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 Introduction 
 

The processor designed at Starkey Labs was a 
general-purpose, n-bit, pipelined, programmable digital 
signal processor (DSP) targeted for low-power applications, 
such as hearing aids. The individual strengths of SystemC, 
C++, Verilog, and VHDL were utilized in the design and 
verification of this DSP. A SystemC model of the DSP was 
developed to examine architectural trade-offs and serve as a 
verification vehicle. C++ was used to develop several 
support tools, including assemblers and disassemblers. 
Verilog was used for the final, synthesizable model. And a 
single VHDL testbench was used to verify the SystemC 
model and compare it to the Verilog model. ModelSim® was 
the simulator used for this project. Initially a home-grown 
Foreign Language Interface (FLI) was developed and used 
at Starkey Labs until native SystemC support with built-in 
SystemC Verification (SCV) library support became 
available in ModelSim 5.8. The FLI enabled two-way 
communication between the VHDL testbench, Verilog RTL 
model, and the SystemC model. Due to the efficiency of this 
environment, two engineers were able to design and verify 
the DSP in a short time.  

This paper examines useful techniques for verifying 
an RTL design against a SystemC model. The I/O and points 
within either model were passed through the FLI on a cycle-
by-cycle basis. Points of interest were compared between the 
SystemC and RTL to produce an inherently self-checking 
environment. Pulling points through the FLI also enabled a 
block to be developed in-stasis before the interface logic 
was designed. We call this “putting the block on life 
support”. This allowed block development to proceed 
rapidly. As the design matured, the block ran without 
assistance from the SystemC model. 

Verification of the DSP was approached from four 
directions, as illustrated in Figure 1: block-level directed, 
processor directed, random tests, and ASIC emulation with 
an FPGA. Each direction provided verification capabilities 
that complemented the strengths and weaknesses of the other 
in areas such as interfaces, instructions, algorithms, and 
listening tests. Because a robust assembler/disassembler was 
also developed along with the DSP, test cases were written 
at the instruction level and debugged efficiently. At this 
level of abstraction, test cases were quickly developed and 
checked for correctness. Also, the same tests run at the block 
level were run at both the processor level and in the FPGA, 
facilitating test reuse. Random tests were generated using 
the SystemC Verification (SCV) library at the instruction 

level. An infinite number of instructions were randomly 
generated and run on the DSP, emphasizing particular 
classes of instructions. Lastly, algorithms developed on the 
SystemC model were ported to the FPGA, and actual 
listening tests were performed. 
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Figure 1.   Four Level Verification Approach 

 
 A Multi-Language flow 
 

A multi-language design and verification 
environment allows the strengths of many languages to be 
leveraged. In our environment, the linker, assembler, and 
disassembler for DSP code was written in C++. C++ was 
leveraged due to its wide user base as well as its 
appropriateness for this application. C++ can be developed 
and simulated with low-cost software on a low-cost system 
in an environment familiar to software developers.  

SystemC adds the notion of time, concurrency, and 
hardware data types – all of which are lacking in C++. 
SystemC was utilized to build a high level but still cycle and 
pin accurate model of the DSP. This allowed architectural 
tradeoffs to be examined and provided a vehicle for co-
simulation of the upcoming RTL. Additionally, algorithm 
developers did not have to wait for the RTL code to be 
completed. 

It is important to determine the appropriate level 
for the SystemC model. Is cycle accurate important? Is pin 
accurate important? For the model of an algorithm, such as 
an FFT, FIR, etc., a non-cycle accurate but pin accurate 
model can be developed. A FIFO is inserted after the 
SystemC model to throttle the comparison of results. The 
RTL model determines when a result is available and draws 
a result from the SystemC results FIFO. The results are then 
compared. This is known as Kahn modeling and is 
illustrated in Figure 2. A processor model, on the other 
hand, must be cycle and bit accurate. It may or may not be 
pin accurate. 
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Figure 2.  Kahn Modeling 

  
VHDL was used for the following purposes: 

testbench development, a communication interface through 
the FLI with SystemC, and comparison of SystemC signals 
with RTL. ModelSim signal_spy constructs were used for 
introspection into the Verilog RTL signals1. A decision 
needs to be made whether to compare the signals in 
SystemC or VHDL. In SystemC, only the sc_logic type is 
multi-valued and can represent an “X”. Simulations will be 
extremely slow if all SystemC signals are of this type. A 
signal that is an “X” in RTL can positively compare to a 
SystemC signal not of sc_logic type if the comparison is 
done in SystemC2. Therefore, comparisons should be done 
in VHDL. 

The records and overloading features of VHDL 
were used extensively. All signals compared were 
encapsulated into a record that contained the RTL value, 
SystemC value, error count, and error color. The error count 
is a running total of the number of errors for this signal. The 
error color provides a quick visual check of the comparison 
status. Red indicates a mismatch in the present cycle while 
green indicates a match. This proved indispensable for quick 
debugging. 

Finally, Verilog was utilized to develop the 
synthesizable RTL. The available engineering base at 
Starkey used Verilog on previous projects. Additionally, 
there was a large pool of Verilog literate engineers available 
in Colorado, facilitating recruitment. All of the engineers 
working on the project were recent hires. 

It should be emphasized that all of the work 
involved in developing the SystemC model, assembler, 
linkers, etc. would have been done whether or not an ASIC 
was ever produced by Starkey Labs. This work was 
necessary to enable algorithm developers to examine 
performance tradeoffs and debug the final processor. 
Considering that this project was completed by a two-man 
team in a short period of time, leveraging existing 
components was of the utmost importance. 

 
Verification Environment 

 
 A high-level diagram of the verification environment is 
represented in Figure 3. The reference system is the model of 
the DSP written in SystemC. From this model the I/O and any 
internal signals can be brought through the FLI and observed. 
The design under test (DUT) is the synthesizable RTL model 
written in Verilog. Similarly the I/O and internal signals of this 

model may also be observed. The important difference is that 
these signals will not be brought through the FLI. With few 
exceptions, the FLI is used to observe SystemC signals. The 
reference results and DUT results are compared in the results 
comparator. The results comparator observes the signals and 
flags an error if they do not compare. Various monitors and 
checkers may be bolted onto the RTL to provide further 
checking, such as adherence to a bus protocol. Lastly, stimulus 
is provided to both the SystemC model and DUT 
simultaneously and in parallel. 
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Figure 3.  Verification Environment 

 
The FLI 

 
 The design process at Starkey consisted of comparing a 
C-based algorithm model to RTL. This was accomplished by 
generating vectors from each independently running kernel 
(RTL and C), storing the results of each and then comparing 
the databases against one another. An illustration of this flow 
is in Figure 4. This led to very high overhead for storage and 
comparisons. This worked for 100,000 gate projects but the 
next generation would be much larger. A new, more efficient 
method was needed. 
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Figure 4. Running SystemC and HDL Kernel Independently 
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 Running both simulators concurrently in the same kernel 
and doing the compares cycle by cycle in memory were found 
to be much more efficient. Our tests showed conservative 
improvements of 50X. This allows for lower storage (VCD 
files) and lower CPU requirements (post processing 
comparison). As an added bonus, the system is much more 
flexible for debug. An illustration of this flow is in Figure 5. 
Note: Everything runs in memory. 
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Figure 5.  Running SystemC and HDL Kernels Concurrently 
 

At the time, direct compile of the SystemC kernel 
into ModelSim was not available. In order to manage risk, 
Starkey developed an FLI based interface for importing, 
controlling, and communicating with the SystemC kernel. 
Essentially, it allows us to run the SystemC based models 
and simulator in ModelSim along with Verilog and VHDL. 
This enables comparison of internal SystemC model 
variables with counterparts in Verilog on a cycle-for-cycle, 
bit-for-bit basis. This also takes advantage of the SystemC 
internal bit types, versus “masking” bits in a vector in C 
based methods. 
 Being able to expose internal variables is a tremendous 
boon to debug. As we found difficult to debug areas in the 
design, the SystemC modelers would expose the internal 
variables in the model for comparison with the RTL. The 
testbench could then detect, for example, bad addresses when 
data is written to memory. This often flagged a problem long 
before a corresponding read to the same address exposed the 
errant write. Comparisons were perfomed on approximately 65 
signals split up between registers, memory interfaces, I/O, and 
critical signals.  
 We were able to reuse C++ code from our system model 
for a disassembler. This allowed us, via the FLI, to display 
instructions, with operands, in an easily readable text format 
versus hex, as illustrated in Table 1. The ability to determine 
what the processor is doing at a glance is very important. 

Table 1.  Converting Hex Instructions to Text 

 
 Additionally, this method allowed us to build a divide and 
conquer approach to the design as depicted in Figure 6. 
Normally, one designs an internal block of  RTL, builds a 
testbench, and debugs the block in isolation. When ready, it is 
connected in the system, and the testbench and vectors lose 
their relevance. Our approach was to build the minimum 
necessary components to support a block: those being the 
program controller and the data path sections. These were 
supplied with input from the SystemC pipeline, which was 
known to be correct for interrupts, jumps, etc. The rest of the 
stimuli for the internal block came from the internal variables 
via the FLI (direct compile would be used today). The output 
from that RTL block is compared to the SystemC model, and 
one can observe any differences. This sped up implementation 
and verification of each core, as individual testbenches were 
not needed. An additional benefit is that the tests were written 
in assembler, which was reusable in the next level of unit 
testing.  
 Today, direct compile is available for ModelSim. Our 
tests have shown it to be a very flexible, convenient method of 
importing SystemC models into ModelSim. Using direct 
compile, the SystemC model does not have to be written with 
accessor functions to points of interest within the model. The 
SystemC model is viewed as just another HDL and can be 
probed as such.  
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Figure 6.  Divide and Conquer Approach to Design 

  
Verification of the DSP 

 
A DSP’s primary focus is to execute instructions. 

Therefore, the main focus of verification is to stimulate the 
SystemC and RTL with a wide range of instructions. An 

Cycle Count 255 256 257 
Instruction 
in hex 

4ca5a 10fca 72f22 

Instruction 
in text 

XFR AX1, C0 MUL ACA, XA RI_PO 



 
 4 

instruction is made up of a mnemonic and 0,1, or 2 
operands. A mnemonic is the operation to be performed, 
such as transfer, add, and multiply. The operand is the 
register or memory location that the mnemonic will be 
performed on.  

Due to the availability of an assembler and linker 
(written in SystemC), most testing can be performed by 
simply developing sequences of instruction. Testing at such 
a high level lends itself easily to random generation of 
instructions. Each mnemonic is enumerated, and the 
allowable operands for the mnemonic are constrained. Then 
the next function of the SCV Library is used to generate a 
new instruction3. The number of instructions that can be 
simulated in a single test is only limited by the size of 
program memory. An advantage of SystemC and C++ is that 
functions can execute in zero RTL simulation time. This fact 
can be leveraged to randomly generate a new set of 
instructions, assemble and link the instructions, and load 
program memory in zero simulation time. In this manner an 
infinite number of instructions can be generated and 
executed. 
 
The State of the DSP 
 A challenge of verifying a DSP is the definition of 
correctness. That is, what SystemC signals must match what 
RTL signals at what time? Does every single internal signal 
have to match on every cycle, or is there a subset of both 
signals and time that can be defined? For the DSP design at 
Starkey Labs, it was determined that all internal registers as 
well as the I/O would be compared. Internal registers are those 
defined in the specification, not those produced by synthesis. 
This criteria would define the State of the DSP. Some I/O, 
such as memory, would only be compared when the enables 
are active. Data and address lines are allowed to miscompare 
when not active. If all comparisons are positive the DSP is 
deemed to be operating correctly. 
 
Block-Level Verification 
 As soon as a few core blocks were completed they could 
be verified by putting them on “life-support” from the 
SystemC model. For example, a program decoder could be fed 
instructions from the SystemC model before the program 
controller was developed. A diagram of this concept is in 
Figure 7. In this manner individual blocks could be verified, 
simplifying integration debug immensely. After the peripheral 
blocks (in this case the program controller) were finished the 
“life support” was removed, and the RTL ran independently. 
Only rudimentary testing is done at this level, and all tests are 
directed (i.e. not random). 
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Figure 7.  Life Support from SystemC Model 

 
Processor-Level Verification 
 At the processor level, all the tests developed at the block 
level can be directly reused. The only difference is the RTL 
now runs standalone. Verification at the processor level is 
primarily through random testing. Directed tests are written at 
the processor level to verify the interfaces of the DSP. 
Additional directed tests are also written to achieve the 
desired code coverage. A detailed block diagram of the final 
verification environment is depicted in Figure 8. 
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Figure 8.  Processor Level Verification Environment 

 

Random Instruction Generation 
Using the SCV Library, massive amounts of 

instructions can be generated in a very short period of time. 
However, unless the instructions are constrained correctly, 
the time-savings will be lost to the time spent debugging 
illegal instruction sequences. The efficiencies of random 
verification techniques enabled a single engineer to verify 
the DSP as well as participate in the design effort.  
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Achieving acceptable code coverage results with 

directed tests only would have been impossible with our 
small team.        Table 2 illustrates code coverage results (as 
a percentage) with directed tests only, random tests only, 
and combined tests. Comparable code coverage results were 
obtained with random verification in a much shorter period 
of time. However, directed testing is still vital to hit 
important facets of the design. Directed tests are also much 
easier to debug. 

       Table 2.  Code Coverage Results (%) 

Test’s Statement Branch Condition 
Directed 84.0 71.9 65.7 
Random 81.0 65.2 62.7 

Combined 90.8 79.5 73.5 
 

An example of random instructions generation 
follows. Suppose we have a processor that has only three 
instructions, COM (compare), ADD (add), and SUB 
(subtract). Operand 1 is allowed to be one of four registers, 
X0, X1, X2, and X3. Operand 2 is allowed to be one of two 
registers, Y0 and Y1. Below are Random_Instruction.cpp 
and Random_Instruction.h. 

Random_Instruction.cpp line 4 is the entry point 
from the SystemC library to the users’s code. Line 8 creates 
an output file of instructions. Lines 9-11 create arrays of 
strings for the pair of Operands and the OpCode. We will 
randomly generate a constrained index into these arrays to 
create the instructions. Line 12 creates an object of type 
enMNEMONICS to randomize upon. Line 13 constructs the 
constraint and gives it a name of add. Line 16 generates a 
new OpCode. Line 19 generates a new pair of operands. 
Finally, line 20 calls the function to generate the instruction 
 
1  #include <Random_Instruction.h> 
2  #include <iostream> 
3 
4  int sc_main(int argc, char** argv) 
5  { 
6    int i; 
7 
8    ofstream OutFile("instructions.test", ios::out);11 
9     char* Operand1Str[] = {"X0", "X1", "X2", "X3"}; 
10   char* Operand2Str[] = {"Y0", "Y1"}; 
11   char *OpCodeStr[] = {"ADD", "SUB", "COM"}; 
12   scv_smart_ptr<enMNEMONICS > OpCode; 
13   Add_Constraint add("add"); 
14   for (i=0;i<8;i++) 
15       { 
16       OpCode->next(); 
17       if ((*OpCode == ADD) | (*OpCode == COM) | 
(*OpCode == SUB)) 
18   { 
19   add.next();  

20   generate_ADD(OutFile, OpCodeStr[*OpCode], 
Operand1Str[*add.Operand1], 
Operand2Str[*add.Operand2]); 
21 } 
22    }    
23  return 0; 
24  } 
25 
26  void generate_ADD(ofstream &OutFile, char *OpCode, 
char *Operand1, char *Operand2) 
27   { 
28    OutFile << "    " << OpCode << " " << Operand1 << ", 
" << Operand2 << endl; 
29   } 
 
 RandomInstruction.h lines 1 and 2 includes the SystemC 
and SCV header files. Line 4 is the functional prototype of the 
function that outputs the instruction. Line 5 creates an 
enumerated type called enMNEMONICS. Lines 7-16 create a 
partial template specialization of scv_extensions for 
enumerated types. Line 18 declares a structure 
Add_Constraint containing the elements Operand1 and 
Operand2 of type unsigned int to randomize upon. Lines 21-
24 uses a constructor to constrain the indexes Operand1 and 
Operand2. 
 
1   #include <systemc.h> 
2  #include <scv.h> 
3 
4  void generate_ADD(ofstream &, char *, char *, char *); 
5  enum enMNEMONICS {ADD, SUB, COM}; 
6 
7  template<> 
8  class scv_extensions<enMNEMONICS> : public 
scv_enum_base<enMNEMONICS> { 
9  public: 
10 
11   SCV_ENUM_CTOR(enMNEMONICS) { 
12      SCV_ENUM(ADD);  
13      SCV_ENUM(SUB);  
14      SCV_ENUM(COM); 
15       } 
16   }; 
17 
18  struct Add_Constraint : public scv_constraint_base { 
19    scv_smart_ptr<unsigned int > Operand1; 
20    scv_smart_ptr<unsigned int > Operand2; 
21    SCV_CONSTRAINT_CTOR(Add_Constraint) { 
22      SCV_CONSTRAINT(Operand1() < 4); 
23      SCV_CONSTRAINT(Operand2() < 2);  
24    } 
25 }; 
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The output of this code is: 
SUB X0, Y0 
ADD X3, Y1 
ADD X2, Y0 
SUB X0, Y1 
ADD X0, Y1 
ADD X1, Y1 
COM X1, Y0 
SUB X3, Y0 
 
FPGA Verification 
 Further verification will be done with an FPGA-based 
ASIC emulation platform. The ASIC emulator excels in testing 
interfaces and other characteristics of the DSP not easily 
exposed through instruction-level testing. In addition, an 
algorithm can be loaded onto the DSP and real listening tests 
performed. This will require various synthesizable peripherals 
to be available. A challenge for ASIC emulation is the 
recreation of a failure within a virtual environment where it 
can be easily debugged. This may require extensions to the 
testing environment or deferral of the test to the system 
utilizing the DSP. It is vitally important to have a high level of 
confidence in the RTL to avoid extensive debugging time. 

 
Concluding Remarks 

 
We leveraged four different languages to design and verify 
the DSP. 
 
1) C++  

a) Developed linker, assembler, and disassembler. 
b) Inexpensive to develop, maintain, and test. 
c) Quick development time. 
 

2) SystemC  
a) Allowed us to leverage DSP algorithms done in 

C++. 
b) Allowed us to make reference models bit and cycle 

accurate. 
c) Allowed use of directed random verification 

(DRV). 
 

3) VHDL 
a) Allowed us to build watchers and monitors in an 

HDL environment.  
b) Allowed use of FLI for better performance (versus 

PLI). 
c) Abstract types, records, and overloading made for 

useful displays in the simulator. 
 

4) Verilog 
a) CaseX and CaseZ were very useful for instruction 

decoders. 
b) Allowed us to leverage existing RTL designers in 

Colorado. 
 

5) Additionally, the ModelSim simulator gets kudos for: 
a) SignalSpy eased probing of internal RTL for 

monitoring and comparison. 
b) Dual language feature was seamless and easy to 

use. 
c) FLI turned out to be very useful and powerful. 
d) Direct compile adds ease of use to SystemC 

models. 
 

We used one environment which allowed us to rapidly 
verify the DSP from a block to a processor level. This 
allowed us to leverage the same tests (assembler code) at 
both the block and processor level. 

The use of a cycle and bit accurate reference model in 
SystemC eased debug and verification. It also allowed us to 
make extensive use of DRV, a real labor saver. An 
additional benefit was the improved validation of the 
reference model as it went thru the process. This model will 
be used in several system level simulators, some with RTL 
and some without. All will benefit from the accuracy of this 
model. 

The overall architecture made for a cost effective 
solution. The major cost was for ModelSim SE simulators, a 
cost we would have borne anyway. Running SystemC inside 
ModelSim (with the FLI as the communication channel) and 
doing the comparison on the fly in memory is the most 
efficient method. We were able to reduce our expected 
server / simulator license ratio by 50 percent. Regressions 
are faster as no disk I/O is needed unless a failure is 
detected and a waveform file created. For a small company 
with a limited tools budget, these efficiencies were most 
welcome. 
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