. To use it, you put a reference mark like ‘*’ in the caption,

* Like this.

** The author typed ‘paragraph\footnote{**}{The author ...} here.

45 And ‘footnote.\footnote{$"{45}$}{And ...} here. The footnotes in this manual
appear in smaller type, and they are set with hanging indentation; furthermore a
smallskip occurs between footnotes on the same page. But in plain TEX, footnotes
are typeset with the normal size of type, with \textindent used for the reference
mark, and without extra smallskips. The \textindent macro is like \item, but it
omits hanging indentation.

T Printers often use the symbols \dag (}), \ddag (), \8 (§), and \P () as reference
marks; sometimes also $\1$ (]|). You can say, e.g., ‘\footnote\dag{...}".

1 Yet Gibbon’s Decline and Fall would not have been the same without footnotes.

Chapter 15: How TgX MakesLines into Pages

and then you say ‘\vfootnote*{The footnotel}’ somewhere on the page where you guess that
the caption will finally fall. In such complex circumstances you might want to rethink whether
or not you are really using the most appropriate format for the exposition of your ideas.

Chapter 24 explains the exact rules about migration of vertical-mode material (like
footnotes) from horizontal lists to the enclosing vertical list. Insertions, marks, and
the results of \vadjust all migrate in the same fashion.

@ Now let’s study the primitives of TEX that are used to construct macros like

\topinsert and \footnote. We are about to enter behind the scenes into a
sublanguage of TEX that permits users to do complex manipulations with boxes and
glue. Our discussion will be in two parts: First we shall consider TEX’s “registers,”
with which a user can do arithmetic related to typesetting; and then we shall discuss
the insertion items that can appear in horizontal and vertical lists. Our discussion
of the first topic (registers) will be marked with single dangerous-bend signs, since
registers are of general use in advanced applications of TEX, whether or not they relate
to insertions. But the second topic will be marked with double dangerous-bend signs,
since insertions are rather esoteric.

TEX has 256 registers called \count0 to \count255, each capable of containing

integers between —2147483647 and +2147483647, inclusive; i.e., the magni-
tudes should be less than 23'. TEX also has 256 registers called \dimen0 to \dimen255,
each capable of containing a (dimen) (see Chapter 10). There are another 256 registers
called \skipO to \skip255, each containing (glue) (see Chapter 12); and \muskipO to
\muskip255, each containing (muglue) (see Chapter 18). You can assign new values to
these registers by saying

\count{number) = (number)
\dimen({number) = (dimen)
\skip(number) = (glue)
\muskip(number) = (muglue)

and then you can add or subtract values of the same type by saying

\advance\count(number) by (number)
\advance\dimen(number) by (dimen)
\advance\skip(number) by (glue)
\advance\muskip(number) by (muglue)

For example, ‘\dimen8=\hsize \advance\dimen8 by 1in’ sets register \dimen8 to an
inch more than the current value of the normal line size.

@ If infinite glue components are added, lower order infinities disappear. For
example, after the two commands

\skip2 = Opt plus 2fill minus 3fill
\advance\skip2 by 4pt plus 1fil minus 2filll

the value of \skip2 will be 4 pt plus 2 fill minus 2 filll.

@ Multiplication and division are possible too, but only by integers. For example,

‘\multiply\dimen4 by 3’ triples the value of \dimen4, and ‘\divide\skip5
by 2’ cuts in half all three components of the glue that is currently registered in \skip5.
You shouldn’t divide by zero, nor should you multiply by numbers that will make the

117

migration
vadjust
registers
arithmetic
count
number
dimen
dimen
skip

glue
muskip
muglue
advance
multiply
divide

118 Chapter 15: How TgX MakesLines into Pages

results exceed the register capacities. Division of a positive integer by a positive integer sp
discards the remainder, and the sign of the result changes if you change the sign of Silrglek;er
either operand. For example, 14 divided by 3 yields 4; —14 divided by 3 yields —4; glue
—14 divided by —3 yields 4. Dimension values are integer multiples of sp (scaled points). nglsle
roun
@ You can use any \count register in the context of a (number), any \dimen group structure
register in the context of a (dimen), any \skip register in the context of (glue), global

and any \muskip register in the context of (muglue). For example, ‘\hskip\skipl’ puts
horizontal glue into a list, using the value of \skip1; and if \count5 is 20, the command
‘\advance\dimen20 by\dimen\count5’ is equivalent to ‘\multiply\dimen20 by 2’.

@ A \dimen register can be used also in the context of a (number), and a \skip

register can be used as a (dimen) or a (number). TEX converts (glue) to
(dimen) by omitting the stretch and shrink components, and it converts (dimen) to
(number) by assuming units of sp (scaled points). For example, if \skip1 holds the
value 1pt plus 2pt, then ‘\dimen1=\skipl’ sets \dimenl equal to 1pt; and the com-
mands ‘\count2=\dimen1’ or ‘\count2=\skipl’ will set \count2 equal to 65536. These
rules also apply to TEX’s internal parameters; for example, ‘\dimen2=\baselineskip’
will set \dimen2 to the natural space component of the current baselineskip glue.

@ » EXERCISE 15.6
Test your knowledge of TEX’s registers by stating the results of each of the
following commands when they are performed in sequence:

\count1=50 \dimen2=\countlpt \divide\countl by 8

\skip2=-10pt plus\count1fil minus\dimen2

\multiply\skip2 by-\countl \divide\skip2 by \dimen2 \count6=\skip2
\skipl=.5\dimen2 plus\skip2 minus\count\count1fill

\multiply\skip2 by\skipl \advance\skipl by-\skip2

@ » EXERCISE 15.7
What is in \skip5 after the following three commands have acted?

\skip5=0Opt plus 1pt
\advance\skip5 by \skip4 \advance\skip5 by -\skip4

@ » EXERCISE 15.8
(For mathematicians.) Explain how to round \dimen2 to the nearest multiple
of \dimen3, assuming that \dimen3 is positive.

@ The registers obey TEX’s group structure. For example, changes to \count3
inside {...} will not affect the value of \count3 outside. Therefore TEX

effectively has more than 256 registers of each type. If you want the effect of a register

command to transcend its group, you must say \global when you change the value.

@ » EXERCISE 15.9
What is in \count1 after the following sequence of commands?

\count1=5 {\count1=2 \globalladvance\countiby\countl
\advance\countiby\count1}

@ The first ten \count registers, \countO through \count9, are reserved for a
special purpose: TEX displays these ten counts on your terminal whenever

Chapter 15: How TgX MakesLines into Pages

outputting a page, and it transmits them to the output file as an identification of that
page. The counts are separated by decimal points on your terminal, with trailing ‘.0’
patterns suppressed. Thus, for example, if \count0=5 and \count2=7 when a page is
being shipped out to the dvi file, and if the other count registers are zero, TEX will
type ‘[6.0.7]’. Plain TEX uses \countO for the page number, and it keeps \count1
through \count9 equal to zero; that is why you see just ‘[1]’ when page 1 is being
output. In more complex applications the page numbers can have further structure;
ten counts are shipped out so that there will be plenty of identification.

@ It’s usually desirable to have symbolic names for registers. TEX provides a
\countdef command (similar to \chardef, cf. Chapter 8), which makes it
easy to do this: You just say

\countdef\chapno=28

and \chapno is henceforth an abbreviation for \count28. Similar commands \dimendef,
\skipdef, and \muskipdef are available for the other types of numeric registers. After
a control sequence has been defined by \countdef, it can be used in TEX commands
exactly as if it were an integer parameter like \tolerance. Similarly, \dimendef ef-
fectively creates a new dimension parameter, \skipdef effectively creates a new glue
parameter, and \muskipdef effectively creates a new muglue parameter.

@ Besides the numerical registers, TEX also has 256 box registers called \box0 to

\box255. A box register gets a value when you say \setbox(number)=(box);
for example, ‘\setbox3=\hbox{A}’ sets \box3 to an hbox that contains the single let-
ter A. Several other examples of \setbox have already appeared in Chapter 12. Chap-
ter 10 points out that ‘2\wd3’ is a (dimen) that represents twice the width of \box3;
similarly, \ht (number) and \dp(number) can be used to refer to the height and depth
of a given box register.

@ Box registers are local to groups just as arithmetic registers are. But there’s a

big difference between box registers and all the rest: When you use a \box, it
loses its value. For example, the construction ‘\raise2pt\box3’ in a horizontal list not
only puts the contents of \box3 into the list after raising it by 2 pt, it also makes \box3
void. TEX does this for efficiency, since it is desirable to avoid copying the contents
of potentially large boxes. If you want to use a box register without wiping out its
contents, just say ‘\copy’ instead of ‘\box’; for example, ‘\raise2pt\copy3’.

@ Another way to use a box register is to extract the inside of an hbox by saying
“‘\unhbox’. This annihilates the contents of the register, like ‘\box’ does, and
it also removes one level of boxing. For example, the commands

\setbox3=\hbox{A} \setbox3=\hbox{\box3 B}
\setbox4=\hbox{A} \setbox4=\hbox{\unhbox4 B}

put \hbox{\hbox{A}B} into \box3 and \hbox{AB} into \box4. Similarly, \unvbox un-
wraps a vbox. If you want to construct a large box by accretion (e.g., a table of
contents), it is best to use \unhbox or \unvbox as in the \setbox4 example; otherwise
you use more of TEX’s memory space, and you might even obtain boxes inside boxes
nested to such a deep level that hardware or software limits are exceeded.

@ The operations \unhcopy and \unvcopy are related to \unhbox and \unvbox
as \copy is to \box. (But their names are admittedly peculiar.)

119

dvi

1]
countdef
dimendef
skipdef
muskipdef
parameter
box
setbox
box

ht

dp

wd

copy
unhbox
unvbox
table of contents
unhcopy
unvcopy

120 Chapter 15: How TgX MakesLines into Pages

@ An unboxing operation “unsets” any glue that was set at the box’s outer level. void
For example, consider the sequence of commands grouping with box registers
showbox
sh h;
\setbox5=\hbox{A \hbox{B C}} \setbox6=\hbox to 1.05\wd5{\unhcopy5} zr;’mg;l
. . tracingonline
This makes \box6 five percent wider than \box5; the glue between A and \hbox{B C} allocation
stretches to make the difference, but the glue inside the inner hbox does not change. macro Wziter
newcoun
countdef

@ A box register is either “void” or it contains an hbox or a vbox. There is a

difference between a void register and one that contains an empty box whose
height, width, and depth are zero; for example, if \box3 is void, you can say \unhbox3
or \unvbox3 or \unhcopy3 or \unvcopy3, but if \box3 is equal to \hbox{} you can say
only \unhbox3 or \unhcopy3. If you say ‘\global\setbox3=(box)’, register \box3 will
become “globally void” when it is subsequently used or unboxed.

g% » EXERCISE 15.10
What is in register \box5 after the following commands?

\setbox5=\hbox{A} \setbox5=\hbox{\copy5\unhbox5\box5\unhcopy5}

@ » EXERCISE 15.11
And what’s in \box3 after ‘{\global\setbox3=\hbox{A}\setbox3=\hbox{}}'?

@ If you are unsure about how TEX operates on its registers, you can experiment
online by using certain ‘\show’ commands. For example,

\showthe\countl \showthe\dimen2 \showthe\skip3

will display the contents of \count1, \dimen2, and \skip3; and ‘\showbox4’ will dis-
play the contents of \box4. Box contents will appear only in the log file, unless you
say ‘\tracingonline=1’. Plain TEX provides a macro ‘\tracingall’ that turns on
every possible mode of interaction, including \tracingonline. The author used these
features to check the answers to several of the exercises above.

@ Large applications of TEX make use of different sets of macros written by
different groups of people. Chaos would reign if a register like \count100, say,
were being used simultaneously for different purposes in different macros. Therefore
plain TEX provides an allocation facility; cooperation will replace confusion if each
macro writer uses these conventions. The idea is to say, e.g., ‘\newcount’ when you
want to dedicate a \count register to a special purpose. For example, the author
designed a macro called ‘\exercise’ to format the exercises in this manual, and one of
the features of \exercise is that it computes the number of the current exercise. The
format macros in Appendix E reserve a \count register for this purpose by saying

\newcount\exno

and then the command ‘\exno=0’ is used at the beginning of each chapter. Similarly,
‘\advance\exno byl’ is used whenever a new exercise comes along, and ‘\the\exno’
is used to typeset the current exercise number. The \newcount operation assigns a
unique count register to its argument \exno, and it defines \exno with a \countdef
command. All of the other format macros are written without the knowledge of exactly
which \count register actually corresponds to \exno.

Chapter 15: How TgX MakesLines into Pages

@ Besides \newcount, plain TEX provides \newdimen, \newskip, \newmuskip,

and \newbox; there also are \newtoks, \newread, \newwrite, \newfam, and
\newinsert, for features we haven’t discussed yet. Appendices B and E contain sev-
eral examples of the proper use of allocation. In the cases of \newbox, \newread,
etc., the allocated number is defined by \chardef. For example, if the command
‘\newbox\abstract’ is used to define a box register that will contain an abstract,
and if the \newbox operation decides to allocate \box45 for this purpose, then it
defines the meaning of \abstract by saying ‘\chardef\abstract=45’. TgX allows
\chardef’d quantities to be used as integers, so that you can say \box\abstract and
\copy\abstract, etc. (There is no \boxdef command.)

g% » EXERCISE 15.12
Design a \note macro that produces footnotes numbered sequentially. For
example,’ it should produce the footnotes here? if you type

example,\note{First note.} it should produce
the footnotes here\note{Second note.} if

(Use \newcount to allocate a \count register for the footnotes.)

@ Sometimes, however, you want to use a register just for temporary storage,

and you know that it won’t conflict with anybody else’s macros. Registers
\count255, \dimen255, \skip255, and \muskip255 are traditionally kept available for
such purposes. Furthermore, plain TEX reserves \dimenO to \dimen9, \skipO to \skip9,
\muskipO to \muskip9, and \box0 to \box9 for “scratchwork”; these registers are never
allocated by the \new. .. operations. We have seen that \count0 through \count9 are
special, and \box255 also turns out to be special; so those registers should be avoided
unless you know what you are doing.

Of course any register can be used for short-term purposes inside a group (including

\countO to \count9 and \box255, and including registers that have been allocated
for other purposes), since register changes are local to groups. However, you should be sure
that TEX will not output any pages before the group has ended, because output routines might
otherwise be invoked at unfortunate times. TEX is liable to invoke an output routine whenever
it tries to move something from the list of recent contributions to the current page, because it
might discover a page break with ¢ = oo then. Here is a list of the times when that can happen:
(a) At the beginning or end of a paragraph, provided that this paragraph is being contributed
to the main vertical list. (b) At the beginning or end of a displayed equation within such a
paragraph. (c) After completing an \halign in vertical mode. (d) After contributing a box or
penalty or insertion to the main vertical list. (e) After an \output routine has ended.

% Now that we are armed with the knowledge of TEX’s flexible registers, we can

plunge into the details of insertions. There are 255 classes of insertions, \insert0 to
\insert254, and they are tied to other registers of the same number. For example, \insert100
is connected with \count100, \dimen100, \skip100, and \box100. Therefore plain TEX provides
an allocation function for insertions as it does for registers; Appendix B includes the command

\newinsert\footins

which defines \footins as the number for footnote insertions. Other commands that deal
with footnotes refer to \count\footins, \dimen\footins, and so on. The macros for floating
topinserts are similarly prefaced by ‘\newinsert\topins’, which defines \topins as the number

L First note.
2 Second note.

121

newdimen

newskip

newmuskip

newbox

newtoks

newread

newwrite

newfam

newinsert

chardef

groups

output routines, when invoked
page builder, when exercised
newinsert

122

Chapter 15: How TgX MakesLines into Pages

of their class. Each class of insertions is independent, but TEX preserves the order of insertions
within a class. It turns out that \footins is class 254, and \topins is class 253, but the macros
do not use such numbers directly.

For our purposes let’s consider a particular class of insertions called class n; we will
then be dealing with TEX’s primitive command

\insert n{(vertical mode material)}
which puts an insertion item into a horizontal or vertical list. For this class of insertions

\box n is where the material appears when a page is output;
\count n is the magnification factor for page breaking;
\dimenn is the maximum insertion size per page;

\skipn is the extra space to allocate on a page.

For example, material inserted with \insert100 will eventually appear in \box100.

% Let the natural height plus depth of \insertmn be z; then \countn is 1000 times

insert
bigskipamount
pagegoal
pagetotal
insertpenalties
pagedepth
pageshrink
maxdepth
floatingpenalty

the factor by which z affects the page goal. For example, plain TEX sets \count\footins=1000,}

since there is a one-to-one relationship: A 10-point footnote effectively makes a page 10 pt
shorter. But if we have an application where footnotes appear in double columns, a count
value of 500 would be appropriate. One of the insertion classes in Appendix E makes marginal
notes for proofreading purposes; in that case the count value is zero. No actual magnification is
done; \count n is simply a number used for bookkeeping, when estimating the costs of various
page breaks.

% The first footnote on a page requires extra space, since we want to separate the

footnotes from the text, and since we want to output a horizontal rule. Plain TEX
sets ‘\skip\footins=\bigskipamount’; this means that a bigskip of extra space is assumed
to be added by the output routine to any page that contains at least one insertion of class
\footins.

example, people usually don’t want an entire page to consist of footnotes. Plain TEX
sets \dimen\footins=8in; this means that \box\footins is not supposed to accumulate more
than 8 inches of footnotes for any one page.

% Sometimes it is desirable to put a maximum limitation on the size of insertions; for

You might want to review the page-breaking algorithm explained at the beginning
of this chapter, before reading further. On the other hand, maybe you don’t really
want to read the rest of this chapter at all, ever.

% Here now is the algorithm that TEX performs when an \insertmn is moved from

the “recent contributions” to the “current page.” (Remember that such a move
does not mean that the insertion will actually take place; the current page will be backed
up later, to the breakpoint of least cost, and only the insertions preceding that breakpoint
will actually be performed.) Let g and ¢ be the current \pagegoal and \pagetotal; let ¢
be the \insertpenalties accumulated for the current page; and let d and z be the current
\pagedepth and \pageshrink. (The value of d is at most \maxdepth; this value has not yet
been incorporated into ¢.) Finally, let be the natural height plus depth of the \insertn
that we are moving to the current page; and let f be the corresponding magnification factor,
i.e., \count n divided by 1000.

Step 1. If there is no previous \insertn on the current page, decrease g by hf + w,
where h is the current height plus depth of \boxn, and where w is the natural space
component of \skipn; also include the stretch and shrink components of \skipn in
the totals for the current page (in particular, this affects z).

Step 2. If a previous \insert n on the current page has been split, add the parameter
called \floatingpenalty to g, and omit Steps 3 and 4.

Chapter 15: How TgX MakesLines into Pages

Step 3. Test if the current insertion will fit on the page without splitting. This means
that it will not make the height plus depth of \boxn surpass \dimenn, when it is
added to \boxn together with all previous \insertn amounts on the current page;
furthermore, it means that either zf <0 or t+d+axf —2z < g. If both tests are passed,
subtract zf from g and omit Step 4.

Step 4. (The current insertion will be split, at least tentatively; but the split will not
actually take place if the least-cost page turns out to have occurred earlier than the
present insertion.) First compute the largest amount v such that a height plus depth
of v will not make the total insertions into \box n bigger than \dimenn, and such that
t+d+vf <g. (Notice that z is omitted from the latter formula, but the available
shrinkability was considered in Step 3 when we tried to avoid splitting.) Then find the
least-cost way to split the beginning of the vertical list of the insertion so as to obtain a
box of height v. (Use an algorithm just like page-breaking, but without the complexity
of insertion; an additional ‘\penalty-10000’ item is assumed to be present at the end of
the vertical list, to ensure that a legal breakpoint exists.) Let u be the natural height
plus depth of that least-cost box, and let r be the penalty associated with the optimum
breakpoint. Decrease g by uf, and increase ¢ by r. (If \tracingpages=1, the log file
should now get a cryptic message that says ‘% splitn to v,u p=r’. For example,

% split254 to 180.2,175.3 p=100

means that the algorithm has tried to split an \insert254 to 180.2 pt; the best split is
actually 175.3 pt tall, and the penalty for breaking there is 100.)

% This algorithm is admittedly complicated, but no simpler mechanism seems to do

nearly as much. Notice that penalties of —10000 inside insertions will make certain
splits very attractive in Step 4, so the user can provide hints about where to break, in difficult
situations. The algorithm provides a variety of different behaviors: Floating insertions can
be accommodated as a special case of split insertions, by making each floating topinsert start
with a small penalty, and by having zero as the associated \floatingpenalty; non-floating
insertions like footnotes are accommodated by associating larger penalties with split insertions
(see Appendix B).

123

split insertion penalty
percent split

vsplit

splitmaxdepth
maxdepth
discardable
splittopskip

topskip
floatingpenalty

% The splitting operation mentioned in Step 4 is also available as a primitive: ‘\vsplit <number)l

to(dimen)’ produces a vbox obtained by splitting off a specified amount of material
from a box register. For example,

\setbox200=\vsplit100 to 50pt

sets \box200 to a vbox whose height is 50 pt; it goes through the vertical list inside \box100
(which should be a vbox) and finds the least-cost break assuming a goal height of 50 pt,
considering badnesses and penalties just as in the case of page-breaking (but with ¢ = 0).
The algorithm uses \splitmaxdepth instead of \maxdepth to govern the maximum depth of
boxes. Then it prunes the top of \box100 by removing everything up to and including any
discardable items that immediately follow the optimum breakpoint; and it uses \splittopskip
to insert new glue before the first box inside \box100, just as \topskip glue appears at the
top of a page. However, if the optimum breakpoint occurs at the end of the vertical list inside
\box100—a ‘\penalty-10000’ item is assumed to be present there—or if all items after the
optimum breakpoint are discarded, \box100 will be void after the \vsplit. And if \box100
was void before the \vsplit, both \box100 and \box200 will be void afterwards.

You’d better not change \boxmn, \countn, \dimenn, or \skipn while TEX is con-
tributing insertions to the current page, since TEX’s algorithm assumes that those

quantities are static. But you can change \floatingpenalty, \splittopskip, and \splitmaxdepth;li

TEX will use the values that were current just inside the closing right brace of ‘\insertn{...}

124 Chapter 15: How TgX MakesLines into Pages

when it splits and floats insertions. For example, Appendix B uses \floatingpenalty=20000
in footnote insertions, to discourage footnotes that split before others can start, but \floatingpenalty=0}

Chapter 15: How TgX MakesLines into Pages 125

in floating topinserts. Appendix B also uses special values of \splittopskip and \splitmaxdepth] struts

together with struts, so that split footnotes will be typeset with the same spacing as unsplit outputpenalty
ones. holdinginserts
Struts
The \footnote macro puts an \insert into the horizontal list of a paragraph. After showlists
the paragraph has been broken into lines, this insertion will move out into the vertical output
insertpenalties

list just after the line that contained it (see Chapter 14). Since there is no legal breakpoint

between that box (i.e., that line) and the insertion, TEX will put the insertion onto the page g:ixiipth
that contains the line that contains the insertion. boxI;SS
» EXERCISE 15.13 held-over insertion
§ § . HICA
Study the page-breaking algorithm carefully. Is it possible that a footnote might not }(iNI?T}?O

appear on the same page as its reference?

When the best page break is finally chosen, TEX removes everything after the chosen

breakpoint from the bottom of the “current page,” and puts it all back at the top of
the “recent contributions.” The chosen breakpoint itself is placed at the very top of the recent
contributions. If it is a penalty item, the value of the penalty is recorded in \outputpenalty
and the penalty in the contribution list is changed to 10000; otherwise \outputpenalty is
set to 10000. The insertions that remain on the current page are of three kinds: For each
class n there are unsplit insertions, followed possibly by a single split insertion, followed pos-
sibly by others. If \holdinginserts > 0, all insertions remain in place (so that they might
be contributed again); otherwise they are all removed from the current page list as follows:
The unsplit insertions are appended to \boxn, with no interline glue between them. (Struts
should be used, as in the \vfootnote macro of Appendix B.) If a split insertion is present,
it is effectively \vsplit to the size that was computed previously in Step 4; the top part is
treated as an unsplit insertion, and the remainder (if any) is converted to an insertion as if
it had not been split. This remainder, followed by any other floating insertions of the same
class, is held over in a separate place. (They will show up on the “current page” if \showlists
is used while an \output routine is active; the total number of such insertions appears in
\insertpenalties during an \output routine.) Finally, the remaining items before the best
break on the current page are put together in a \vbox of height g, where g was the \pagegoal
at the time of the break, using the saved value of \maxdepth; this box becomes \box255. Now
the user’s \output routine enters TEX’s scanner (see Chapter 23); its duty is to assemble the
final pages based on the contents of \box255 and any insertion boxes that it knows about. The
output routine will probably unbox those boxes, so that their glue can be reset; the glue in
insertion boxes usually cooperates nicely with the glue on the rest of the page, when it is given
a chance. After the \output routine is finished, held-over insertion items are placed first on
the list of recent contributions, followed by the vertical list constructed by \output, followed
by the recent contributions beginning with the page break. (Deep breath.) You got that?

Since it is impossible to foresee how [footnotes] will happen to come out

in the make-up, it is impracticable to number them from 1 up on each page.
The best way is to number them consecutively throughout an article

or by chapters in a book.

— UNIVERSITY OF CHICAGO PRESS, Manual of Style (1910)

Don’t use footnotes in your books, Don.
— JILL KNUTH (1962)

-

16

Typing
Math Formulas

Chapter 16: TypingMath Formulas

TEX is designed to handle complex mathematical expressions in such a way that
most of them are easy to input. The basic idea is that a complicated formula
is composed of less complicated formulas put together in a simple way; the less
complicated formulas are, in turn, made up of simple combinations of formulas
that are even less complicated; and so on. Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let’s start with simple ones
and work our way up.

The simplest formula is a single letter, like ‘z’, or a single number, like
‘2’. In order to put these into a TEX text, you type ‘x’ and ‘2’, respectively.
Notice that all mathematical formulas are enclosed in special math brackets; we
are using $ as the math bracket in this manual, in accord with the plain TEX
format defined in Appendix B, because mathematics is supposedly expensive.

When you type ‘x’ the ‘x’ comes out in italics, but when you type
‘2’ the ‘2’ comes out in roman type. In general, all characters on your key-
board have a special interpretation in math formulas, according to the normal
conventions of mathematics printing: Letters now denote italic letters, while
digits and punctuation denote roman digits and punctuation; a hyphen (=) now
denotes a minus sign (—), which is almost the same as an em-dash but not quite
(see Chapter 2). The first $ that you type puts you into “math mode” and the
second takes you out (see Chapter 13). So if you forget one $ or type one $ too
many, TEX will probably become thoroughly confused and you will probably get
some sort of error message.

Formulas that have been typeset by a printer who is unaccustomed to
mathematics usually look quite strange to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
does most of its own spacing in math formulas; and it ignores any spaces that you
yourself put between $’s. For example, if you type ‘¢ x$” and ‘$ 2 $’, they will
mean the same thing as ‘x’ and ‘2’. You can type ‘$(x + y)/(x - y)§ or
‘$(x+y) / (x-y)$’, but both will result in ‘(x +y)/(x —y)’, a formula in which
there is a bit of extra space surrounding the + and — signs but none around
the / sign. Thus, you do not have to memorize the complicated rules of math
spacing, and you are free to use blank spaces in any way you like. Of course,
spaces are still used in the normal way to mark the end of control sequences,
as explained in Chapter 3. In most circumstances TEX’s spacing will be what a
mathematician is accustomed to; but we will see in Chapter 18 that there are
control sequences by which you can override TEX’s spacing rules if you want to.

One of the things mathematicians like to do is make their formulas look
like Greek to the uninitiated. In plain TEX language you can type ‘$$\alpha,
\beta, \gamma, \delta;$$ and you will get the first four Greek letters

o, 8,7,90;

furthermore there are uppercase Greek letters like ‘I, which you can get by
typing ‘Γ’. Don’t feel intimidated if you aren’t already familiar with

127

mathematical expressions
formulas
italic
roman
minus sign
math mode
dollarsign
spaces
Greek
alpha

beta
gamma
delta
Gamma

128

Chapter 16: TypingMath Formulas

Greek letters; they will be easy to learn if you need them. The only difficulty
is that some symbols that look nearly the same must be carefully distinguished.
For example, the Greek letters \nu (v) and \kappa (x) should not be confused
with the italic letters v and z; the Greek \phi (¢) is different from the slashed
zero called \emptyset (0)). A lowercase epsilon (€) is quite different from the
symbol used to denote membership in a set (€); type ‘ϵ’ for e and
‘\in’ for €. Some of the lowercase Greek letters have variant forms in plain
TEX’s math italic fonts: ‘$(\phi,\theta,\epsilon,\rho)$’ yields ‘(¢, 0, €, p)’
while ‘¢ (\varphi,\vartheta,\varepsilon, \varrho)$’ yields (¢, 9, ¢, 0)".
Besides Greek letters, there are a lot of funny symbols like ‘~’ (which
you get by typing ‘\approx’) and ‘—’ (which you get by typing ‘\mapsto’).
A complete list of these control sequences and the characters they correspond to
appears in Appendix F. Such control sequences are allowed only in math mode,
i.e., between $’s, because the corresponding symbols appear in the math fonts.

» EXERCISE 16.1
What should you type to get the formula ‘y4+v € I?

» EXERCISE 16.2
Look at Appendix F to discover the control sequences for ‘<’, ‘>’ and ‘#’.
(These are probably the three most commonly used math symbols that are not
present on your keyboard.) What does plain TgX call them?

Now let’s see how the more complex formulas get built up from simple
ones. In the first place, you can get superscripts ("?"€h) and subscripts (down low)

by using ‘~’ and ‘_’, as shown in the following examples:
Input Output
$x"2% x?
$x_2% T
$2°x$ 2%
$x"2y~2$ x%y?
$x ~ 2y ~ 2% x2y?
$x_2y_2% Tols
$_2F_3% oIy

Notice that = and _ apply only to the next single character. If you want several
things to be superscripted or subscripted, just enclose them in braces:

$x~{2y}$ %Y
$2°{2"x}$ 22"
$2-{2°{2°x}}$ 92*"
y_{x_2} Yz

$y_{x"2}$ Y2

nu
kappa

phi

emptyset

epsilon

in

phi

theta

rho

varphi

vartheta

varrho

varepsilon

funny symbols

approx

special symbols for math
mapsto

math symbols
superscripts

subscripts

indices, see subscripts
superiors, see superscripts
inferiors, see subscripts

Chapter 16: TypingMath Formulas

The braces in these examples have been used to specify “subformulas,” i.e.,
simpler parts of a larger formula. TEX makes a box for each subformula, and
treats that box as if it were a single symbol. Braces also serve their usual purpose
of grouping, as discussed in Chapter 5.

It is illegal to type ‘x"y~z’ or ‘x_y_z’; TEX will complain of a “double
superscript” or “double subscript.” You must type ‘x"{y~z}’ or ‘x"{yz} or
‘x_{y_z} or ‘x_{yz} in order to make your intention clear.

A superscript or subscript following a character applies to that character
only; but when following a subformula it applies to that whole subformula, and
it will be raised or lowered accordingly. For example,

$((x~2)~3)"4$ ((oc2>‘°’)fL
${({(x2)}"3)}"4$ (%))

In the first formula the ‘~3’ and ‘"4’ are superscripts on the right parentheses,
i.e., on the ‘)’ characters that immediately precede them, but in the second
formula they are superscripts on the subformulas that are enclosed in braces.
The first alternative is preferable, because it is much easier to type and it is just
as easy to read.

@ A subscript or superscript following nothing (as in the ‘_2F_3’ example on

the preceding page, where the ‘_2’ follows nothing) is taken to mean a sub-
script or superscript of an empty subformula. Such notations are (fortunately) rare in
mathematics; but if you do encounter them it is better to make your intention clear by
showing the empty subformula explicitly with braces. In other words, the best way to
get ‘2F3’ in a formula is to type ‘{}_2F_3’ or ‘{_2}F_3’ or ‘{_2F_3}".

@ » EXERCISE 16.3
What difference, if any, is there between the output of ‘$x + _2F_3$’ and the
output of ‘¢x + {}_2F_3$’7

@ » EXERCISE 16.4
Describe the differences between the outputs of ‘${x"y}"z$” and ‘$x~{y~z}$".

You can have simultaneous subscripts and superscripts, and you can
specify them in any order:

$x~2_3% a2
$x_3"2% a2
$x~{31415}_{92}+\pi$ 231415 ¢
$x_{y a_b} {z_c"d}$ xz;

Notice that simultaneous sup “'scripts are positioned over each other. However, a

subscript will be “tucked in” slightly when it follows certain letters; for example,
‘$P_2"2$’ produces ‘P3’. If for some reason you want the left edges of both
subscript and superscript to be aligned, you can fool TEX by inserting a null
subformula: ‘$P{}_2"2$" produces ‘P3’.

129

subformulas
right parentheses

130 Chapter 16: TypingMath Formulas

The control sequence \prime stands for the symbol ‘’, which is used
mostly in superscripts. In fact, ‘7’ is so big as it stands that you would never
want to use it except in a subscript or superscript, where it occurs in a smaller
size. Here are some typical examples:

Input Output
$y_1"\prime$ Y1
$y_2"{\prime\prime}$ Yy

$y_3"{\prime\prime\prime}$ yy’

Since single and double primes occur rather frequently, plain TEX provides a
convenient abbreviation: You can simply type ’ instead of ~\prime, and ’’
instead of “{\prime\prime}, and so on.

$£° [g(x)]g’ (X)$ f'lg(z)]lg' (2)
$y_17+y_27°$ v +yy

$y’ _1+y’’_28 Yy + s
$y’72 _3+g’ 728 V' +9”

@ » EXERCISE 16.5

Why do you think TEX treats \prime as a large symbol that appears only in
superscripts, instead of making it a smaller symbol that has already been shifted up
into the superscript position?

@ » EXERCISE 16.6
Mathematicians sometimes use “tensor notation” in which subscripts and su-
perscripts are staggered, as in ‘R;?*;’. Explain how to achieve such an effect.

Another way to get complex formulas from simple ones is to use the con-
trol sequences \sqrt, \underline, or \overline. Like ~ and _, these operations
apply to the character or subformula that follows them:

$\sqrt2$ V2
$\sqrt{x+2}$ VI +2
\underlined 4
$\overline{x+y}$ T+y
$\overline x+\overline y$ TH+7Y
$x"{\underline n}$ 2
$x"{\overline{m+n}}$ s

3+ a
You can also get cube roots ‘/ ’ and similar things by using \root:

$\root 3 \of 2% 2
$\root n \of {x"n+y~n}$ YTy
$\r00t n+1 \Of a$ n+\1/a

$\sqrt{x"3+\sqrt\alphal}$

prime

tensor notation

sqrt

underline

overline

surds, see sqrt
vinculum, see overline
root

Chapter 16: TypingMath Formulas

@ The \sqrt and \underline and \overline operations are able to place lines

above or below subformulas of any size or shape; the bar lines change their size
and position, so that they are long enough to cover the subformula, and high enough
or low enough not to bump into it. For example, consider ‘\overline 1’ (1) versus
“\overline m’ (7): the first has a shorter bar line, and this line has been raised higher
than the bar in the second. Similarly, the bar in ‘\underline y’ (y) is lower than
the bar in ‘\underline x’ (z); and square root signs appear in a variety of positions
based on the height and depth of what is being \sqrt’d: v/a + vVd + VY. TEX knows
the height, depth, and width of every letter and every subformula, because it considers
them to be boxes, as explained in Chapter 11. If you have a formula in which there
is only one \sqrt, or only one \overline or \underline, the normal positioning rules
work fine; but sometimes you want to have uniformity between different members of a
complex formula. For example, you might want to typeset ‘\/& + \/E + \/y;’, putting
all square roots in the same vertical position. There’s an easy way to do this, using the
control sequence \mathstrut as follows:

$\sqrt{\mathstrut al+\sqrt{\mathstrut d}+\sqrt{\mathstrut y}$.

A \mathstrut is an invisible box whose width is zero; its height and depth are the
height and depth of a parenthesis ‘(’. Therefore subformulas that contain \mathstrut
will always have the same height and depth, unless they involve more complicated
constructions like subscripts and superscripts. Chapter 18 discusses more powerful
operations called \smash and \phantom by which you can obtain complete control over
the positioning of roots and similar signs.

» EXERCISE 16.7
Test your understanding of what you have read so far in this chapter by explain-
ing what should be typed to get the following formulas. (Be sure to check your
answer with Appendix A to confirm that you're right.)

1010 2"t (n4 1) V1-22 wtz P
» EXERCISE 16.8
What mistake did B. C. Dull discover after he typed the following?

v/ h! (o)

Cdg

If$ x = y$, then x is equal to $y.$

» EXERCISE 16.9
Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an (n — 1)-tuple.

» EXERCISE 16.10
List all the italic letters that descend below the baseline. (These are the letters
for which \underline will lower its bar line.)

We have discussed the fact that the characters you type have special
meanings in math mode, but the examples so far are incomplete; they don’t
reveal all the power that is at your fingertips just after you press the ‘¢’ key. It’s
time now to go back to basics: Let us make a systematic survey of what each
character does, when it is used in a formula.

131

mathstrut
smash
phantom
Dull

132

Chapter 16: TypingMath Formulas

The 52 letters (A to Z and a to z) denote italic symbols (A to Z and
a to z), which a mathematician would call “variables.” TgEX just calls them
“ordinary symbols,” because they make up the bulk of math formulas. There
are two variants of lowercase L in plain TEX, namely ‘I’ (which you get by simply
typing ‘1’) and ‘¢’ (which you get by typing ‘\ell’). Although mathematicians
commonly write something that looks like ‘¢’ in their manuscripts, they do so
only to distinguish it from the numeral ‘1’. This distinguishability problem is
not present in printed mathematics, since an italic ‘I’ is quite different from a ‘1’;
therefore it is traditional to use ‘I’ unless ‘¢’ has been specifically requested.

Plain TEX also treats the 18 characters

0123456789 !'!7 .|/ °“@"

as ordinary symbols; i.e., it doesn’t insert any extra space when these symbols
occur next to each other or next to letters. Unlike the letters, these 18 characters
remain in roman type when they appear in formulas. There’s nothing special for
you to remember about them, except that the vertical line ‘|’ has special uses
that we shall discuss later. Furthermore, you should be careful to distinguish
between ‘oh’ and ‘zero’: The italic letter O is almost never used in formulas
unless it appears just before a left parenthesis, as in ‘O(n)’; and the numeral 0 is
almost never used just before a left parenthesis unless it is preceded by another
digit, as in ‘10(n —1)’. Watch for left parentheses and you’ll be 0K. (Lowercase
o’s also tend to appear only before left parentheses; type ‘x_0’ instead of ‘x_o’,
since the formula ‘z(’ is generally more correct than ‘z,’.)

The three characters +, -, and * are called “binary operations,” because
they operate on two parts of a formula. For example, + is a plus sign, which is
used for the sum of two numbers; - is a minus sign. The asterisk (*) is rarer in
mathematics, but it also behaves as a binary operation. Here are some exam-
ples of how TEX typesets binary operations when they appear next to ordinary
symbols:

Input Output
$x+y-z$ TH+y—=z
$x+y*z$ TH+y*xz
$x*y/z$ T*Y/2

Notice that = and * produce quite different math symbols from what you get in
normal text: The hyphen (-) becomes a minus sign (—), and the raised aster-
isk (*) drops down to a lower level (x).

TEX does not treat / as a binary operation, even though a slash stands for
division (which qualifies as a binary operation on mathematical grounds). The
reason is that printers traditionally put extra space around the symbols +, —, and x,
but not around /. If TEX were to typeset / as a binary operation, the formula ‘$1/2$’
would come out ‘1 /2’ which is wrong; so TEX considers / to be an ordinary symbol.

letters

variables
ordinary symbols
ell

digits

numerals
vertical line
big-O notation
binary operations
plus sign

minus sign
asterisk

star, see asterisk
hyphen

slash

Chapter 16: TypingMath Formulas

@ Appendix F lists many more binary operations, for which you type control
sequences instead of single characters. Here are some examples:

$x\times y\cdot z$ TXY-z
$x\circ y\bullet z$ royez
$x\cup y\cap z$ xUyNz
$x\sqcup y\sqcap z$ zUyMz
$x\vee y\wedge z$ TVYyAz
$x\pm y\mp z$ rtyFz

It is important to distinguish x (\times) from X (X) and from z (x); to distinguish U
(\cup) from U (U) and from w (u); to distinguish V (\vee) from V (V) and from v (v);
to distinguish o (\circ) from O (0) and from o (o). The symbols ‘v’ and ‘A’ can also
be called \lor and \land, since they frequently stand for binary operations that are
called “logical or” and “logical and.”

?2 Incidentally, binary operations are treated as ordinary symbols if they don’t
occur between two quantities that they can operate on. For example, no extra

space is inserted next to the +, —, and * in cases like the following:
$x=+1% x=+1
$3.142-% 3.142—
$(D*)$ (D)

Consider also the following examples, which show that binary operations can be used
as ordinary symbols in superscripts and subscripts:

$K_n"+,K_n"-$ K} K,
$z"+_{ij}$ Zij

$g-\circ \mapsto g~\bullet$ g° — g°
$£°x(x) \cap f_*(y)$ [(@) N fi(y)

@ » EXERCISE 16.11
How would you obtain the formulas ‘z**’ and ‘h} (2)’?

Plain TEX treats the four characters =, <, >, and : as “relations” because
they express a relationship between two quantities. For example, ‘z < y’ means
that = is less than y. Such relationships have a rather different meaning from
binary operations like 4, and the symbols are typeset somewhat differently:

$x=y>z$ rT=y>z
$x:=y$ =y

$x\1le y\ne z$ r<y#z
$x\sim y\simeq z$ T~Y~z
$x\equiv y\not\equiv z$ T=Yy£z
$x\subset y\subseteq z$ rCyCz

(The last several examples show some of the many other relational symbols that
plain TEX makes available via control sequences; see Appendix F.)

133

times

cup

vee

circ

cdot

bullet

cap

sqcup
sqcap
wedge
cross, see dagger, times
pm

mp

lor

land
logical or
logical and
relations

le

ne

simeq
colon
equals
lessthan
greaterthan
colonequals
equiv

not

subset
subseteq
sim

hooks, see subset, supset
wiggle, see sim

134 Chapter 16: TypingMath Formulas

[

The two characters ‘,” (comma) and ‘;’ (semicolon) are treated as
punctuation marks in formulas; this means that TEX puts a little extra space
after them, but not before them.

$f(x,y;2)$ f(z,y;2)

It isn’t customary to put extra space after a ‘.’ (period) in math formulas, so
TEX treats a period as an ordinary symbol. If you want the ‘:’ character to be
treated as a punctuation mark instead of as a relation, just call it \colon:
$f:A\to B$ f:A—B
$f\colon A\to B$ fiA— B
If you want to use a comma as an ordinary symbol (e.g., when it appears in a
large number), just put it in braces; TEX treats anything in braces as an ordinary
symbol. For instance,
$12,345x$
$12{,}345x$

@ » EXERCISE 16.12
What’s an easy way to get a raised dot in a decimal constant (e.g., ‘3-1416”)?

12,345z
12,345z

(wrong)
(right)

So far we have considered letters, other ordinary symbols, binary oper-
ations, relations, and punctuation marks; hence we have covered almost every
key on the typewriter. There are just a few more: The characters ‘(" and ‘[’ are
called “openings,” while)’ and ‘]’ are called “closings”; these act pretty much
like ordinary symbols, but they help TEX to decide when a binary operation is
not really being used in a binary way. Then there is the character ’, which we
know is used as an abbreviation for \prime superscripts. Finally, we know that
plain TEX reserves the other ten characters:

\$r#&e {2 _-~

These are not usable for symbols in math mode unless their \catcode values
are changed (see Chapter 7). Although { and } specify grouping, the control
sequences ‘\{’ and ‘\}’ can be used to get ‘{’ as an opening and ‘}’ as a closing.
All of these math mode interpretations are easily changeable, since each character has
a \mathcode, as explained in Chapter 17; none of the conventions are permanently

built into TEX. However, most of them are so standard that it is usually unwise to make many
changes, except perhaps in the interpretations of ¢, ", and @.

The special characters = and _ that designate superscripts and subscripts
should not be used except in formulas. Similarly, the names of math symbols
like \alpha and \approx, and the control sequences for math operations like
\overline, must not invade ordinary text. TEX uses these facts to detect missing
dollar signs in your input, before such mistakes cause too much trouble. For
example, suppose you were to type

The smallest $n such that $2°n>1000$ is~10.

comma

semicolon
punctuation marks in formulas
period

colon

to

Iparen

Ibracket

openings

rparen

fences, see opening, closing, delimiters
rbracket

closings

catcode

Ibrace

rbrace

mathcode

at sign

leftquote
doublequote
circumflex
underbar

missing dollar signs

Chapter 16: TypingMath Formulas

TEX doesn’t know that you forgot a ‘¢’ after the first ‘n’, because it doesn’t
understand English; so it finds a “formula” between the first two $ signs:

The smallest nsuchthat

after which it thinks that ‘2’ is part of the text. But then the ~ reveals an
inconsistency; TEX will automatically insert a $ before the =, and you will get
an error message. In this way the computer has gotten back into synch, and the
rest of the document can be typeset as if nothing had happened.

g% Conversely, a blank line or \par is not permitted in math mode. This gives
TEX another way to recover from a missing $; such errors will be confined to
the paragraph in which they occur.

g% If for some reason you cannot use ~ and _ for superscripts and subscripts,
because you have an unusual keyboard or because you need ~ for French
accents or something, plain TEX lets you type \sp and \sb instead. For example,
‘$x\sp2$’ is another way to get ‘z>’. On the other hand, some people are lucky enough
to have keyboards that contain additional symbols besides those of standard ASCII.
When such symbols are available, TEX can be set up to make math typing a bit more
pleasant. For example, at the author’s installation there are keys labeled t and { that
produce visible symbols (these make superscripts and subscripts look much nicer on
the screen); there are keys for the relations <, 2, and # (these save time); and there are
about two dozen more keys that occasionally come in handy. (See Appendix C.)

@ Mathematicians are fond of using accents over letters, because this is often
an effective way to indicate relationships between mathematical objects, and
because it greatly extends the number of available symbols without increasing the
number of necessary fonts. Chapter 9 discusses the use of accents in ordinary text, but
mathematical accents are somewhat different, because spacing is not the same; TEX
uses special conventions for accents in formulas, so that the two sorts of accents will not
be confused with each other. The following math accents are provided by plain TEX:

$\hat a$ a
$\check a$ a
$\tilde a$ a
$\acute a$ a
$\grave a$ a
$\dot a$ a
$\ddot a$ a
$\breve a$ a
$\bar a$ a
$\vec a$ a

The first nine of these are called \~, \v, \7, \’, \‘, \.; \", \u, and \=, respectively,
when they appear in text; \vec is an accent that appears only in formulas. TEX will
complain if you try to use \~ or \v, etc., in formulas, or if you try to use \hat or
\check, etc., in ordinary text.

135

par
Sp

sb

character set
uparrow
downarrow
leq

geq

neq

accents

hat

check

tilde

acute

grave

dot

ddot

breve

bar

vec

136 Chapter 16: TypingMath Formulas

@ It’s usually a good idea to define special control sequences for accented letters def
that you need frequently. For example, you can put fiogf}ss
1m 1
\def\Ahat{{\hat A}} jmatht . .)
accents on top ol accents
\def\chat{{\hat c}} skew P
\def\scheck{{\check s}} overline
\def\xtilde{{\tilde x}} widehat
widetilde

\def\zbar{{\bar z}}

at the beginning of a manuscript that uses the symbols A, ¢, 3, %, and z more than,
say, five times. This saves you a lot of keystrokes, and it makes the manuscript easier
to read. Chapter 20 explains how to define control sequences.

@ When the letters ¢ and j are accented in math formulas, dotless symbols 1

and 7 should be used under the accents. These symbols are called \imath and
\jmath in plain TEX. Thus, for example, a paper that uses ‘2’ and ‘7’ ought to begin
with the following definitions:

\def\ihat{{\hat\imath}}
\def\jhat{{\hat\jmath}}

@ You can put accents on top of accents, making symbols like A that might cause

a mathematician to squeal with ecstasy. However, it takes a bit of finesse to
get the upper accent into a position that looks right, because the designer of a font
for mathematics usually tells TEX to position math accents in special ways for special
letters. Plain TEX provides a control sequence called \skew that makes it fairly easy to
shift superaccents into their proper place. For example, ‘\skew6\hat\Ahat’ was used
to produce the symbol above. The number ‘6’ in this example was chosen by trial and
error; ‘5’ seems to put the upper accent a bit too far left, while ‘7’ makes it a bit too
far right, at least in the author’s opinion. The idea is to fiddle with the amount of skew
until you find what pleases you best.

@ It’s possible, in fact, to put math accents on any subformula, not just on

single characters or accented characters. But there’s usually not much point
in doing so, because TEX just centers the accent over the whole subformula. For
example, ‘$\hat{I+M}$’ yields ‘I +£M'. In particular, a \bar accent always stays the
same size; it’s not like \overline, which grows with the formula under it. Some people
prefer the longer line from \overline even when it applies to only a single letter; for
example, ‘$\bar z+\overline z$’ produces ‘Z + z’, and you can take your pick when
you define \zbar. However, plain TEX does provide two accents that grow; they are
called \widehat and \widetilde:

o~ ~

$\widehat x,\widetilde x$ T, T
$\widehat{xy}, \widetilde{xy}$ zy, Ty
$\widehat{xyz}, \widetilde{xyz}$ 7Tyz,zyz

The third example here shows the maximum size available.

» EXERCISE 16.13
This has been another long chapter; but cheer up, you have leagned a lot! Prove
it by explaining what to type in order to get the formulas e™ |, D ~ p*M + [,

Chapter 16: TypingMath Formulas 137

and g € (H™ 1)’. (In the last example, assume that a control sequence \ghat Greek
has already been defined, so that \ghat produces the accented letter §.)]f@%/g ORT
SPIVAK

Producing Greek letters is as easy as .
You just type ... as easy as π.
— LESLIE LAMPORT, The L8TEX Document Preparation System (1983)

TeX has no regard for the glories of the Greek tongue—

as far as it is concerned, Greek letters are just additional weird symbols,
and they are allowed only in math mode.

In a pinch you can get the output Tex by typing $\tau\epsilon\chi$,

but if you're actually setting Greek text, you will be using

a different version of TgX, designed for a keyboard with Greek letters on it,
and you shouldn’t even be reading this manual,

which is undoubtedly all English to you.

— MICHAEL SPIVAK, The Joy of TeX (1982)

-

17

More about Math

Chapter 17: More about Math

Another thing mathematicians like to do is make fractions—and they like to
build symbols up on top of each other in a variety of different ways:

3
1 n+1 n+1 9
- and 3 and (3) and nEZI Y/

You can get these four formulas as displayed equations by typing ‘$$1\over2$$’
and ‘$$n+1\over3$$’ and ‘$$n+1\choose3$$’ and ‘$$\sum_{n=1}"3 Z_n"2$$’;
we shall study the simple rules for such constructions in this chapter.

First let’s look at fractions, which use the ‘\over’ notation. The control
sequence \over applies to everything in the formula unless you use braces to
enclose it in a specific subformula; in the latter case, \over applies to everything
in that subformula.

Input Output

2
$$x+y~2\over k+1$$ a;{j_yl

2
$${x+y 2\over k}+1$$ r —;y +1

2
$$x+{y " 2\over k}+1$$ T+ % +1

%
$$x+{y " 2\over k+1}$$ z+ P
$$x+y~{2\over k+1}$$ z+ yk%l

You aren’t allowed to use \over twice in the same subformula; instead of typing
something like ‘a \over b \over 2’, you must specify what goes over what:

$${a\over b}\over 2$$

$$a\over{b\over 2}$$

vis| 2 Nl

Unfortunately, both of these alternatives look pretty awful. Mathematicians
tend to “overuse” \over when they first begin to typeset their own work on a
system like TEX. A good typist or copy editor will convert fractions to a “slashed
form,” whenever a built-up construction would be too small or too crowded. For
example, the last two cases should be treated as follows:

$$a/b \over 2$$ %/b
a
$$a \over b/2%$$ b/72

Conversion to slashed form takes a little bit of mathematical knowhow, since
parentheses sometimes need to be inserted in order to preserve the meaning of

139

sum
choose

fractions

over

stacked fractions, see over
slashed form

parentheses

140

Chapter 17: More about Math

the formula. Besides substituting ‘/’ for ‘\over’, the two parts of the fraction
should be put in parentheses unless they are single symbols; for example, 3 be-
comes simply a/b, but 1 becomes (a+1)/b, and % becomes (a +1)/(b+1).
Furthermore, the entire fraction should generally be enclosed in parentheses if
it appears next to something else; for example, §x becomes (a/b)z. If you are
a typist without mathematical training, it’s best to ask the author of the manu-
script for help, in doubtful cases; you might also tactfully suggest that unsightly

fractions be avoided altogether in future manuscripts.

» EXERCISE 17.1)
What’s a better way to render the formula z 4+ y*+17

» EXERCISE 17.2

Convert ‘%x’ to slashed form.

» EXERCISE 17.3
What surprise did B. L. User get when he typed ‘$$x = (y"2\over k+1)$$’?

» EXERCISE 17.4
How can you make ‘74¢’? (Assume that the control sequence \cents yields ‘¢’.)

The examples above show that letters and other symbols sometimes get
smaller when they appear in fractions, just as they get smaller when they are
used as exponents. It’s about time that we studied TEX’s method for choosing
the sizes of things. TEX actually has eight different styles in which it can treat
formulas, namely

display style (for formulas displayed on lines by themselves)
text style (for formulas embedded in the text)

script style (for formulas used as superscripts or subscripts)
scriptscript style (for second-order superscripts or subscripts)

and four other “cramped” styles that are almost the same except that exponents
aren’t raised quite so much. For brevity we shall refer to the eight styles as

D, D, T, T,S, 5§, 85, 89,

where D is display style, D’ is cramped display style, T is text style, etc. TEX
also uses three different sizes of type for mathematics; they are called text size,
script size, and scriptscript size.

The normal way to typeset a formula with TEX is to enclose it in dollar
signs $... $; this yields the formula in text style (style T'). Or you can enclose it in
double dollar signs $$... $$; this displays the formula in display style (style D).
The subformulas of a formula might, of course, be in different styles. Once you
know the style, you can determine the size of type that TEX will use:

If a letter is in style then it will be set in

D, D, T,T text size (like this)
S, S’ script size (like this)
58,88’ scriptscript size (like this)

User

money

cents

styles

display style
text style

script style
scriptscript style
cramped

sizes of type for mathematics
text size

script size
scriptscript size

Chapter 17: More about Math

There is no “SSS” style or “scriptscriptscript” size; such tiny symbols would
be even less readable than the scriptscript ones. Therefore TEX stays with
scriptscript size as the minimum:

In a formula the superscript and the subscript
of style style is style is

D, T S N

DT S’ S’

S, 88 SS Ss’

S’ 8s’ Ss’ Ss’

For example, if x"{a_b} is to be typeset in style D, then a_b will be set in
style S, and b in style SS’; the result is ‘z%’.

So far we haven’t seen any difference between styles D and T'. Actually
there is a slight difference in the positioning of exponents, although script size
is used in each case: You get 22 in D style and z2 in T style and x2 in D’ or
T’ style—do you see the difference? But there is a big distinction between D
style and T style when it comes to fractions:

In a formula the style of the and the style of the
a\over (3 of style numerator « is denominator 3 is
D T T’

D’ T T’

T S S’

T S’ S’

S, 88 SS Ss’

S’ 8s’ SS’ SS’

Thus if you type ‘$1\over2$’ (in a text) you get 3, namely style S over style S’;
but if you type ‘$$1\over2$$’ you get

1

2
(a displayed formula), which is style T over style T".

@ While we’re at it, we might as well finish the style rules: \underline does

not change the style. Math accents, and the operations \sqrt and \overline,
change uncramped styles to their cramped counterparts; for example, D changes to D’,
but D’ stays as it was.

@ » EXERCISE 17.5
State the style and size of each part of the formula /p§’, assuming that the
formula itself is in style D.

Suppose you don’t like the style that TEX selects by its automatic style
rules. Then you can specify the style you want by typing \displaystyle or
\textstyle or \scriptstyle or \scriptscriptstyle; the style that you se-
lect will apply until the end of the formula or subformula, or until you select

141

numerator
denominator
underline

Math accents
sqrt

overline
displaystyle
textstyle
scriptstyle
scriptscriptstyle

142

Chapter 17: More about Math

another style. For example, ‘$$n+\scriptstyle n+\scriptscriptstyle n.$$’ continued fraction
: strut
produces the display fush Toft
hfill
n Fntn. flush right

This is a rather silly example, but it does show that the plus signs get smaller
too, as the style changes. TEX puts no space around + signs in script styles.

Here’s a more useful example of style changes: Sometimes you need to
typeset a “continued fraction” made up of many other fractions, all of which are
supposed to be in display style:

ao+
ai +

ar + ———
2 1
as + —

a4

In order to get this effect, the idea is to type

$$a_0+{1\over\displaystyle a_1+
{\strut 1\over\displaystyle a_2+
{\strut 1\over\displaystyle a_3+
{\strut 1\over a_4}}}}$$

(The control sequence \strut has been used to make the denominators taller;
this is a refinement that will be discussed in Chapter 18. Our concern now is with
the style commands.) Without the appearances of \strut and \displaystyle
in this formula, the result would be completely different:

N 1
Qo e E—
a1+ as+—1

1
a3+a

g% These examples show that the numerator and denominator of a fraction are

generally centered with respect to each other. If you prefer to have the nu-
merator or denominator appear flush left, put ‘\hfill’ after it; or if you prefer flush
right, put ‘\hfill’ at the left. For example, if the first three appearances of ‘1\over’
in the previous example are replaced by ‘1\hfill\over’, you get the display

1
ao +

1
a1 +
1

az + ———
1
asz + —
aq
(a format for continued fractions that many authors prefer). This works because \hfill
stretches at a faster rate than the glue that is actually used internally by TEX when it
centers the numerators and denominators.

Chapter 17: More about Math

TEX has another operation ‘\atop’, which is like \over except that it
leaves out the fraction line:

$$x\atop y+2$$ v

y+2
The plain TEX format in Appendix B also defines ‘\choose’, which is like \atop
but it encloses the result in parentheses:

$$n\choose k$$ (Z)

It is called \choose because it’s a common notation for the so-called binomial
coeflicient that tells how many ways there are to choose k things out of n things.

You can’t mix \over and \atop and \choose with each other. For
example, ‘$$n \choose k \over 2$$’ is illegal; you must use grouping, to get
either ‘$${n\choose k}\over23$$’ or ‘$$n\choose{k\over2}$$’, i.e.,

2. ()

The latter formula, incidentally, would look better as ‘$$n\choose k/2$$’ or
‘$$n\choose{1\over2}k$$’, yielding

) o ()

» EXERCISE 17.6 "

As alternatives to %, discuss how you could obtain the two displays

(1) e ()

2\ k 2

» EXERCISE 17.7
Explain how to specify the displayed formula

P\ 2 p2 1 1
Q)xy 1-21-22

TEX has a generalized version of \over and \atop in which you specify the
exact thickness of the line rule by typing ‘\above(dimen)’. For example,

$$\displaystyle{a\over b}\abovelpt\displaystyle{c\over d}$$

will produce a compound fraction with a heavier (1 pt thick) rule as its main bar:

alo|ole

This sort of thing occurs primarily in textbooks on elementary mathematics.

143

atop

choose

binomial coefficient
above

compound fraction

144 Chapter 17: More about Math

Mathematicians often use the sign > to stand for “summation” and the summation
sign [to stand for “integration.” If you're a typist but not a mathematician, ;ﬁﬁgrat’on
all you need to remember is that \sum stands for) and \int for [; these int

abbreviations appear in Appendix F together with all the other symbols, in case large operators
collective signs, see large operators

you forget. Symbols like >~ and [(and a few others like | J and [] and ¢ and @), sigma signs, see sum
all listed in Appendix F) are called large operators, and you type them just as ﬁ;i::

you type ordinary symbols or letters. The difference is that TEX will choose a nolimits

larger large operator in display style than it will in text style. For example, displaylimits

$\sum x_n$ yields Sa, (T style)
$$\sum x_n$$ yields Z T (D style).

A displayed \sum usually occurs with “limits,” i.e., with subformulas
that are to appear above and below it. You type limits just as if they were
superscripts and subscripts; for example, if you want

m
n=1

you type either ‘$$\sum_{n=1}"m$$’ or ‘$$\sum"m_{n=1}$$’. According to the
normal conventions of mathematical typesetting, TEX will change this to ‘anzl’
(i.e., without limits) if it occurs in text style rather than in display style.

Integrations are slightly different from summations, in that the super-
scripts and subscripts are not set as limits even in display style:

$\int_{-\infty} {+\infty}$ yields [(T style)
“+oo
$$\int_{-\infty} " {+\infty}$$ yields / (D style).

— 00

@ Some printers prefer to set limits above and below f signs; this takes more
space on the page, but it gives a better appearance if the subformulas are
complex, because it keeps them out of the way of the rest of the formula. Similarly,
limits are occasionally desirable in text style or script style; but some printers prefer
not to set limits on displayed > signs. You can change TEX’s convention by simply
typing ‘\limits’ or ‘\nolimits’ immediately after the large operator. For example,

us

$$\int\limits_0~{\pi\over2}$$ yields /

0

$$\sum\nolimits_{n=1}"m$$ yields Zm_l

If you say ‘\nolimits\limits’ (presumably because some macro like \int specifies

\nolimits, but you do want them), the last word takes precedence. There’s also a
command ‘\displaylimits’ that can be used to restore TEX’s normal conventions; i.e., the
limits will be displayed only in styles D and D’.

Chapter 17: More about Math 145

@ Sometimes you need to put two or more rows of limits under a large operator; atop
you can do this with ‘\atop’. For example, if you want the displayed formula scriptstyle
square-root signs
L. delimiter
E P(Z,]) fences, see delimiters
0<i<m parentheses
0<j<n braces

.. pieces of symbols
the correct way to type it is

$$\sum_{\scriptstyleO\le i\le m\atop\scriptstyle0<j<n}P(i,j)$$

(perhaps with a few more spaces to make it look nicer in the manuscript file). The
instruction ‘\scriptstyle’ was necessary here, twice—otherwise the lines ‘0 <¢ < m’
and ‘0 < 7 < n’ would have been in scriptscript size, which is too small. This is another
instance of a rare case where TEX’s automatic style rules need to be overruled.

» EXERCISE 17.8 .
r

P
How would you type the displayed formula Z Z Z aiibjrcrs 7
i=1 j=1k=1
@ » EXERCISE 17.9
And how would you handle Z aijbjkcri 7
1<i<p
1<j<q
1<k<r
Since mathematical formulas can get horribly large, TEX has to have
some way to make ever-larger symbols. For example, if you type

$$\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}1}}1$$

the result shows a variety of available square-root signs:

1+411+ 1—|—\/1—|—\/1—|—\/1—|—\/1—|—x

The three largest signs here are all essentially the same, except for a vertical
segment ¢ |’ that gets repeated as often as necessary to reach the desired size;
but the smaller signs are distinct characters found in TEX’s math fonts.

A similar thing happens with parentheses and other so-called “delimiter”
symbols. For example, here are some of the different sizes of parentheses and
braces that plain TEX might use in formulas:

(((((« >>))))> {{{{{{{ }}}}}}}

The three largest pairs in each case are made with repeatable extensions, so they
can become as large as necessary.

146

Chapter 17: More about Math

Delimiters are important to mathematicians, because they provide good

visual clues to the underlying structure of complex expressions; they delimit the
boundaries of individual subformulas. Here is a list of the 22 basic delimiters
provided by plain TEX:

Input Delimiter
(left parenthesis: (
) right parenthesis:)

[or \1brack
] or \rbrack
\{ or \lbrace
\} or \rbrace

left bracket: |
right bracket: |

left curly brace: {
right curly brace: }

\1floor left floor bracket: |
\rfloor right floor bracket: |
\lceil left ceiling bracket: [
\rceil right ceiling bracket: |
\langle left angle bracket: (
\rangle right angle bracket:)

/ slash: /

\backslash reverse slash: \

| or \vert vertical bar: |

\| or \Vert double vertical bar: ||
\uparrow upward arrow:
\Uparrow double upward arrow: f
\downarrow downward arrow: |
\Downarrow double downward arrow: |}
\updownarrow up-and-down arrow: |
\Updownarrow double up-and-down arrow: {§

In some cases, there are two ways to get the same delimiter; for example, you
can specify a left bracket by typing either ‘[’ or ‘\1brack’. The latter alternative
has been provided because the symbol ‘[’ is not readily available on all computer
keyboards. Remember, however, that you should never try to specify a left brace
or right brace simply by typing ‘{’ or ‘}’; the { and } symbols are reserved for
grouping. The right way is to type ‘\{’ or ‘\}’ or ‘\1lbrace’ or ‘\rbrace’.

In order to get a slightly larger version of any of these symbols, just
precede them by ‘\bigl’ (for opening delimiters) or ‘\bigr’ (for closing ones).
This makes it easier to read formulas that contain delimiters inside delimiters:

Input Output

$\bigl (x-s(x)\bigr)\bigl (y-s(y)\bigr)$ (z —s(z))(y — s(y))
$\bigl [x-s [x]\bigr]\bigl [y-s[y]l\bigrl$ [z — s[z]|[y — s[y]]
$\bigl| [xl-lyl \bigrl$ ||x|—|y|‘
$\bigl\1lfloor\sqrt A\bigr\rfloor$ L\/ZJ

Ibrack

rbrack

Ibrace

rbrace

1floor

rfloor

Iceil

rceil

langle

rangle
backslash
vert

Vert

uparrow
Uparrow
downarrow
Downarrow
updownarrow
Updownarrow
bent bars, see langle, rangle
curly braces, see lbrace, rbrace
leftbracket
rightbracket
leftbrace
rightbrace

/

bigl

bigr

Chapter 17: More about Math

The \big delimiters are just enough bigger than ordinary ones so that the dif-
ference can be perceived, yet small enough to be used in the text of a paragraph.
Here are all 22 of them, in the ordinary size and in the \big size:

OUGUTTO/NITHIeTe
OOGUITONNTTLLTE

You can also type \Bigl and \Bigr to get larger symbols suitable for displays:

OUGUTOAITTLLLT

These are 50% taller than their \big counterparts. Displayed formulas most
often use delimiters that are even taller (twice the size of \big); such delimiters
are constructed by \biggl and \biggr, and they look like this:

OUU UGN

Finally, there are \Biggl and \Biggr versions, 2.5 times as tall as the \bigl
and \bigr delimiters:

QUGN

» EXERCISE 17.10

2 2

Guess how to type the formula o + — |<p(:z + zy)’2 = 0, in display style,
0x2 = Oy?

using \bigg delimiters for the large parentheses. (The symbols 0 and ¢ that
appear here are called \partial and \varphi.)

@ » EXERCISE 17.11
In practice, \big and \bigg delimiters are used much more often than \Big
and \Bigg ones. Why do you think this is true?

?2 A \bigl or \Bigl or \biggl or \Biggl delimiter is an opening, like a left

parenthesis; a \bigr or \Bigr or \biggr or \Biggr delimiter is a closing, like
a right parenthesis. Plain TEX also provides \bigm and \Bigm and \biggm and \Biggm
delimiters, for use in the middle of formulas; such a delimiter plays the role of a relation,
like an equals sign, so TEX puts a bit of space on either side of it.

$\bigl (x\in A(n)\bigm|x\in B(n)\bigr)$ (z € A(n) | z € B(n))
$\bigcup_n X_n\bigm\|\bigcap_n Y_n$ U, Xn H N, Yn

You can also say just \big or \Big or \bigg or \Bigg; this produces a delimiter that
acts as an ordinary variable. It is used primarily with slashes and backslashes, as in
the following example.

a+1 /c+1
$${a+1\over b}\bigg/{c+1\over d}$$ b]

@ » EXERCISE 17.12
What’s the professional way to type (x + f(:c))/(x - f(:v))7 (Look closely.)

147

Bigl
Bigr
biggl
biggr
Biggl
Biggr
partial
varphi
opening
closing
bigm
Bigm
biggm
Biggm
relation
bigcup
bigcap
verticalline
in

big

Big
bigg
Bigg

148

Chapter 17: More about Math

TEX has a built-in mechanism that figures out how tall a pair of delim-
iters needs to be, in order to enclose a given subformula; so you can use this
method, instead of deciding whether a delimiter should be \big or \bigg or
whatever. All you do is say

\left(delim;)(subformula)\right(delims)

and TEX will typeset the subformula, putting the specified delimiters at the left
and the right. The size of the delimiters will be just big enough to cover the
subformula. For example, in the display

3
$$1+\1left (1\overl-x~2\right) "3$$ 1+ (1 1$2>

TEX has chosen \biggl (and \biggr), because smaller delimiters would be too
small for this particular fraction. A simple formula like ‘$\left(x\right)$’
yields just ‘(z)’; thus, \left and \right sometimes choose delimiters that are
smaller than \bigl and \bigr.

Whenever you use \left and \right they must pair up with each other,
just as braces do in groups. You can’t have \left in one formula and \right in
another, nor are you allowed to type things like ‘\left(...{...\right)...}’
or ‘\left(...\begingroup...\right)...\endgroup’. This restriction makes
sense, because TEX needs to typeset the subformula that appears between \left
and \right before it can decide how big to make the delimiters. But it is
worth explicit mention here, because you do not have to match parentheses and
brackets, etc., when you are not using \left and \right: TEX will not complain
if you input a formula like ‘$[0,1)$’ or even ‘$) ($ or just ‘$)$’. (And it’s a
good thing TEX doesn’t, for such unbalanced formulas occur surprisingly often
in mathematics papers.) Even when you do use \left and \right, TEX doesn’t
look closely at the particular delimiters that you happen to choose; thus, you
can type strange things like ‘\left)’ and/or ‘\right (’ if you know what you're
doing. Or even if you don’t.

The \over operation in the example displayed above does not involve
the ‘1+’ at the beginning of the formula; this happens because \left and \right
have the function of grouping, in addition to their function of delimiter-making.
Any definitions that you happen to make between \left and \right will be
local, as if braces had appeared around the enclosed subformula.

» EXERCISE 17.13
Use \left and \right to typeset the following display (with \phi for ¢):

— | o(k)
W(n)—;{k_lJ.

At this point you are probably wondering why you should bother learn-
ing about \bigl and \bigr and their relatives, when \left and \right are
there to calculate sizes for you automatically. Well, it’s true that \left and
\right are quite handy, but there are at least three situations in which you

left

right

parentheses

brackets

crotchets, see brackets
grouping

phi

Chapter 17: More about Math

will want to use your own wisdom when selecting the proper delimiter size:
(1) Sometimes \left and \right choose a smaller delimiter than you want. For
example, we used \bigl and \bigr to produce “x\ — |y|| in one of the previous
illustrations; \left and \right don’t make things any bigger than necessary,
so ‘$\left|\left|x\right|-\left|y\right|\right|$’ yields only ‘||z| — |y|| .
(2) Sometimes \left and \right choose a larger delimiter than you want. This
happens most frequently when they enclose a large operator in a display; for
example, compare the following two formulas:

$$\left(\sum_{k=1}"n A_k \right)s (Z Ak>
k=1

$3\biggl(\sum_{k=1}"n A_k \biggr)$$ <Z Ak)
k=1

The rules of \left and \right cause them to enclose the \sum together with
its limits, but in special cases like this it looks better to let the limits hang out
a bit; \bigg delimiters are better here. (3) Sometimes you need to break a huge
displayed formula into two or more separate lines, and you want to make sure
that its opening and closing delimiters have the same size; but you can’t use
\left on the first line and \right on the last, since \left and \right must
occur in pairs. The solution is to use \Biggl (say) on the first line and \Biggr
on the last.

@ Of course, one of the advantages of \1left and \right is that they can make

arbitrarily large delimiters—much bigger than \biggggg! The slashes and
angle brackets do have a maximum size, however; if you ask for really big versions of
those symbols you will get the largest ones available.

» EXERCISE 17.14
Prove that you have mastered delimiters: Coerce TEX into producing the formula

w) = 3 szlum/w (m/ku)lJ .

m=2 k=1

@ If you type ‘.’ after \left or \right, instead of specifying one of the basic
delimiters, you get a so-called null delimiter (which is blank). Why on earth
would anybody want that, you may ask. Well, you sometimes need to produce formulas
that contain only one large delimiter. For example, the display
=z, ifx>0
|x|_{—az, ifzx <0

has a ‘{” but no ‘}’. It can be produced by a construction of the form
$$1xl=\1eft\{ ... \right.$$

Chapter 18 explains how to fill in the ‘...’ to finish this construction; let’s just notice
for now that the ‘\right.’ makes it possible to have an invisible right delimiter to go
with the visible left brace.

149

sum
limits
null delimiter

150 Chapter 17: More about Math

A null delimiter isn’t completely void; it is an empty box whose width is a TEX nulldelimiterspace
parameter called \nulldelimiterspace. We will see later that null delimiters are langle
inserted next to fractions. Plain TEX sets \nulldelimiterspace=1.2pt. fangli
ess-than
. . . reater-than
You can type ‘<’ or ‘>’ as convenient abbreviations for \langle and inglc brackets
\rangle, when TEX is looking for a delimiter. For example, ‘\bigl<’ is equiv- Zr:fgzv‘;e;:t
alent to ‘\bigl\langle’, and ‘\right>’ is equivalent to ‘\right\rangle’. Of bracevert
course ‘<’ and ‘>’ ordinarily produce the less-than and greater-than relations vert
‘<>, which ite different f le brackets *()’ o
< >, which are quite different from angle brackets ‘() . lgroup
rgroup
@ Plain TEX also makes available a few more delimiters, which were not listed lmoustache
in the basic set of 22 because they are sort of special. The control sequences fn“;?l‘;:;ii};z
\arrowvert, \Arrowvert, and \bracevert produce delimiters made from the repeatable subscript
parts of the vertical arrows, double vertical arrows, and large braces, respectively, zupellﬁscript
aseline

without the arrowheads or the curly parts of the braces. They produce results similar
to \vert or \Vert, but they are surrounded by more white space and they have a
different weight. You can also use \lgroup and \rgroup, which are constructed from
braces without the middle parts; and \lmoustache and \rmoustache, which give you
the top and bottom halves of large braces. For example, here are the \Big and \bigg
versions of \vert, \Vert, and these seven special delimiters:

PO U O Y % O OO

Notice that \1group and \rgroup are rather like bold parentheses, with sharper bends
at the corners; this makes them attractive for certain large displays. But you can-
not use them exactly like parentheses, because they are available only in large sizes
(\Big or more).

axis

% Question: What happens if a subscript or superscript follows a large delimiter? An-

swer: That’s a good question. After a \left delimiter, it is the first subscript or
superscript of the enclosed subformula, so it is effectively preceded by {}. After a \right
delimiter, it is a subscript or superscript of the entire \left...\right subformula. And after
a \bigl or \bigr or \bigm or \big delimiter, it applies only to that particular delimiter. Thus,
‘\bigl (_2’ works quite differently from ‘\left(_2’.

@ If you look closely at the examples of math typesetting in this chapter, you

will notice that large parentheses and brackets are symmetric with respect to
an invisible horizontal line that runs a little bit above the baseline; when a delimiter
gets larger, its height and depth both grow by the same amount. This horizontal line
is called the axis of the formula; for example, a formula in the text of the present
paragraph would have an axis at this level: The bar line in every fraction is
centered on the axis, regardless of the size of the numerator or denominator.

@ Sometimes it is necessary to create a special box that should be centered
vertically with respect to the axis. (For example, the ‘|z| = {...” example
above was done with such a box.) TgX provides a simple way to do this: You just say

\vcenter{(vertical mode material)}

Chapter 17: More about Math 151

and the vertical mode material will be packed into a box just as if \vcenter had been veenter
\vbox. Then the box will be raised or lowered until its top edge is as far above the axis ;’EOX
. 1DOX
as the bottom edge is below. vtop
box

The concept of “axis” is meaningful for TEX only in math formulas, not in ordinary copy

text; therefore TEX allows you to use \vcenter only in math mode. If you really need raise
to center something vertically in horizontal mode, the solution is to say ‘$\vcenter{...}$". lower
(Incidentally, the constructions ‘\vcenter to(dimen)’ and ‘\vcenter spread(dimen)’ are legal vrule
too, in math mode; vertical glue is always set by the rules for \vbox in Chapter 12. But mathchoice

square
mathpalette
congruence sign

\vcenter by itself is usually sufficient.)

@ Any box can be put into a formula by simply saying \hbox or \vbox or \vtop

. i cong
or \box or \copy in the normal way, even when you are in math mode. Fur- constructing new math symbols
thermore you can use \raise or \lower, as if you were in horizontal mode, and you math symbols, construction of

. reneralized fraction
can insert vertical rules with \vrule. Such constructions, like \vcenter, produce boxes &

that can be used like ordinary symbols in math formulas.

% Sometimes you need to make up your own symbols, when you run across something

unusual that doesn’t occur in the fonts. If the new symbol occurs only in one place,
you can use \hbox or \vcenter or something to insert exactly what you want; but if you are
defining a macro for general use, you may want to use different constructions in different styles.
TEX has a special feature called \mathchoice that comes to the rescue in such situations: You
write

\mathchoice{(math)}{(math)}{(math)}{(math)}

where each (math) specifies a subformula. TEX will choose the first subformula in style D
or D', the second in style T or T, the third in style S or S’, the fourth in style SS or SS’.
(TEX actually typesets all four subformulas, before it chooses the final one, because the actual
style is not always known at the time a \mathchoice is encountered; for example, when you
type ‘\over’ you often change the style of everything that has occurred earlier in the formula.
Therefore \mathchoice is somewhat expensive in terms of time and space, and you should use
it only when you're willing to pay the price.)

» EXERCISE 17.15
Guess what output is produced by the following commands:

\def\puzzle{{\mathchoice{D}{T}{S}{SS}}}
$$\puzzle{\puzzle\over\puzzle~{\puzzle~\puzzle}}$$

%» EXERCISE 17.16

Devise a ‘\square’ macro that produces a ‘0’ for use in math formulas. The box
should be symmetrical with respect to the axis, and its inside dimensions should be 3 pt in
display and text styles, 2.1 pt in script styles, and 1.5 pt in scriptscript styles. The rules should
be 0.4 pt thick in display and text styles, 0.3 pt thick otherwise.

Plain TEX has a macro called \mathpalette that is useful for \mathchoice con-
structions; ‘\mathpalette\a{xyz}’ expands to the four-pronged array of choices ‘\mathchoice{\a\displaystyle{xyz}}...{\a\script
Thus the first argument to \mathpalette is a control sequence whose first argument is a style
selection. Appendix B contains several examples that show how \mathpalette can be applied.
(See in particular the definitions of \phantom, \root, and \smash; the congruence sign \cong
(2¢) is also constructed from = and ~ using \mathpalette.)

At the beginning of this chapter we discussed the commands \over, \atop, \choose,
and \above. These are special cases of TEX’s “generalized fraction” feature, which
includes also the three primitives

\overwithdelims(delimi)(delimsa)
\atopwithdelims(delimy)(delims)
\abovewithdelims(delim;)(delima)(dimen)

152

Chapter 17: More about Math

The third of these is the most general, as it encompasses all of the other generalized fractions:
\overwithdelims uses a fraction bar whose thickness is the default for the current size, and
\atopwithdelims uses an invisible fraction bar whose thickness is zero, while \abovewithdelims
uses a bar whose thickness is specified explicitly. TEX places the immediately preceding subfor-
mula (the numerator) over the immediately following subformula (the denominator), separated
by a bar line of the desired thickness; then it puts (delim;) at the left and (delima) at the
right. For example, ‘\choose’ is equivalent to ‘\atopwithdelims()’. If you define \legendre to
be ‘\overwithdelims()’, you can typeset the Legendre symbol ‘(%)’ by saying ‘{a\legendre
b}’. The size of the surrounding delimiters depends only on the style, not on the size of the
fractions; larger delimiters are used in styles D and D’ (see Appendix G). The simple com-
mands \over, \atop, and \above are equivalent to the corresponding ‘withdelims’ commands
when the delimiters are null; for example, ‘\over’ is an abbreviation for ‘\overwithdelims..’.

» EXERCISE 17.17
Define a control sequence \euler so that the Eulerian number <Z> will be produced
when you type ‘{n\euler k}’ in a formula.

% Appendix G explains exactly how TEX computes the desired size of delimiters for

\left and \right. The general idea is that delimiters are vertically centered with
respect to the axis; hence, if we want to cover a subformula between \left and \right that
extends y; units above the axis and ys units below, we need to make a delimiter whose height
plus depth is at least y units, where y = 2max(y1, y2). It is usually best not to cover the formula
completely, however, but just to come close; so TEX allows you to specify two parameters, the
\delimiterfactor f (an integer) and the \delimitershortfall ¢ (a dimension). The minimum
delimiter size is taken to be at least y - f/1000, and at least y — §. Appendix B sets f = 901
and § = 5pt. Thus, if y = 30 pt, the plain TEX format causes the delimiter to be more than
27 pt tall; if y = 100 pt, the corresponding delimiter will be at least 95 pt tall.

@ So far we have been discussing the rules for typing math formulas, but we

haven’t said much about how TEX actually goes about converting its input into
lists of boxes and glue. Almost all of the control sequences that have been mentioned in
Chapters 16 and 17 are “high level” features of the plain TEX format; they are not built
into TEX itself. Appendix B defines those control sequences in terms of more primitive
commands that TEX actually deals with. For example, ‘\choose’ is an abbreviation
for ‘\atopwithdelims()’; Appendix B not only introduces \choose, it also tells TEX
where to find the delimiters (and) in various sizes. The plain TEX format defines all
of the special characters like \alpha and \mapsto, all of the special accents like \tilde
and \widehat, all of the large operators like \sum and \int, and all of the delimiters
like \1floor and \vert. Any of these things can be redefined, in order to adapt TEX
to other mathematical styles and/or to other fonts.

@ The remainder of this chapter discusses the low-level commands that TEX

actually obeys behind the scenes. Every paragraph on the next few pages is
marked with double dangerous bends, so you should skip to Chapter 18 unless you are
a glutton for TEXnicalities.

% All characters that are typeset in math mode belong to one of sixteen families of

fonts, numbered internally from 0 to 15. Each of these families consists of three fonts:
one for text size, one for script size, and one for scriptscriptsize. The commands \textfont,
\scriptfont, and \scriptscriptfont are used to specify the members of each family. For
example, family 0 in the plain TEX format is used for roman letters, and Appendix B contains
the instructions

\textfontO=\tenrm
\scriptfontO=\sevenrm
\scriptscriptfontO=\fiverm

overwithdelims
fraction
atopwithdelims
abovewithdelims
numerator
denominator
choose

Legendre symbol
over

atop

above

Eulerian number
axis
delimiterfactor
delimitershortfall
families

textfont
scriptfont
scriptscriptfont
family O

Chapter 17: More about Math

to set up this family: The 10-point roman font (\tenrm) is used for normal symbols, 7-point ro-
man (\sevenrm) is used for subscripts, and 5-point roman (\fiverm) is used for sub-subscripts.
Since there are up to 256 characters per font, and 3 fonts per family, and 16 families, TEX can
access up to 12,288 characters in any one formula (4096 in each of the three sizes). Imagine
that.

% A definition like \textfont(family number)=(font identifier) is local to the group that

contains it, so you can easily change family membership from one set of conventions
to another and back again. Furthermore you can put any font into any family; for example,
the command

\scriptscriptfontO=\scriptfont0

makes sub-subscripts in family 0 the same size as the subscripts currently are. TEX doesn’t
check to see if the families are sensibly organized; it just follows instructions. (However, fonts
cannot be used in families 2 and 3 unless they contain a certain number of special parameters,
as we shall see later.) Incidentally, TEX uses \nullfont, which contains no characters, for
each family member that has not been defined.

% During the time that a math formula is being read, TEX remembers each symbol

as being “character position so-and-so in family number such-and-such,” but it does
not take note of what fonts are actually in the families until reaching the end of the formula.
Thus, if you have loaded a font called \Helvetica that contains Swiss-style numerals, and if
you say something like

$\textfontO=\tenrm 9 \textfontO=\Helvetica 9$

you will get two 9’s in font \Helvetica, assuming that TEX has been set up to take 9’s from
family 0. The reason is that \textfontO is \Helvetica at the end of the formula, and that’s
when it counts. On the other hand, if you say

$\textfontO=\tenrm 9 \hbox{$9\textfontO=\Helvetica$}$

the first 9 will be from \tenrm and the second from \Helvetica, because the formula in the
hbox will be typeset before it is incorporated into the surrounding formula.

» EXERCISE 17.18
If you say ‘${\textfontO=\Helvetica 9}$’, what font will be used for the 97

% Every math character is given an identifying code number between 0 and 4095, ob-

tained by adding 256 times the family number to the position number. This is easily
expressed in hexadecimal notation, using one hexadecimal digit for the family and two for
the character; for example, “24A stands for character ”"4A in family 2. Each character is also
assigned to one of eight classes, numbered 0 to 7, as follows:

Class Meaning Ezample Class Meaning Ezample
0 Ordinary / 4 Opening (
1 Large operator \sum 5 Closing)
2 Binary operation + 6 Punctuation s
3 Relation = 7 Variable family x

Classes 0 to 6 tell what “part of speech” the character belongs to, in math-printing language;
class 7 is a special case discussed below. The class number is multiplied by 4096 and added
to the character number, and this is the same as making it the leading digit of a four-digit
hexadecimal number. For example, Appendix B defines \sum to be the math character “1350,
meaning that it is a large operator (class 1) found in position “50 of family 3.

%» EXERCISE 17.19

The \oplus and \bullet symbols (& and e) are binary operations that appear in
positions 8 and 15 (decimal) of family 2, when the fonts of plain TEX are being used. Guess
what their math character codes are. (This is too easy.)

153

tenrm

sevenrm

fiverm

nullfont

math character
hexadecimal notation
classes of math characters, table
math codes

table of ...

large operator

binary operation
relation

opening

closing

punctuation

variable family

oplus

bullet

154 Chapter 17: More about Math

% Class 7 is a special case that allows math symbols to change families. It behaves fam
exactly like class 0, except that the specified family is replaced by the current value rm
of an integer parameter called \fam, provided that \fam is a legal family number (i.e., if it lies current font
between 0 and 15). TEX automatically sets \fam=-1 whenever math mode is entered; therefore control space
class 7 and class 0 are equivalent unless \fam has been given a new value. Plain TEX changes ox
\fam to 0 when the user types ‘\rm’; this makes it convenient to get roman letters in formulas, ?nn;thcode
as we will see in Chapter 18, since letters belong to class 7. (The control sequence \rm is an catcode
abbreviation for ‘\fam=0 \tenrm’; thus, \rm causes \fam to become zero, and it makes \tenrm less than
the “current font.” In horizontal mode, the \fam value is irrelevant and the current font governs asterisk
the typesetting of letters; but in math mode, the current font is irrelevant and the \fam value family 1
governs the letters. The current font affects math mode only if \, is used or if dimensions are char
given in ex or em units; it also has an effect if an \hbox appears inside a formula, since the apostrophe
. . prime
contents of an hbox are typeset in horizontal mode.) -
active math character

% The interpretation of characters in math mode is defined by a table of 256 “mathcode” ?:;?}llchar

values; these table entries can be changed by the \mathcode command, just as the char
category codes are changed by \catcode (see Chapter 7). Each mathcode specifies class, family, mathchardef
and character position, as described above. For example, Appendix B contains the commands chardef

large operator

\mathcode ‘<="313C mathord

\mathcode ‘*="2203 mathop
which cause TEX to treat the character ‘<’ in math mode as a relation (class 3) found in position zzt}ﬁx?
“3C of family 1, and to treat an asterisk ‘*’ as a binary operation found in position 3 of family 2. mathopen
The initial value of \mathcode‘b is "7162; thus, b is character "62 in family 1 (italics), and mathclose
its family will vary with \fam. (INITEX starts out with \mathcode x = x for all characters x mathpunct

that are neither letters nor digits. The ten digits have \mathcode z = x 4 "7000; the 52 letters
have \mathcodex = z + "7100.) TEX looks at the mathcode only when it is typesetting a
character whose catcode is 11 (letter) or 12 (other), or when it encounters a character that is
given explicitly as \char(number).

% A \mathcode can also have the special value “8000, which causes the character to
behave as if it has catcode 13 (active). Appendix B uses this feature to make ’
expand to “{\prime} in a slightly tricky way. The mathcode of ’> does not interfere with the
use of ’ in octal constants.

% The mathcode table allows you to refer indirectly to any character in any family, with

the touch of a single key. You can also specify a math character code directly, by
typing \mathchar, which is analogous to \char. For example, the command ‘\mathchar"1ABC’
specifies a character of class 1, family 10 ("A), and position "BC. A hundred or so definitions
like

\def\sum{\mathchar"1350 }

would therefore suffice to define the special symbols of plain TEX. But there is a better way:
TEX has a primitive command \mathchardef, which relates to \mathchar just as \chardef does
to \char. Appendix B has a hundred or so definitions like

\mathchardef\sum="1350

to define the special symbols. A \mathchar must be between 0 and 32767 ("7FFF).

A character of class 1, i.e., a large operator like \sum, will be vertically centered with
respect to the axis when it is typeset. Thus, the large operators can be used with
different sizes of type. This vertical adjustment is not made for symbols of the other classes.

TEX associates classes with subformulas as well as with individual characters. Thus,
for example, you can treat a complex construction as if it were a binary operation
or a relation, etc., if you want to. The commands \mathord, \mathop, \mathbin, \mathrel,
\mathopen, \mathclose, and \mathpunct are used for this purpose; each of them is followed ei-
ther by a single character or by a subformula in braces. For example, \mathopen\mathchar"1234
is equivalent to \mathchar'"4234, because \mathopen forces class 4 (opening). In the formula

Chapter 17: More about Math

‘$G\mathbin:H$’, the colon is treated as a binary operation. And Appendix B constructs large
opening symbols by defining \bigl#1 to be an abbreviation for

\mathopen{\hbox{$\left#1 ...\right.$}}

There’s also an eighth classification, \mathinner, which is not normally used for individual
symbols; fractions and \left...\right constructions are treated as “inner” subformulas, which
means that they will be surrounded by additional space in certain circumstances. All other
subformulas are generally treated as ordinary symbols, whether they are formed by \overline
or \hbox or \vcenter or by simply being enclosed in braces. Thus, \mathord isn’t really a
necessary part of the TEX language; instead of typing ‘¢1\mathord,234$’ you can get the same
effect from ‘$1{,}234¢$".

%» EXERCISE 17.20

Commands like \mathchardef\alpha="010B are used in Appendix B to define the
lowercase Greek letters. Suppose that you want to extend plain TEX by putting boldface
math italic letters in family 9, analogous to the normal math italic letters in family 1. (Such
fonts aren’t available in stripped down versions of TEX, but let’s assume that they exist.)
Assume that the control sequence \bmit has been defined as an abbreviation for ‘\fam=9’;
hence ‘{\bmit b}’ will give a boldface math italic b. What change to the definition of \alpha
will make {\bmit\alpha} produce a boldface alpha?

% Delimiters are specified in a similar but more complicated way. Each character has

not only a \catcode and a \mathcode but also a \delcode, which is either negative
(for characters that should not act as delimiters) or less than “1000000. In other words,
nonnegative delcodes consist of six hexadecimal digits. The first three digits specify a “small”
variant of the delimiter, and the last three specify a “large” variant. For example, the command

\delcode‘x="123456

means that if the letter x is used as a delimiter, its small variant is found in position "23
of family 1, and its large variant is found in position “56 of family 4. If the small or large
variant is given as 000, however (position 0 of family 0), that variant is ignored. TEX looks
at the delcode when a character follows \left or \right, or when a character follows one of
the withdelims commands; a negative delcode leads to an error message, but otherwise TEX
finds a suitable delimiter by first trying the small variant and then the large. (Appendix G
discusses this process in more detail.) For example, Appendix B contains the commands

\delcode‘ (="028300 \delcode.=

which specify that the small variant of a left parenthesis is found in position “28 of family 0, and
that the large variant is in position 0 of family 3; also, a period has no variants, hence ‘\left.’
will produce a null delimiter. There actually are several different left parenthesis symbols in
family 3; the smallest is in position 0, and the others are linked together by information that
comes with the font. All delcodes are —1 until they are changed by a \delcode command.

» EXERCISE 17.21
Appendix B defines \delcode ‘< so that there is a shorthand notation for angle brack-
ets. Why do you think Appendix B doesn’t go further and define \delcode‘{?

% A delimiter can also be given directly, as ‘\delimiter(number)’. In this case the

number can be as high as “7FFFFFF, i.e., seven hexadecimal digits; the leading digit
specifies a class, from 0 to 7, as in a \mathchar. For example, Appendix B contains the
definition

\def\langle{\delimiter"426830A }

and this means that \langle is an opening (class 4) whose small variant is 268 and whose large
variant is "30A. When \delimiter appears after \left or \right, the class digit is ignored;
but when \delimiter occurs in other contexts, i.e., when TEX isn’t looking for a delimiter,
the three rightmost digits are dropped and the remaining four digits act as a \mathchar. For
example, the expression ‘$\langle x$’ is treated as if it were ‘$\mathchar"4268 x$’.

155

colon

bigl
mathinner
left

right

Greek
boldface math italic
Delimiters
delcode
family 0

left

right
withdelims
null delimiter
angle brackets
delimiter
langle

156 Chapter 17: More about Math

» EXERCISE 17.22
What goes wrong if you type ‘\bigl\delimiter"426830A’ 7

% Granted that these numeric conventions for \mathchar and \delimiter are not beau-

tiful, they sure do pack a lot of information into a small space. That’s why TEX uses
them for low-level definitions inside formats. Two other low-level primitives also deserve to be
mentioned: \radical and \mathaccent. Plain TEX makes square root signs and math accents
available by giving the commands

\def\sqrt{\radical"270370 }
\def\widehat{\mathaccent"362 }

and several more like them. The idea is that \radical is followed by a delimiter code and
\mathaccent is followed by a math character code, so that TEX knows the family and character
positions for the symbols used in radical and accent constructions. Appendix G gives precise
information about the positioning of these characters. By changing the definitions, TEX could
easily be extended so that it would typeset a variety of different radical signs and a variety of
different accent signs, if such symbols were available in the fonts.

% Plain TEX uses family 1 for math italic letters, family 2 for ordinary math symbols,

and family 3 for large symbols. TEX insists that the fonts in families 2 and 3 have
special \fontdimen parameters, which govern mathematical spacing according to the rules in
Appendix G; the cmsy and cmex symbol fonts have these parameters, so their assignment to
families 2 and 3 is almost mandatory. (There is, however, a way to modify the parameters of
any font, using the \fontdimen command.) INITEX initializes the mathcodes of all letters A
to Z and a to z so that they are symbols of class 7 and family 1; that’s why it is natural to use
family 1 for math italics. Similarly, the digits 0 to 9 are class 7 and family 0. None of the other
families is treated in any special way by TEX. Thus, for example, plain TEX puts text italic in
family 4, slanted roman in family 5, bold roman in family 6, and typewriter type in family 7,
but any of these numbers could be switched around. There is a macro \newfam, analogous to
\newbox, that will assign symbolic names to families that aren’t already used.

When TEX is in horizontal mode, it is making a horizontal list; in vertical mode, it
is making a vertical list. Therefore it should come as no great surprise that TEX is
making a math list when it is in math mode. The contents of horizontal lists were explained
in Chapter 14, and the contents of vertical lists were explained in Chapter 15; it’s time now to
describe what math lists are made of. Each item in a math list is one of the following types of
things:
= an atom (to be explained momentarily);
= horizontal material (a rule or discretionary or penalty or “whatsit”);
= vertical material (from \mark or \insert or \vadjust);
= a glob of glue (from \hskip or \mskip or \nonscript);
= a kern (from \kern or \mkern);
= a style change (from \displaystyle, \textstyle, etc.);
= a generalized fraction (from \above, \over, etc.);
= a boundary (from \left or \right);
= a four-way choice (from \mathchoice).

The most important items are called atoms, and they have three parts: a nucleus, a
superscript, and a subscript. For example, if you type

(x_i+y)~{\overline{n+1}}

in math mode, you get a math list consisting of five atoms: (, z;, +, y, and)”"'1. The nuclei
of these atoms are (, z, +, y, and); the subscripts are empty except for the second atom,
which has subscript 4; the superscripts are empty except for the last atom, whose superscript
is n + 1. This superscript is itself a math list consisting of one atom, whose nucleus is n + 1;
and that nucleus is a math list consisting of three atoms.

radical
mathaccent
square root signs
surd signs, see radical
family 1

family 2

family 3

math fonts
fontdimen

cmsy

cmex

symbol fonts
fontdimen
INITEX

letters

newfam

math list

math mode
atom

glue

kern

style change
generalized fraction
boundary

choice
mathchoice
nucleus
superscript
subscript

Chapter 17: More about Math

There are thirteen kinds of atoms, each of which might act differently in a formula; for
example, ‘(" is an Open atom because it comes from an opening. Here is a complete
list of the different kinds:

Ord is an ordinary atom like ‘z’;

Op is a large operator atom like ‘Z’ ;
Bin is a binary operation atom like ‘4’;
Rel is a relation atom like ‘="

Open is an opening atom like ‘(’;

Close is a closing atom like ¢);

Punct is a punctuation atom like *,”;
Inner is an inner atom like ‘%’;

Over is an overline atom like ‘T’ ;
Under is an underline atom like ‘x’;

Acc is an accented atom like ‘3’ ;

Rad is a radical atom like ‘v/2";

Vcent is a vbox to be centered, produced by \vcenter.

% An atom’s nucleus, superscript, and subscript are called its fields, and there are four
possibilities for each of these fields. A field can be

= empty;

= a math symbol (specified by family and position number);

= a box; or

= a math list.
For example, the Close atom)" "' considered above has an empty subscript field; its
nucleus is the symbol ¢)’, which is character "28 of family 0 if the conventions of plain
TEX are in force; and its superscript field is the math list n + 1. The latter math list
consists of an Over atom whose nucleus is the math list n 4+ 1; and that math list, in
turn, consists of three atoms of types Ord, Bin, Ord.

You can see TEX’s view of a math list by typing \showlists in math mode. For ex-
ample, after ‘¢(x_i+y) “{\overline{n+1}}\showlists’ your log file gets the following
curious data:

\mathopen
A\famO (
\mathord
\faml x
_\fami i
\mathbin
A\famO +
\mathord
A\faml y
\mathclose
\famO)
~“\overline
~.\mathord
~..\faml n
~.\mathbin
~..\fam0 +
~.\mathord
~..\fam0 1

In our previous experiences with \showlists we observed that there can be boxes within boxes,
and that each line in the log file is prefixed by dots to indicate its position in the hierarchy.
Math lists have a slightly more complex structure; therefore a dot is used to denote the nucleus
of an atom, a ‘~’ is used for the superscript field, and a ‘_’ is used for the subscript field. Empty

157

atomic types, table
fields

showlists

internal list format

158 Chapter 17: More about Math

fields are not shown. Thus, for example, the Ord atom z; is represented here by three lines limits
“\mathord’, ‘.\faml x’, and ‘_\faml i’. nolimits
displaylimits
Certain kinds of atoms carry additional information besides their nucleus, subscript, hbox
and superscript fields: An Op atom will be marked ‘\1imits’ or ‘\nolimits’ if the veenter

normal \displaylimits convention has been overridden; a Rad atom contains a delimiter field
to specify what radical sign is to be used; and an Acc atom contains the family and character
codes of the accent symbol.

When you say \hbox{...} in math mode, an Ord atom is placed on the current math

list, with the hbox as its nucleus. Similarly, \vcenter{...} produces a Vcent atom
whose nucleus is a box. But in most cases the nucleus of an atom will be either a symbol or
a math list. You can experiment with \showlists to discover how other things like fractions
and mathchoices are represented internally.

% Chapter 26 contains complete details of how math lists are constructed. As soon

as math mode ends (i.e., when the closing ‘$’ occurs), TEX dismantles the current
math list and converts it into a horizontal list. The rules for this conversion are spelled out
in Appendix G. You can see “before and after” representations of such math typesetting by
ending a formula with ‘\showlists$\showlists’; the first \showlists will display the math
list, and the second will show the (possibly complex) horizontal list that is manufactured from
it.

Chapter 17: More about Math 159

KERNIGHAN
CHERRY
BOEHM

The learning time is short. A few minutes gives the general flavor, and
typing a page or two of a paper generally uncovers most of the misconceptions.

— KERNIGHAN and CHERRY, A System for Typesetting Mathematics (1975)

Within a few hours (a few days at most)
a typist with no math or typesetting experience
can be taught to input even the most complex equations.

— PETER J. BOEHM, Software and Hardware Considerations for a
Technical Typesetting System (1976)

-

18

Fine Points of
Mathematics Typing

Chapter 18: Fine Points ofMathematics Typing

We have discussed most of the facilities needed to construct math formulas, but
there are several more things a good mathematical typist will want to watch for.
After you have typed a dozen or so formulas using the basic ideas of Chapters
16 and 17, you will find that it’s easy to visualize the final appearance of a
mathematical expression as you type it. And once you have gotten to that level,
there’s only a little bit more to learn before you are producing formulas as beau-
tiful as any the world has ever seen; tastefully applied touches of TEXnique will
add a professional polish that works wonders for the appearance and readability
of the books and papers that you type. This chapter talks about such tricks,
and it also fills in a few gaps by mentioning some aspects of math that didn’t fit
comfortably into Chapters 16 and 17.

1. Punctuation. When a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation after the $,
when the formula is in the text; but put the punctuation before the $$ when the
formula is displayed. For example,

If $x<0$, we have shown that $$y=f(x).$$

TEX’s spacing rules within paragraphs work best when the punctuation marks
are not considered to be part of the formulas.
Similarly, don’t ever type anything like

for $x = a, b$, or c.
It should be
for $x = a$, b, or c.

(Better yet, use a tie: ‘or~c’.) The reason is that TEX will typeset expression
‘$x = a, b$’ as a single formula, so it will put a “thin space” between the comma
and the b. This space will not be the same as the space that TEX puts after
the comma after the b, since spaces between words are always bigger than thin
spaces. Such unequal spacing looks bad, but when you type things right the
spacing will look good.

Another reason for not typing ‘$x = a, b$’ is that it inhibits the pos-
sibilities for breaking lines in a paragraph: TEX will never break at the space
between the comma and the b because breaks after commas in formulas are usu-
ally wrong. For example, in the equation ‘$x = f(a, b)$" we certainly don’t
want to put ‘x = f(a,” on one line and ‘b)’ on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don’t take operators like — and = outside of the $’s, and
keep commas inside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $’s.

» EXERCISE 18.1
Type this: R(n,t) = O(t"/?), as t — 0%,

161

period

comma,

semicolon

colon

question mark
exclamation point
punctuation
punctuation marks
tie

thin space

162

Chapter 18: Fine Points ofMathematics Typing

@ Some mathematical styles insert a bit of extra space around formulas to sep-

arate them from the text. For example, when copy is being produced on an
ordinary typewriter that doesn’t have italic letters, the best technical typists have tra-
ditionally put an extra blank space before and after each formula, because this provides
a useful visual distinction. You might find it helpful to think of each $ as a symbol that
has the potential of adding a little space to the printed output; then the rule about
excluding sentence punctuation from formulas may be easier to remember.

TEX does, in fact, insert additional space before and after each formula; the amount

of such space is called \mathsurround, which is a (dimen)-valued parameter. For
example, if you set \mathsurround=1pt, each formula will effectively be 2 points wider (1 pt at
each side):

For zx =a, b, or ¢c. (\mathsurround=1pt)

For z =a, b, or c. (\mathsurround=0pt)

This extra space will disappear into the left or right margin if the formula occurs at the
beginning or end of a line. The value of \mathsurround that is in force when TEX reads
the closing $ of a formula is used at both left and right of that formula. Plain TEX takes
\mathsurround=0pt, so you won’t see any extra space unless you are using some other format,
or unless you change \mathsurround yourself.

2. Non-italic letters in formulas. The names of algebraic variables are usually
italic or Greek letters, but common mathematical functions like ‘log’ are always
set in roman type. The best way to deal with such constructions is to make
use of the following 32 control sequences (all of which are defined in plain TEX
format, see Appendix B):

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \1n \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

These control sequences lead to roman type with appropriate spacing:

Input Output
$\sin2\theta=2\sin\theta\cos\theta$ sin260 = 2sinfcosb
$0(n\log n\log\log n)$ O(nlognloglogn)

$\Pr (X>x)=\exp (-x/\mu) $ Pr(X > z) = exp(—z/p)
$$\max_{1\le n\le m}\log_2P_n$$ max log, P,
$$\1im_{x\to0}{\sin x\over x}=1$$ ili% Slzx =1

The last two formulas, which are displays, show that some of the special control
sequences are treated by TEX as “large operators” with limits just like > : The
subscript on \max is not treated like the subscript on \log. Subscripts and
superscripts will become limits when they are attached to \det, \gcd, \inf,
\lim, \liminf, \limsup, \max, \min, \Pr, and \sup, in display style.

space
mathsurround
roman type
arccos
cos

csc
exp
ker
limsup
min
sinh
arcsin
cosh
deg
ged

Ig

In

Pr

sup
arctan
cot

det
hom
lim

log

sec

tan
arg
coth
dim
inf
liminf
max
sin
tanh
mu

Chapter 18: Fine Points ofMathematics Typing

» EXERCISE 18.2
Express the following display in plain TEX language, using ‘\nu’ for ‘v’:

pi(n) = "}E)noo Z(l — coszm(u!”w/n)).

@ If you need roman type for some mathematical function or operator that isn’t
included in plain TEX’s list of 32, it is easy to define a new control sequence by

mimicking the definitions in Appendix B. Or, if you need roman type just for a “one

shot” use, it is even easier to get what you want by switching to \rm type, as follows:

$\sqrt{{\rm Var}(X)}$ Var(X)

$x_{\rm max}-x_{\rm min}$ Tmax — Tmin

${\rm LL}(k)\Rightarrow{\rm LR} (k)$ LL(k) = LR(k)
$\exp(x+{\rm constant})$ exp(z + constant)
$x"3+{\rm lower\ order\ terms}$ x + lower order terms

Notice the uses of ‘\.)’ in the last case; without them, the result would have been
‘2% + lowerorderterms’, because ordinary blank spaces are ignored in math mode.

?2 You can also use \hbox instead of \rm to get roman letters into formulas. For
example, four of the last five formulas can be generated by
$\sqrt{\hbox{Var}(X)}$ Var(X)
$\hbox{LL} (k) \Rightarrow\hbox{LR} (k) $ LL(k) = LR(k)
$\exp (x+\hbox{constant})$ exp(z + constant)
$x"3+\hbox{lower order termsl}$ x3 + lower order terms

In this case ‘\|)’ isn’t necessary, because the material in an \hbox is processed in horizon-
tal mode, when spaces are significant. But such uses of \hbox have two disadvantages:
(1) The contents of the box will be typeset in the same size, whether or not the box
occurs as a subscript; for example, ‘¢x_{\hbox{max}}$ yields ‘zmax’. (2) The font
that’s used inside \hbox will be the “current font,” so it might not be roman. For ex-
ample, if you are typesetting the statement of some theorem that is in slanted type, and
if that theorem refers to ‘$\sqrt{\hbox{Var}(X)}$’, you will get the unintended result
‘y/ Var(X)’. In order to make sure that an \hbox uses roman type, you need to specify
\rm, e.g., ‘$\sqrt{\hbox{\rm Var}(X)}$’; and then the \hbox serves no purpose. We
will see later, however, that \hbox can be very useful in displayed formulas.

» EXERCISE 18.3
When the displayed formula ‘$$\lim_{n\to\infty}x_n {\rm\ exists} \iff

\limsup_{n\to\infty}x_n = \liminf_{n\to\inftyl}x_n.$$’ is typeset with the standard macrosfi]

of plain TEX, you get

lim z, exists <= limsupx, = liminf z,,.
n—oo n— oo n— oo

But some people prefer a different notation: Explain how you could change the definitions of
\limsup and \liminf so that the display would be

lim x, exists <—= lim z, = lim xz,.

n—oo n— oo n— 00

163

nu
rm

control space
spaces

hbox

current font
limsup

liminf

164 Chapter 18: Fine Points ofMathematics Typing

@ The word ‘mod’ is also generally set in roman type, when it occurs in formulas;

but this word needs more care, because it is used in two different ways that
require two different treatments. Plain TEX provides two different control sequences,
\bmod and \pmod, for the two cases: \bmod is to be used when ‘mod’ is a binary operation
(i-e., when it occurs between two quantities, like a plus sign usually does), and \pmod
is to be used when ‘mod’ occurs parenthetically at the end of a formula. For example,

$\gcd(m,n)=\gcd(n,m\bmod n)$
$x\equiv y+1\pmod{m~2}$

ged(m,n) = ged(n, m mod n)
r=y+1 (modm?)

The ‘D’ in ‘\bmod’ stands for “binary”; the ‘p’ in ‘\pmod’ stands for “parenthesized.”
Notice that \pmod inserts its own parentheses; the quantity that appears after ‘mod’ in
the parentheses should be enclosed in braces, if it isn’t a single symbol.

@ » EXERCISE 18.4
What did poor B. L. User get when he typed ‘$x\equiv0 (\pmod y n)$’?

@ » EXERCISE 18.5 n 1n/p)\ (n mod p
Explain how to produce (k) = (Lk/pj) (k mod p) (mod p).

@ The same mechanism that works for roman type in formulas can be used to
get other styles of type as well. For example, \bf yields boldface:

$\bf a+b=\Phi_m$ at+b=3%®o,

Notice that whole formula didn’t become emboldened in this example; the ‘+’ and
‘=" stayed the same. Plain TEX sets things up so that commands like \rm and \bf
will affect only the uppercase letters A to Z, the lowercase letters a to z, the digits
0 to 9, the uppercase Greek letters \Gamma to \Omega, and math accents like \hat and
\tilde. Incidentally, no braces were used in this example, because $’s have the effect
of grouping; \bf changes the current font, but the change is local, so it does not affect

the font that was current outside the formula.

% The bold fonts available in plain TEX are “bold roman,” rather than “bold italic,”

because the latter are rarely needed. However, TEX could readily be set up to make
use of bold math italics, if desired (see Exercise 17.77). A more extensive set of math fonts
would also include script, Fraktur, and “blackboard bold” styles; plain TEX doesn’t have these,
but other formats like ApS-TEX do.

@ Besides \rm and \bf, you can say \cal in formulas to get uppercase letters in

a “calligraphic” style. For example, ‘$\cal A$” produces ‘A’ and ‘$\cal Z$’
produces ‘Z’. But beware: This works only with the letters A to Z; you’ll get weird
results if you apply \cal to lowercase or Greek letters.

@ There’s also \mit, which stands for “math italic.” This affects uppercase

Greek, so that you get (I, 4,0,A4, 2,11, 3,7, ®, ¥, 2) instead of (T',...,Q).
When \mit is in effect, the ordinary letters A to Z and a to z are not changed; they
are set in italics as usual, because they ordinarily come from the math italic font.
Conversely, uppercase Greek letters and math accents are unaffected by \rm, because
they ordinarily come from the roman font. Math accents should not be used when the
\mit family has been selected, because the math italic font contains no accents.

bmod

pmod

binary operation
User

bf

boldface

accents

hat

tilde

script

Fraktur
blackboard bold
AMS-TeX
German black letters
cal

calligraphic

mit

math italic
uppercase Greek

Chapter 18: Fine Points ofMathematics Typing

@ » EXERCISE 18.6
Type the formula XTMx = 0 <= x = 0, using as few keystrokes as possible.
(The first ‘0’ is roman, the second is bold. The superscript ‘I is roman.)

@ » EXERCISE 18.7
Figure out how to typeset ‘S C ¥ «<— S € S’

@ Plain TEX also allows you to type \it, \sl, or \tt, if you want text italic,
slanted, or typewriter letters to occur in a math formula. However, these fonts
are available only in text size, so you should not try to use them in subscripts.

@ If you're paying attention, you probably wonder why both \mit and \it are
provided; the answer is that \mit is “math italic” (which is normally best for
formulas), and \it is “text italic” (which is normally best for running text).

$This\ is\ math\ italic.$ This is math italic.
{\it This is text italic.} This is text italic.

The math italic letters are a little wider, and the spacing is different; this works better
in most formulas, but it fails spectacularly when you try to type certain italic words
like ‘dif ferent’ using math mode (‘¢different$’). A wide ‘f’ is usually desirable
in formulas, but it is undesirable in text. Therefore wise typists use \it in a math
formula that is supposed to contain an actual italic word. Such cases almost never
occur in classical mathematics, but they are common when computer programs are
being typeset, since programmers often use multi-letter “identifiers”:

$\it last:=first$ last := first
$\it x_coord(point_2)$ z_coord (point_2)

The first of these examples shows that TEX recognizes the ligature ‘fi’ when text italic
occurs in a math formula; the other example illustrates the use of short underlines to
break up identifier names. When the author typeset this manual, he used ‘$\it SS$’
to refer to style SS, since ‘SS’ makes the S’s too far apart: SS.

@ » EXERCISE 18.8
What plain TEX commands will produce the following display?

available + Z max (full(i), reserved (i)) = capacity.
i=1

» EXERCISE 18.9
How would you go about typesetting the following computer program, using the
macros of plain TEX?

for j := 2 step 1 until n do
begin accum := A[j]; k:=j — 1; A[0] := accum;
while A[k] > accum do
begin Ak + 1] := A[k]; k:=k — 1;
end;
Alk + 1] := accum;
end.

165

boldface numbers in math
it

sl

tt

computer programs
identifiers

ligature

underlines
control-underline

166 Chapter 18: Fine Points ofMathematics Typing

3. Spacing between formulas. Displays often contain more than one formula; for Displays
example, an equation is frequently accompanied by a side condition: Zf: dcondltlon
quad
B, =F,_1+ F, o, n > 2. qquad
em
In such cases you need to tell TEX how much space to put after the comma, Fibonacci

mathematical

because TEX’s normal spacing conventions would bunch things together; without style

special precautions you would get
F,=F, 1+ F, 2,n>2

The traditional hot-metal technology for printing has led to some in-
grained standards for situations like this, based on what printers call a “quad”
of space. Since these standards seem to work well in practice, TEX makes it easy
for you to continue the tradition: When you type ‘\quad’ in plain TEX format,
you get a printer’s quad of space in the horizontal direction. Similarly, ‘\qquad’
gives you a double quad (twice as much); this is the normal spacing for situations
like the F;, example above. Thus, the recommended procedure is to type

$$ F_.n = F_{n-1} + F_{n-2}, \qquad n \ge 2. $$

It is perhaps worth reiterating that TEX ignores all the spaces in math mode
(except, of course, the space after ‘\qquad’, which is needed to distinguish be-
tween ‘\qquad n’ and ‘\qquadn’); so the same result would be obtained if you
were to leave out all but one space:

$$F_n=F_{n-1}+F_{n-2},\qquad n\ge2.$$

Whenever you want spacing that differs from the normal conventions, you must
specify it explicitly by using control sequences such as \quad and \qquad.

@ A quad used to be a square piece of blank type, 1em wide and 1em tall—

approximately the size of a capital M, as explained in Chapter 10. This
tradition has not been fully retained: The control sequence \quad in plain TEX is simply
an abbreviation for ‘\hskip lem\relax’, so TEX’s quad has width but no height.

@ You can use \quad in text as well as in formulas; for example, Chapter 14

illustrates how \quad applies to poetry. When \quad appears in a formula it
stands for one em in the current text font, independent of the current math size or
style or family. Thus, for example, \quad is just as wide in a subscript as it is on the
main line of a formula.

Sometimes a careless author will put two formulas next to each other in
the text of a paragraph. For example, you might find a sentence like this:

The Fibonacci numbers satisfy F,, = F,,_1 + F,,_2, n > 2.

Everybody who teaches proper mathematical style is agreed that formulas ought
to be separated by words, not just by commas; the author of that sentence
should at least have said ‘for n > 2’, not simply ‘n > 2’. But alas, such lapses
are commonplace, and many prominent mathematicians are hopelessly addicted

Chapter 18: Fine Points ofMathematics Typing

to clusters of formulas. If we are not allowed to change their writing style, we can
at least insert extra space where they neglected to insert an appropriate word.
An additional interword space generally works well in such cases; for example,
the sentence above was typeset thus:

... $F_n=F_{n-1}+F_{n-2}$, \ $n\ge2$.}$$
The ‘\.)” here gives a visual separation that partly compensates for the bad style.

» EXERCISE 18.10
Put the following paragraph into TEX form, treating punctuation and spacing
carefully; also insert ties to prevent bad line breaks.

Let H be a Hilbert space, C a closed bounded convex subset of H,

T a nonexpansive self map of C'. Suppose that as n — oo, anr — 0
for each k, and v, = > pe o (@nk+1—anxk)"T — 0. Then for each z in C,
A,z = Z,?;O akakx converges weakly to a fixed point of T'.

4. Spacing within formulas. Chapter 16 says that TEX does automatic spacing of
math formulas so that they look right, and this is almost true. But occasionally
you must give TEX some help. The number of possible math formulas is vast,
and TEX’s spacing rules are rather simple, so it is natural that exceptions should
arise. Of course, it is desirable to have fine units of spacing for this purpose,
instead of the big chunks that arise from \.,, \quad and \qquad.

The basic elements of space that TEX puts into formulas are called thin
spaces, medium spaces, and thick spaces. In order to get a feeling for these units,
let’s take a look at the F, example again: Thick spaces occur just before and
after the = sign, and also before and after the >; medium spaces occur just
before and after the + sign. Thin spaces are slightly smaller, but noticeable; it’s
a thin space that makes the difference between ‘loglog’ and ‘loglog’. The normal
space between words of a paragraph is approximately equal to two thin spaces.

TEX inserts thin spaces, medium spaces, and thick spaces into formulas
automatically, but you can add your own spacing whenever you want to, by using
the control sequences

\, thin space (normally 1/6 of a quad);

\> medium space (normally 2/9 of a quad);

\; thick space (normally 5/18 of a quad);

\! negative thin space (normally —1/6 of a quad).

In most cases you can rely on TEX’s spacing while you are typing a manuscript,
and you’ll want to insert or delete space with these four control sequences only
in rare circumstances after you see what comes out.

We observed a minute ago that \quad spacing does not change with the style of
formula, nor does it depend on the math font families that are being used. But thin
spaces, medium spaces, and thick spaces do get bigger and smaller as the size of type gets
bigger and smaller; this is because they are defined in terms of (muglue), a special brand of
glue intended for math spacing. You specify (muglue) just as if it were ordinary glue, except

167

control space
ties

spacing

thin spaces
medium spaces
thick spaces

168 Chapter 18: Fine Points ofMathematics Typing

that the units are given in terms of ‘mu’ (math units) instead of pt or cm or something else.
For example, Appendix B contains the definitions

\thinmuskip = 3mu
\medmuskip = 4mu plus 2mu minus 4mu
\thickmuskip = 5mu plus 5mu

and this defines the thin, medium, and thick spaces that TEX inserts into formulas. According
to these specifications, thin spaces in plain TEX do not stretch or shrink; medium spaces can
stretch a little, and they can shrink to zero; thick spaces can stretch a lot, but they never
shrink.

% There are 18 mu to an em, where the em is taken from family 2 (the math symbols

family). In other words, \textfont 2 defines the em value for mu in display and text
styles; \scriptfont 2 defines the em for script size material; and \scriptscriptfont 2 defines
it for scriptscript size.

You can insert math glue into any formula just by giving the command ‘\mskip(muglue)’.l

% For example, ‘\mskip 9mu plus 2mu’ inserts one half em of space, in the current
size, together with some stretchability. Appendix B defines ‘\,’ to be an abbreviation for
“\mskip\thinmuskip’. Similarly, you can use the command ‘\mkern’ when there is no stretch-
ing or shrinking; ‘\mkern18mu’ gives one em of horizontal space in the current size. TEX insists
that \mskip and \mkern be used only with mu; conversely, \hskip and \kern (which are also
allowed in formulas) must never give units in mu.

Formulas involving calculus look best when an extra thin space appears
before dz or dy or d whatever; but TEX doesn’t do this automatically. Therefore
a well-trained typist will remember to insert ‘\,’ in examples like the following:

Input Output
$\int_0~\infty f(x)\,dx$ I f(@)da
$y\,dx-x\,dy$ ydr —xdy
$dx\,dy=r\,dr\,d\theta$ dx dy = rdrdf
$x\,dy/dx$ xzdy/dx

Notice that no ‘\,” was desirable after the ¢/’ in the last example. Similarly,
there’s no need for ‘\,’ in cases like
/ © dt
1 t

since the dt appears all by itself in the numerator of a fraction; this detaches it
visually from the rest of the formula.

$$\int_1"x{dt\over t}$$

» EXERCISE 18.11
Explain how to handle the display

© t—ib
/ U giat gt — e’ E, (ab),
0

m a,b>0.

?2 When physical units appear in a formula, they should be set in roman type
and separated from the preceding material by a thin space:

$55\rm\ ,mi/hr$
$g=9.8\rm\ ,m/sec"2$

55 mi/hr
g = 9.8 m/sec?

mu
thinmuskip
medmuskip
thickmuskip
textfont
scriptfont
scriptscriptfont
mskip

mkern

hskip

kern

calculus

dx

units

Chapter 18: Fine Points ofMathematics Typing

$\rm1\,m1=1.000028\,cc$ 1ml = 1.000028 cc

@ » EXERCISE 18.12
Typeset the following display, assuming that ‘\hbar’ generates ‘h’:

B =1.0545 x 107%° erg sec.

@ Thin spaces should also be inserted after exclamation points (which stand for
the “factorial” operation in a formula), if the next character is a letter or a
number or an opening delimiter:

$(2n) ! /\bigl(n!\, (n+1) '\bigr)$ @n)!/(n! (n+ 1))

52!
13!13!26!

Besides these cases, you will occasionally encounter formulas in which
the symbols are bunched up too tightly, or where too much white space appears,
because of certain unlucky combinations of shapes. It’s usually impossible to
anticipate optical glitches like this until you see the first proofs of what you
have typed; then you get to use your judgment about how to add finishing
touches that provide extra beauty, clarity, and finesse. A tastefully applied ‘\,’
or ‘\!” will open things up or close things together so that the reader won’t be
distracted from the mathematical significance of the formula. Square root signs
and multiple integrals are often candidates for such fine tuning. Here are some
examples of situations to look out for:

$3{52!\over13!\,13!\,26!}$$

$\sqrt2\,x$ V2
$\sqrt{\,\log x}$ Viegx
$0\bigl(1/\sqrt n\,\bigr)$ O(1/y/n)
$I\,0,1)$ [0,1)

$\log n\, (\log\log n)"2$ logn (loglogn)?
$x"2\1/2% x?/2
$n/\"\log n$ n/logn
$\Gamma_{\!2}+\Delta"{\12}$ T, + A?
$R_i{}"j{3_{\1k1}$ Ry

$\int_0"x\'\int_0"y dF(u,w)$ [[dF(u,v)
$$\int\!\!\!\int_D dx\,dy$$ // dz dy
D

In each of these formulas the omission of \, or \! would lead to somewhat less
satisfactory results.

Most of these examples where thin-space corrections are desirable arise because of
chance coincidences. For example, the superscript in $x~2/2$ leaves a hole before
the slash (22/2); a negative thin space helps to fill that hole. The positive thin space in
$\sqrt{\,\log x}$ compensates for the fact that ‘logx’ begins with a tall, unslanted letter;
and so on. But two of the examples involve corrections that were necessary because TEX doesn’t
really know a great deal about mathematics: (1) In the formula $\log n(\log\log n)"2$,

169

hbar

exclamation points
factorial

Square root
multiple integrals
Gamma

Delta

intint

170

Chapter 18: Fine Points ofMathematics Typing

TEX inserts no thin space before the left parenthesis, because there are similar formulas like
$\log n(x)$ where no such space is desired. (2) In the formula $n/\log n$, TEX automatically
inserts an unwanted thin space before \log, since the slash is treated as an ordinary symbol,
and since a thin space is usually desirable between an ordinary symbol and an operator like
\log.

In fact, TEX’s rules for spacing in formulas are fairly simple. A formula is converted

to a math list as described at the end of Chapter 17, and the math list consists chiefly
of “atoms” of eight basic types: Ord (ordinary), Op (large operator), Bin (binary operation),
Rel (relation), Open (opening), Close (closing), Punct (punctuation), and Inner (a delimited
subformula). Other kinds of atoms, which arise from commands like \overline or \mathaccent
or \vcenter, etc., are all treated as type Ord; fractions are treated as type Inner. The following
table is used to determine the spacing between pairs of adjacent atoms:

Right atom
Ord Op Bin Rel Open Close Punct Inner
Ord 0 1 (2) (3) 0 0 0 1)
Op 1 1 * 3) 0 0 0 (1)
Bin (2) 2) * * (2) * * 2)
Left Rel (3) (3) * 0 3) 0 0 (3)
atom Open 0 0 * 0 0 0 0 0
Close 0 1 (2) 3) 0 0 0 (1)
Punct (1) (1) * (1) (¢D) (1) (1) (1)
Inner 1 1 (2) (3) (¢D) 0 (&9 (¢D)

Here 0, 1, 2, and 3 stand for no space, thin space, medium space, and thick space, respectively;
the table entry is parenthesized if the space is to be inserted only in display and text styles,
not in script and scriptscript styles. For example, many of the entries in the Rel row and
the Rel column are ‘(3)’; this means that thick spaces are normally inserted before and after
relational symbols like ‘=", but not in subscripts. Some of the entries in the table are ‘*’; such
cases never arise, because Bin atoms must be preceded and followed by atoms compatible with
the nature of binary operations. Appendix G contains precise details about how math lists
are converted to horizontal lists; this conversion is done whenever TEX is about to leave math
mode, and the inter-atomic spacing is inserted at that time.

% For example, the displayed formula specification
$$x+y=\max\{x,y\\min\{x,y\}$$

will be transformed into the sequence of atoms

cHpemo,glEonfo,m[

of respective types Ord, Bin, Ord, Rel, Op, Open, Ord, Punct, Ord, Close, Bin, Op, Open,
Ord, Punct, Ord, and Close. Inserting spaces according to the table gives

Ord \>Bin \>Ord \; Rel \; Op Open Ord Punct \, Ord Close \>
Bin \> Op Open Ord Punct \, Ord Close

and the resulting formula is

m Ay = max{n, g} B iz, ol
ie.,
z +y = max{z,y} + min{z, y}

This example doesn’t involve subscripts or superscripts; but subscripts and superscripts merely
get attached to atoms without changing the atomic type.

» EXERCISE 18.13
Use the table to determine what spacing TEX will insert between the atoms of the
formula ‘$f (x,y)<x"2+y~2$’.

atoms

Ord

ordinary

Op

large operator
Bin

binary operation
Rel

relation

Open
opening

Close

closing

Punct
punctuation
Inner

overline
mathaccent
vecenter
fractions
spacing table
math spacing table

Chapter 18: Fine Points ofMathematics Typing

% The plain TEX macros \bigl, \bigr, \bigm, and \big all produce identical delimiters;

the only difference between them is that they may lead to different spacing, because
they make the delimiter into different types of atoms: \bigl produces an Open atom, \bigr
a Close, \bigm a Rel, and \big an Ord. On the other hand, when a subformula appears between
\left and \right, it is typeset by itself and placed into an Inner atom. Therefore it is possible
that a subformula enclosed by \left and \right will be surrounded by more space than there
would be if that subformula were enclosed by \bigl and \bigr. For example, Ord followed by
Inner (from \left) gets a thin space, but Ord followed by Open (from \bigl) does not. The
rules in Chapter 17 imply that the construction ‘\mathinner{\bigl ({(subformula)}\bigr)}’
within any formula produces a result exactly equivalent to ‘\left ((subformula)\right)’, when
the (subformula) doesn’t end with Punct, except that the delimiters are forced to be of the
\big size regardless of the height and depth of the subformula.

TEX’s spacing rules sometimes fail when ‘|’ and ‘\|’ appear in a formula,
because | and || are treated as ordinary symbols instead of as delimiters. For
example, consider the formulas

$1-xI=I+x|$ | —a| = |+
$\left|-x\right|=\left|+x\right|$ |—x| = |[4z|
$\1floor-x\rfloor=-\lceil+x\rceil$ |—z] = —[+z]

In the first case the spacing is wrong because TEX thinks that the plus sign is computing
the sum of ‘|” and ‘z’. The use of \left and \right in the second example puts TEX
on the right track. The third example shows that no such corrections are needed with
other delimiters, because TEX knows whether they are openings or closings.

» EXERCISE 18.14
Some perverse mathematicians use brackets backwards, to denote “open intervals.”
Explain how to type the following bizarre formula: |—oo, T[X |—o0, T7[.

» EXERCISE 18.15
Study Appendix G and determine what spacing will be used in the formula ‘$x++1$’.
Which of the plus signs will be regarded as a binary operation?

5. Ellipses (“three dots”). Mathematical copy looks much nicer if you are careful
about how groups of three dots are typed in formulas and text. Although it
looks fine to type ‘...’ on a typewriter that has fixed spacing, the result looks
too crowded when you're using a printer’s fonts: ‘$x...y$’ results in ‘z...y’, and
such close spacing is undesirable except in subscripts or superscripts.

An ellipsis can be indicated by two different kinds of dots, one higher
than the other; the best mathematical traditions distinguish between these two
possibilities. It is generally correct to produce formulas like

1+ -+ Ty and (T1,...,2Tn),
but wrong to produce formulas like
1+ ... +x, and (1, ,Zpn).

The plain TEX format of Appendix B allows you to solve the “three dots” problem
very simply, and everyone will be envious of the beautiful formulas that you
produce. The idea is simply to type \1ldots when you want three low dots (...),
and \cdots when you want three vertically centered dots (---).

171

bigl

bigr

bigm

big

left

right
mathinner
delimiters
verticalline
verticalline
brackets

open intervals
binary operation
ellipses

three dots
ldots

cdots

172

Chapter 18: Fine Points ofMathematics Typing

In general, it is best to use \cdots between + and — and X signs, and
also between = signs or < signs or C signs or other similar relations. Low dots
are used between commas, and when things are juxtaposed with no signs between
them at all. For example:

$x_1+\cdots+x_n$ 1+ +a,
$x_1=\cdots=x_n=0$ rp=-=x,=0
$A_1\times\cdots\times A_n$ A x---x A,
$f(x_1,\1ldots,x_n)$ flz,... x)
$x_1x_2\1ldots x_n$ T1T2...Ty

$(1-x) (1-x"2)\1ldots(1-x"n)$ (1 —a)(1 —2?)...(1—a")
$n(n-1)\1dots(1)$ nn—1)...(1)

» EXERCISE 18.16
Type the formulas ‘@1 + 2129+ -+ 2122 ... 2" and “(x1,. ..,) (Y1, Yn) =
x1y1 + -+ zpys’. [Hint: A single raised dot is called ‘\cdot’.]

But there’s an important special case in which \1dots and \cdots don’t
give the correct spacing, namely when they appear at the very end of a formula,
or when they appear just before a closing delimiter like ‘)’. In such situations
an extra thin space is needed. For example, consider sentences like this:

Prove that (1 —z) ' =1+az+2%+---.
Clearly a; < b; fori=1,2,..., n.
The coefficients cg, ¢1, ..., ¢, are positive.

To get the first sentence, the author typed
Prove that $(1-x) " {-1}=1+x+x"2+\cdots\,$.

Without the ‘\,’ the period would have come too close to the \cdots. Similarly,
the second sentence was typed thus:

Clearly $a_i<b_i$ for $i=1$,2, $\ldots\,$, n.

Notice the use of ties, which prevent bad line breaks as explained in Chapter 14.
Such ellipses are extremely common in some forms of mathematical writing, so
plain TEX allows you to say just ‘\dots’ as an abbreviation for ‘$\1dots\,$’ in
the text of a paragraph. The third sentence can therefore be typed

The coefficients c_0, c_1, \dots, c_n are positive.

» EXERCISE 18.17
B. C. Dull tried to take a shortcut by typing the second example this way:

Clearly $a_i<b_i$ for~$i=1, 2, \ldots, n$.
What’s so bad about that?

commas
cdot

thin space
)

ties

dots

Dull

Chapter 18: Fine Points ofMathematics Typing

» EXERCISE 18.18
How do you think the author typed the footnote in Chapter 4 of this book?

6. Line breaking. When you have formulas in a paragraph, TEX may have to
break them between lines. This is a necessary evil, something like the hyphen-
ation of words; we want to avoid it unless the alternative is worse.

A formula will be broken only after a relation symbol like = or < or —,
or after a binary operation symbol like + or — or x, where the relation or binary
operation is on the “outer level” of the formula (i.e., not enclosed in {...} and
not part of an ‘\over’ construction). For example, if you type

$f(x,y) = x72-y"2 = (x+y) (x-y)$

in mid-paragraph, there’s a chance that TEX will break after either of the = signs
(it prefers this) or after the - or + or - (in an emergency). But there won’t be
a break after the comma in any case—commas after which breaks are desirable
shouldn’t appear between $’s.

If you don’t want to permit breaking in this example except after the
= signs, you could type

$f (x,y) = {x"2-y"2} = {(x+y) (x-y)1}$

because these additional braces “freeze” the subformulas, putting them into un-
breakable boxes in which the glue has been set to its natural width. But it isn’t
necessary to bother worrying about such things unless TEX actually does break
a formula badly, since the chances of this are pretty slim.

@ A “discretionary multiplication sign” is allowed in formulas: If you type

‘$(x+y) *(x-y)$’, TEX will treat the * something like the way it treats \-;
namely, a line break will be allowed at that place, with the hyphenation penalty. How-
ever, instead of inserting a hyphen, TEX will insert a X sign in text size.

@ If you do want to permit a break at some point in the outer level of a formula,
you can say \allowbreak. For example, if the formula

$(x_1,\1ldots,x_m,\allowbreak y_1,\ldots,y_n)$

appears in the text of a paragraph, TEX will allow it to be broken into the two pieces
(1. Tm, and ‘y1,...,Yn)

% The penalty for breaking after a Rel atom is called \relpenalty, and the penalty for

breaking after a Bin atom is called \binoppenalty. Plain TEX sets \relpenalty=500
and \binoppenalty=700. You can change the penalty for breaking in any particular case
by typing ‘\penalty(number)’ immediately after the atom in question; then the number you
have specified will be used instead of the ordinary penalty. For example, you can prohibit
breaking in the formula ‘z = 0’ by typing ‘$x=\nobreak0$’, since \nobreak is an abbreviation
for ‘\penalty10000 ’.

» EXERCISE 18.19
Is there any difference between the results of ‘$x=\nobreak0$’ and ‘${x=0}$’7

» EXERCISE 18.20
How could you prohibit all breaks in formulas, by making only a few changes to the
macros of plain TEX?

173

footnote

line breaking in math

breaking formulas between lines
subformulas

discretionary multiplication sign
*

allowbreak
relpenalty
binoppenalty
penalty
nobreak

174

Chapter 18: Fine Points ofMathematics Typing

7. Braces. A variety of different notations have sprung up involving the symbols
‘{’ and ‘}’; plain TEX includes several control sequences that help you cope with
formulas involving such things.

In simple situations, braces are used to indicate a set of objects; for
example, ‘{a, b, ¢}’ stands for the set of three objects a, b, and ¢. There’s nothing
special about typesetting such formulas, except that you must remember to use
\{ and \} for the braces:

$\{a,b,c\}$ {a,b,c}
$\{1,2,\1dots,n\}$ {1,2,...,n}
$\{\rn red,white,blue\}$ {red, white, blue}

A slightly more complex case arises when a set is indicated by giving a generic
element followed by a specific condition; for example, ‘{x | z > 5}’ stands for
the set of all objects x that are greater than 5. In such situations the control
sequence \mid should be used for the vertical bar, and thin spaces should be
inserted inside the braces:

$\{\,x\mid x>5\,\}$ {z|z>5}
SN\, x:x>B\,\}$ {z:2>5}

(Some authors prefer to use a colon instead of ‘|’, as in the second example here.)
When the delimiters get larger, as in

{ (@ f@)|zeD}

they should be called \bigl, \bigm, and \bigr; for example, the formula just
given would be typed

\bigl\{\,\bigl(x,f (x)\bigr)\bigm|x\in D\,\bigr\}

and formulas that involve still larger delimiters would use \Big or \bigg or even
\Bigg, as explained in Chapter 17.

» EXERCISE 18.21
How would you typeset the formula {x3 | h(z) € {-1,0,+1} }?

@ » EXERCISE 18.22

Sometimes the condition that defines a set is given as a fairly long English
description, not as a formula; for example, consider ‘{p | p and p + 2 are prime }’. An
hbox would do the job:

$\{\,p\mid\hbox{$p$ and $p+2$ are prime}\,\}$

but a long formula like this is troublesome in a paragraph, since an hbox cannot be
broken between lines, and since the glue inside the \hbox does not vary with the
interword glue in the line that contains it. Explain how the given formula could be
typeset with line breaks allowed. [Hint: Go back and forth between math mode and
horizontal mode.]

braces
leftbrace
rightbrace
set
leftbrace
rightbrace
mid
vertical bar
colon

bigl

bigm

bigr

Big

bigg

Bigg
mode

Chapter 18: Fine Points ofMathematics Typing 175

Displayed formulas often involve another sort of brace, to indicate a selection, see cases

choice between various alternatives, as in the construction alternatives, see cases
Cl’lOlCeS7 see cases

cases

x, if Z O, ampersand
|’I‘ = h . cr
—x, otherwise. noalign
Horizontal braces
You can typeset it with the control sequence \cases: overbrace
underbrace
. array
$$1x1=\cases{x,&if $x\ge0$;\cr matrix
-x,&otherwise.\cr}$$ matrix

Look closely at this example and notice that it uses the character &, which we
said in Chapter 7 was reserved for special purposes. Here for the first time in
this manual we have an example of why & is so special: Each of the cases has
two parts, and the & separates those parts. To the left of the & is a math formula
that is implicitly enclosed in $. . .$; to the right of the & is ordinary text, which
is not implicitly enclosed in $...$. For example, the ‘-x,’ in the second line
will be typeset in math mode, but the ‘otherwise’ will be typeset in horizontal
mode. Blank spaces after the & are ignored. There can be any number of cases,
but there usually are at least two. Each case should be followed by \cr. Notice

that the \cases construction typesets its own ‘{’; there is no corresponding ‘}’.

» EXERCISE 18.23 1/3 ifo<az <1,
Typeset the display f(z) = { 2/3 if3<x <4
0 elsewhere.

@ You can insert ‘\noalign{(vertical mode material)}’ just after any \cr within

\cases, as explained in Chapter 22, because \cases is an application of the
general alignment constructions considered in that chapter. For example, the command
“\noalign{\vskip2pt}’ can be used to put a little extra space between two of the cases.

@ Horizontal braces will be set over or under parts of a displayed formula if you

use the control sequences \overbrace or \underbrace. Such constructions are
considered to be large operators like \sum, so you can put limits above them or below
them by specifying superscripts or subscripts, as in the following examples:

k times

$$\overbrace{x+\cdots+x} " {k\rm\;times}$$ r+---+x

$$\underbrace{x+y+z}_{>\,0}.$$ rT+y+z.
~———

>0

8. Matrices. Now comes the fun part. Mathematicians in many different disci-
plines like to construct rectangular arrays of formulas that have been arranged
in rows and columns; such an array is called a matrix. Plain TEX provides a
\matrix control sequence that makes it convenient to deal with the most com-
mon types of matrices.

176 Chapter 18: Fine Points ofMathematics Typing

For example, suppose that you want to specify the display lambda
pmatrix

z—A 1 0 roup
rgroup

A= 0 T — A\ 1 . quad

_ flush right
0 0 z-A hfill

. flush left
All you do is type ellipses

vdots

$$A=\1eft (\matrix{x-\lambda&1&0\cr ;iddc;ts
0&x-\lambda&1\cr ge(flesric matrix

0&0&x-\1lambda\cr}\right) .$$

This is very much like the \cases construction we looked at earlier; each row of
the matrix is followed by \cr, and ‘&’ signs are used between the individual entries
of each row. Notice, however, that you are supposed to put your own \left and
\right delimiters around the matrix; this makes \matrix different from \cases,
which inserts a big ‘{’ automatically. The reason is that \cases always involves
a left brace, but different delimiters are used in different matrix constructions.
On the other hand, parentheses are used more often than other delimiters, so
you can write \pmatrix if you want plain TEX to fill in the parentheses for you;
the example above then reduces to

$$A=\pmatrix{x-\lambda&. . .&x-\lambda\cr}.$$

@ > EXERCISE 18.24 u @
Typeset the display [d ¥] v Yy |, using \lgroup and \rgroup.
w2

@ The individual entries of a matrix are normally centered in columns. Each

column is made as wide as necessary to accommodate the entries it contains,
and there’s a quad of space between columns. If you want to put something flush
right in its column, precede it by \hfill; if you want to put something flush left in its
column, follow it by \hfill.

@ Each entry of a matrix is treated separately from the others, and it is typeset
as a math formula in text style. Thus, for example, if you say \rm in one entry,
it does not affect the others. Don’t try to say ‘{\rm x&y}’.

Matrices often appear in the form of generic patterns that use ellipses
(i.e., dots) to indicate rows or columns that are left out. You can typeset such
matrices by putting the ellipses into rows and/or columns of their own. Plain
TEX provides \vdots (vertical dots) and \ddots (diagonal dots) as companions
to \1ldots for constructions like this. For example, the generic matrix

a1 ai2 e A1n
a1 a922 e agn

Am1 Am?2 N Amn,

Chapter 18: Fine Points ofMathematics Typing

is easily specified:
$$A=\pmatrix{a_{11}&a_{12}&\1ldots&a_{in}\cr
a_{21}&a_{22}&\1dots&a_{2n}\cr
\vdots&\vdots&\ddots&\vdots\cr
a_{m1}&a_{m2}&\ldots&a_{mn}\cr}$$

» EXERCISE 18.25 Y1
How can you get TEX to produce the column vector : ?

Yk

@ Sometimes a matrix is bordered at the top and left by formulas that give
labels to the rows and columns. Plain TgX provides a special macro called
\bordermatrix for this situation. For example, the display

C I C’

C 1 0 0
M=1 b 1-b 0
c'\o a 1—a

is obtained when you type

$$M=\bordermatrix{&C&I&C’ \cr
C&1&0&0\cr I&b&1-b&0\cr C’&0&a&1-a\cr}$$

The first row gives the upper labels, which appear above the big left and right paren-
theses; the first column gives the left labels, which are typeset flush left, just before
the matrix itself. The first column in the first row is normally blank. Notice that
\bordermatrix inserts its own parentheses, like \pmatrix does.

@ It’s usually inadvisable to put matrices into the text of a paragraph, be-
cause they are so big that they are better displayed. But occasionally you
may want to specify a small matrix like ((1) }), which you can typeset for example as

‘$1\, 1\choose0\,1$’. Similarly, the small matrix (C; :1 fl) can be typeset as
$\bigl({a\atop 1}{b\atop m}{c\atop n}\bigr)$
The \matrix macro does not produce small arrays of this sort.

9. Vertical spacing. If you want to tidy up an unusual formula, you know already
how to move things farther apart or closer together, by using positive or negative
thin spaces. But such spaces affect only the horizontal dimension; what if you
want something to be moved higher or lower? That’s an advanced topic.

@ Appendix B provides a few macros that can be used to fool TEX into thinking

that certain formulas are larger or smaller than they really are; such tricks can
be used to move other parts of the formula up or down or left or right. For example, we
have already discussed the use of \mathstrut in Chapter 16 and \strut in Chapter 17;
these invisible boxes caused TEX to put square root signs and the denominators of
continued fractions into different positions than usual.

177

column vector
vector
bordermatrix
choose

matrix, small
atop
mathstrut
strut

178 Chapter 18: Fine Points ofMathematics Typing

@ If you say ‘’ in any formula, plain TEX will do its phantom
spacing as if you had said simply ‘{(subformula)}’, but the subformula itself f;{foy;nbd

will be invisible. Thus, for example, ‘2’ takes up just as much space as vphantom

‘02’ in the current style, but only the 2 will actually appear on the page. If you want strut

to leave blank space for a new symbol that has exactly the same size as » , but if you slz};:;lltom

are forced to put that symbol in by hand for some reason, ‘\mathop{\phantom\sum}’ liminf

will leave exactly the right amount of blank space. (The ‘\mathop’ here makes this limsup

phantom behave like \sum, i.e., as a large operator.) E;;lcerhned et

?2 Even more useful than \phantom is \vphantom, which makes an invisible box iiﬁi,rtstyle
whose height and depth are the same as those of the corresponding \phantom, hbox

but the width is zero. Thus, \vphantom makes a vertical strut that can increase a gljglzal

formula’s effective height or depth. Plain TEX defines \mathstrut to be an abbreviation chemical typesetting

for ‘\vphantom(’. There’s also \hphantom, which has the width of a \phantom, but its
height and depth are zero.

@ Plain TEX also provides ‘\smash{(subformula)}’, a macro that yields the same

result as ‘{(subformula)}’ but makes the height and depth zero. By using
both \smash and \vphantom you can typeset any subformula and give it any desired
nonnegative height and depth. For example,

\mathop{\smash\limsup\vphantom\liminf}

produces a large operator that says ‘limsup’, but its height and depth are those of
\liminf (i.e., the depth is zero).

» EXERCISE 18.26
If you want to underline some text, you could use a macro like

\def\undertext#1{$\underline{\hbox{#1}}$}

to do the job. But this doesn’t always work right. Discuss better alternatives.

% You can also use \raise and \lower to adjust the vertical positions of boxes in
formulas. For example, the formula ‘$2~{\raiseipt\hbox{$\scriptstyle n$}}$’
will have its superscript n one point higher than usual (2" instead of 2™). Note that it was
necessary to say \scriptstyle in this example, since the contents of an \hbox will normally
be in text style even when that hbox appears in a superscript, and since \raise can be used
only in connection with a box. This method of positioning is not used extremely often, but
it is sometimes helpful if the \root macro doesn’t put its argument in a suitable place. For
example,

\root\raise(dimen)\hbox{$\scriptscriptstyle(argument)$}\of. ..
will move the argument up by a given amount.

% Instead of changing the sizes of subformulas, or using \raise, you can also control
vertical spacing by changing the parameters that TEX uses when it is converting
math lists to horizontal lists. These parameters are described in Appendix G; you need to be
careful when changing them, because such changes are global (i.e., not local to groups). Here
is an example of how such a change might be made: Suppose that you are designing a format
for chemical typesetting, and that you expect to be setting a lot of formulas like ‘FegLQCrQO4’.
You may not like the fact that the subscript in F‘e;'2 is lower than the subscript in Crg; and
you don’t want to force users to type monstrosities like

$\rm Fe_2~{+2}Cr_2"{\vphantom{+2}}0_4"{\vphantom{+2}}$

Chapter 18: Fine Points ofMathematics Typing

just to get the formula Feg'ZCrZO4 with all subscripts at the same level. Well, all you need
to do is set ‘\fontdimen16\tensy=2.7pt’ and ‘\fontdimeni7\tensy=2.7pt’, assuming that
\tensy is your main symbol font (\textfont2); this lowers all normal subscripts to a posi-
tion 2.7 pt below the baseline, which is enough to make room for a possible superscript that
contains a plus sign. Similarly, you can adjust the positioning of superscripts by changing
\fontdimeni4\tensy. There are parameters for the position of the axis line, the positions of
numerator and denominator in a generalized fraction, the spacing above and below limits, the
default rule thickness, and so on. Appendix G gives precise details.

10. Special features for math hackers. TEX has a few more primitive operations
for math mode that haven’t been mentioned yet. They are occasionally useful if
you are designing special formats.

% If a glue or kern specification is immediately preceded by ‘\nonscript’, TEX will not

use that glue or kern in script or scriptscript styles. Thus, for example, the sequence
“\nonscript\;’ produces exactly the amount of space specified by ‘(3)’ in the spacing table
for mathematics that appeared earlier in this chapter.

Whenever TEX has scanned a $ and is about to read a math formula that appears

in text, it will first read another list of tokens that has been predefined by the
command \everymath={(token list)}. (This is analogous to \everypar, which was described
in Chapter 14.) Similarly, you can say \everydisplay={(token list)} to predefine a list of
tokens for TEX to read just after it has scanned an opening $$, i.e., just before reading a
formula that is to be displayed. With \everymath and \everydisplay, you can set up special
conventions that you wish to apply to all formulas.

11. Summary. We have discussed more different kinds of formulas in this chapter
than you will usually find in any one book of mathematics. If you have faithfully
done the exercises so far, you can face almost any formula with confidence.

g% But here are a few more exercises, to help you review what you have learned.

Each of the following “challenge formulas” illustrates one or more of the prin-
ciples already discussed in this chapter. The author confesses that he is trying to trip
you up on several of these. Nevertheless, if you try each one before looking at the
answer, and if you’re alert for traps, you should find that these formulas provide a
good way to consolidate and complete your knowledge.

@ » EXERCISE 18.27
h

Challenge number 1: Explain how to type the phrase ‘n®™® root’, where
is treated as a mathematical formula with a superscript in roman type.

Lnth7

» EXERCISE 18.28
Challenge number 2: S~ITS =dg(wy,...,w,) = A.

» EXERCISE 18.29
Challenge number 3: Pr(m=n|m+n=3).

Challenge number 4: sin 18° = i(\/tj) —1).

» EXERCISE 18.31
Challenge number 5: k =1.38065 x 10" 6 erg K~ 1.

> EXERCISE 18.32)))
Challenge number 6: ®CNL;y/N=LyC---CNL}/N=L%.

n

4
4
@ » EXERCISE 18.30
4
4

179

fontdimen
tensy
subscripts
superscripts
axis line
numerator
denominator
fraction
limits

rule thickness
nonscript
everymath
everydisplay
degrees

180 Chapter 18: Fine Points ofMathematics Typing

@ » EXERCISE 18.33 .
Challenge number 7: I\ = [[, g(x, y) e @) da dy.

@ » EXERCISE 18.34))
Challenge number 8: fo e fo flay,. .. zn)day ... doy,.

@ » EXERCISE 18.35
Challenge number 9: Here’s a display.

X2 — P,W2) - 282 m odd
xng{Qg y 2 2)) () (mod N).
Py (X7, — PB,W2)—25% (m even)
@ » EXERCISE 18.36
Challenge number 10: And another.
1

A4ziz4+2222 4+). A4z +2222+...) =

(1—m12)... (1 —xp2)

@ » EXERCISE 18.37
Challenge number 11: And another.

(ajkz) = z < A0ko A1k,)
3>0 “k>0 n>0 ko,k1,...>0
ko+ki+-=n

@ » EXERCISE 18.38
Challenge number 12: And,

(n1+mng+---+ny,)! (n1+n2\ (n+ng+n3 ny+ng+-+ny
nilna!. .. ny! - na na T, '

g% » EXERCISE 18.39
Challenge number 13: Yet another display.

ai,as, .. .,(IM:| _ lR—[(1 —qmHt™)(1—q®=*) ... (1 —¢mtn)

II .
R[bl, ba,....by (1= gbrtm)(1 — gbatn) .. (1 — gbntn)

n=0

@ » EXERCISE 18.40
Challenge number 14: And another.

S fo) = | f)dn).

p prime t>1

@ » EXERCISE 18.41
Challenge number 15: Still another.

k a’s Lbs
—_—— ——
{a,...,a,b,...,b}.
—_—

k-+1 elements

Chapter 18: Fine Points ofMathematics Typing

@ » EXERCISE 18.42
Challenge number 16: Put a \smallskip between the rows of matrices in the

compound matrix
a b e f
c d g h

ig
» EXERCISE 18.43
Challenge number 17: Make the columns flush left here.

4

Co C1 Co N
c1 Co c3 Cnt1

det| €2 € ca Cn+2 | > 0.
Cn Cnt+1l Cpy2 ... Cop

» EXERCISE 18.44
Challenge number 18: The main problem here is to prime the Z

S E Y fa).

z€A T€EA
x#0

» EXERCISE 18.45
Challenge number 19: You may be ready now for this display.
.'2
def 92 k
211 k= 22 } .

» EXERCISE 18.46
Challenge number 20: And finally, when you have polished off all the other examples,
here’s the ultimate test. Explain how to obtain the commutative diagram

0

0 — O — & & L — 0
H e ¢

0 — Oc = m0p -> RY.Oy(-D) — 0

-1

0; @

R'f. (Oy(—iM)) @~~!

181

smallskip

compound matrix
flush left

sum prime

=def

commutative diagram

182

Chapter 18: Fine Points ofMathematics Typing

using \matrix. (Many of the entries are blank.)

12. Words of advice. The number of different notations is enormous and still
growing, so you will probably continue to find new challenges as you continue to
type mathematical papers. It’s a good idea to keep a personal notebook in which
you record all of the non-obvious formulas that you have handled successfully,
showing both the final output and what you typed to get it. Then you’ll be able
to refer back to those solutions when you discover that you need to do something
similar, a few months later.

If you're a mathematician who types your own papers, you have now
learned how to get enormously complex formulas into print, and you can do so
without going through an intermediary who may somehow distort their meaning.
But please, don’t get too carried away by your newfound talent; the fact that you
are able to typeset your formulas with TEX doesn’t necessarily mean that you
have found the best notation for communicating with the readers of your work.
Some notations will be unfortunate even when they are beautifully formatted.

matrix
author, typesetting by

Chapter 18: Fine Points ofMathematics Typing

Mathematicians are like Frenchmen:
whenever you say something to them, they translate it into their own language,

and at once it is something entirely different.
— GOETHE, Maxims and Reflexions (1829)

The best notation is no notation;

whenever it is possible to avoid the use of a complicated alphabetic apparatus,
avoid it.

A good attitude to the preparation of written mathematical exposition

is to pretend that it is spoken.

Pretend that you are explaining the subject to a friend

on a long walk in the woods, with no paper available;

fall back on symbolism only when it is really necessary.

— PAUL HALMOS, How to Write Mathematics (1970)

183

GOETHE
HALMOS

-

19

Displayed Equations

Chapter 19: Displayed Equations 185

By now you know how to type mathematical formulas so that TEX will handle displays
them with supreme elegance; your knowledge of math typing is nearly complete. SZBZ?‘DHM
But there is one more part to the story, and the purpose of this chapter is to hbox

quad

present the happy ending. We have discussed how to deal with individual formu-
las; but displays often involve a whole bunch of different formulas, or different
pieces of a huge formula, and it’s a bit of a problem to lay them out so that they
line up properly with each other. Fortunately, large displays generally fall into
a few simple patterns.

1. One-line displays. Before plunging into the general question of display layout,
let’s recapitulate what we have already covered. If you type ‘$$(formula)$$’,
TEX will display the formula in flamboyant display style, centering it on a line
by itself. We have also noted in Chapter 18 that it’s possible to display two
short formulas at once, by typing ‘$$(formula;)\qquad(formulas)$$’; this reduces
the two-formula problem to a one-formula problem. You get the two formulas
separated by two quads of space, the whole being centered on a line.

Displayed equations often involve ordinary text. Chapter 18 explains
how to get roman type into formulas without leaving math mode, but the best
way to get text into a display is to put it into an \hbox. There needn’t even be
any math at all; to typeset

Displayed Text

you can simply say ‘$$\hbox{Displayed Text}$$’. But here’s a more interesting
example:

X, =X if and only if Y.=Y, and Z,=7.
Formulas and text were combined in this case by typing

$$X_n=X_k \qquad\hbox{if and only ifl}\qquad
Y_n=Y_k \quad\hbox{and}\quad Z_n=Z_k.$$

Notice that \qquad appears around ‘if and only if’, but a single \quad surrounds
‘and’; this helps to indicate that the Y and Z parts of the display are related
more closely to each other than to the X part.

Consider now the display

Y,=X,modp and Z, =X, modgq for all n > 0.
Can you figure out how to type this? One solution is

$$Y_n=X_n\bmod p \quad\hbox{and}\quad Z_n=X_n\bmod q
\qquad\hbox{for all }n\geO.$$

Notice that a space has been left after ‘all’ in the hbox here, since spaces
disappear when they are out in formula-land. But there’s a simpler and more
logical way to proceed, once you get used to TEX’s idea of modes: You can type

... \gquad\hbox{for all $n\ge0$.}$$

186

Chapter 19: Displayed Equations

Wow—that’s math mode inside of horizontal mode inside of display math mode.
But in this way your manuscript mirrors what you are trying to accomplish,
while the previous solution (with the space after ‘all’) looks somewhat forced.

» EXERCISE 19.1
Typeset the following four displays (one at a time):

oo

—1
Z anz" converges if |z| < <lim sup v/ |an|> .
n=0

n—oo

flz+ Az) — f(z)
Ax

[Jus|| = 1, u;-ujy =0 if i # j.

— f'(x) as Az — 0.

an arc an arc
The confluent image of a circle 18 an arc or a circle
a fan a fan or an arc

@ » EXERCISE 19.2
Sometimes display style is too grandiose, when the formula being displayed is

1
Y=3

or something equally simple. One day B. L. User tried to remedy this by typing it as
‘$$y={\scriptstylel\over\scriptstyle2}x$$’, but the resulting formula

y=—x
2

wasn’t at all what he had in mind. What’s the right way to get simply ‘y = %m’ when
you don’t want big fractions in displays?

@ » EXERCISE 19.3
What difference, if any, is there between the result of typing ‘$$(formula)$$’
and the result of typing ‘$$\hbox{$(formula)$}$$’?

@ » EXERCISE 19.4
You may have noticed that most of the displays in this manual are not cen-
tered; displayed material is usually aligned at the left with the paragraph indentation,
as part of the book design, because this is an unusual book. Explain how you could
typeset a formula like
1 1 1
l1—--4+-—->+4.--=In2
33 a2t B
that is off-center in this way.
If you’ve had previous experience typing mathematical papers, you prob-
ably have been thinking, “What about equation numbers? When is this book

going to talk about them?” Ah yes, now is the time to discuss those sneaky little
labels that appear off to the side of displays. If you type

$$(formula)\eqgno(formula)$$

Delta

Vert

User

one half
1/2-unslashed form
fractions in displays
displays, non-centered
equation numbers

Chapter 19: Displayed Equations

TEX will display the first formula and it will also put an equation number (the
second formula) at the right-hand margin. For example,

$$x~2-y"2 = (x+y) (x-y) .\eqno(15)$$

will produce this:

2® —y? = (z +y)(z —y). (15)
You can also get equation numbers at the left-hand margin, with \leqno. For
example,

$$x"2-y"2 = (x+y) (x-y).\leqno(16)$$

will produce this:

(16) 2 —y? = (z+y)(z —y).

Notice that you always give the equation number second, even when it is going
to appear at the left. Everything from the \egno or \leqno command to the $$
that ends the display is the equation number. Thus, you're not allowed to have
two equation numbers in the same display; but there’s a way to get around that
restriction, as we’ll see later.

@ Nowadays people are using right-hand equation numbers more and more, be-

cause a display most often comes at the end of a sentence or clause, and the
right-hand convention keeps the number from intruding into the clause. Furthermore,
it’s often possible to save space when a displayed equation follows a short text line,
since less space is needed above the display; such savings are not possible with \legno,
because there’s no room for overlap. For example, there is less space above display (15)
than there is above (16) in our illustrations of \egno and \legno, although the formulas
and text are otherwise identical.

g% If you look closely at (15) and (16) above, you can see that the displayed

formulas have been centered without regard to the presence of the equation
numbers. But when a formula is large, TEX makes sure that it does not interfere with
its number; the equation number may even be placed on a line by itself.

» EXERCISE 19.5
How would you produce the following display?

i -2/ I a-d) (16

k>0 (n>0 <k<n

@ » EXERCISE 19.6
Equation numbers are math formulas, typeset in text style. So how can you
get an equation number like ‘(3-1)’ (with an en-dash)?

» EXERCISE 19.7
B. L. User tried typing ‘\eqno(*)’ and ‘\eqno(**)’, and he was pleased to discover
that this produced the equation numbers ‘(x)” and ‘(**)’. [He had been a bit worried that they
would come out ‘(*)” and ‘(**)’ instead.] But then a few months later he tried ‘\eqno (***)’
and got a surprise. What was it?

187

eqno
legqno
en-dash
User

188

Chapter 19: Displayed Equations

% Somewhere in this manual there ought to be a description of exactly how TEX displays

formulas; i.e., how it centers them, how it places the equation numbers, how it inserts
extra space above and below, and so on. Well, now is the time for those rules to be stated.
They are somewhat complex, because they interact with things like \parshape, and because
they involve several parameters that haven’t been discussed yet. The purpose of the rules is
to explain exactly what sorts of boxes, glue, and penalties are placed onto the current vertical
list when a display occurs.

% If a display occurs after, say, four lines of a paragraph, TEX’s internal register called

\prevgraf will be equal to 4 when the display starts. The display will be assumed
to take three lines, so \prevgraf will become 7 when the paragraph is resumed at the end of
the display (unless you have changed \prevgraf in the meantime). TEX assigns special values
to three (dimen) parameters immediately after the opening $$ is sensed: \displaywidth and
\displayindent are set to the line width z and the shift amount s for line number \prevgraf-+2,
based on the current paragraph shape or hanging indentation. (Usually \displaywidth is the
same as \hsize, and \displayindent is zero, but the paragraph shape can vary as described
in Chapter 14.) Furthermore, \predisplaysize is set to the effective width p of the line
preceding the display, as follows: If there was no previous line (e.g., if the $$ was preceded
by \noindent or by the closing $$ of another display), p is set to —16383.99999 pt (i.e., to the
smallest legal dimension, —\maxdimen). Otherwise TEX looks inside the hbox that was formed
by the previous line, and sets p to the position of the right edge of the rightmost box inside that
hbox, plus the indentation by which the enclosing hbox has been moved right, plus two ems
in the current font. However, if this value of p depends on the fact that glue in that hbox was
stretching or shrinking—for example, if the \parfillskip glue is finite, so that the material
preceding it has not been set at its natural width—then p is set to \maxdimen. (This doesn’t
happen often, but it keeps TEX machine independent, since p never depends on quantities
that may be rounded differently on different computers.) Notice that \displaywidth and
\displayindent are not affected by \leftskip and \rightskip, but \predisplaysize is. The
values of \displaywidth, \displayindent, and \predisplaysize will be used by TEX after the
displayed formula has been read, as explained below; your program can examine them and/or
change them, if you want the typesetting to be done differently.

% After a display has been read, TEX converts it from a math list to a horizontal

list h in display style, as explained in Appendix G. An equation number, if present,
is processed in text style and put into an hbox a with its natural width. Now the fussy
processing begins: Let z, s, and p be the current values of \displaywidth, \displayindent,
and \predisplaysize. Let ¢ and e be zero if there is no equation number; otherwise let e be
the width of the equation number, and let ¢ be equal to e plus one quad in the symbols font
(i.e., in \textfont2). Let wo be the natural width of the displayed formula h. If wo + ¢ < z,
list h is packaged in an hbox b having its natural width wg. But if wg + ¢ > z (i.e., if the
display is too wide to fit at its natural width), TEX performs the following “squeeze routine”:
If e # 0 and if there is enough shrinkability in the displayed formula h to reduce its width to
z — q, then list h is packaged in an hbox b of width z — ¢q. Otherwise e is set to zero, and list h
is packaged in a (possibly overfull) hbox b of width min(wo, z).

% (Continuation.) TgX tries now to center the display without regard to the equation

number. But if such centering would make it too close to that number (where “too
close” means that the space between them is less than the width e), the equation is either
centered in the remaining space or placed as far from the equation number as possible. The
latter alternative is chosen only if the first item on list h is glue, since TEX assumes that such
glue was placed there in order to control the spacing precisely. But let’s state the rules more
formally: Let w be the width of box b. T;EX computes a displacement d, to be used later when
positioning box b, by first setting d = E(Z —w). If e > 0 and if d < 2e, then d is reset to

%(z — w — e) or to zero, where zero is chosen if list h begins with a glue item.

% (Continuation.) TgX is now ready to put things onto the current vertical list, just
after the material previously constructed for the paragraph-so-far. First comes a
penalty item, whose cost is an integer parameter called \predisplaypenalty. Then comes
glue. If d + s < p, or if there was a left equation number (\legno), TEX sets g, and g; to

vertical list
prevgraf
displaywidth
displayindent
hsize
predisplaysize
noindent
maxdimen
parfillskip
textfont
squeeze routine
penalty
predisplaypenalty

Chapter 19: Displayed Equations

glue items specified by the parameters \abovedisplayskip and \belowdisplayskip, respec-
tively; otherwise g, and g, become glue items corresponding to \abovedisplayshortskip and
\belowdisplayshortskip. [Translation: If the predisplaysize is short enough so that it doesn’t
overlap the displayed formula, the glue above and below the display will be “short” by com-
parison with the glue that is used when there is an overlap.] If e = 0 and if there is an
\legno, the equation number is appended as an hbox by itself, shifted right s and preceded by
interline glue as usual; an infinite penalty is also appended, to prevent a page break between
this number and the display. Otherwise a glue item g, is placed on the vertical list.

number box a is combined with the formula box b as follows: Let k be a kern of
width z — w — e — d. In the \eqno case, box b is replaced by an hbox containing (b, k, a); in
the \legno case, box b is replaced by an hbox containing (a, k, b), and d is set to zero. In all
cases, box b is then appended to the vertical list, shifted right by s + d.

% (Continuation.) Now comes the displayed equation itself. If e # 0, the equation

% (Continuation.) The final task is to append the glue or the equation number that

follows the display. If there was an \egno and if e = 0, an infinite penalty is placed
on the vertical list, followed by the equation number box a shifted right by s + z minus its
width, followed by a penalty item whose cost is the value of \postdisplaypenalty. Otherwise
a penalty item for the \postdisplaypenalty is appended first, followed by a glue item for g
as specified above. TEX now adds 3 to \prevgraf and returns to horizontal mode, ready to
resume the paragraph.

One consequence of these rules is that you can force an equation number to ap-

189

abovedisplayskip
belowdisplayskip
abovedisplayshortskip
belowdisplayshortskip
postdisplaypenalty
llap

rlap

page break

eject

alignment displays
displayindent
predisplaypenalty
abovedisplayskip
postdisplaypenalty
belowdisplayskip
displaywidth
predisplaysize

halign

prevgraf

pear on a line by itself by making its width zero, i.e., by saying either ‘\eqno\1lap{$(formula)$}’Jj

or ‘\legno\rlap{$(formula)$}’. This makes e = 0, and the condition e = 0 controls TEX’s po-
sitioning logic, as explained in the rules just given.

% Plain TEX sets \predisplaypenalty=10000, because fine printers traditionally shun

displayed formulas at the very top of a page. You can change \predisplaypenalty
and \postdisplaypenalty if you want to encourage or discourage page breaks just before or
just after a display. For example, ‘$$\postdisplaypenalty=-10000(formula)$$’ will force a
page break, putting the formula at the bottom line. It is better to force a page break this way
than to say \eject right after $$...$$; such an eject (which follows the \belowdisplayskip
glue below the display) causes the page to be short, because it leaves unwanted glue at the
bottom.

» EXERCISE 19.8
Read the rules carefully and deduce the final position of ‘z = y’ in the formula
$$\quad x=y \hskip10000pt minus 1fil \eqno(5)$$
assuming that there is no hanging indentation. Also consider \legno instead of \eqgno.

TEX also allows “alignment displays,” which are not processed in math mode because
they contain no formulas at the outer level. An alignment display is created by
commands of the general form

$$(assignments) \halign{(alignment)}(assignments)$$

where the (assignments) are optional things like parameter changes that do not produce any
math lists. In such displays, the \halign is processed exactly as if it had appeared in vertical
mode, and it will construct a vertical list v as usual, except that each row of the alignment
will be shifted right by the \displayindent. After the alignment and the closing assignments
have been processed, TEX will put a \predisplaypenalty item and some \abovedisplayskip
glue on the main vertical list, followed by v, followed by a \postdisplaypenalty item and
\belowdisplayskip glue. Thus, alignment displays are essentially like ordinary alignments,
except that they can interrupt paragraphs; furthermore, they are embedded in glue and penal-
ties just like other displays. The \displaywidth and \predisplaysize do not affect the result,
although you could use those parameters in your \halign. An entire alignment display is
considered to be only three lines long, as far as \prevgraf is concerned.

190

Chapter 19: Displayed Equations

2. Multi-line displays. OK, the use of displayed formulas is very nice. But when
you try typing a lot of manuscripts you will run into some displays that don’t
fit the simple pattern of a one-line formula with or without an equation num-
ber. Plain TgX provides special control sequences that will cover most of the
remaining cases.

Multi-line displays usually consist of several equations that should be
lined up by their ‘=’ signs, as in

X1+ +X,=m,
Yi+---+Y,=n
The recommended procedure for such a display is to use \eqalign, which works

with special markers & and \cr that we have already encountered in connection
with \cases and \matrix in Chapter 18. Here’s how to type this particular one:

$$\eqalign{X_1+\cdots+X_p&=m,\cr
Y_1+\cdots+Y_qg&=n.\cr}$$

There can be any number of equations in an \eqalign; the general pattern is

\eqalign{(left-hand side;)&(right-hand side;)\cr
(left-hand sideq)&(right-hand sides)\cr

(left-hand side,,)&(right-hand side,)\cr}

where each (right-hand side) starts with the symbol on which you want alignment
to occur. For example, every right-hand side often begins with an = sign. The
equations will be typeset in display style.

» EXERCISE 19.9
In practice, the left-hand sides of aligned formulas are often blank, and the
alignment is often done with respect to other symbols as well as =. For example,
the following display is typical; see if you can guess how the author typed it:

T(n) < T (281 < ¢(3Men] — 2Msn])
< 3c- 38"

= 3cn'e3.

The result of \eqalign is a vertically centered box. This makes it easy
to get a formula like

eqalign
ampersand
cr

Chapter 19: Displayed Equations

You simply use \eqalign twice in the same line:

$$\left\{

\eqalign{\alpha&=f (z)\cr \beta&=f(z"2)\cr \gamma&=f(z~3)\cr}
\right\}\qgquad\left\{

\eqalign{x&=\alpha~2-\beta\cr y&=2\gamma\cr}\right\}.$$

» EXERCISE 19.10
Try your hand at the numbered two-line display

P(z) = ag + a1 + agx® + -+ + apa™,

30
P(—x) = ag — a1z + apx® — - + (—=1)"apa™. (30)

[Hint: Use the fact that \eqalign produces a vertically centered box; the equa-
tion number ‘(30)’ is supposed to appear halfway between the two lines.]

» EXERCISE 19.11
What happens if you forget the & in one equation of an \eqalign?
@ Multi-line formulas sometimes fit together in odd ways, and you’ll find that
every once in a while you will want to move certain lines farther apart or

closer together. If you type ‘\noalign{\vskip(glue)}’ after any \cr, TEX will insert
the given amount of extra glue just after that particular line. For example,

\noalign{\vskip3pt}

will put 3pt of additional space between lines. You can also change the amount of
space before the first line, in the same way.

The next level of complexity occurs when you have several aligned equa-
tions with several equation numbers. Or perhaps some of the lines are numbered
and others are not:

(z+y)(@—y) =2 —zy+yz —y

=’ —y% (4)

(z +y)? =2 + 20y + y*. (5)

For this situation plain TEX provides \eqalignno; you use it like \eqalign, but

on each line that you want an equation number you add ‘&{equation number)’
just before the \cr. The example above was generated by
$$\eqalignnod{ (x+y) (x-y)&=x"2-xy+yx-y~2\cr

&=x"2-y"2;&(4) \cr
(x+y) "2&=x"2+2xy+y~2.&(5) \cr}$$
Notice that the second & is omitted unless there’s an equation number.
And there’s also \leqalignno, which puts equation numbers at the left.
In this case it is appropriate to move the ‘(4)’ to the beginning of its equation:

(4) (z+y) (@ —y) =2 —ay+yz -y

= —y%
(5) (z+y)? = 2% + 22y + 2

191

noalign
vskip
eqalignno
leqalignno

192

Chapter 19: Displayed Equations

Although the equation numbers appear at the left, you are still supposed to input
them at the right, just as you do with \leqgno; in other words, you should type
‘$$\1leqalignno{ (x+y) (x-y)&...&(4)\cr...}$$’ to get the previous display.
Caution: \eqgalignno and \legalignno both center the set of equations
without regard to the widths of the equation numbers. If the equations or their
numbers get too wide, they might overlap, yet no error message will be given.

» EXERCISE 19.12
Typeset the following display:

(9) ged(u,v) = ged(v, u);
(10) ged(u,v) = ged(—wu, v).

» EXERCISE 19.13
And here’s another one to try, just to keep in practice:

0o 2 oo oo
(/ e dx) = / / e~ @+ g dy
- _27r _oo 2
:/ / e " rdrdf
0 0
27 —p2 | 7=00
L)
0 2 r=0

Tr. (11)

@ Although \eqalign and \eqalignno look nearly the same, there’s really a

fundamental distinction between them: \eqalign makes a single, vertically
centered box, which is no wider than it needs to be; but \eqalignno generates a set of
lines that have the full display width (reaching all the way to both margins). Thus, for
example, you can use \eqalign several times in a display, but \eqalignno can appear
only once. If you try to use \eqno in conjunction with \eqalign, you get a decent
result, but if you try to use \eqno in connection with \eqalignno you’ll get some sort
of weird error message(s).

% The definitions in Appendix B reveal why \eqalign and \eqalignno behave differ-

ently: \eqalign is an abbreviation for \vcenter{\halign{...}}, while \eqalignno
is an abbreviation for \halign to\displaywidth{...}; thus the \eqalignno macro generates
an “alignment display.”

This difference between \eqalign and \eqalignno has two interesting consequences.
(1) It’s impossible to break an \eqalign between pages, but an \eqalignno can be

broken. In fact, you can force a page break after a particular line if you insert ‘\noalign{\break}’l}

ged

int

eqno

vecenter

halign

alignment display
page break
noalign

break
interdisplaylinepenalty
vbox

after the \cr for that line. You can prohibit all breaks in an \eqalignno if you set \interdisplaylinepenalty=10000;Q]

or you can enclose the whole works in a \vbox:
$$\vbox{\eqalignno{...}}$$

(2) You can also insert a line of text between two equations, without losing the alignment. For
example, consider the two displays

rT=y-+z
and

Chapter 19: Displayed Equations

22 = y2 + 22,
These were actually generated as a single display by typing

$$\eqalignno{x&=y+z\cr
\noalign{\hbox{and}}
x"2&=y~2+z"2.\cr}$$

Therefore the fact that their = signs line up is not just a lucky coincidence. Sometimes you
will want to adjust the spacing above or below such a line of inserted text, by putting a \vskip
or two inside of the \noalign{...}. Incidentally, this example also shows that it is possible to
use \eqalignno without giving any equation numbers.

» EXERCISE 19.14
What happens if \eqalign is substituted for \eqalignno in this last example?

» EXERCISE 19.15
Our friend Ben User got into trouble again when he tried to move an equation number
up higher than its usual position, by typing this:

$$\eqalignnoq{...&\raise6pt\hbox{(5)}\cr}$$
What was his oversight, and what could he have done instead?

@ For other types of displays, plain TEX provides \displaylines, which lets you
display any number of formulas in any way you want, without any alignment.
The general form is

$$\displaylines{(displayed formula;)\cr
(displayed formulas)\cr

(displayed formulay,)\cr}$$

Fach formula will be centered, because \displaylines puts \hfil at the left and the
right of each line; you can override this centering to get things flush left or flush right
by inserting \hfill, which takes precedence over \hfil.

@ » EXERCISE 19.16
Use \displaylines to typeset the three-line display

x = (1)
if x=y then y=u; (2)
if x=y and y=z then z=z. (3)

@ If you look closely at the multi-line displays in this chapter, you’ll see that the
baselines are farther apart than they are in normal text; mathematics publish-
ers generally do this in order to make the displays easier to read. In accordance with
this tradition, \eqalign and its relatives automatically increase the \baselineskip.
If you are making a multi-line display with TEX’s primitive \halign command, instead
of using one of the plain TEX macros, you might want to make this same baseline ad-
justment, and you can do it easily by saying ‘$$\openup1\jot \halign{...}$$’. The
\openup macro increases \lineskip and \lineskiplimit as well as \baselineskip.
If you say ‘\openup2\jot’, the lines are spread apart 2 extra units, where plain TEX
opens things up in units of 3 pt. Since $$...$$ acts as a group, the effect of \openup
will disappear when the display is finished. Any (dimen) can follow \openup, but it’s
customary to express the amount symbolically in terms of a \jot instead of using
absolute units; then your manuscript can be used with a variety of different formats.

193

User

raise
displaylines
hfil

hfill
baselineskip
halign
openup
lineskip
lineskiplimit
group

jot

generic coding

194 Chapter 19: Displayed Equations

% Plain TEX’s \displaylines, \eqalignno, and \leqalignno macros begin with ‘\openup1\j otdlalaylincs

If you don’t want the lines to be opened up, you can cancel this by saying, e.g., eqalignno
‘$$\openup-1\jot \eqalignno{...}$$’, because \openup has a cumulative effect. leqalignno
abovedisplayskip
Suppose that you have decided to make a homegrown display having the general belowdisplayskip
form ‘$$\openupi\jot \halign{...}$$’; and for convenience, let’s suppose that the break long displayed formulas

normal conventions of plain TEX are in force, so that \jot=3pt and \baselineskip=12pt. Then
the \openup macro changes the baselineskip distance to 15 pt. It follows that the baseline of the
text line that immediately precedes the display will be 15 pt above the topmost baseline of the
display, plus the \abovedisplayskip. But when the paragraph resumes, its next baseline will
be only 12 pt below the bottom baseline of the display, plus the \belowdisplayskip, because
the \baselineskip parameter will have reverted to its normal value. The \eqalignno and
\displaylines macros say ‘\noalign{\vskip—d}’ before their first lines, where d is the net
amount of opening-up, in order to compensate for this difference.

3. Long formulas. Our discussion of mathematics typing is almost complete; we
need to deal with just one more problem: What should be done when a formula

is so long that it doesn’t fit on a single line?
For example, suppose that you encounter the equation

o(234-1,2%% 1) = —34(231-1)/2354-235/(234 —1)+-7/235 (234 —1) —0(2%5, 231 —1,1).

You’ll have to break it up somehow; TEX has done its best to squeeze everything
together by shrinking the spaces next to the + and — signs to zero, but still the
line has come out overfull.
Let’s try to break that equation just before the ‘+7’. One common way
to do this is to type
$$\eqalign{\sigma(2~{34}-1,2"{35},1)
&=-3+(2"{34}-1)/2~{35}+27{35}\! /(2" {34}-1) \cr
&\qquad+7/2°{35}(2°{34}-1)-\sigma(2°{35},27{34}-1,1) .\cr}$$

which yields
o(234 —1,2%° 1) = =34+ (231 —1)/2% +2%5/(23 — 1)
+7/235(23% — 1) — 0(2%5,23 —1,1).
The idea is to treat a long one-line formula as a two-line formula, using \qquad

on the second line so that the second part of the formula appears well to the
right of the = sign on the first line.

» EXERCISE 19.17
Explain how to deal with the following display.

Tpliy + - F Tppp-1U = Tntin + (aZn + CJug + -+
+ (at_lxn fe(@ 24+ 1))ut
= (u1 + aug + - -+ a"rug)z, + h(ug, .. ug). (47)

@ It’s quite an art to decide how to break long displayed formulas into several

lines; TEX never attempts to break them, because no set of rules is really
adequate. The author of a mathematical manuscript is generally the best judge of
what to do, since break positions depend on subtle factors of mathematical exposition.

Chapter 19: Displayed Equations 195

For example, it is often desirable to emphasize some of the symmetry or other structure left
that underlies a formula, and such things require a solid understanding of exactly what ;iigg}g
is going on in that formula. two-line
flush left
@ Nevertheless, it is possible to state a few rules of thumb about how to deal flush right
with long formulas in displays, since there are some principles that the best displaylines

mathematical typesetters tend to follow:

a) Although formulas within a paragraph always break after binary operations
and relations, displayed formulas always break before binary operations and relations.
Thus, we didn’t end the first line of our o(...) example with ‘(2°{34}-1)+’; we ended
it with ‘(2°{34}-1)’ and began the second line with ‘+’.

b) When an equation is broken before a binary operation, the second line should
start at least two quads to the right of where the innermost subformula containing that
binary operation begins on the first line. For example, if you wish to break

$$\sum_{0<k<n}\left ((formula;)+(formulas)\right) $$

at the plus sign between (formula;) and (formulas), it is almost mandatory to have the
plus sign on the second line appear somewhat to the right of the large left parenthesis
that corresponds to ‘\left (.

@ In the example just considered, special care is needed to break the formula into

two lines, because \left and \right delimiters cannot be used in isolation;
you can’t have only \left in one line of a formula and only \right in the second.
Furthermore, you’ll want the two delimiters to be of the same size, even though they
occur in different lines. The best solution is usually to choose the delimiter size yourself;
for example, you could type

$$\eqalign{\sum_{0<k<n}\biggl (&({formulas)\cr
&\qquad{}+(formulas)\biggr) \cr}$$

if \bigg delimiters are best. Notice that the & markers don’t occur at = signs in this
example, they just mark a point of alignment.

@ There’s another way to break long formulas, sometimes called the two-line

form. The idea is to put the first part of the formula almost flush left, and to
put the second part almost flush right, where “almost flush” means “one quad away.”
Thus, the two-line form of the long o(...) equation considered earlier is

o(2% —1,2%° 1) = =34 (2% —1)/2% +2%/(2% —1)
+7/2%°(2% — 1) — 0(2%,2%* — 1,1).

It isn’t difficult to get this two-line effect with \displaylines:

$$\displaylines{\quad\sigma(2°{34}-1,2"{35},1)
=-3+(27{34}-1)/27{35}+27{36}\ ! /(27{34}-1)\hfill\cr
\hfill{}+7/2°{35}(2"{34}-1)-\sigma(2°{35},2°{34}-1,1) .\quad\cr}$$

An extra ‘{}’ was typed on the second line here so that TEX would know that the ‘+’
is a binary operation. The two-line form is especially recommended for equations that
have a long left-hand side; in that case the break generally comes just before the = sign.

196 Chapter 19: Displayed Equations

@ » EXERCISE 19.18 fraction, huge
Typeset the following display:
> :
(xj —21) . (x5 —zj1) (@ — 25) (x5 — i) - (25 — Tn)

1<j<n

1
C(r—z1).. (T —zn)’ (27)

» EXERCISE 19.19
If it is necessary to typeset a huge fraction like

2" (ea; ¢?) oo (€9/ a5 4) oo (cag/e; %) oo (cq?/ ac; %) oo
(€;q)oo(cq/e;q) 0o

in a single narrow column, you might have to break up the numerator and resort to
1
2" " (ea; ¢) oo (€9/ a5 4%) oo
(cag/e; 4%) oo (ca?/ae; ¢%) oo
(e;9)o0(ca/€;)00
How would you specify the latter fraction to TEX?

Chapter 19: Displayed Equations

When a formula is too long for the page-width

and has to be broken into successive lines

(and we are now, of course, speaking of displayed formulae),
it should be broken, if possible, at the end of a natural ‘phrase’;
if, for example, it is a much-bracketed formula,

it should be broken at the end of one of the major brackets
and not at an inner symbol.

This natural phrasing (as in music or speech)

makes for intelligibility between writer and reader

and should not be left to the compositor.

An author, when he finds himself writing a longish formula,
should indicate a convenient point of fracture in case of need.

— CHAUNDY, BARRETT, and BATEY, The Printing of Mathematics (1954)

Some authors use display with discretion,

some run even extremely long, complicated equations into the text,

while others tend to display every equation in the paper.

The tendency to overdisplay is probably more predominant

than the tendency to underdisplay;

for this reason it is possible for the copy editor to shorten

(and even improve) papers by running displayed material into text. ...

On the other hand, there are occasions when the copy editor needs

to suggest the display of complicated expressions that have been run into text,
particularly when it would involve a bad break at the end of a text line.

— ELLEN SWANSON, Mathematics into Type (1971)

197

CHAUNDY
BARRETT
BATEY

SWANSON

Definitions
(also called Macros)

Chapter 20: Definitions(also called Macros)

You can often save time typing math formulas by letting control sequences stand
for constructions that occur frequently in a particular manuscript. For example,
if some document uses the vector ‘(z1,...,x,)" a lot, you can type

\def\xvec{(x_1,\1dots,x_n)}

and \xvec will henceforth be an abbreviation for ‘(x_1,\1dots,x_n)’. Complex
displays like
Z (f(ml,...,xn)—|—g(a:1,...,xn))
(:1:1,...,1:")76(0,...,0)
can then be typed simply as

$$\sum_{\xvec\ne(0,\1dots,0)} \bigl(f\xvect+g\xvec\bigr)$$

instead of in a tedious long form. By defining a control sequence like \xvec, you
not only cut down on the number of keystrokes that you need to make, you also
reduce your chances of introducing typographical errors and inconsistencies.

Of course, you usually won’t be making a definition just to speed up
the typing of one isolated formula; that doesn’t gain anything, because time
goes by when you're deciding whether or not to make a definition, and when
you're typing the definition itself. The real payoff comes when some cluster of
symbols is used dozens of times throughout a manuscript. A wise typist will look
through a document before typing anything, thereby getting a feeling for what
sorts of problems will arise and what sorts of definitions will be helpful. For
example, Chapter 16 recommends that the control sequence \Ahat be defined at
the beginning of any manuscript that makes frequent use of the symbol A.

Abbreviations like \xvec turn out to be useful in many applications of
computers, and they have come to be known as macros because they are so
powerful; one little macro can represent an enormous amount of material, so it
has a sort of macroscopic effect. System programs like TEX that are designed
to deal with macro definitions are said to expand the user’s macros; for ex-
ample, \xvec expands into (x_1,\ldots,x_n), and \ldots in turn is a macro
that expands into \mathinner{\1ldotp\ldotp\ldotp}. Thus, \xvec is actually
an abbreviation for ‘(x_1,\mathinner{\ldotp\ldotp\ldotp},x_n)’. (The ex-
pansion stops here, because \mathinner is a primitive control sequence of TEX,
and because \1dotp has been defined with \mathchardef; thus \mathinner and
\1dotp are not macros.)

TEX users generally build up their own personal library of macros for
things that they want to do in different documents. For example, it is common
to have a file called macros.tex that contains definitions of your favorite spe-
cial control sequences, perhaps together with commands that load your favorite
special fonts, etc. If you begin a document with the command

\input macros

then TEX will read all those definitions, saving you all the trouble of retyping
them. Of course, TEX’s memory is limited, and it takes time to read a file, so

199

control sequences

defining a control sequence
abbreviations, see macros
macros

Idots

mathinner

mathchardef

library of macros

input

200

Chapter 20: Definitions(also called Macros)

you shouldn’t put thousands of definitions into macros.tex. A large collection
of macro definitions (e.g., the set of definitions in Appendix B) is called a format
(e.g., “plain TEX format”); TEX has a special way to input a format at high
speed, assuming that the format doesn’t change very often.

The \xvec and \Ahat examples apply to math formulas, but you can
make good use of macro definitions even when you aren’t doing any math at all.
For example, if you are using TEX for business correspondence, you can have a
\yours macro that stands for ‘Sincerely yours, A. U. Thor’. If you often write
form letters you can have macros that generate entire sentences or paragraphs
or groups of paragraphs. The Internal Revenue Service could, for example, make
use of the following two macros:

\def\badcheck{A penalty has been added because your
check to us was not honored by your bank.\par}
\def\cheater{A penalty of 50\% of the underpaid tax

has been added for fraud.\par}

Simple macro definitions, like these, start with ‘\def’; then comes the control
sequence name, e.g., ‘\badcheck’; and then comes the replacement text enclosed
in ‘{’ and ‘}’. The braces do not represent grouping in this case; they simply
show the extent of the replacement text in the definition. You could, of course,
define a macro that includes actual braces in its replacement text, as long as
those braces match each other properly. For example, ‘\def\xbold{{\bf x}}’
makes \xbold an abbreviation for ‘{\bf x}’.

» EXERCISE 20.1
Write a \punishment macro that prints 100 lines containing the message ‘I must
not talk in class.” [Hint: First write a macro \mustnt that prints the message
once; then write a macro \five that prints it five times.]

@ » EXERCISE 20.2
What is the expansion of \puzzle, given the following definitions?

\def\a{\b}
\def\b{A\def\a{B\def\a{C\def\a{\b}}}}
\def\puzzle{\a\a\a\a\a}

@ As soon as you get the hang of simple macros like those illustrated above,

you will probably begin to think, “Boy, wouldn’t it be nice if I could have a
macro in which some of the text in the expansion is changeable? I'd like to be able
to stick different things into the middle of that text.” Well, TEX has good news for
you: Control sequences can be defined in terms of parameters, and you can supply
arguments that will be substituted for the parameters.

@ For example, let’s consider \xvec again. Suppose that you not only refer
to ‘(z1,...,xn)’, but you also make frequent use of ‘(y1,...,yn)" and other
similar things. Then you might want to type

\def\row#1{(#1_1,\1ldots,#1_n)}

format

business correspondence
Thor

form letters

Internal Revenue Service
braces

grouping

parameters

arguments

Chapter 20: Definitions(also called Macros)

after which \row x will produce ‘(z1,...,z,)” and \row y will produce ‘(y1,...,yn)"-
The symbol #1 stands for the first parameter to the macro, and when you say ‘\row x’
the x is a so-called argument that will be inserted in place of the #1’s in the replace-
ment text. In this case the argument consists of a single letter, x. You can also say
\row\alpha, in which case the argument will be the control sequence \alpha, and the
result will be ‘(a1,...,a,) . If you want the argument to contain more than one symbol
or control sequence, you can simply enclose it in braces; for example, \row{x’} yields
(zl,...,x,). The argument in this case is x’ (without the braces). Incidentally, if you
say \row{{x’}}, you get (z'1,...,2',); the reason is that only one pair of braces is
stripped off when the argument is collected, and (z'1,...,2',) is what you get from
({x’}_1,\1dots,{x’}_n) in math mode, according to the rules of Chapter 16.

@ » EXERCISE 20.3
Continuing this example, what is the result of $\row{\bf x}$?

@ The notation ‘#1’ suggests that there might be an opportunity to have more
than one parameter, and indeed there is. You can write, for example,

\def\row#1#2{(#1_1,\1dots,#1_#2)}

after which ‘\row xn’ would be the proper protocol for ‘(x1,...,2»)". There can be as
many as nine parameters, #1 to #9, and when you use them you must number them in
order. For example, you can’t use #5 in a definition unless the previous parameter
in that definition was called #4. (This restriction applies only to the initial statement
of parameters, before the replacement text starts; the stated parameters can be used
any number of times, in any order, in the replacement text itself.)

@ A control sequence has only one definition at a time, so the second definition

of \row would supersede the first one if both had appeared in the same doc-
ument. Whenever TEX encounters a macro that it wants to expand, it uses the most
recent definition. However, definitions are local to the group that contains them; old
definitions will be restored in the usual way when a group ends.

@ Caution: When you define a macro with simple parameters, as in these exam-

ples, you must be careful not to put blank spaces before the ‘{’ that begins the
replacement text. For example, ‘\def\row #1 #2 {...} will not give the same result
as ‘\def\row#1#2{. ..}, because the spaces after #1 and #2 tell TEX to look for argu-
ments that are followed by spaces. (Arguments can be “delimited” in a fairly general
way, as explained below.) But the space after \row is optional, as usual, because TEX
always disregards spaces after control words. After you have said ‘\def\row#1#2{...}’,
you are allowed to put spaces between the arguments (e.g., ‘\row x n’), because TEX
doesn’t use single spaces as undelimited arguments.

@ The following exercise is particularly recommended for people who want to
learn to write TEX macros. Even if you have gotten into the dangerous habit
of skimming other exercises, you should try your hand at this one.

@ » EXERCISE 20.4

Extending exercise 20.1, write a “generalized punishment” macro that has two
parameters, so that \punishment{run}{the halls} will produce 100 paragraphs that
say ‘I must not run in the halls.’

201

sharpsign
alpha
braces
apostrophe
local

group

202

Chapter 20: Definitions(also called Macros)

TEX also allows you to define macros whose parameters are delimited in quite a
general way; you needn’t always enclose arguments in braces. For example,

\def\cs #1. #2\par{...}

defines a control sequence \cs with two parameters, and its two arguments will be determined
as follows: #1 will consist of all tokens between \cs and the next subsequent appearance of
‘. (period and space); #2 will consist of all tokens between that ‘.., and the next \par token.
(The \par might be given explicitly, or it might be generated by a blank line as explained in
Chapter 8.) For example, when TEX expands

\cs You owe \$5.00. Pay it.\par
the first argument is ‘You owe \$5.00’ and the second is ‘Pay it.’. The period in ‘\$5.00’
doesn’t stop #1, in this example, because TEX keeps going until finding a period that is followed

immediately by a space.

Furthermore, an argument will not stop when its delimiter is enclosed in braces,
because that would produce unbalanced braces. For example, in

\def\cs #1.#2\par{...}

the first argument is now delimited by a single period, so #1 would be ‘You owe \$5’ and the
#2 would be ‘00. Pay it.’ if \cs were invoked as above. But

\cs You owe {\$5.00}. Pay it.\par

par
theorems

proclaim

enunciations, see proclaim
enspace

satisfactorily hides the first period, making it part of argument #1, which becomes ‘You owe {\$5.00} .1

If you are designing a format for mathematical papers, you will probably want to
include a macro for the statement of theorems, definitions, lemmas, corollaries, and
such things. For example, you might want to typeset a statement like

Theorem 1. TEX has a powerful macro capability.
from the input
\proclaim Theorem 1. \TeX\ has a powerful macro capability.\par

In fact, plain TEX includes a \proclaim macro that does just that; its definition is

\def\proclaim #1. #2\par{\medbreak
\noindent{\bf#1.\enspace}{\sl#2}\par\medbreak}

so the arguments are delimited exactly as in our first \cs example. The replacement
text here uses \medbreak to separate the proclaimed paragraph from what precedes
and follows; the title of the proclamation is set in bold face type, while the text itself is
set slanted. (The actual definition of \proclaim in Appendix B is not quite the same
as this; the final \medbreak has been modified so that a break between pages will be
discouraged immediately following the statement of a theorem. Hence a short theorem
will tend to appear at the top of a page rather than at the bottom.)

% By making changes to the \proclaim macro, you can change the format of all the

proclamations in your paper, without changing the text of the paper itself. For
example, you could produce something like

THEOREM 1: TgX has a powerful macro capability.

Chapter 20: Definitions(also called Macros)

by making simple alterations to the replacement text of \proclaim, assuming that you
have a “caps and small caps” font. TEX is intended to support higher-level languages
for composition in which all of the control sequences that a user actually types are
macros rather than TEX primitives. The ideal is to be able to describe important
classes of documents in terms of their components, without mentioning actual fonts or
point sizes or details of spacing; a single style-independent document can then be set
in many different styles.

Now that we have seen a number of examples, let’s look at the precise rules that
govern TEX macros. Definitions have the general form

\def (control sequence)(parameter text){(replacement text)}

where the (parameter text) contains no braces, and where all occurrences of { and } in the
(replacement text) are properly nested. Furthermore the # symbol has a special significance:
In the (parameter text), the first appearance of # must be followed by 1, the next by 2, and so
on; up to nine #’s are allowed. In the (replacement text) each # must be followed by a digit
that appeared after # in the (parameter text), or else the # should be followed by another #.
The latter case stands for a single # token when the macro is expanded; the former case stands
for insertion of the corresponding argument.

For example, let’s consider a “random” definition that doesn’t do anything useful
except that it does exhibit TEX’s rules. The definition

\def\cs AB#1#2C$#3\$ {#3{ab#1}#1 c##\x #2}
says that the control sequence \cs is to have a parameter text consisting of nine tokens
Ai1, Bi1, #1, #2, C11, $3, #3, , u10

(assuming the category codes of plain TEX), and a replacement text of twelve tokens

#3, {1, a1, bi1, #1, Yo, #1, L10, c11, #6, [x|, #2.

Henceforth when TEX reads the control sequence \cs it will expect that the next two tokens
will be A11 and Bi1 (otherwise you will get the error message ‘Use of \cs doesn’t match its
definition’); then comes argument #1, followed by argument #2, then Ci1, then $3, then
argument #3, then \$, and finally a space token. It is customary to use the word “argument”
to mean the string of tokens that gets substituted for a parameter; parameters appear in a
definition, and arguments appear when that definition is used. (For the purposes of these
rules, we are extending Chapter 7’s definition of token: In addition to control sequences and
(character code, category code) pairs, TEX also recognizes “parameter tokens,” denoted here
by #1 to #9. Parameter tokens can appear only in token lists for macros.)

% How does TEX determine where an argument stops, you ask. Answer: There are

two cases. A delimited parameter is followed in the (parameter text) by one or more
non-parameter tokens, before reaching the end of the parameter text or the next parameter
token; in this case the corresponding argument is the shortest (possibly empty) sequence of
tokens with properly nested {...} groups that is followed in the input by this particular list
of non-parameter tokens. (Category codes and character codes must both match, and control
sequence names must be the same.) An undelimited parameter is followed immediately in the
(parameter text) by a parameter token, or it occurs at the very end of the parameter text; in
this case the corresponding argument is the next nonblank token, unless that token is ‘{’, when
the argument will be the entire {...} group that follows. In both cases, if the argument found
in this way has the form ‘{(nested tokens)}’, where (nested tokens) stands for any sequence
of tokens that is properly nested with respect to braces, the outermost braces enclosing the
argument are removed and the (nested tokens) will remain. For example, let’s continue with
\cs as defined above and suppose that the subsequent text contains

\cs AB {\Look}C${And\$ }{look}\$ 5.

203

caps and small caps
higher-level languages for composition
style-independent document
format-independent document
generic coding

braces

category codes

token

parameter tokens

delimited parameter
undelimited parameter

204 Chapter 20: Definitions(also called Macros)

Argument #1 will be the token [Look|, since #1 is an undelimited parameter (it is followed spaces
immediately by #2 in the definition); in this case TEX ignores the blank space after B, and control word
strips the braces off of {\Look}. Argument #2 will be empty, since C$ follows immediately. And sharp sharp

dimensions as arguments

argument #3 will be the thirteen tokens corresponding to the text {And\$_}{look}, because Tex
e

#3 is to be followed by ‘\$.,’, and because the first occurrence of ‘\$,,’ is within braces. Even spaces

though argument #3 begins with a left brace and ends with a right brace, the braces are not tracingmacros
removed, since that would leave the unnested tokens ‘And\$ }{look’. The net effect then, after debugging macros
substituting arguments for parameters in the replacement text, will be that TEX will next read category codes
the token list

{And\$ }{look}{ab\Look}\Look c#\x5.

The space , here will be part of the resulting token list, even though it follows the control word
\Look, because spaces are removed after control word tokens only when TEX first converts input
lines to token lists as described in Chapter 8.

%» EXERCISE 20.5

The example definition of \cs includes a ## in its replacement text, but the way ##
is actually used in that example is rather pointless. Give an example of a definition where ##
serves a useful purpose.

% A special extension is allowed to these rules: If the very last character of the
(parameter text) is #, so that this # is immediately followed by {, TEX will behave
as if the { had been inserted at the right end of both the parameter text and the replacement
text. For example, if you say ‘\def\a#1#{\hbox to #1}’, the subsequent text ‘\a3pt{x}’ will
expand to ‘\hbox to 3pt{x}’, because the argument of \a is delimited by a left brace.

Tokens that precede the first parameter token in the (parameter text) of a definition
are required to follow the control sequence; in effect, they become part of the control
sequence name. For example, the author might have said

\def\TeX/{...}

instead of defining \TeX without the slash. Then it would be necessary to type \TeX/ each
time the TEX logo is desired, but the new definition would have the advantage that spaces are
not ignored after ‘\TeX/’. You can use this idea to define macros that are intended to be used
in sentences, so that users don’t have to worry about the possible disappearance of spaces.

» EXERCISE 20.6
Define a control sequence \a such that \a{...} expands to \b{...}, and such that
TEX gives an error message if \a is not immediately followed by a left brace.

% Complicated macros have a habit of behaving differently from what you expect, when

you first define them, even though TEX’s rules are not especially complicated. If you
have trouble understanding why some \def doesn’t work the way you think it should, help is
available: You can set \tracingmacros=1, whereupon TEX will write something in your log file
whenever it expands a macro, and whenever it has read a macro argument. For example, if
\tracingmacros is positive when TEX processes the \cs example above, it will put the following
four lines into the log:

\cs AB#1#2C$#3\$ —>#3{ab#1}#1 c##t\x #2
#1<-\Look

#2<-

#3<-{And\$ }{look}

% In all of the rules stated above, ‘{’ and ‘}’ and ‘#’ stand for any characters whose
category codes are respectively 1, 2, and 6 in the token list when TEX reads the
macro definition; there’s nothing sacred about the particular symbols that plain TEX uses to
denote grouping and parameters. You can even make use of several different characters with
these category codes, all at the same time.

Chapter 20: Definitions(also called Macros)

» EXERCISE 20.7
Suppose that ‘[’, ‘1°, and ‘!’ have the respective catcodes 1, 2, and 6, as do ‘{’, ‘}’,
and ‘#’. See if you can guess what the following definition means:

\def\! 11#2! [{!#]#!!2}
What token list will result when ‘\! x{[y]] [z}’ is expanded?

% In practice, we all make mistakes. And one of the most common typographic errors

is to forget a ‘}’, or to insert an extra ‘{’, somewhere in an argument to a macro.
If TEX were to follow the rules blindly in such a case, it would have to keep absorbing more
and more tokens in hopes of finding the end of the argument. But a mistyped argument is
unending, like so many arguments in real life (sigh); so TEX would have to go on until the
end of the file, or (more likely) until tokens completely fill the computer’s memory. In either
case, a single typographical error would have ruined the run, and the user would be forced to
start over. Therefore TEX has another rule, intended to confine such errors to the paragraph
in which they occur: The token ‘\par’ is not allowed to occur as part of an argument, unless
you explicitly tell TEX that \par is OK. Whenever TEX is about to include \par as part of an
argument, it will abort the current macro expansion and report that a “runaway argument”
has been found.

If you actually want a control sequence to allow arguments with \par tokens, you
can define it to be a “long” macro by saying ‘\long’ just before ‘\def’. For example,
the \bold macro defined by

\long\def\bold#1{{\bf#1}}

is capable of setting several paragraphs in boldface type. (However, such a macro is not an
especially good way to typeset bold text. It would be better to say, e.g.,

\def\beginbold{\begingroup\bf}
\def\endbold{\endgroup}

because this doesn’t fill TEX’s memory with a long argument.)

% The \par-forbidding mechanism doesn’t catch all conceivable missing-brace errors,

however; you might forget the } at the end of a \def, and the same problem would
arise. In this case it’s harder to confine the error, because \par is a useful thing in replacement
texts; we wouldn’t want to forbid \par there, so TEX has another mechanism: When a macro
definition is preceded by ‘\outer’, the corresponding control sequence will not be allowed to
appear in any place where tokens are being absorbed at high speed. An \outer macro cannot
appear in an argument (not even when \par is allowed), nor can it appear in the parameter text
or the replacement text of a definition, nor in the preamble to an alignment, nor in conditional
text that is being skipped over. If an \outer macro does show up in such places, TEX stops
what it is doing and reports either a “runaway” situation or an “incomplete” conditional. The
end of an input file is also considered to be \outer in this sense; for example, a file shouldn’t
end in the middle of a definition. If you are designing a format for others to use, you can help
them detect errors before too much harm is done, by using \outer with all control sequences
that should appear only at “quiet times” within a document. For example, Appendix B defines
\proclaim to be \outer, since a user shouldn’t be stating a theorem as part of a definition or
argument or preamble.

We have now seen that \def can be preceded by \long or \outer, and it can also

be preceded by \global if the definition is supposed to transcend its group. These
three prefixes can be applied to \def in any order, and they can even appear more than once.
TEX also has a \gdef primitive that is equivalent to \global\def. Thus, for example,

\long\outer\global\long\def

means the same thing as ‘\outer\long\gdef’.

205

par
runaway

long

outer

forbidden control sequence
preamble

conditional text
incomplete

end of an input file
proclaim

global

gdef

206 Chapter 20: Definitions(also called Macros)

% So far in this manual we have encountered several ways to assign a meaning to a let
control sequence. For example, par
futurelet
\font\cs=(external font name) makes \cs a font identifier; looking ahead
\chardef\cs=(number) makes \cs a character code; conditional text
\countdef \cs=(number) makes \cs a \count register; else
\def\cs...{...} makes \cs a macro.

It’s time now to reveal another important command of this type:
\let\cs=(token) gives \cs the token’s current meaning.

If the (token) is another control sequence, \cs will acquire the same significance as that control
sequence. For example, if you say ‘\let\a=\def’, you could then say ‘\a\b...{...} to define
a macro \b, because \a would behave like TEX’s primitive \def command. If you say

\let\a=\b \let\b=\c \let\c=\a
you have interchanged the former meanings of \b and \c. And if you say

\outer\def\a#1.{#1:}
\let\b=\a

the effect is exactly the same as ‘\outer\def\b#1.{#1:} \let\a=\b’.

% If the (token) in a \let is a single character—i.e., if it is a (character code, category

code) pair—then the control sequence will behave to a certain extent like that char-
acter; but there are some differences. For example, after ‘\let\zero=0’ you can’t use \zero in
a numerical constant, because TEX requires the tokens in a numerical constant to be digits,
after macro expansion; \zero is not a macro, so it doesn’t expand. However, such uses of \let
have their value, as we will see later.

» EXERCISE 20.8
Is there a significant difference between ‘\let\a=\b’ and ‘\def\a{\b}’?

%» EXERCISE 20.9

Experiment with TEX to discover the answers to the following questions: (a) If
the control sequence \par has been redefined (e.g., ‘\def\par{\endgroup\par}’), is \par still
forbidden to appear in an argument? (b) If you say \let\xpar=\par, is \xpar also forbidden
in an argument?

TEX also allows the construction ‘\futurelet\cs(token;)(tokena)’, which has the

effect of ‘\let\cs = (tokens)(token;)(tokens)’. The idea is that you can say, for
example, ‘\futurelet\a\b’ at the end of the replacement text of a macro; TEX will set \a to
the token that follows the macro, after which \b will be expanded. The control sequence \b
can continue the processing, and it can examine \a to see what’s coming up next.

@ The next thing a person wants, after getting used to macros with parameters,

is the ability to write macros that change their behavior depending on current
conditions. TEX provides a variety of primitive commands for this purpose. The general
form of such “conditional text” is

\if(condition)(true text)\else(false text)\fi

where the (true text) is skipped unless the (condition) is true, and the (false text)
is skipped unless the (condition) is false. If the (false text) is empty, you can omit
the \else. The ‘\if(condition)’ part of this construction begins with a control sequence
whose first two letters are ‘if’; for example,

\ifodd\count0 \rightpage \else\leftpage \fi

Chapter 20: Definitions(also called Macros)

specifies a condition that is true when TEX’s integer register \count0 is odd. Since TEX
generally keeps the current page number in \countO, the macro \rightpage will be
expanded in this example if the page number is odd, while \1leftpage will be expanded
if the page number is even. Conditional commands always end with a final ‘\fi’.

@ Conditionals are primarily intended for experienced TEX users, who want to

define high-level macros; therefore the remaining paragraphs in this chapter
are headed by “double dangerous bends.” Do not feel guilty about skipping right to
Chapter 21; in other words, imagine that the manual says ‘\ifexperienced’ right here,
and that there is a matching ‘\fi’ at the end of the present chapter.

ple, so that the general ideas will be clear. Suppose that the \count register \balance
holds an amount that somebody has paid in excess of his or her income tax; this amount is
given in pennies, and it might be positive, negative, or zero. Our immediate goal will be to
write a TEX macro that generates a suitable statement for the Internal Revenue Service to
include as part of a letter to that person, based on the amount of the balance. The statement
will be quite different for positive balances than for negative ones, so we can exploit TEX’s
ability to act conditionally:

% Before we discuss TEX’s repertoire of \if... commands, let’s look at another exam-

\def\statement{\ifnum\balance=0 \fullypaid
\else\ifnum\balance>0 \overpaid
\else\underpaid
\fi
\fi}

Here \ifnum is a conditional command that compares two numbers; the \statement macro
reduces to \fullypaid if the balance is zero, and so on.

It is vastly important to notice the spaces after the 0’s in this construction. If the
example had said

...=0\fullypaid...

then TEX would have begun to expand ‘\fullypaid’ before it knew the value of the constant 0,
because \fullypaid might start with a 1 or something that would change the number. (After
all, ‘01’ is a perfectly acceptable (number), in TEX’s eyes.) In this particular case the program
would still have worked, because we will see in a moment that \fullypaid begins with the
letter Y; thus, the only problem caused by the missing space would be that TEX would go
slower, since it would have to skip over the whole expansion of \fullypaid instead of just
skipping \fullypaid as a single, unexpanded token. But in other situations a missing space
like this might cause TEX to expand macros when you don’t want any expansion, and such
anomalies can cause subtle and confusing errors. For best results, always put a blank space
after a numeric constant; this blank space tells TEX that the constant is complete, and such
a space will never “get through” to the output. In fact, when you don’t have a blank space
after a constant, TEX actually has to do more work, because each constant continues until a
non-digit has been read; if this non-digit is not a space, TEX takes the token you did have and
backs it up, ready to be read again. (On the other hand, the author often omits the space
when a constant is immediately followed by some other character, because extra spaces do look
funny in the file; aesthetics are more important than efficiency.)

» EXERCISE 20.10
Continuing the IRS example, assume that \fullypaid and \underpaid are defined

207

ifodd

count

page number

fi

Internal Revenue Service
ifnum

space after a constant

208

Chapter 20: Definitions(also called Macros)

as follows:

\def\fullypaid{Your taxes are fully paid---thank you.}
\def\underpaid{{\countO=-\balance
\ifnum\count0<100
You owe \dollaramount, but you need not pay it, because
our policy is to disregard amounts less than \$1.00.
\else Please remit \dollaramount\ within ten days,
or additional interest charges will be due.\fi}}

Write a macro \overpaid to go with these, assuming that \dollaramount is a macro that
generates the contents of \countO in dollars and cents. Your macro should say that a check
will be mailed under separate cover, unless the amount is less than $1.00, in which case the
person must specifically request a check.

Now let’s make a complete survey of TEX’s conditional commands. Some of them

» EXERCISE 20.11
Write a \dollaramount macro, to complete the Internal Revenue \statement.
; ; involve features that have not yet been introduced in this manual.

= \ifnum(number,)(relation)(numbers) (compare two integers)
The (relation) must be either ‘<12’ or ‘=12’ or ‘>12”. The two integer numbers are
compared to each other in the usual way, and the result is true or false accordingly.

s \ifdim(dimen;)(relation)(dimens) (compare two dimensions)
This is like \ifnum, but it compares two (dimen) values. For example, to test whether
the value of \hsize exceeds 100 pt, you can say ‘\ifdim\hsize>100pt’.

= \ifodd(number) (test for odd integer)

The condition is true if the (number) is odd, false if it is even.

= \ifvmode (test for vertical mode)

True if TEX is in vertical mode or internal vertical mode (see Chapter 13).

= \ifhmode (test for horizontal mode)

True if TEX is in horizontal mode or restricted horizontal mode (see Chapter 13).

= \ifmmode (test for math mode)
True if TEX is in math mode or display math mode (see Chapter 13).

» \ifinner (test for an internal mode)

True if TEX is in internal vertical mode, or restricted horizontal mode, or (nondisplay)
math mode (see Chapter 13).

= \if(token;)(tokens) (test if character codes agree)

TEX will expand macros following \if until two unexpandable tokens are found. If
either token is a control sequence, TEX considers it to have character code 256 and
category code 16, unless the current equivalent of that control sequence has been \let
equal to a non-active character token. In this way, each token specifies a (charac-
ter code, category code) pair. The condition is true if the character codes are equal,
independent of the category codes. For example, after \def\a{*} and \let\b=* and
\def\c{/}, the tests ‘\if*\a’ and ‘\if\a\b’ will be true, but ‘\if\a\c’ will be false.
Also ‘\if\a\par’ will be false, but ‘\if\par\let’ will be true.

ifnum
relation
ifdim
ifodd
ifvmode
ifthmode
ifmmode
ifinner

if

Chapter 20: Definitions(also called Macros)

= \ifcat(tokens)(tokens) (test if category codes agree)

This is just like \if, but it tests the category codes, not the character codes. Active
characters have category 13, but you have to say ‘\noexpand(active character)’ in order
to suppress expansion when you are looking at such characters with \if or \ifcat. For
example, after

\catcode‘[=13 \catcode‘]=13 \def [{*}

the tests ‘\ifcat\noexpand[\noexpand]’ and ‘\ifcat[*’ will be true, but the test
‘\ifcat\noexpand[*’ will be false.

= \ifx(token;)({tokens) (test if tokens agree)

In this case, TEX does not expand control sequences when it looks at the two tokens.
The condition is true if (a) the two tokens are not macros, and they both represent the
same (character code, category code) pair or the same TEX primitive or the same \font
or \chardef or \countdef, etc.; or if (b) the two tokens are macros, and they both
have the same status with respect to \long and \outer, and they both have the same
parameters and “top level” expansion. For example, after ‘\def\a{\c} \def\b{\d}
\def\c{\e} \def\d{\e} \def\e{A}’, an \ifx test will find \c and \d equal, but not
\a and \b, nor \d and \e, nor any other combinations of \a, \b, \c, \d, \e.

= \ifvoid(number), \ifhbox(number), \ifvbox(number) (test a box register)

The (number) should be between 0 and 255. The condition is true if that \box is void
or contains an hbox or a vbox, respectively (see Chapter 15).

» \ifeof (number) (test for end of file)

The (number) should be between 0 and 15. The condition is true unless the corre-
sponding input stream is open and not fully read. (See the command \openin below.)

m \iftrue, \iffalse (always true or always false)

These conditions have a predetermined outcome. But they turn out to be useful in
spite of this, as explained below.

Finally, there’s one more conditional construction, which is somewhat different
from the rest because it is capable of making a many-way branch:

= \ifcase(number)(text for case 0)\or(text for case 1)\or ---
\or(text for case n)\else(text for all other cases)\fi

Here there are n + 1 cases separated by n \or’s, where n can be any nonnegative
number. The (number) selects the text that will be used. Once again the \else part is
optional, if you don’t want to specify any text for cases when the (number) is negative
or greater than n.

%» EXERCISE 20.12

Design a \category macro that prints a character’s current category code symboli-
cally, given a one-character control sequence for that character. For example, if the category
codes of plain TEX are in force, ‘\category\\’ should expand to ‘escape’, and ‘\category\a’
should expand to ‘letter’.

%» EXERCISE 20.13

Test yourself on the following questions to see if you understand certain borderline
situations: After the definitions ‘\def\a{} \def\b{**} \def\c{True}’, which of the follow-
ing are true? (a) ‘\if\a\b’; (b) ‘\ifcat\a\b’; (c¢) ‘\ifx\a\b’; (d) ‘\if\c’; (e) ‘\ifcat\c’;
(f) \ifx\ifx\ifx’. (g) ‘\if\ifx\a\b\c\else\if\a\b\c\fi\fi’.

209

ifcat

category codes
Active characters
noexpand

ifx

font

chardef
countdef

long

outer

ifvoid

ifthbox

ifvbox

ifeof

openin

iftrue

iffalse

ifcase

or

else

210

Chapter 20: Definitions(also called Macros)

% Notice that all of the control sequences for conditionals begin with \if..., and they

all have a matching \fi. This convention—that \if... pairs up with \fi—makes
it easier to see the nesting of conditionals within your program. The nesting of \if...\fi
is independent of the nesting of {...}; thus, you can begin or end a group in the middle of
a conditional, and you can begin or end a conditional in the middle of a group. Extensive
experience with macros has shown that such independence is important in applications; but it
can also lead to confusion if you aren’t careful.

% It’s sometimes desirable to pass information from one macro to another, and there are

several ways to do this: by passing it as an argument, by putting it into a register,
or by defining a control sequence that contains the information. For example, the macros
\hphantom, \vphantom, and \phantom in Appendix B are quite similar, so the author wanted
to do most of the work in another macro \phant that would be common to all three. Somehow
\phant was to be told what kind of phantom was desired. The first approach was to define
control sequences \hph and \vph something like this:

\def\hphantom{\ph YN} \def\vphantom{\ph NY} \def
\def\ph#1#2{\def\hph{#1}\def\vph{#2}\phant}

after which \phant could test ‘\if Y\hph’ and ‘\if Y\vph’. This worked, but there were various
ways to make it more efficient; for example, ‘\def\hph{#1}’ could be replaced by ‘\let\hph=#1’,
avoiding macro expansion. An even better idea then suggested itself:

\def\yes{\if00} \def\no{\ifO1}
\def\hphantom{\ph\yes\no}...\def
\def\ph#1#2{\let\ifhph=#1\let\ifvph=#2\phant}

after which \phant could test ‘\ifhph’ and ‘\ifvph’. (This construction was tried before
\iftrue and \iffalse were part of the TEX language.) The idea worked fine, so the author
started to use \yes and \no in a variety of other situations. But then one day a complex
conditional failed, because it contained an \ifhph-like test inside another conditional:

\if... \ifhph...\fi ... \else ... \fi

Do you see the problem that developed? When the (true text) of the outermost conditional was
executed, everything worked fine, because \ifhph was either \yes or \no and it expanded into
either \if00 or \if01. But when the (true text) was skipped, the \ifhph was not expanded,
so the first \fi was mistakenly paired with the first \if; everything soon went haywire. That’s
when \iftrue and \iffalse were put into the language, in place of \yes and \no; now \ifhph
is either \iftrue or \iffalse, so TEX will match it properly with a closing \fi, whether or
not it is being skipped over.

% To facilitate \if... constructions, plain TEX has a \newif macro, such that after
you say ‘\newif\ifabc’ three control sequences will be defined: \ifabc (for testing
the switch), \abctrue (for making the switch true), and \abcfalse (for making it false). The
\phantom problem is now solved in Appendix B by writing

\newif\ifhph \newif\ifvph
\def\hphantom{\hphtrue\vphfalse\phant}

and with similar definitions of \vphantom and \phantom. There is no longer any need for a
\ph macro; again \phant tests \ifhph and \ifvph. Appendix E contains other examples of
conditionals created by \newif. New conditionals are initially false.

% Caution: Don’t say anything like ‘\let\ifabc=\iftrue’ in conditional text. If TEX
skips over this command, it will think that both \ifabc and \iftrue require a match-

ing \fi, since the \let is not being executed! Keep such commands buried inside macros, so

that TEX will see the ‘\if...’ only when it is not skipping over the text that it is reading.

TEX has 256 “token list registers” called \toksO through \toks255, so that token lists
can easily be shuffled around without passing them through TEX’s reading apparatus.
There’s also a \toksdef instruction so that, e.g.,

\toksdef\catch=22

nesting

group
communication between macros
phantom

Knuth

iftrue

iffalse

newif

token list registers
toks

toksdef

Chapter 20: Definitions(also called Macros)

makes \catch equivalent to \toks22. Plain TgX provides a \newtoks macro that allocates a
new token list register; it is analogous to \newcount. Token list registers behave like the token
list parameters \everypar, \everyhbox, \output, \errhelp, etc. To assign a new value to a
token list parameter or register, you say either

(token variable)={(replacement text)}
or (token variable)=(token variable)

where (token variable) means either a token list parameter or a control sequence defined by
\toksdef or \newtoks, or an explicit register designation ‘\toks(number)’.

% Everyone who makes extensive use of a powerful macro facility encounters situa-
tions when the macros do surprising things. We have already mentioned the pos-
sibility of setting \tracingmacros=1, in order to see when TEX expands macros and what
arguments it finds. There’s also another helpful way to watch what TEX is doing: If you
set \tracingcommands=1, TEX will show every command that it executes, as we saw in Chap-
ter 13. Furthermore, if you set \tracingcommands=2, TEX will show all conditional commands
and their outcomes, as well as the unconditional commands that are actually performed or
expanded. This diagnostic information goes into your log file. You can also see it on your
terminal, if you say \tracingonline=1. (Incidentally, if you make \tracingcommands greater
than 2, you get the same information as when it equals 2.) Similarly, \tracingmacros=2 will
trace \output, \everypar, etc.

One way to understand the occasional strangeness of macro operation is to use the

tracing features just described, so that you can watch what TEX does in slow motion.
Another way is to learn the rules for how macros are expanded; we shall now discuss those
rules.

% TEX’s mastication process converts your input to a long token list, as explained in

Chapter 8; and its digestive processes work strictly on this token list. When TEX
encounters a control sequence in the token list, it looks up the current meaning, and in certain
cases it will expand that token into a sequence of other tokens before continuing to read. The
expansion process applies to macros and to certain other special primitives like \number and
\if that we shall consider momentarily. Sometimes, however, the expansion is not carried out;
for example, when TEX is taking care of a \def, the (control sequence), the (parameter text),
and the (replacement text) of that \def are not subject to expansion. Similarly, the two tokens
after \ifx are never expanded. A complete list of occasions when tokens are not expanded
appears later in this chapter; you can use it for reference in an emergency.

Now let’s consider the control sequences that are expanded whenever expansion has
not been inhibited. Such control sequences fall into several classes:

m Macros. When a macro is expanded, TEX first determines its arguments (if
any), as explained earlier in this chapter. Each argument is a token list; the tokens
are not expanded when they are being accepted as arguments. Then TEX replaces the
macro and its arguments by the replacement text.

» Conditionals. When an \if... is expanded, TEX reads ahead as far as nec-
essary to determine whether the condition is true or false; and if false, it skips ahead
(keeping track of \if...\fi nesting) until finding the \else, \or, or \fi that ends
the skipped text. Similarly, when \else, \or, or \fi is expanded, TEX reads to the
end of any text that ought to be skipped. The “expansion” of a conditional is empty.
(Conditionals always reduce the number of tokens that are seen by later stages of the
digestive process, while macros usually increase the number of tokens.)

= \number (number). When TEX expands \number, it reads the (number) that
follows (expanding tokens as it goes); the final expansion consists of the decimal rep-
resentation of that number, preceded by ‘-’ if negative.

211

newtoks

token list parameters
token variable
tracingcommands
tracingonline
tracingmacros
expansion

number

decimal representation

212

Chapter 20: Definitions(also called Macros)

= \romannumeral (number). This is like \number, but the expansion consists of
lowercase roman numerals. For example, ‘\romannumeral 1984’ produces ‘mcmlxxxiv’.
The expansion is empty if the number is zero or negative.

= \string(token). TEX first reads the (token) without expansion. If a control
sequence token appears, its \string expansion consists of the control sequence name
(including \escapechar as an escape character, if the control sequence isn’t simply an
active character). Otherwise the (token) is a character token, and its character code is
retained as the expanded result.

= \jobname. The expansion is the name that TEX has chosen for this job. For
example, if TEX is putting its output on files paper.dvi and paper.log, then \ jobname
expands to ‘paper’.

= \fontname(font). The expansion is the external file name corresponding to the
given font; e.g., ‘\fontname\tenrm’ might expand to ‘cmr10’ (five tokens). If the font is
not being used at its design size, the “at size” also appears in the expansion. A (font)
is either an identifier defined by \font; or \textfont(number), \scriptfont(number),
or \scriptscriptfont(number); or \font, which denotes the current font.

= \meaning(token). TEX expands this to the sequence of characters that would
be displayed on your terminal by the commands ‘\let\test=(token) \show\test’.
For example, ‘\meaning A’ usually expands to ‘the letter A’; ‘\meaning\A’ after
‘\def\A#1B{\C} expands to ‘macro:#1B->\C ’.

= \csname. . .\endcsname. When TEX expands \csname it reads to the matching
\endcsname, expanding tokens as it goes; only character tokens should remain after this
expansion has taken place. Then the “expansion” of the entire \csname. . .\endcsname
text will be a single control sequence token, defined to be like \relax if its meaning is
currently undefined.

= \expandafter(token). TEX first reads the token that comes immediately after
\expandafter, without expanding it; let’s call this token ¢. Then TEX reads the token
that comes after ¢ (and possibly more tokens, if that token has an argument), replacing
it by its expansion. Finally TEX puts ¢ back in front of that expansion.

= \noexpand(token). The expansion is the token itself; but that token is inter-
preted as if its meaning were ‘\relax’ if it is a control sequence that would ordinarily
be expanded by TEX’s expansion rules.

= \topmark, \firstmark, \botmark, \splitfirstmark, and \splitbotmark. The
expansion is the token list in the corresponding “mark” register (see Chapter 23).

= \input(file name). The expansion is null; but TEX prepares to read from the
specified file before looking at any more tokens from its current source.

» \endinput. The expansion is null. The next time TEX gets to the end of an
\input line, it will stop reading from the file containing that line.

= \the(internal quantity). The expansion is a list of tokens representing the
current value of one of TEX’s variables, as explained below. For example, ‘\the\skip5’
might expand into ‘6.0pt plus 2.0fil’ (17 tokens).

The powerful \the operation has many subcases, so we shall discuss them one at a
time. A variety of internal numeric quantities can be brought up front:

= \the(parameter), where (parameter) is the name of one of TEX’s integer pa-
rameters (e.g., \the\widowpenalty), dimension parameters (e.g., \the\parindent),

romannumeral
string
escapechar
jobname

dvi

fontname

at size

font

font

meaning
csname
endcsname
expandafter
noexpand
topmark
firstmark
botmark
splitfirstmark
splitbotmark
mark

input
endinput

the

integer parameters
dimension parameters

Chapter 20: Definitions(also called Macros)

glue parameters (e.g., \the\leftskip), or muglue parameters (e.g., \the\thinmuskip).

= \the(register), where (register) is the name of one of TEX’s integer registers
(e.g., \the\count 0), dimension registers (e.g., \the\dimen169), glue registers (e.g.,
\the\skip255), or muglue registers (e.g., \the\muskip\count2).

= \the(codename)(8-bit number), where (codename) stands for either \catcode,
\mathcode, \lccode, \uccode, \sfcode, or \delcode. For example, \the\mathcode‘/
produces the current (integer) math code value for a slash.

= \the(special register), where (special register) is one of the integer quantities
\prevgraf, \deadcycles, \insertpenalties, \inputlineno, \badness, or \parshape
(denoting only the number of lines of \parshape); or one of the dimensions \pagetotal,
\pagegoal, \pagestretch, \pagefilstretch, \pagefillstretch, \pagefilllstretch,
\pageshrink, \pagedepth. In horizontal modes you can also refer to a special integer,
\the\spacefactor; in vertical modes there’s a special dimension, \the\prevdepth.

= \the\fontdimen(parameter number)(font). This produces a dimension; for
example, parameter 6 of a font is its “em” value, so ‘\the\fontdimen6\tenrm’ yields
‘10.0pt’ (six tokens).

= \the\hyphenchar(font), \the\skewchar(font). These produce the correspond-
ing integer values defined for the specified font.

= \the\lastpenalty, \the\lastkern, \the\lastskip. These yield the amount
of penalty, kerning, glue, or muglue in the final item on the current list, provided that
the item is a penalty, kern, or glue, respectively; otherwise they yield ‘0’ or ‘0.0pt’.

= \the(defined character), where (defined character) is a control sequence that
has been given an integer value with \chardef or \mathchardef; the result is that
integer value, in decimal notation.

% In all of the cases listed so far, \the produces a result that is a sequence of ASCII

character tokens. Category code 12 (“other”) is assigned to each token, except that
character code 32 gets category 10 (“space”). The same rule is used to assign category codes to
the tokens produced by \number, \romannumeral, \string, \meaning, \ jobname, and \fontname.

There also are cases in which \the produces non-character tokens, either a font
identifier like \tenrm, or an arbitrary token list:

= \the(font) produces a font identifier that selects the specified font. For exam-
ple, ‘\the\font’ is a control sequence corresponding to the current font.
= \the(token variable) produces a copy of the token list that is the current value

of the variable. For example, you can expand ‘\the\everypar’ and ‘\the\toks5’.

TEX’s primitive command ‘\showthe’ will display on your terminal exactly what
‘\the’ would produce in an expanded definition; the expansion is preceded by ‘> ’
and followed by a period. For example, ‘\showthe\parindent’ will display

> 20.0pt.
if the plain TEX paragraph indentation is being used.

Here now is the promised list of all cases when expandable tokens are not expanded.
Some of the situations involve primitives that haven’t been discussed yet, but we’ll
get to them eventually. Expansion is suppressed at the following times:

= When tokens are being deleted during error recovery (see Chapter 6).

213

glue parameters

muglue parameters

registers
catcode
mathcode
lccode

uccode

sfcode

delcode
prevgraf
deadcycles
insertpenalties
inputlineno
badness
parshape
pagetotal
pagegoal
pagestretch
pagefilstretch
pagefillstretch
pagefilllstretch
pageshrink
pagedepth
fontdimen

em
hyphenchar
skewchar
lastpenalty
lastkern
lastskip
chardef
mathchardef
ASCII
category codes
number
romannumeral
string
meaning
jobname
fontname
showthe

error recovery

214 Chapter 20: Definitions(also called Macros)

= When tokens are being skipped because conditional text is being ignored.
» When TgX is reading the arguments of a macro.

s When TEX is reading a control sequence to be defined by \let, \futurelet,
\def, \gdef, \edef, \xdef, \chardef, \mathchardef, \countdef, \dimendef,
\skipdef, \muskipdef, \toksdef, \read, and \font.

» When TEX is reading argument tokens for \expandafter, \noexpand, \string,
\meaning, \let, \futurelet, \ifx, \show, \afterassignment, \aftergroup.

s When TgX is absorbing the parameter text of a \def, \gdef, \edef, or \xdef.

= When TEX is absorbing the replacement text of a \def or \gdef or \read;
or the text of a token variable like \everypar or \toksO; or the token list
for \uppercase or \lowercase or \write. (The token list for \write will be
expanded later, when it is actually output to a file.)

» When TgEX is reading the preamble of an alignment, except after a token for
the primitive command \span or when reading the (glue) after \tabskip.

m Just after a $3 token that begins math mode, to see if another $3 follows.

4

» Just after a ‘12 token that begins an alphabetic constant.

% Sometimes you will find yourself wanting to define new macros whose replacement

text has been expanded, based on current conditions, instead of simply copying the
replacement text verbatim. TEX provides the \edef (expanded definition) command for this
purpose, and also \xdef (which is equivalent to \global\edef). The general format is the same
as for \def and \gdef, but TEX blindly expands the tokens of the replacement text according
to the expansion rules above. For example, consider

\def\double#1{#1#1}
\edef\a{\double{xy}} \edef\a{\double\a}

Here the first \edef is equivalent to ‘\def\a{xyxy}’ and the second is equivalent to ‘\def\a{xyxyxyxy}’;i

All of the other kinds of expansion will take place too, including conditionals; for example,
\edef\b#1#2{\ifmmode#1\else#2\fi}

gives a result equivalent to ‘\def\b#1#2{#1}’ if TEX is in math mode at the time of the \edef,
otherwise the result is equivalent to ‘\def\b#1#2{#2}’.

% Expanded definitions that are made with \edef or \xdef continue to expand tokens

until only unexpandable tokens remain, except that token lists produced by ‘\the’
are not expanded further. Furthermore a token following ‘\noexpand’ will not be expanded,
since its ability to expand has been nullified. These two operations can be used to control what
gets expanded and what doesn’t.

Suppose, for example, that you want to define \a to be equal to \b (expanded)
followed by \c (not expanded) followed by \d (expanded), assuming that \b and \d
are simple macros without parameters. There are two easy ways to do it:

\edef\a{\b\noexpand\c\d}
\toksO={\c} \edefl\a{\b\the\toksO \d}

And it’s even possible to achieve the same effect without using either \noexpand or \the; a
reader who wants to learn more about TEX’s expansion mechanism is encouraged to try the
next three exercises.

» EXERCISE 20.14
Figure out a way to define \a as in the previous paragraph, without using TEX’s
primitives ‘\noexpand’ and ‘\the’.

let

futurelet

def

gdef

edef

xdef

chardef
mathchardef
countdef
dimendef
skipdef
muskipdef
toksdef

read

font
expandafter
noexpand
string
meaning

let

futurelet

ifx

show
afterassignment
aftergroup
read

token variable
everypar

toks
uppercase
lowercase
write

tabskip
alphabetic constant
edef

xdef

e

expand
expansion, avoiding

Chapter 20: Definitions (aka Macros)

» EXERCISE 20.15
Continuing the example of expansion avoidance, suppose that you want to expand
\b completely until only unexpandable tokens are left, but you don’t want to expand \c at all,
and you want to expand \d only one level. For example, after \def\b{\c\c} and \def\c{*}
and \def\d{\b\c} the goal would be to get the effect of \def\a{**\c\b\c}. How can such a
partial expansion be achieved, using \the?

> EXERCISE 20.16
Solve the previous exercise without \the or \noexpand. (This is difficult.)

TEX’s primitive commands \mark{. ..}, \message{. ..}, \errmessage{.. .2}, \special{..

and \write(number){. ..} all expand the token lists in braces almost exactly as \edef
and \xdef do. However, a macro parameter character like # should not be duplicated in such
commands; you need to say ## within an \edef, but only # within a \mark. The \write com-
mand is somewhat special, because its token list is first read without expansion; expansion
occurs later, when the tokens are actually being written to a file.

» EXERCISE 20.17
Compare the following two definitions:
\def\a{\iftrue{\else}\fi}
\edef\b{\iftrue{\else}\fi}

Which of them yields an unmatched left brace? (This is tricky.)

TEX has the ability to read individual lines of text from up to 16 files at once, in
addition to the files that are being \input. To initiate reading such an auxiliary file,
you should say

\openin(number)=({file name)

where the (number) is between 0 and 15. (Plain TEX allocates input stream numbers
0 through 15 with the \newread command, which is analogous to \newbox.) In most in-
stallations of TEX, the extension ‘.tex’ will be appended to the file name, as with \input, if
no extension is given explicitly. If the file cannot be found, TEX will give no error message; it
will simply consider that the input stream is not open, and you can test this condition with
\ifeof. When you’re done with a file, you can say

\closein(number)

and the file associated with that input stream number will be closed, i.e., returned to its initial
condition, if such a file was open. To get input from an open file, you say

\read(number)to(control sequence)

and the control sequence is defined to be a parameterless macro whose replacement text is the
contents of the next line read from the designated file. This line is converted to a token list,
using the procedure of Chapter 8, based on the current category codes. Additional lines are
read, if necessary, until an equal number of left and right braces has been found. An empty line
is implicitly appended to the end of a file that is being \read. If the (number) is not between
0 and 15, or if no such file is open, or if the file has ended, input will be from the terminal;
TEX will prompt the user unless the (number) is negative. The macro definition will be local
unless you say \global\read.

For example, it’s easy to have dialogs with the user, by using \read together with
the \message command (which writes an expanded token list on the terminal and in
the log file):

\message{Please type your name:}
\read16 to\myname
\message{Hello, \myname!}

The \read command in this case will print ‘\myname=" and it will wait for a response; the
response will be echoed on the log file. The ‘\myname=" would have been omitted if ‘\read16’
had been ‘\read-1’.

215

the

mark

message

errmessage

special

write

unmatched left brace
openin

newread

tex

i }"put
1Teof
closein
read
to
empty line at end of file
dialogs with the user
message

216 Chapter 20: Definitions (also called Macros)

% » EXERCISE 20.18 uppercase letters
The \myname example just given doesn’t work quite right, because the (return) at the programming
end of the line gets translated into a space. Figure out how to fix that glitch. loop
repeating commands, see :loop
» EXERCISE 20.19 prime numbers
Continuing the previous example, define a macro \MYNAME that contains the letters of newif

\myname all in uppercase letters. For example, if \myname expands to Arthur, \MYNAME should newcount

expand to ARTHUR. Assume that \myname contains only letters and spaces in its expansion.

% Appendices B, D, and E contain numerous examples of how to make macros do useful

things. Let’s close this chapter by presenting a few examples that show how TEX can
actually be used as a primitive programming language, if you want to achieve special effects,
and if you don’t care very much about computer costs.

% Plain TEX contains a \loop...\repeat construction, which works like this: You say

“\loop a \if... (@ \repeat’, where o and (3 are any sequences of commands, and
where \if... is any conditional test (without a matching \fi). TEX will first do «; then if
the condition is true, TEX will do 8 and repeat the whole process again starting with «. If the
condition ever turns out to be false, the loop will stop. For example, here is a program that
carries out a little dialog in which TEX waits for the user to type ‘Yes’ or ‘No’:

\def\yes{Yes } \def\no{No } \newif\ifgarbage
\loop\message{Are you happy? }
\read-1 to\answer
\ifx\answer\yes\garbagefalse 7 the answer is Yes
\else\ifx\answer\no\garbagefalse % the answer is No
\else\garbagetrue\fi\fi % the answer is garbage
\ifgarbage\message{(Please type Yes or No.)}
\repeat

» EXERCISE 20.20
Use the \loop...\repeat mechanism to construct a general \punishment macro that
repeats any given paragraph any given number of times. For example,

\punishment{I must not talk in class.}{100}

should produce the results desired in exercise 20.1.

% The first thirty prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113. You may not
find this fact very startling; but you may be surprised to learn that the previous sentence was
typeset by saying

The first thirty prime numbers are \primes{30}.

TEX did all of the calculation by expanding the \primes macro, so the author is pretty sure
that the list of prime numbers given above is quite free of typographic errors. Here is the set
of macros that did it:

\newif\ifprime \newif\ifunknown 7 boolean variables
\newcount\n \newcount\p \newcount\d \newcount\a % integer variables
\def\primes#1{2,~3%, assume that #1 is at least 3

\n=#1 \advance\n by-2 % n more to go

\p=56 % odd primes starting with p

\loop\ifnum\n>0 \printifprime\advance\p by2 \repeat}
\def\printp{, % we will invoke \printp if p is prime

\ifnum\n=1 and~\fi % ‘and’ precedes the last value

\number\p \advance\n by -1 }
\def\printifprime{\testprimality \ifprime\printp\fil}
\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision \ifunknown\advance\d by2 \repeat}}

Chapter 20: Definitions (also called Macros)

\def\trialdivision{\a=\p \divide\a by\d
\ifnum\a>\d \unknowntrue\else\unknownfalse\fi
\multiply\a by\d
\ifnum\a=\p \global\primefalse\unknownfalse\fi}

The computation is fairly straightforward, except that it involves a loop inside a loop; therefore
\testprimality introduces an extra set of braces, to keep the inner loop control from interfering
with the outer loop. The braces make it necessary to say ‘\global’ when \ifprime is being
set true or false. TEX spent more time constructing that sentence than it usually spends on
an entire page; the \trialdivision macro was expanded 132 times.

The \loop macro that does all these wonderful things is actually quite simple. It
puts the code that’s supposed to be repeated into a control sequence called \body,
and then another control sequence iterates until the condition is false:

\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body\let\next=\iterate\else\let\next=\relax\fi\next}

The expansion of \iterate ends with the expansion of \next; therefore TEX is able to remove
\iterate from its memory before invoking \next, and the memory does not fill up during a
long loop. Computer scientists call this “tail recursion.”

% The \hex macro below, which converts count register \n to hexadecimal notation,

illustrates a recursive control structure in which many copies of \hex can be active
simultaneously. Recursion works better than simple \loop iteration in this application because
the hexadecimal digits are discovered from right to left, while they must be output from left
to right. (The number in \n should be > 0.)

\def\hex{{\countO=\n \divide\n by16
\ifnum\n>0 \hex\fi \count2=\n \multiply\count2 by-16
\advance\countO by\count2 \hexdigit}}
\def\hexdigit{\ifnum\count0<10 \number\countO
\else\advance\count0 by-10 \advance\countO by‘A \char\countO \fi}

Our final example is a macro that computes the number of nonblank tokens in its
argument; for example, ‘\length{argument}’ expands to ‘8’. This illustrates yet
another aspect of macro technique.

\def\length#1{{\count0=0 \getlength#1\end \number\countO}}
\def\getlength#1{\ifx#1\end \let\next=\relax
\else\advance\countO byl \let\next=\getlength\fi \next}

By this time [37 A.D.] the influence of Macro had become supreme.
— TACITUS, Annals (c.120 A.D.)

| hate definitions.
— BENJAMIN DISRAELI, Vivian Grey (1826)

217

multiply
divide
advance
newcount
global

tail recursion
hexadecimal notation
Recursion
iteration
Macro
TACITUS
DISRAELI

-

21

Making Boxes

Chapter 21: Making Bozes

In Chapters 11 and 12 we discussed the principles of boxes and glue, and by
now we have seen many applications of those concepts. You can get by in most
cases with the boxes that TEX manufactures automatically with its paragraph
builder, its page builder, and its math formula processor; but if you want to do
nonstandard things, you have the option of making boxes by yourself. For exam-
ple, Chapter 14 points out that you can keep something from being hyphenated
or split between lines if you enclose it in an \hbox; Chapter 19 points out that
\hbox allows you to get ordinary text into a displayed equation.

@ The purpose of the present chapter is to nail down whatever details about

boxes haven’t been covered yet. Fortunately, there isn’t much more to discuss;
we have already mentioned most of the rules, so this chapter is fairly short. In fact,
the previous chapters have dealt with almost everything except the rules about rules.

@ To make a rule box (i.e., a solid black rectangle), you type ‘\hrule’ in vertical
mode or ‘\vrule’in horizontal mode, followed by any or all of the specifications
‘width(dimen)’, ‘height(dimen)’, ‘depth(dimen)’, in any order. For example, if

\vrule height4pt width3pt depth2pt

appears in the middle of a paragraph, TEX will typeset the black box ‘g’. If you specify
a dimension twice, the second specification overrules the first. If you leave a dimension
unspecified, you get the following by default:

\hrule \vrule

width * 0.4pt
height 0.4 pt *
depth 0.0pt *

Here ‘¥’ means that the actual dimension depends on the context; the rule will extend
to the boundary of the smallest box or alignment that encloses it.

@ For example, the author typed ‘\hrule’ just before typing this paragraph,

and you can see what happened: A horizontal rule, 0.4 pt thick, was extended
across the page, because the vertical box that encloses it turned out to be just that
wide. (In fact, the vertical box that encloses it is the page itself.) Another example
appears immediately after this paragraph, where you can see the result of

\hrule width5cm heightlpt \vskiplpt \hrule width6cm

TEX does not put interline glue between rule boxes and their neighbors in a vertical
list, so these two rules are exactly 1pt apart.

@ » EXERCISE 21.1
B. L. User didn’t want one of his horizontal rules to touch the left margin, so
he put it in a box and moved it right, like this:

\moveright 1in \vbox{\hrule width3in}

But he found that this produced more space above and below the rule than when he
had simply said ‘\hrule width 4in’ with no \vbox. Why did TEX insert more space,
and what should he have done to avoid it?

219

hbox

vbox

rule box

black rectangle
hrule

vrule

interline glue
User
moveright

220 Chapter 21: Making Bozxes

@ If you specify all three dimensions of a rule, there’s no essential difference

between \hrule and \vrule, since both will produce exactly the same black
box. But you must call it an \hrule if you want to put it in a vertical list, and you
must call it a \vrule if you want to put it in a horizontal list, regardless of whether it
actually looks like a horizontal rule or a vertical rule or neither. If you say \vrule in
vertical mode, TEX starts a new paragraph; if you say \hrule in horizontal mode, TEX
stops the current paragraph and returns to vertical mode.

@ The dimensions of a rule can be negative; for example, here’s a rule whose

height is 3 pt and whose depth is —2pt: ’. However, a rule
is invisible unless its height plus depth is positive and its width is positive. A rule
whose width is negative cannot be seen, but it acts like a backspace when it appears
in a horizontal list.

@ » EXERCISE 21.2
Explain how the author probably obtained the rule *
previous paragraph. [Hint: It’s one inch long,.]

’in the

% Now let’s summarize all of the ways there are to specify boxes explicitly to TEX.

(1) A character by itself makes a character box, in horizontal mode; this character is
taken from the current font. (2) The commands \hrule and \vrule make rule boxes, as just
explained. (3) Otherwise you can make hboxes and vboxes, which fall under the generic term
(box). A (box) has one of the following seven forms:

\hbox(box specification){(horizontal material)} (see Chapter 12)
\vbox(box specification){(vertical material)} (see Chapter 12)
\vtop(box specification){(vertical material)} (see Chapter 12)
\box(register number) (see Chapter 15)
\copy(register number) (see Chapter 15)
\vsplit(register number)to(dimen) (see Chapter 15)
\lastbox (see Chapter 21)

Here a (box specification) is either ‘to(dimen)’ or ‘spread(dimen)’ or empty; this governs the
setting of glue in the horizontal or vertical lists inside the box, as explained in Chapter 12.
A (register number) is between 0 and 255; after you say \box, that register becomes void,
but after \copy the register is unchanged, as explained in Chapter 15. The \vsplit opera-
tion is also explained in Chapter 15. In math modes an additional type of box is available:
\vcenter(box specification){(vertical material)} (see Chapter 17).

% The bottom line of the table above refers to \lastbox, a primitive operation that

hasn’t been mentioned before. If the last item on the current horizontal list or vertical
list is an hbox or vbox, it is removed from the list and it becomes the \lastbox; otherwise
\lastbox is void. This operation is allowed in internal vertical mode, horizontal mode, and
restricted horizontal mode, but you cannot use it to take a box from the current page in
vertical mode. In math modes, \lastbox is always void. At the beginning of a paragraph,
‘{\setbox0=\lastbox}’ removes the indentation box.

% The operation \unskip is something like \lastbox, except that it applies to glue

instead of to boxes. If the last thing on the current list is a glue item (or leaders, as
explained below), it is removed. You can’t remove glue from the current page by using \unskip
in vertical mode, but you can say ‘\vskip-\lastskip’, which has almost the same effect.

% Chapters 24 to 26 present summaries of all TEX’s operations in all modes, and when

those summaries mention a ‘(box)’ they mean one of the seven possibilities just listed.
For example, you can say ‘\setbox(register number)=(box)’ in any mode, and you can say
“\moveright(dimen)(box)’ in vertical modes. But you can’t say ‘\setbox(register number)=C’
or ‘\moveright(dimen)\hrule’; if you try either of these, TEX will complain that a (box) was
supposed to be present. Characters and rules are so special, they aren’t regarded as (box)es.

backspace

box

hbox

vbox

vtop

box

copy

vsplit

lastbox

box specification
to

spread

vecenter

lastbox

internal vertical mode
indentation box
unskip

leaders

lastskip

Chapter 21: Making Bozes

» EXERCISE 21.3
Define a control sequence \boxit so that ‘\boxit{(box)}’ yields the given box sur-
rounded by 3 points of space and by ruled lines on all four sides.

For example, the sentence you are now reading was typeset as part of the
displayed formula $$\boxit{\boxit{\box4}}$$, where box 4 was created
by typing ‘\setbox4=\vbox{\hsize 23pc \noindent \strut For example,
the sentence you are now reading ... \strut}’.

@ Let’s look also at what can go inside a box. An hbox contains a horizontal

list; a vbox contains a vertical list. Both kinds of lists are made up primarily
of things like boxes, glue, kerns, and penalties, as we have seen in Chapters 14 and 15.
But you can also include some special things that we haven’t discussed yet, namely
“leaders” and “whatsits.” Our goal in the rest of this chapter will be to study how to
make use of such exotic items.

@ The dots you see before your eyes here - - - -+« - -« are called leaders

because they lead your eyes across the page; such things are often used in
indexes or tables of contents. The general idea is to repeat a box as many times as
necessary to fill up some given space. TEX treats leaders as a special case of glue;
no, wait, it’s the other way around: TgEX treats glue as a special case of leaders.
Ordinary glue fills space with nothing, while leaders fill space with any desired thing.
In horizontal mode you can say

\leaders(box or rule)\hskip(glue)

and the effect will be the same as if you had said just ‘\hskip(glue)’, except that the
space will be occupied by copies of the specified (box or rule). The glue stretches or
shrinks in the usual way. For example,

\def\leaderfill{\leaders\hbox to lem{\hss.\hss}\hfill}
\line{Alpha\leaderfill Omega}
\line{The Beginning\leaderfill The Ending}

will produce the following two lines:

Alpha Omega
The Beginning The Ending

Here ‘\hbox to 1lem{\hss.\hss} specifies a box one em wide, with a period in its
center; the control sequence \leaderfill then causes this box to be replicated when
filling space in the \line box. (Plain TEX’s \line macro makes an hbox whose width
is the \hsize.)

?2 Notice that the dots in the two example lines appear exactly above each other.

This is not a coincidence; it’s a consequence of the fact that the \leaders
operation acts something like a window that lets you see part of an infinite row of
boxes. If the words ‘Alpha’ and ‘Omega’ are replaced by longer words, the number of
dots might be different but the ones that you see will be in the same places as before.
The infinitely replicated boxes are lined up so that they touch each other, and so that,
if you could see them all, one of them would have the same reference point as the
smallest enclosing box. Thus, \leaders will put a box flush with the left edge of an

221

leaders
leaders
line
dots

222

Chapter 21: Making Bozes

enclosing box, if you start the leaders there; but you won’t get a box flush right unless
the width of the enclosing box is exactly divisible by the width of the repeated box.
If the repeated box has width w, and if the space to be filled is at least 2w, then you
will always see at least one copy of the box; but if the space is less than 2w the box
may not appear, because boxes in the infinite row are typeset only when their entire
width falls into the available space.

When leaders are isolated from each other, you might not want them to be aligned

as just described, so TEX also provides for nonaligned leaders. In this case a box
of width w will be copied g times when the space to be filled is at least qw and less than
(g + 1)w; furthermore, the results will be centered in the available space. There are two kinds
of nonaligned leaders in TEX, namely \cleaders (centered leaders) and \xleaders (expanded
leaders). Centered leaders pack the boxes tightly next to each other leaving equal amounts of
blank space at the left and right; expanded leaders distribute the extra space equally between
the ¢ + 1 positions adjacent to the g boxes. For example, let’s suppose that a 10 pt-wide box
is being used in leaders that are supposed to fill 56 pt of space. Five copies of the box will
be used; \cleaders will produce 3 pt of space, then the five boxes, then another 3 pt of space.
But \xleaders will produce 1 pt of space, then the first box, then another 1 pt of space, then
the second box, ..., then the fifth box, and 1 pt of space.

%» EXERCISE 21.4

Suppose that a 10 pt-wide box is to fill 38 pt of space starting 91 pt from the left of
its enclosing box. How many copies of the box will be produced by \leaders, \cleaders, and
\xleaders? Where will the boxes be positioned, relative to the left edge of the enclosing box,
in each of the three cases?

%» EXERCISE 21.5

Assuming that the ‘.’ in the \leaderfill macro on the previous page is only 0.2 em
wide, there is 0.4 em of blank space at both sides of the one-em box. Therefore the \leaders
construction will leave between 0.4em and 1.4 em of blank space between the periods and the
text at either end. Redefine \leaderfill so that the amount of blank space at either end will
be between 0.1em and 1.1 em, but the leaders on adjacent lines will still be aligned with each
other.

@ Instead of giving a (box) in the leaders construction, you can give a (rule),

which means either \hrule or \vrule, followed by optional height, width,
and depth specifications as usual. The rule will then be made as wide as the corre-
sponding (glue). This is a case where \hrule makes sense in horizontal mode, because
it gives a horizontal rule in text. For example, if the \leaderfill macro in our earlier
illustration is changed to

\def\leaderfill{ \leaders\hrule\hfill\ }

then the results look like this:

Alpha Omega
The Beginning The Ending

When a rule is used instead of a box, it fills the space completely, so there’s no difference
between \leaders, \cleaders, and \xleaders.

» EXERCISE 21.6
What does \leaders\vrule\hfill produce?

% Leaders work in vertical mode as well as in horizontal mode. In this case vertical
glue (e.g., \vskip(glue) or \vfill) is used instead of horizontal glue, and \leaders
produces boxes that are aligned so that the top of each repeated box has the same vertical
position as the top of the smallest enclosing box, plus a multiple of the height-plus-depth of

nonaligned leaders
cleaders

xleaders

horizontal rule in text

Chapter 21: Making Bozes

the repeated box. No interlineskip glue is placed between boxes in vertical leaders; the boxes
are just stacked right on top of each other.

If you specify horizontal leaders with a box whose width isn’t positive, or if you specify
vertical leaders with a box whose height-plus-depth isn’t positive, TEX silently ignores
the leaders and produces ordinary glue instead.

» EXERCISE 21.7
Explain how you can end a paragraph with a rule that is at least 10 pt long and
extends all the way to the right margin, like this:

Horizontal leaders differ slightly from horizontal glue, because they have height and
depth when TEX calculates the size of the enclosing box (even though the number of
replications might be zero). Similarly, vertical leaders have width.

» EXERCISE 21.8
Demonstrate how to produce the following ‘TEXture’

by using vertical leaders inside of horizontal leaders. (The TEX logo has been put into a
rectangular box, and copies of this box have been packed together tightly.)

» EXERCISE 21.9
Use vertical leaders to solve exercise 20.1.

@ The \overbrace and \underbrace macros of plain TEX are constructed by

combining characters with rules. Font cmex10 contains four symbols « . -,
each of which has depth zero and height equal to the thickness of a rule that joins them
properly. Therefore it’s easy to define \upbracefill and \downbracefill macros so
that you can obtain, e.g.,

————

by saying ‘\hbox to 100pt{\downbracefill}\hbox to 50pt{\upbracefill}’ in ver-
tical mode. Details of those macro definitions appear in Appendix B.

The definition of \overrightarrow in Appendix B is more complex than that of

\overbrace, because it involves a box instead of a rule. The fonts of plain TEX are
designed so that symbols like «— and — can be extended with minus signs; similarly, <= and
= can be extended with equals signs. However, you can’t simply put the characters next to
each other, because that leaves gaps (‘~——’"and ‘<==="); it is necessary to backspace a little
between characters. An additional complication arises because the extension line in a long
arrow might need to be some non-integer number of minus signs long. To solve this problem,
the \rightarrowfill macro in Appendix B uses \cleaders with a repeatable box consisting
of the middle 10 units of a minus sign, where one unit is 1—18 em. The leaders are preceded and
followed by — and —; there’s enough backspacing to compensate for up to 5 units of extra
space, fore and aft, that \cleaders might leave blank. In this way a macro is obtained such
that

\hbox to 100pt{\rightarrowfill}

)

yields ¢

223

TeX logo
overbrace
underbrace
cmex10
upbracefill
downbracefill
braces
overrightarrow
minus signs
arrows
equals signs
rightarrowfill

224 Chapter 21: Making Bozxes

% Now we know all about leaders. What about whatsits? Well, whatsits have been whatsits
provided as a general mechanism by which important special printing applications extensions to TEX
can be handled as extensions to TEX. It’s possible for system wizards to modify the TEX openout
program, without changing too much of the code, so that new features can be accommodated closeout
at high speed instead of encoding them in macros. The author hopes that such extensions write
. . . immediate
will not be made very often, because he doesn’t want incompatible pseudo-TEX systems to special
proliferate; yet he realizes that certain special books deserve a special treatment. Whatsits tex
make it possible to incorporate new things into boxes without bending the existing conventions log file
too much. But they make applications less portable from one machine to another. terminal
newwrite
% Two kinds of whatsits are defined as part of all TEX implementations. They aren’t shipout
really extensions to TEX, but they are coded as if they were, so that they provide

a model of how other extensions could be made. The first of these is connected with output
to text files, and it involves the TEX primitive commands \openout, \closeout, \write, and
\immediate. The second is connected with special instructions that can be transmitted to
printing devices, via TEX’s \special command.

The ability to write text files that can later be input by other programs (including

TEX) makes it possible to take care of tables of contents, indexes, and many other
things. You can say ‘\openout(number)=(file name)’ and ‘\closeout(number)’ by analogy with
the \openin and \closein commands of Chapter 20; the (number) must be between 0 and 15.
The filename is usually extended with ‘. tex’ if it has no extension. There is a \write command
that writes one line to a file, analogous to the \read command that reads one line; you say

\write(number){(token list)}

and the material goes out to the file that corresponds to the given stream number. If the
(number) is negative or greater than 15, or if the specified stream has no file open for output,
the output goes to the user’s log file, and to the terminal unless the number is negative. Plain
TEX has a \newwrite command that allocates output stream numbers from 0 to 15. Output
streams are completely independent of input streams.

% However, the output actually takes place in a delayed fashion; the \openout, \closeout,l

and \write commands that you give are not performed when TEX sees them. Instead,
TEX puts these commands into whatsit items, and places them into the current horizontal or
vertical or math list that is being built. No actual output will occur until this whatsit is eventu-
ally shipped out to the dvi file, as part of a larger box. The reason for this delay is that \write
is often used to make an index or table of contents, and the exact page on which a particular
item will appear is generally unknown when the \write instruction occurs in mid-paragraph.
TEX is usually working ahead, reading an entire paragraph before breaking it into lines, and
accumulating more than enough lines to fill a page before deciding what goes on the page, as
explained in Chapters 14 and 15. Therefore a deferred writing mechanism is the only safe way
to ensure the validity of page number references.

% The (token list) of a \write command is first stored in a whatsit without performing
any macro expansion; the macro expansion takes place later, when TEX is in the
middle of a \shipout operation. For example, suppose that some paragraph in your document
contains the text

. For \write\inx{example: \the\countO}example, suppose

Then the horizontal list for the paragraph will have a whatsit just before the word ‘example’,
and just after the interword space following ‘For’. This whatsit item contains the unexpanded
token list ‘example: \the\countO’. It sits dormant while the paragraph is being broken into
lines and put on the current page. Let’s suppose that this word ‘example’ (or some hyphenated
initial part of it, like ‘ex-") is shipped out on page 256. Then TEX will write the line

example: 256

on output stream \inx, because the ‘\the\count0’ will be expanded at that time. Of course,
\write commands are usually generated by macros; they are rarely typed explicitly in mid-
paragraph.

Chapter 21: Making Bozes

TEX defers \openout and \closeout commands by putting them into whatsits too;
thus, the relative order of output commands will be preserved, unless boxes are
shipped out in some other order due to insertions or such things.

% Sometimes you don’t want TEX to defer a \write or \openout or \closeout. You

could say, e.g., ‘\shipout\hbox{\write. ..}’ but that would put an unwanted empty
page in your dvi file. So TEX has another feature that gets around this problem: If you type
‘\immediate’ just before \write or \openout or \closeout, the operation will be performed
immediately, and no whatsit will be made. For example,

\immediate\write16{Goodbye}

prints ‘Goodbye’ on your terminal. Without the \immediate, you wouldn’t see the ‘Goodbye’
until the current list was output. (In fact, you might never see it; or you may see it more than
once, if the current list goes into a box that was copied.) An ‘\immediate\write16’ differs
from \message in that \write prints the text on a line by itself; the results of several \message
commands might appear on the same line, separated by spaces.

% The (token list) of a \write ought to be rather short, since it makes one line of

output. Some implementations of TEX are unable to write long lines; if you want
to write a lot of stuff, just give several \write commands. Alternatively, you can set TEX’s
\newlinechar parameter to the ASCII code number of some character that you want to stand
for “begin a new line”; then TEX will begin a new line whenever it would ordinarily output
that character to a file. For example, one way to output two lines to the terminal in a single
\write command is to say

\newlinechar=‘\""J
\immediate\writel16{Two~"Jlines.}

Each \write command produces output in the form that TEX always uses to display token
lists symbolically: Characters represent themselves (except that you get duplicated characters
like ## for macro parameter characters); unexpandable control sequence tokens produce their
names, preceded by the \escapechar and followed by a space (unless the name is an active
character or a control sequence formed from a single nonletter).

TEX ignores \write, \openout, and \closeout whatsits that appear within boxes
governed by leaders. If you are upset about this, you shouldn’t be.

% Since the (token list) of a deferred \write is expanded at a fairly random time (when

\shipout occurs), you should be careful about what control sequences it is allowed
to contain. The techniques of Chapter 20 for controlling macro expansion often come in handy
with respect to \write.

%» EXERCISE 21.10

Suppose that you want to \write a token list that involves a macro \chapno, con-
taining the current chapter number, as well as ‘\the\count0’ which refers to the current page.
You want \chapno to be expanded immediately, because it might change before the token list
is written; but you want \the\countO to be expanded at the time of \shipout. How can you
manage this?

% Now let’s wrap up our study of boxes by considering one more feature. The command

“\special{(token list)}’ can be given in any mode. Like \write, it puts its token list
into a whatsit; and like \message, it expands the token list immediately. This token list will
be output to the dvi file with the other typesetting commands that TEX produces. Therefore
it is implicitly associated with a particular position on the page, namely the reference point
that would have been present if a box of height, depth, and width zero had appeared in place
of the whatsit. The (token list) in a \special command should consist of a keyword followed
if necessary by a space and appropriate arguments. For example,

\special{halftone picl}

225

immediate

message

newlinechar

token lists symbolically
hash

escapechar

leaders

special

226 Chapter 21: Making Bozxes

might mean that a picture on file pic1 should be inserted on the current page, with its reference picture
point at the current position. TEX doesn’t look at the token list to see if it makes any sense; halftones
the list is simply copied to the output. However, you should be careful not to make the list color

too long, or you might overflow TEX’s string memory. The \special command enables you badness

to make use of special equipment that might be available to you, e.g., for printing books in
glorious TEXnicolor.

% Software programs that convert dvi files to printed or displayed output should be able

to fail gracefully when they don’t recognize your special keywords. Thus, \special
operations should never do anything that changes the current position. Whenever you use
\special, you are taking a chance that your output file will not be printable on all output
devices, because all \special functions are extensions to TEX. However, the author anticipates
that certain standards for common graphic operations will emerge in the TEX user community,
after careful experiments have been made by different groups of people; then there will be a
chance for some uniformity in the use of \special extensions.

TEX will report the badness of glue setting in a box if you ask for the numeric quantity
\badness after making a box. For example, you might say

\setbox0=\1line{\trialtexta}
\ifnum\badness>250 \setboxO=\line{\trialtextb}\fi

The badness is between 0 and 10000 unless the box is overfull, when \badness=1000000.

Chapter 21: Making Bozes 227

BARROUGH
SHAW

If age or weaknes doe prohibyte bloudletting,
you must use boxing.

— PHILIP BARROUGH, The Methode of Phisicke (1583)

The only thing that never looks right is a rule.
There is not in existence a page with a rule on it
that cannot be instantly and obviously improved
by taking the rule out.

— GEORGE BERNARD SHAW, in The Dolphin (1940)

Alignment

Chapter 22: Alignment 229

Printers charge extra when you ask them to typeset tables, and they do so for tables

good reason: Each table tends to have its own peculiarities, so it’s necessary ta;fg‘i’;lgnt

to give some thought to each one, and to fiddle with alternative approaches settabs

until finding something that looks good and communicates well. However, you zﬁiﬁzﬁz
needn’t be too frightened of doing tables with TEX, since plain TEX has a “tab” +

feature that handles simple situations pretty much like you would do them on a zgmage return
typewriter. Furthermore, TEX has a powerful alignment mechanism that makes ampersand

it possible to cope with extremely complex tabular arrangements. Simple cases
of these alignment operations will suffice for the vast majority of applications.

Let’s consider tabbing first. If you say ‘\settabs n \columns’, plain
TEX makes it easy to produce lines that are divided into n equal-size columns.
Each line is specified by typing

\+{texty)& (texto)& - - - \cr

where (text;) will start flush with the left margin, (texts) will start at the left of
the second column, and so on. Notice that ‘\+’ starts the line. The final column
is followed by ‘\cr’, which old-timers will recognize as an abbreviation for the
“carriage return” operation on typewriters that had carriages. For example,
consider the following specification:

\settabs 4 \columns

\+&&Text that starts in the third column\cr

\+&Text that starts in the second column\cr

\+\it Text that starts in the first column, and&&&
the fourth, and&beyond!\cr

After ‘\settabs4\columns’ each \+ line is divided into quarters, so the result is

: ;Text that starts in ‘@he third column
5 Text that starts in ‘@he second column !
Text that starts in the first column, and the fourth, and beyond!

This example merits careful study because it illustrates several things.
(1) The ‘&’ is like the TAB key on many typewriters; it tells TEX to advance
to the next tab position, where there’s a tab at the right edge of each column.
In this example, TEX has set up four tabs, indicated by the dashed lines; a
dashed line is also shown at the left margin, although there isn’t really a tab
there. (2) But ‘&’ isn’t exactly like a mechanical typewriter TAB, because it first
backs up to the beginning of the current column before advancing to the next.
In this way you can always tell what column you’re tabbing to, by counting
the number of &’s; that’s handy, because variable-width type otherwise makes
it difficult to know whether you’ve passed a tab position or not. Thus, on the
last line of our example, three &’s were typed in order to get to column 4, even
though the text had already extended into column 2 and perhaps into column 3.
(3) You can say ‘\cr’ before you have specified a complete set of columns, if the
remaining columns are blank. (4) The &’s are different from tabs in another way,

230

Chapter 22: Alignment

too: TEX ignores spaces after ‘&’, hence you can conveniently finish a column

by typing ‘&’ at the end of a line in your input file, without worrying that an
extra blank space will be introduced there. (The second-last line of the example
ends with ‘&’, and there is an implicit blank space following that symbol; if TEX
hadn’t ignored that space, the words ‘the fourth’” wouldn’t have started exactly
at the beginning of the fourth column.) Incidentally, plain TEX also ignores
spaces after ‘\+’, so that the first column is treated like the others. (5) The
‘\it’ in the last line of the example causes only the first column to be italicized,
even though no braces were used to confine the range of italics, because TEX
implicitly inserts braces around each individual entry of an alignment.

@ Once you have issued a \settabs command, the tabs remain set until you

reset them, even though you go ahead and type ordinary paragraphs as usual.
But if you enclose \settabs in {...}, the tabs defined inside a group don’t affect the
tabs outside; ‘\global\settabs’ is not permitted.

@ Tabbed lines usually are used between paragraphs, in the same places where
you would type \line or \centerline to get lines with a special format. But
it’s also useful to put \+ lines inside a \vbox; this makes it convenient to specify displays
that contain aligned material. For example, if you type
$$\vbox{\settabs 3 \columns
\+This is&a strange&example\cr
\+of displayed&three-column&format.\cr}$$

you get the following display:

This is a strange example
of displayed three-column format.

In this case the first column doesn’t appear flush left, because TEX centers a box that
is being displayed. Columns that end with \cr in a \+ line are put into a box with
their natural width; so the first and second columns here are one-third of the \hsize,
but the third column is only as wide as the word ‘example’. We have used $$ in this
construction even though no mathematics is involved, because $$ does other useful
things; for example, it centers the box, and it inserts space above and below.

People don’t always want tabs to be equally spaced, so there’s another
way to set them, by typing ‘\+(sample line)\cr’ immediately after ‘\settabs’.
In this case tabs are placed at the positions of the &’s in the sample line, and
the sample line itself does not appear in the output. For example,

\settabs\+\indent&Horizontal lists\quad&\cr % sample line
\+&Horizontal lists&Chapter 14\cr

\+&Vertical lists&Chapter 15\cr

\+&Math lists&Chapter 17\cr

causes TEX to typeset the following three lines of material:

Horizontal lists Chapter 14
Vertical lists Chapter 15
Math lists Chapter 17

spaces

it

braces
global

line
centerline
displays
dollardollar
sample line

Chapter 22: Alignment

The \settabs command in this example makes column 1 as wide as a paragraph
indentation; and column 2 is as wide as ‘Horizontal lists’ plus one quad of space.
Only two tabs are set in this case, because only two &’s appear in the sample
line. (A sample line might as well end with &, because the text following the
last tab isn’t used for anything.)

The first line of a table can’t always be used as a sample line, because it
won’t necessarily give the correct tab positions. In a large table you have to look
ahead and figure out the biggest entry in each column; the sample line is then
constructed by typing the widest first column, the widest second column, etc.,
omitting the last column. Be sure to include some extra space between columns
in the sample line, so that the columns won’t touch each other.

» EXERCISE 22.1
Explain how to typeset the following table [from Beck, Bertholle, and Child,
Mastering the Art of French Cooking (New York: Knopf, 1961)]:

Weight Servings Approzimate Cooking Time*
8 lbs. 6 1 hour and 50 to 55 minutes
9 lbs. 7to 8 About 2 hours

91/5 lbs. 8to9 2 hours and 10 to 15 minutes
101/ 1bs. 9 to 10 2 hours and 15 to 20 minutes

* For a stuffed goose, add 20 to 40 minutes to the times given.

@ If you want to put something flush right in its column, just type ‘\hfill’
before it; and be sure to type ‘&’ after it, so that TEX will be sure to move the

information all the way until it touches the next tab. Similarly, if you want to center

something in its column, type ‘\hfill’ before it and ‘\hfill&’ after it. For example,

\settabs 2 \columns
\+\hfill This material is set flush right&

\hfill This material is centered\hfill&\cr
\+\hfill in the first half of the line.&

\hfill in the second half of the line.\hfill&\cr

produces the following little table:

This material is set flush right This material is centered
in the first half of the line. in the second half of the line.

@ The \+ macro in Appendix B works by putting the (text) for each column
that’s followed by & into an hbox as follows:

\hbox to (column width){(text)\hss}

The \hss means that the text is normally flush left, and that it can extend to the right
of its box. Since \hfill is “more infinite” than \hss in its ability to stretch, it has the
effect of right-justifying or centering as stated above. Note that \hfill doesn’t shrink,
but \hss does; if the text doesn’t fit in its column, it will stick out at the right. You
could avoid this by adding \hskip Opt minus-1£il; then an oversize text would produce
an overfull box. You could also center some text by putting ‘\hss’ before it and just

231

indention, see indentation
quad

Beck, Simone

Bertholle, Louisette
Child, Julia

flush right

hfill

center

hss

232 Chapter 22: Alignment

‘&’ after it; in that case the text would be allowed to extend to the left and right of its Computer programs
column. The last column of a \+ line (i.e., the column entry that is followed by \cr) cleartabs
. tabs
is treated differently: The (text) is simply put into an hbox with its natural width. showbox
halign

@ Computer programs present difficulties of a different kind, since some people
like to adopt a style in which the tab positions change from line to line. For
example, consider the following program fragment:

if n<rthenn:=n+1
else begin print_totals; n := 0;
end;
while p > 0 do
begin g := link(p); free_node(p); p := g;
end;

Special tabs have been set up so that ‘then’ and ‘else’ appear one above the other,
and so do ‘begin’ and ‘end’. It’s possible to achieve this by setting up a new sample
line whenever a new tab position is needed; but that’s a tedious job, so plain TEX
makes it a little simpler. Whenever you type & to the right of all existing tabs, the
effect is to set a new tab there, in such a way that the column just completed will have
its natural width. Furthermore, there’s an operation ‘\cleartabs’ that resets all tab
positions to the right of the current column. Therefore the computer program above
can be TEXified as follows:

$$\vbox{\+\bf if $n<r$ \cleartabs&\bf then $n:=n+1$\cr
\+&\bf else &{\bf begin} ${\it print_totalsl}$; $n:=0$;\cr
\+&&{\bf end};\cr
(The remaining part is left as an exercise)}$$

@ » EXERCISE 22.2
Complete the example computer program by specifying three more \+ lines.

@ Although \+ lines can be used in vertical boxes, you must never use \+ inside
of another \+ line. The \+ macro is intended for simple applications only.

The \+ and \settabs macros of Appendix B keep track of tabs by maintaining register

\box\tabs as a box full of empty boxes whose widths are the column widths in reverse
order. Thus you can examine the tabs that are currently set, by saying ‘\showbox\tabs’; this
puts the column widths into your log file, from right to left. For example, after ‘\settabs\+\hskip100pt&\hskip200pt&\cr\showbox\tabs’
TEX will show the lines

\hbox(0.0+0.0)x300.0
.\hbox(0.0+0.0)x200.0
.\hbox(0.0+0.0)x100.0

%» EXERCISE 22.3

Study the \+ macro in Appendix B and figure out how to change it so that tabs
work as they do on a mechanical typewriter (i.e., so that ‘¢’ always moves to the next tab that
lies strictly to the right of the current position). Assume that the user doesn’t backspace past
previous tab positions; for example, if the input is ‘\+&&\hskip-2em&x\cr’, do not bother to
put ‘x’ in the first or second column, just put it at the beginning of the third column. (This
exercise is a bit difficult.)

TEX has another important way to make tables, using an operation called
\halign (“horizontal alignment”). In this case the table format is based on

Chapter 22: Alignment

the notion of a template, not on tabbing; the idea is to specify a separate environment
for the text in each column. Individual entries are inserted into their templates, and
presto, the table is complete.

@ For example, let’s go back to the Horizontal/Vertical/Math list example that
appeared earlier in this chapter; we can specify it with \halign instead of
with tabs. The new specification is

\halign{\indent#\hfil&\quad#\hfil\cr
Horizontal lists&Chapter 14\cr
Vertical lists&Chapter 15\cr
Math lists&Chapter 17\cr}

and it produces exactly the same result as the old one. This example deserves careful
study, because \halign is really quite simple once you get the hang of it. The first
line contains the preamble to the alignment, which is something like the sample line
used to set tabs for \+. In this case the preamble contains two templates, namely
‘\indent#\hfil’ for the first column and ‘\quad#\hfil’ for the second. Each template
contains exactly one appearance of ‘#’, and it means “stick the text of each column entry
in this place.” Thus, the first column of the line that follows the preamble becomes

\indent Horizontal lists\hfil

when ‘Horizontal lists’ is stuffed into its template; and the second column, similarly,
becomes ‘\quad Chapter 14\hfil’. The question is, why \hfil? Ah, now we get to the
interesting point of the whole thing: TEX reads an entire \halign{. ..} specification
into its memory before typesetting anything, and it keeps track of the maximum width
of each column, assuming that each column is set without stretching or shrinking the
glue. Then it goes back and puts every entry into a box, setting the glue so that each
box has the maximum column width. That’s where the \hfil comes in; it stretches to
fill up the extra space in narrower entries.

@ » EXERCISE 22.4
What table would have resulted if the template for the first column in this
example had been ‘\indent\hfil# instead of ‘\indent#\hfil’?

@ Before reading further, please make sure that you understand the idea of tem-

plates in the example just presented. There are several important differences
between \halign and \+: (1) \halign calculates the maximum column widths auto-
matically; you don’t have to guess what the longest entries will be, as you do when
you set tabs with a sample line. (2) Each \halign does its own calculation of column
widths; you have to do something special if you want two different \halign operations
to produce identical alignments. By contrast, the \+ operation remembers tab positions
until they are specifically reset; any number of paragraphs and even \halign operations
can intervene between \+’s, without affecting the tabs. (3) Because \halign reads an
entire table in order to determine the maximum column widths, it is unsuitable for
huge tables that fill several pages of a book. By contrast, the \+ operation deals with
one line at a time, so it places no special demands on TEX’s memory. (However, if
you have a huge table, you should probably define your own special-purpose macro
for each line instead of relying on the general \+ operation.) (4) \halign takes less
computer time than \+ does, because \halign is a built-in command of TEX, while

233

template

preamble

sharp

halign compared to tabbing

234 Chapter 22: Alignment

\+ is a macro that has been coded in terms of \halign and various other primitive Beck
operations. (5) Templates are much more versatile than tabs, and they can save you a giﬁgone
lot of typing. For example, the Horizontal/Vertical/Math list table could be specified

more briefly by noticing that there’s common information in the columns:

\halign{\indent# lists\hfil&\quad Chapter #\cr
Horizontal&1l4\cr Vertical&15\cr Math&17\cr}

You could even save two more keystrokes by noting that the chapter numbers all start
with ‘17! (Caution: It takes more time to think of optimizations like this than to type
things in a straightforward way; do it only if you’re bored and need something amusing
to keep up your interest.) (6) On the other hand, templates are no substitute for tabs
when the tab positions are continually varying, as in the computer program example.

@ Let’s do a more interesting table, to get more experience with \halign. Here
is another example based on the Beck/Bertholle/Child book cited earlier:

American French Age Weight Cooking
Chicken Connection (months) (1bs.) Methods
Squab Poussin 2 3/1t0 1 Broil, Grill, Roast
Broiler Poulet Nouveau 2to03 11/ to 21/, Broil, Grill, Roast
Fryer Poulet Reine 3tob 2to 3 Fry, Sauté, Roast
Roaster Poularde 51/ t0 9 Over 3 Roast, Poach, Fricassee
Fowl Poule de I’Année 10 to 12 Over 3 Stew, Fricassee
Rooster Coq Over 12 Over 3 Soup stock, Forcemeat

Note that, except for the title lines, the first column is set right-justified in boldface
type; the middle columns are centered; the second column is centered and in italics;
the final column is left-justified. We would like to be able to type the rows of the table
as simply as possible; hence, for example, it would be nice to be able to specify the
bottom row by typing only

Rooster&Coq&0Over 12&0ver 3&Soup stock, Forcemeat\cr

without worrying about type styles, centering, and so on. This not only cuts down on
keystrokes, it also reduces the chances for making typographical errors. Therefore the
template for the first column should be ‘\hfil\bf#’; for the second column it should be
‘\hfil\it#\hfil’ to get the text centered and italicized; and so on. We also need to al-
low for space between the columns, say one quad. Voila! La typographie est sur la table:

\halign{\hfil\bf#&\quad\hfil\it#\hfil&\quad\hfil#\hfil&
\quad\hfil#\hfil&\quad#\hfil\cr
(the title lines)
Squab&Poussin&2&\frac3/4 to 1&Broil, Grill, Roast\cr
. Forcemeat\cr}

As with the \+ operation, spaces are ignored after &, in the preamble as well as in the
individual rows of the table. Thus, it is convenient to end a long row with ‘%’ when
the row takes up more than one line in your input file.

@ » EXERCISE 22.5
How was the ‘Fowl’ line typed? (This is too easy.)

Chapter 22: Alignment

@ The only remaining problem in this example is to specify the title lines, which
have a different format from the others. In this case the style is different only
because the typeface is slanted, so there’s no special difficulty; we just type

\sl American&\sl French&\sl Age&\sl Weight&\sl Cooking\cr
\sl Chicken&\sl Connection&\sl(months)&\sl(1lbs.)&\sl Methods\cr

It is necessary to say ‘\sl’ each time, because each individual entry of a table is
implicitly enclosed in braces.

@ The author used ‘\openup2pt’ to increase the distance between baselines in
the poultry table; a discriminating reader will notice that there’s also a bit of

extra space between the title line and the other lines. This extra space was inserted by

typing ‘\noalign{\smallskip}’ just after the title line. In general, you can say

\noalign{(vertical mode material)}

just after any \cr in an \halign; TEX will simply copy the vertical mode material,
without subjecting it to alignment, and it will appear in place when the \halign is
finished. You can use \noalign to insert extra space, as here, or to insert penalties
that affect page breaking, or even to insert lines of text (see Chapter 19). Definitions
inside the braces of \noalign{...} are local to that group.

@ The \halign command also makes it possible for you to adjust the spacing

between columns so that a table will fill a specified area. You don’t have to
decide that the inter-column space is a quad; you can let TEX make the decisions,
based on how wide the columns come out, because TEX puts “tabskip glue” between
columns. This tabskip glue is usually zero, but you can set it to any value you like by
saying ‘\tabskip=(glue)’. For example, let’s do the poultry table again, but with the
beginning of the specification changed as follows:

\tabskip=lem plus2em minus.5em
\halign to\hsize{\hfil\bf#&\hfil\it#\hfil&\hfil#\hfil&
\hfil#\hfil&#\hfil\cr

The main body of the table is unchanged, but the \quad spaces have been removed
from the preamble, and a nonzero \tabskip has been specified instead. Furthermore
‘\halign’ has been changed to ‘\halign to\hsize’; this means that each line of the
table will be put into a box whose width is the current value of \hsize, i.e., the
horizontal line width usually used in paragraphs. The resulting table looks like this:

American French Age Weight Cooking
Chicken Connection (months) (1bs.) Methods
Squab Poussin 2 3/1t0 1 Broil, Grill, Roast
Broiler Poulet Nouveau 2to03 11/ to 21/, Broil, Grill, Roast
Fryer Poulet Reine 3tob 2to 3 Fry, Sauté, Roast
Roaster Poularde 51/ t0 9 Over 3 Roast, Poach, Fricassee
Fowl Poule de ’Année 10 to 12 Over 3 Stew, Fricassee
Rooster Coq Over 12 Over 3 Soup stock, Forcemeat

@ In general, TEX puts tabskip glue before the first column, after the last column,
and between the columns of an alignment. You can specify the final aligned

235

openup
poultry

noalign
inter-column space
tabskip glue
tabskip

hsize

236 Chapter 22: Alignment

size by saying ‘\halign to{dimen)’ or ‘\halign spread(dimen)’, just as you can say to

“\hbox to(dimen)’ and ‘\hbox spread(dimen)’. This specification governs the setting spread

of the tabskip glue; but it does not affect the setting of the glue within column entries. Eiffffﬁ‘f“

(Those entries have already been packaged into boxes having the maximum natural overfull rule

width for their columns, as described earlier.) tpﬁfg‘c?ypc row
abskip

% Therefore ‘\halign to \hsize’ will do nothing if the tabskip glue has no stretchability fg;‘;aldefs

or shrinkability, except that it will cause TEX to report an underfull or overfull box.

An overfull box occurs if the tabskip glue can’t shrink to meet the given specification; in this
case you get a warning on the terminal and in your log file, but there is no “overfull rule” to
mark the oversize table on the printed output. The warning message shows a “prototype row”
(see Chapter 27).

@ The poultry example just given used the same tabskip glue everywhere, but

you can vary it by resetting \tabskip within the preamble. The tabskip glue
that is in force when TEX reads the ‘{’ following \halign will be used before the first
column; the tabskip glue that is in force when TEX reads the ‘&’ after the first template
will be used between the first and second columns; and so on. The tabskip glue that
is in force when TEX reads the \cr after the last template will be used after the last
column. For example, in

\tabskip=3pt
\halign{\hfil#\tabskip=4pt& #\hfil&
\hbox to 10em{\hss\tabskip=5pt # \hss}\cr ...}

the preamble specifies aligned lines that will consist of the following seven parts:

tabskip glue 3 pt;

first column, with template ‘\hfil#’;

tabskip glue 4 pt;

second column, with template ‘#\hfil’;

tabskip glue 4 pt;

third column, with template ‘\hbox to 10em{\hss# \hss}’;
tabskip glue 5 pt.

TEX copies the templates without interpreting them except to remove any \tabskip

glue specifications. More precisely, the tokens of the preamble are passed directly to
the templates without macro expansion; TEX looks only for ‘\cr’ commands, ‘&’, ‘#’, ‘\span’,
and ‘\tabskip’. The (glue) following ‘\tabskip’ is scanned in the usual way (with macro
expansion), and the corresponding tokens are not included in the current template. Notice
that, in the example above, the space after ‘6pt’ also disappeared. The fact that \tabskip=5pt
occurred inside an extra level of braces did not make the definition local, since TEX didn’t
“see” those braces; similarly, if \tabskip had been preceded by ‘\global’, TEX wouldn’t have
made a global definition, it would just have put ‘\global’ into the template. All assignments
to \tabskip within the preamble are local to the \halign (unless \globaldefs is positive), so
the value of \tabskip will be 3 pt again when this particular \halign is completed.

When ‘\span’ appears in a preamble, it causes the next token to be expanded, i.e.,
“ex-span-ded,” before TEX reads on.

@ » EXERCISE 22.6
Design a preamble for the following table:

England P. Philips 1560-1628 Netherlands J. P. Sweelinck 1562-1621
J. Bull c1563-1628 P. Cornet ¢1570-1633

Chapter 22: Alignment

Germany H. L. Hassler 1562-1612 Italy
M. Preetorius 1571-1621 Spain
J. Titelouze 1563-1633 Portugal

G. Frescobaldi 1583-1643
F. Correa de Arauxo ¢1576-1654

France M. R. Coelho ¢c1555-¢1635

The tabskip glue should be zero at the left and right of each line; it should be 1em
plus 2em in the center; and it should be .5 em plus .5 em before the names, 0 em plus
.5 em before the dates. Assume that the lines of the table will be specified by, e.g.,

France&J. Titelouze&1563--1633&
Portugal&M. R. Coelho&\\1555--\\1635\cr

where ‘\\’ has been predefined by ‘\def\\{{\it c\/}}.

%» EXERCISE 22.7

Design a preamble so that the table
rydw i =1 am
rwyt ti = thou art
mae e = he is
mae hi = she is
rydyn ni = we are
rydych chi = you are
maen nhw = they are

roeddwn i = I was
roeddet ti = thou wast
roedd e = he was

roedd hi = she was
roedden ni = we were
roeddech chi = you were
roedden nhw = they were

ydw i = am I

wyt ti = art thou
ydy e = is he

ydy hi = is she

ydyn ni = are we
ydych chi = are you
ydyn nhw = are they

can be specified by typing lines like
B.C.

mae hi=she iskydy hi=is she&roedd 347shgygp#\A%veen Syracuse and Carthage
396: Aristippus of Cyrene and Antisthe-
» EXERCISE 22.8
The line breaks in the second col-

nes of Athens (philosophers)
umn of the table at the right were chosen 395: Athens rebuilds the Long Walls

by TEX so that the second column was ex- 394: Battles of Coronea and Cnidus
actly 16 ems wide. Furthermore, the au- ¢393: Plato’s Apology; Xenophon'’s Memo-
thor specified one of the rows of the table rabilia; Aristophanes’ Ecclesiazusa
by typing 391-87: Dionysius subjugates south Italy
\\393&Plato’s {\sl Apology\/}; 391: Isocrates opens his school
Xenophon’s 390: Evagoras Hellenizes Cyprus
QSl Memorabilial/}; 387: “King’s Peace”; Plato visits Archy-
Aristophanes’

tas of Taras (mathematician) and
Dionysius I

.Can you guess ‘;Vhat preamble Was‘ used 386: Plato founds the Academy

in the alignment? [The data comes from) . . .
Will Durant’s The Life of Greece (Simon 383: Spartans occupy Cadmeia at Thebes
& Schuster, 1939).] 380: Isocrates’ Panegyricus

{\sl Ecclesiazus\ae\/}\cr

@ Sometimes a template will apply perfectly to all but one or two of the entries

in a column. For example, in the exercise just given, the colons in the first
column of the alignment were supplied by the template ‘\hfil#: ’; but the very first
entry in that column, ‘B.C.’, did not have a colon. TEX allows you to escape from the
stated template in the following way: If the very first token of an alignment entry is
“\omit’ (after macro expansion), then the template of the preamble is omitted; the
trivial template ‘#’ is used instead. For example, ‘B.C.” was put into the table above
by typing ‘\omit\hfil\sevenrm B.C.’ immediately after the preamble. You can use
\omit in any column, but it must come first; otherwise TEX will insert the template
that was defined in the preamble.

237

organists

Cornet, Peeter

Philips, Peter

Sweelinck, Jan Pieterszoon
Bull, John

Titelouze, Jehan

Hassler, Hans Leo

Preetorius [Schultheiss], Michael

Frescobaldi, Girolamo
Coelho, Manuel Rodrigues
Correa de Arauxo, Francisco
Welsh conjugation

Durant

Aristippus of Cyrene
Antisthenes of Athens
Plato

Xenophon

Aristophanes

Dionysius I of Syracuse
Isocrates

Evagoras of Salamis
Archytas of Taras

omit

238

Chapter 22: Alignment

% If you think about what TEX has to do when it’s processing \halign, you’'ll realize

that the timing of certain actions is critical. Macros are not expanded when the
preamble is being read, except as described earlier; but once the \cr at the end of the preamble
has been sensed, TEX must look ahead to see if the next token is \noalign or \omit, and macros
are expanded until the next non-space token is found. If the token doesn’t turn out to be
\noalign or \omit, it is put back to be read again, and TEX begins to read the template (still
expanding macros). The template has two parts, called the v and v parts, where u precedes
the ‘#’ and v follows it. When TEX has finished the u part, its reading mechanism goes back to
the token that was neither \noalign nor \omit, and continues to read the entry until getting
to the & or \cr that ends the entry; then the v part of the template is read. A special internal
operation called \endtemplate is always placed at the end of the v part; this causes TEX to
put the entry into an “unset box” whose glue will be set later when the final column width is
known. Then TEX is ready for another entry; it looks ahead for \omit (and also for \noalign,
after \cr) and the process continues in the same way.

One consequence of the process just described is that it may be dangerous to begin

an entry of an alignment with \if..., or with any macro that will expand into a
replacement text whose first token is \if...; the reason is that the condition will be evalu-
ated before the template has been read. (TEX is still looking to see whether an \omit will
occur, when the \if is being expanded.) For example, if \strut has been defined to be an
abbreviation for

\ifmmode(text for math modes)\else(text for nonmath modes)\fi

and if \strut appears as the first token in some alignment entry, then TEX will expand it
into the (text for nonmath modes) even though the template might be ‘$#$’, because TEX will
not yet be in math mode when it is looking for a possible \omit. Chaos will probably ensue.
Therefore the replacement text for \strut in Appendix B is actually

\relax\ifmmode. ..

and ‘\relax’ has also been put into all other macros that might suffer from such timing prob-
lems. Sometimes you do want TEX to expand a conditional before a template is inserted, but
careful macro designers watch out for cases where this could cause trouble.

@ When you’re typesetting numerical tables, it’s common practice to line up the

decimal points in a column. For example, if two numbers like ‘0.2010’ and
297.1’ both appear in the same column, you’re supposed to produce ‘292:?10’. This
result isn’t especially pleasing to the eye, but that’s what people do, so you might
have to conform to the practice. One way to handle this is to treat the column as
two columns, somewhat as \eqalign treats one formula as two formulas; the ‘.” can be
placed at the beginning of the second half-column. But the author usually prefers to
use another, less sophisticated method, which takes advantage of the fact that the digits
0,1, ..., 9 have the same width in most fonts: You can choose a character that’s not
used elsewhere in the table, say ‘?’, and change it to an active character that produces
a blank space exactly equal to the width of a digit. Then it’s usually no chore to put
such nulls into the table entries so that each column can be regarded as either centered
or right-justified or left-justified. For example, ‘?70.2010’ and ‘297.1777" have the
same width, so their decimal points will line up easily. Here is one way to set up ‘7’
for this purpose:

\newdimen\digitwidth
\setbox0=\hbox{\rm0}
\digitwidth=\wdO
\catcode‘?=\active
\def?{\kern\digitwidth}

endtemplate
unset box
conditionals
strut

ifmmode
numerical tables
decimal points
active character

Chapter 22: Alignment

The last two definitions should be local to some group, e.g., inside a \vbox, so that ‘7’
will resume its normal behavior when the table is finished.

@ Let’s look now at some applications to mathematics. Suppose first that you
want to typeset the small table

n =01234567 8 910111213 14 15 16 17 18 19 20
Gn)=1243678161825321164 31128 10256 5 512 28 1024 ...

as a displayed equation. A brute force approach using \eqalign or \atop is cumbersome
because G(n) and n don’t always have the same number of digits. It would be much
nicer to type

$$\vbox{\halign{(preamble)\cr
n\phantom)&0&1&2&3& ... &20&\dots\cr
{\cal G}(n)&1&2&4&3& ... &1024&\dots\cr}}$$

for some (preamble). On the other hand, the (preamble) is sure to be long, since
this table has 23 columns; so it looks as though \settabs and \+ will be easier. TEX
has a handy feature that helps a lot in cases like this: Preambles often have a periodic
structure, and if you put an extra ‘&’ just before one of the templates, TEX will consider
the preamble to be an infinite sequence that begins again at the marked template when
the \cr is reached. For example,

t1&t2&t3&&t4&t5\cr is treated like t1&t2&t3&t4&t5&t4&t5&t4&
and
&t1&ta&ts &ty &ts \cr is treated like t1 &to&ts&ta&ts &t1 &ta&ts& - .

The tabskip glue following each template is copied with that template. The preamble
will grow as long as needed, based on the number of columns actually used by the
subsequent alignment entries. Therefore all it takes is

$\hfil#$ =&&\ \hfil#\hfillcr
to make a suitable (preamble) for the G(n) problem.

Now suppose that the task is to typeset three pairs of displayed formulas, with all of
the = signs lined up:

Vi=vi—qvj, Xi=wz—qzy, Ui=wuy, fori#y;

Vj = vj, Xj ==j, Uj=uj+ . it (23)
It’s not easy to do this with three \eqalign’s, because the Z with a subscript ‘¢ # j’ makes the
right-hand pair of formulas bigger than the others; the baselines won’t agree unless “phantoms”
are put into the other two \eqalign’s (see Chapter 19). Instead of using \eqalign, which is
defined in Appendix B to be a macro that uses \halign, let’s try to use \halign directly. The
natural way to approach this display is to type

$$\vcenter{\openupi\jot \halign{(preamble)\cr
(first line)\cr (second line)\cr}}\eqno(23)$$

because the \vcenter puts the lines into a box that is properly centered with respect to the
equation number ‘(23)’; the \openup macro puts a bit of extra space between the lines, as
mentioned in Chapter 19.

239

group
active

display

periodic preambles
cyclic preambles
ampersand ampersand
ampersand

eqalign

phantoms

jot

vcenter

openup

240 Chapter 22: Alignment

OK, now let’s figure out how to type the (first line) and (second line). The usual lbrace rbrace
convention is to put ‘&’ before the symbols that we want to line up, so the obvious ampersand ampersand
solution is to type spanned columns in tables
hidewidth
V_i&=v_i-q_iv_j,&X_i&=x_i-q_ix_j,& span

U_i&=u_i,\qquad\hbox{for $i\ne j$};\cr
V_j&=v_j,&X_j&=x_j,&
U_j&=u_j+\sum_{i\ne jrq_iu_i.\cr

Thus the alignment has six columns. We could take common elements into the preamble (e.g.,
‘V_? and ‘=v_’), but that would be too error-prone and too tricky.

% The remaining problem is to construct a preamble to support those lines. To the left

of the = signs we want the column to be filled at the left; to the right of the = signs
we want it to be filled at the right. There’s a slight complication because we are breaking a
math formula into two separate pieces, yet we want the result to have the same spacing as
if it were one formula. Since we’re putting the ‘&’ just before a relation, the solution is to
insert ‘{}’ at the beginning of the right-hand formula; TEX will put the proper space before
the equals sign in ‘${}=...$’, but it puts no space before the equals sign in ‘$=...$’. Therefore
the desired (preamble) is

$\hfil#$&${I#\hfil$e
\qquad$\hfil#$&${I#\hfil$a
\qquad$\hfil#$&${}I#\hfil$

The third and fourth columns are like the first and second, except for the \qquad that separates
the equations; the fifth and sixth columns are like the third and fourth. Once again we can
use the handy ‘&&’ shortcut to reduce the preamble to

$\hfil#$&&${ #\hfil$&\qquad$\hfil#$

With a little practice you’ll find that it becomes easy to compose preambles as you are typing
a manuscript that needs them. However, most manuscripts don’t need them, so it may be
a while before you acquire even a little practice in this regard.

» EXERCISE 22.9
Explain how to produce the following display:

10w+ 3z +3y+ 18z =1, 9)
6w — 17x — bz=2. (10)

The next level of complexity occurs when some entries of a table span two or more
columns. TEX provides two ways to handle this. First there’s \hidewidth, which
plain TEX defines to be equivalent to

\hskip-1000pt plus 1fill

In other words, \hidewidth has an extremely negative “natural width,” but it will stretch
without limit. If you put \hidewidth at the right of some entry in an alignment, the effect is
to ignore the width of this entry and to let it stick out to the right of its box. (Think about it;
this entry won’t be the widest one, when \halign figures the column width.) Similarly, if you
put \hidewidth at the left of an entry, it will stick out to the left; and you can put \hidewidth
at both left and right, as we’ll see later.

% The second way to handle table entries that span columns is to use the \span prim-

itive, which can be used instead of ‘¢’ in any line of the table. (We've already
seen that \span means “expand” in preambles; but outside of preambles its use is completely
different.) When ‘\span’ appears in place of ‘&’, the material before and after the \span is
processed in the ordinary way, but afterward it is placed into a single box instead of two boxes.
The width of this combination box is the sum of the individual column widths plus the width
of the tabskip glue between them; therefore the spanning box will line up with non-spanning
boxes in other rows.

Chapter 22: Alignment

For example, suppose that there are three columns, with the respective templates

w1 #v1 & ug #v2 & usz #vs; suppose that the column widths are wi, wa, ws; suppose
that go, g1, g2, g3 are the tabskip glue widths after the glue has been set; and suppose that
the line

a1\span az\span a3\cr

has appeared in the alignment. Then the material for ‘ujaiviuzasvausazvs’ (i.e., the result
‘uraivr’ of column 1 followed by the results of columns 2 and 3) will be placed into an hbox
of width w1 4+ g1 + w2 + g2 + w3z. That hbox will be preceded by glue of width go and it will
be followed by glue of width g3, in the larger hbox that contains the entire aligned line.

You can use \omit in conjunction with \span. For example, if we continue with the
notation of the previous paragraph, the line

\omit a; \spanaz \span\omit a3 \cr
would put the material for ‘ajugagvzas’ into the hbox just considered.

It’s fairly common to span several columns and to omit all their templates, so plain

TEX provides a \multispan macro that spans a given number of columns. For ex-
ample, ‘\multispan3’ expands into ‘\omit\span\omit\span\omit’. If the number of spanned
columns is greater than 9, you must put it in braces, e.g., ‘\multispan{13}’.

The preceding paragraphs are rather abstract, so let’s look at an example that shows
what \span actually does. Suppose you type

$$\tabskip=3em

\vbox{\halign{&\hrulefill#\hrulefill\cr
first&second&third\cr
first-and-second\span\omit&\cr
&second-and-third\span\omit\cr
first-second-third\span\omit\span\omit\cr}}$$

The preamble specifies arbitrarily many templates equal to ‘\hrulefill#\hrulefill’; the
\hrulefill macro is like \hfill except that the blank space is filled with a horizontal rule.
Therefore you can see the filling in the resulting alignment, which shows the spanned columns:

first second third
first-and-second

_ _second-and-third_
first-second-third______

The rules stop where the tabskip glue separates columns. You don’t see rules in the first line,
since the entries in that line were the widest in their columns. However, if the tabskip glue
had been 1em instead of 3 em, the table would have looked like this:

first _second_ third
first-and-second
___ second-and-third
__first-second-third__

» EXERCISE 22.10
Consider the following table, which is called Walter’s worksheet:

1 Adjusted gross income.......... $4,000
2 Zero bracket amount for
a single individual........ $2,300
3 Earned income........... 1,500
4 Subtract line 3 from line 2...... 800

5 Add lines 1 and 4. Enter here
and on Form 1040, line 35...... $4,800

241

omit

multispan

hrulefill

Walter’s worksheet
IRS

Green, Walter

242 Chapter 22: Alignment

Define a preamble so that the following specification will produce Walter’s worksheet. dotfill
underbar
\halign{(preamble)\cr o)
1&Adjusted gross income\dotfill\span\omit\span&\$4,000\cr generic matrix
2&Zero bracket amount for&\cr hidewidth

. R R . ruled tables
%a single individual\dotfill\span\omit&\$2,300\cr TeX Masters

3%Earned income\dotfill\span\omit&\underbar{ 1,500}\cr

4&Subtract line 3 from line 2\dotfill
\span\omit\span&\underbar{ 800}\cr

5&Add lines 1 and 4. Enter here\span\omit\span\cr

&and on Form 1040, line 35\dotfill\span\omit\span&\$4,800\cr}

(The macro \dotfill is like \hrulefill but it fills with dots; the macro \underbar puts its
argument into an hbox and underlines it.)

Notice the “early” appearance of \cr in line 2 of the previous exercise. You needn’t
have the same number of columns in every line of an alignment; ‘\cr’ means that
there are no more columns in the current line.

» EXERCISE 22.11 ain 012 ... dln
Explain how to typeset the generic matrix g1 422 ... G2n

% The presence of spanned columns adds a complication to TEX’s rules for calculating

column widths; instead of simply choosing the maximum natural width of the column
entries, it’s also necessary to make sure that the sum of certain widths is big enough to
accommodate spanned entries. So here is what TEX actually does: First, if any pair of adjacent
columns is always spanned as a unit (i.e., if there’s a \span between them whenever either one
is used), these two columns are effectively merged into one and the tabskip glue between them
is set to zero. This reduces the problem to the case that every tab position actually occurs at
a boundary. Let there be n columns remaining after such reductions, and for 1 <i < j < n
let w;; be the maximum natural width of all entries that span columns 4 through j, inclusive;
if there are no such spanned entries, let w;; = —oo. (The merging of dependent columns
guarantees that, for each j, there exists ¢ < j such that w;; > —o0.) Let t; be the natural
width of the tabskip glue between columns k and k4 1, for 1 < k < n. Now the final width
w; of column j is determined by the formula

wy = 1??%(],(%]' - Zi§k<]~(wk +tx))

for j =1, 2, ..., n (in this order). It follows that w;; < w;+t; +---+t;_1+wj, for all i < j,
as desired. After the widths w; are determined, the tabskip amounts may have to stretch or
shrink; if they shrink, w;; might turn out to be more than the final width of a box that spans
columns 4 through j, hence the glue in such a box might shrink.

% These formulas usually work fine, but sometimes they produce undesirable effects.

For example, suppose that n = 3, w11 = w2y = w3z = 10, w1z = waz = —o0,
and w3 = 100; in other words, the columns by themselves are quite narrow, but there’s a
big wide entry that’s supposed to span all three columns. In this case TEX’s formula makes
w1 = wo = 10 but wsz = 80 — t1 — t2, so all the excess width is allocated to the third column.
If that’s not what you want, the remedy is to use \hidewidth, or to increase the natural width
of the tabskip glue between columns.

The next level of complexity that occurs in tables is the appearance of horizontal and
vertical ruled lines. People who know how to make ruled tables are generally known
as TEX Masters. Are you ready?

Chapter 22: Alignment

% If you approach vertical rules in the wrong manner, they can be difficult; but there

is a decent way to get them into tables without shedding too many tears. The first
step is to say ‘\offinterlineskip’, which means that there will be no blank space between
lines; TEX cannot be allowed to insert interline glue in its normal clever way, because each
line is supposed to contain a \vrule that abuts another \vrule in the neighboring lines above
and/or below. We will put a strut into every line, by including one in the preamble; then each
line will have the proper height and depth, and there will be no need for interline glue. TEX
puts every column entry of an alignment into an hbox whose height and depth are set equal
to the height and depth of the entire line; therefore \vrule commands will extend to the top
and bottom of the lines even when their height and/or depth are not specified.

assigned the template ‘\vrule#’. Then you obtain a vertical rule by simply leaving
the column entries blank, in the normal lines of the alignment; or you can say ‘\omit’ if you
want to omit the rule in some line; or you can say ‘height 10pt’ if you want a nonstandard
height; and so on.

% A “column” should be allocated to every vertical rule, and such a column can be

Here is a small table that illustrates the points just made. [The data appeared in
an article by A. H. Westing, BioScience 31 (1981), 523-524.]

\vbox{\offinterlineskip

\hrule

\halign{&\vrule#&
\strut\quad\hfil#\quad\cr

height2pt&\omit&&\omit&\cr

&Year\hfil&&World Population&\cr

height2pt&\omit&&\omit&\cr

\noalign{\hrule}
height2pt&\omit&&\omit&\cr
&8000\BC&&5,000,000&\cr Year World Population
&50\AD&&200,000,000&\cr
#1650\ AD&&500, 000, 000&\cr 80?8 IZ'CD' 20(5)78887888
&1850\AD&&1,000,000,000&\cr T ’ ’
1650 A.D. 500,000,000
&1945\AD&&2,300,000,000&\cr
1850 A.D. 1,000,000,000
&1980\AD&&4,400,000,000&\cr
height2pt&\omit&&\omit&\cr} 1945 A.D. 2,300,000,000
1980 A.D. 4,400,000,000
\hrule}

In this example the first, third, and fifth columns are reserved for vertical rules. Horizontal
rules are obtained by saying ‘\hrule’ outside the \halign or ‘\noalign{\hrule}’ inside it,
because the \halign appears in a vbox whose width is the full table width. The horizontal
rules could also have been specified by saying ‘\multispan5\hrulefill’ inside the \halign,
since that would produce a rule that spans all five columns.

The only other nonobvious thing about this table is the inclusion of several lines
that say ‘height2pt&\omit&&\omit&\cr’; can you see what they do? The \omit
instructions mean that there’s no numerical information, and they also suppress the \strut
from the line; the ‘height2pt’ makes the first \vrule 2pt high, and the other two rules will
follow suit. Thus, the effect is to extend the vertical rules by two points, where they touch the
horizontal rules. This is a little touch that improves the appearance of boxed tables; look for
it as a mark of quality.

>

» EXERCISE 22.12
Explain why the lines of this table say ‘&\cr’ instead of just ‘\cr’.

Another way to get vertical rules into tables is to typeset without them, then back
up (using negative glue) and insert them.

Here is another table; this one has become a classic, ever since Michael Lesk published
it as one of the first examples in his report on a program to format tables [Bell

s

243

offinterlineskip
interline glue
vrule

vrule

‘Westing

hrule

noalign
multispan
strut

Lesk

244

Chapter 22: Alignment

Laboratories Computing Science Technical Report 49 (1976)]. It illustrates several typical
problems that arise in connection with boxed information. In order to demonstrate TEX’s
ability to adapt a table to different circumstances, tabskip glue is used here to adjust the
column widths; the table appears twice, once generated by ‘\halign to125pt’ and once by
‘\halign to200pt’, with nothing else changed.

AT&T Common Stock AT&T Common Stock
Year Price Dividend Year Price Dividend
1971 41-54 $2.60 1971 41-54 $2.60
2 41-54 2.70 2 41-54 2.70
3 46-55 2.87 3 46-55 2.87
4 40-53 3.24 4 40-53 3.24
5 45-52 3.40 5 45-52 3.40
6 51-59 .95% 6 51-59 .95%

* (first quarter only) * (first quarter only)

The following specification did the job:

\vbox{\tabskip=0pt \offinterlineskip
\def\tablerule{\noalign{\hrule}}
\halign to(dimen){\strut#& \vrule#\tabskip=lem plus2em&

\hfil#& \vrule#& \hfil#\hfil& \vrule#&

\hfil#& \vrule#\tabskip=Opt\cr\tablerule
&&\multispan5\hfil AT\&T Common Stock\hfil&\cr\tablerule
&&\omit\hidewidth Year\hidewidth&&

\omit\hidewidth Price\hidewidth&&
\omit\hidewidth Dividend\hidewidth&\cr\tablerule
&&19714&41--544&\$2.60&\cr\tablerule
&& 288&41--54&&2.70&\cr\tablerule
&& 3&&46--55&%2.87&\cr\tablerule
&& 4&&40--53&&3.24&\cr\tablerule
&& 5&&45--52&&3.40&\cr\tablerule
&& 6&&51--59&&.95\rlap*&\cr\tablerule \noalign{\smallskip}
&\multispan7* (first quarter only)\hfillcrl}}

Points of interest are: (1) The first column contains a strut; otherwise it would have been
necessary to put a strut on the lines that say ‘AT&T’ and ‘(first quarter only)’, since those
lines omit the templates of all other columns that might have a built-in strut. (2) ‘\hidewidth’
is used in the title line so that the width of columns will be affected only by the width of
the numeric data. (3) ‘\rlap’ is used so that the asterisk doesn’t affect the alignment of the
numbers. (4) If the tabskip specification had been ‘Oem plus3em’ instead of ‘lem plus2em’, the
alignment wouldn’t have come out right, because ‘AT&T Common Stock’ would have been
wider than the natural width of everything it spanned; the excess width would all have gone
into the ‘Dividend’ column.

» EXERCISE 22.13
Explain how to add 2 pt more space above and below ‘AT&T Common Stock’.

» EXERCISE 22.14
Typeset the following chart, making it exactly 36em wide:

J. H. Béhning, 1838

M. J. H. Bohning, 1882

M. D. Blase, 1840

L. M. Bohning, 1912

E. F. Ehlert, 1845

P. A. M. Ehlert, 1884

C. L. Wischmeyer, 1850

AT&T

hidewidth

rlap

family tree

Bohning [Knuth], Louise Marie
Ehlert [Bohning], Pauline Anna Marie
Bohning, Martin John Henry
Wischmeyer [Ehlert], Clara Louise
Ehlert, Ernst Fred

Blase [Bohning], Maria Dorothea
Bohning, Jobst Heinrich

Chapter 22: Alignment

% If you’re having trouble debugging an alignment, it sometimes helps to put ‘\ddt’

at the beginning and end of the templates in your preamble. This is an undefined
control sequence that causes TEX to stop, displaying the rest of the template. When TEX
stops, you can use \showlists and other commands to see what the machine thinks it’s doing.
If TEX doesn’t stop, you know that it never reached that part of the template.

It’s possible to have alignments within alignments. Therefore when TEX sees a ‘&’ or

‘\span’ or ‘\cr’, it needs some way to decide which alignment is involved. The rule
is that an entry ends when ‘&’ or ‘\span’ or ‘\cr’ occurs at the same level of braces that was
current when the entry began; i.e., there must be an equal number of left and right braces in
every entry. For example, in the line

\matrix{1&1\cr 0&1\cr}&\matrix{0&1i\cr 0&0\cr}\cr

TEX will not resume the template for the first column when it is scanning the argument to
\matrix, because the &’s and \cr’s in that argument are enclosed in braces. Similarly, &’s and
\cr’s in the preamble do not denote the end of a template unless the resulting template would
have an equal number of left and right braces.

% You have to be careful with the use of & and \span and \cr, because these tokens are

intercepted by TEX’s scanner even when it is not expanding macros. For example,
if you say ‘\let\x=\span’ in the midst of an alignment entry, TEX will think that the ‘\span’
ends the entry, so \x will become equal to the first token following the ‘#’ in the template. You
can hide this \span by putting it in braces; e.g., ‘{\global\let\x=\span}’. (And Appendix D
explains how to avoid \global here.)

Sometimes people forget the \cr on the last line of an alignment. This can cause mys-
terious effects, because TEX is not clairvoyant. For example, consider the following
apparently simple case:

\halign{\centerline{#}\cr
A centered line.\cr
And another?}

(Notice the missing \cr.) A curious thing happens here when TEX processes the erroneous
line, so please pay attention. The template begins with ‘\centerline{’, so TEX starts to scan
the argument to \centerline. Since there’s no ‘\cr’ after the question mark, the ‘}’ after the
question mark is treated as the end of the argument to \centerline, not as the end of the
\halign. TEX isn’t going to be able to finish the alignment unless the subsequent text has
the form ‘...{...\cr’. Indeed, an entry like ‘a}b{c’ is legitimate with respect to the template
‘\centerline{#}’, since it yields ‘\centerline{a}b{c}’; TEX is correct when it gives no error
message in this case. But the computer’s idea of the current situation is different from the
user’s, so a puzzling error message will probably occur a few lines later.

% To help avoid such situations, there’s a primitive command \crcr that acts ex-
actly like \cr except that it does nothing when it immediately follows a \cr or a
\noalign{...}. Thus, when you write a macro like \matrix, you can safely insert \crcr at
the end of the user’s argument; this will cover up an error if the user forgot the final \cr, and
it will cause no harm if the final \cr was present.

Are you tired of typing \cr? You can get plain TEX to insert an automatic \cr at
the end of each input line in the following way:

\begingroup \let\par=\cr \obeylines %
\halign{(preamble)
(first line of alignment)

(last line of alignment)
Hendgroup

This works because \obeylines makes the ASCII (return) into an active character that uses
the current meaning of \par, and plain TEX puts (return) at the end of an input line (see

245

debugging
ddt

braces
span

cr
ampersand
crer

cr, avoiding
begingroup
obeylines
return

par

246

Chapter 22: Alignment

Chapter 8). If you don’t want a \cr at the end of a certain line, just type ‘4’ and the corre-
sponding \cr will be “commented out.” (This special mode doesn’t work with \+ lines, since
\+ is a macro whose argument is delimited by the token ‘\cr’, not simply by a token that has
the same meaning as \cr. But you can redefine \+ to overcome this hurdle, if you want to.
For example, define a macro \alternateplus that is just like \+ except that its argument is
delimited by the active character ~"M; then include the command ‘\let\+=\alternateplus’ as
part of \obeylines.)

@ The control sequence \valign is analogous to \halign, but rows and columns
change roles. In this case \cr marks the bottom of a column, and the aligned
columns are vboxes that are put together in horizontal mode. The individual entries
of each column are vboxed with depth zero (i.e., as if \boxmaxdepth were zero, as
explained in Chapter 12); the entry heights for each row of a \valign are maximized
in the same fashion as the entry widths for each column of an \halign are maximized.
The \noalign operation can now be used to insert horizontal mode material between
columns; the \span operation now spans rows. People usually work with TEX at least a
year before they find their first application for \valign; and then it’s usually a one-row
“\valign{\vfil#\vfillcr...}’. But the general mechanism is there if you need it.

percent

+

delimited arguments
valign

boxmaxdepth

noalign

span

spanned rows in tables

Chapter 22: Alignment

If sixteen pennies are arranged in the form of a square

there will be the same number of pennies in every row, every column,
and each of the two long diagonals.

Can you do the same with twenty pennies?

— HENRY ERNEST DUDENEY, The Best Coin Problems (1909)

It was she who controlled the whole of the Fifth Column.
— AGATHA CHRISTIE, N or M7 (1941)

247

DUDENEY
CHRISTIE

Output Routines

Chapter 23: Output Routines

We investigated TEX’s page-building technique in Chapter 15, where we dis-
cussed the basic two-stage strategy that is used: TEX gathers material until it
has accumulated more than will fit on a page; then it spews out one page of data,
based on what it thinks is the best breakpoint between pages; then it returns
to gather material for the next page in the same way. Page numbers, headings,
and similar things are attached after each page has been ejected, by a special
sequence of TEX commands called the current output routine.

Plain TEX has an output routine that takes care of ordinary jobs. It han-
dles the simple things that most manuscripts require, and it also copes with more
complicated things like the insertions made with \footnote and \topinsert,
as described in the dangerous bends of Chapter 15. We shall begin the present
chapter by discussing how to make simple changes to the behavior of plain TEX’s
output routine; then we shall turn to the details of how to define output routines
that do more complex tasks.

If you run TEX without modifying the plain TEX format, you get pages
that are numbered at the bottom; and each page will be approximately 8% inches
wide and 11 inches tall, including 1-inch margins at all four sides. This format
is suitable for preprints of technical papers, but you might well want to change
it, especially if you are not using TEX to make a preprint of a technical paper.

For example, we saw in the experiments of Chapter 6 that the width
of the material on a page can be changed by giving a different value to the
horizontal line size, \hsize. Plain TEX format says ‘\hsize=6.5in’, in order to
obtain 8.5-inch pages with 1-inch margins; you can change \hsize to whatever
you want. Similarly, you can control the vertical size of a page by changing
\vsize. Plain TEX sets \vsize=8.9in (not 9in, since \vsize doesn’t include
the space for page numbers at the bottom of each page); if you say ‘\vsize=4in’
you will get shorter pages, with only 4 inches of copy per sheet. It’s best not to
monkey with \hsize and \vsize except at the very beginning of a job, or after
you have ejected all pages from TEX’s memory.

If you want your output to be positioned differently when it is ultimately
printed, you can offset it by giving nonzero values to \hoffset and \voffset.
For example,

\hoffset=.5in \voffset=1.5in

will move the output half an inch to the right of its normal position, and 1.5
inches down. You should be careful not to offset the output so much that it
falls off the edge of the physical medium on which it is being printed, unless you
know that such out-of-bounds activity won’t cause trouble.

TEX is often used to typeset announcements, brochures, or other docu-
ments for which page numbers are inappropriate. If you say

\nopagenumbers

at the beginning of your manuscript, plain TEX will refrain from inserting num-
bers at the bottom of each page.

249

output routine
footnote
topinsert

plain TEX format
page format, modifying
hsize

vsize

hoffset

voffset

brochures

page numbers

250 Chapter 23: Output Routines

@ In fact, \nopagenumbers is a special case of a much more general mechanism

by which you can control headings and footings. The plain TEX output rou-
tine puts out a special line of text called the headline at the top of each page, and
another special line of text called the footline at the bottom. The headline is normally
blank, and the footline is normally a centered page number, but you can specify any
headline and footline that you want by redefining the control sequences \headline and
\footline. For example,

\headline={\hrulefill}

will put a horizontal rule at the top of every page. The basic idea is that plain TEX puts
‘\line{\the\headline}’ at the top and ‘\line{\the\footline}’ at the bottom, with
blank lines separating these extra lines from the other material. (Recall that \line
is an abbreviation for ‘\hbox to\hsize’; hence the headline and footline are put into
boxes as wide as the normal lines on the page itself.) The normal value of \headline
is ‘\hfil’, so that no heading is visible. The \nopagenumbers macro described earlier
is simply an abbreviation for ‘\footline={\hfil}'.

?2 The normal value of \footline is ‘\hss\tenrm\folio\hss’; this centers the
page number on a line, using font \tenrm, because \folio is a control sequence
that produces the number of the current page in text form.

@ The page number appears in TEX’s internal register \count0, as explained in

Chapter 15, and plain TEX makes \pageno an abbreviation for \count0. Thus
you can say ‘\pageno=100’ if you want the next page of your output to be number 100.
The \folio macro converts negative page numbers to roman numerals; if your manu-
script begins with ‘\pageno=-1’, the pages will be numbered i, ii, iii, iv, v, etc. In fact,
Appendix B defines \folio to be an abbreviation for

\ifnum\pageno<0 \romannumeral-\pageno \else\number\pageno \fi

@ It is important to include the name of each font explicitly whenever you are

defining a headline or footline, because an output routine in TEX can come
into action at somewhat unpredictable times. For example, suppose that \footline
had been set to ‘\hss\folio\hss’, without specifying \tenrm; then the page number
would be typeset in whatever font happens to be current when TEX decides to output a
page. Mysterious effects can occur in such cases, because TEX is typically in the midst
of page 101 when it is outputting page 100.

@ » EXERCISE 23.1
Explain how to put en-dashes around the page numbers in a plain TEX job.
For example, ¢ — 4 — ’ should appear at the bottom of page 4.

@ Here is an example of a headline in which the page numbers appear at the top.
Furthermore, odd-numbered and even-numbered pages are treated differently:

\nopagenumbers % suppress footlines
\headline={\ifodd\pageno\rightheadline \else\leftheadline\fi}
\def\rightheadline{\tenrm\hfil RIGHT RUNNING HEAD\hfil\folio}
\def\leftheadline{\tenrm\folio\hfil LEFT RUNNING HEAD\hfil}
\voffset=2\baselineskip

nopagenumbers
headline
footline
headline
footline
hrulefill

line

tenrm

folio

pageno

count0

roman numerals
romannumeral
number
en-dashes

Chapter 23: Output Routines

English-language books traditionally have odd-numbered pages on the right and even-
numbered pages on the left. Text that appears as a headline on several pages is often
called a “running head.” When you use headlines, it is generally wise to set \voffset
to the equivalent of two lines of text, as shown in this example, so that there will still
be a margin of one inch at the top of your output pages.

@ » EXERCISE 23.2

Suppose that you're using TEX to typeset your résumé, which is several pages
long. Explain how to define \headline so that the first page is headed by ‘RESUME’,
centered in boldface type, while each subsequent page has a headline like this:

Résumé of A. U. Thor s Page 2

@ If you don’t change the \vsize, all of the headlines and footlines will occur

in the same place regardless of the contents of the page between them. Thus,
for example, if you are using \raggedbottom as explained in Chapter 15, so that pages
do not always contain the same amount of text, the raggedness will occur above the
footline; the footline won’t move up. If you do change \vsize, the footline position
will change correspondingly, while the headline will stay put.

% The rest of this chapter is intended for people who want an output format that is

substantially different from what plain TEX provides. Double dangerous bends are
used in all of the subsequent paragraphs, because you should be familiar with the rest of TEX
before you plunge into these final mysteries of the language. Chapter 22 taught you how to be
a TEX Master, i.e., a person who can produce complicated tables using \halign and \valign;
the following material will take you all the way to the rank of Grandmaster, i.e., a person who
can design output routines. When you are ready for this rank, you will be pleased to discover
that—Ilike alignments—output routines are not really so mysterious as they may seem at first.

% Let’s begin by recapping some of the rules at the end of Chapter 15. TEX periodically

chooses to output a page of information, by breaking its main vertical list at what
it thinks is the best place, and at such times it enters internal vertical mode and begins to
read the commands in the current \output routine. When the output routine begins, \box255
contains the page that TEX has completed; the output routine is supposed to do something
with this vbox. When the output routine ends, the list of items that it has constructed in
internal vertical mode is placed just before the material that follows the page break. In this
way TEX’s page-break decisions can effectively be changed: Some or all of the material on the
broken-off page can be removed and carried forward to the next page.

% The current \output routine is defined as a token list parameter, just like \everypar

or \errhelp, except that TEX automatically inserts a begin-group symbol ‘{’ at the
beginning and an end-group symbol ‘}’ at the end. These grouping characters help to keep the
output routine from interfering with what TEX was doing when the page break was chosen; for
example, an output routine often changes the \baselineskip when it puts a headline or footline
on a page, and the extra braces keep this change local. If no \output routine has been specified,
or if the user has said ‘\output={}’, TEX supplies its own routine, which is essentially equivalent
to ‘\output={\shipout\box255}’; this outputs the page without any headline or footline, and
without changing the page number.

TEX’s primitive command \shipout(box) is what actually causes output. It sends

the contents of the box to the dvi file, which is TEX’s main output file; after TEX has
finished, the dvi file will contain a compact device-independent encoding of instructions that
specify exactly what should be printed. When a box is shipped out, TEX displays the values
of \countO through \count9 on your terminal, as explained in Chapter 15; these ten counters
are also recorded in the dvi file, where they can be used to identify the page. All of the
\openout, \closeout, and \write commands that appear inside of the (box) are performed
in their natural order as that box is being shipped out. Since a \write command expands

251

odd-numbered pages
even-numbered pages
running head

voffset

résumé

Thor

raggedbottom

vsize

Grandmaster
box255

output

everypar

errhelp

grouping characters
baselineskip

braces

default output routine
shipout

dvi

count0

openout

closeout

write

252

Chapter 23: Output Routines

macros, as explained in Chapter 21, TEX’s scanning mechanism might detect syntax errors
while a \shipout is in progress. If \tracingoutput is nonzero at the time of a \shipout, the
contents of the (box) being shipped are written into your log file in symbolic form. You can
say \shipout anywhere, not only in an output routine.

% The delayed aspect of \write imposes a noteworthy restriction: It is necessary to

be sure that all macros that might appear within the text of a \write are properly
defined when a \shipout command is given. For example, the plain TEX format in Appen-
dix B temporarily makes spaces active and says ‘\global\let =\space’; the reason is that
\obeyspaces might be in force during a \write command, so a definition for ., as an active
character should exist during the next \shipout, even though TEX might no longer be making
spaces active at that time.

% Chapter 15 points out that TEX gives special values to certain internal registers and

parameters, in addition to \box255, just before the output routine begins. Inser-
tions are put into their own vboxes, and \insertpenalties is set equal to the total number
of heldover insertions; furthermore the \outputpenalty parameter is set to the value of the
penalty at the current breakpoint. An output routine can be made to do special things when
these quantities have special values. For example, the output routine of plain TEX recog-
nizes a \supereject (which ejects all held-over insertions) by the fact that \supereject causes
\outputpenalty to be —20000, and by using \insertpenalties to decide if any insertions are
being held over.

The default output routine, ‘\shipout\box255’, illustrates one extreme in which noth-
ing is put into the vertical list that is carried over to the next page. The other extreme
is

\output={\unvbox255
\ifnum\outputpenalty<10000 \penalty\outputpenalty\fi}

which ships nothing out and puts everything back onto the main vertical list. (The command

“\unvbox255’ takes the completed page out of its box, and the command ‘\penalty\outputpenalty’ll

reinserts the penalty at the chosen breakpoint.) This makes a seamless join between the com-
pleted page and the subsequent material, because TEX has still not discarded glue and penalties
at the breakpoint when it invokes an \output routine; hence TEX will go back and reconsider
the page break. If the \vsize hasn’t changed, and if all insertions have been held in place,
the same page break will be found; but it will be found much faster than before, because the
vertical list has already been constructed—the paragraphing doesn’t need to be done again.
Of course, an output routine like this makes TEX spin its wheels endlessly, so it is of no use
except as an example of an extreme case.

% To prevent such looping, your output routine should always make progress of some

sort whenever it comes into play. If you make a mistake, TEX may be able to help
you diagnose the error, because a special loop-detection mechanism has been built in: There is
an internal integer variable called \deadcycles, which is cleared to zero after every \shipout
and increased by 1 just before every \output. Thus, \deadcycles keeps track of how many
times an output routine has been initiated since the most recent \shipout, unless you change
the value of \deadcycles yourself. There’s also an integer parameter called \maxdeadcycles,
which plain TEX sets to 25. If \deadcycles is greater than or equal to \maxdeadcycles when
your output routine is about to be started (i.e., when \deadcycles is about to be increased),
TEX issues an error message and performs the default output routine instead of yours.

When your output routine is finished, \box255 should be void. In other words, you

must do something with the information in that box; it should either be shipped out
or put into some other place. Similarly, \box255 should be void when TEX is getting ready to
fill it with a new page of material, just before starting an output routine. If \box255 is nonvoid
at either of those times, TEX will complain that you are misusing this special register, and the
register contents will be destroyed.

tracingoutput
space
obeyspaces
spaces active
insertpenalties
outputpenalty
supereject
unvbox
deadcycles
default output routine
box255

Chapter 23: Output Routines

But let’s not talk forever about borderline cases and special parameters; let’s look at
some real examples. The output routine of plain TEX, found in Appendix B, is set
up by saying ‘\output={\plainoutput}’, where \plainoutput is an abbreviation for

\shipout\vbox{\makeheadline
\pagebody
\makefootline}
\advancepageno
\ifnum\outputpenalty>-20000 \else\dosupereject\fi

Let us consider this “program” one line at a time:

1) The \makeheadline macro constructs a vbox of height and depth zero in such
a way that the headline is properly positioned above the rest of the page. Its actual
code is

\vbox to Opt{\vskip-22.5pt
\line{\vbox to8.5pt{}\the\headline}\vss}
\nointerlineskip

The magic constant —22.5pt is equal to (topskip — height of strut — 2(baselineskip)),
i.e., 10 pt — 8.5 pt — 24 pt; this places the reference point of the headline exactly 24 pt
above the reference point of the top line on the page, unless the headline or the top
line are excessively large.

2) The \pagebody macro is an abbreviation for
\vbox to\vsize{\boxmaxdepth=\maxdepth \pagecontents}

The value of \boxmaxdepth is set to \maxdepth so that the vbox will be constructed
under the assumptions that TEX’s page builder has used to set up \box255.

3) The \pagecontents macro produces a vertical list for everything that belongs
on the main body of the page, namely the contents of \box255 together with illustra-
tions (inserted at the top) and footnotes (inserted at the bottom):

\ifvoid\topins \else\unvbox\topins\fi
\dimenO0=\dp255 \unvbox255
\ifvoid\footins\else J, footnote info is present
\vskip\skip\footins
\footnoterule
\unvbox\footins\fi
\ifraggedbottom \kern-\dimenO \vfil \fi

Here \topins and \footins are the insertion class numbers for the two kinds of inser-
tions used in plain TEX; if more classes of insertions are added, \pagecontents should
be changed accordingly. Notice that the boxes are unboxed so that the glue coming
from insertions can help out the glue on the main page. The \footnoterule macro in
Appendix B places a dividing line between the page and its footnotes; it makes a net
contribution of 0 pt to the height of the vertical list. Ragged-bottom setting is achieved
by inserting infinite glue, which overpowers the stretchability of \topskip.

4) The \makefootline macro puts \footline into its proper position:

\baselineskip=24pt
\line{\the\footline}

253

plainoutput
makeheadline
headline
nointerlineskip
strut

vss

line

pagebody
boxmaxdepth
maxdepth
pagecontents
topins
footnote
topins

footins
insertions
footnoterule

Ragged-bottom setting

vfil

infinite glue
topskip
makefootline
footline

254 Chapter 23: Output Routines

5) The \advancepageno macro normally advances \pageno by +1; but if \pageno
is negative (for roman numerals), the advance is by —1. The new value of \pageno will
be appropriate for the next time the output routine is called into action.

\ifnum\pageno<0 \globall\advance\pageno by-1
\else \globalladvance\pageno by 1 \fi

6) Finally, the \dosupereject macro is designed to clear out any insertions that
have been held over, whether they are illustrations or footnotes or both:

\ifnum\insertpenalties>0
\line{} \kern-\topskip \nobreak
\vfill\supereject\fi

The mysterious negative \kern here cancels out the natural space of the \topskip
glue that goes above the empty \line; that empty line box prevents the \vfill from
disappearing into a page break. The vertical list that results from \dosupereject is
placed on TEX’s list of things to put out next, just after the straggling insertions have
been reconsidered as explained in Chapter 15. Hence another super-eject will occur,
and the process will continue until no insertions remain.

%» EXERCISE 23.3

Explain how to change the output routine of plain TEX so that it will produce twice
as many pages. The material that would ordinarily go on pages 1, 2, 3, etc., should go onto
pages 1, 3, 5, ...; and the even-numbered pages should be entirely blank except for the headline
and footline. (Imagine that photographs will be mounted on those blank pages later.)

Suppose now that double-column format is desired. More precisely, let’s attempt to

modify plain TEX so that it sets type in columns whose width is \hsize=3.2in. Each
actual page of output should contain two such columns separated by 0.1in of space; thus the
text area of each page will still be 6.5 inches wide. The headlines and footlines should span
both columns, but the columns themselves should contain independent insertions as if they
were the facing pages of a book. In other words, each column should contain its own footnotes
and its own illustrations; we do not have to change the \pagebody macro.

In order to solve this problem, let us first introduce a new dimension register called
\fullhsize that represents the width of an entire page.

\newdimen\fullhsize
\fullhsize=6.5in \hsize=3.2in
\def\fullline{\hbox to\fullhsize}

The \makeheadline and \makefootline macros should be modified so that they use ‘\fullline’
instead of ‘\line’.

% The new output routine will make use of a control sequence \1r that is set to either

‘L’ or ‘R’, according as the next column belongs at the left or at the right of the
next page. When a left column has been completed, the output routine simply saves it in a
box register; when a right column has been completed, the routine outputs both columns and

advancepageno
pageno

global

advance
dosupereject
insertpenalties
supereject

kern

topskip

vfill
double-column
hsize
pagebody

two-column format
multicolumn format

fullhsize
makeheadline
makefootline
fullline

line

Chapter 23: Output Routines 255

increases the page number. advancepageno
three-column output
\let\1lr=L \newbox\leftcolumn running headline
\output={\if L\1lr marks
\global\setbox\leftcolumn=\columnbox \global\let\lr=R mark

\else \doubleformat \globalllet\lr=L\fi
\ifnum\outputpenalty>-20000 \else\dosupereject\fi}
\def\doubleformat{\shipout\vbox{\makeheadline
\fullline{\box\leftcolumn\hfil\columnbox}
\makefootline}
\advancepageno}
\def\columnbox{\leftline{\pagebody}}

The \columnbox macro uses \leftline in order to ensure that it produces a box whose width
is \hsize. The width of \box255 is usually, but not always, equal to \hsize at the beginning
of an output routine; any other width would louse up the format.

When double-column setting ends, there’s a 50-50 chance that the final column has
fallen at the left, so it will not yet have been output. The code

\supereject
\if R\1lr \null\vfill\eject\fi

supplies an empty right-hand column in this case, ensuring that all of the accumulated material
will be printed. It’s possible to do fancier column balancing on the last page, but the details are
tricky if footnotes and other insertions need to be accommodated as well. Appendix E includes
the macros that were used to balance the columns at the end of the index in Appendix I, and
to start two-column format in mid-page.

» EXERCISE 23.4
How should the example above be modified if you want three-column output?

% Since TEX’s output routine lags behind its page-construction activity, you can get

erroneous results if you change the \headline or the \footline in an uncontrolled
way. For example, suppose that you are typesetting a book, and that the format you are
using allows chapters to start in the middle of a page; then it would be a mistake to change
the running headline at the moment you begin a new chapter, since the next actual page
of output might not yet include anything from the new chapter. Consider also the task of
typesetting a dictionary or a membership roster; a well-designed reference book displays the
current range of entries at the top of each page or pair of pages, so that it is easy for readers
to thumb through the book when they are searching for isolated words or names. But TEX’s
asynchronous output mechanism makes it difficult, if not impossible, to determine just what
range of entries is actually present on a page.

Therefore TEX provides a way to put “marks” into a list; these marks inform the
output routine about the range of information on each page. The general idea is that
you can say

\mark{(mark text)}

in the midst of the information you are typesetting, where the (mark text) is a token list that
is expanded as in the commands \edef, \message, etc. TEX puts an internal representation of
the mark text into the list it is building; then later on, when a completed page is packed into
\box255, TEX allows the output routine to refer to the first and last mark texts on that page.

% The best way to think of this is probably to imagine that TEX generates an arbi-

trarily long vertical list of boxes, glue, and other items such as penalties and marks.
Somehow that long vertical list gets divided up into pages, and the pages are made available
to the output routine, one at a time. Whenever a page is put in \box255, TEX sets up the
value of three quantities that act essentially like macros:

256

Chapter 23: Output Routines

= \botmark is the mark text most recently encountered on the page that was
just boxed;

» \firstmark is the mark text that was first encountered on the page that was
just boxed;

= \topmark has the value that \botmark had just before the current page was
boxed.

Before the first page, all three of these are null, i.e., they expand to nothing. When
there is no mark on a page, all three are equal to the previous \botmark.
For example, suppose that your manuscript includes exactly four marks, and that the
pages are broken in such a way that \mark{a} happens to fall on page 2, \mark{G}
and \mark{+} on page 4, and \mark{d} on page 5. Then

On page \topmark is \firstmark is \botmark is

1 null null null
2 null « a
3 a « a
4 o B o
5 o') é
6 1 1 4

When you use a \mark command in vertical mode, TEX puts a mark into the main

vertical list. When you use a \mark command in horizontal mode, TEX treats it as
vertical mode material like \vadjust and \insert; i.e., after the paragraph has been broken
into lines, each mark will go into the main vertical list just after the box for the line where
that mark originally appeared. If you use \mark in restricted horizontal mode, the mark may
migrate out to the enclosing vertical list in the same way that \insert and \vadjust items do
(see Chapter 24); but a mark that is locked too deeply inside a box will not migrate, so it will
never appear as a \firstmark or \botmark. Similarly, a \mark that occurs in internal vertical
mode goes into a vbox, and it is not accessible in the main vertical list.

% Chapter 15 discusses the \vsplit command, which allows you to break up vertical
lists by yourself. This operation sometimes provides a useful alternative to TEX’s
ordinary page-building mechanism. For example, if you simply want to typeset some material
in two columns of equal height, you can put that material into a vbox, then \vsplit the box
into two pieces; no output routine is needed at all. The \vsplit operation sets up the values
of two macro-like quantities that were not mentioned in Chapter 15: \splitfirstmark and
\splitbotmark expand to the mark texts of the first and last marks that appear in the vertical
list that was split off by the most recent \vsplit command. Both quantities are null if there
were no such marks. The values of \topmark, \firstmark, \botmark, \splitfirstmark, and
\splitbotmark are global; i.e., they are not affected by TEX’s grouping mechanism.

Most dictionaries use the equivalent of \firstmark and \botmark to give guide words

at the top of each pair of facing pages. For example, if the definition of the word
‘type’ starts on page 1387 and continues onto page 1388, the guide word on page 1387 (a
right-hand page) will be ‘type’; but the guide word at the top of page 1388 (a left-hand page)
will be the next word in the dictionary (e.g., ‘typecast’) even though the top of page 1388 is
about ‘type’.

% The dictionary scheme works fine for dictionaries, since a reader should start reading

each dictionary entry at its beginning. But a different scheme is appropriate for
a technical book like the author’s Art of Computer Programming, where Section 1.2.8 (for
example) starts in the middle of page 78, but the top of page 78 contains exercises 19-24
of Section 1.2.7. The headline at the top of page 78 refers to ‘1.2.7°, because that will help
somebody who is searching for exercise 1.2.7-22. Notice that the dictionary convention would
put ‘1.2.8” at the top of page 78, but that would be appropriate only if Section 1.2.8 had begun
exactly at the top of that page.

botmark
firstmark
topmark
vadjust
insert
migrate
vsplit
splitfirstmark
splitbotmark
grouping
guide words
Art of Computer Programming
Knuth

Chapter 23: Output Routines 257

Continuing this example from The Art of Computer Programming, let’s suppose that iftrue

the TEX manuscript for Section 1.2.8 begins with a macro call like expandafter
iffalse

\beginsection 1.2.8. Fibonacci Numbers. Dull

How should \beginsection be defined? Here is one attempt:

\def\beginsection #1. #2.
{\sectionbreak
\leftline{\sectionfont #1. #2}
\mark{#1}
\nobreak\smallskip\noindent}

The \sectionbreak macro should encourage TEX either to break the page at the current posi-
tion, or to leave a goodly amount of blank space; e.g., \sectionbreak might be an abbreviation
for ‘\penalty-200 \vskip18pt plus4pt minus6pt’. The \beginsection macro ends with com-
mands that suppress indentation of the first paragraph in the section. But the thing that con-
cerns us with respect to output routines is the \mark command that follows \leftline. In the
example we have been considering, the beginning of Section 1.2.8 would insert ‘\mark{1.2.8}’
into the main vertical list just after the box containing the title of that section.

% Is such a \mark adequate? Unfortunately, no, not even if we assume for simplicity

that at most one section begins on each page. The page that contains the beginning
of Section 1.2.8 will then have \topmark=1.2.7 and \firstmark=1.2.8, regardless of whether
or not the section starts at the very top of the page. What we want in this application is a cross
between \topmark and \firstmark: something that will reflect the mark text that represents
the state of affairs just after the first line of the page. And TEX doesn’t provide that.

The solution is to emit the \mark just before the \sectionbreak, instead of just after
the \leftline. Then \topmark will always reflect the truth about the section that is
current at the top line. (Think about it.)

% However, the format for The Art of Computer Programming is more complex than

this. On left-hand pages, the section number in the headline is supposed to reflect
the situation at the top of the page, as we have just discussed, but on right-hand pages it
is supposed to refer to the bottom of the page. Our solution to the previous problem made
\topmark correct for the top, but it can make \botmark incorrect at the bottom. In order to
satisfy both requirements, it is necessary to pack more information into the marks. Here’s one
way to solve the problem:

\def\beginsection #1. #2.
{\mark{\currentsection \noexpand\else #1}
\sectionbreak
\leftline{\sectionfont #1. #2}
\mark{#1\noexpand\else #1} \def\currentsection{#1}
\nobreak\smallskip\noindent}

\def\currentsection{} % the current section number

The idea is to introduce two marks, one just before the section break and one just after the
section has begun. Furthermore each mark has two parts; the mark just before the potential
break between Sections 1.2.7 and 1.2.8 is ‘1.2.7\else 1.2.8’, while the one just after that
potential break is ‘1.2.8\else 1.2.8’. It follows that the section number corresponding to the
bottom of a page is the left component of \botmark; the section number corresponding to the
top of a page is the right component of \topmark. The \rightheadline macro can make use
of ‘\iftrue\botmark\fi’ to read the left component, and the \leftheadline macro can say
‘\expandafter\iffalse\topmark\fi’ to read the right component.

» EXERCISE 23.5
B. C. Dull used a construction very much like the one above, but he put the second
\mark just before the \leftline instead of just after it. What went wrong?

258 Chapter 23: Output Routines

» EXERCISE 23.6 iftrue
The marks in the previous construction have the form ‘a\else 8’, where o and 3 are iffalse
two independent pieces of information. The ‘\else’ makes it possible to select either « or 8 by index marks

index example

means of \iftrue and \iffalse. Generalize this idea: Suppose that you have an application :
ragged-right

in which marks are supposed to carry five independent pieces of information, and that each
mark has the form ‘ap\or aj\or az\or az\or as’. Explain how to select any one of the five a’s
from such a mark.

Let’s conclude our discussion of output routines by considering an application to
indexes, such as the index to this manual that appears in Appendix I. The most
complicated entries in such an index will look something like this:

Main entry, 4, 6, 8-10, 12, 14-16,
18-22, 24-28, 30.
first subsidiary entry, 1-3, 6, 10-11,
15, 21, 24, 28.
second subsidiary entry, 1, 3, 6-7,
10, 15, 21, 25, 28, 31.

Main entries and subsidiary entries are typeset ragged-right, with two ems of hanging indenta-
tion after the first line; subsidiary entries are indented one em on the first line. Our goal will
be to typeset such material from input that looks like this:

\beginindex

Main entry, 4, 6, 8--10, 12, 14--16, 18--22, 24--28, 30.

\sub first subsidiary entry, 1--3, 6, 10--11, 15, 21, 24, 28.

\sub second subsidiary entry, 1, 3, 6--7, 10, 15, 21, 25, ¥%
28, 31.

\endindex

where ‘...’ stands for other entries. Each line of input normally specifies one main entry or
one subsidiary entry; if an entry is so long that it doesn’t fit on a single input line, ‘%’ is typed

at the end of the line so that it merges with the following one.

% The interesting thing about this index problem is that it is desirable to set up a

system of marks so that the output routine can insert special lines of text when an
entry has been broken between columns or pages. For example, if a page break occurs between
any of the six lines of typeset output shown above, the output routine should emit the special
line

Main entry (continued):
and if a page break occurs within a subsidiary entry, an additional special line
subsidiary entry (continued):

should also appear. The solution below produces marks so that \botmark will be null if a break
occurs between main entries; it will be ‘Main entry’ if a break occurs after lines 1, 2, or 4 of
the six example output lines; it will be ‘Main entry\sub first subsidiary entry’ if a break
occurs after line 3 (within the first subsidiary entry); and it will be ‘Main entry\sub second
subsidiary entry’ if a break occurs after line 5.

% The reader may wish to try solving this problem before looking at the solution,

because it will then be easier to appreciate the subtler issues that are involved. (Go
ahead: Try to define a macro \beginindex that does the ragged-right setting and produces the
specified marks. Turn back to the previous page to study the problem carefully, before peeking

Chapter 23: Output Routines

at the answer.)

\def\beginindex{\begingroup
\parindent=1lem \maxdepth=\maxdimen
\def\par{\endgraf \futurelet\next\inxentry}
\obeylines \everypar={\hangindent 2\parindent}
\exhyphenpenalty=10000 \raggedright}
\def\inxentry{\ifx\next\sub \let\next=\subentry
\else\ifx\next\endindex \let\next=\vfill
\else\let\next=\mainentry \fi\fi \next}
\def\endindex{\mark{}\break\endgroup}
\let\sub=\indent \newtoks\maintoks \newtoks\subtoks
\def\mainentry#1,{\mark{}\noindent
\maintoks={#1}\mark{\the\maintoks}#1,}
\def\subentry\sub#1,{\mark{\the\maintoks}\indent
\subtoks={#1}\mark{\the\maintoks\sub\the\subtoks}#1,}

Even if you have read this solution, you probably want an explanation of what it does, because
it uses “TEXtics” that have not appeared before in this manual.

1) The \beginindex macro uses \begingroup to keep other changes local; thus,
it won’t be necessary to restore \parindent and \maxdepth, etc., to their former values
when the index is finished. The \maxdepth parameter is set to \maxdimen, which is
essentially infinite, so that \box255 will have the true depth of the last box that it
contains; we will use this fact below. (It is safe to disable \maxdepth in this way, since
the entries in an index can be assumed to have reasonably small depth.) Notice that
\obeylines is used, so that \par will effectively be inserted at the end of every line of
input. The meaning of \par is changed so that it does more than usual: First it does
\endgraf, which is TEX’s ordinary \par operation; then it sets \next to the first token
of the next line, after which the macro \inxentry will be expanded.

2) When \inxentry comes into play it looks at \next to decide what to do.
There are three cases: If \next is ‘\sub’, the line will be treated as a subsidiary entry;
if \next is ‘\endindex’, the next commands executed will be ‘\vfill\mark{}\break
\endgroup’; otherwise the line will be treated as a main entry.

3) The text of a main entry is put into parameter #1 of \mainentry; this param-
eter is delimited by a comma. The first thing that \mainentry does is ‘\mark{}’, which
clears the mark in case of a break between entries. Then comes ‘\noindent’, which
causes TEX to go into horizontal mode and to emit \parskip glue. (The \parskip
glue will be a legal breakpoint between lines; it will later be followed by interline glue,
when the first line of the main entry has been typeset by TEX’s paragraphing routine.)
Then another \mark is put into the paragraph itself; this one contains the text of the
main entry, and a \toks register called \maintoks is used to inhibit expansion of the
mark text. When the paragraph is completed and broken into lines, this particular
mark will immediately follow the box for the paragraph’s first line, so it will be the
\botmark if a page break occurs anywhere within the paragraph.

4) A similar construction is used for \subentry, but the mark is more compli-
cated. The \maintoks register will still contain the main entry. The text for the
subsidiary entry is added using another token list register, \subtoks. Since \sub has
been defined to equal \indent, it will not be expanded in this \mark.

The macros just defined will typeset entries that contain the necessary marks; now
we must construct an output routine that uses these marks in the desired way, to

259

everypar
futurelet
exhyphenpenalty
raggedright
hangindent
begingroup
parindent
maxdepth
maxdimen
obeylines

par

endgraf
noindent

parskip

toks

maintoks

inhibit expansion
indent

260 Chapter 23: Output Routines

insert new lines that say ‘(continued)’ as mentioned above. Again, the reader is advised to try macro arguments
solving this problem before looking at the following solution. empty
interline glue
\output={\dimen0=\dp255 \normaloutput maxdepth
\expandafter\inxcheck\botmark\sub\end} kern
\def\inxcheck#1\sub#2\end{\def\next{#1}/, end
\ifx\next\empty % do nothing if \botmark is null deadcyclfes
\else\noindent #1\continued % ‘Main entry (continued):’ penalty-’10000000000

\def\next{#2}/,

\ifx\next\empty % nothing more if \botmark has no \sub

\else\let\sub=\continued \indent #2\fi

\advance\dimen0 by-\prevdepth \kern\dimenO \fi}
\def\continued{ ({\it continued}\thinspace) :\endgraf}

This coding is a bit more subtle than usual. It assumes that \normaloutput takes care of
shipping out \box255 (possibly putting it into multicolumn format) and advancing the page
number; then comes new stuff, which is performed by \inxcheck. The \inxcheck macro is
invoked in an interesting way that allows \botmark to be separated into its components. If
\botmark is null, argument #1 to \inxcheck will be null; hence \next will be found equivalent
to \empty. (Plain TEX says ‘\def\empty{}’ in order to accommodate situations like this.) If
\botmark doesn’t contain the token \sub, argument #1 will be the contents of \botmark while
#2 will be null. Otherwise, if \botmark has the form a\sub 3, argument #1 will be o and #2 will
be ‘B\sub’.

% If \botmark isn’t null, the \inxcheck macro produces one or more lines of text that

will be contributed to TEX’s main vertical list at the position of the page break.
And here’s where the most subtle point arises: There will be interline glue at the page break,
computed on the basis of the depth of the box that preceded the break. That depth is known
to the output routine, since it’s the depth of \box255. (The value of \maxdepth was made
infinite for precisely this reason.) Therefore the \inxcheck macro can insert a \kern to
compensate for the difference in depth between the old box and the one that will be inserted
before the interline glue that has already been computed. Without this \kern, the spacing
would be wrong. The reader should study this example carefully, to understand the reasoning
behind the \kern command, before designing an output routine that inserts new boxes between
random lines of output.

» EXERCISE 23.7
Modify this construction so that continuation lines are inserted only in the left
columns of even-numbered pages, assuming two-column format.

» EXERCISE 23.8
True or false: The \inxcheck macro in this example contributes at most two lines of
output to the main vertical list.

When TEX sees an \end command, it terminates the job only if the main vertical list
has been entirely output and if \deadcycles=0. Otherwise it inserts the equivalent
of

\line{} \vfill \penalty-’10000000000

into the main vertical list, and prepares to read the ‘\end’ token again. This has the effect of
invoking the output routine repeatedly until everything has been shipped out. In particular,
the last column of two-column format will not be lost.

% It is possible to devise output routines that always leave a residue on the main vertical

list, yet they never allow \deadcycles to increase. In such a case TEX will never come
to an end! An output routine can recognize that it is being invoked by TEX’s endgame, because
of the highly negative \outputpenalty caused by the special \penalty-’>10000000000. At such
times the output routine should modify its behavior, if necessary, so that a happy ending will
ensue.

Chapter 23: Output Routines 261

SHERIDAN
LEONTIEF

| think you will like them,
when you shall see them on a beautiful quarto page,

where a neat rivulet of text
shall meander through a meadow of margin.
'Fore Gad they will be the most elegant things of their kind!

— RICHARD BRINSLEY SHERIDAN, The School for Scandal (1777)

The influence of technical changes upon outputs
through variation in the general investment level B

is so small that actually it could have been neglected.

— WASSILY W. LEONTIEF, The Structure of American Economy, 1919-1929 (1941)

eeeeeeeee

-

24

Summary of
Vertical

Mode

Chapter 24: Summary of VerticalMode

The whole TEX language has been presented in the previous chapters; we have fi-
nally reached the end of our journey into previously uncharted territory. Hurray!
Victory! Now it is time to take a more systematic look at what we have encoun-
tered: to consider the facts in an orderly manner, rather than to mix them up
with informal examples and applications as we have been doing. A child learns
to speak a language before learning formal rules of grammar, but the rules of
grammar come in handy later on when the child reaches adulthood. The purpose
of this chapter—and of the two chapters that follow—is to present a precise and
concise summary of the language that TEX understands, so that mature users
will be able to communicate as effectively as possible with the machine.

We will be concerned in these chapters solely with TEX’s primitive oper-
ations, rather than with the higher-level features of plain TEX format that most
people deal with. Therefore novice users should put off reading Chapters 24-26
until they feel a need to know what goes on inside the computer. Appendix B
contains a summary of plain TEX, together with a ready-reference guide to the
things that most people want to know about TEX usage. The best way to get an
overview of TEX from a high level is to turn to the opening pages of Appendix B.

Our purpose here, however, is to survey the low-level parts of TEX on which
higher-level superstructures have been built, in order to provide a detailed reference
for people who do need to know the details. The remainder of this chapter is set in
small type, like that of the present paragraph, since it is analogous to material that is
marked “doubly dangerous” in other chapters. Instead of using dangerous bend signs
repeatedly, let us simply agree that Chapters 24-26 are dangerous by definition.

TEX actually has a few features that didn’t seem to be worth mentioning in
previous chapters, so they will be introduced here as part of our complete survey. If
there is any disagreement between something that was said previously and something
that will be said below, the facts in the present chapter and its successors should be
regarded as better approximations to the truth.

We shall study TEX’s digestive processes, i.e., what TEX does with the lists
of tokens that arrive in its “stomach.” Chapter 7 has described the process by which
input files are converted to lists of tokens in TEX’s “mouth,” and Chapter 20 explained
how expandable tokens are converted to unexpandable ones in TEX’s “gullet” by a
process similar to regurgitation. When unexpandable tokens finally reach TEX’s gastro-
intestinal tract, the real activity of typesetting begins, and that is what we are going
to survey in these summary chapters.

Each token that arrives in TEX’s tummy is considered to be a command that
the computer will obey. For example, the letter ‘L’ is a command to typeset an ‘L’
in the current font; ‘\par’ tells TEX to finish a paragraph. TgEX is always in one of
six modes, as described in Chapter 13, and a command sometimes means different
things in different modes. The present chapter is about vertical mode (and internal
vertical mode, which is almost the same): We shall discuss TEX’s response to every
primitive command, when that command occurs in vertical mode. Chapters 25 and 26
characterize horizontal mode and math mode in a similar way, but those chapters are
shorter than this one because many commands have the same behavior in all modes;
the rules for such commands will not be repeated thrice, they will appear only once.

263

vertical mode
primitive

truth

anatomy of TeX
command

264

Chapter 24: Summary of VerticalMode

Some commands have arguments. In other words, one or more of the tokens
that follow a command might be used to modify that command’s behavior, and those
tokens are not considered to be commands themselves. For example, when TEX pro-
cesses the sequence of tokens that corresponds to ‘\dimen2=2.5pt’, it considers only
the first token ‘\dimen’ to be a command; the next tokens are swept up as part of the
operation, because TEX needs to know what \dimen register is to be set equal to what
(dimen) value.

We shall define TEX’s parts of speech by using a modified form of the gram-
matical notation that was introduced about 1960 by John Backus and Peter Naur for
the definition of computer languages. Quantities in angle brackets will either be ex-
plained in words or they will be defined by syntax rules that show exactly how they
are formed from other quantities. For example,

(unit of measure) — (optional spaces)(internal unit)
| {(optional true)(physical unit)

defines a (unit of measure) to be either an occurrence of (optional spaces) followed by
an (internal unit), or (optional true) followed by (physical unit). The symbol ¢ — ’
in a syntax rule means “is defined to be,” and ‘ | > means “or.”

Sometimes a syntax rule is recursive, in the sense that the right-hand side of
the definition involves the quantity being defined. For example, the rule

(optional spaces) — (empty) | (space token)(optional spaces)

defines the grammatical quantity called (optional spaces) to be either (empty), or a
(space token) followed by (optional spaces). The quantity (empty) stands for “noth-
ing,” i.e., for no tokens at all; hence the syntax rule just given is a formalized way of
saying that (optional spaces) stands for a sequence of zero or more spaces.

The alternatives on the right-hand side of a syntax rule need not consist
entirely of quantities in angle brackets. Explicit tokens can be used as well. For
example, the rule

(plus or minus) — +12 | =12

says that (plus or minus) stands for a character token that is either a plus sign or
a minus sign, with category code 12.

We shall use a special convention for keywords, since the actual syntax of a
keyword is somewhat technical. Letters in typewriter type like ‘pt’ will stand for

(optional spaces)(p or P)(t or T},

where (p or P) denotes any non-active character token for either p or P (independent
of the category code), and where (t or T) is similar.

When a control sequence like ‘\dimen’ is used in the syntax rules below, it
stands for any token whose current meaning is the same as the meaning that \dimen
had when TEX started up. Other tokens can be given this same meaning, using \let
or \futurelet, and the meaning of the control sequence \dimen itself may be redefined
by the user, but the syntax rules take no note of this; they just use ‘\dimen’ as a
way of referring to a particular primitive command of TEX. (This notation is to be
distinguished from ‘[dimen]’, which stands for the control sequence token whose actual
name is dimen; see Chapter 7.)

arguments
Backus

Naur

angle brackets
syntax rules
recursive
empty
character token
keywords
boxed words

Chapter 24: Summary of VerticalMode

Control sequences sometimes masquerade as characters, if their meaning has
been assigned by \let or \futurelet. For example, Appendix B says

\let\bgroup={ \let\egroup=}

and these commands make \bgroup and \egroup act somewhat like left and right curly
braces. Such control sequences are called “implicit characters”; they are interpreted in
the same way as characters, when TEX acts on them as commands, but not always when
they appear in arguments to commands. For example, the command ‘\let\plus=+’
does not make \plus an acceptable substitute for the character token ‘+i2’ in the
syntax rule for (plus or minus) given above, nor does the command ‘\let\p=p’ make
\p acceptable as part of the keyword pt. When TEX’s syntax allows both explicit and
implicit characters, the rules below will be careful to say so, explicitly.

The quantity (space token), which was used in the syntax of (optional spaces)
above, stands for an explicit or implicit space. In other words, it denotes either a
character token of category 10, or a control sequence or active character whose current
meaning has been made equal to such a token by \let or \futurelet.

It will be convenient to use the symbols ‘{’, ‘}’, and ‘4’ to stand for any
explicit or implicit character tokens of the respective categories 1, 2, and 3, whether or
not the actual character codes are braces or dollar signs. Thus, for example, plain TEX’s
\bgroup is an example of a ‘{’, and so are the tokens ‘{;” and ‘(;’; but ‘{12’ is not.

The last few paragraphs can be summarized by saying that the alternatives
on the right-hand sides of TEX’s formal syntax rules are made from one or more of the
following things: (1) syntactic quantities like (optional spaces); (2) explicit character
tokens like +12; (3) keywords like pt; (4) control sequence names like \dimen; or (5) the
special symbols {, }, $.

Let us begin our study of TEX’s syntax by discussing the precise meanings of
quantities like (number), (dimen), and (glue) that occur frequently as arguments to
commands. The most important of these is (number), which specifies an integer value.
Here’s exactly what a (number) is:

(number) — (optional signs)(unsigned number)
(optional signs) — (optional spaces)

| {(optional signs)(plus or minus){optional spaces)
(unsigned number) — (normal integer) | (coerced integer)
(normal integer) — (internal integer)

| (integer constant)(one optional space)

| ?12(octal constant)(one optional space)

| "12(hexadecimal constant)(one optional space)

| ¢12(character token)(one optional space)
integer constant) — (digit) | (digit)(integer constant)
octal constant) — (octal digit) | (octal digit)(octal constant)
hexadecimal constant) — (hex digit) | (hex digit) (hexadecimal constant)
octal digit) — 012 | 112 | 212 | 312 | 412 | B12 | 612 | 712
digit} — <octal digit} | 812 | 912
hex digit) — (digit) | A11 | B11 | C11 | D11 | E11 | F1a

| A12 | Bi2 | C12 | D12 | E12 | Fi2
(one optional space) — (space token) | (empty)
(coerced integer) — (internal dimen) | (internal glue)

(
(
(
(
(
(

265

bgroup

egroup

curly

braces

implicit characters
space token

266

Chapter 24: Summary of VerticalMode

The value of a (number) is the value of the corresponding (unsigned number), times —1
for every minus sign in the (optional signs). An alphabetic constant denotes the char-
acter code in a (character token); TEX does not expand this token, which should either
be a (character code, category code) pair, or an active character, or a control se-
quence whose name consists of a single character. (See Chapter 20 for a complete
list of all situations in which TEX does not expand tokens.) An (integer constant)
must not be immediately followed by a (digit); in other words, if several digits appear
consecutively, they are all considered to be part of the same (integer constant). A
similar remark applies to the quantities (octal constant) and (hexadecimal constant).
The quantity (one optional space) is (empty) only if it has to be; i.e., TEX looks for
(one optional space) by reading a token and backing up if a (space token) wasn’t there.

» EXERCISE 24.1
Can you think of a reason why you might want ‘A12’ to be a (hex digit) even though
the letter A has category 117 (Don’t worry if your answer is “no.”)

The definition of (number) is now complete except for the three quantities
called (internal integer), (internal dimen), and (internal glue), which will be explained
later; they represent things like parameters and registers. For example, \countl
and \tolerance and \hyphenchar\tenrm are internal integers; \dimen10 and \hsize
and \fontdimen6\tenrm are internal dimensions; \skip100 and \baselineskip and
\lastskip are internal glue values. An internal dimension can be “coerced” to be an
integer by assuming units of scaled points. For example, if \hsize=100pt and if \hsize
is used in the context of a (number), it denotes the integer value 6553600. Similarly, an
internal glue value can be coerced to be an integer by first coercing it to be a dimension
(omitting the stretchability and shrinkability), then coercing that dimension.

Let’s turn now to the syntax for (dimen), and for (mudimen) its cousin:

dimen) — (optional signs)(unsigned dimen)
unsigned dimen) — (normal dimen) | (coerced dimen)
coerced dimen) — (internal glue)
normal dimen) — (internal dimen) | (factor){unit of measure)
factor) — (normal integer) | (decimal constant)
decimal constant) — .12 | ,12
| (digit)(decimal constant)
| (decimal constant)(digit)
(unit of measure) — (optional spaces)(internal unit)
| {(optional true)(physical unit)(one optional space)
(internal unit) — em (one optional space) | ex (one optional space)
| (internal integer) | (internal dimen) | (internal glue)
optional true) — true | (empty)
physical unit) — pt | pc | in | bp | cm | mm | dd | cc | sp

(
(
(
(
(
(

unsigned mudimen) — (normal mudimen) | (coerced mudimen)

coerced mudimen) — (internal muglue)

normal mudimen) — (factor)(mu unit)

(mu unit) — (optional spaces)(internal muglue) | mu (one optional space)

(
(
(mudimen) — (optional signs){unsigned mudimen)
(
(
(

When ‘true’ is present, the factor is multiplied by 1000 and divided by the \mag
parameter. Physical units are defined in Chapter 10; mu is explained in Chapter 18.

alphabetic constant
character token

one optional space

coerce jdimen; to jnumber;
coerce jglue; to jdimen,
mag

Chapter 24: Summary of VerticalMode

Encouraged by our success in mastering the precise syntax of the quantities
(number), (dimen), and (mudimen), let’s tackle (glue) and (muglue):

(glue) — (optional signs)(internal glue)
| (dimen)(stretch) (shrink)
(stretch) — plus (dimen) | plus (fil dimen) | (optional spaces)
(shrink) — minus (dimen) | minus (fil dimen) | (optional spaces)
(fil dimen) — (optional signs)(factor)(fil unit)(optional spaces)
(fil unit) — £il | (fil unit)1
(muglue) — (optional signs)(internal muglue)
| (mudimen)(mustretch) (mushrink)
(mustretch) — plus (mudimen) | plus (fil dimen) | (optional spaces)
(mushrink) — minus (mudimen) | minus (fil dimen) | (optional spaces)

TEX makes a large number of internal quantities accessible so that a format
designer can influence TEX’s behavior. Here is a list of all these quantities, except for
the parameters (which will be listed later).

(internal integer) — (integer parameter) | (special integer) | \lastpenalty
| (countdef token) | \count(8-bit number) | (codename)(8-bit number)
| (chardef token) | (mathchardef token) | \parshape | \inputlineno
| \hyphenchar(font) | \skewchar(font) | \badness

(special integer) — \spacefactor | \prevgraf
| \deadcycles | \insertpenalties

(codename) — \catcode | \mathcode
| \lccode | \uccode | \sfcode | \delcode

(font) — (fontdef token) | \font | (family member)

(family member) — (font range)(4-bit number)

(font range) — \textfont | \scriptfont | \scriptscriptfont

(internal dimen) — (dimen parameter) | (special dimen) | \lastkern
| (dimendef token) | \dimen(8-bit number)
| (box dimension)(8-bit number) | \fontdimen(number)(font)

(special dimen) — \prevdepth | \pagegoal | \pagetotal
| \pagestretch | \pagefilstretch | \pagefillstretch
| \pagefilllstretch | \pageshrink | \pagedepth

(box dimension) — \ht | \wd | \dp

(internal glue) — (glue parameter) | \lastskip
| (skipdef token) | \skip(8-bit number)

(internal muglue) — (muglue parameter) | \lastskip
| (muskipdef token) | \muskip(8-bit number)

A (countdef token) is a control sequence token in which the control sequence’s current
meaning has been defined by \countdef; the other quantities (dimendef token), etc.,
are defined similarly. A (fontdef token) refers to a definition by \font, or it can be
the predefined font identifier called \nullfont. When a (countdef token) is used as an
internal integer, it denotes the value of the corresponding \count register, and similar
statements hold for (dimendef token), (skipdef token), (muskipdef token). When a
(chardef token) or (mathchardef token) is used as an internal integer, it denotes the
value in the \chardef or \mathchardef itself. An (8-bit number) is a (number) whose
value is between 0 and 2% — 1 = 255; a (4-bit number) is similar.

267

lastpenalty
count
parshape
inputlineno
hyphenchar
skewchar
badness
spacefactor
prevgraf
deadcycles
insertpenalties
catcode
mathcode
lecode

uccode

sfcode

delcode

font

textfont
scriptfont
scriptscriptfont
lastkern
dimen
fontdimen
prevdepth
pagegoal
pagetotal
pagestretch
pagefilstretch
pagefillstretch
pagefilllstretch
pageshrink
pagedepth

ht

wd

dp

lastskip

skip

lastskip
muskip
countdef token
countdef
dimendef token
skipdef token
muskipdef token
chardef token

mathchardef token

toksdef token
font

nullfont

count

chardef
mathchardef
8-bit number
4-bit number
15-bit number
27-bit number

268 Chapter 24: Summary ofVerticalMode

TEX allows \spacefactor to be an internal integer only in horizontal modes;
\prevdepth can be an internal dimension only in vertical modes; \lastskip can be
(internal muglue) only in math mode when the current math list ends with a muglue
item; and \lastskip cannot be (internal glue) in such a case. When \parshape is used
as an internal integer, it denotes only the number of controlled lines, not their sizes or
indentations. The seven special dimensions \pagetotal, \pagestretch, and so on are
all zero when the current page contains no boxes, and \pagegoal is \maxdimen at such
times (see Chapter 15).

From the syntax rules just given, it’s possible to deduce exactly what hap-
pens to spaces when they are in the vicinity of numerical quantities: TEX allows
a (number) or (dimen) to be preceded by arbitrarily many spaces, and to be fol-
lowed by at most one space; however, there is no optional space after a (number)
or (dimen) that ends with an unexpandable control sequence. For example, if TEX
sees ‘\space\space24\space\space’ when it is looking for a (number), it gobbles up
the first three spaces, but the fourth one survives; similarly, one space remains when
‘24pt\space\space’ and ‘\dimen24\space\space’ and ‘\pagegoal\space’ are treated
as (dimen) values.

» EXERCISE 24.2
Is ‘24\space\space pt’ a legal (dimen)?

spaces
parameters
integer parameter
pretolerance
tolerance
hbadness
vbadness
linepenalty
hyphenpenalty
exhyphenpenalty
binoppenalty
relpenalty
clubpenalty
widowpenalty

displaywidowpenalty

brokenpenalty
predisplaypenalty
postdisplaypenalty
interlinepenalty
floatingpenalty

» EXERCISE 24.3
Is there any difference between ‘+\baselineskip’, ‘- —\baselineskip’, and ‘1\baselineskip’}]

when TEX reads them as (glue)?

» EXERCISE 24.4
What (glue) results from "DD DDPLUS2,5 \spacefactor\space, assuming the conven-
tions of plain TEX, when \spacefactor equals 10007

Let’s turn now to TEX’s parameters, which the previous chapters have in-
troduced one at a time; it will be convenient to assemble them all together. An
(integer parameter) is one of the following tokens:

\pretolerance (badness tolerance before hyphenation)

\tolerance (badness tolerance after hyphenation)

\hbadness (badness above which bad hboxes will be shown)
\vbadness (badness above which bad vboxes will be shown)
\linepenalty (amount added to badness of every line in a paragraph)
\hyphenpenalty (penalty for line break after discretionary hyphen)
\exhyphenpenalty (penalty for line break after explicit hyphen)
\binoppenalty (penalty for line break after binary operation)
\relpenalty (penalty for line break after math relation)
\clubpenalty (penalty for creating a club line at bottom of page)
\widowpenalty (penalty for creating a widow line at top of page)
\displaywidowpenalty (ditto, before a display)

\brokenpenalty (penalty for page break after a hyphenated line)
\predisplaypenalty (penalty for page break just before a display)
\postdisplaypenalty (penalty for page break just after a display)
\interlinepenalty (additional penalty for page break between lines)
\floatingpenalty (penalty for insertions that are split)

Chapter 24: Summary of VerticalMode

\outputpenalty (penalty at the current page break)
\doublehyphendemerits (demerits for consecutive broken lines)
\finalhyphendemerits (demerits for a penultimate broken line)
\adjdemerits (demerits for adjacent incompatible lines)

\looseness (change to the number of lines in a paragraph)

\pausing (positive if pausing after each line is read from a file)
\holdinginserts (positive if insertions remain dormant in output box)
\tracingonline (positive if showing diagnostic info on the terminal)
\tracingmacros (positive if showing macros as they are expanded)
\tracingstats (positive if showing statistics about memory usage)
\tracingparagraphs (positive if showing line-break calculations)
\tracingpages (positive if showing page-break calculations)
\tracingoutput (positive if showing boxes that are shipped out)
\tracinglostchars (positive if showing characters not in the font)
\tracingcommands (positive if showing commands before they are executed)
\tracingrestores (positive if showing deassignments when groups end)
\language (the current set of hyphenation rules)

\uchyph (positive if hyphenating words beginning with capital letters)
\lefthyphenmin (smallest fragment at beginning of hyphenated word)
\righthyphenmin (smallest fragment at end of hyphenated word)
\globaldefs (nonzero if overriding \global specifications)
\defaulthyphenchar (\hyphenchar value when a font is loaded)
\defaultskewchar (\skewchar value when a font is loaded)
\escapechar (escape character in the output of control sequence tokens)
\endlinechar (character placed at the right end of an input line)
\newlinechar (character that starts a new output line)
\maxdeadcycles (upper bound on \deadcycles)

\hangafter (hanging indentation changes after this many lines)

\fam (the current family number)

\mag (magnification ratio, times 1000)

\delimiterfactor (ratio for variable delimiters, times 1000)

\time (current time of day in minutes since midnight)

\day (current day of the month)

\month (current month of the year)

\year (current year of our Lord)

\showboxbreadth (maximum items per level when boxes are shown)
\showboxdepth (maximum level when boxes are shown)
\errorcontextlines (maximum extra context shown when errors occur)

The first few of these parameters have values in units of “badness” and “penalties”
that affect line breaking and page breaking. Then come demerit-oriented parameters;
demerits are essentially given in units of “badness squared,” so those parameters tend to
have larger values. By contrast, the next few parameters (\looseness, \pausing, etc.)
generally have quite small values (either —1 or 0 or 1 or 2). Miscellaneous parameters
complete the set. TEX computes the date and time when it begins a job, if the operating
system provides such information; but afterwards the clock does not keep ticking: The
user can change \time just like any ordinary parameter. Chapter 10 points out that
\mag must not be changed after TEX is committed to a particular magnification.

269

outputpenalty
doublehyphendemerits
finalhyphendemerits
adjdemerits
looseness

pausing
holdinginserts
tracingonline
tracingmacros
tracingstats
tracingparagraphs
tracingpages
tracingoutput
tracinglostchars
tracingcommands
tracingrestores
language

uchyph
lefthyphenmin
righthyphenmin
globaldefs
defaulthyphenchar
hyphenchar
defaultskewchar
skewchar
escapechar
endlinechar
newlinechar
maxdeadcycles
hangafter

fam

mag
delimiterfactor
time

day

month

year
showboxbreadth
showboxdepth
errorcontextlines

270 Chapter 24: Summary ofVerticalMode

A (dimen parameter) is one of the following:

And the

\hfuzz (maximum overrun before overfull hbox messages occur)
\vfuzz (maximum overrun before overfull vbox messages occur)
\overfullrule (width of rules appended to overfull boxes)
\emergencystretch (reduces badnesses on final pass of line-breaking)
\hsize (line width in horizontal mode)

\vsize (page height in vertical mode)

\maxdepth (maximum depth of boxes on main pages)
\splitmaxdepth (maximum depth of boxes on split pages)
\boxmaxdepth (maximum depth of boxes on explicit pages)
\lineskiplimit (threshold where \baselineskip changes to \lineskip)
\delimitershortfall (maximum space not covered by a delimiter)
\nulldelimiterspace (width of a null delimiter)

\scriptspace (extra space after subscript or superscript)
\mathsurround (kerning before and after math in text)
\predisplaysize (length of text preceding a display)
\displaywidth (length of line for displayed equation)
\displayindent (indentation of line for displayed equation)
\parindent (width of \indent)

\hangindent (amount of hanging indentation)

\hoffset (horizontal offset in \shipout)

\voffset (vertical offset in \shipout)

possibilities for (glue parameter) are:

\baselineskip (desired glue between baselines)
\lineskip (interline glue if \baselineskip isn’t feasible)
\parskip (extra glue just above paragraphs)
\abovedisplayskip (extra glue just above displays)
\abovedisplayshortskip (ditto, following short lines)
\belowdisplayskip (extra glue just below displays)
\belowdisplayshortskip (ditto, following short lines)
\leftskip (glue at left of justified lines)

\rightskip (glue at right of justified lines)

\topskip (glue at top of main pages)

\splittopskip (glue at top of split pages)

\tabskip (glue between aligned entries)

\spaceskip (glue between words, if nonzero)
\xspaceskip (glue between sentences, if nonzero)
\parfillskip (additional \rightskip at end of paragraphs)

dimen parameter
hfuzz

vfuzz

overfullrule
emergencystretch
hsize

vsize

maxdepth
splitmaxdepth
boxmaxdepth
lineskiplimit
delimitershortfall
nulldelimiterspace
scriptspace
mathsurround
predisplaysize
displaywidth
displayindent
parindent
hangindent
hoffset

voffset

glue parameter
baselineskip
lineskip

parskip
abovedisplayskip

abovedisplayshortskip

belowdisplayskip

belowdisplayshortskip

leftskip
rightskip
topskip
splittopskip
tabskip
spaceskip
xspaceskip
parfillskip
muglue parameter
thinmuskip
medmuskip
thickmuskip

Finally, there are three permissible (muglue parameter) tokens:

(thin space in math formulas)
(medium space in math formulas)
(thick space in math formulas)

\thinmuskip
\medmuskip
\thickmuskip

All of these quantities are explained in more detail somewhere else in this book, and
you can use Appendix I to find out where.

Chapter 24: Summary of VerticalMode

TEX also has parameters that are token lists. Such parameters do not enter
into the definitions of (number) and such things, but we might as well list them now
so that our tabulation of parameters is complete. A (token parameter) is any of:

\output (the user’s output routine)

\everypar (tokens to insert when a paragraph begins)

\everymath (tokens to insert when math in text begins)
\everydisplay (tokens to insert when display math begins)
\everyhbox (tokens to insert when an hbox begins)

\everyvbox (tokens to insert when a vbox begins)

\everyjob (tokens to insert when the job begins)

\everycr (tokens to insert after every \cr or nonredundant \crcr)
\errhelp (tokens that supplement an \errmessage)

That makes a total of 103 parameters of all five kinds.

» EXERCISE 24.5
Explain how \everyjob can be non-null when a job begins.

It’s time now to return to our original goal, namely to study the commands
that are obeyed by TEX’s digestive organs. Many commands are carried out in the same
way regardless of the current mode. The most important commands of this type are
called assignments, since they assign new values to the meaning of control sequences or
to TEX’s internal quantities. For example, ‘\def\a{a}’ and ‘\parshape=1 5pt 100pt’
and ‘\advance\count20 by-1’ and ‘\font\ff = cmff at 20pt’ are all assignments,
and they all have the same effect in all modes. Assignment commands often include
an = sign, but in all cases this sign is optional; you can leave it out if you don’t mind
the fact that the resulting TEX code might not look quite like an assignment.

(assignment) — (non-macro assignment) | (macro assignment)
(non-macro assignment) — (simple assignment)

| \global(non-macro assignment)
(macro assignment) — (definition) | (prefix)(macro assignment)
(prefix) — \global | \long | \outer
equals) — (optional spaces) | (optional spaces) =12

1 ional ional

This syntax shows that every assignment can be prefixed by \global, but only macro-
definition assignments are allowed to be prefixed by \long or \outer. Incidentally, if the
\globaldefs parameter is positive at the time of the assignment, a prefix of \global is
automatically implied; but if \globaldefs is negative at the time of the assignment, a
prefix of \global is ignored. If \globaldefs is zero (which it usually is), the appearance
or nonappearance of \global determines whether or not a global assignment is made.

(definition) — (def){control sequence)(definition text)
(def) — \def | \gdef | \edef | \xdef
(definition text) — (parameter text)(left brace)(balanced text)(right brace)

Here (control sequence) denotes a token that is either a control sequence or an active
character; (left brace) and (right brace) are explicit character tokens whose category
codes are respectively of types 1 and 2. The (parameter text) contains no (left brace)
or (right brace) tokens, and it obeys the rules of Chapter 20. All occurrences of
(left brace) and (right brace) tokens within the (balanced text) must be properly nested

271

token parameter
output
everypar
everymath
everydisplay
everyhbox
everyvbox
everyjob
everycr

cr

crer

errhelp
assignments
equals sign
global

long

outer
globaldefs

def

gdef

edef

xdef

control sequence
left brace
right brace
parameter text
balanced text

272

Chapter 24: Summary of VerticalMode

like parentheses. A \gdef command is equivalent to \global\def, and \xdef is equiv-
alent to \global\edef. TEX reads the (control sequence) and (parameter text) tokens
and the opening (left brace) without expanding them; it expands the (balanced text)
(right brace) tokens only in the case of \edef and \xdef.

Several commands that we will study below have a syntax somewhat like that
of a definition, but the (parameter text) is replaced by an arbitrary sequence of spaces
and ‘\relax’ commands, and the (left brace) token can be implicit:

(filler) — (optional spaces) | (filler)\relax({optional spaces)
(general text) — (filler){(balanced text)(right brace)

The main purpose of a (general text) is to specify the (balanced text) inside.
Many different kinds of assignments are possible, but they fall into compara-
tively few patterns, as indicated by the following syntax rules:

(simple assignment) — (variable assignment) | (arithmetic)
| (code assignment) | (let assignment) | (shorthand definition)
| (fontdef token) | (family assignment) | (shape assignment)
| \read(number) to (optional spaces)(control sequence)
| \setbox(8-bit number) (equals){filler) (box)
| \font(control sequence)(equals)(file name)(at clause)
| (global assignment)
(variable assignment) — (integer variable){equals) (number)
| {(dimen variable)(equals){dimen)
| {(glue variable)(equals)(glue)
| (muglue variable) (equals) (muglue)
| (token variable)(equals){general text)
| (token variable)(equals)(filler)(token variable)
(arithmetic) — \advance(integer variable)(optional by)(number)
| \advance(dimen variable)(optional by)(dimen)
| \advance(glue variable)(optional by)(glue)
| \advance(muglue variable){optional by)(muglue)
| \multiply(numeric variable)(optional by)(number)
| \divide(numeric variable)(optional by)(number)
(optional by) — by | (optional spaces)
(integer variable) — (integer parameter) | (countdef token)
| \count(8-bit number)
(dimen variable) — (dimen parameter) | (dimendef token)
| \dimen(8-bit number)
(glue variable) — (glue parameter) | (skipdef token)
| \skip(8-bit number)
(muglue variable) — (muglue parameter) | (muskipdef token)
| \muskip(8-bit number)
(token variable) — (token parameter) | (toksdef token)
| \toks(8-bit number)
(numeric variable) — (integer variable) | (dimen variable)
| (glue variable) | (muglue variable)

relax
read
setbox
font
advance
multiply
divide
count
dimen
skip
muskip
toks

Chapter 24: Summary of VerticalMode

(at clause) — at (dimen) | scaled (number) | (optional spaces)
(code assignment) — (codename)(8-bit number)(equals)(number)
(let assignment) — \futurelet(control sequence)(token)(token)
| \1et(control sequence){equals)(one optional space)(token)
(shorthand definition) — \chardef (control sequence)(equals)(8-bit number)
| \mathchardef (control sequence)(equals)(15-bit number)
| (registerdef) (control sequence){equals)(8-bit number)
(registerdef) — \countdef | \dimendef | \skipdef | \muskipdef | \toksdef
(family assignment) — (family member)(equals)(font)
(shape assignment) — \parshape(equals) (number)(shape dimensions)

The (number) at the end of a (code assignment) must not be negative, except in the
case that a \delcode is being assigned. Furthermore, that (number) should be at most
15 for \catcode, 32768 for \mathcode, 255 for \1ccode or \uccode, 32767 for \sfcode,
and 2** — 1 for \delcode. In a (shape assignment) for which the (number) is n, the
(shape dimensions) are (empty) if n < 0, otherwise they consist of 2n consecutive
occurrences of (dimen). TEX does not expand tokens when it scans the arguments of
\let and \futurelet.

» EXERCISE 24.6
‘We discussed the distinction between explicit and implicit character tokens earlier in
this chapter. Explain how you can make the control sequence \cs into an implicit space, using
(a) \futurelet, (b) \let.

All of the assignments mentioned so far will obey TEX’s grouping structure;
i.e., the changed quantities will be restored to their former values when the current
group ends, unless the change was global. The remaining assignments are different,
since they affect TEX’s global font tables or hyphenation tables, or they affect certain
control variables of such an intimate nature that grouping would be inappropriate. In
all of the following cases, the presence or absence of \global as a prefix has no effect.

(global assignment) — (font assignment)
| (hyphenation assignment)
| (box size assignment)
| (interaction mode assignment)
| (intimate assignment)
(font assignment) — \fontdimen(number)(font)(equals)(dimen)
| \hyphenchar (font){equals) (number)
| \skewchar(font)(equals)(number)
(hyphenation assignment) — \hyphenation(general text)
| \patterns(general text)
(box size assignment) — (box dimension)(8-bit number) (equals)(dimen)
(interaction mode assignment) — \errorstopmode | \scrollmode
| \nonstopmode | \batchmode
(intimate assignment) — (special integer) (equals)(number)
| (special dimen)(equals)({dimen)

When a \fontdimen value is assigned, the (number) must be positive and not greater
than the number of parameters in the font’s metric information file, unless that font
information has just been loaded into TEX’s memory; in the latter case, you are allowed
to increase the number of parameters (see Appendix F). The (special integer) and

273

futurelet

let

chardef
mathchardef
countdef
dimendef

skipdef
muskipdef
toksdef

parshape

shape dimensions
implicit character tokens
global parameters
fontdimen
hyphenchar
skewchar
hyphenation
patterns
errorstopmode
scrollmode
nonstopmode
batchmode

274

Chapter 24: Summary of VerticalMode

(special dimen) quantities were listed above when we discussed internal integers and
dimensions. When \prevgraf is set to a (number), the number must not be negative.

The syntax for (file name) is not standard in TEX, because different operating
systems have different conventions. You should ask your local system wizards for
details on just how they have decided to implement file names. However, the following
principles should hold universally: A (file name) should consist of (optional spaces)
followed by explicit character tokens (after expansion). A sequence of six or fewer
ordinary letters and/or digits followed by a space should be a file name that works
in essentially the same way on all installations of TEX. Uppercase letters are not
considered equivalent to their lowercase counterparts in file names; for example, if
you refer to fonts cmr10 and CMR10, TEX will not notice any similarity between them,
although it might input the same font metric file for both fonts.

TEX takes precautions so that constructions like ‘\chardef\cs=10\cs’ and
‘\font\cs=name\cs’ won’t expand the second \cs until the assignments are done.

Our discussion of assignments is complete except that the \setbox assignment
involves a quantity called (box) that has not yet been defined. Here is its syntax:

(box) — \box(8-bit number) | \copy(8-bit number)
| \lastbox | \vsplit(8-bit number) to (dimen)
| \hbox(box specification){(horizontal mode material)}
| \vbox(box specification){(vertical mode material)}
| \vtop(box specification){(vertical mode material)}
(box specification) — to (dimen)(filler)
| spread (dimen)(filler) | (filler)

The \lastbox operation is not permitted in math modes, nor is it allowed in vertical
mode when the main vertical list has been entirely contributed to the current page.
But it is allowed in horizontal modes and in internal vertical mode; in such modes it
refers to (and removes) the last item of the current list, provided that the last item is
an hbox or vbox.

The three last alternatives for a (box) present us with a new situation: The
(horizontal mode material) in an \hbox and the (vertical mode material) in a \vbox
can’t simply be swallowed up in one command like an (8-bit number) or a (dimen);
thousands of commands may have to be executed before that box is constructed and
before the \setbox command can be completed.

Here’s what really happens: A command like

\setbox(number)=\hbox to(dimen){(horizontal mode material)}

causes TEX to evaluate the (number) and the (dimen), and to put those values on
a “stack” for safe keeping. Then TEX reads the ‘{’ (which stands for an explicit or
implicit begin-group character, as explained earlier), and this initiates a new level of
grouping. At this point TEX enters restricted horizontal mode and proceeds to execute
commands in that mode. An arbitrarily complex box can now be constructed; the fact
that this box is eventually destined for a \setbox command has no effect on TEX’s
behavior while the box is being built. Eventually, when the matching ‘}’ appears,
TEX restores values that were changed by assignments in the group just ended; then
it packages the hbox (using the size that was saved on the stack), and completes the
\setbox command, returning to the mode it was in at the time of the \setbox.

file name

box

copy

lastbox

vsplit

hbox

vbox

vtop

horizontal mode material
vertical mode material

Chapter 24: Summary of VerticalMode

Let us now consider other commands that, like assignments, are obeyed in
basically the same way regardless of TEX’s current mode.

m \relax. This is an easy one: TEX does nothing.

m }. This one is harder, because it depends on the current group. TEX should
now be working on a group that began with {; and it knows why it started that
group. So it does the appropriate finishing actions, undoes the effects of non-global
assignments, and leaves the group. At this point TEX might leave its current mode and
return to a mode that was previously in effect.

= \begingroup. When TEX sees this command, it enters a group that must be
terminated by \endgroup, not by }. The mode doesn’t change.

» \endgroup. TEX should currently be processing a group that began with
\begingroup. Quantities that were changed by non-global assignments in that group
are restored to their former values. TEX leaves the group, but stays in the same mode.

= \show (token), \showbox (8-bit number), \showlists, \showthe(internal
quantity). These commands are intended to help you figure out what TEX thinks it
is doing. The tokens following \showthe should be anything that can follow \the, as
explained in Chapter 20.

%» EXERCISE 24.7

Review the rules for what can follow \the in Chapter 20, and construct a formal
syntax that defines (internal quantity) in a way that fits with the other syntax rules we have
been discussing.

= \shipout(box). After the (box) is formed—possibly by constructing it explic-
itly and changing modes during the construction, as explained for \hbox earlier—its
contents are sent to the dvi file (see Chapter 23).

= \ignorespaces (optional spaces). TEX reads (and expands) tokens, doing
nothing until reaching one that is not a (space token).

= \afterassignment(token). The (token) is saved in a special place; it will be
inserted back into the input just after the next assignment command has been per-
formed. An assignment need not follow immediately; if another \afterassignment is
performed before the next assignment, the second one overrides the first. If the next
assignment is a \setbox, and if the assigned (box) is \hbox or \vbox or \vtop, the
(token) will be inserted just after the { in the box construction, not after the }; it will
also come just before any tokens inserted by \everyhbox or \everyvbox.

= \aftergroup(token). The (token) is saved on TEX’s stack; it will be inserted
back into the input just after the current group has been completed and its local
assignments have been undone. If several \aftergroup commands occur in the same
group, the corresponding commands will be scanned in the same order; for example,
‘{\aftergroup\a\aftergroup\b}’ yields ‘\a\b’.

= \uppercase(general text), \lowercase(general text). The (balanced text) in
the general text is converted to uppercase form or to lowercase form using the \uccode
or \1lccode table, as explained in Chapter 7; no expansion is done. Then TEX will read
that (balanced text) again.

= \message(general text), \errmessage(general text). The balanced text (with
expansion) is written on the user’s terminal, using the format of error messages in the

275

relax
begingroup
endgroup

show

showbox
showlists
showthe
internal quantity
shipout

dvi
ignorespaces
afterassignment
setbox
everyhbox
everyvbox
aftergroup
uppercase
lowercase
message
errmessage

276

Chapter 24: Summary of VerticalMode

case of \errmessage. In the latter case the \errhelp tokens will be shown if they are
nonempty and if the user asks for help.

= \openin (4-bit number) (equals) (filename), \closein(4-bit number). These
commands open or close the specified input stream, for use in \read assignments as
explained in Chapter 20.

= \immediate\openout(4-bit number)(equals)(filename), \immediate\closeout
(4-bit number). The specified output stream is opened or closed, for use in \write
commands, as explained in Chapter 21.

= \immediate\write(number)(general text). The balanced text is written on
the file that corresponds to the specified stream number, provided that such a file
is open. Otherwise it is written on the user’s terminal and on the log file. (See
Chapter 21; the terminal is omitted if the (number) is negative.)

That completes the list of mode-independent commands, i.e., the commands
that do not directly affect the lists that TEX is building. When TEX is in vertical mode
or internal vertical mode, it is constructing a vertical list; when TEX is in horizontal
mode or restricted horizontal mode, it is constructing a horizontal list; when TEX is
in math mode or display math mode, it is constructing—guess what—a math list. In
each of these cases we can speak of the “current list”; and there are some commands
that operate in essentially the same way, regardless of the mode, except that they deal
with different sorts of lists:

= \openout(4-bit number)(equals)(filename), \closeout(4-bit number), \write
(number)(general text). These commands are recorded into a “whatsit” item, which
is appended to the current list. The command will be performed later, during any
\shipout that applies to this list, unless the list is part of a box inside leaders.

= \special(general text). The balanced text is expanded and put into a “what-
sit” item, which is appended to the current list. The text will eventually appear in the
dvi file as an instruction to subsequent software (see Chapter 21).

= \penalty(number). A penalty item carrying the specified number is appended
to the current list. In vertical mode, TEX also exercises the page builder (see below).

= \kern(dimen), \mkern(mudimen). A kern item carrying the specified dimen-
sion is appended to the current list. In vertical modes this denotes a vertical space;
otherwise it denotes a horizontal space. An \mkern is allowed only in math modes.

» \unpenalty, \unkern, \unskip. If the last item on the current list is respec-
tively of type penalty, kern, or glue (possibly including leaders), that item is removed
from the list. However, like \lastbox, these commands are not permitted in vertical
mode if the main vertical list-so-far has been entirely contributed to the current page,
since TEX never removes items from the current page.

= \mark(general text). The balanced text is expanded and put into a mark item,
which is appended to the current list. The text may eventually become the replacement
text for \topmark, \firstmark, \botmark, \splitfirstmark, and/or \splitbotmark,
if this mark item ever gets into a vertical list. (Mark items can appear in horizontal
lists and math lists, but they have no effect until they “migrate” out of their list. The
migration process is discussed below and in Chapter 25.)

= \insert(8-bit number)(filler){(vertical mode material)}; the (8-bit number)
must not be 255. The ‘{’ causes TEX to enter internal vertical mode and a new

errhelp
openin
closein
immediate
openout
closeout
write

leaders
special

dvi

penalty

kern

mkern
unpenalty
unkern
unskip
leaders

mark
topmark
firstmark
botmark
splitfirstmark
splitbotmark
migration process
insert

Chapter 24: Summary of VerticalMode

level of grouping. When the matching ‘}’ is sensed, the vertical list is put into an
insertion item that is appended to the current list using the values of \splittopskip,
\splitmaxdepth, and \floatingpenalty that were current in the group just ended.
(See Chapter 15.) This insertion item leads ultimately to a page insertion only if it
appears in TEX’s main vertical list, so it will have to “migrate” there if it starts out in
a horizontal list or a math list. TEX also exercises the page builder (see below), after
an \insert has been appended in vertical mode.

= \vadjust(filler){(vertical mode material)}. This is similar to \insert; the
constructed vertical list goes into an adjustment item that is appended to the current
list. However, \vadjust is not allowed in vertical modes. When an adjustment item
migrates from a horizontal list to a vertical list, the vertical list inside the adjustment
item is “unwrapped” and put directly into the enclosing list.

* * *

Almost everything we have discussed so far in this chapter could equally well have
appeared in a chapter entitled “Summary of Horizontal Mode” or a chapter entitled
“Summary of Math Mode,” because TEX treats all of the commands considered so far
in essentially the same way regardless of the current mode. Chapters 25 and 26 are
going to be a lot shorter than the present one, since it will be unnecessary to repeat
all of the mode-independent rules.

But now we come to commands that are mode-dependent; we shall conclude
this chapter by discussing what TEX does with the remaining commands, when in
vertical mode or internal vertical mode.

One of the things characteristic of vertical mode is the page-building operation
described in Chapter 15. TEX periodically takes material that has been put on the
main vertical list and moves it from the “contribution list” to the “current page.” At
such times the output routine might be invoked. We shall say that TEX exercises the
page builder whenever it tries to empty the current contribution list. The concept of
contribution list exists only in the outermost vertical mode, so nothing happens when
TEX exercises the page builder in internal vertical mode.

Another thing characteristic of vertical modes is the interline glue that is
inserted before boxes, based on the values of \prevdepth and \baselineskip and
\lineskip and \lineskiplimit as explained in Chapter 12. If a command changes
\prevdepth, that fact is specifically mentioned below. The \prevdepth is initially set
to —1000 pt, a special value that inhibits interline glue, whenever TEX begins to form
a vertical list, except in the case of \halign and \noalign when the interline glue
conventions of the outer list continue inside the inner one.

» \vskip(glue), \vfil, \vfill, \vss, \vfilneg. A glue item is appended to the
current vertical list.

= (leaders)(box or rule)(vertical skip). Here (vertical skip) refers to one of the
five glue-appending commands just mentioned. The formal syntax for (leaders) and for
(box or rule) is

(leaders) — \leaders | \cleaders | \xleaders

(box or rule) — (box) | (vertical rule) | (horizontal rule)
(vertical rule) — \vrule(rule specification)

(horizontal rule) — \hrule(rule specification)

277

splittopskip
splitmaxdepth
floatingpenalty
migrate
vadjust

page builder
interline glue
baselineskip
lineskip
lineskiplimit
prevdepth
vskip

vfil

vfill

vss

vfilneg
vertical skip

278

Chapter 24: Summary of VerticalMode

(rule specification) — (optional spaces) | (rule dimension)(rule specification)
(rule dimension) — Width (dimen) | Height (dimen) | Depth (dimen)

A glue item that produces leaders is appended to the current list.

» (space token). Spaces have no effect in vertical modes.

» (box). The box is constructed, and if the result is void nothing happens.
Otherwise the current vertical list receives (1) interline glue, followed by (2) the new
box, followed by (3) vertical material that migrates out of the new box (if the (box)
was an \hbox command). Then \prevdepth is set to the new box’s depth, and TEX
exercises the page builder.

= \moveleft(dimen)(box), \moveright(dimen)(box). This acts exactly like an
unadorned (box) command, except that the new box being appended to the vertical
list is also shifted left or right by the specified amount.

= \unvbox(8-bit number), \unvcopy(8-bit number). If the specified box register
is void, nothing happens. Otherwise that register must contain a vbox. The vertical
list inside that box is appended to the current vertical list, without changing it in any
way. The value of \prevdepth is not affected. The box register becomes void after
\unvbox, but it remains unchanged by \unvcopy.

s (horizontal rule). The specified rule is appended to the current list. Then
\prevdepth is set to —1000 pt; this will prohibit interline glue when the next box is
appended to the list.

= \halign(box specification){(alignment material)}. The (alignment material)
consists of a preamble followed by zero or more lines to be aligned; see Chapter 22.
TEX enters a new level of grouping, represented by the ‘{’ and ‘}’, within which changes
to \tabskip will be confined. The alignment material can also contain optional occur-
rences of ‘\noalign(filler){(vertical mode material)}’ between lines; this adds another
level of grouping. TEX operates in internal vertical mode while it works on the ma-
terial in \noalign groups and when it appends lines of the alignment; the resulting
internal vertical list will be appended to the enclosing vertical list after the alignment
is completed, and the page builder will be exercised. The value of \prevdepth at the
time of the \halign is used at the beginning of the internal vertical list, and the fi-
nal value of \prevdepth is carried to the enclosing vertical list when the alignment is
completed, so that the interline glue is calculated properly at the beginning and end of
the alignment. TEX also enters an additional level of grouping when it works on each
individual entry of the alignment, during which time it acts in restricted horizontal
mode; the individual entries will be hboxed as part of the final alignment, and their
vertical material will migrate to the enclosing vertical list. The commands \noalign,
\omit, \span, \cr, \crcr, and & (where & denotes an explicit or implicit character of
category 4) are intercepted by the alignment process, en route to TEX’s stomach, so
they will not appear as commands in the stomach unless TEX has lost track of what
alignment they belong to.

» \indent. The \parskip glue is appended to the current list, unless TEX is in
internal vertical mode and the current list is empty. Then TEX enters unrestricted
horizontal mode, starting the horizontal list with an empty hbox whose width is
\parindent. The \everypar tokens are inserted into TEX’s input. The page builder
is exercised. When the paragraph is eventually completed, horizontal mode will come
to an end as described in Chapter 25.

leaders
space token
box
migrates
hbox
prevdepth
moveleft
moveright
unvbox
unvcopy
rule
halign
alignment material
tabskip
noalign
migrate
omit

span

cr

crer
indent
parskip
parindent
everypar

Chapter 24: Summary of VerticalMode

= \noindent. This is exactly like \indent, except that TEX starts out in hori-
zontal mode with an empty list instead of with an indentation.

» \par. The primitive \par command has no effect when TEX is in vertical
mode, except that the page builder is exercised in case something is present on the
contribution list, and the paragraph shape parameters are cleared.

m {. A character token of category 1, or a control sequence like \bgroup that
has been \let equal to such a character token, causes TEX to start a new level of
grouping. When such a group ends—with ‘}’—TEX will undo the effects of non-global
assignments without leaving whatever mode it is in at that time.

= Some commands are incompatible with vertical mode because they are intrin-
sically horizontal. When the following commands appear in vertical modes they cause
TEX to begin a new paragraph:

(horizontal command) — (letter) | (otherchar) | \char | (chardef token)
| \noboundary | \unhbox | \unhcopy | \valign | \vrule
| \hskip | \hfil | \hfill | \hss | \hfilneg
| \accent | \discretionary | \- | \u | $

Here (letter) and (otherchar) stand for explicit or implicit character tokens of categories
11 and 12. If any of these tokens occurs as a command in vertical mode or internal
vertical mode, TEX automatically performs an \indent command as explained above.
This leads into horizontal mode with the \everypar tokens in the input, after which
TEX will see the (horizontal command) again.

m \end. This command is not allowed in internal vertical mode. In regular
vertical mode it terminates TEX if the main vertical list is empty and \deadcycles=0.
Otherwise TEX backs up the \end command so that it can be read again; then it
exercises the page builder, after appending a box/glue/penalty combination that will
force the output routine to act. (See the end of Chapter 23.)

= \dump. (Allowed only in INITEX, not in production versions of TEX.) This
command is treated exactly like \end, but it must not appear inside a group. It
outputs a format file that can be loaded into TEX’s memory at comparatively high
speed to restore the current status.

= None of the above: If any other primitive command of TEX occurs in vertical
mode, an error message will be given, and TEX will try to recover in a reasonable way.
For example, if a superscript or subscript symbol appears, or if any other inherently
mathematical command is given, TEX will try to insert a ‘¢’ (which will start a para-
graph and enter math mode). On the other hand if a totally misplaced token like
\endcsname or \omit or \eqno or # appears in vertical mode, TEX will simply ignore it,
after reporting the error. You might enjoy trying to type some really stupid input, just
to see what happens. (Say ‘\tracingall’ first, as explained in Chapter 27, in order
to get maximum information.)

The first and most striking feature is the Verticality of composition,
as opposed to the Horizontality of all anterior structural modes.

— COCKBURN MUIR, Pagan or Christian? (1860)

Sometimes when | have finished a book | give a summary of the whole of it.
— ROBERT WILLIAM DALE, Nine Lectures on Preaching (1878)

279

noindent

par

grouping
new paragraph
char
noboundary
unhbox
unhcopy
valign

vrule

hskip

hfil

hfill

hss

hfilneg
accent
discretionary

end
deadcycles=0
dump
INITEX
endcsname
MUIR

DALE

-

25

Summary of
Horizontal Mode

Chapter 25: Summary ofHorizontal Mode

Continuing the survey that was begun in Chapter 24, let us investigate exactly
what TEX’s digestive processes can do, when TEX is building lists in horizontal
mode or in restricted horizontal mode.

* * *

Three asterisks, just like those that appear here, can be found near the end of Chap-
ter 24. Everything preceding the three asterisks in that chapter applies to horizontal
mode as well as to vertical mode, so we need not repeat all those rules. In particular,
Chapter 24 explains assignment commands, and it tells how kerns, penalties, marks,
insertions, adjustments, and “whatsits” are put into horizontal lists. Our present goal
is to consider the commands that have an intrinsically horizontal flavor, in the sense
that they behave differently in horizontal mode than they do in vertical or math modes.
One of the things characteristic of horizontal mode is the “space factor,” which
modifies the width of spaces as described in Chapter 12. If a command changes the
value of \spacefactor, that fact is specifically noted here. The space factor is initially
set to 1000, when TEX begins to form a horizontal list, except in the case of \valign
and \noalign when the space factor of the outer list continues inside the inner one.

= \hskip(glue), \hfil, \hfill, \hss, \hfilneg. A glue item is appended to the
current horizontal list.

= (leaders)(box or rule)(horizontal skip). Here (horizontal skip) refers to one of
the five glue-appending commands just mentioned; the formal syntax for (leaders) and
for (box or rule) is given in Chapter 24. A glue item that produces leaders is appended.

= (space token). Spaces append glue to the current list; the exact amount of
glue depends on \spacefactor, the current font, and the \spaceskip and \xspaceskip
parameters, as described in Chapter 12.

= \. A control-space command appends glue to the current list, using the same
amount that a (space token) inserts when the space factor is 1000.

» (box). The box is constructed, and if the result is void nothing happens. Oth-
erwise the new box is appended to the current list, and the space factor is set to 1000.

= \raise(dimen)(box), \lower(dimen)(box). This acts just like an unadorned
(box) command, except that the new box being appended to the horizontal list is also
shifted up or down by the specified amount.

= \unhbox(8-bit number), \unhcopy(8-bit number). If the specified box register
is void, nothing happens. Otherwise that register must contain an hbox. The horizontal
list inside that box is appended to the current horizontal list, without changing it in
any way. The value of \spacefactor is not affected. The box register becomes void
after \unhbox, but it remains unchanged by \unhcopy.

» (vertical rule). The specified rule is appended to the current list, and the
\spacefactor is set to 1000.

= \valign(box specification){(alignment material)}. The (alignment material)
consists of a preamble followed by zero or more columns to be aligned; see Chap-
ter 22. TEX enters a new level of grouping, represented by the ‘{’ and ‘}’, within which
changes to \tabskip will be confined. The alignment material can also contain op-
tional occurrences of ‘\noalign(filler){(horizontal mode material)}’ between columns;
this adds another level of grouping. TEX operates in restricted horizontal mode while
it works on the material in \noalign groups and when it appends columns of the

281

horizontal mode
space factor
spacefactor
hskip

hfil

hfill

hss

hfilneg
horizontal skip
leaders

space token
control space
box

raise

lower

unhbox
unhcopy

rule

valign

alignment material

tabskip
noalign

282

Chapter 25: Summary ofHorizontal Mode

alignment; the resulting internal horizontal list will be appended to the enclosing hor-
izontal list after the alignment is completed. The value of \spacefactor at the time
of the \valign is used at the beginning of the internal horizontal list, and the final
value of \spacefactor is carried to the enclosing horizontal list when the alignment
is completed. The space factor is set to 1000 after each column; hence it affects the
results only in \noalign groups. TEX also enters an additional level of grouping when
it works on each individual entry of the alignment, during which time it acts in internal
vertical mode; the individual entries will be vboxed as part of the final alignment.

= \indent. An empty box of width \parindent is appended to the current list,
and the space factor is set to 1000.

» \noindent. This command has no effect in horizontal modes.

= \par. The primitive \par command, also called \endgraf in plain TEX, does
nothing in restricted horizontal mode. But it terminates horizontal mode: The current
list is finished off by doing \unskip \penalty10000 \hskip\parfillskip, then it is
broken into lines as explained in Chapter 14, and TEX returns to the enclosing vertical or
internal vertical mode. The lines of the paragraph are appended to the enclosing vertical
list, interspersed with interline glue and interline penalties, and with the migration of
vertical material that was in the horizontal list. Then TEX exercises the page builder.

m {. A character token of category 1, or a control sequence like \bgroup that
has been \let equal to such a character token, causes TEX to start a new level of
grouping. When such a group ends—with ‘}’—TEX will undo the effects of non-global
assignments without leaving whatever mode it is in at that time.

= Some commands are incompatible with horizontal mode because they are in-
trinsically vertical. When the following commands appear in unrestricted horizontal
mode, they cause TEX to conclude the current paragraph:

(vertical command) — \unvbox | \unvcopy | \halign | \hrule
| \vskip | \vfil | \vfill | \vss | \vfilneg | \end | \dump

The appearance of a (vertical command) in restricted horizontal mode is forbidden, but
in regular horizontal mode it causes TEX to insert the token into the input; after
reading and expanding this token, TEX will see the (vertical command) token
again. (The current meaning of the control sequence \par will be used; might
no longer stand for TEX’s \par primitive.)

» (letter), (otherchar), \char(8-bit number), (chardef token), \noboundary. The
most common commands of all are the character commands that tell TEX to append a
character to the current horizontal list, using the current font. If two or more commands
of this type occur in succession, TEX processes them all as a unit, converting to ligatures
and/or inserting kerns as directed by the font information. (Ligatures and kerns may be
influenced by invisible “boundary” characters at the left and right, unless \noboundary
appears.) Each character command adjusts \spacefactor, using the \sfcode table as
described in Chapter 12. In unrestricted horizontal mode, a ‘\discretionary{}{}{}’
item is appended after a character whose code is the \hyphenchar of its font, or after
a ligature formed from a sequence that ends with such a character.

= \accent(8-bit number)(optional assignments). Here (optional assignments)
stands for zero or more (assignment) commands other than \setbox. If the assignments
are not followed by a (character), where {character) stands for any of the commands

indent
parindent
noindent

par

endgraf
unskip
penalty10000
parfillskip
migration
grouping
paragraph end, implied
unvbox
unvcopy
halign

hrule

vskip

vfil

vfill

vss

vfilneg

end

dump

par

char
noboundary
spacefactor
sfcode
hyphenchar
discretionary
accent
optional assignments
setbox

Chapter 25: Summary ofHorizontal Mode

just discussed in the previous paragraph, TEX treats \accent as if it were \char, ex-
cept that the space factor is set to 1000. Otherwise the character that follows the
assignment is accented by the character that corresponds to the (8-bit number). (The
purpose of the intervening assignments is to allow the accenter and accentee to be in
different fonts.) If the accent must be moved up or down, it is put into an hbox that is
raised or lowered. Then the accent is effectively superposed on the character by means
of kerns, in such a way that the width of the accent does not influence the width of the
resulting horizontal list. Finally, TEX sets \spacefactor=1000.

m \/. If the last item on the current list is a character or ligature, an explicit
kern for its italic correction is appended.

= \discretionary(general text)(general text)(general text). The three general
texts are processed in restricted horizontal mode. They should contain only fixed-width
things; hence they aren’t really very general in this case. More precisely, the horizontal
list formed by each discretionary general text must consist only of characters, ligatures,
kerns, boxes, and rules; there should be no glue or penalty items, etc. This command
appends a discretionary item to the current list; see Chapter 14 for the meaning of a
discretionary item. The space factor is not changed.

m \-. This “discretionary hyphen” command is defined in Appendix H.
= \setlanguage(number). See the conclusion of Appendix H.

= $. A “math shift” character causes TEX to enter math mode or display math
mode in the following way: TEX looks at the following token without expanding it. If
that token is a $ and if TEX is currently in unrestricted horizontal mode, then TEX
breaks the current paragraph into lines as explained above (unless the current list is
empty), returns to the enclosing vertical mode or internal vertical mode, calculates
values like \prevgraf and \displaywidth and \predisplaysize, enters a new level of
grouping, inserts the \everydisplay tokens into the input, exercises the page builder,
processes ‘{math mode material)$$’ in display math mode, puts the display into the
enclosing vertical list as explained in Chapter 19 (letting vertical material migrate),
exercises the page builder again, increases \prevgraf by 3, and resumes horizontal
mode again, with an empty list and with the space factor equal to 1000. (You got
that?) Otherwise TEX puts the looked-at token back into the input, enters a new level
of grouping, inserts the \everymath tokens, and processes ‘(math mode material)$’; the
math mode material is converted to a horizontal list and appended to the current list,
surrounded by “math-on” and “math-off” items, and the space factor is set to 1000.
One consequence of these rules is that ‘$$’ in restricted horizontal mode simply yields
an empty math formula.

= None of the above: If any other primitive command of TEX occurs in horizontal
mode, an error message will be given, and TEX will try to recover in a reasonable way.
For example, if a superscript or subscript symbol appears, or if any other inherently
mathematical command is given, TEX will try to insert a ‘$’ just before the offending
token; this will enter math mode.

Otherwise. You may reduce all Verticals into Horizontals.
— JOSEPH MOXON, A Tutor to Astronomie and Geographie (1659)

! You can’t use ‘\moveleft’ in horizontal mode.
— TeX (1982)

283

italic correction
discretionary
setlanguage
math shift
migrate
MOXON

Summary of
Math Mode

Chapter 26: Summary ofMath Mode

To conclude the survey that was begun in Chapter 24, let us investigate exactly
what TEX’s digestive processes can do when TEX is building lists in math mode
or in display math mode.

* * *

Three asterisks, just like those that appear here, can be found near the end of Chap-
ter 24. Everything preceding the three asterisks in that chapter applies to math mode as
well as to vertical mode, so we need not repeat all those rules. In particular, Chapter 24
explains assignment commands, and it tells how kerns, penalties, marks, insertions, ad-
justments, and “whatsits” are put into math lists. Our present goal is to consider the
commands that have an intrinsically mathematical flavor, in the sense that they behave
differently in math mode than they do in vertical or horizontal modes.

Math lists are somewhat different from TEX’s other lists because they contain
three-pronged “atoms” (see Chapter 17). Atoms come in thirteen flavors: Ord, Op,
Bin, Rel, Open, Close, Punct, Inner, Over, Under, Acc, Rad, and Vcent. Each atom
contains three “fields” called its nucleus, superscript, and subscript; and each field is
either empty or is filled with a math symbol, a box, or a subsidiary math list. Math
symbols, in turn, have two components: a family number and a position number.

It’s convenient to introduce a few more rules of syntax, in order to specify
what goes into a math list:

(character) — (letter) | (otherchar) | \char(8-bit number) | (chardef token)
(math character) — \mathchar(15-bit number) | (mathchardef token)

| \delimiter(27-bit number)
(math symbol) — (character) | (math character)
(math field) — (filler)(math symbol) | (filler){(math mode material)}
(delim) — (filler)\delimiter(27-bit number)

| (filler) (letter) | {filler)(otherchar)

We have already seen the concept of (character) in Chapter 25. Indeed, characters
are TEX’s staple food: The vast majority of all commands that reach TEX’s digestive
processes in horizontal mode are instances of the (character) command, which specifies
a number between 0 and 255 that causes TEX to typeset the corresponding character
in the current font. When TEX is in math mode or display math mode, a {(character)
command takes on added significance: It specifies a number between 0 and 32767 =
215 _ 1. This is done by replacing the character number by its \mathcode value. If the
\mathcode value turns out to be 32768 = 8000, however, the (character) is replaced
by an active character token having the original character code (0 to 255); TEX forgets
the original (character) and expands this active character according to the rules of
Chapter 20.

A (math character) defines a 15-bit number either by specifying it directly
with \mathchar or in a previous \mathchardef, or by specifying a 27-bit \delimiter
value; in the latter case, the least significant 12 bits are discarded.

It follows that every (math symbol), as defined by the syntax above, specifies
a 15-bit number, i.e., a number between 0 and 32767. Such a number can be repre-
sented in the form 4096¢ + 256 f 4+ a, where 0 < ¢ < 8,0 < f < 16, and 0 < a < 256.
If ¢ = 7, TEX changes ¢ to 0; and in this case if the current value of \fam is between
0 and 15, TEX also replaces f by \fam. This procedure yields, in all cases, a class

285

math mode
atoms

fields
nucleus
superscript
subscript
char
mathchar
delimiter
mathcode
active character
mathchar
mathchardef
fam

286

Chapter 26: Summary ofMath Mode

number ¢ between 0 and 6, a family number f between 0 and 15, and a position num-
ber a between 0 and 255. (TEX initializes the value of \fam by implicitly putting the
assignment ‘\fam=-1’ at the very beginning of \everymath and \everydisplay. Thus,
the substitution of \fam for f will occur only if the user has explicitly changed \fam
within the formula.)

A (math field) is used to specify the nucleus, superscript, or subscript of an
atom. When a (math field) is a (math symbol), the f and a numbers of that sym-
bol go into the atomic field. Otherwise the (math field) begins with a ‘{’, which
causes TEX to enter a new level of grouping and to begin a new math list; the en-
suing (math mode material) is terminated by a ‘}’, at which point the group ends and
the resulting math list goes into the atomic field. If the math list turns out to be simply
a single Ord atom without subscripts or superscripts, or an Acc whose nucleus is an
Ord, the enclosing braces are effectively removed.

A (delim) is used to define both a “small character” a in family f and a “large
character” b in family g, where 0 < a,b < 255 and 0 < f,g < 15; these character
codes are used to construct variable-size delimiters, as explained in Appendix G. If the
(delim) is given explicitly in terms of a 27-bit number, the desired codes are obtained
by interpreting that number as ¢ - 22* + f-22° 4+ - 2'2 4+ ¢ - 28 4+ b, ignoring the value
of ¢. Otherwise the delimiter is specified as a (letter) or (otherchar) token, and the
24-bit \delcode value of that character is interpreted as f - 22 +a-2'2 4+ ¢- 2% +b.

Now let’s study the individual commands as TEX obeys them in math mode,
considering first the ones that have analogs in vertical and/or horizontal mode:

= \hskip(glue), \hfil, \hfill, \hss, \hfilneg, \mskip(muglue). A glue item
is appended to the current math list.

= (leaders)(box or rule)(mathematical skip). Here (mathematical skip) refers to
one of the six glue-appending commands just mentioned; the formal syntax for (leaders)
and for (box or rule) is given in Chapter 24. A glue item that produces leaders is
appended to the current list.

» \nonscript. A special glue item of width zero is appended; it will have
the effect of cancelling the following item on the list, if that item is glue and if the
\nonscript is eventually typeset in “script style” or in “scriptscript style.”

» \noboundary. This command is redundant and therefore has no effect; bound-
ary ligatures are automatically disabled in math modes.

= (space token). Spaces have no effect in math modes.

= \L. A control-space command appends glue to the current list, using the same
amount that a (space token) inserts in horizontal mode when the space factor is 1000.

» (box). The box is constructed, and if the result is void nothing happens.
Otherwise a new Ord atom is appended to the current math list, and the box becomes
its nucleus.

= \raise(dimen)(box), \lower(dimen)(box). This acts just like an unadorned
(box) command, except that the new box being put into the nucleus is also shifted up
or down by the specified amount.

= \vcenter (box specification){(vertical mode material)}. A vbox is formed as
if ‘\vcenter’ had been ‘\vbox’. Then a new Vcent atom is appended to the current
math list, and the box becomes its nucleus.

delimiters
delcode
hskip

hfil

hfill

hss

hfilneg
mskip
mathematical skip
leaders
nonscript
noboundary
space token
control space
box

raise

lower
vecenter
Vcent

Chapter 26: Summary ofMath Mode

= (vertical rule). A rule is appended to the current list (not as an atom).

= \halign(box specification){(alignment material)}. This command is allowed
only in display math mode, and only when the current math list is empty. The align-
ment is carried out exactly as if it were done in the enclosing vertical mode (see Chap-
ter 24), except that the lines are shifted right by the \displayindent. The closing
‘} may be followed by optional (assignment) commands other than \setbox, after
which ‘¢$’ must conclude the display. TEX will insert the \abovedisplayskip and
\belowdisplayskip glue before and after the result of the alignment.

= \indent. An empty box of width \parindent is appended to the current list,
as the nucleus of a new Ord atom.

= \noindent. This command has no effect in math modes.

= {(math mode material)}. A character token of category 1, or a control se-
quence like \bgroup that has been \let equal to such a character token, causes TEX
to start a new level of grouping and also to begin work on a new math list. When such
a group ends—with ‘}’—TEX uses the resulting math list as the nucleus of a new Ord
atom that is appended to the current list. If the resulting math list is a single Acc
atom, however (i.e., an accented quantity), that atom itself is appended.

= (math symbol). (This is the most common command in math mode; see the
syntax near the beginning of this chapter.) A math symbol determines three values,
¢, f, and a, as explained earlier. TEX appends an atom to the current list, where the
atom is of type Ord, Op, Bin, Rel, Open, Close, or Punct, according as the value of ¢ is
0,1, 2,3,4, 5, or 6. The nucleus of this atom is the math symbol defined by f and a.

= (math atom)({math field). A (math atom) command is any of the following:

\mathord | \mathop | \mathbin | \mathrel | \mathopen
mathclose mathpunct mathinner underline overline
\mathcl \mathp \mathi \underli \ 1i

TEX processes the (math field), then appends a new atom of the specified type to the
current list; the nucleus of this atom contains the specified field.

= \mathaccent(15-bit number)({math field). TEX converts the (15-bit number)
into ¢, f, and a as it does with any \mathchar. Then it processes the (math field) and
appends a new Acc atom to the current list. The nucleus of this atom contains the
specified field; the accent character in this atom contains (a, f).

= \radical(27-bit number)(math field). TEX converts the (27-bit number) into
a, f, b, and g as it does with any \delimiter. Then it processes the (math field) and
appends a new Rad atom to the current list. The nucleus of this atom contains the
specified field; the delimiter field in this atom contains (a, f) and (b, g).

= (superscript) (math field). A (superscript) command is an explicit or implicit
character token of category 7. If the current list does not end with an atom, a new Ord
atom with all fields empty is appended; thus the current list will end with an atom,
in all cases. The superscript field of this atom should be empty; it is made nonempty
by changing it to the result of the specified (math field).

= (subscript)(math field). A (subscript) command is an explicit or implicit char-
acter token of category 8. It acts just like a (superscript) command, except, of course,
that it affects the subscript field instead of the superscript field.

287

rule

halign
displayindent
setbox
abovedisplayskip
belowdisplayskip
indent

parindent
noindent
grouping

math atom
mathaccent
radical
superscript
subscript

288

Chapter 26: Summary ofMath Mode

m \displaylimits, \limits, \nolimits. These commands are allowed only if
the current list ends with an Op atom. They modify a special field in that Op atom,
specifying what conventions should be used with respect to limits. The normal value
of that field is \displaylimits.

= \/. A kern of width zero is appended to the current list. (This will have the
effect of adding the italic correction to the previous character, if the italic correction
wouldn’t normally have been added.)

= \discretionary(general text)(general text)(general text). This command is
treated just as in horizontal mode (see Chapter 25), but the third (general text) must
produce an empty list.

m \-. This command is usually equivalent to ‘\discretionary{-}{}{}’; the =’
is therefore interpreted as a hyphen, not as a minus sign. (See Appendix H.)

= \mathchoice (filler) { (math mode material) } (filler) { (math mode material)}
(filler){(math mode material)} (filler){(math mode material)}. Four math lists, which
are defined as in the second alternative of a (math field), are recorded in a “choice
item” that is appended to the current list.

= \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle. A style-
change item that corresponds to the specified style is appended to the current list.

= \left(delim)(math mode material)\right(delim). TEX begins a new group,
and processes the (math mode material) by starting out with a new math list that
begins with a left boundary item containing the first delimiter. This group must be
terminated by ‘\right’, at which time the internal math list is completed with a right
boundary item containing the second delimiter. Then TEX appends an Inner atom to
the current list; the nucleus of this atom contains the internal math list.

= (generalized fraction command). This command takes one of six forms:

\over | \atop | \above(dimen)
| \overwithdelims(delim)(delim)
| \atopwithdelims(delim}(delim)
| \abovewithdelims(delim)(delim)(dimen)

(See Chapter 17.) When TEX sees a (generalized fraction command) it takes the entire
current list and puts it into the numerator field of a generalized fraction item. The
denominator field of this new item is temporarily empty; the left and right delimiter
fields are set equal to the specified delimiter codes. TEX saves this generalized fraction
item in a special place associated with the current level of math mode processing.
(There should be no other generalized fraction item in that special place, because
constructions like ‘a\over b\over c’ are illegal.) Then TEX makes the current list
empty and continues to process commands in math mode. Later on, when the current
level of math mode is completed (either by coming to a ‘¢’ or a ‘} or a \right,
depending on the nature of the current group), the current list will be moved into the
denominator field of the generalized fraction item that was saved; then that item, all by
itself, will take the place of the entire list. However, in the special case that the current
list began with \left and will end with \right, the boundary items will be extracted
from the numerator and denominator of the generalized fraction, and the final list will
consist of three items: left boundary, generalized fraction, right boundary. (If you

displaylimits
limits

nolimits

/

discretionary
hyphen
mathchoice
displaystyle
textstyle
scriptstyle
scriptscriptstyle
left

right

over

atop

above
overwithdelims
atopwithdelims
abovewithdelims

Chapter 26: Summary ofMath Mode

want to watch the process by which math lists are built, you might find it helpful to
type ‘\showlists’ while TEX is processing the denominator of a generalized fraction.)

= (eqno)(math mode material)$. Here (eqno) stands for either \egno or \legno;
these commands are allowed only in display math mode. Upon reading (eqno), TEX
enters a new level of grouping, inserts the \everymath tokens, and enters non-display
math mode to put the (math mode material) into a math list. When that math list is
completed, TEX converts it to a horizontal list and puts the result into a box that will
be used as the equation number of the current display. The closing $ token will be put
back into the input, where it will terminate the display.

» $. If TEX is in display math mode, it reads one more token, which must also
be $. In either case, the math-shift command terminates the current level of math
mode processing and ends the current group, which should have begun with either $
or (eqno). Once the math list is finished, it is converted into a horizontal list as
explained in Appendix G. TEX scans (one optional space) after completing a displayed
formula; this is usually the implicit space at the end of a line in the input file.

= \unhbox(8-bit number), \unhcopy(8-bit number). The specified box register
must be void. Nothing happens.

= None of the above: If any other primitive command of TEX occurs in math
mode, an error message will be given, and TEX will try to recover in a reasonable way.
For example, if a \par command appears, or if any other inherently non-mathematical
command is given, TEX will try to insert a ‘¢’ just before the offending token; this will
lead out of math mode. On the other hand if a totally misplaced token like \endcsname
or \omit or # appears in math mode, TEX will simply ignore it, after reporting the error.
You might enjoy trying to type some really stupid input, just to see what happens. (Say
“\tracingall’ first, as explained in Chapter 27, in order to get maximum information.)

%» EXERCISE 26.1

Powers of ten: The whole TEX language has now been summarized completely.
To demonstrate how much you know, name all of the ways you can think of in which the
numbers 10, 100, 1000, 10000, and 100000 have special significance to TEX.

» EXERCISE 26.2
Powers of two: Name all of the ways you can think of in which the numbers 8, 16,
32, 64, 128, 256, ... have special significance to TEX.

Mathematics is known in the trade as difficult, or penalty, copy
because it is slower, more difficult, and more expensive to set in type
than any other kind of copy normally occurring in books and journals.

— UNIVERSITY OF CHICAGO PRESS, A Manual of Style (1969)

The tale of Math is a complex one,
and it resists both a simple plot summary
and a concise statement of its meaning.

— PATRICK K. FORD, The Mabinogi (1977)

289

showlists
eqno

eqno

leqno
everymath
unhbox
unhcopy
Powers of ten
Derek, Bo
Powers of two
CHICAGO
FORD

Recovery from
Errors

Chapter 27: Recovery fromErrors

OK, everything you need to know about TEX has been explained—unless you
happen to be fallible. If you don’t plan to make any errors, don’t bother to read
this chapter. Otherwise you might find it helpful to make use of some of the
ways that TEX tries to pinpoint bugs in your manuscript.

In the trial runs you did when reading Chapter 6, you learned the general
form of error messages, and you also learned the various ways in which you can
respond to TEX’s complaints. With practice, you will be able to correct most
errors “online,” as soon as TEX has detected them, by inserting and deleting a
few things. The right way to go about this is to be in a mellow mood when
you approach TEX, and to regard the error messages that you get as amusing
puzzles—“Why did the machine do that?”—rather than as personal insults.

TEX knows how to issue more than a hundred different sorts of error
messages, and you probably never will encounter all of them, because some
types of mistakes are very hard to make. We discussed the “undefined control
sequence” error in Chapter 6; let’s take a look at a few of the others now.

If you misspell the name of some unit of measure—for example, if you
type ‘\hsize=4im’ instead of ‘\hsize=4in’—you’ll get an error message that
looks something like this:

! Tllegal unit of measure (pt inserted).
<to be read again>

<to be read again>
m
<*> \hsize=4im
\input story
>

TEX needs to see a legal unit before it can proceed; so in this case it has implicitly
inserted ‘pt’ at the current place in the input, and it has set \hsize=4pt.

What’s the best way to recover from such an error? Well, you should
always type ‘H’ or ‘h’ to see the help message, if you aren’t sure what the error
message means. Then you can look at the lines of context and see that TEX
will read ‘i’ and then ‘m’ and then ‘ \input story ’ if you simply hit (return)
and carry on. Unfortunately, this easy solution isn’t very good, because the ‘i’
and ‘m’ will be typeset as part of the text of a new paragraph. A much more
graceful recovery is possible in this case, by first typing ‘2’. This tells TEX to
discard the next two tokens that it reads; and after TEX has done so, it will stop
again in order to give you a chance to look over the new situation. Here is what
you will see:

<recently read> m

<*> \hsize=4im
\input story

291

error messages
Illegal unit
recover

292

Chapter 27: Recovery fromErrors

Good; the ‘i’ and ‘m’ are read and gone. But if you hit (return) now, TgX will
‘\input story’ and try to typeset the story.tex file with \hsize=4pt; that
won’t be an especially exciting experiment, because it will simply produce dozens
of overfull boxes, one for every syllable of the story. Once again there’s a better
way: You can insert the command that you had originally intended, by typing

I\hsize=4in

now. This instructs TEX to change \hsize to the correct value, after which it
will \input story and you’ll be on your way.

» EXERCISE 27.1
Ben User typed ‘8’, not ‘2’, in response to the error message just considered; his
idea was to delete ‘i’, ‘m’, ‘\input’, and the five letters of ‘story’. But TEX’s
response was

<*> \hsize=4im \input stor
y

Explain what happened.

TEX usually tries to recover from errors either by ignoring a command
that it doesn’t understand, or by inserting something that will keep it happy. For
example, we saw in Chapter 6 that TEX ignores an undefined control sequence;
and we just observed that TEX inserts ‘pt’ when it needs a physical unit of
measure. Here’s another example where TEX puts something in:

! Missing $ inserted.
<inserted text>

$
<to be read again>
1.11 the fact that 32768=2"

{15} wasn’t interesting

?H
I’ve inserted a begin-math/end-math symbol since I think
you left one out. Proceed, with fingers crossed.

(The user has forgotten to enclose a formula in $ signs, and TgX has tried to
recover by inserting one.) In this case the (inserted text) is explicitly shown,
and it has not yet been read; by contrast, our previous example illustrated a
case where TEX had already internalized the ‘pt’ that it had inserted. Thus the
user has a chance here to remove the inserted ‘¢’ before TEX really sees it.
What should be done? The error in this example occurred before TEX
noticed anything wrong; the characters ‘32768=2" have already been typeset in
horizontal mode. There’s no way to go back and cancel the past, so the lack of
proper spacing around the ‘=" cannot be fixed. Our goal of error recovery in this
case is therefore not to produce perfect output; we want rather to proceed in some

User
help message
Missing

Chapter 27: Recovery fromErrors

way so that TEX will pass by the present error and detect subsequent ones. If we
were simply to hit (return) now, our aim would not be achieved, because TEX
would typeset the ensuing text as a math formula: ‘Pwasn’tinteresting...’;
another error would be detected when the paragraph is found to end before any
closing ‘$’ has appeared. On the other hand, there’s a more elaborate way to
recover, namely to type ‘6’ and then ‘I$"{15}$’; this deletes ‘$"{15}’ and inserts
a correct partial formula. But that’s more complicated than necessary. The best
solution in this case is to type just ‘2’ and then go on; TEX will typeset the
incorrect equation ‘32768=215’, but the important thing is that you will be able
to check out the rest of the document as if this error hadn’t occurred.

@ » EXERCISE 27.2
Here’s a case in which a backslash was inadvertently omitted:

! Missing control sequence inserted.
<inserted text>

\inaccessible
<to be read again>
m
1.10 \def m
acro{replacement}

TEX needs to see a control sequence after ‘\def’, so it has inserted one that will allow
the processing to continue. (This control sequence is shown as ‘\inaccessible’, but
it has no relation to any control sequence that you can actually specify in an error-free
manuscript.) If you simply hit (return) at this point, TEX will define the inaccessible
control sequence, but that won’t do you much good; later references to \macro will be
undefined. Explain how to recover from this error so that the effect will be the same
as if line 10 of the input file had said ‘\def\macro{replacement}’.

@ » EXERCISE 27.3

When you use the ‘I’ option to respond to an error message, the rules of
Chapter 8 imply that TEX removes all spaces from the right-hand end of the line.
Explain how you can use the ‘I’ option to insert a space, in spite of this fact.

Some of the toughest errors to deal with are those in which you make
a mistake on line 20 (say), but TEX cannot tell that anything is amiss until it
reaches line 25 or so. For example, if you forget a ‘}’ that completes the argu-
ment to some macro, TEX won’t notice any problem until reaching the end of
the next paragraph. In such cases you probably have lost the whole paragraph;
but TEX will usually be able to get straightened out in time to do the subse-
quent paragraphs as if nothing had happened. A “runaway argument” will be
displayed, and by looking at the beginning of that text you should be able to
figure out where the missing ‘}’ belongs.

It’s wise to remember that the first error in your document may well
spawn spurious “errors” later on, because anomalous commands can inflict seri-
ous injury on TEX’s ability to cope with the subsequent material. But most of
the time you will find that a single run through the machine will locate all of
the places in which your input conflicts with TEX’s rules.

293

inaccessible
space
runaway argument

294 Chapter 27: Recovery fromErrors

When your error is due to misunderstanding rather than mistyping, the
situation is even more serious: TEX’s error messages will probably not be very
helpful, even if you ask TEX for help. If you have unknowingly redefined an
important control sequence—for example, if you have said ‘\def\box{. ..} —all
sorts of strange disasters might occur. Computers aren’t clairvoyant, and TEX
can only explain what looks wrong from its own viewpoint; such an explanation
is bound to be mysterious unless you can understand the machine’s attitude.
The solution to this problem is, of course, to seek human counsel and advice; or,
as a last resort, to read the instructions in Chapters 2, 3, ..., 26.

gé? » EXERCISE 27.4
J. H. Quick (a student) once defined the following set of macros:

\newcount\serialnumber

\def\firstnumber{\serialnumber=0 }

\def\nextnumber{\advance \serialnumber by 1
\number\serialnumber) \nobreak\hskip.2em }

Thus he could type, for example,

\firstnumber
\nextnumber xx, \nextnumber yy, and \nextnumber zz

and TEX would typeset ‘1) xx, 2) yy, and 3) zz’. Well, this worked fine, and he showed
the macros to his buddies. But several months later he received a frantic phone call;
one of his friends had just encountered a really weird error message:
! Missing number, treated as zero.
<to be read again>
c
1.107 \nextnumber minusc

ule chances of error
?

Explain what happened, and advise Quick what to do.

Sooner or later—hopefully sooner—you’ll get TEX to process your whole
file without stopping once to complain. But maybe the output still won’t be right;
the mere fact that TEX didn’t stop doesn’t mean that you can avoid proofreading.
At this stage it’s usually easy to see how to fix typographic errors by correcting
the input. Errors of layout can be overcome by using methods we have discussed
before: Overfull boxes can be cured as described in Chapter 6; bad breaks can
be avoided by using ties or \hbox commands as discussed in Chapter 14; math
formulas can be improved by applying the principles of Chapters 16-19.

But your output may contain seemingly inexplicable errors. For exam-
ple, if you have specified a font at some magnification that is not supported by
your printing software, TEX will not know that there is any problem, but the
program that converts your dvi file to hardcopy might not tell you that it has
substituted an “approximate” font for the real one; the resultant spacing may
look quite horrible.

Quick
weird error

Chapter 27: Recovery fromErrors

If you can’t find out what went wrong, try the old trick of simplifying
your program: Remove all the things that do work, until you obtain the shortest
possible input file that fails in the same way as the original. The shorter the file,
the easier it will be for you or somebody else to pinpoint the problem.

Perhaps you’ll wonder why TEX didn’t put a blank space in some posi-
tion where you think you typed a space. Remember that TEX ignores spaces that
follow control words, when it reads your file. (TEX also ignores a space after a
(number) or a (unit of measure) that appears as an argument to a primitive com-
mand; but if you are using properly designed macros, such rules will not concern
you, because you will probably not be using primitive commands directly.)

% On the other hand, if you are designing macros, the task of troubleshooting can be

a lot more complicated. For example, you may discover that TEX has emitted three
blank spaces when it processed some long sequence of complicated code, consisting of several
dozen commands. How can you find out where those spaces crept in? The answer is to set
‘\tracingcommands=1’, as mentioned in Chapter 13. This tells TEX to put an entry in your
log file whenever it begins to execute a primitive command; you’ll be able to see when the
command is ‘blank space’.

@ Most implementations of TEX allow you to interrupt the program in some way.

This makes it possible to diagnose the causes of infinite loops. TEX switches to
\errorstopmode when interrupted; hence you have a chance to insert commands into
the input: You can abort the run, or you can \show or change the current contents of
control sequences, registers, etc. You can also get a feeling for where TEX is spending
most of its time, if you happen to be using an inefficient macro, since random interrupts
will tend to occur in whatever place TEX visits most often.

@ Sometimes an error is so bad that TEX is forced to quit prematurely. For
example, if you are running in \batchmode or \nonstopmode, TEX makes an

“emergency stop” if it needs input from the terminal; this happens when a necessary
file cannot be opened, or when no \end command was found in the input document.
Here are some of the messages you might get just before TEX gives up the ghost:

Fatal format file error; I’m stymied.
This means that the preloaded format you have specified cannot be used, because it
was prepared for a different version of TEX.

That makes 100 errors; please try again.
TEX has scrolled past 100 errors since the last paragraph ended, so it’s probably in
an endless loop.

Interwoven alignment preambles are not allowed.
If you have been so devious as to get this message, you will understand it, and you will
deserve no sympathy.

I can’t go on meeting you like this.

A previous error has gotten TEX out of whack. Fix it and try again.

This can’t happen.
Something is wrong with the TEX you are using. Complain fiercely.

295

spaces
tracingcommands
interrupt

infinite loops
errorstopmode

show

batchmode
nonstopmode
emergency stop

end

Fatal format file error
loop

infinite loop
Interwoven alignment preambles
I can’t go on

This can’t happen

296 Chapter 27: Recovery fromErrors

@ There’s also a dreadful message that TEX issues only with great reluctance. TeX capacity exceeded
But it can happen: tracingstats
stack positions
shipout

TeX capacity exceeded, sorry.

This, alas, means that you have tried to stretch TEX too far. The message will tell
you what part of TEX’s memory has become overloaded; one of the following fourteen
things will be mentioned:

number of strings (names of control sequences and files)
pool size (the characters in such names)

main memory size (boxes, glue, breakpoints, token lists, characters, etc.)
hash size (control sequence names)

font memory (font metric data)

exception dictionary (hyphenation exceptions)

input stack size (simultaneous input sources)
semantic nest size (unfinished lists being constructed)
parameter stack size (macro parameters)

buffer size (characters in lines being read from files)
save size (values to restore at group ends)

text input levels (\input files and error insertions)
grouping levels (unfinished groups)

pattern memory (hyphenation pattern data)

The current amount of memory available will also be shown.

@ If you have a job that doesn’t overflow TEX’s capacity, yet you want to see

just how closely you have approached the limits, just set \tracingstats to
a positive value before the end of your job. The log file will then conclude with a
report on your actual usage of the first eleven things named above (i.e., the number of
strings, ..., the save size), in that order. Furthermore, if you set \tracingstats equal
to 2 or more, TEX will show its current memory usage whenever it does a \shipout
command. Such statistics are broken into two parts; ‘490&5950’ means, for example,
that 490 words are being used for “large” things like boxes, glue, and breakpoints,
while 5950 words are being used for “small” things like tokens and characters.

@ What can be done if TEX’s capacity is exceeded? All of the above-listed

components of the capacity can be increased, provided that your computer
is large enough; in fact, the space necessary to increase one component can usually
be obtained by decreasing some other component, without increasing the total size of
TEX. If you have an especially important application, you may be able to convince
your local system people to provide you with a special TEX whose capacities have been
hand-tailored to your needs. But before taking such a drastic step, be sure that you are
using TEX properly. If you have specified a gigantic paragraph or a gigantic alignment
that spans more than one page, you should change your approach, because TEX has to
read all the way to the end before it can complete the line-breaking or the alignment
calculations; this consumes huge amounts of memory space. If you have built up an
enormous macro library, you should remember that TEX has to remember all of the
replacement texts that you define; therefore if memory space is in short supply, you
should load only the macros that you need. (See Appendices B and D, for ideas on
how to make macros more compact.)

Chapter 27: Recovery fromErrors 297

@ Some erroneous TEX programs will overflow any finite memory capacity. For recursion
example, after ‘\def\recurse{(\recurse)}’, the use of \recurse will imme- save size

. grouping
dlately bomb out: save stack

. . . lobal i t
! TeX capacity exceeded, sorry [input stack size=80]. frzciangiizltirrlgen 5

\recurse ->(\recurse right brace
) tracinglostchars

tracingoutput
\recurse ->(\recurse dvi

) shipout
showboxbreadth
showboxdepth

The same sort of error will obviously occur no matter how much you increase TEX’s
input stack size.

% The special case of “save size” capacity exceeded is one of the most troublesome

errors to correct, especially if you run into the error only on long jobs. TEX generally
uses up two words of save size whenever it performs a non-global assignment to some quantity
whose previous value was not assigned at the same level of grouping. When macros are written
properly, there will rarely be a need for more than 100 or so things on the “save stack”;
but it’s possible to make save stack usage grow without limit if you make both local and
global assignments to the same variable. You can figure out what TEX puts on the save stack
by setting \tracingrestores=1; then your log file will record information about whatever is
removed from the stack at the end of a group. For example, let \a stand for the command
‘\advance\day by 1’; let \g stand for ‘\global\advance\day by 1’; and consider the following
commands:

\day=1 {\a\g\a\g\a}

The first \a sets \day=2 and remembers the old value \day=1 by putting it on the save stack.
The first \g sets \day=3, globally; nothing needs to go on the save stack at the time of a global
assignment. The next \a sets \day=4 and remembers the old value \day=3 on the save stack.
Then \g sets \day=5; then \a sets \day=6 and remembers \day=5. Finally the ‘}’ causes TEX
to go back through the save stack; if \tracingrestores=1 at this point, the log file will get the
following data:

{restoring \day=5}
{retaining \day=5}
{retaining \day=5}

Explanation: The \day parameter is first restored to its global value 5. Since this value
is global, it will be retained, so the other saved values (\day=3 and \day=1) are essentially
ignored. Moral: If you find TEX retaining a lot of values, you have a set of macros that could
cause the save stack to overflow in large enough jobs. To prevent this, it’s usually wise to be
consistent in your assignments to each variable that you use; the assignments should either be
global always or local always.

TEX provides several other kinds of tracing in addition to \tracingstats and \tracingrestores:l
We have already discussed \tracingcommands in Chapters 13 and 20, \tracingparagraphs|

in Chapter 14, \tracingpages in Chapter 15, and \tracingmacros in Chapter 20. There is

also \tracinglostchars, which (if positive) causes TEX to record each time a character has

been dropped because it does not appear in the current font; and \tracingoutput, which (if

positive) causes TEX to display in symbolic form the contents of every box that is being shipped

out to the dvi file. The latter allows you to see if things have been typeset properly, if you're

trying to decide whether some anomaly was caused by TEX or by some other software that

acts on TEX’s output.

@ When TgX displays a box as part of diagnostic output, the amount of data
is controlled by two parameters called \showboxbreadth and \showboxdepth.
The first of these, which plain TEX sets equal to 5, tells the maximum number of items

298 Chapter 27: Recovery fromFErrors

shown per level; the second, which plain TEX sets to 3, tells the deepest level. For internal box format
example, a small box whose full contents are symbolic box format
ligature
\hbox (4.30554+1.94444)x21.0, glue set 0.5 em-dash
-\hbox (4.30564+1.94444)x5.0 v
..\tenrm g overfull
glue
\glue 5.0 p}us 2.0 B ess
Atenrm | (ligature ---) hfuzz
tight
will be abbreviated as follows when \showboxbreadth=1 and \showboxdepth=1: bfdness
1 x,
\hbox (4 .30554+1.94444)x21.0, glue set 0.5 e full
.\hbox (4.30554+1.94444)x5.0 [] alignment
etc prototype row
. . valign
halign

And if you set \showboxdepth=0, you get only the top level: tabskip glue

Overfull rules
tracingonline
tracingall

\hbox (4.30554+1.94444)x21.0, glue set 0.5 []
(Notice how ‘[]’ and ‘etc.’ indicate that the data has been truncated.)

@ A nonempty hbox is considered “overfull” if its glue cannot shrink to achieve

the specified size, provided that \hbadness is less than 100 or that the excess
width (after shrinking by the maximum amount) is more than \hfuzz. It is “tight” if
its glue shrinks and the badness exceeds \hbadness; it is “loose” if its glue stretches
and the badness exceeds \hbadness but is not greater than 100; it is “underfull” if
its glue stretches and the badness is greater than \hbadness and greater than 100.
Similar remarks apply to nonempty vboxes. TEX prints a warning message and displays
the offending box, whenever such anomalies are discovered. Empty boxes are never
considered to be anomalous.

% When an alignment is “overfull” or “tight” or “loose” or “underfull,” you don’t get a

warning message for every aligned line; you get only one message, and TEX displays
a prototype row (or, with \valign, a prototype column). For example, suppose you say
‘\tabskip=0Opt plusiOpt \halign to200pt{&#\hfil\cr...\cr}’, and suppose that the aligned
material turns out to make two columns of widths 50 pt and 60 pt, respectively. Then you get
the following message:

Underfull \hbox (badness 2698) in alignment at lines 11--18
o a

\hbox(0.0+0.0)x200.0, glue set 3.0

.\glue (\tabskip) 0.0 plus 10.0

.\unsetbox(0.0+0.0)x50.0

.\glue(\tabskip) 0.0 plus 10.0

.\unsetbox(0.0+0.0)x60.0

.\glue(\tabskip) 0.0 plus 10.0

The “unset boxes” in a prototype row show the individual column widths. In this case the
tabskip glue has to stretch 3.0 times its stretchability, in order to reach the 200 pt goal, so
the box is underfull. (According to the formula in Chapter 14, the badness of this situation
is 2700; TEX actually uses a similar but more efficient formula, so it computes a badness
of 2698.) Every line of the alignment will be underfull, but only the prototype row will be
displayed in a warning message. “Overfull rules” are never appended to the lines of overfull
alignments.

The \tracing... commands put all of their output into your log file, unless the
\tracingonline parameter is positive; in the latter case, all diagnostic information
goes to the terminal as well as to the log file. Plain TEX has a \tracingall macro that

Chapter 27: Recovery fromErrors

turns on the maximum amount of tracing of all kinds. It not only sets up \tracingcommands,
\tracingrestores, \tracingparagraphs, and so on, it also sets \tracingonline=1, and it sets
\showboxbreadth and \showboxdepth to extremely high values, so that the entire contents of
all boxes will be displayed.

% Some production versions of TEX have been streamlined for speed. These imple-

mentations don’t look at the values of the parameters \tracingparagraphs, \tracingpages,

\tracingstats, and \tracingrestores, because TEX runs faster when it doesn’t have to main-
tain statistics or keep tabs on whether tracing is required. If you want all of TEX’s diagnostic
tools, you should be sure to use the right version.

If you set \pausing=1, TEX will give you a chance to edit each line of input as it is
read from the file. In this way you can make temporary patches (e.g., you can insert

\show. .. commands) while you're troubleshooting, without changing the actual contents of
the file, and you can keep TEX running at human speed.

Final hint: When working on a long manuscript, it’s best to prepare only
a few pages at a time. Set up a “galley” file and a “book” file, and enter your
text on the galley file. (Put control information that sets up your basic format
at the beginning of this file; an example of galley.tex appears in Appendix E.)
After the galleys come out looking right, you can append them to the book file;
then you can run the book file through TEX occasionally, in order to see how the
pages really fit together. For example, when the author prepared this manual,
he did one chapter at a time, and the longer chapters were split into subchapters.

» EXERCISE 27.5
Final exercise: Find all of the lies in this manual, and all of the jokes.

Final exhortation: GO FORTH now and create masterpieces of the publishing art!

Who can understand his errors?
— Psalm 19:12 (c. 1000 B.C.)

It is one thing, to shew a Man that he is in an Error,
and another, to put him in possession of Truth.

— JOHN LOCKE, An Essay Concerning Humane Understanding (1690)

299

showboxbreadth
showboxdepth
pausing
galley
book
lies
jokes
iblical
LOCKE

Answers to
All the
Exercises

Appendiz A: Answers toAll theEzercises

The preface to this manual points out the wisdom of trying to figure out each
exercise before you look up the answer here. But these answers are intended to
be read, since they occasionally provide additional information that you are best
equipped to understand when you have just worked on a problem.

1.1. A TgXnician (underpaid); sometimes also called a TEXacker.

2.1. Alice said, ‘‘I always use an en-dash instead of a hyphen when
specifying page numbers like ¢480--491’ in a bibliography.’’ (The wrong
answer to this question ends with ’480-491° in a bibliography.")

2.2. You get em-dash and hyphen (—-), which looks awful.
2.3. fluffier firefly fisticuffs, flagstaff fireproofing, chiffchaff and riffraff.

2.4. ‘‘\thinspace‘; and either ‘{}‘¢ or {‘}‘¢ or something similar. Reason:
There’s usually less space preceding a single left quote than there is preceding a double
left quote. (Left and right are opposites.)

2.5. Eliminating \thinspace would mean that a user need not learn the term;
but it is not advisable to minimize terminology by “overloading” math mode with
tricky constructions. For example, a user who wishes to take advantage of TEX’s
\mathsurround feature would be thwarted by non-mathematical uses of dollar signs.
(Incidentally, neither \thinspace nor \, are built into TEX; both are defined in terms
of more primitive features, in Appendix B.)

3.1. \I, \exercise, and \\. (The last of these is of type 2, i.e., a control symbol,
since the second backslash is not a letter; the first backslash keeps the second one from
starting its own control sequence.)

3.2. math\’ematique and centim\‘etre.

3.3. According to the index, \. is primitive but \(return) isn’t. The command
“\def\""M{\ }’ in Appendix B is what actually defines \(return), since a return is repre-
sentable as ~"M. Asking TEX to \show\~ "M produces the response ‘> \"~"M=macro:->\,. .

3.4. There are 256 of length 2; most of these are undefined when TEX begins.
(TEX allows any character to be an escape, but it does not distinguish between control
sequences that start with different escape characters.) If we assume that there are 52
letters, there are exactly 522 possible control sequences of length 3 (one for each pair
of letters, from AA to zz). But Chapter 7 explains how to use \catcode to change any
character into a “letter”; therefore it’s possible to use any of 2562 potential control
sequences of length 3.

4.1. Ulrich Dieter, {\sl Journal f\"ur die reine und angewandte
Mathematik\/ \bf201} (1959), 37--70.

It’s convenient to use a single group for both \s1 and \bf here. The ‘\/’ is a refinement
that you might not understand until you read the rest of Chapter 4.

4.2. {\it Explain ... typeset a\/ {\rm roman} word ... sentence.} Note
the position of the italic correction in this case.

4.3. \def\ic#1{\setbox0O=\hbox{#1\/}\dimenO=\wdO
\setbox0=\hbox{#1}\advance\dimen0 by -\wdO}.

301

thinspace
mathsurround

)
)

¢
catcode
letter

302

Appendiz A: Answers toAll theEzercises

4.4. Control word names are made of letters, not digits.

4.5. Say \def\s1{\it} at the beginning, and delete other definitions of \sl that
might be present in your format file (e.g., there might be one inside a \tenpoint macro).

4.6. \font\squinttenrm=cmrl0 at 5pt
\font\squinttenrm=cmr10 scaled 500

5.1. {shelf}ful or shelf{}ful, etc.; or even shelf\/ful, which yields a shelfful
instead of a shelfful. In fact, the latter idea—to insert an italic correction—is prefer-
able because TEX will reinsert the ff ligature by itself after hyphenating shelf{}ful.
(Appendix H points out that ligatures are put into a hyphenated word that contains no
“explicit kerns,” and an italic correction is an explicit kern.) But the italic correction
may be too much (especially in an italic font); shelf{\kernOpt}ful is often best.

5.2. ‘L {u}. or ‘L{}.{}.’, etc. Plain TEX also has a \space macro, so you can type
\space\space\space. (These aren’t strictly equivalent to ‘\,\,\/’, since they adjust
the spaces by the current “space factor,” as explained later.)

5.3. In the first case, you get the same result as if the innermost braces had not
appeared at all, because you haven’t used the grouping to change fonts or to control
spacing or anything. TEX doesn’t mind if you want to waste your time making groups
for no particular reason. But in the second case, the necessary braces were forgotten.
You get the letter ‘S’ centered on a line by itself, followed by a paragraph that begins
with ‘o should this.” on the next line.

5.4. You get the same result as if another pair of braces were present around ‘\it
centered’, except that the period is typeset from the italic font. (Both periods look
about the same.) The \it font will not remain in force after the \centerline, but
this is something of a coincidence: TEX uses the braces to determine what text is to
be centered, but then it removes the braces. The \centerline operation, as defined in
Appendix B, puts the resulting braceless text inside another group; and that’s why \it
disappears after \centerline. (If you don’t understand this, just don’t risk leaving
out braces in tricky situations, and you’ll be OK.)

5.5. \def\ital#1{{\it#1\/}}. Pro: Users might find this easier to learn, because
it works more like \centerline and they don’t have to remember to make the italic
correction. Con: To avoid the italic correction just before a comma or period, users
should probably be taught another control sequence; for example, with

\def\nocorr{\kernOpt }

a user could type ‘\ital{comma} or \ital{period\nocorr},’. The alternative of
putting a period or comma in italics, to avoid the italic correction, doesn’t look as
good. A long sequence of italics would be inefficient for TEX, since the entire text for
the argument to \ital must be read into memory only to be scanned again.

5.6. {1 {2 3 4 5} 4 6} 4.

5.7. \def\beginthe#1{\begingroup\def\blockname{#1}}
\def\endthe#1{\def\test{#1}%
\ifx\test\blockname\endgroup
\else\errmessage{You should have said
\string\endthe{\blockname}}\fi}

italic correction
/

hyphenating
explicit kerns
kern

space

space factor

Appendiz A: Answers toAll theEzercises

6.1. Laziness and/or obstinacy.

6.2. There’s an unwanted space after ‘called—’, because (as the book says) TEX
treats the end of a line as if it were a blank space. That blank space is usually what
you want, except when a line ends with a hyphen or a dash; so you should WATCH OUT
for lines that end with hyphens or dashes.

6.3. It represents the heavy bar that shows up in your output. (This bar wouldn’t
be present if \overfullrule had been set to Opt, nor is it present in an underfull box.)

6.4. This is the \parfillskip space that ends the paragraph. In plain TEX the
parfillskip is zero when the last line of the paragraph is full; hence no space actually
appears before the rule in the output of Experiment 3. But all hskips show up as spaces
in an overfull box message, even if they’re zero.

6.5. Run TEX with \hsize=1.5in \tolerance=10000 \raggedright \hbadness=-1
and then \input story. TEX will report the badness of all lines (except the final lines
of paragraphs, where fill glue makes the badness zero).

6.6. \def\extraspace{\nobreak \hskip Opt plus .15em\relax}
\def\dash{\unskip\extraspace---\extraspace}

(If you try this with the story at 2-inch and 1.5-inch sizes, you will notice a substantial
improvement. The \unskip allows people to leave a space before typing \dash. TEX
will try to hyphenate before \dash, but not before ‘-=-’; cf. Appendix H. The \relax
at the end of \extraspace is a precaution in case the next word is ‘minus’.)

6.7. TEX would have deleted five tokens: 1, i, n, ,, \centerline. (The space was
at the end of line 2, the \centerline at the beginning of line 3.)

6.8. A control sequence like \centerline might well define a control sequence
like \ERROR before telling TEX to look at #1. Therefore TEX doesn’t interpret control
sequences when it scans an argument.

7.1. Three forbidden characters were used. One should type
Procter \& Gamble’s ... \$2, a 10\} gain.
(Also the facts are wrong.)

7.2. Reverse slashes (backslashes) are fairly uncommon in formulas or text, and \\
is very easy to type; it was therefore felt best not to reserve \\ for such limited use.
Typists can define \\ to be whatever they want (including \backslash).

7.3. 1,2,3,4,6,7, 8,10, 11, 12, 13. Active characters (type 13) are somewhat
special; they behave like control sequences in most cases (e.g., when you say ‘\let\x="’
or ‘\ifx\x™’), but they behave like character tokens when they appear in the token list
of \uppercase or \lowercase, and when unexpanded after \if or \ifcat.

7.4. It ends with either > or } or any character of category 2; then the effects of all
\catcode definitions within the group are wiped out, except those that were \global.
TEX doesn’t have any built-in knowledge about how to pair up particular kinds of
grouping characters. New category codes take effect as soon as a \catcode assignment
has been digested. For example,

{\catcode‘\>=2 >

303

overfullrule
parfillskip
relax
Active characters
let

ifx
uppercase
lowercase

if

ifcat

global

304

Appendiz A: Answers toAll theEzercises

is a complete group. But without the space after ‘2’ it would not be complete, since TEX
would have read the ‘>’ and converted it to a token before knowing what category code
was being specified; TEX always reads the token following a constant before evaluating
that constant.

7.5. If you type ‘\message{\string~}’ and ‘\message{\string\~}’, TEX responds
with ‘> and ‘\™’, respectively. To get \12 from \string you therefore need to make
backslash an active character. One way to do this is

{\catcode‘/=0 \catcode‘\\=13 /message{/string\}}

(The “null control sequence” that you get when there are no tokens between \csname
and \endcsname is not a solution to this exercise, because \string converts it to
‘\csname\endcsname’. There is, however, another solution: If TEX’s \escapechar
parameter—which will be explained in one of the next dangerous bends—is negative
or greater than 255, then ‘\string\\’ works.)

7.6. \12 ai2 \12 10 b12.

7.7. \def\ifundefined#1{\expandafter\ifx\csname#1\endcsname\relax}
Note that a control sequence like this must be used with care; it cannot be included in
conditional text, because the \ifx will not be seen when \ifundefined isn’t expanded.

7.8. First \uppercase produces ‘A\lowercase{BC}’; then you get ‘Abc’.

7.9. ‘\copyright\ \uppercase\expandafter{\romannumeral\year}’. (This is
admittedly tricky; the ‘\expandafter’ expands the token after the ‘{’, not the token
after the group.)

7.10. (We assume that parameter #2 is not simply an active character, and that
\escapechar is between 0 and 255.)

\def\gobble#1{}) remove one token
\def\appendroman#1#2#3{\expandafter\def\expandafter#l\expandafter
{\csname\expandafter\gobble\string#2\romannumeral#3\endcsname}}

8.1. The % would be treated as a comment character, because its category code
is 14; thus, no % token or } token would get through to the gullet of TEX where numbers
are treated. When a character is of category 0, 5, 9, 14, or 15, the extra \ must be
used; and the \ doesn’t hurt, so you can always use it to be safe.

8.2. (a) Both characters terminate the current line; but a character of category 5
might be converted into .10 or a token, while a character of category 14 never
produces a token. (b) They produce character tokens stamped with different category
numbers. For example, $3 is not the same token as $4, so TEX’s digestive processes
will treat them differently. (c) Same as (b), plus the fact that control sequence names
treat letters differently. (d) No. (e) Yes; characters of category 10 are ignored at the
beginning of every line, since every line starts in state N. (f) No.

8.3. TEX had just read the control sequence \vship, so it was in state S, and it
was just ready to read the space before ‘1in’. Afterwards it ignored that space, since it
was in state S; but if you had typed I\obeyspaces in response to that error message,
you would have seen the space. Incidentally, when TEX prints the context of an error
message, the bottom pair of lines comes from a text file, but the other pairs of lines

constant

message

null control sequence
escapechar

conditional

expandafter

escapechar

context of an error message

Appendiz A: Answers toAll theEzercises

are portions of token lists that TEX is reading (unless they begin with ‘<*>’, when they
represent text inserted during error recovery).

8.4. $3 x11 "7 212 $3 "13 L0 b11 vi1 uto. The final space comes from the
(return) placed at the end of the line. Code ~~6 yields v only when not followed by 0-9
or a—f. The initial space is ignored, because state N governs the beginning of the line.

8.5. Hip i11 '12 Lo . The ‘.’ comes from the (return) at the end of the
first line; the second and third lines each contribute a .

8.6. The two ~"B’s are not recognized as consecutive superscript characters, since
the first ~ "B is converted to code 2 which doesn’t equal the following character ~. Hence
the result is seven tokens: ~“B7 ~"B7 Mi1 u1o "M . The last of these is a
control word whose name has two letters. The (space) after \M is deleted before TEX
inserts the (return) token.

8.7. Both alternatives work fine in text; in particular, they combine as in \1q\1lq
to form ligatures. But the definition in Appendix B works also in connection with
constants; e.g., \char\1q\% and \char\rq140 are valid. (Incidentally, the construction
\let\lg=* would not work with constants, since the quotes in a (number) must come
from character tokens of category 12; after \let\1lg=* the control sequence token \1q
will not expand into a character token, nor is it a character token!)

9.1. na\"\i ve or na{\"\i}ve or na\"{\i}ve.
9.2. Beloved protégé; role coordinator; soufflés, crépes, patés, etc.
9.3. \AE sop’s \OE uvres en fran\c cais.

9.4. {\sl Commentarii Academilae\ scientiarum imperialis
petropolitan\ae\/} became {\sl Akademi\t\i a Nauk SSSR, Doklady}.

9.5. Ernesto Ces\‘aro, P\’al Erd\H os, \O ystein Ore, Stanis\l aw \’Swier,
czkowski, Serge\u\i\ \t Iur’ev, Mu\d hammad ibn M\“us\"a al-Khw\“arizm\~\i.

9.6. The proper umlaut is \H, which isn’t available in \tt, so it’s necessary to
borrow the accent from another font. For example, {\tt P\’al Erd{\bf\H{\tt o}}s}
uses a bold accent, which is suitably dark.

9.7. {\it Europe on {\s1\$}15.00 a day\/}

9.8. The extra braces keep font changes local. An argument makes the use of \’
more consistent with the use of other accents like \d, which are manufactured from
other characters without using the \accent primitive.

10.1. Exactly 7227 pt.

10.2. —.013837in, 0. mm, +42.1dd, 3in, 29 pc, 123456789 sp. (The lines of text in
this manual are 29 picas wide.)

10.3. The first is not allowed, since octal notation cannot be used with a decimal
point. The second is, however, legal, since a (number) can be hexadecimal according
to the rule mentioned in Chapter 8; it means 12cc, which is 144dd ~ 154.08124 pt.
The third is also accepted, since a (digit string) can be empty; it is a complicated way
to say Osp.

305

error recovery
number

let

implicit character

306

Appendiz A: Answers toAll theExercises

10.4. \def\tick#1{\vrule height Opt depth #1pt}
\def\\{\hbox to lcm{\hfil\tick4\hfil\tick8}}
\vbox{\hrule\hbox{\tick8\\\\\\\\\ VNN
(You might also try putting ticks at every millimeter, in order to see how good your
system is; some output devices can’t handle 101 rules all at once.)

10.5. For example, say ‘\magnification=\magstepl \input story \end’ to get
magnification 1200; \magstep2 and \magstep3 are 1440 and 1728. Three separate runs
are needed, since there can be at most one magnification per job. The output may look
funny if the fonts don’t exist at the stated magnifications.

10.6. Magnification is by a factor of 1.2. Since font \first is cmr10 at 12 pt, it will
be cmr10 at 14.4pt after magnification; font \second will be cmr10 at 12pt. (TEX
changes ‘12truept’ into ‘10pt’, and the final output magnifies it back to 12 pt.)

11.1. This E is inside a box that’s inside a box.
11.2. The idea is to construct a box and to look inside. For example,
\setbox0=\hbox{\sl g\/} \showbox0

reveals that \/ is implemented by placing a kern after the character. Further experiment
shows that this kern is inserted even when the italic correction is zero.

11.3. The height, depth, and width of the enclosing box should be just large enough
to enclose all of the contents, so the result is:

\hbox (8.98608+0.0)x24.44484

\tenrm T

.\kern 1.66702

.\hbox (6.83331+0.0)x6.80557, shifted -2.15277
..\tenrm E

.\kern 1.25

.\tenrm X

(You probably predicted a height of 8.9861; TEX’s internal calculations are in sp, not
pt/100000, so the rounding in the fifth decimal place is not readily predictable.)

11.4. No applications of such symmetrical boxes to English-language printing were
apparent; it seemed pointless to carry extra generality as useless baggage that would
rarely if ever be used, merely for the sake of symmetry. In other words, the author
wore a computer science cap instead of a mathematician’s mantle on the day that TEX’s
boxes were born. Time will tell whether or not this was a fundamental error!

11.5. The following solution is based on a general \makeblankbox macro that prints
the edges of a box using rules of given thickness outside and inside that box; the box
dimensions are those of \box0.

\def\dolist{\afterassignment\dodolist\let\next= }
\def\dodolist{\ifx\next\endlist \let\next\relax
\else \\\let\next\dolist \fi
\next}
\def\endlist{\endlist}

Appendiz A: Answers toAll theEzercises

\def\hidehrule#1#2{\kern-#1,
\hrule height#1 depth#2 \kern-#2 }
\def\hidevrule#1#2{\kern-#1{\dimenO=#1
\advance\dimenO by#2\vrule width\dimenO}\kern-#2 }
\def\makeblankbox#1#2{\hbox{\lower\dpO\vbox{\hidehrule{#1}{#2}}
\kern-#1 % overlap the rules at the corners
\hbox to \wdO{\hidevrule{#1}{#2}}
\raise\htO\vbox to #1{1}), set the vrule height
\lower\dpO\vtop to #1{}} set the vrule depth
\hfil\hidevrule{#2}{#1}}/
\kern-#1\hidehrule{#2}{#1}}}}
\def\maketypebox{\makeblankbox{Opt}{ipt}}
\def\makelightbox{\makeblankbox{.2pt}{.2pt}}
\def\\{\if\space\next\ 7, assume that \next is unexpandable
\else \setboxO=\hbox{\next}\maketypebox\fi}
\def\demobox#1{\setbox0O=\hbox{\dolist#1\endlist}},
\copyO\kern-\wdO\makelightbox}

11.6. \def\frac#1/#2{\leavevmode\kern. lem
\raise.bex\hbox{\the\scriptfont0O #1}\kern-.lem
/\kern-.15em\lower.25ex\hbox{\the\scriptfont0 #2}}

12.1. 9+ 16 units, 9 + 32 units, 12 + 0 units. (But TEX would consider so much
stretching to be “infinitely bad.”)

12.2. ‘What happens now?’ is placed in a line of width \hsize, with twice as much
space at the left as at the right; ‘and now?’ is put flush right on the following line.

12.3. The first two give an “overfull box” if the argument doesn’t fit on a line;
the third allows the argument to stick out into the margins instead. (Plain TEX’s
\centerline is \centerlinec; the stickout effect shows up in the narrow-column ex-
periment of Chapter 6.) If the argument contains no infinite glue, \centerlinea and
\centerlineb produce the same effect; but \centerlineb will center an argument that
contains ‘fil’ glue.

12.4. Mr."\& Mrs. User were married by Rev. Drofnats, who preached on
Matt.~19\thinspace:\thinspace3--9. (Such thin spaces are traditional for Biblical
references to chapter and verse, but you weren’t really expected to know that. Plain
TEX defines \thinspace to be a kern, not glue; hence no break between lines will occur
at a thinspace.)

12.5. Donald“E.\ Knuth, ¢‘Mathematical typography,’’ {\sl Bull.\ Amer.\
Math.\ Soc.\ \bfi} (1979), 337--372. (But the ‘\’ after ‘E.’ isn’t necessary,
because of a rule you will learn if you venture around the next dangerous bend.)

12.6. There are several ways; perhaps the easiest are to type ‘\hbox{NASA}.’ or
‘NASA\null.’ (The \null macro is an abbreviation for ‘\hbox{}’.)

12.7. 1000, except: 999 after 0, B, S, D, and J; 1250 after the comma; 3000 after
the exclamation point, the right-quote marks, and the periods. If a period had come
just after the B (i.e., if the text had said ‘B. Sally’), the space factor after that period
would have been 1000, not 3000.

307

centerline

Biblical references
thinspace

null

308

Appendiz A: Answers toAll theEzercises

12.8. \box3 is 2pt high, 4pt deep, 3pt wide. Starting at the reference point of
\box3, go right .75 pt and down 3 pt to reach the reference point of \box1; or go right
1 pt to reach the reference point of \box2.

12.9. The stretch and shrink components of \baselineskip and \lineskip should
be equal, and the \lineskiplimit should equal the normal \lineskip spacing, to
guarantee continuity.

12.10. Yes it did, but only because none of his boxes had a negative height or depth.
He would have been safer if he had set \baselineskip=-1000pt, \lineskip=0pt, and
\lineskiplimit=16383pt. (Plain TEX’s \offinterlineskip macro does this.)

12.11. The interline glue will be zero, and the natural height is 14+1—-3+4+2 = 1pt
(because the depth of \box2 isn’t included in the natural height); so the glue will
ultimately become \vskip-1pt when it’s set. Thus, \box3 is 3 pt high, 2 pt deep, 4 pt
wide. Its reference point coincides with that of \box2; to get to the reference point of
\box1 you go up 2 pt and right 3 pt.

12.12. The interline glue will be 6 pt minus 3fil; the final depth will be zero, since
\box2 is followed by glue; the natural height is 12 pt; and the shrinkability is 5fil. So
\box4 will be 4pt high, Opt deep, 1pt wide, and it will contain five items: \vskip
-1.6pt, \box1, \vskipl.2pt, \moveleftdpt\box2, \vskip-1.6pt. Starting at the ref-
erence point of \box4, you get to the reference point of \box1 by going up 4.6 pt, or
to the reference point of \box2 by going up .4 pt and left 4pt. (For example, you go
up 4 pt to get to the upper left corner of \box4; then down —1.6 pt, i.e., up 1.6 pt, to
get to the upper left corner of \box1; then down 1 pt to reach its reference point. This
problem is clearly academic, since it’s rather ridiculous to include infinite shrinkability
in the baselineskip.)

12.13. Now \box4 will be 4 pt high, —4 pt deep, 1 pt wide, and it will contain \vskip
-2.4pt, \box1, \vskip-1.2pt, \moveleftdpt\box2, \vskip-2.4pt. From the baseline
of \box4, go up exactly 5.4 pt to reach the baseline of \box1, or exactly 3.6 pt to reach
the baseline of \box2.

12.14. \vbox to z{} produces height x; \vtop to z{} produces depth z; the other
dimensions are zero. (This holds even when x is negative.)

12.15. There are several possibilities:
\def\nullbox#1#2#3{\vbox to#1{\vss\hrule height-#2depth#2width#3}}
works because the rule will be of zero thickness. Less tricky is
\def\nullbox#1#2#3{\vbox to#1{\vss\vtop to#2{\vss\hbox to#3{}}}}

Both of these are valid with negative height and/or depth, but they do not produce
negative width. If the width might be negative, but not the height or depth, you can
use, e.g., \def\nullbox#1#2#3{\hbox to#3{\hss\raise#1\null\lower#2\null}}. It’s
impossible for \hbox to construct a box whose height or depth is negative; it’s impossible
for \vbox or \vtop to construct a box whose width is negative.

However, there’s actually a trivial solution to the general problem, based on
features that will be discussed later:

\def\nullbox#1#2#3{\setbox0=\null
\htO=#1 \dpO=#2 \wdO=#3 \box0 }

offinterlineskip

Appendiz A: Answers toAll theEzercises

12.16. \def\llap#1{\hbox to Opt{\hss#1}}

12.17. You get ‘A’ at the extreme left and ‘puzzle.’” at the extreme right, because the
space between words has the only stretchability that is finite; the infinite stretchability
cancels out. (In this case, TEX’s rule about infinite glue differs from what you would
get in the limit if the value of 1fil were finite but getting larger and larger. The true
limiting behavior would stretch the text ‘A puzzle.” in the same way, but it would also
move that text infinitely far away beyond the right edge of the page.)

13.1. Simply saying \hbox{...} won’t work, since that box will just continue the
previous vertical list without switching modes. You need to start the paragraph explic-
itly, and the straightforward way to do that is to say \indent\hbox{...}. But suppose
you want to define a macro that expands to an hbox, where this macro is to be used in
the midst of a paragraph as well as at the beginning; then you don’t want to force users
to type \indent before calling your macro at the beginning of a paragraph, nor do you
want to say \indent in the macro itself (since that might insert unwanted indenta-
tions). One solution to this more general problem is to say ‘\ \unskip\hbox{...}’,
since \, makes the mode horizontal while \unskip removes the unwanted space. Plain
TEX provides a \leavevmode macro, which solves this problem in what is probably
the most efficient way: \leavevmode is an abbreviation for ‘\unhbox\voidbox’, where
\voidbox is a permanently empty box register.

13.2. The output of \tracingcommands shows that four blank space tokens were
digested; these originated at the ends of lines 2, 3, 4, and 5. Only the first had any
effect, since blank spaces are ignored in math formulas and in vertical modes.

13.3. The end-group character finishes the paragraph and the \vbox, and \bye
stands for ‘\par\vfill...’, so the next three commands are

{math mode: math shift character $}
{restricted horizontal mode: end-group character }}
{vertical mode: \par}

13.4. It contains only mixtures of vertical glue and horizontal rules whose reference
points appear at the left of the page; there’s no text.

13.5. Vertical mode can occur only as the outermost mode; horizontal mode and
display math mode can occur only when immediately enclosed by vertical or internal
vertical mode; ordinary math mode cannot be immediately enclosed by vertical or
internal vertical mode; all other cases are possible.

14.1. (cf. Chapter~12).
Chapters 12 and™21.
line~16 of Chapter~6’s {\tt story}
lines 7 to”11
lines 2,73, 4, and™5.
(2)~a big black bar
All 2567characters are initially of category~™12,
letter”{\tt x} in family~1.
the factor™f, where n~is 1000~ times~$£$.

14.2. ‘for all n~greater than~n_0 avoids distracting breaks.

309

infinite glue
unskip
leavevmode

310

Appendiz A: Answers toAll theEzercises

14.3. ‘exercise \hbox{4.3.2--15} guarantees that there is no break after the en-
dash. But this precaution is rarely necessary, so ‘exercise 4.3.2--15’ is an acceptable
answer. No ~ is needed; ‘4.3.2-15’ is so long that it causes no offense at the beginning
of a line.

14.4. The space you get from ~ will stretch or shrink with the other spaces in the
same line, but the space inside an hbox has a fixed width since that glue has already
been set once and for all. Furthermore the first alternative permits the word Chap-
ter to be hyphenated.

14.5. ‘\hbox{$x=08$}" is unbreakable, and we will see later that ‘${x=0}$’ cannot be
broken. Both of these solutions set the glue surrounding the equals sign to some fixed
value, but such glue normally wants to stretch; furthermore, the \hbox solution might
include undesirable blank space at the beginning or end of a line, if \mathsurround is
nonzero. A third solution ‘$x=\nobreak0$’ avoids both defects.

14.6. \exhyphenpenalty=10000 prohibits all such breaks, according to the rules
found later in this chapter. Similarly, \hyphenpenalty=10000 prevents breaks after
implicit (discretionary) hyphens.

14.7. The second and fourth lines are indented by an additional “quad” of space,
i.e., by one extra em in the current type style. (The control sequence \quad does an
\hskip; when TEX is in vertical mode, \hskip begins a new paragraph and puts glue
after the indentation.) If \indent had been used instead, those lines wouldn’t have
been indented any more than the first and third, because \indent is implicit at the
beginning of every paragraph. Double indentation on the second and fourth lines could
have been achieved by ‘\indent\indent’.

14.8. ba\ck/en and Be\ttt/uch, where the macros \ck/ and \ttt/ are defined by

\def\ck/{\discretionary{k-}{k}{ck}}
\def\ttt/{tt\discretionary{-}{t}{}}

The English word ‘eighteen’ might deserve similar treatment. TEX’s hyphenation al-
gorithm will not make such spelling changes automatically.

14.9. \def\break{\penalty-10000 }

14.10. You get a forced break as if \nobreak were not present, because \break cannot
be cancelled by another penalty. In general if you have two penalties in a row, their
combined effect is the same as a single penalty whose value is the minimum of the two
original values, unless both of those values force breaks. (You get two breaks from
\break\break; the second one creates an empty line.)

14.11. Breaks are forced when p < —10000, so there’s no point in subtracting a large
constant whose effect on the total demerits is known a priori, especially when that
might cause arithmetic overflow.

14.12. (10 + 131)% 4 0% + 10000 = 29881 and (10 + 1)? + 50% 4 10000 = 12621. In
both cases the \adjdemerits were added because the lines were visually incompati-
ble (decent, then very loose, then decent); plain TEX’s values for \linepenalty and
\adjdemerits were used.

en-dash
hyphenate
mathsurround
hskip
adjdemerits
linepenalty

Appendiz A: Answers toAll theEzercises

14.13. Because TEX discards a glue item that occurs just before \par. Ben should
have said, e.g., ‘\hfilneg\ \par’.

14.14. Just say \parfillskip=\parindent. Of course, TEX will not be able to find
appropriate line breaks unless each paragraph is sufficiently long or sufficiently lucky;
but with an appropriate text, your output will be immaculately symmetrical.

14.15. Assuming that the author is deceased and/or set in his or her ways, the remedy
is to insert ‘{\parfillskip=0pt\par\parskip=0pt\noindent}’ in random places, after
each 50 lines or so of text. (Every space between words is usually a feasible breakpoint,
when you get sufficiently far from the beginning of a paragraph.)

14.16. {\leftskip=-1pt \rightskip=1pt (text) \par}

(This applies to a full paragraph; if you want to correct only isolated lines, you have
to do it by hand.)

14.17. ‘\def\line#1{\hbox to\hsize{\hskip\leftskip#1\hskip\rightskip}}’ is
the only change needed. (Incidentally, displayed equations don’t take account of
\leftskip and \rightskip either; it’s more difficult to change that, because so many
variations are possible.)

14.18. The author’s best solution is based on a variable \dimen register \x:

\setbox1=\hbox{I}
\setbox0=\vbox{\parshape=11 -0\x0\x -1\x2\x -2\x4\x -3\x6\x
-4\x8\x -5\x10\x -6\x12\x -7\x14\x -8\x16\x -9\x18\x -10\x20\x
\ifdim \x>2em \rightskip=-\wdl
\else \frenchspacing \rightskip=-\wdl plusipt minusipt
\leftskip=Opt plus 1pt minusipt \fi
\parfillskip=Opt \tolerance=1000 \noindent I turn, ... hand.}
\centerline{\hbox to \wd1{\boxO\hssl}}

Satisfactory results are obtained with font cmr10 when \x is set to 8.9pt, 13.4pt,
18.1 pt, 22.6 pt, 32.6 pt, and 47.2 pt, yielding triangles that are respectively 11, 9, 8, 7,
6, and 5 lines tall.

14.19. \item{} at the beginning of each paragraph that wants hanging indentation.
14.20. \item{\bullet}

14.21. Either change \hsize or \rightskip. The trick is to change it back again at
the end of a paragraph. Here’s one way, without grouping:

\let\endgraf=\par \edef\restorehsize{\hsize=\the\hsize}
\def\par{\endgraf \restorehsize \let\par=\endgraf}
\advance\hsize by-\parindent

14.22. \dimenO=\hsize \advance\dimenO by 2em
\parshape=3 Opt\hsize Opt\hsize -2em\dimen0O

14.23. The three paragraphs can be combined into a single paragraph, if you use
‘\hfil\vadjust{\vskip\parskip}\break\indent’ instead of ‘\par’ after the first two.
Then of course you say, e.g., \hangindent=-50pt \hangafter=-15. (The same idea
can be applied in connection with \looseness, if you want TEX to make one of three

311

displayed equations

312 Appendix A: Answers toAll theFxercises

paragraphs looser but if you don’t want to choose which one it will be. However, long linepenalty
paragraphs fill TEX’s memory; please use restraint.) See also the next exercise. Z““t
P
strut

14.24. Use \hangcarryover between paragraphs, defined as follows: display at beginning of paragraph

\def\hangcarryover{\edef\next{\hangafter=\the\hangafter
\hangindent=\the\hangindent}
\par\next
\edef\next{\prevgraf=\the\prevgraf}
\indent\next}

14.25. It will set the current paragraph in the minimum number of lines that can be
achieved without violating the tolerance; and, given that number of lines, it will break
them optimally. (However, nonzero looseness makes TEX work harder, so this is not
recommended if you don’t want to pay for the extra computation. You can achieve
almost the same result much more efficiently by setting \linepenalty=100, say.)

14.26. 150, 100, 0, 250. (When the total penalty is zero, as between lines 3 and 4 in
this case, no penalty is actually inserted.)

14.27. \interlinepenalty plus \clubpenalty plus \widowpenalty (and also plus
\brokenpenalty, if the first line ends with a discretionary break).

14.28. The tricky part is to avoid “opening up” the paragraph by adding anything
to its height; yet this star is to be contributed after a line having an unknown depth,
because the depth of the line depends on details of line breaking that aren’t known until
afterwards. The following solution uses \strut, and assumes that the line containing
the marginal star does not have depth exceeding \dp\strutbox, the depth of a \strut.

\def\strutdepth{\dp\strutbox}
\def\marginalstar{\strut\vadjust{\kern-\strutdepth\specialstar}}

Here \specialstar is a box of height zero and depth \strutdepth, and it puts an
asterisk in the left margin:

\def\specialstar{\vtop to \strutdepth{
\baselineskip\strutdepth
\vss\llap{* }\null}}

14.29. \def\insertbullets{\everypar={\1lap{\bullet\enspace}}}

(A similar device can be used to insert hanging indentation, and/or to number the
paragraphs automatically.)

14.30. First comes \parskip glue (but you might not see it on the current page if you
say \showlists, since glue disappears at the top of each page). Then comes the result
of \everypar, but let’s assume that \everypar doesn’t add anything to the horizontal
list, so that you get an empty horizontal list; then there’s no partial paragraph before
the display. The displayed equation follows the normal rules (it occupies lines 1-3 of
the paragraph, and uses the indentation and length of line 2, if there’s a nonstandard
shape). Nothing follows the display, since a blank space is ignored after a closing ‘$$’.

Incidentally, the behavior is different if you start a paragraph with ‘$$’ instead
of with \noindent$$, since TEX inserts a paragraph indentation that will appear on a
line by itself (with \leftskip and \parfillskip and \rightskip glue).

Appendiz A: Answers toAll theEzercises

14.31. A break at \penalty50 would cancel \hskip2em\nobreak\hfil, so the next
line would be forced to start with the reviewer’s name flush left. (But \vadjust{}
would actually be better than \hbox{}; it uses TEX more efficiently.)

14.32. Otherwise the line-breaking algorithm might prefer two final lines to one final
line, simply in order to move a hyphen from the second-last line up to the third-last line
where it doesn’t cause demerits. This in fact caused some surprises when the \signed
macro was being tested; \tracingparagraphs=1 was used to diagnose the problem.

14.33. Distributing the extra space evenly would lead to three lines of the maximum
badness (10000). It’s better to have just one bad line instead of three, since TEX doesn’t
distinguish degrees of badness when lines are really awful. In this particular case the
\tolerance was 200, so TEX didn’t try any line breaks that would stretch the first two
lines; but even if the tolerance had been raised to 10000, the optimum setting would
have had only one underfull line. If you really want to spread the space evenly you can
do so by using \spaceskip to increase the amount of stretchability between words.

14.34. \def\raggedcenter{\leftskip=Opt plus4em \rightskip=\leftskip
\parfillskip=Opt \spaceskip=.3333em \xspaceskip=.5em
\pretolerance=9999 \tolerance=9999 \parindent=0pt
\hyphenpenalty=9999 \exhyphenpenalty=9999 }

15.1. The last three page-break calculations would have been

% t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=150 c=3199#
% t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=-100 c=433#
% t=542.0 plus 11.0 minus 6.0 g=528.0 b=* p=0 c=*

so the break would have occurred at the same place. The badness would have been 533,
but the page would still have looked tolerable. (On the other hand if that paragraph
had been two lines shorter instead of one, the first two lines of the next “dangerous
bend” paragraph would have appeared on that page; the natural height ¢ = 531 pt
would have been able to shrink to g = 528 pt because the three “medskips” on the page
would have had a total shrinkability of 6 pt. This would certainly have been preferable
to a stretched-out page whose badness was 3049; but the author might have seen it and
written another sentence or two, so that the paragraph would not have been broken
up. After all, this manual is supposed to be an example of good practice.)

15.2. The next legal break after the beginning of a dangerous bend paragraph occurs
28 pt later, because there is 6 pt additional space for a \medskip, followed by two lines
of 11 pt each. TEX does not allow breaking between those two lines; the \clubpenalty
is set briefly to 10000 in Appendix E, since the dangerous bend symbol is two lines tall.

15.3. A page always contains at least one box, if there are no insertions, since the
legal breakpoints are discarded otherwise. Statement (a) fails if the height of the
topmost box exceeds 10pt. Statement (b) fails if the depth of the bottommost box
exceeds 2.2 pt, or if some glue or kern comes between the bottommost box and the
page break (unless that glue or kern exactly cancels the depth of the box).

15.4. \topinsert\vskip2in\rightline{\vbox{\hsize ... artwork.}}\endinsert
does the job. But it’s slightly more efficient to avoid \rightline by changing \leftskip
as follows: ‘\leftskip=\hsize \advance\leftskip by-3in’. Then TEX doesn’t have
to read the text of the caption twice.

313

vadjust
tolerance
spaceskip
clubpenalty
rightline
leftskip

314

Appendiz A: Answers toAll theEzercises

15.5. It would appear on page 25, since it does fit there. A \midinsert will jump
ahead of other insertions only if it is not carried over to another page; for example,
if the second 3-inch insertion were a \midinsert, it would not appear on page 26,
because it is converted to a \topinsert as soon as the \midinsert macro notices that
the insertion is too big for page 25.

15.6. Set \countl to 50, then \dimen2 to 50 pt, then \countl to 6, then \skip2
to —10 pt plus 6 fil minus 50 pt, then \skip2 to 60 pt plus —36 fil minus —300 pt, then
\skip2 to 1sp minus —6sp, then \count6 to 1, then \skipl to 25pt plus 1sp mi-
nus 1fill, then \skip2 to 25 pt minus —150 pt, then \skip1 to 0 pt plus 1sp minus 1fill.

15.7. If \skip4 has infinite stretchability, \skip5 will be zero; otherwise it will be
0pt plus 1pt.

15.8. \advance\dimen2 by\ifnum\dimen2<0 -\fi.5\dimen3
\divide\dimen2 by\dimen3 \multiply\dimen2 by\dimen3

15.9. \countl takes the values 5, then 2 (the old 5 is saved), then 4 (which is made
global), then 8 (and 4 is saved); finally the value 4 is restored, and that is the answer.
(For further remarks, see the discussion of \tracingrestores in Chapter 27.)

15.10. \hbox{\hbox{A}A}. After ‘\unhbox5’, \box5 is void; \unhcopy5 yields nothing.

15.11. \hbox{A}. But after ‘{\global\setbox3=\hbox{A}\setbox3=\box3}’, \box3
will be void.

15.12. \newcount\notenumber
\def\clearnotenumber{\notenumber=0\relax}
\def\note{\advance\notenumber by 1

\footnote{$"{\the\notenumber}$}}

15.13. Yes, in severe circumstances. (1) If there is no other legal breakpoint, TEX
will take a break whose cost is co. (2) If \vadjust{\eject} occurs on the same line
as a footnote, before that footnote, the reference will be forcibly detached. (3) Other
\vadjust commands on that line could also interpose breakpoints before the insertion.

16.1. $\gamma+\nu\in\Gamma$.

16.2. \le, \ge, and \ne. (These are short for “less-or-equal,” “greater-or-equal,”
and “not-equal.”) You can also use the names \leq, \geq, and \neq. (The fourth most
common symbol is, perhaps, ‘c0’, which stands for “infinity” and is called ‘\infty’.)

16.3. In the former, the ‘_2” applies to the plus sign (z +2 F3); but in the latter, it
applies to an empty subformula (x + 2 F3).

16.4. The results are ‘z¥*’ and ‘z¥” ’s the z in the first alternative is the same size as
the y, but in the second it is smaller. Furthermore, the y and z in the first case aren’t
quite at the same height. (Good typists never even think of the first construction,
because mathematicians never want it.)

16.5. The second alternative doesn’t work properly when there’s a subscript at the
same time as a prime. Furthermore, some mathematicians use \prime also in the
subscript position; they write, for example, F'(w,2) = 0F(w,2)/0z and F)(w,z) =
OF (w, z)/0w.

le

ge

ne

leq

geq
neq
infinity
infty

Appendiz A: Answers toAll theEzercises

16.6. $R_i{}"{jk}{}_1$.

16.7. 10°{10}; 2°{n+1}; (n+1)~2; \sqrt{1-x"2}; \overline{w+\overline z};
p_17{e_1}; a_{b_{c_{d_e}}}; \root3\of{h’’_n(\alpha x)}. (Of course, you should
enclose these formulas in dollar signs so that TEX will process them in math mode.
Superscripts and subscripts can be given in either order; for example, h’’_n and h_n’’
both work the same. You should not leave out any of the braces shown here; for
example, ‘$10°10$’ would yield ‘10'0’. But it doesn’t hurt to insert additional braces
around letters or numbers, as in ‘({n}+{1}) "{2}’. The indicated blank spaces are
necessary unless you use extra braces; otherwise TEX will complain about undefined
control sequences \overlinez and \alphax.)

16.8. He got ‘Ifr = y...” because he forgot to leave a space after ‘If’; spaces dis-
appear between dollar signs. He should also have ended the sentence with ‘y.’;
punctuation that belongs to a sentence should not be included in a formula, as we will
see in Chapter 18. (But you aren’t expected to know that yet.)

16.9. Deleting an element from an n-tuple leaves an $(n-1)$-tuple.

16.10. Q, f,9,5,p,¢,y. (The analogous Greek letters are 3,7,(,n, 1, &, p, ¢, 0 X,)
16.11. $z"{*2}$ and $h_*’(z2)$.

16.12. $3{\cdot}1416$. (One of the earlier examples in this chapter showed that

\cdot is a binary operation; putting it in braces makes it act like an ordinary symbol.)

If you have lots of constants like this, for example in a table, there’s a way to

make ordinary periods act like \cdot symbols: Just define \mathcode‘. to be "0201,

assuming that the fonts of plain TEX are being used. However, this could be dangerous,

since ordinary periods are used frequently in displayed equations; the \mathcode change
should be confined to places where every period is to be a \cdot.

16.13. $e~{-x"2}$, $D\sim p~\alpha M+1$, and $\ghat\in(H {\pi_1~{-1}})’$. (If
you are reading the dangerous bend sections, you know that the recommended way to
define \ghat is ‘\def\ghat{{\hat g}}’.)

17.1. x4+ y?/*+HD ($x+y~{2/ (k+1)}$).
17.2. ((a+1)/(b+ 1))z ($((a+1)/ (b+1))x$).

17.3. He got the displayed formula

z =y

k+1)
because he forgot that an unconfined \over applies to everything. (He should probably
have typed ‘$$x=\1left(y~2\over k+1\right)$$’, using ideas that will be presented
later in this chapter; this not only makes the parentheses larger, it keeps the ‘x =’ out
of the fraction, because \left and \right introduce subformulas.)

17.4. ‘$7{1\over2}\cents$’ or ‘7$1\over2$\cents’. (Incidentally, the definition
used here was \def\cents{\hbox{\rm\rlap/c}}.)

17.5. Style D’ is used for the subformula p§ , hence style S’ is used for the super-
script € and the subscript 2, and style S5’ is used for the supersuperscript prime. The
square root sign and the p appear in text size; the 2 and the e appear in script size;
and the / is in scriptscript size.

315

spaces
Greek

italic letters with descenders
descenders

cdot

mathcode

rlap

cents

316

Appendiz A: Answers toAll theExercises

17.6. $${1\over2}{n\choose k}$$; $$\displaystyle{n\choose k}\over2$$. All
of these braces are necessary.

17.7. $${p \choose 2} x"2 y~{p-2} - {1 \over 1-x}{1 \over 1-x"2}.$$
17.8. $$\sum_{i=1}"p\sum_{j=1}"q\sum_{k=1}"ra_{ij}o_{jk}c_{ki}$$.

17.9. $$\sum_{{\scriptstyle 1\le i\le p \atop \scriptstyle 1\le j\le g}
\atop \scriptstyle 1\le k\le r} a_{ij} b_{jk} c_{ki}$3.

17.10. $\displaystyle\biggl({\partial~2\over\partial x~2}+
{\partial~2\over\partial y~2}\biggr)\bigl|\varphi(x+iy)\bigr|~2=0$.

17.11. Formulas that are more than one line tall are usually two lines tall, not 1% or
2% lines tall.

17.12. $\bigl (x+f(x)\bigr) \big/ \bigl(x-f(x)\bigr)$. Notice especially the
‘\big/’; an ordinary slash would look too small between the \big parentheses.

17.13. $$\pi(n)=\sum_{k=2}"n\left\1lfloor\phi(k)\over k-1\right\rfloor.$$

17.14. $$\pi@)=\sum_{m=2}"n\left\1floor\biggl (\sum_{k=1}"{m-1}\bigl
\1floor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\biggr) “{-1}\right\rfloor.$$

17.15. A displayed formula equivalent to $${D}{{T}\over{T} " {{S}"{SS}}}$$.

17.16. \def\sqr#1#2{{\vcenter{\vbox{\hrule height.#2pt
\hbox{\vrule width.#2pt height#1pt \kern#ipt
\vrule width.#2pt}
\hrule height.#2pt}}}}
\def\square{\mathchoice\sqr34\sqr34\sqr{2.1}3\sqr{1.5}3}

17.17. \def\euler{\atopwithdelims<>}.

17.18. The \textfontO that was current at the beginning of the formula will be
used, because this redefinition is local to the braces. (It would be a different story if
‘\global\textfont’ had appeared instead; that would have changed the meaning of
\textfontO at all levels.)

17.19. "2208 and "220F.

17.20. \mathchardef\alpha="710B. Incidentally, {\rm\alpha} will then give a spu-
rious result, because character position “0OB of roman fonts does not contain an alpha;
you should warn your users about what characters they are allowed to type under the
influence of special conventions like \rm.

17.21. If \delcode‘{ were set to some nonnegative delimiter code, you would get no
error message when you wrote something like ‘\left{’. This would be bad because
strange effects would happen when certain subformulas were given as arguments to
macros, or when they appeared in alignments. But it has an even worse defect, because
a user who gets away with ‘\left{’ is likely to try also ‘\bigl{’, which fails miserably.

17.22. Since \bigl is defined as a macro with one parameter, it gets just ‘\delimiter’
as the argument. You have to write ‘\bigl{\delimiter"426830A}’ to make this work.
On the other hand, \1left will balk if the following character is a left brace. Therefore
it’s best to have control sequence names for all delimiters.

slash
global

rm

Appendiz A: Answers toAll theEzercises

18.1. $R(n,t)=0(t"{n/21)$, as $t\to0"+$. (N.B.: ‘0C, not ‘0(’.)

18.2. $$p_1(n)=\1lim_{m\to\infty}\sum_{\nu=0}"\infty
\bigl(1-\cos"{2m}(\nu! "n\pi/n)\bigr) .$$

athematicians may enjoy interpreting this formula; cf. G. H. Hardy, Messenger o
Math ici y enjoy i ing this f L f. G. H. Hardy, M g f
Mathematics 35 (1906), 145-146.)

18.3. \def\limsup{\mathop{\overline{\rm lim}}}
\def\liminf{\mathop{\underline{\rm lim}}}

[Notice that the limits ‘n — oo’ appear at different levels, in both of the displays,
because ‘sup’ and the underbar descend below the baseline. It is possible to unify the
limit positions by using phantoms, as explained later in this chapter. For example,

\def\limsup{\mathop{\vphantom{\underline{}}\overline{\rm 1im}}}
would give lower limits in the same position as \liminf.]
18.4. z=0((mod y)™). He should have typed ‘$x\equivO\pmod{y "n}$’.

18.5. $${n\choose k}\equiv{\1lfloor n/p\rfloor\choose
\1floor k/p\rfloor}{n\bmod p\choose k\bmod p}\pmod p.$$

18.6. $\bf\bar x"{\rm TIMx={\rmOI\iff x=0$. (If you typed a space between
\rm and 0, you wasted a keystroke; but don’t feel guilty about it.)

18.7. $S\subseteq{\mit\Sigma}\iff S\in{\cal S}$. In this case the braces are
redundant and could be eliminated; but you shouldn’t try to do everything with fewest
keystrokes, or you’ll outsmart yourself some day.

18.8. $${\it available}+\sum_{i=1}"n\max\bigl({\it fulll}(i),
{\it reserved}(i)\bigr)={\it capacityl}.$$

[If \it had been used throughout the formula, the subscript ¢ and superscript n would
have caused error messages saying ‘\scriptfont 4 is undefined’, since plain TEX
makes \it available only in text size.]

18.9. {\obeylines \sfcode‘;=3000
{\bf for $j:=2$ step 1 until n do}
\quad {\bf begin} ${\it accum}:=A[j]1$; $k:=j-1$; $A[0]:=\it accum$;
\quad {\bf while $A[k]>\it accum$ do}
\qquad {\bf begin} $A[k+1]:=A[k]$; $k:=k-1$;
\gquad {\bf end};
\quad $A[k+1]:=\it accum$;
\quad {\bf end}.\par}

[This is something like the “poetry” example in Chapter 14, but much more difficult.
Some manuals of style say that punctuation should inherit the font of the preceding
character, so that three kinds of semicolons should be typeset; e.g., these experts
recommend ‘k :=j — 1; A[0] := accum; end;’. The author heartily disagrees.]

18.10. Let H"be a Hilbert space, \ C~a closed bounded convex subset
of“H, \ T a nonexpansive self map of "C. Suppose that as $n\to\infty$,
\ $a_{n,k}\to0$ for each”k, and $\gamma_n=\sum_{k=0}"\infty(a_{n,k+1}-

317

Hardy
phantoms
scriptfont
sfcode
punctuation

318

Appendiz A: Answers toAll theEzercises

a_{n,k}) "+\to0$. Then for each x~in~C, \ $A_nx=\sum_{k=0}"\infty
a_{n,k}T"kx$ converges weakly to a fixed point of~T.

[If any mathematicians are reading this, they might either appreciate or re-
sent the following attempt to edit the given paragraph into a more acceptable style:
“Let C be a closed, bounded, convex subset of a Hilbert space H, and let T" be a non-
expansive self map of C. Suppose that as n — oo, we have a, — 0 for each k,
and v, = ch;o(an,kﬂ — amk)+ — 0. Then for each x in C, the infinite sum
Apx = Z;O:O anykaa: converges weakly to a fixed point of 7.”]

18.11. $$\int_O0~\infty{t-ib\over t~2+b~2}e~{iat}\,dt=
e~ {ab}E_1(ab),\qquad a,b>0.$$

18.12. $$\hbar=1.0545\times10"{-27}\rm\,erg\,sec.$$

18.13. There are ten atoms (the first is f and last is y2); their types, and the inter-
atomic spacing, are respectively

Ord Open Ord Punct \, Ord Close \ ; Rel \ ; Ord \> Bin \> Ord.

18.14. $\left]-\infty,T\right [\times\left]-\infty,T\right[$. (Or one could
say \mathopen and \mathclose instead of \left and \right; then TEX would not
choose the size of the delimiters, nor would it consider the subformulas to be of type
Inner.) Open intervals are more clearly expressed in print by using parentheses instead
of reversed brackets; for example, compare ‘(—o0,T) X (—00,T)’ to the given formula.

18.15. The first + will become a Bin atom, the second an Ord; hence the result is x,
medium space, +, medium space, +, no space, 1.

18.16. $x_1+x_1x_2+\cdots+x_1x_2\1ldots x_n$ and
$(x_1,\1dots,x_n)\cdot(y_1,\1ldots,y_n)=x_1y_1+\cdots+x_ny_n$.

18.17. The commas belong to the sentence, not to the formula; his decision to put
them into math mode meant that TEX didn’t put large enough spaces after them. Also,
his formula ‘¢ = 1,2,...,n’ allows no breaks between lines, except after the =, so he’s
risking overfull box problems. But suppose the sentence had been more terse:

Clearly a; < b; (i=1,2,...,n).
Then his idea would be basically correct:
Clearly $a_i<b_i$ \ ($i=1,2,\1ldots,n$).
18.18. ... never\footnote*{Well \dots, hardly ever.} have ...

18.19. Neither formula will be broken between lines, but the thick spaces in the
second formula will be set to their natural width while the thick spaces in the first
formula will retain their stretchability.

18.20. Set \relpenalty=10000 and \binoppenalty=10000. And you also need to
change the definitions of \bmod and \pmod, which insert their own penalties.

18.21. $\bigl\{\,x"3\bigm|h(x)\in\{-1,0,+1\}\,\bigr\}$.

mathopen
mathclose
relpenalty
binoppenalty
bmod

pmod

Appendiz A: Answers toAll theEzercises

18.22. $\{\,p\mid p$~and $p+2$ are prime$\,\}$, assuming that \mathsurround
is zero. The more difficult alternative ‘$\{\,p\mid p\ {\rm and}\ p+2\rm\ are\
prime\,\}$’ is not a solution, because line breaks do not occur at \, (or at glue of any
kind) within math formulas. Of course it may be best to display a formula like this,
instead of breaking it between lines.

18.23. $$f(x)=\cases{1/3&if $0\le x\lel$;\cr 2/3&if $3\le x\1led$;\cr
O%elsewhere.\cr}$$

18.24. $$\left\lgroup\matrix{a&b&c\cr d&e&f\cr}\right\rgroup
\left\lgroup\matrix{u&x\cr v&y\cr w&z\cr}\right\rgroup$s.

18.25. \pmatrix{y_1\cr \vdots\cr y_k\cr}.

18.26. \def \undertext#1{$\underline {\smash{\hbox{#1}}}$} will underline the
words and cross through the descenders; or you could insert \vphantom{y} before
the \hbox, thereby lowering all of the underlines to a position below all descenders.
Neither of these gives exactly what is wanted. (See also \underbar in Appendix B.)
Underlining is actually not very common in fine typography, since font changes usually
work just as well or better, when you want to emphasize something. If you really want
underlined text, it’s best to have a special font in which all the letters are underlined.

18.27. $n~{\rm th}$ root. (Incidentally, it is also acceptable to type ‘nth’,
getting ‘nth’, in such situations; the fact that the n is in italics distinguishes it from
the suffix. Typed manuscripts generally render this with a hyphen, but ‘n-th’ is frowned
on nowadays when an italic n is available.)

18.28. ${\bf S~{\rm-1}TS=dg}(\omega_1,\ldots,\omega_n) =\bf\Lambda$. (Did
you notice the difference between \omega (w) and w (w)?)

18.29. $\Pr(\,m=n\mid m+n=3\,)$. (Analogous to a set.)
18.30. $\sin18"\circ={1\over4}(\sqrt5-1)$.
18.31. $k=1.38065\times10"{-16}\rm\,erg\,K~{-1}$.

18.32. $\bar\Phi\subset NL_1"*/N=\bar L_1"*
\subseteq\cdots\subseteq NL_n"*/N=\bar L_n"*$.

18.33. $I(\lambda)=\int\!\!\int_Dg(x,y)e"{i\lambda h(x,y)}\,dx\,dy$.
(Although three \!’s work out best between consecutive integral signs in displays, the
text style seems to want only two.)

18.34. $\int_0"1\!'\cdots\int_0"1f(x_1,\1ldots,x_n)\,dx_1\1ldots\,dx_n$.

18.35. $$x_{2m}\equiv\cases{Q(X_m"2-P_2W_m"~2)-25"2&(m odd)\cr
\noalign{\vskip2pt} % spread the lines apart a little
P_272(X_m"2-P_2W_m"2)-25"2&(m even)\cr}\pmod N.$$

18.36. $$(1+x_1z+x_1"2z"2+\cdots\,)\ldots(1+x_nz+x_n"2z"2+\cdots\,)
={1\over (1-x_1z)\1ldots(1-x_nz)}.$$ (Notice the uses of \,.)

319

mathsurround
space

underbar

nth

omega

Pr

circ

double integral
integral, multiple

320 Appendix A: Answers toAll theExercises

18.37. $$\prod_{j\ge0}\biggl (\sum_{k\geO}ta_{jk}z"k\biggr)
=\sum_{n\ge0}z"n\,\Biggl (\sum_
{\scriptstyle k_0,k_1,\1ldots\geO\atop
\scriptstyle k_O+k_1+\cdots=n}
a_{0k_0Ya_{1k_1}\1ldots\,\Biggr) .$$

Some people would prefer to have the latter parentheses larger; but \left and \right
come out a bit too large in this case. It’s not difficult to define \bigggl and \bigggr
macros, analogous to the definitions of \biggl and \biggr in Appendix B.

18.38. $${(n_1+n_2+\cdots+n_m) !'\over n_1!'\,n_2!'\1dots n_m!}
={n_1+n_2\choose n_2}{n_1+n_2+n_3\choose n_3}
\ldots{n_1+n_2+\cdots+n_m\choose n_m}.$$

18.39. $$\def\\#1#2{(1-q"{#1_#2+n})} % to save typing
\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[lb_1,b_2,\1dots,b_N}
=\prod_{n=0}"R{\\a1\\a2\ldots\\aM\over\\b1\\b2\1dots\\bN}. $$

18.40. $$\sum_{p\rm\;prime}f (p)=\int_{t>1}£(t)\,d\pi(t).$$

18.41. $$\{\underbrace{\overbrace{\mathstrut a,\ldots,a}
~{k\;a\mathchar‘’\rm s},
\overbrace{\mathstrut b,\ldots,b}
~{1\;b\mathchar ‘’\rm s}}_{k+1\rm\;elements}\}.$$

Notice how apostrophes (instead of primes) were obtained.

18.42. $$\pmatrix{\pmatrix{a&b\cr c&d\cr}&
\pmatrix{e&f\cr g&h\cr}\cr
\noalign{\smallskip}
0&\pmatrix{i&j\cr k&l\cr}\cr}.$$

18.43. $$\det\left|\,\matrix{
c_0&c_1\hfill&c_2\hfill&\ldots&c_n\hfill\cr
c_1&c_2\hfill&c_3\hfill&\ldots&c_{n+1}\hfill\cr
c_2&c_3\hfill&c_4\hfill&\ldots&c_{n+2}\hfill\cr
\,\vdots\hfill&\,\vdots\hfill&

\,\vdots\hfill&&\,\vdots\hfill\cr
c_n&c_{n+1}\hfill&c_{n+2}\hfill&\ldots&c_{2n}\hfill\cr
Fright|>0.$$

18.44. $$\mathop{{\sum}’}_{x\in A}f(x)\mathrel{\mathop="{\rm def}}
\sum_{\scriptstyle x\in A\atop\scriptstyle x\neO}f(x).$$

This works because {\sum} is type Ord (so its superscript is not set above), but
\mathop{{\sum}’} is type Op (so its subscript is set below). The limits are centered
on Z’, however, not on » .. If you don’t like that, the remedy is more difficult; one
solution is to use \sumprime_{x\in A} where \sumprime is defined as follows:

\def\sumprime_#1{\setbox0=\hbox{$\scriptstyle{#1}$}
\setbox2=\hbox{$\displaystyle{\sum}$}
\setbox4=\hbox{${}’ \mathsurround=0pt$}
\dimen0=.5\wd0 \advance\dimenO by-.5\wd2
\ifdim\dimen0>Opt

bigggl

bigggr
atopwithdelims
apostrophes
mathop
sumprime

Appendiz A: Answers toAll theEzercises

\ifdim\dimen0>\wd4 \kern\wd4 \else\kern\dimenO\fi\fi
\mathop{{\sum}’}_{\kern-\wd4 #1}}

18.45. $$2\uparrow\uparrow k\mathrel{\mathop="{\rm defl}}
2°{27{2"{\cdot~{\cdot~{\cdot~2}}}}}
\vbox{\hbox{$\Big\}\scriptstyle k$}\kernOpt}.$$

18.46. If you have to do a lot of commutative diagrams, you will want to define some
macros like those in the first few lines of this solution. The \matrix macro resets
the baselines to \normalbaselines, because other commands like \openup might have
changed them, so we redefine \normalbaselines in this solution. Some of the things
shown here haven’t been explained yet, but Chapter 22 will reveal all.

$$\def\normalbaselines{\baselineskip20pt
\lineskip3pt \lineskiplimit3pt }
\def\mapright#1{\smash{
\mathop{\longrightarrow}\limits~{#1}}}
\def\mapdown#1{\Big\downarrow
\rlap{$\vcenter{\hbox{$\scriptstyle#1$}}$}}
\matrix{&&&&&&0\cr
&&&&&& \mapdown{}\cr
0&\mapright{}&{\cal 0}_C&\mapright\iota&

\cal E&\mapright\rho&\cal L&\mapright{}&0\cr
&&\Big\Vert&&\mapdown\phi&&\mapdown\psi\cr
0&\mapright{}&{\cal 0}_C&\mapright\pi&

\pi_*{\cal 0}_D&\mapright\delta&

R™1f_*{\cal 0}_V(-D)&\mapright{}&0\cr
&&&&&& \mapdown{\theta_i\otimes\gamma~{-1}}\cr
&&&&&&\hidewidth R"1f_*\bigl({\cal 0}

_V(-iM)\bigr) \otimes\gamma~{-1}\hidewidth\cr
&&&&&& \mapdown{}\cr
888880\ cr}$$

19.1. $$\sum_{n=0}"\infty a_nz"n\qquad\hbox{converges if}\qquad
|z|<\Bigl (\limsup_{n\to\infty}\root n\!\of{la_n|}\,\Bigr) "{-1}.$$

$${f (x+\Delta x)-f(x)\over\Delta x}\to f’(x)
\qquad\hbox{as $\Delta x\to0$.}$$

$$\lu_i\l=1,\qquad u_i\cdot u_j=0\quad\hbox{if $i\ne j$.}$$

$$\it\hbox{The confluent image of}\quad\left\{
\matrix{\hbox{an arc}\hfill\cr\hbox{a circle}\hfill\cr
\hbox{a fan}\hfill\cr}
\right\}\quad\hbox{is}\quad\left\{
\matrix{\hbox{an arc}\hfill\cr
\hbox{an arc or a circle}\hfill\cr
\hbox{a fan or an arc}\hfill\cr}\right\}.$$

The first example includes \! and \, to give slightly refined spacing; but the point of
the problem was to illustrate the hbox, not to fuss over such extra details. The last
example can be done much more simply using the ideas of Chapter 22, if you don’t

321

matrix
normalbaselines
hidewidth

root

322

Appendiz A: Answers toAll theExercises

mind descending to the level of TEX primitives; for example, the first matrix could be
replaced by

\,\vcenter{\halign{#\hfil\cr an arc\cr a circle\cr a fan\cr}}\,
and the second is similar.

19.2. $$\textstyle y={1\over2}x$$. (Switching to text style is especially common
in multiline formulas. For example, you will probably find occasions to use \textstyle
on both sides of the &’s within an \eqalign.)

19.3. The latter formula will be in text style, not display style. And even if you do
type ‘$$\hbox{$\displaystyle{(formula)}$}$$’, the results are not quite the same, as
we will see later: TEX will compress the glue in ‘$$(formula)$$’ if the formula is too
wide to fit on a line at its natural width, but the glue inside \hbox{...} is frozen at
its natural width. The \hbox version also invokes \everymath.

19.4. One solution is to put the formula in an hbox that occupies a full line:

$$\leftline{\indent$\displaystyle
1-{1\over2}+{1\over3}-{1\overd}+\cdots=\1n2$}$$

But this takes a bit of typing. If you make the definitions

\def\leftdisplay#1$${\leftline{\indent$\displaystyle{#13$}$$}
\everydisplay{\leftdisplay}

you can type ‘$$(formula)$$’ as usual, and the formatting will be inserted automat-
ically. (This doesn’t work with equation numbers; Appendix D illustrates how to
handle them as well.)

19.5. $$\prod_{k\geO}{1\over(1-q~kz)}=
\sum_{n\ge0}z"n\bigg/\!\!\prod_{1\le k\le n}(1-q"k).\eqno(16’)$$

19.6. \egno\hbox{(3--1)}.

19.7. When you type an asterisk in math mode, plain TEX considers * to be a
binary operation. In the cases ‘(*)’ and ‘(**)’, the binary operations are converted to
type Ord, because they don’t appear in a binary context; but the middle asterisk in
‘(**x)’ remains of type Bin. So the result was ‘(x % *)’. To avoid the extra medium
spaces, you can type ‘\egno (*{*}*)’; or you can change \mathcode ‘*, if you never use
* as a binary operation.

19.8. Assuming that \hsize is less than 10000 pt, the natural width of this equation
will be too large to fit on a line; also, \quad specifies glue at the left. Therefore ‘z =y’
will appear exactly 1em from the left, and ‘(5)’ will appear flush right. (The widths
will satisfy w = 2 —¢,d =0, k = ¢ — e = 18mu.) In the case of \legno, ‘(5)" will
appear flush left, followed by one quad of space in \textfont2, followed by one quad
of space in the current text font, followed by ‘x = y’.

19.9. (Note in particular that the final ‘.’ comes before the final ‘\cr’.)

$$\eqalign{T(n)\1le T(2"{\1lceil\lg n\rceill})
&\le c(3"{\lceilllg n\rceil}-2"{\1lceil\lg n\rceil})\cr
&<3c\cdot3"{\1g n}\cr
&=3c\,n"{\1g3}.\cr}$$

halign

textstyle

eqalign

asterisk

mathcode

displays, non-centered

Appendiz A: Answers toAll theEzercises

19.10. $$\eqalign{P(x)&=a_0O+a_lx+a_2x"2+\cdots+a_nx"n,\cr
P(-x)&=a_0-a_1lx+a_2x"2-\cdots+(-1) "na_nx"n.\cr}\eqno(30)$$

19.11. Both sides of that equation are considered to be on the left, so you get results
that look like this:

a=f(z)
B=f(z%
v = f(2*)

19.12. $$\leqalignno{\gcd(u,v)&=\gcd(v,u);&(9)\cr
\gcd (u,v)&=\gcd(-u,v) .&(10) \cr}$$

19.13. $$\eqalignno{\biggl (\int_{-\infty} \infty e {-x"2}\,dx\biggr) "2
&=\int_{-\infty} " \infty\int_{-\infty} " \infty
e {-(x"2+y"2) }\,dx\,dy\cr
&=\int_0"{2\pi}\int_0"\infty e~ {-r"2}r\,dr\,d\theta\cr
&=\int_0~{2\pi}\biggl (-{e~{-r"2}\over2}
\bigg|_{r=0}"{r=\infty}\,\biggr)\,d\theta\cr
&=\pi.&(11)\cr}$$

19.14. You get the displayed box

r=y+z
and
12:y2+z2.

Reason: The ‘and’ occurs at the left of the \eqalign box, not at the left of the whole
display, and the \eqalign box is centered as usual.

19.15. By raising the equation number, he increased the line height, so TEX put extra
space between that line and the previous line when it calculated the inter-line glue. If
he had said ‘\smash{\raise...}’, he wouldn’t have had that problem.

19.16. $$\displaylines{\hfill x\equiv x;\hfill\llap{(1)}\cr
\hfill\hbox{if}\quad x\equiv y\quad\hbox{then}\quad
y\equiv x;\hfill\1llap{(2)}\cr
\hfill\hbox{if}\quad x\equiv y\quad\hbox{and}\quad
y\equiv z\quad\hbox{then}\quad
x\equiv z.\hfill\1lap{(3)}\cr}$$

There’s also a trickier solution, which begins with
$$\displaylines{x\equiv x;\hfil\llap{(1)}\hfilneg\cr

19.17. $$\eqalignno{x_nu_1+\cdots+x_{n+t-1}u_t
&=x_nu_1+(ax_n+c)u_2+\cdots\cr
&\qquad+\bigl(a~{t-1}x_n+c(a"{t-2}+\cdots+1)\bigr)u_t\cr
&=(u_1+au_2+\cdots+a"{t-1}u_t)x_n+h(u_1,\1ldots,u_t).

\quad& (47)\cr}$$

You weren’t expected to insert the ‘\quad’ on the last line; such refinements usually

can’t be anticipated until you see the first proofs. But without that \quad the ‘(47)’

would occur half a quad closer to the formula.

323

bigg
smash

324 Appendix A: Answers toAll theExercises

19.18. $$\displaylines{\quad\sum_{1\le j\le n}{1i\over edef
(x_j-x_1)\ldots(x_j-x_{j-1}) (x-x_j) (x_j-x_{j+1}) bmfessage

\ldots(x_j-x_n) }\hfill\cr
\hfill={1\over(x-x_1)\1ldots(x-x_n)}.\quad(27)\cr}$$

19.19. $$\def\\#1;{(#1;9°2) _\infty} % to save typing
\displaystyle{q {{1\over2}n(n+1)}\\ea;\\eq/a;\qquad\atop
\hfill\\cag/e;\\cq 2\!/ae;}
\over (e;q) _\infty(cq/e;q) _\infty$$

20.1. \def\mustnt{I must not talk in class.\par}
\def\five{\mustnt\mustnt\mustnt\mustnt\mustnt}
\def\twenty{\five\five\five\five}
\def\punishment{\twenty\twenty\twenty\twenty\twenty}

Solutions to more complicated problems of this type are discussed later.

20.2. ABCAB. (The first \a expands into A\def\a{B...}; this redefines \a, so the
second \a expands into B..., etc.) At least, that’s what happens if \puzzle is en-
countered when TEX is building a list. But if \puzzle is expanded in an \edef or
\message or something like that, we will see later that the interior \def commands are
not performed while the expansion is taking place, and the control sequences following
\def are expanded; so the result is an infinite string

A\def A\def A\def A\def A\def A\def A\def A\def A...

which causes TEX to abort because the program’s input stack is finite. This example
points out that a control sequence (e.g., \b) need not be defined when it appears in the
replacement text of a definition. The example also shows that TEX doesn’t expand a
macro until it needs to.

20.3. (x1,...,%Xn). Note that the subscripts are bold here, because the expansion
(\bf x_1,\ldots,\bf x_n) doesn’t “turn off” \bf. To prevent this, one should write
\row{{\bf x}}; or (better), \row\xbold, in conjunction with \def\xbold{{\bf x}}.

20.4. The catch is that the parameters have to percolate down to the \mustnt macro,
if you extend the previous answer:

\def\mustnt#1#2{I must not #1 in #2.\par}
\def\five#1#2{\mustnt{#13}{#2}. . . \mustnt{#1}{#2}}
\def\twenty#1#2{\five{#1}{#2}.. \five{#1}{#2}}
\def\punishment#1#2{\twenty{#1}{#2}.. . \twenty{#1}{#2}}

When you pass parameters from one macro to another in this way, you need to enclose
them in braces as shown. But actually this particular solution punishes TEX much
more than it needs to, because it takes a lot of time to copy the parameters and read
them again and again. There’s a much more efficient way to do the job, by defining
control sequences:

\def\mustnt{I must not \doit\ in \thatplace.\par}
\def\punishment#1#2{\def\doit{#1}\def\thatplace{#2}/,
\twenty\twenty\twenty\twenty\twenty}

Appendiz A: Answers toAll theEzercises

and by defining \five and \twenty without parameters as before. You can also delve
more deeply into TEXnicalities, constructing solutions that are more efficient yet; TEX
works even faster when macros communicate with each other via boxes. For example,

\def\mustnt{\copy0 }
\def\punishment#1#2{\setbox0=
\vbox{\strut I must not #1 in #2.\strutl})
\twenty\twenty\twenty\twenty\twenty}

sets 100 identical paragraphs at high speed, because TEX has to process the paragraph
and break it into lines only once. It’s much faster to copy a box than to build it up from
scratch. (The struts in this example keep the interbaseline distances correct between
boxed paragraphs, as explained in Chapter 12. Two struts are used, for if the message
takes more than one line there will be a strut at both top and bottom. If it were known
that each sentence will occupy only a single line, no struts would be needed, because
interline glue is added as usual when a box created by \copy is appended to the current
vertical list.)

20.5. The ## feature is indispensable when the replacement text of a definition
contains other definitions. For example, consider

\def\a#1{\def\b##1{##1#1}}

after which ‘\a!’ will expand to ‘\def\b#1{#1!}’. We will see later that ## is also
important for alignments; see, for example, the definition of \matrix in Appendix B.

20.6. \def\a#{\b}.

20.7. Let’s go slowly on this one, so that the answer will give enough background
to answer all similar questions. The (parameter text) of the definition consists of
the three tokens #1, #2, [1; the (replacement text) consists of the six tokens {1, #q,
12, '6, #2, [1. (When two tokens of category 6 occur in the replacement text, the
character code of the second one survives; the character code of a category-6 character
is otherwise irrelevant. Thus, ‘\def\!#1!2#[{##]!!#2]" would produce an essentially
identical definition.) When expanding the given token list, argument #1 is x11, since
it is undelimited. Argument #2 is delimited by [1, which is different from {1, so it is
set provisionally to {[y]]; but the outer “braces” are stripped off, so #2 reduces to the
three tokens [1, yi1, 12. The result of the expansion is therefore

{1 #6 12 '6 [1 y11 12 [1 211 }o.
Incidentally, if you display this with \tracingmacros=1, TEX says

N\ a2 [->{##] 1 #2[
#1<-x
#2<-[y]

Category codes are not shown, but a character of category 6 always appears twice in
succession. A parameter token in the replacement text uses the character code of the
final parameter in the parameter text.

20.8. Yes indeed. In the first case, \a receives the meaning of \b that is current at
the time of the \1let. In the second case, \a becomes a macro that will expand into the
token \b whenever \a is used, so it has the meaning of \b that is current at the time
of use. You need \let, if you want to interchange the meanings of \a and \b.

325

boxes

efficient macros

communication between macros
copy a box

struts

tracingmacros

token lists, as displayed by TeX

326 Appendix A: Answers toAll theExercises

20.9. (a) Yes. (b) No; any other control sequence can appear (except those declared
as \outer macros).

20.10. \def\overpaid{{\countO=\balance
You have overpaid your tax by \dollaramount.
\ifnum\count0<100 It is our policy to refund
such a small amount only if you ask for it.
\else A check for this amount is being mailed
under separate cover.\fi}}

20.11. The tricky part is to get the zero in an amount like ‘$2.01’.

\def\dollaramount{\count2=\count0 \divide\count2 by100
\$\number\count?2.%
\multiply\count2 by-100 \advance\count2 by\countO
\ifnum \count2<10 O\fi
\number\count2 }

20.12. \def\category#1{\ifcase\catcode ‘#1
escape\or begingroup\or endgroup\or math\or
align\or endline\or parameter\or superscript\or
subscript\or ignored\or space\or letter\or
otherchar\or active\or comment\or invalid\fi}

20.13. (a,b) True. (c,d) False. (e,f) True. In case (e), the (true text) starts with
‘ue’. (g) The \ifx is false and the inner \if is true; so the outer \if becomes ‘\if
True...’, which is false. (Interestingly, TEX knows that the outer \if is false even
before it has looked at the \fi’s that close the \ifx and the inner \if.)

20.14. One idea is to say
\let\save=\c \let\c=0 \edef\a{\b\c\d} \let\c=\save

because control sequences equivalent to characters are not expandable. However, this
doesn’t expand occurrences of \c that might be present in the expansions of \b and \d.
Another way, which is free of this defect, is

\edef\next#1#2{\def#1{\b#2\d}} \next\a\c
(and it’s worth a close look!).
20.15. \toksO={\c} \toks2=\expandafter{\d}

\edef\a{\b\the\toksO \the\toks2 }
(Notice that \expandafter expands the token after the left brace here.)

20.16. The following shouldn’t be taken too seriously, but it does work:

{\setbox0=\vbox{\halign{#{\c\span\d}\cr
\let\next=0\edef\next#1{\gdef\next{\b#1}}\next\cr}}}
\let\a=\next

20.17. Neither one, although \a will behave like an unmatched left brace when it is
expanded. The definition of \b is not complete, because it expands to ‘\def\b{{}’;
TEX will continue to read ahead, looking for another right brace, possibly discovering a
runaway definition! It’s impossible to define a macro that has unmatched braces. But
you can say \let\a={; Appendix D discusses several other brace tricks.

expandafter
span
brace tricks

Appendiz A: Answers toAll theEzercises

20.18. One way is to redefine \catcode‘\""M=9 (ignored) just before the \read, so
that the (return) will be ignored. Another solution is to redefine \endlinechar=-1,
so that no character is put at the end of the line. Or you could try to be tricky by
stripping off the space with macro expansion as follows:

\def\stripspace#1 \next{#1}
\edef\myname{\expandafter\stripspace\myname\next}

The latter solution doesn’t work if the user types ‘%’ at the end of his or her name, or
if the name contains control sequences.

20.19. Here are two solutions:

\def\next#1\endname{\uppercase{\def \MYNAME{#1}}}
\expandafter\next\myname\endname

\edef\next{\def\noexpand\MYNAME{\myname}}
\uppercase\expandafter{\next}

20.20. (Here’s a solution that also numbers the lines, so that the number of repetitions
is easily verifiable. The only tricky part about this answer is the use of \endgraf, which
is a substitute for \par because \loop is not a \long macro.)

\newcount\n
\def\punishment#1#2{\n=0
\loop\ifnum\n<#2 \advance\n byl
\item{\number\n.}#1\endgraf\repeat}

21.1. The interline skip is added for vboxes, but not for rules; he forgot to say
\nointerlineskip, before and after the \moveright construction.

21.2. \vrule height3pt depth-2pt widthlin. Notice that it was necessary to call
it a \vrule since it appeared in horizontal mode.

21.3. \def\boxit#1{\vbox{\hrule\hbox{\vrule\kern3pt
\vbox{\kern3pt#1\kern3pt}\kern3pt\vrule}\hrule}}

(The resulting box does not have the baseline of the original one; you have to work a
little bit harder to get that.)

21.4. \leaders: two boxes starting at 100 pt, 110 pt.
\cleaders: three boxes starting at 95 pt, 105 pt, 115 pt.
\xleaders: three boxes starting at 93 pt, 105 pt, 117 pt.

21.5. \def\leaderfill{\kern-0.3em\leaders\hbox to lem{\hss.\hss}
\hskipO.6em plusifill \kern-0.3em }

21.6. Since no height or depth specification follows the \vrule, the height and
depth are ‘*’; i.e., the rule extends to the smallest enclosing box. This usually makes
a heavy black band, which is too horrible to demonstrate here. However, it does work
if you know that the enclosing box is sufficiently small; and \leaders\vrule\vfill
works fine in vertical mode.

327

endlinechar
endgraf

long
nointerlineskip

328

Appendiz A: Answers toAll theExercises

21.7. For example, say
\null\nobreak\leaders\hrule\hskip1lOpt plusifilll\ \par

The ‘\) provides extra glue that is wiped out by the implied \unskip at the end of
every paragraph (see Chapter 14), and the ‘\null\nobreak’ makes sure that the leaders
do not disappear at a line break; ‘£i111’ overtakes the \parfillskip glue.

21.8. $$\hbox to 2.5in{\cleaders
\vbox to .5in{\cleaders\hbox{\TeX}\vfil}\hfil}$$

21.9. We assume that a strut is 12 pt tall, and that 50 lines fit on a page:

\setbox0=\hbox{\strut I must not talk in class.}
\null\cleaders\copyO\vskip600pt\vfill\eject % 50 times on page 1;
\null\cleaders\boxO\vskip600pt\bye % 50 more on page 2.

The \null keeps glue (and leaders) from disappearing at the top of the page.

21.10. {\let\the=0\edef\next{\write\cont{(token list)}}\next} will expand ev-
erything but \the when the \write command is given.

22.1. Notice the uses of ‘\smallskip’ here to separate the table heading and footing
from the table itself; such refinements are often worthwhile.

\settabs\+\indent&10\frac1/2 1bs.\qquad&\it Servings\qquad&\cr
\+&\negthinspace\it Weight&\it Servings&

{\it Approximate Cooking Time\/}*\cr
\smallskip
\+&8 1lbs.&6&1 hour and 50 to 55 minutes\cr
\+&9 1lbs.&7 to 8&About 2 hours\cr
\+&9\frac1/2 1lbs.&8 to 9&2 hours and 10 to 15 minutes\cr
\+&10\frac1/2 1bs.&9 to 10&2 hours and 15 to 20 minutes\cr
\smallskip
\+&* For a stuffed goose,

add 20 to 40 minutes to the times given.\cr

The title line specifies ‘\it’ three times, because each entry between tabs is treated
as a group by TEX; you would get error messages galore if you tried to say something
like ‘\+&{\it Weight&Servings&...}\cr’. The ‘\negthinspace’ in the title line is a
small backspace that compensates for the slant in an italic W; the author inserted this
somewhat unusual correction after seeing how the table looked without it, on the first
proofs. (You weren’t supposed to think of this, but it has to be mentioned.) See
exercise 11.6 for the ‘\frac’ macro; it’s better to say ‘1/2’ than ‘1’, in a cookbook.

Another way to treat this table would be to display it in a vbox, instead of
including a first column whose sole purpose is to specify indentation.

22.2. In such programs it seems best to type \cleartabs just before &, whenever
it is desirable to reset the old tabs. Multiletter identifiers look best when set in text
italics with \it, as explained in Chapter 18. Thus, the following is recommended:

\+\bf while $p>0$ do\cr
\+\quad\cleartabs&{\bf begin} $q:={\it 1link}(p)$;
${\it free_node}(p)$; $p:=q$;\cr
\+&{\bf end};\cr

filll
parfillskip
null
negthinspace
it

Appendiz A: Answers toAll theEzercises

22.3. Here we retain the idea that & inserts a new tab, when there are no tabs to the
right of the current position. Only one of the macros that are used to process \+ lines
needs to be changed; but (unfortunately) it’s the most complex one:

\def\t@bb@x{\if@cr\egroup % now \box0 holds the column
\else\hss\egroup \dimen®@=0\p@
\dimen@ii=\wd0 \advance\dimen@ii bylsp
\loop\ifdim \dimen@<\dimen®@ii
\global\setbox\tabsyet=\hbox{\unhbox\tabsyet
\global\setboxl=\lastboxl}}
\ifvoidl \advance\dimen®@ii by-\dimen@
\advance\dimen@ii by-1sp \global\setbox1
=\hbox to\dimen@ii{}\dimen@ii=-1pt\fi
\advance\dimen@ by\wdl \global\setbox\tabsdone
=\hbox{\box1\unhbox\tabsdone}\repeat
\setbox0=\hbox to\dimen@{\unhboxO0}\fi
\box0}

22.4. Horizontal lists Chapter 14
Vertical lists Chapter 15
Math lists Chapter 17 (i-e., the first column would be right-justified)

22.5. Fowl&Poule de 1’Ann\’ee&10 to 12&0ver 3&Stew, Fricassee\cr

22.6. $$\halign to\hsize{\sl#\hfil\tabskip=.5em plus.5em&
#\hfil\tabskip=Opt plus.5em&
\hfil#\tabskip=1lem plus2em&
\s1l#\hfil\tabskip=.5em plus.b5em&
#\hfil\tabskip=Opt plus.5em&
\hfil#\tabskip=Opt\cr ...}$$

22.7. The trick is to define a new macro for the preamble:

$$\def\welshverb#1={{\bf#1} = }
\halign to\hsize{\welshverb#\hfil\tabskip=lem pluslem&
\welshverb#\hfil&\welshverb#\hfil\tabskip=Opt\cr ...}$$

22.8. \hfil#: &\vtop{\parindent=0Opt\hsize=16em
\hangindent.5em\strut#\strut}\cr

With such narrow measure and such long words, the \tolerance should probably also
have been increased to, say, 1000 inside the \vtop; luckily it turned out that a higher
tolerance wasn’t needed.

Note: The stated preamble solves the problem and demonstrates that TEX’s
line-breaking capability can be used within tables. But this particular table is not
really a good example of the use of \halign, because TEX could typeset it directly,
using \everypar in an appropriate manner to set up the hanging indentation, and using
\par instead of \cr. For example, one could say

\hsize20em \parindentOpt \clubpenalty10000 \widowpenalty10000
\def\history#1&{\hangindent4.5em

\hbox todem{\hss#1: }\ignorespaces}
\everypar={\history} \def\\{\leavevmode{\it c\/}}

329

tolerance
vtop
strut
everypar

330 Appendix A: Answers toAll theExercises

which spares TEX all the work of \halign but yields essentially the same result. leavevmode

22.9. The equation is divided into separate parts for terms and plus/minus signs,
and tabskip glue is used to center it:

$$\openupi\jot \tabskip=Opt plusifil
\halign to\displaywidth{\tabskip=Opt
$\hfil#$&$\nfil{}#{}$&
$\hfil#$&$\nfil{}#{}$&
$\hfil#$&$\nfil{}#{}$&
$\hfil#$&${I#\hfil$\tabskip=0Opt plusifil&
\1lap{#}\tabskip=0Opt\cr
10w&+&3x&+&3y&+&182z&=1,&(9) \cr
6wk-&17xl&—&52&=2.&(10) \cr}$$

22.10. \hfil# &#\hfil&\quad#&\ \hfil#&\ \hfil#\cr

22.11. \pmatrix{a_{11}&a_{12}&\1ldots&a_{1in}\cr
a_{21}&a_{22}&\1ldots&a_{2n}\cr
\multispan4\dotfill\cr
a_{m1}&a_{m2}&\ldots&a_{mn}\cr}

22.12. ‘\cr’ would have omitted the final column, which is a vertical rule.

22.13. One way is to include two lines just before and after the title line, saying
‘\omit&height2pt&\multispanb&\cr’. Another way is to put \bigstrut into some
column of the title line, for some appropriate invisible box \bigstrut of width zero.
Either way makes the table look better.

22.14. The trick is to have “empty” columns at the extreme left and right; then the
\hrulefill’s are able to span the tabskip glue.

$$\vbox{\tabskip=0pt \offinterlineskip

\halign to 36em{\tabskip=0Opt pluslem#&
#\hfil&#&#\hfil&#&#\hfil&#\tabskip=0pt\cr

&&&&&\strut J. H. B\"ohning, 1838&\cr

&&&&\multispan3\hrulefill\cr

&&&\strut M. J. H. B\"ohning, 1882&\vrule\cr

&&\multispan3\hrulefill\cr

&&\vrule&&\vrule&\strut M. D. Blase, 1840&\cr

&&\vrule&&\multispan3\hrulefill\cr

&\strut L. M. Bohning, 1912&\vrule\cr

\multispan3\hrulefill\cr

&&\vrule&&&\strut E. F. Ehlert, 1845&\cr

&&\vrule&&\multispan3\hrulefill\cr

&&\vrule&\strut P. A. M. Ehlert, 1884&\vrule\cr

&&\multispan3\hrulefill\cr

&&&&\vrule&\strut C. L. Wischmeyer, 1850&\cr

&&&&\multispan3\hrulefill\cr}}$$

22.00. (Solution to Dudeney’s problem.) Let \one and \two be macros that produce
a vertical list denoting one and two pennies, respectively. The problem can be solved

Appendiz A: Answers toAll theEzercises

with \valign as follows:

\valign{\vfil#&\viil#&\viil#&\vEfil#\cr

\two&\one&\one&\one\cr . @ @ @
\one&\one&\two&\one\cr @ @ @
—

\one&\one&\one&\two\cr

\one&\two&\one&\one\cr} @ \v, @ @
Since \valign transposes rows and columns, the result is @ @ \) @ .

23.1. \footline={\hss\tenrm-- \folio\ --\hss}

23.2. \headline={\ifnum\pageno=1 \hss\tenbf R\’ESUM\’E\hss
\else\tenrm R\’esum\’e of A. U. Thor \dotfill\ Page \folio\fi}

(You should also say \nopagenumbers and \voffset=2\baselineskip.)

23.3. \output={\plainoutput\blankpageoutput}
\def\blankpageoutput{\shipout\vbox{\makeheadline
\vbox to\vsize{}\makefootline}\advancepageno}

23.4. Set \hsize=2.1in, allocate ‘\newbox\midcolumn’, and use the following code:

\output={\if L\1lr
\global\setbox\leftcolumn=\columnbox \globall\let\lr=M
\else\if M\1lr
\global\setbox\midcolumn=\columnbox \globall\let\lr=R
\else \tripleformat \globalllet\lr=L\fi\fi
\ifnum\outputpenalty>-20000 \else\dosupereject\fi}
\def\tripleformat{\shipout\vbox{\makeheadline
\fullline{\box\leftcolumn\hfil\box\midcolumn\hfil\columnbox}
\makefootline}
\advancepageno}

At the end, \supereject and say ‘\if L\1lr \else\null\vfillleject\fi’ twice.

23.5. He forgot that interline glue is inserted automatically before the \leftline;
this permits a legal breakpoint between the \mark and the \leftline box, according
to the rules of page breaking in Chapter 15. One cure would be to say \nobreak just
after the \mark; but it’s usually best to put marks and insertions just after boxes.

23.6. Say, for example, \ifcase2\expandafter\relax\botmark\fi to read part as
of \botmark. Another solution puts the five components into five parameters of a
macro, analogous to the method used by \inxcheck later in this chapter; but the
\ifcase approach is usually more efficient, because it lets TEX pass over the unselected
components at high speed.

23.7. \output={\dimen0=\dp255 \normaloutput
\ifodd\pageno\else\if L\1r
\expandafter\inxcheck\botmark\sub\end\fi\fi}

In this case the \normaloutput macro should be the two-column output routine that
was described earlier in this chapter, beginning with ‘\if L\1r’ and ending with
“\let\1r=L\fi’. (There is no need to test for \supereject.)

331

valign
interline glue
nobreak
insertions

332

Appendiz A: Answers toAll theEzercises

23.8. False. If the text of the main and/or subsidiary entry is lengthy, a continuation
line may actually become two or more lines. (Incidentally, hanging indentation will
then occur, because the \everypar command—which was set up outside the \output
routine—is effective inside.) The \vsize must be large enough to accommodate all
continuation lines plus at least one more line of index material, or else infinite looping
will occur.

24.1. If \cs has been defined by \chardef or \mathchardef, TEX uses hexadecimal
notation when it expands \meaning\cs, and it assigns category 12 to each digit of
the expansion. You might have an application in which you want the last part of the
expansion to be treated as a (number). (This is admittedly an obscure reason.)

24.2. Yes; any number of spaces can precede any keyword.

24.3. The first two have the same meaning; but the third coerces \baselineskip to
a (dimen) by suppressing the stretchability and shrinkability that might be present.

24.4. The natural width is 221dd (which TEX rounds to 15497423 sp and displays
as 236.47191pt). The stretchability is 2500 sp, since an internal integer is coerced to a
dimension when it appears as an (internal unit). The shrinkability is zero. Notice that
the final \space is swallowed up as part of the optional spaces of the (shrink) part in
the syntax for (glue). (If PLUS had been MINUS, the final \space would not have been
part of this (glue)!)

24.5. If it was non-null when a \dump operation occurred. Here’s a nontrivial exam-
ple, which sets up \batchmode and puts \end at the end of the input file:

\everyjob={\batchmode\input\jobname\end}

24.6. (a) \def\\#1\\{}\futurelet\cs\\ \\. (b) \def\\{\let\cs= }\\.. (There
are many other solutions.)

24.7. (internal quantity) — (internal integer) | (internal dimen)
| (internal glue) | (internal muglue) | (internal nonnumeric)
(internal nonnumeric) — (token variable) | (font)

26.1. Radix 10 notation is used for numeric constants and for the output of numeric
data. The first 10 \count registers are displayed at each \shipout, and their values
are recorded on the dvi file at such times. A box whose glue has stretched or shrunk to
its stated stretchability or shrinkability has badness 100; this badness value separates
“loose” boxes from “very loose” or “underfull” ones. TEX will scroll up to 100 errors in a
single paragraph before giving up (see Chapter 27). The normal values of \spacefactor
and \mag are 1000. A \prevdepth value of —1000 pt suppresses interline glue. The
badness rating of a box is at most 10000, except that the \badness of an overfull box
is 1000000. INITEX initializes \tolerance to 10000, thereby making all line breaks
feasible. Penalties of 10000 or more prohibit breaks; penalties of —10000 or less make
breaks mandatory. The cost of a page break is 100000, if the badness is 10000 and if
the associated penalties are less than 10000 in magnitude (see Chapter 15).

26.2. TEX allows constants to be expressed in radix 8 (octal) or radix 16 (hexadeci-
mal) notation, and it uses hexadecimal notation to display \char and \mathchar codes.
There are 16 families for math fonts, 16 input streams for \read, 16 output streams for
\write. A \catcode value must be less than 16. The notation ~~?7, ~~@, ~~A specifies

chardef

mathchardef

hexadecimal notation
meaning

coerce jnumber; to jdimen;
spaces

dump

jobname

batchmode

end

Appendiz A: Answers toAll theEzercises

characters whose codes differ by 64 from the codes of 7, @, A; this convention applies
only to characters with ASCII codes less than 128. There are 256 possible characters,
hence 256 entries in each of the \catcode, \mathcode, \1ccode, \uccode, \sfcode, and
\delcode tables. All \lccode, \uccode, and \char values must be less than 256. A
font has at most 256 characters. There are 256 \box registers, 256 \count registers,
256 \dimen registers, 256 \skip registers, 256 \muskip registers, 256 \toks registers,
256 hyphenation tables. The “at size” of a font must be less than 2048 pt, i.e., 2! pt.
Math delimiters are encoded by multiplying the math code of the “small character”
by 2'2. The magnitude of a (dimen) value must be less than 16384 pt, i.e., 2'* pt; simi-
larly, the (factor) in a (fil dimen) must be less than 2'*. A \mathchar or \spacefactor
or \sfcode value must be less than 2'°; a \mathcode or \mag value must be less than
or equal to 2'°, and 2'® denotes an “active” math character. There are 2'®sp per pt.
A \delcode value must be less than 224; a \delimiter, less than 227. The \end com-
mand sometimes contributes a penalty of —2% to the current page. A (dimen) must be
less than 23° sp in absolute value; a (number) must be less than 23! in absolute value.

27.1. He forgot to count the space; TEX deleted ‘i’ ‘m’, ‘,)’, ‘\input’, and four letters.
(But all is not lost; he can type ‘1’ or ‘2°, then (return), and after being prompted by
‘*’ he can enter a new line of input.)

27.2. First delete the unwanted tokens, then insert what you want: Type ‘6’ and
then ‘I\macro’. (Incidentally, there’s a sneaky way to get at the \inaccessible control
sequence by typing

I\garbage{}\let\accessible=

in response to an error message like this. The author designed TEX in such a way that
you can’t destroy anything by playing such nasty tricks.)

27.3. ‘I % does the trick, if % is a comment character.

27.4. The ‘minus’ of ‘minuscule’ was treated as part of the \hskip command in
\nextnumber. Quick should put ‘\relax’ at the end of his macro. (The keywords 1,
plus, minus, width, depth, or height might just happen to occur in text when TEX is
reading a glue specification or a rule specification; designers of general-purpose macros
should guard against this. If you get a ‘Missing number’ error and you can’t guess
why TgEX is looking for a number, plant the instruction ‘\tracingcommands=1’ shortly
before the error point; your log file will show what command TEX is working on.)

27.5. If this exercise isn’t just a joke, the title of this appendix is a lie.

If you can’t solve a problem,

you can always look up the answer.

But please, try first to solve it by yourself;
then you'll learn more and you’'ll learn faster.

— DONALD E. KNUTH, The TeXbook (1984)

How answer you for your selues?
— WILLIAM SHAKESPEARE, Much Adoe About Nothing (1598)

333

Knuth

comment character
minus

keywords

Missing number
KNUTH
SHAKESPEARE

-

B

Basic
Control
Sequences

Appendiz B: BasicControlSequences 335

Let’s begin this appendix with a chart that summarizes plain TEX’s conventions. summary of plain TeX
+
tabbing
- - accents
/)

Characters that are reserved for special purposes: \ { } $ & #

\rm roman, {\sl slanted}, {\bf boldface}, {\it italic\/} type
roman, slanted, boldface, italic type

_____ ?7¢ 1CN\$ \# \& \% \ae \AE \oe \OE \aa \AA \ss \o \O
T Lo $ +# & % = E o E a A i) o O

\a \’e \"o \"u \=y \™n \.p \u\i \v s \H\j \t\i u \bk \c c \d h
A 6 o6 4 y @ p i 0§ § wm k ¢ h

\1 \L \dag \ddag \S \P {\it\$ \&} \copyright \TeX \dots

L i § 9 £ ¥ © TeX

Line break controls: \break \nobreak \allowbreak \hbox{unbreakable}
dis\-cre\-tion\-ary hy\-phens virgule\slash breakpoint
Breakable horizontal spaces: Unbreakable horizontal spaces:

\u normal interword space ~ normal interword space

\enskip this much \enspace this much

\quad this much \thinspace this much

\qquad this much \negthinspace thisnuch

\hskip (arbitrary dimen) \kern (arbitrary dimen)

Vertical spaces: \smallskip —— \medskip \bigskip

Page break controls: \eject \supereject \nobreak \goodbreak \filbreak
Vertical spaces and good breakpoints: \smallbreak \medbreak \bigbreak

\settabs 4 \columns
\+Here’s an example&of\hfill some &tabbing:&\hrulefill&\cr

Here’s an example of some tabbing:
\hrulefill \dotfill
\leftarrowfill \rightarrowfill
\upbracefill \downbracefill

More general alignments use \halign, \valign, \omit, \span, and \multispan.

Examples of the principal conventions for text layout appear on the next page.

336

Appendiz B: BasicControlSequences

% This test file generates the output shown on the opposite page.
% It’s a bit complex because it tries to illustrate lots of stuff.
% TeX ignores commentary (like this) that follows a ‘%’ sign.

% First the standard output style is changed slightly:

\hsize=29pc % The lines in this book are 29 picas wide.
\vsize=42pc ¥ The page body is 42 picas (not counting footlines).
\footline={\tenrm Footline\quad\dotfill\quad Page \folio}
\pageno=1009 % This is the starting page number (don’t ask why).

% See Chapter 23 for the way to make other page format changes via
% \hoffset, \voffset, \nopagenumbers, \headline, or \raggedbottom.

\topglue 1lin % This makes an inch of blank space (1in=2.54cm).
\centerline{\bf A Bold, Centered Title}

\smallskip % This puts a little extra space after the title line.
\rightline{\it avec un sous-titre \‘a la fran\c caise}

% Now we use \beginsection to introduce part 1 of the document.
\beginsection 1. Plain \TeX nology % The next line must be blank!

The first paragraph of a new section is not indented.
\TeX\ recognizes the end of a paragraph when it comes to a blank
line in your manuscript file. % or to a ‘\par’: see below.

Subsequent paragraphs {\it are\/} indented.\footnote*{The amount
of indentation can be changed by changing a parameter called

{\tt\char‘\\parindent}. Turn the page for a summary of \TeX’s most

important parameters.} (See?) The computer breaks a paragraph’s

text into lines in an interesting way---see reference”[1]---and hj,
yphenates words automatically when necessary.

\midinsert % This begins inserted material, e.g., a figure.
\narrower\narrower % This brings the margins in (see Chapter 14).
\noindent \llap{‘‘}If there hadn’t been room for this material on
the present page, it would have been inserted on the next one.’’
\endinsert % This ends the insertion and the effect of \narrower.

\proclaim Theorem T. The typesetting of $math$ is discussed in
Chapters 16--19, and math symbols are summarized in Appendix”F.

\beginsection 2. Bibliography\par % ‘\par’ acts like a blank line.
\frenchspacing % (Chapter 12 recommends this for bibliographies.)
\item{[1]} D."E. Knuth and M."F. Plass, °‘Breaking paragraphs
into lines,’’ {\sl Softw. pract. exp. \bf11} (1981), 1119--1184.
\bye % This is the way the file ends, not with a \bang but a \bye.

hsize
vsize
footline
pageno
topglue
centerline
smallskip
rightline
beginsection
blank line
TeX

par
footnote
tt

char
percent
midinsert
noindent
llap
proclaim
frenchspacing
item

Plass
Knuth
bye

Appendiz B: BasicControlSequences

A Bold, Centered Title

avec un sous-titre a la francaise

1. Plain TgXnology

The first paragraph of a new section is not indented. TEX recognizes the end of
a paragraph when it comes to a blank line in your manuscript file.

Subsequent paragraphs are indented.* (See?) The computer breaks a para-
graph’s text into lines in an interesting way—see reference [1]—and hyphenates
words automatically when necessary.

“If there hadn’t been room for this material on the present
page, it would have been inserted on the next one.”

Theorem T. The typesetting of math is discussed in Chapters 16-19, and math
symbols are summarized in Appendix F.

2. Bibliography
[1] D. E. Knuth and M. F. Plass, “Breaking paragraphs into lines,” Softw.
pract. exp. 11 (1981), 1119-1184.

* The amount of indentation can be changed by changing a parameter called
\parindent. Turn the page for a summary of TEX’s most important parameters.

Footline ... Page 1009

337

338 Appendix B: BasicControlSequences

The preceding example illustrates most of the basic things that you can obeylines
do directly with plain TEX, but it does not provide an exhaustive list. Thus, obeyspaces
. . as is, see obeylines, obeyspaces
it uses \centerline and \rightline, but not \leftline or \line; it uses primitive
\midinsert, but not \topinsert or \pageinsert; it uses \smallskip, but not f;rcarl;ﬁcers
\medskip or \bigskip; it uses \1lap but not \rlap, \item but not \itemitem, looseness
\topglue but not \hglue. It does not illustrate \raggedright setting of para- ﬁgg:eiem
graphs; it does not use \obeylines or \obeyspaces to shut off TEX’s automatic voffset
formatting. All such control sequences are explained later in this appendix, and baselineskip

. parskip
further information can be found by looking them up in the index. The main item
purpose of the example is to serve as a reminder of the repertoire of possibilities. ;f;’:;t;’;‘

Most of the control sequences used in the example are defined by macros plain.tex
of plain TEX format, but three of them are primitive, i.e., built in: ‘\par’ (end of zgéirz;zc‘;i

paragraph), ‘\noindent’ (beginning of non-indented paragraph), and ‘\/’ (italic
correction). The example also assigns values to two of TEX’s primitive param-
eters, namely \hsize and \vsize. TEX has scores of parameters, all of which
are listed in Chapter 24, but only a few of them are of special concern to the
majority of TEX users. Here are examples of how you might want to give new
values to the most important parameters other than \hsize and \vsize:

\tolerance=500 (TEX will tolerate lines whose badness is rated 500 or less.)
\looseness=1 (The next paragraph will be one line longer than usual.)
\parindent=4mm (Paragraphs will be indented by four millimeters.)
\hoffset=1.5in (All output will be shifted right by one and a half inches.)
\voffset=24pt (All output will be shifted down by 24 points.)
\baselineskip=11pt plus.1ipt (Baselines will be 11 pt apart, or a bit more.)
\parskip=3pt pluslpt minus.5pt (Extra space will precede each paragraph.)

Plain TEX uses \parindent also to control the amount of indentation provided
by \item, \itemitem, and \narrower.

@ The remainder of this appendix is devoted to the details of the plain TEX

format, which is a set of macros that come with normal implementations of
TgEX. These macros serve three basic purposes: (1) They make TEX usable, because
TEX’s primitive capabilities operate at a very low level. A “virgin” TEX system that
has no macros is like a newborn baby that has an immense amount to learn about the
real world; but it is capable of learning fast. (2) The plain TEX macros provide a basis
for more elaborate and powerful formats tailored to individual tastes and applications.
You can do a lot with plain TEX, but pretty soon you’ll want to do even more. (3) The
macros also serve to illustrate how additional formats can be designed.

Somewhere in your computer system you should be able to find a file called
plain.tex that contains exactly what has been preloaded into the running TEX system
that you use. Our purpose in the rest of this appendix will be to discuss the contents
of plain.tex. However, we will not include a verbatim description, because some
parts of that file are too boring, and because the actual macros have been “optimized”
with respect to memory space and running time. Unoptimized versions of the macros
are easier for humans to understand, so we shall deal with those; plain.tex contains
equivalent constructions that work better on a machine.

Appendiz B: BasicControlSequences

So here’s the plan for the rest of Appendix B: We shall go through the con-
tents of plain.tex, interspersing an edited transcription of that file with comments
about noteworthy details. When we come to macros whose usage has not yet been
explained—for example, somehow \vglue and \beginsection never made it into Chap-
ters 1 through 27—we shall consider them from a user’s viewpoint; but most of the
time we shall be addressing the issues from the standpoint of a macro designer.

1. The code tables. A format’s first duty is to establish \catcode values. This is nec-
essary because, for example, a \def command can’t be used until there are characters
like { and } of categories 1 and 2. The INITEX program (which reads plain.tex so
that TEX can be initialized) begins without knowing any grouping characters; hence
plain.tex starts out as follows:

% This is the plain TeX format that’s described in The TeXbook.
% N.B.: A version number is defined at the very end of this file;
% please change that number whenever the file is modified!
% And don’t modify the file under any circumstances.

\catcode‘\{=1 J, left brace is begin-group character

\catcode‘\}=2 ¥, right brace is end-group character

\catcode‘\$=3 J, dollar sign is math shift

\catcode‘\&=4 7, ampersand is alignment tab

\catcode ‘\#=6 J, hash mark is macro parameter character

\catcode‘\"=7 \catcode‘\""K=7 % circumflex and uparrow for superscripts
\catcode‘_=8 \catcode‘\""A=8 } underline and downarrow for subscripts
\catcode‘\""I=10 % ASCII tab is treated as a blank space
\chardef\active=13 \catcode‘\"=\active 7 tilde is active
\catcode‘\""L=\active \outer\def~"L{\par} % ASCII form-feed is \outer\par

\message{Preloading the plain format: codes,}

These instructions set up the nonstandard characters ~~K and ~~A for superscripts and
subscripts, in addition to ~ and _, so that people with extended character sets can
use T and { as recommended in Appendix C. Furthermore ~~I (ASCII (tab)) is given
category 10 (space); and ~"L (ASCII (formfeed)) becomes an active character that
will detect runaways on files that have been divided into “file pages” by (formfeed)
characters. The control sequence \active is defined to yield the constant 13; this is
the one category code that seems to deserve a symbolic name, in view of its frequent
use in constructing special-purpose macros.

When INITEX begins, category 12 (other) has been assigned to all 256 possible
characters, except that the 52 letters A...Z and a. ..z are category 11 (letter), and a
few other assignments equivalent to the following have been made:

\catcode ‘\\ =0 \catcode‘\ =10 \catcode ‘\% =14
\catcode‘\~"0@=9 \catcode‘\""M=5 \catcode‘\""7=15

Thus ‘\’ is already an escape character, ‘)’ is a space, and ‘)’ is available for comments

on the first line of the file; ASCII (null) is ignored, ASCII (return) is an end-of-line
character, and ASCII (delete) is invalid.

The \message command shown above prints a progress report on the terminal
when plain.tex is being input by INITEX. Later on comes ‘\message{registers,}’

339

catcode
INITEX
superscripts
subscripts
uparrow char
downarrow char
ASCII

tab

file pages
formfeed
active
backslash
space

null

return

delete
message

340 Appendixz B: BasicControlSequences

and several other messages, but we won’t mention them specifi