

 1

 Design and Verification of a Processor Using VHDL, Verilog, SystemC, and C++

 Dr. Greg Tumbush, Starkey Labs, Colorado Springs, CO

Bill Dittenhofer, Starkey Labs, Colorado Springs, CO

 Introduction

The processor designed at Starkey Labs was a
general-purpose, n-bit, pipelined, programmable digital
signal processor (DSP) targeted for low-power applications,
such as hearing aids. The individual strengths of SystemC,
C++, Verilog, and VHDL were utilized in the design and
verification of this DSP. A SystemC model of the DSP was
developed to examine architectural trade-offs and serve as a
verification vehicle. C++ was used to develop several
support tools, including assemblers and disassemblers.
Verilog was used for the final, synthesizable model. And a
single VHDL testbench was used to verify the SystemC
model and compare it to the Verilog model. ModelSim® was
the simulator used for this project. Initially a home-grown
Foreign Language Interface (FLI) was developed and used
at Starkey Labs until native SystemC support with built-in
SystemC Verification (SCV) library support became
available in ModelSim 5.8. The FLI enabled two-way
communication between the VHDL testbench, Verilog RTL
model, and the SystemC model. Due to the efficiency of this
environment, two engineers were able to design and verify
the DSP in a short time.

This paper examines useful techniques for verifying
an RTL design against a SystemC model. The I/O and points
within either model were passed through the FLI on a cycle-
by-cycle basis. Points of interest were compared between the
SystemC and RTL to produce an inherently self-checking
environment. Pulling points through the FLI also enabled a
block to be developed in-stasis before the interface logic
was designed. We call this “putting the block on life
support”. This allowed block development to proceed
rapidly. As the design matured, the block ran without
assistance from the SystemC model.

Verification of the DSP was approached from four
directions, as illustrated in Figure 1: block-level directed,
processor directed, random tests, and ASIC emulation with
an FPGA. Each direction provided verification capabilities
that complemented the strengths and weaknesses of the other
in areas such as interfaces, instructions, algorithms, and
listening tests. Because a robust assembler/disassembler was
also developed along with the DSP, test cases were written
at the instruction level and debugged efficiently. At this
level of abstraction, test cases were quickly developed and
checked for correctness. Also, the same tests run at the block
level were run at both the processor level and in the FPGA,
facilitating test reuse. Random tests were generated using
the SystemC Verification (SCV) library at the instruction

level. An infinite number of instructions were randomly
generated and run on the DSP, emphasizing particular
classes of instructions. Lastly, algorithms developed on the
SystemC model were ported to the FPGA, and actual
listening tests were performed.

Random

Processor
Directed

Block
DirectedFPGA

Figure 1. Four Level Verification Approach

 A Multi-Language flow

A multi-language design and verification
environment allows the strengths of many languages to be
leveraged. In our environment, the linker, assembler, and
disassembler for DSP code was written in C++. C++ was
leveraged due to its wide user base as well as its
appropriateness for this application. C++ can be developed
and simulated with low-cost software on a low-cost system
in an environment familiar to software developers.

SystemC adds the notion of time, concurrency, and
hardware data types – all of which are lacking in C++.
SystemC was utilized to build a high level but still cycle and
pin accurate model of the DSP. This allowed architectural
tradeoffs to be examined and provided a vehicle for co-
simulation of the upcoming RTL. Additionally, algorithm
developers did not have to wait for the RTL code to be
completed.

It is important to determine the appropriate level
for the SystemC model. Is cycle accurate important? Is pin
accurate important? For the model of an algorithm, such as
an FFT, FIR, etc., a non-cycle accurate but pin accurate
model can be developed. A FIFO is inserted after the
SystemC model to throttle the comparison of results. The
RTL model determines when a result is available and draws
a result from the SystemC results FIFO. The results are then
compared. This is known as Kahn modeling and is
illustrated in Figure 2. A processor model, on the other
hand, must be cycle and bit accurate. It may or may not be
pin accurate.

 2

RTL

SysC F
I
F
O

results

data valid
Compareresults

results

Pass/
Fail

Figure 2. Kahn Modeling

VHDL was used for the following purposes:

testbench development, a communication interface through
the FLI with SystemC, and comparison of SystemC signals
with RTL. ModelSim signal_spy constructs were used for
introspection into the Verilog RTL signals1. A decision
needs to be made whether to compare the signals in
SystemC or VHDL. In SystemC, only the sc_logic type is
multi-valued and can represent an “X”. Simulations will be
extremely slow if all SystemC signals are of this type. A
signal that is an “X” in RTL can positively compare to a
SystemC signal not of sc_logic type if the comparison is
done in SystemC2. Therefore, comparisons should be done
in VHDL.

The records and overloading features of VHDL
were used extensively. All signals compared were
encapsulated into a record that contained the RTL value,
SystemC value, error count, and error color. The error count
is a running total of the number of errors for this signal. The
error color provides a quick visual check of the comparison
status. Red indicates a mismatch in the present cycle while
green indicates a match. This proved indispensable for quick
debugging.

Finally, Verilog was utilized to develop the
synthesizable RTL. The available engineering base at
Starkey used Verilog on previous projects. Additionally,
there was a large pool of Verilog literate engineers available
in Colorado, facilitating recruitment. All of the engineers
working on the project were recent hires.

It should be emphasized that all of the work
involved in developing the SystemC model, assembler,
linkers, etc. would have been done whether or not an ASIC
was ever produced by Starkey Labs. This work was
necessary to enable algorithm developers to examine
performance tradeoffs and debug the final processor.
Considering that this project was completed by a two-man
team in a short period of time, leveraging existing
components was of the utmost importance.

Verification Environment

 A high-level diagram of the verification environment is
represented in Figure 3. The reference system is the model of
the DSP written in SystemC. From this model the I/O and any
internal signals can be brought through the FLI and observed.
The design under test (DUT) is the synthesizable RTL model
written in Verilog. Similarly the I/O and internal signals of this

model may also be observed. The important difference is that
these signals will not be brought through the FLI. With few
exceptions, the FLI is used to observe SystemC signals. The
reference results and DUT results are compared in the results
comparator. The results comparator observes the signals and
flags an error if they do not compare. Various monitors and
checkers may be bolted onto the RTL to provide further
checking, such as adherence to a bus protocol. Lastly, stimulus
is provided to both the SystemC model and DUT
simultaneously and in parallel.

Stimulus
Generator

DUT
Design Under Test

Reference System
(SystemC)

Results
Comparator

stimulus

 DUT results

Reference results

Monitor
Checkers

Figure 3. Verification Environment

The FLI

 The design process at Starkey consisted of comparing a
C-based algorithm model to RTL. This was accomplished by
generating vectors from each independently running kernel
(RTL and C), storing the results of each and then comparing
the databases against one another. An illustration of this flow
is in Figure 4. This led to very high overhead for storage and
comparisons. This worked for 100,000 gate projects but the
next generation would be much larger. A new, more efficient
method was needed.

SystemC
Simulator

vectors
Disk

vectors

Comparator Results

HDL
Simulator

vectors

Disk

vectors

Figure 4. Running SystemC and HDL Kernel Independently

 3

 Running both simulators concurrently in the same kernel
and doing the compares cycle by cycle in memory were found
to be much more efficient. Our tests showed conservative
improvements of 50X. This allows for lower storage (VCD
files) and lower CPU requirements (post processing
comparison). As an added bonus, the system is much more
flexible for debug. An illustration of this flow is in Figure 5.
Note: Everything runs in memory.

SystemC
Simulator

Comparator Results

HDL
Simulator

vectorsFLI

vectors

Figure 5. Running SystemC and HDL Kernels Concurrently

At the time, direct compile of the SystemC kernel
into ModelSim was not available. In order to manage risk,
Starkey developed an FLI based interface for importing,
controlling, and communicating with the SystemC kernel.
Essentially, it allows us to run the SystemC based models
and simulator in ModelSim along with Verilog and VHDL.
This enables comparison of internal SystemC model
variables with counterparts in Verilog on a cycle-for-cycle,
bit-for-bit basis. This also takes advantage of the SystemC
internal bit types, versus “masking” bits in a vector in C
based methods.
 Being able to expose internal variables is a tremendous
boon to debug. As we found difficult to debug areas in the
design, the SystemC modelers would expose the internal
variables in the model for comparison with the RTL. The
testbench could then detect, for example, bad addresses when
data is written to memory. This often flagged a problem long
before a corresponding read to the same address exposed the
errant write. Comparisons were perfomed on approximately 65
signals split up between registers, memory interfaces, I/O, and
critical signals.
 We were able to reuse C++ code from our system model
for a disassembler. This allowed us, via the FLI, to display
instructions, with operands, in an easily readable text format
versus hex, as illustrated in Table 1. The ability to determine
what the processor is doing at a glance is very important.

Table 1. Converting Hex Instructions to Text

 Additionally, this method allowed us to build a divide and
conquer approach to the design as depicted in Figure 6.
Normally, one designs an internal block of RTL, builds a
testbench, and debugs the block in isolation. When ready, it is
connected in the system, and the testbench and vectors lose
their relevance. Our approach was to build the minimum
necessary components to support a block: those being the
program controller and the data path sections. These were
supplied with input from the SystemC pipeline, which was
known to be correct for interrupts, jumps, etc. The rest of the
stimuli for the internal block came from the internal variables
via the FLI (direct compile would be used today). The output
from that RTL block is compared to the SystemC model, and
one can observe any differences. This sped up implementation
and verification of each core, as individual testbenches were
not needed. An additional benefit is that the tests were written
in assembler, which was reusable in the next level of unit
testing.
 Today, direct compile is available for ModelSim. Our
tests have shown it to be a very flexible, convenient method of
importing SystemC models into ModelSim. Using direct
compile, the SystemC model does not have to be written with
accessor functions to points of interest within the model. The
SystemC model is viewed as just another HDL and can be
probed as such.

 Input
stimulus

Program
Control

Data
Path

SystemC
 Model

critical
registers

busses,
stacks,
memory

control

data

DUT
Results

Sub Block
Results

Pass/
FailDUT

(Sub-Block)

Figure 6. Divide and Conquer Approach to Design

Verification of the DSP

A DSP’s primary focus is to execute instructions.

Therefore, the main focus of verification is to stimulate the
SystemC and RTL with a wide range of instructions. An

Cycle Count 255 256 257
Instruction
in hex

4ca5a 10fca 72f22

Instruction
in text

XFR AX1, C0 MUL ACA, XA RI_PO

 4

instruction is made up of a mnemonic and 0,1, or 2
operands. A mnemonic is the operation to be performed,
such as transfer, add, and multiply. The operand is the
register or memory location that the mnemonic will be
performed on.

Due to the availability of an assembler and linker
(written in SystemC), most testing can be performed by
simply developing sequences of instruction. Testing at such
a high level lends itself easily to random generation of
instructions. Each mnemonic is enumerated, and the
allowable operands for the mnemonic are constrained. Then
the next function of the SCV Library is used to generate a
new instruction3. The number of instructions that can be
simulated in a single test is only limited by the size of
program memory. An advantage of SystemC and C++ is that
functions can execute in zero RTL simulation time. This fact
can be leveraged to randomly generate a new set of
instructions, assemble and link the instructions, and load
program memory in zero simulation time. In this manner an
infinite number of instructions can be generated and
executed.

The State of the DSP
 A challenge of verifying a DSP is the definition of
correctness. That is, what SystemC signals must match what
RTL signals at what time? Does every single internal signal
have to match on every cycle, or is there a subset of both
signals and time that can be defined? For the DSP design at
Starkey Labs, it was determined that all internal registers as
well as the I/O would be compared. Internal registers are those
defined in the specification, not those produced by synthesis.
This criteria would define the State of the DSP. Some I/O,
such as memory, would only be compared when the enables
are active. Data and address lines are allowed to miscompare
when not active. If all comparisons are positive the DSP is
deemed to be operating correctly.

Block-Level Verification
 As soon as a few core blocks were completed they could
be verified by putting them on “life-support” from the
SystemC model. For example, a program decoder could be fed
instructions from the SystemC model before the program
controller was developed. A diagram of this concept is in
Figure 7. In this manner individual blocks could be verified,
simplifying integration debug immensely. After the peripheral
blocks (in this case the program controller) were finished the
“life support” was removed, and the RTL ran independently.
Only rudimentary testing is done at this level, and all tests are
directed (i.e. not random).

Program
Decoder

SystemC
Reference Model FLI

In
st

ru
ct

io
ns

In
st

ru
ct

io
ns

Verilog

Figure 7. Life Support from SystemC Model

Processor-Level Verification
 At the processor level, all the tests developed at the block
level can be directly reused. The only difference is the RTL
now runs standalone. Verification at the processor level is
primarily through random testing. Directed tests are written at
the processor level to verify the interfaces of the DSP.
Additional directed tests are also written to achieve the
desired code coverage. A detailed block diagram of the final
verification environment is depicted in Figure 8.

Stimulus
Generator

SystemC
Reference Model

stimulus

cl
k

an
d

re
se

t

Reference
Model Signals

FLI

SystemC

C and C++

FLI Interface
VHDL

Monitor

Checker

RTL Model

Verilog VHDL

Comparators

Reference
Model Signals

RTL
Signals

clk and
reset

stimulus

VHDL

VHDL

Figure 8. Processor Level Verification Environment

Random Instruction Generation
Using the SCV Library, massive amounts of

instructions can be generated in a very short period of time.
However, unless the instructions are constrained correctly,
the time-savings will be lost to the time spent debugging
illegal instruction sequences. The efficiencies of random
verification techniques enabled a single engineer to verify
the DSP as well as participate in the design effort.

 5

Achieving acceptable code coverage results with

directed tests only would have been impossible with our
small team. Table 2 illustrates code coverage results (as
a percentage) with directed tests only, random tests only,
and combined tests. Comparable code coverage results were
obtained with random verification in a much shorter period
of time. However, directed testing is still vital to hit
important facets of the design. Directed tests are also much
easier to debug.

 Table 2. Code Coverage Results (%)

Test’s Statement Branch Condition
Directed 84.0 71.9 65.7
Random 81.0 65.2 62.7

Combined 90.8 79.5 73.5

An example of random instructions generation
follows. Suppose we have a processor that has only three
instructions, COM (compare), ADD (add), and SUB
(subtract). Operand 1 is allowed to be one of four registers,
X0, X1, X2, and X3. Operand 2 is allowed to be one of two
registers, Y0 and Y1. Below are Random_Instruction.cpp
and Random_Instruction.h.

Random_Instruction.cpp line 4 is the entry point
from the SystemC library to the users’s code. Line 8 creates
an output file of instructions. Lines 9-11 create arrays of
strings for the pair of Operands and the OpCode. We will
randomly generate a constrained index into these arrays to
create the instructions. Line 12 creates an object of type
enMNEMONICS to randomize upon. Line 13 constructs the
constraint and gives it a name of add. Line 16 generates a
new OpCode. Line 19 generates a new pair of operands.
Finally, line 20 calls the function to generate the instruction

1 #include <Random_Instruction.h>
2 #include <iostream>
3
4 int sc_main(int argc, char** argv)
5 {
6 int i;
7
8 ofstream OutFile("instructions.test", ios::out);11
9 char* Operand1Str[] = {"X0", "X1", "X2", "X3"};
10 char* Operand2Str[] = {"Y0", "Y1"};
11 char *OpCodeStr[] = {"ADD", "SUB", "COM"};
12 scv_smart_ptr<enMNEMONICS > OpCode;
13 Add_Constraint add("add");
14 for (i=0;i<8;i++)
15 {
16 OpCode->next();
17 if ((*OpCode == ADD) | (*OpCode == COM) |
(*OpCode == SUB))
18 {
19 add.next();

20 generate_ADD(OutFile, OpCodeStr[*OpCode],
Operand1Str[*add.Operand1],
Operand2Str[*add.Operand2]);
21 }
22 }
23 return 0;
24 }
25
26 void generate_ADD(ofstream &OutFile, char *OpCode,
char *Operand1, char *Operand2)
27 {
28 OutFile << " " << OpCode << " " << Operand1 << ",
" << Operand2 << endl;
29 }

 RandomInstruction.h lines 1 and 2 includes the SystemC
and SCV header files. Line 4 is the functional prototype of the
function that outputs the instruction. Line 5 creates an
enumerated type called enMNEMONICS. Lines 7-16 create a
partial template specialization of scv_extensions for
enumerated types. Line 18 declares a structure
Add_Constraint containing the elements Operand1 and
Operand2 of type unsigned int to randomize upon. Lines 21-
24 uses a constructor to constrain the indexes Operand1 and
Operand2.

1 #include <systemc.h>
2 #include <scv.h>
3
4 void generate_ADD(ofstream &, char *, char *, char *);
5 enum enMNEMONICS {ADD, SUB, COM};
6
7 template<>
8 class scv_extensions<enMNEMONICS> : public
scv_enum_base<enMNEMONICS> {
9 public:
10
11 SCV_ENUM_CTOR(enMNEMONICS) {
12 SCV_ENUM(ADD);
13 SCV_ENUM(SUB);
14 SCV_ENUM(COM);
15 }
16 };
17
18 struct Add_Constraint : public scv_constraint_base {
19 scv_smart_ptr<unsigned int > Operand1;
20 scv_smart_ptr<unsigned int > Operand2;
21 SCV_CONSTRAINT_CTOR(Add_Constraint) {
22 SCV_CONSTRAINT(Operand1() < 4);
23 SCV_CONSTRAINT(Operand2() < 2);
24 }
25 };

 6

The output of this code is:
SUB X0, Y0
ADD X3, Y1
ADD X2, Y0
SUB X0, Y1
ADD X0, Y1
ADD X1, Y1
COM X1, Y0
SUB X3, Y0

FPGA Verification
 Further verification will be done with an FPGA-based
ASIC emulation platform. The ASIC emulator excels in testing
interfaces and other characteristics of the DSP not easily
exposed through instruction-level testing. In addition, an
algorithm can be loaded onto the DSP and real listening tests
performed. This will require various synthesizable peripherals
to be available. A challenge for ASIC emulation is the
recreation of a failure within a virtual environment where it
can be easily debugged. This may require extensions to the
testing environment or deferral of the test to the system
utilizing the DSP. It is vitally important to have a high level of
confidence in the RTL to avoid extensive debugging time.

Concluding Remarks

We leveraged four different languages to design and verify
the DSP.

1) C++

a) Developed linker, assembler, and disassembler.
b) Inexpensive to develop, maintain, and test.
c) Quick development time.

2) SystemC
a) Allowed us to leverage DSP algorithms done in

C++.
b) Allowed us to make reference models bit and cycle

accurate.
c) Allowed use of directed random verification

(DRV).

3) VHDL
a) Allowed us to build watchers and monitors in an

HDL environment.
b) Allowed use of FLI for better performance (versus

PLI).
c) Abstract types, records, and overloading made for

useful displays in the simulator.

4) Verilog
a) CaseX and CaseZ were very useful for instruction

decoders.
b) Allowed us to leverage existing RTL designers in

Colorado.

5) Additionally, the ModelSim simulator gets kudos for:
a) SignalSpy eased probing of internal RTL for

monitoring and comparison.
b) Dual language feature was seamless and easy to

use.
c) FLI turned out to be very useful and powerful.
d) Direct compile adds ease of use to SystemC

models.

We used one environment which allowed us to rapidly
verify the DSP from a block to a processor level. This
allowed us to leverage the same tests (assembler code) at
both the block and processor level.

The use of a cycle and bit accurate reference model in
SystemC eased debug and verification. It also allowed us to
make extensive use of DRV, a real labor saver. An
additional benefit was the improved validation of the
reference model as it went thru the process. This model will
be used in several system level simulators, some with RTL
and some without. All will benefit from the accuracy of this
model.

The overall architecture made for a cost effective
solution. The major cost was for ModelSim SE simulators, a
cost we would have borne anyway. Running SystemC inside
ModelSim (with the FLI as the communication channel) and
doing the comparison on the fly in memory is the most
efficient method. We were able to reduce our expected
server / simulator license ratio by 50 percent. Regressions
are faster as no disk I/O is needed unless a failure is
detected and a waveform file created. For a small company
with a limited tools budget, these efficiencies were most
welcome.

References

1. Model Technology (Mar 2003), “ModelSim SE
Command Reference, Version 5.7c”.
2. Open SystemC Initiative (2003), “SystemC 2.0.1
Language Reference Manual, Revision 1.0”.
3. Members of the SystemC Verification Working Group
(Dec 2002), “SystemC Verification Standard Specification,
Version 1.0b”.

	Verification Environment
	The FLI
	Verification of the DSP
	The State of the DSP
	Block-Level Verification
	Processor-Level Verification
	Random Instruction Generation

	FPGA Verification
	Concluding Remarks
	References

