

THE UNIVERSITY OF WESTERN AUSTRALIA Achieve International Excellence

Number Representations and Precision in Vector Graphics

Implementation of an Arbitrary Precision SVG Viewer

Sam Moore

Supervisors: Tim French, Rowan Davies

October 8, 2014

Contents

Motivation & Background

Implementing a Basic SVG Viewer

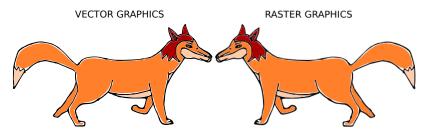
Live Demo

Conclusions

References

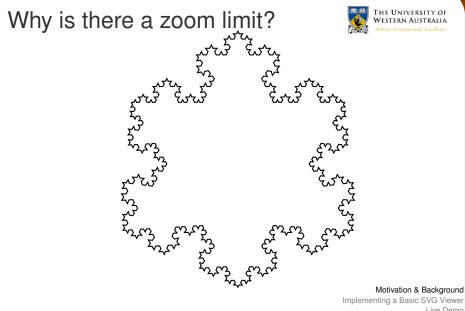
Questions

Summary



- Vector graphics allow scaling but not arbitrary scaling
- We implemented a vector graphics viewer that does allow arbitrary scaling
- ... but it will take an arbitrary amount of time

Graphics Formats



- Document formats (eg: PDF and SVG) are formats for vector graphics
- Vector graphics scale better than raster graphics

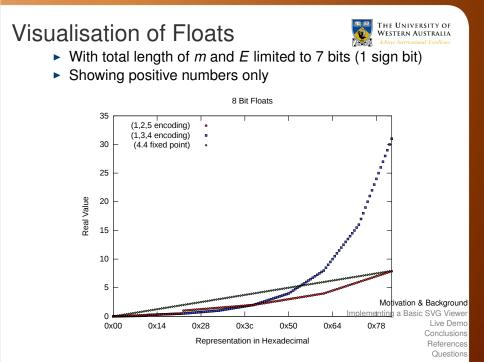
Motivation & Background

Implementing a Basic SVG Viewer Live Demo Conclusions References Questions

enting a Basic SVG Viewer Live Demo Conclusions References Questions

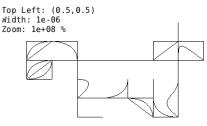
Why is there a zoom limit?

- SVG, PostScript, PDF specify IEEE-754 single floating point number representations
- Range of values: $\approx 3 \times 10^{-38} \rightarrow 3 \times 10^{+38}$
- Rough Floating Point Definition¹:


$$X = m \times 2^E \tag{1}$$

m and *E* are encoded in a *fixed length* string of bits
Floating Point ~ Scientific Notation for computers

¹IEEE-754 is more complicated


Motivation & Background

Implementing a Basic SVG Viewer Live Demo Conclusions References Questions

Floating point calculations go wrong

 \blacktriangleright At scale of only 1 \times 10⁻⁶, the fox is very sick

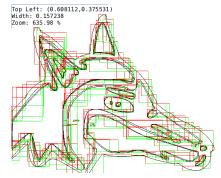
- ▶ Plank Length: 1.61 × 10⁻³⁵ metres > 3 × 10⁻³⁸
- ► Size of Universe: 4.3 × 10²⁶ metres << 3 × 10³⁸
- ► Why isn't this good enough for 1 × 10⁻⁶

Motivation & Background

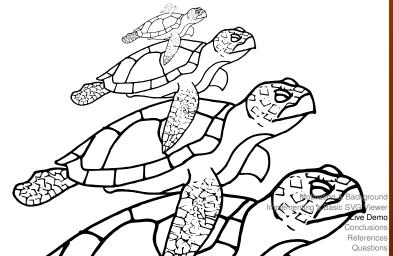
'HE UNIVERSITY OF

Implementing a Basic SVG Viewer Live Demo Conclusions References Questions

Structure of Vector Graphics


- Bézier Curve (Quadratic or Cubic Parametric Polynomial)
- ▶ Path of Bézier Curves → Shapes (with fill)
- ► Shapes include font glyphs, like this *𝔅*

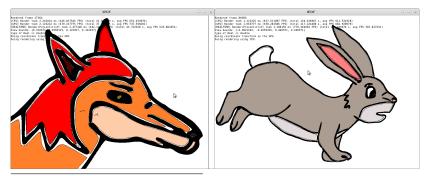
Structure of Vector Graphics III


 Rectangles show individual Béziers forming outline of the Fox

Live Demo

- We can import standard SVGs wherever we want
- If we are willing to wait long enough
- "... But, asks the scientist, what does that turtle stand on? To which the lady triumphantly answers: 'You're very clever, young man, but it's no use it's turtles all the way down!'."

Conclusions



- What we have done?
 - Implemented a basic SVG viewer
 - Demonstrated how precision affects rendering vector graphics
 - Using GMP rationals, demonstrated the ability to render SVGs scaled to an arbitrary position in a document
- Possible future work
 - Implement more of the SVG standard
 - Trial alternative number representations
 - Allow for saving and loading SVGs with arbitrary precision

Q: Why don't you have colour?

- ► We do!²
- A complete implementation of SVG is "future work"

²If you are willing to wait long enough

Q: Why not just use doubles?

- Any fixed precision format will still give inexact results
- But the inexact results will appear slower

Q: Arbitrary precision floats?

- We support them as well!
- Rationals are more convenient:
 - Need to manually set precision
 - Some operations require infinite precision:

- How do you choose when to increase precision?
- Could be future work