
Xr: Cross-device Rendering for Vector Graphics

Carl Worth
USC, Information Sciences Institute

cworth@isi.edu

Keith Packard
Cambridge Research Laboratory, HP Labs, HP

keithp@keithp.com

Abstract

Xr provides a vector-based rendering API with
output support for the X Window System and
local image buffers. PostScript and PDF file
output is planned. Xr is designed to produce
identical output on all output media while tak-
ing advantage of display hardware acceleration
through the X Render Extension.

Xr provides a stateful user-level API with sup-
port for the PDF 1.4 imaging model. Xr pro-
vides operations including stroking and filling
Bézier cubic splines, transforming and com-
positing translucent images, and antialiased
text rendering. The PostScript drawing model
has been adapted for use within C applications.
Extensions needed to support much of the PDF
1.4 imaging operations have been included.
This integration of the familiar PostScript op-
erational model within the native application
language environment provides a simple and
powerful new tool for graphics application de-
velopment.

1 Introduction

The design of the Xr library is motivated by the
desire to provide a high-quality rendering in-
terface for all areas of application presentation,
from labels and shading on buttons to the cen-

tral image manipulation in a drawing or paint-
ing program. Xr targets displays, printers and
local image buffers with a uniform rendering
model so that applications can use the same
API to present information regardless of the
media.

The Xr library provides a device-independent
API, and can currently drive X Window
System[10] applications as well as manipulate
images in the application address space. It can
take advantage of the X Render Extension[7]
where available but does not require it. The
intent is to add support for Xr to produce
PostScript[1] and PDF 1.4[5] output.

Moving from the primitive original graphics
system available in the X Window System to
a complete device-independent rendering envi-
ronment should serve to drive future applica-
tion development in exciting directions.

1.1 Vector Graphics

On modern display hardware, an application’s
desire to present information using abstract ge-
ometric objects must be translated to physical
pixels at some point in the process. The later
this transition occurs in the rendering process
the fewer pixelization artifacts will appear as
a result of additional transformation operations
on pixel-based data.



Existing application artwork is often generated
in pixel format because the rendering opera-
tions available to the application at runtime are
a mere shadow of those provided in a typical
image manipulation program. Providing suffi-
cient rendering functionality within the appli-
cation environment allows artwork to be pro-
vided in vector form which presents high qual-
ity results at a wide range of sizes.

Figure 1: Raster and vector images at original
size (artwork courtesy of Larry Ewing and Si-
mon Budig)

Figures 1-3 illustrate the benefits of vector art-
work. The penguin on the left of Figure 1 is
the familiar image as originally drawn by Larry
Ewing[3]. The penguin on the right is an Xr
rendering of vector-based artwork by Simon
Budig[2] intended to match Ewing’s artwork as
closely as possible. At the original scale of the
raster artwork, the two images are quite com-
parable.

However, when the images are scaled up, the
differences between raster and vector artwork

Figure 2: Raster image scaled 400%

become apparent. Figure 2 shows a portion of
the original raster image scaled by a factor of 4
with the GIMP [6]. Artifacts from the scaling
are apparent, primarily in the jaggies around
the contour of the image. The GIMP did apply
an interpolating filter to reduce these artifacts
but this comes at the cost of blurring the im-
age. Compare this to Figure 3 where Xr has
been used to draw the vector artwork at 4 times
the original scale. Since the vector artwork is
resolution independent, the artifacts of jaggies
and blurring are not present in this image.

1.2 Vector Rendering Model

The two-dimensional graphics world is fortu-
nate to have one dominant rendering model.
With the introduction of desktop publishing
and the PostScript printer, application devel-
opers converged on that model. Recent exten-
sions to that model have been incorporated in
PDF 1.4, but the basic architecture remains the
same. PostScript provides a simple painters
model; each rendering operation places new
paint on top of the contents of the surface. PDF
1.4 extends this model to include Porter/Duff
image compositing [9] and other image ma-
nipulation operations which serve to bring the
basic PostScript rendering model in line with
modern application demands.

Figure 3: Vector image scaled 400%



PostScript and PDF draw geometric shapes by
constructing arbitrary paths of lines and cubic
Bézier splines. The coordinates used for the
construction can be transformed with an affine
matrix. This provides a powerful compositing
technique as the transformation may be set be-
fore a complex object is drawn to position and
scale it appropriately. Text is treated as pre-
built path sections which couples it tightly and
cleanly with the rest of the model.

1.3 Xr Programming Interface

While the goal of the Xr library is to provide
a PDF 1.4 imaging model, PDF doesn’t pro-
vide any programming language interface. Xr
borrows its imperative immediate mode model
from PostScript operators. However, instead of
proposing a complete new programming lan-
guage to encapsulate these operators, Xr uses C
functions for the operations and expects the de-
veloper to use C instead of PostScript to imple-
ment the application part of the rendering sys-
tem. This dramatically reduces the number of
operations needed by the library as only those
directly involved in graphics need be provided.
The large number of PostScript operators that
support a complete language are more than ad-
equately replaced by the C programming lan-
guage.

PostScript encapsulates rendering state in a
global opaque object and provides simple op-
erators to change various aspects of that state,
from color to line width and dash patterns. Be-
cause global objects can cause various prob-
lems in C library interfaces, the graphics state
in Xr is held in a structure that is passed to each
of the library functions.

The translation from PostScript operators to
the Xr interface is straightforward. For ex-
ample, the lineto operator translates to the Xr-

LineTo function. The coordinates of the line
endpoint needed by the operator are preceded
by the graphics state object in the Xr interface.

2 API and Examples

This section provides a tour of the application
programming interface (API) provided by Xr.
Major features of the API are demonstrated in
illustrations, and the source code for each illus-
tration is provided in Appendix A.

2.1 Xr Initialization

#include <Xr.h>

#define WIDTH 600
#define HEIGHT 600
#define STRIDE (WIDTH * 4)

char image[STRIDE*HEIGHT];

int
main (void)
{

XrState *xrs;

xrs = XrCreate ();

XrSetTargetImage (xrs, image,
XrFormatARGB32,
WIDTH, HEIGHT, STRIDE);

/* draw things using xrs ... */

XrDestroy (xrs);

/* do something useful with image
(eg. write to a file) */

return 0;
}

Figure 4: Minimal program using Xr

Figure 4 shows a minimal program using
Xr. This program does not actually do useful
work—it never draws anything, but it demon-
strates the initialization and cleanup proce-
dures required for using Xr.



After including the Xr header file, the first Xr
function a program must call is XrCreate. This
function returns a pointer to an XrState object,
which is used by Xr to store its data. The
XrState pointer is passed as the first argument
to almost all other Xr functions.

Before any drawing functions may be called,
Xr must be provided with a target surface to
receive the resulting graphics. The backend of
Xr has support for multiple types of graphics
targets. Currently, Xr has support for render-
ing to in-memory images as well as to any X
Window System “drawable”, (eg. a window or
a pixmap).

The program calls XrSetTargetImage to direct
graphics to an array of bytes arranged as 4-
byte ARGB pixels. A similar call, XrSetTar-
getDrawable, is available to direct graphics to
an X drawable.

When the program is done using Xr, it signi-
fies this by calling XrDestroy. During XrDe-
stroy, all data is released from the XrState ob-
ject. It is then invalid for the program to use
the value of the XrState pointer until a new ob-
ject is created by calling XrCreate. The results
of any graphics operations are still available on
the target surface, and the program can access
that surface as appropriate, (eg. write the im-
age to a file, display the graphics on the screen,
etc.).

2.2 Transformations

All coordinates passed from user code to Xr are
in a coordinate system known as “user space”.
These coordinates are then transformed to “de-
vice space” which corresponds to the device
grid of the target surface. This transformation
is controlled by the current transformation ma-
trix (CTM) within Xr.

The initial CTM is established such that one
user unit maps to an integer number of device
pixels as close as possible to 3780 user units
per meter (˜96 DPI) of physical device. This
approach attempts to balance the competing
desires of having a predictable real-world in-
terpretation for user units and having the ability
to draw elements on exact device pixel bound-
aries. Ideally, device pixels would be so small
that the user could ignore pixel boundaries, but
with current display pixel sizes of about 100
DPI, the pixel boundaries are still significant.

The CTM can be modified by the user to po-
sition, scale, or rotate subsequent objects to be
drawn. These operations are performed by the
functions XrTranslate, XrScale, and XrRotate.
Additionally, XrConcatMatrix will compose a
given matrix into the current CTM and XrSet-
Matrix will directly set the CTM to a given
matrix. The XrDefaultMatrix function can be
used to restore the CTM to its original state.

Figure 5: Hering illusion (originally discov-
ered by Ewald Hering in 1861)[11]. The radial
lines were positioned with XrTranslate and Xr-
Rotate

In Figure 5, each of the radial lines was drawn
using identical path coordinates. The different
angles were achieved by calling XrRotate be-
fore drawing each line. The source code for
this image is in Figure 11.



2.3 Save/Restore of Graphics State

Programs using a structured approach to draw-
ing will modify graphics state parameters in
a hierarchical fashion. For example, while
traversing a tree of objects to be drawn a pro-
gram may modify the CTM, current color, line
width, etc. at each level of the hierarchy.

Xr supports this hierarchical approach to
graphics by maintaining a stack of graphics
state objects within the XrState object. The
XrSave function pushes a copy of the current
graphics state onto the top of the stack. Mod-
ifications to the graphics state are made only
to the object on the top of the stack. The Xr-
Restore function pops a graphics state object
off of the stack, restoring all graphics parame-
ters to their state before the last XrSave opera-
tion.

This model has proven effective within struc-
tured C programs. Most drawing functions can
be written with the following style, wrapping
the body of the function with calls to XrSave
and XrRestore:

void
draw_something (XrState *xrs)
{

XrSave (xrs);
/* draw something here */
XrRestore (xrs);

}

This approach has the benefit that modifica-
tions to the graphics state within the function
will not be visible outside the function, leading
to more readily reusable code. Sometimes a
single function will contain multiple sections
of code framed by XrSave/XrRestore calls.
Some find it more readable to include a new
indented block between the XrSave/XrRestore

calls in this case. Figure 12 contains an exam-
ple of this style.

2.4 Path Construction

One of the primary elements of the Xr graphics
state is the current path. A path consists of one
or more independent subpaths, each of which is
an ordered set of straight or curved segments.
Any non-empty path has a “current point”, the
final coordinate in the final segment of the cur-
rent subpath. Path construction functions may
read and update the current point.

Xr provides several functions for construct-
ing paths. XrNewPath installs an empty path,
discarding any previously defined path. The
first path construction called after XrNewPath
should be XrMoveTo which simply moves the
current point to the point specified. It is also
valid to call XrMoveTo when the current path
is non-empty in order to begin a new subpath.

XrLineTo adds a straight line segment to the
current path, from the current point to the point
specified. XrCurveTo adds a cubic Bézier
spline with a control polygon defined by the
current point as well as the three points speci-
fied.

XrClosePath closes the current subpath. This
operation involves adding a straight line seg-
ment from the current point to the initial point
of the current subpath, (ie. the point specified
by the most recent call to XrMoveTo). Call-
ing XrClosePath is not equivalent to adding
the corresponding line segment with XrLineTo.
The distinction is that a closed subpath will
have a join at the junction of the final coin-
cident point while an unclosed path will have
caps on either end of the path, (even if the two
ends happen to be coincident). See Section 2.5
for more discussion of caps and joins.



It is often convenient to specify path coordi-
nates as relative offsets from the current point
rather than as absolute coordinates. To allow
this, Xr provides XrRelMoveTo, XrRelLineTo,
and XrRelCurveTo. Figure 6 shows a render-
ing of a path constructed with one call to Xr-
MoveTo and four calls to XrRelLineTo in a
loop. The source code for this figure can be
seen in Figure 13.

Figure 6: Nested box illusion (after a figure by
Al Seckel[11]). Constructed with XrMoveTo
and XrRelLineTo

As rectangular paths are commonly used, Xr
provides a convenience function for adding a
rectangular subpath to the current path. A
call to XrRectangle(xrs, x, y, width,
height) is equivalent to the following se-
quence of calls:

XrMoveTo (xrs, x, y);
XrRelLineTo (xrs, width, 0);
XrRelLineTo (xrs, 0, height);
XrRelLineTo (xrs, -width, 0);
XrClosePath (xrs);

After a path is constructed, it can be drawn
in one of two ways: stroking its outline
(XrStroke) or filling its interior (XrFill).

2.5 Path Stroking

XrStroke draws the outline formed by stroking
the path with a pen that in user space is cir-
cular with a radius of the current line width,
(as set by XrSetLineWidth). The specification
of the XrStroke operator is based on the con-
volution of polygonal tracings as set forth by
Guibas, Ramshaw and Stolfi [4]. Convolution
lends itself to efficient implementation as the
outline of the stroke can be computed within an
arbitrarily small error bound by simply using
piece-wise linear approximations of the path
and the pen.

As subsequent segments within a subpath are
drawn, they are connected according to one
of three different join styles, (bevel, miter, or
round), as set by XrSetLineJoin. Closed sub-
paths are also joined at the closure point. Un-
closed subpaths have one of three different cap
styles, (butt, square, or round), applied at ei-
ther end of the path. The cap style is set with
the XrSetLineCap function.

Figure 7 demonstrates the three possible cap
and join styles. The source code for this figure
(Figure 12) demonstrates the use of XrSetLine-
Join and XrSetLineCap as well as XrTranslate,
XrSave, and XrRestore.

Figure 7: Demonstration of cap and join styles



2.6 Path Filling

XrFill fills the area on the “inside” of the cur-
rent path. Xr can apply either the winding rule
or the even-odd rule to determine the meaning
of “inside”. This behavior is controlled by call-
ing XrSetFillRule with a value of either XrFill-
RuleWinding or XrFillRuleEvenOdd.

Figure 8 demonstrates the effect of the fill rule
given a star-shaped path. With the winding rule
the entire star is filled in, while with the even-
odd rule the center of the star is considered out-
side the path and is not filled. Figure 15 con-
tains the source code for this example.

Figure 8: Demonstration of the effect of the fill
rule

2.7 Controlling Accuracy

The graphics rendering of Xr is carefully im-
plemented to allow all rendering approxima-
tions to be performed within a user-specified
error tolerance, (within the limits of machine
arithmetic of course). The XrSetTolerance
function allows the user to specify a maximum
error in units of device pixels.

The tolerance value has a strong impact on the
quality of rendered splines. Empirical testing
with modern displays reveals that errors larger
than 0.1 device pixels are observable. The de-
fault tolerance value in Xr is therefore 0.1 de-
vice pixels.

The user can increase the tolerance value to
tradeoff rendering accuracy for performance.
Figure 9 displays the same curved path ren-
dered several times with increasing tolerance
values. Figure 14 contains the source code for
this figure.

Figure 9: Splines drawn with tolerance values
of .1, .5, 1, 5, and 10

2.8 Paint

The example renderings shown so far have all
used opaque “paint” as the source color for all
drawing operations. The color of this paint can
be controlled with the XrSetRGBColor func-
tion.

Xr supports more interesting possibilities for
the paint used in graphics operations. First, the
source color need not be opaque; the XrSetAl-
pha function establishes an opacity level for the
source paint. The alpha value ranges from 0
(transparent) to 1 (opaque).

When Xr graphics operations combine translu-
cent surfaces, there are a number of different
ways in which the source and destination col-
ors can be combined. Xr provides support for
all of the Porter/Duff compositing operators as
well as the extended operators defined in the
X Render Extension. The desired operator is
selected by calling XrSetOperator before com-
positing. The default operator value is Xr-
OperatorOver corresponding to the Porter/Duff
OVER operator.



Finally, the XrSetPattern function allows any
XrSurface to be installed as a static or repeat-
ing pattern to be used as the “paint” for subse-
quent graphics operations. The pattern surface
may have been initialized from an external im-
age source or may have been the result of pre-
vious Xr graphics operations.

Figure 10 was created by first drawing small,
vertical black and white rectangles onto a 3X2
surface. This surface was then scaled, filtered,
and used as the pattern for 3 XrFill operations.
This demonstrates an efficient means of gener-
ating linear gradients within Xr.

Figure 10: Outline affects perception of depth
from shading, (after an illustration by Isao
Watanabe[14]). This example uses XrFill with
XrSetPattern

2.9 Images

In addition to the vector path support, Xr also
supports bitmapped images as primitive ob-
jects. Images are transformed, (and optionally
filtered), by the CTM in the same manner as all
other primitives. In order to display an image,
an XrSurface object must first be created for
the image, then the surface can be displayed
with the XrShowSurface function. XrShow-
Surface places an image of the given width and
height at the origin in user space, so XrTrans-
late can be used to position the surface.

In addition to the CTM, each surface also has
its own matrix providing a transformation from
user space to image space. This matrix can be
used to transform a surface independently from
the CTM.

The XrShowSurface function has another im-
portant use besides allowing the display of ex-
ternal images. When using the Porter/Duff
compositing operators, it is often desirable to
combine several graphics primitives on an in-
termediate surface before compositing the re-
sult onto the target surface. This functionality
is similar to the notion of transparency groups
in PDF 1.4 and can be achieved with the fol-
lowing idiom:

XrSave (xrs);
XrSetTargetSurface (xrs, surface);
/* draw to intermediate surface with

any Xr functions */
XrRestore (xrs);
XrShowSurface (xrs, surface);

In this example an intermediate surface is in-
stalled as the target surface, and then graphics
are drawn on the intermediate surface. When
XrRestore is called, the original target surface
is restored and the resulting graphics from the
intermediate surface are composited onto the
original target.

This technique can be applied recursively with
any number of levels of intermediate surfaces
each receiving the results of its “child” surfaces
before being composited onto its “parent” sur-
face.

Alternatively, images can be constructed from
data external to the Xr environment, acquired
from image files, external devices or even the
window system. Because the image formats
used within Xr are exposed to applications, this
kind of manipulation is easy and efficient.



3 Implementation

As currently implemented, Xr has good sup-
port for all functions described here. The major
aspects of the PostScript imaging model that
have not been discussed are text/font support,
clipping, and color management. Xr does in-
clude some level of experimental support for
text and clipping already, but these areas need
further development.

The Xr system is implemented as 3 major li-
brary components: libXr, libXc, and libIc.
LibXr provides the user-level API described in
detail already.

LibXc is the backend of the Xr system. It
provides a uniform, abstract interface to sev-
eral different low-level graphics systems. Cur-
rently, libXc provides support for drawing to
the X Window System or to in-memory im-
ages. The semantics of the libXc interface are
consistent with the X Render Extension so it is
used directly whenever available.

LibIc is an image compositing library that is
used by libXc when drawing to in-memory im-
ages. LibIc can also be used to provide support
for a low-level system whose semantics do not
match the libXc interface. In this case, libIc is
used to draw everything to an in-memory im-
age and then the resulting image is provided
to the low-level system. This is the approach
libXc uses to draw to an X server that does not
support the X Render Extension.

The libIc code is based on the original code for
the software fallback in the reference imple-
mentation of the X Render Extension. It would
be useful to convert any X server using that im-
plementation to instead use libIc.

These three libraries are implemented in ap-
proximately 7000 lines of C code.

4 Related Work

Of the many existing graphics systems, several
relate directly to this new work.

4.1 PostScript and Display PostScript

As described in the introduction, Xr adopts
(and extends) the PostScript rendering model.
However, PostScript is not just a rendering
model as it includes a complete program-
ming language. Display PostScript embeds a
PostScript interpreter inside the window sys-
tem. Drawing is done by generating PostScript
programs and delivering them to the window
system.

One obvious benefit of using PostScript every-
where is that printing and display can easily be
done with the same rendering code, as long as
the printer supports PostScript. A disadvantage
is that images are never generated within the
application address space making it more diffi-
cult to use where PostScript is not available.

Using the full PostScript language as an inter-
mediate representation means that a significant
fraction of the overall application development
will be done in this primitive language. In ad-
dition, the PostScript portion is executed asyn-
chronously with respect to the remaining code,
further complicating development. Integrating
the powerful PostScript rendering model into
the regular application development language
provides a coherent and efficient infrastructure.

4.2 Portable Document Format

PDF provides a very powerful rendering
model, but no application interface. Generat-
ing PDF directly from an application would re-



quire some kind of PDF API along with a PDF
interpreter. The goal for Xr is to be able to gen-
erate PDF output files while providing a clean
application interface.

A secondary goal is to allow PDF interpreters
to be implemented on top of Xr. As Xr is miss-
ing some of the less important PDF operations,
those will need to be emulated within the inter-
preter. An important feature within Xr is that
such emulation be reasonably efficient.

4.3 OpenGL

OpenGL[12] provides an API with much
the same flavor as Xr; immediate mode
functions with an underlying stateful library.
OpenGL doesn’t provide the PostScript ren-
dering model, and doesn’t purport to support
printing or the local generation of images.

As Xr provides an abstract interface atop many
graphics architectures, it should be possible to
layer Xr on OpenGL.

5 Future Work

The Xr library is in active development. Every-
thing described in this paper is currently work-
ing, but much work remains to make the library
generally useful for application development.

5.1 Text Support

Much of the current design effort has been
focused on the high-level drawing model and
some low-level rendering implementation for
geometric primitives. This design effort was
simplified by the adoption of the PostScript

model. PostScript offers a few useful sug-
gestions about handling text, but applications
require significantly more information about
fonts and layout. The current plan is to require
applications to use the FreeType [13] library
for font access and the Fontconfig [8] library
for font selection and matching. That should
leave Xr needing only relatively primitive sup-
port for positioning glyphs and will push issues
of layout back on the application.

5.2 Printing Backend

Xr is currently able to target the X Window
System, (with or without the X Render Ex-
tension), as well as local images. Still miss-
ing is the ability to generate PostScript or PDF
output files. Getting this working is important
not only so that applications can print, but also
because there may be unintended limitations
in both the implementation and specification
caused by the essential similarity between the
two existing backends.

One of the goals of Xr is to have identical out-
put across all output devices. This will re-
quire that Xr embed glyph images along with
the document output to ensure font matching
across all PostScript or PDF interpreters. Em-
bedding TrueType and Type1 fonts in the out-
put file should help solve this problem.

5.3 Color Management

Xr currently supports only the RGB color
space. This simplifies many aspects of the
library interface and implementation. While
it might become necessary to add support for
more sophisticated color management, such
development will certainly await a compelling
need. One simple thing to do in the meantime
would be to reinterpret the device-dependent



RGB values currently provided as sRGB in-
stead. Using ICC color profiles would per-
mit reasonable color matching across devices
while not adding significant burden to the API
or implementation.

6 Availability

Xr is free software released under an MIT li-
cense fromhttp://xr.xwin.org .

7 Disclaimer

Portions of this effort sponsored by the Defense Advanced Research

Projects Agency (DARPA) under agreement number F30602-99-1-

0529. The views and conclusions contained herein are those of the au-

thors and should not be interpreted as representing the official policies

or endorsements of the Defense Advanced Research Projects Agency

(DARPA) or the U.S. Government.

References

[1] Adobe Systems Incorporated.PostScript
Language Reference Manual. Addison
Wesley, 1985.

[2] Simon Budig. The linux-pinguin again.
http://www.home.unix-ag.
org/simon/penguin .

[3] Larry Ewing. Linux 2.0 penguins.
http://www.isc.tamu.edu/
~lewing/linux .

[4] Leo Guibas, Lyle Ramshaw, and Jorge
Stolfi. A kinetic framework for com-
putational geometry. InProceedings of
the IEEE 1983 24th Annual Symposium

on the Foundations of Computer Science,
pages 100–111. IEEE Computer Society
Press, 1983.

[5] Adobe Systems Incorporated, editor.
PDF Reference: Version 1.4. Addison-
Wesley, 3rd edition, 2001.

[6] Peter Mattis, Spencer Kimball, and the
GIMP developers. The GIMP: The GNU
image manipulation program.http:
//www.gimp.org .

[7] Keith Packard. Design and Implementa-
tion of the X Rendering Extension. In
FREENIX Track, 2001 Usenix Annual
Technical Conference, Boston, MA, June
2001. USENIX.

[8] Keith Packard. Font Configuration and
Customization for Open Source Systems.
In 2002 Gnome User’s and Develop-
ers European Conference, Seville, Spain,
April 2002. Gnome.

[9] Thomas Porter and Tom Duff. Composit-
ing Digital Images.Computer Graphics,
18(3):253–259, July 1984.

[10] Robert W. Scheifler and James Gettys.X
Window System. Digital Press, third edi-
tion, 1992.

[11] Al Seckel. The Great Book of Optical Il-
lusions. Firefly Books Ltd., 2002.

[12] Mark Segal, Kurt Akeley, and Jon Leach
(ed). The OpenGL Graphics System: A
Specification. SGI, 1999.

[13] David Turner and The FreeType Devel-
opment Team. The design of FreeType
2, 2000. http://www.freetype.
org/freetype2/docs/design/ .

[14] Isao Watanabe. 3-d shape and outline.
http://www.let.kumamoto-u.
ac.jp/watanabe/Watanabe-E/
Illus-E/3D-E/index.%html .



A Example Source Code

This appendix contains the source code that
was used to draw each figure in Section 2. Each
example contains a top-level “draw” function
that accepts an XrState pointer, a width, and a
height. The examples here can be made into
complete programs by adding the code from
the example program of Figure 4 and inserting
a call to the appropriate “draw” function.

void
draw_hering (XrState *xrs,

int width, int height)
{
#define LINES 32.0
#define MAX_THETA (.80 * M_PI_2)
#define THETA (2 * MAX_THETA / (LINES-1))

int i;

XrSetRGBColor (xrs, 0, 0, 0);
XrSetLineWidth (xrs, 2.0);

XrSave (xrs);
{

XrTranslate (xrs, width / 2, height / 2);
XrRotate (xrs, MAX_THETA);

for (i=0; i < LINES; i++) {
XrMoveTo (xrs, -2 * width, 0);
XrLineTo (xrs, 2 * width, 0);
XrStroke (xrs);

XrRotate (xrs, - THETA);
}

}
XrRestore (xrs);

XrSetLineWidth (xrs, 6);
XrSetRGBColor (xrs, 1, 0, 0);

XrMoveTo (xrs, width / 4, 0);
XrRelLineTo (xrs, 0, height);
XrStroke (xrs);

XrMoveTo (xrs, 3 * width / 4, 0);
XrRelLineTo (xrs, 0, height);
XrStroke (xrs);

}

Figure 11: Source for Hering illusion of Fig-
ure 5

void
draw_caps_joins (XrState *xrs,

int width, int height)
{

static double dashes[2] = {10, 20};
int line_width = height / 12 & (~1);

XrSetLineWidth (xrs, line_width);
XrSetRGBColor (xrs, 0, 0, 0);

XrTranslate (xrs, line_width, line_width);
width -= 2 *line_width;

XrSetLineJoin (xrs, XrLineJoinBevel);
XrSetLineCap (xrs, XrLineCapButt);
stroke_v_twice (xrs, width, height);

XrTranslate (xrs, 0, height/4-line_width);
XrSetLineJoin (xrs, XrLineJoinMiter);
XrSetLineCap (xrs, XrLineCapSquare);
stroke_v_twice (xrs, width, height);

XrTranslate (xrs, 0, height/4-line_width);
XrSetLineJoin (xrs, XrLineJoinRound);
XrSetLineCap (xrs, XrLineCapRound);
stroke_v_twice (xrs, width, height);

}

void
stroke_v_twice (XrState *xrs,

int width, int height)
{

XrMoveTo (xrs, 0, 0);
XrRelLineTo (xrs, width/2, height/2);
XrRelLineTo (xrs, width/2, -height/2);

XrSave (xrs);
XrStroke (xrs);
XrRestore (xrs);

XrSave (xrs);
{

XrSetLineWidth (xrs, 2.0);
XrSetLineCap (xrs, XrLineCapButt);
XrSetRGBColor (xrs, 1, 1, 1);
XrStroke (xrs);

}
XrRestore (xrs);

XrNewPath (xrs);
}

Figure 12: Source for cap and join demonstra-
tion of Figure 7



void
draw_spiral (XrState *xrs,

int width, int height)
{

int wd = .02 * width;
int hd = .02 * height;
int i;

width -= 2;
height -= 2;

XrMoveTo (xrs, width - 1, -hd - 1);
for (i=0; i < 9; i++) {

XrRelLineTo (xrs, 0, height-hd*(2*i-1));
XrRelLineTo (xrs, -(width-wd*(2*i)), 0);
XrRelLineTo (xrs, 0,-(height-hd*(2*i)));
XrRelLineTo (xrs, width-wd*(2*i+1), 0);

}

XrSetRGBColor (xrs, 0, 0, 1);
XrStroke (xrs);

}

Figure 13: Source for nested box illusion of
Figure 6

void
draw_splines (XrState *xrs,

int width, int height)
{

int i;
double tolerance[5] = {.1,.5,1,5,10};
double line_width = .08 * width;
double gap = width / 6;

XrSetRGBColor (xrs, 0, 0, 0);
XrSetLineWidth (xrs, line_width);

XrTranslate (xrs, gap, 0);
for (i=0; i < 5; i++) {

XrSetTolerance (xrs, tolerance[i]);
draw_spline (xrs, height);
XrTranslate (xrs, gap, 0);

}
}

void
draw_spline (XrState *xrs, double height)
{

XrMoveTo (xrs, 0, .1 * height);
height = .8 * height;
XrRelCurveTo (xrs,

-height/2, height/2,
height/2, height/2,
0, height);

XrStroke (xrs);
}

Figure 14: Source for splines drawn with vary-
ing tolerance as in Figure 9

void
draw_stars (XrState *xrs,

int width, int height)
{

XrSetRGBColor (xrs, 0, 0, 0);

XrSave (xrs);
{

XrTranslate (xrs, 5, height/2.6);
XrScale (xrs, height, height);
star_path (xrs);
XrSetFillRule (xrs, XrFillRuleWinding);
XrFill (xrs);

}
XrRestore (xrs);

XrSave (xrs);
{

XrTranslate (xrs,
width-height-5, height/2.6);

XrScale (xrs, height, height);
star_path (xrs);
XrSetFillRule (xrs, XrFillRuleEvenOdd);
XrFill (xrs);

}
XrRestore (xrs);

}

void
star_path (XrState *xrs)
{

int i;
double theta = 4 * M_PI / 5.0;

XrMoveTo (xrs, 0, 0);
for (i=0; i < 4; i++) {

XrRelLineTo (xrs, 1.0, 0);
XrRotate (xrs, theta);

}
XrClosePath (xrs);

}

Figure 15: Source for stars to demonstrate fill
rule as in Figure 8



void
draw_gradients (XrState *xrs,

int img_width, int img_height)
{

XrSurface *gradient;
double width, height, pad;

width = img_width / 4.0;
pad = (img_width - (3 * width)) / 2.0;
height = img_height;

gradient=make_gradient(xrs,width,height);

XrSetPattern (xrs, gradient);
draw_flat (xrs, width, height);
XrTranslate (xrs, width + pad, 0);
XrSetPattern (xrs, gradient);
draw_tent (xrs, width, height);
XrTranslate (xrs, width + pad, 0);
XrSetPattern (xrs, gradient);
draw_cylinder (xrs, width, height);

XrRestore (xrs);

XrSurfaceDestroy (gradient);
}

XrSurface *
make_gradient (XrState *xrs,

double width, double height)
{

XrSurface *g;
XrMatrix *matrix;

XrSave (xrs);

g = XrSurfaceCreateNextTo (
XrGetTargetSurface (xrs),
XrFormatARGB32, 3, 2);

XrSetTargetSurface (xrs, g);

XrSetRGBColor (xrs, 0, 0, 0);
XrRectangle (xrs, 0, 0, 1, 2);
XrFill (xrs);

XrSetRGBColor (xrs, 1, 1, 1);
XrRectangle (xrs, 1, 0, 1, 2);
XrFill (xrs);

XrSetRGBColor (xrs, 0, 0, 0);
XrRectangle (xrs, 2, 0, 1, 2);
XrFill (xrs);

XrRestore (xrs);

matrix = XrMatrixCreate ();
XrMatrixScale (matrix,

2.0/width, 1.0/height);
XrSurfaceSetMatrix (g, matrix);
XrSurfaceSetFilter (g, XrFilterBilinear);
XrMatrixDestroy (matrix);

return g;
}

void
draw_flat (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrRectangle (xrs, 0, hw, w, h - hw);

XrFill (xrs);
}

void
draw_tent (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrMoveTo (xrs, 0, hw);
XrRelLineTo (xrs, hw, -hw);
XrRelLineTo (xrs, hw, hw);
XrRelLineTo (xrs, 0, h - hw);
XrRelLineTo (xrs, -hw, -hw);
XrRelLineTo (xrs, -hw, hw);
XrClosePath (xrs);

XrFill (xrs);
}

void
draw_cylinder (XrState *xrs, double w, double h)
{

double hw = w / 2.0;

XrMoveTo (xrs, 0, hw);
XrRelCurveTo (xrs, 0, -hw,

w, -hw, w, 0);
XrRelLineTo (xrs, 0, h - hw);
XrRelCurveTo (xrs, 0, -hw,

-w, -hw, -w, 0);
XrClosePath (xrs);

XrFill (xrs);
}

Figure 16: Source for 3 gradient-filled shapes of Figure 10


