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Abstract– An intuitive concept of antialiasing is

developed into very efficient antialiased line and cir-

cle generators that require even less amount of inte-

ger arithmetic than Bresenham’s line and circle algo-

rithms. Unlike its predecessors, the new antialiasing

technique is derived in spatial domain (raster plane)

under a subjectively meaningful error measure to pre-

serve the dynamics of curve and object boundaries. A

formal analysis of the new antialiasing technique in fre-

quency domain is also conducted. It is shown that our

antialiasing technique computes the same antialiased

images as Fujimoto-Iwata’s algorithm but at a fraction

of the Iat ter’s computational cost. The simplicities of

the new antialiased line and circle generators also mean

their easy hardware implementations.

CR Category: 1.3.3 [Computer Graphics]: Pic-

ture/Image Generation - display algorithms.

Key Words: Antialiasing, curve digitization, digital

geometry, convolution.

1 Introduction

Curve-rendering on raster devices, a fundamental oper-

ation in computer graphics, is essentially a process of

quantizing (digitizing) continuous two-dimensional vi-

sual signals at the sampling rate of device resolution.

This sampling rate is usually significantly lower than

twice the maximum frequency of object boundaries and
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curve edges, 1 resulting in loss of information as ex-

plained by the Shannon sampling theorem. This in-

formation loss is the reason for the existence of visu-

ally unpleasant “aliasing” (staircasing effect) on dig-

itized object boundaries and curves. There are two

ways to attack the problem: increasing the sampling

rate and removing high frequency components of the

image. The first approach calls for increasing the res-

olution of the raster device. But the size of frame

buffer and consequently the rendering costs increase

quadratically in the resolution. Even at a resolution

of 1024 x 1024, objectionable staircasing effects still

exist. High-resolution alone is not an economic solu-

tion to the problem. The second approach of filtering

high frequency components of the image was adopted

by many researchers [1, 4, 5, 6, 7, 8] to combat alias-

ing. These techniques utilize grayscales to increase the

effective spatial resolution. The disadvantages of the

second approach are high computational cost involved

in low-pass filtering operations, and fuzzy object edges.

Proposed in this paper is a new concept of an-

tialiasing that leads to efficient smooth curve render-

ing algorithms. Our antialiasing research is done in

both spatial and frequency domains. The new algo-

rithms achieve exactly the same antialiasing effects as

Fujimot~Iwata’s algorithm for line segments but at a

fraction of the latter’s cost. A new antialiased line gen-

erator is designed for smooth line generation that re-

quires only half as much integer arithmetic as Bresen-

ham’s line algorithm [2]. And the antialiased line gener-

ation can be easily implemented by hardware. Smooth

circles can also be generated by the new technique

I For phy~i~~ di~plays a curve should be mOdekd = a narrow

2-dimensional image rather than a l-dimensional mathematical
entity of no area.
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at a lower cost than Breaenham’s circle algorithm [3].

The paper is organized as follows. In the next section

a dynamic error measure for the quality of digitized

curves is introduced, and the correspondence between

the measure and the image quality is demonstrated.

Then based on this error measure the new antialias-

ing concept is introduced in section 3. The rationale

for the new antialiasing algorithm is also established

using convolution theorem, hence it is in principle con-

gruent to the current antialiasing algorithms. In sec-

tion 4 we prove the equivalence between our algorithm

and Fujimot-Iwata’s algorithm. In sections 5 and 6

the high efficiency of the new antialiasing technique

is demonstrated by the development of fast antialiased

line and circle generators. Section 7 deals with the gen-

eralization of the new antialiasing technique to general

curves and to antialiased object boundaries blent in col-

orful background.

2 Dynamic Error in Curve

Digit izat ion

Previously image aliasing was investigated in the fre-

quency domain. In this section we study image aliasing

in the spatial domain (rcder plane). Some of our pre-

vious results in digital geometry [10, 12] are used to

study the quality of digitized curves. Let y = ~(z)

be a differentiable curve to be digitized in the raster

plane, and partition the curve into segments where ei-

ther O < 1~’(z)l ~ 1 or 1 < l~(z)l < co, called x-

dominant and y-dominant segments, respectively. Now

consider an x-dominant curve segment without loss of

generality (the discussion on y-dominant curve seg-

ments is the same through symmetry). Then the digiti-

zation of this curve segment is defined to be an ordered

point set {(i, Y~) : 1 ~ i ~ N}. This definition means

that the curve segment is sampled in unit raster steps

along the x axis, and the sample value ~(i) is quantized

to Yi. Due to the finite precision of the raster plane

Yi must be an integer, resulting in the commonly used

quantization scheme

[J
y= f(i)+~ (1)

to minimize the y distance between the sampled value

~(i) and its image point in the raster plane, But how

meaningful in terms of human perception is this simple

criterion Eq( 1)? Let us consider the geometry of Fig. 1

where the three pixels indicated by solid dots are chosen
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1: Dynamic error in curve digitization

by Eq(l) as the discrete image of the continuous curve.

If, however, the pixel labeled by o replaces the one just

above it, then the so-called dynamic error defined by

Ei,j = f(i) - .f(~)– [Yj– U] (2)

is minimized. The above dynamic error relates to the

first-order difference and hence characterizes the dig-

itization error in curve dynamics. Visually, the new

pixel configuration obtained by pulling the pixel in the

middle column down by one raster unit presents a bet-

ter approximation to the original curve. This improve-

ment results because the pixel pattern of the solid dots

distorts the dynamic context of the original curve seg-

ment. Namely, the convex curve ~(z) is mapped to

a concave pixel pattern. By moving the middle pixel

down by a raster unit, the convexity is preserved, re-

sulting in a more pleasant rendering. Human eyes are

more sensitive to the dynamic context of a curve than

to its absolute spatial position. It is difficult for view-

ers to detect a translation of an object if the amount

of shift is relatively small compared with the size of

background, but easy to catch a slight distortion of the

dynamic context of the object as a disturbing image

alias. This observation suggests that the error mea-

sure Eq(2) is subjectively more meaningful than Eq(l),

and antialiasing should aim for minimizing the loss of

dynamic information of original curves due to digitiza-

tion. Given an x-dominant curve segment ~(z) and its

digitization {(i, Yi) : l~i~N}, an NxN matrix

of dynamic errors {Ei,j }, 1 ~ i, j < N, is defined (see

[12] for more detailed discussions on the dynamic error

matrix E). Our goal is to minimize II E l!, the norm of

the error matrix. For binary raster displays minimiz-

ing II E II is a very difficult optimization problem [12].

Fortunately, for grayscale devices we can have a simple

solution to the problem.



@ 6 Comwter GraDhics, Volume 25, Number 4, July 1991

3 Two-Point AntLAliasing

Scheme

The dynamic error is caused by rounding f(i) to an

integer Yi. The dynamic error matrix E becames a

zero matrix, i.e., II E II= O, if Yi were chaen to be ~(i).

We would like to have an addressable pixel centered

at the coordinates (i, f(i)). Let l[i, j] be the intensity

of the pixel (i, j) and 10 be the intended intensity for

the curve. Then the imaginary pixel (i, ~(i)) may be

visually simulated by setting

{

l[i, [~(i)j] = ZO([/(i)l - ~(i))

Z[i, ~f(i)l] = ~o(~(i) – [f(i)])
(3)

If we consider the pixel (i, j) as a unit square centered

at (i, j) containing light energy l[i, j], then point PP =

(i, f(i)) is the center of gravity of the two lit points

PO = (i, [~(i)j) and PI = (i, [~(i)l), because

10PP = l[i, lf(i)J]pO + ~[j, [f(i)llm (4)

Therefore, the overall effect of Eq(3) is a lit area of en-

ergy 10 focused at the real point pP = (i, f(i)) which is a

perceived pixel exactly on the original curve ~(x). The

ordered set {(i, ~(i)) : 1 ~ i s IV} of those perceived

pixels renders a perceived curve. Clearly the dynamic

error II E II for this perceived curve is zero, eliminating

the loss of dynamic information. The practical signif-

icance of Eq(3) is its simplicity which leads very fast

anti-aliasing algorithms as we will see later. Eq(3) is

a two-point antialiasing scheme. We plot all pixels in

the two-pixel wide band that bounds the true curve

y = ~(z) with their intensities inversely proportional
to the distances between these pixels to the curve. The

closer is a pixel to the line, the brighter it is, then the

overall visual effect of this band will be the illumination

area of the lit curve at its real position after our eyes

integrate the contributions of all pixels in the band.

In addition to being intuitively appealing the an-

tialiasing scheme Eq(3) can also relates to removing

high frequency components of sharp intensity jumps

at the image edges. In order to apply a filter to the

image we no longer treat y = j(z) as a mathematical

curve of no width; instead we model the curve by a two-

dimensiona] grayscale signal g(z, y) with interior inten-

sity 10 and exterior intensity O. The curve y = j(z)

is the center line of the tw~dimensional signal g(~, y).

The image intensity l(i, j) after applying a low-pass

filter to g(z, y) is given by

I[i, j] =
//

ti(u, v)g(i – u,j – v)dudv. (5)

y = /7%)

I

Figure 2: The two-dimensional signal g(z, y) modeling

the physical image of the curve y = ~(z) before filtering.

The convolution kernel 6(u, u) is determined by the in-

tensity density of a pixel in its neighborhood. It is easy

to verify that if we choose the box filter

6(U,V) =
{

1 IUI<*,IVI<+

O otherwise
(6)

and model the curve y = j(z) in raster plane by the

two-dimensional signal

{

10 [Y–f(l~+;J)[s4
g(x, y) =

O otherwise
(7)

then the solution of the convolution Eq(5) is the simple

expression of Eq(3). The signal g(z, y) is a chain of

two-dimensional unit square impulses as depicted by

Fig. 2. The above analysis reveals that the tw~point

anti-aliasing scheme Eq(3) is a two-step process. First

the image of the curve y = j(x) is modeled by the two

dimensional impulse signal signal g(z, y) of Eq(7), then

the impulse signal is put through the box filters r5(u, v)

centered at individual pixels. The additive responses of

these atomic filters yields the antialiased digital curve.

Admittedly the above anti-aliasing model is far from

ideal. The box filter does not reflect the fact that the

intensity density of a pixel has Gaussian-like rather

than uniform shape. Moreover, the curve y = ~(x)

is modeled by a stripe image g(z, y) whose edge is not

smooth. But aliasing is primarily caused by sharp in-

tensity changes (high frequency components at the in-

tensity transition from g(x, y) = O to g(z, y) = l.). The

low-pass filtering aims at smoothing the steep intensity

jump not at smoothing the geometric shape of the input

signal. The tendency of g(x, y) to preserve the dynamic

information of y = f(r) is far more important than its

geometric smoothness in our principle of antialiasing.
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The staircase appearance of the g(z, y) will be eventu-

ally subdued since the low-pass filter will blur the input

image g(z, y) anyway.

For comparison Fig.3 gives three groups of Iinea

with various orientations done by Bresenham’s, Gupta-

Sproull’s and the tw~point antialiasing scheme Eq(3).

Gupta-Sproull’s antialiased line algorithm [7], generally

regarded as a better performed one, uses a cone-shaped

low-pass filter as an approximation of Gaussian filter

to suppress the jaggies. The algorithm understand-

ably is quite computationally demanding. The photos

show that the line images produced by the new tech-

nique are not inferior in quality to those produced by

GuptaA3prou11’s algorithm in quality. Note that Gupta-

Sproull’s algorithm is a three-point antialiasing scheme

in the sense that in each column three pixels are usually

set to different intensities. Consequently, the lines gen-

erated by this algorithm look fuzzier than those done

by the tw~point scheme.

Our real motive for developing the model Eq(7) is to

convert the convolution integration of Eq(5) to the sim-

ple intensity interpolation between two adjacent pixels

in Eq(3), gaining computational efficiency of antialias-

ing as we will see in sections 5 and 6.

4 Equivalence to Fujimoto-

Iwata’s Algorithm

Interestingly, we can prove the equivalence between the

simple formula Eq(3) and the seemingly more compli-

cated antialiasing operation by Fujimoto and Iwata [6].

Indeed, after some intricate derivation, Fujimoto and

Iwata arrived at

Z[i, [f(i)j] = I(d – 2d~)/d (8)

I[i, [f(i)l] = l(d – 2d~)/d,

where, as marked in Fig. 4, d = 2 cos a, dl and d2 are

the distances from the pixels (i, Lf(i)] )) and (i, [~(i)l )

to the true line. Eq(8) is the formula for antialiased

lines using the smallest Fourier window. It is apparent

from the figure that

dl = (f(i) – Lf(i)j ) cosa (9)

dz = ([f(i)l – f(i)) COScr.

Plugging dl and dz into Eq(8) we can simplify Eq(8) to

Eq(3).

The above simplification gives Fujimot~Iwata’s an-

tialiasing algorithm a more intuitive interpretation of

146

Figure 3: Lines generated by Bresenham’s (above),

Gupta-Sproull’s (middle) and the two-point antialias-

ing (bottom) algorithms.
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Figure 4: The geometry of Fujimot~Iwata’s ant ialias-

ing algorithm.

Eq(3), another analytical basis formed by Eqs(5)-(7),

and more importantly, a simpler and more efficient im-

plementation.

5 Fast Ant LAliased Line

Generator

In this section we convert the simple antialiasing scheme

Eq(3) to a fast antialiased line generator. Without Icss

of generality only lines in the first octant are consid-

ered. Other cases follow trivially through symmetry.

Let (zO, yO), (zl, yl), Z2 > z1, y2 > yl, be the two

points in the raster plane defining a line. We translate

the point (zO, yO) to the origin, so the equation of the

line becomes y = kx, O < k = ~ <1. Then Eq(3)

can be rewritten for ~(z) = kz as

1(z, [kzl ) = 10(kz – lkxj)

1(2, lkzJ ) = z~ – 1(Z, [kXl). (lo)

where (x, Lkxj ) and (z, ~krl) are the two adjacent pix-

els in the z column that are immediately below and

above the true line. Clearly, the total intensity in a

column is the constant 1, so the even brightness of the

band can be achieved.

To implement the antialiasing scheme Eq(lO), we

need to determine for a given z the pixel positions

(z, Lkz] ) and (z, [kzl ) (they coincide if kx is an in-

teger) and their intensities 1(z, [kx] ) and l(z, (kxl ).

These four values can be determined by an elegant in-

cremental algorithm operating on a single integer D

represented by a machine word of n bits. The integer

increment involved is d = [k2n + 0.5J. As the initial-

ization, we set D = O, Z(ZO, yO) = Z. Then we march z

from ZO to Z1 and increment D by d at unit step. The

operation D * D + d is a module 2“ addition with the

overflow recorded. Whenever D overflows the t we-point

high pixel band pixel moves diagonally; otherwise it

moves horizontally. This is essentially a classical DDA

method. The only difference is in that both the z and

y increments, namely, Ax = 1 and Ay = d, are inte-

ger rather than real values. For the following analysis

we may consider D as a fixed point number with the

decimal point before its most significant bit, or concep-

tually perceive the proposed integer arithmetic aa fixed

point arithmetic. Thus the error between the real DDA

increment and our integer DDA increment is

e=k —d2-n. (11)

Clearly, Iel < 2-n, and this error will be shown to be

negligible.

All gray-scale raster devices have 2~, for some m > 1,

discrete intensity levels from O (absolutely black) to

2m – 1 (absolute white). Thus the intensity inter-

polation between the two vertically adjacent pixels of

Eq( 10) becomes a hi-partition of t he integer 1, the max-

imum intensity. The intensity of the upper pixel for the

line is

I(x, [kzl) = Io(kz – [kzj)

= (2m - l)(D2-n + e~)

= D2m-n i- (2M – l)ez – D2-”.(12)

Since the intensity Z(Z, (Iczl ) must be an integer, we

approximate it by the first term of Eq(12), D2m-n,

assuming n > m. This approximation gains great com-

putational efficiency while the error incurred (the last

two terms of Eq(12) has no or little impact on image

quality 2s we will analyze later.

The approximated I(z, [kzl ) sz D2m-n is simply

presented by the m most significant bits of D. More-

over. it is evident that the intensity of the lower

pixel I(z, Lkzj ) = 10 – I(z, (kzl ) = l(x, rkrl ), where

Z(Z, (kzl ) is the integer obtained by the bitwise-inverse

operation on 1(z, ~kxl ). This is because the bit pat-

tern for the integer 2m - 1 _ D2m-n is the inverse of

that for D2M-” due to the fact 10 = 2m -1. Now we

can see that the integer D controls both pixel positions
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I I(xO,yO) := I(xl,yl) := I ;
D:=O: I

I d:=Ltin+o.5J; I

<

0+1;
l-l;

)+dJ

flow
Yes

*

I(xo,yo+l):=r(x 1,yl - l):=I(xo,yo);

I

Figure 5: The antialiased line generator (O s k < 1).

and intensities, and the inner loop of the algorithm only

requires an integer addition to D.

Furthermore, since the line segment has mirror sym-

metry with respect to its center, we can plot it from the

two ends toward the center using the same logic [13],

saving half of the computations. The new algorithm for

lines with O ~ k ~ 1 is described by the flowchart in

Fig. 5.

Unlike all its predecessors, the above antialiased line

generator requires only integer addition and bit manip-

ulations. While producing smooth lines, the new algo-

rithm requires only half ss many operations as Bresen-

ham’s algorithm because it propagates two pixels per

iteration while using the same amount of computations

per iteration. The numbers of different operations for

Comparison N N;2

Buffer Writing N < 2N

Table 1: The number of different operations required

by Bresenham’s algorithm and the new antialiased line

algorithm.

plotting a line of length N required by Bresenham’s

algorithm and the new antialiased line algorithm are

tabulated in Table 1.

The new algorithm requires twice as many buffer

writes as Bresenham’s algorithm, but still its buffer

access, a bottleneck in rendering, is a minimum (tie

with -Fujimoto and Iwata’s algorithm with the small-

est Fourier window) among all current antialiased line

generators.

An attractive feature of the new antialiased line gen-

erator is that it simultaneously meets two usually mu-

tually exclusive criteria: good image quality and high

computational efficiency. At the same time the logic of

the new line algorithm remains simple and its hardware

implementation is straightforward. An integer adder for

D is all we need with its overflow controlling the pixel

positioning and its original and inverse values being the

required intensities. Historically, we used a very crude

fifty-fifty intensity split scheme as a trick to speed up

curve scan-conversion [9, 11] under a guise of antialias-

ing. The above work drew a satisfactory conclusion to

our attempt to unify antialiasing and scan-conversion.

The new algorithm is not complete without an error

bound for the approximation it employs. The error in

approximating 1(z, [kz] ) by D2m-” is determined by

the magnitude of z and the difference n – m. Let L

be the line length. If 2~-1 < L s 2*, f >0, then the

truncation error can be bounded by

IZo(kz-[kzj) - D2m-” I < (2m-1)2-”2’-’ + D2-n

< Z’-n-’(zl)+)+ 1. (13)

In the above inequality we used the facts that D < 2“,

Iel < 2-n, and x < L/2 due to symmetric generation

of the antialiased line. For L < 2n–m+l the error in

I(z, [kzl ) has a magnitude less than 2. In our exper-

iments, a 10~0 relative error in distributing 1 between

two adjacent pixels does not lead to noticeable degra-

dation in image quality. It was also observed that 32
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different gray scales are sufficient to eliminate the most

of aliasing, For a 1024 x 1024 display, the maximum

L <211 (t = 11). Suppose that 32 gray scales (m = 5)

is used for antialiasing. Then we need n ~ 15 to bound

the error in I(r, [kzl ) by 2, or the relative error by

0,063. This only requires D to be a twobytes integer.

Our recent research revealed that the proposed an-

tialiased line algorithm is particularly suitable to be in-

corporated into a logic-enhanced frame buffer to solve

the bottleneck of frame buffer access [14]. An intelligent

frame buffer architecture in the form of wavefront ar-

ray processors was designed to scan-convert lines right

inside the frame buffer. This design achieves extremely

high rendering throughput with very low frame buffer

bandwidth requirement.

6 Fast Anti-Aliased Circle

Generator

Due to the 8-way symmetry of the circle, it sutfices to

consider the circle X2 + yz ,= r2 in the first octant. For

the circle equation, the two-point antialiasing scheme

Eq(3) becomes

Now we derive the

(14)

algorithm to compute Eq(14) as j

marches in the y axis from O to > in scan-converting

the first octant circular arc. The first issue is to de-

1
termine when the integer-valued function ~-

1
decreases by 1 as j increases. We need the critical val-

1~ 2
ues t such that r - (t – 1)2] – [/-] = 1 to

move the pixel band being plotted to the left by one

step. This computation can be simplified by the follow-

ing lemma.

LEMMA 1

~~e relation [/r’ -(~- 1)21 -[m= 1 holds

if and only if [/r’ -(t- 1)2] - ~r2-(t - 1)’ >

[/-] - J-.

Proof. Since ~~ is monotonically decreasing in

~? [@-(~- 1)’] -/ r’ – (t – 1)2 > [~~1 –

= implies [/r’- (~- 1)’1 -I=> o

But in the first octant we have

r2–(’–l)2– <-<l (15)

prohibiting [i.’ -(f- 1)21 - [~~1 > I hence

1~ 1
r’ –(t – 1)2 – (<=1 = 1.

The only-if part can be proven by contradiction.

Assume that ({r,-(t - 1)~1 - ~~~~ = I but

[/r’ -(f - 1)’] - <r’ -(~- 1)2 s [J-1 -

~. This requires ~ r2–(t–1)2–~~>1,

an impossibility in the first octant. •l

[ 1--!1<For given r the values ~-

~<~, serve dual purposes: determining the pixel po-

sitions as suggested by the above lemma and determin-

ing the pixel intensities as in Eq( 14). Let the intensity

range for the display be from O to 2m – 1 and define the

integer variable

D(r, j) = I(2M – 1) ([/m] - J-) +0.5J

(16)

Then it follows from Eq( 14) that

1 (~~~1 ,j) = D(r,j)

(1 1)I-)j = D(r, j), l<j< ;,(17)

where D(r, j) is the integer value obtained through

bitwise-inverse operation on D(r, j) since

~([=l,.i)+~([~]jj)= 1=2”–1

(18)

and since the intensity values are integers. By Eq(16)

[ 1
every decrement of the function <~ – ~-

as j increases is reflected by a decrement of D(r, j), thus

D(r, j) can be used to control the scan-conversion of

the circle. The new antialiased circle algorithm based

on precomputed D(r, j) is extremely simple and fast.

The algorithm for the first octant is described by the

flowchart in Fig. 6.

The inner loop of the antialiased circle algorithm re-

quires even fewer operations than Bresenham’s circle

algorithm. Of course, the gains in image quality and

scan-conversion speed are obtained by using the D(r, j)

table. If R~~x is the maximum radius handled by the

circle generator, then the table size will be ~Rma=. It

is my opinion that the rapidly decreasing memory cost

makes the above simple idea a viable solution to real-

time antialiased circle generation. For instance, for a

64K bytes ROM the above algorithm can display an-

tialiased circular arcs of radius up to 430, \Vithout the
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Ci:=r;

j:=q
I(i,j):=I;
T:= O;

Yes
- terminate

Yes

1
No i := i-1;

- I

t
I(i,j):=~,
I(i-1 ,j):=D(r,j);
T:=D(r,j);

I

Figure 6: Antialiased circle generator (lst octant).

precomputed table D(r, j) the antialissed circle alg~

rithm can be implemented by computing the function

D(r, j).

The performance of the new antialiased circle alg~

rithm is demonstrated by Fig. 7.

7 Other Antialiasing Issues

We demonstrated that the new antialiasing technique

is particularly efficient for generating antialiased lines

and circles since Eq(3) can be incorporated into the

classical incremental curve scan-conversion framework.

But it is not restricted to those two graphics primi-

tives. The intensity interpolation of Eq(3) applies to

any curves or object edges. We should not partition a

general curve into line segments and then antialias line

Figure 7: Circles by Bresenham’s (above) and the new

antialiasing algorithms (below).
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segments  as suggested  by some authors before.  Instead
an antialiased  curve  can be computed  by directly  scan-
converting  the curve, i.e., for increasing  raster  ordinate
i, computing  f(i) and then interpolate  the intended
curve intensity Is between  the two pixels  (i, Lr(i)J)  and
(i, [f(i)]).  The main cost  is to compute  the real value
f(i), but it is required  by scan-conversion  anyway. So
antialiasing  will not be a computational burden  for gen-
eral curves.

Although  our algorithms  were presented  for antialias-
ing curves,  their  extension  to object  boundaries  is
straightforward.  We simply partition the object  bound-
aries into x-dominant  and y-dominant curve segments,
and scan-convert  them.  It is easy to determine  which
side of such a curve segment  is exterior.  We use Eq(3)
to interpolate the object  color on two adjacent  pixels
at the two sides of the continuous  boundary curve,  and
then blend the outer  pixel value with the background
color. Let Ic and Ib be the intensities  (colors)  for object
and its background,  and d < 1 be the distance  between
the outer  pixel and the true object  boundary,  then the
blending formuIa  for the boundary pixel is

I = dlo + (1 - d)lb. (19)

Note that unlike the blending formula  by Fujimoto  and
Iwata  [6] no division is required  here. Furthermore,  for
antialiasing  polygon edges in uniform background,  we
can solve Eq(19)  incrementally  with only integer  addi-
tions and binary shifts much like our antialiased  line
algorithm.  We will not pursue this efficiency  issue any
further due to the space  limitation. The performance  of
the new technique  on antialiased  object  edges in color-
ful background  is shown  by Fig. 8, where a filled circle
wit11 antialiasing  in a complex  background  is compared
with the one without.  The antialiased  filled circle ap-
pears smooth  and sharp.  Note that the results  of Fig.
8 were obtained  on an g-bit color device,  so color quan-
tization  was necessarily  performed.  On a 24-bit  color
device with more subtle  shades available  the antialiased
disk looked  even better.

Our antialiasing  technique  has the same subpixel ad-
dressability  as Fujimoto-Iwata’s  method  due to their
equivalence.

8 Conclusion

Unlike all previous antialiasing  research,  our two-point
antialiasing  scheme  was derived in spatial  domain un-
der a subjectively  meaningful  error measure  to preserve

Figure 8: Filled circles embedded  in colorful  back-
ground without antialiasing  (above)  and with antialias-
ing (below).
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dynamic information of the original curves or object

edges. The behaviour of this antialiasing scheme in fre-

quency domain was also analyzed. It was shown that

the new antialiasing technique can generate smooth line

segments and circular arcs at even higher speeds than

those of Bresenham’s line and circle algorithms. The

hardware or assembly-language realization of our new

antialiasing algorithms ia straightforward. These fea-

tures have practical significance when antialiasing is

performed on small economical graphics devices or in

time-constrained applications.
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