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Abstract

At the fundamental level, a document is a means to convey information. The limitations on

a digital document format therefore restrict the types and quality of information that can be

communicated. Whilst modern document formats are now able to include increasingly complex

dynamic content, they still suffer from early views of a document as a static page; to be viewed

at a fixed scale and position. In this report, we focus on the limitations of modern document

formats (including PDF, PostScript, SVG) with regards to the level of detail, or precision at which

primatives can be drawn. We propose a research project to investigate whether it is possible

to obtain an “infinite precision” document format, capable of including primitives created at an

arbitrary level of zoom.

Keywords: document formats, precision, floating point, graphics, OpenGL, VHDL, PostScript,

PDF, bootstraps
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1. Introduction

1.1 Motivation

Early electronic document formats such as PostScript were motivated by a need to print docu-

ments onto a paper medium. In the PostScript standard, this lead to a model of the document as a

program; a series of instructions to be executed by an interpreter which would result in “ink” being

placed on “pages” of a fixed size[3]. The ubiquitous Portable Document Format (PDF) standard

provides many enhancements to PostScript taking into account desktop publishing requirements[4],

but it is still fundamentally based on the same imaging model[5]. This idea of a document as a

static “page” has lead to limited precision in these and other traditional document formats.

The emergence of the internet, web browsers, XML/HTML, JavaScript and related technologies

has seen a revolution in the ways in which information can be presented digitally, and the PDF

standard itself has begun to move beyond static text and figures[6, 7]. However, the popular

document formats are still designed with the intention of showing information at either a single,

fixed level of detail, or a small range of levels.

As most digital display devices are smaller than physical paper medium, all useful viewers are

able to “zoom” to a subset of the document. Vector graphics formats including PostScript and

PDF support rasterisation at different zoom levels[3, 5], but the use of fixed precision floating

point numbers causes problems due to imprecision either far from the origin, or at a high level of

detail[8, 9].

We are now seeing a widespread use of mobile computing devices with touch screens, where

the display size is typically much smaller than paper pages and traditional computer monitors; it

seems that there is much to be gained by breaking free of the restricted precision of traditional

document formats.

1.2 Overview

The remainder of this document will be organised as follows: In Chapter 2 we give an overview

of the current state of the research in document formats, and the motivation for implementing

“infinite precision” in a document format. We will outline our approach to research in collaboration

with David Gow[]. In Chapter 3 we provide more detailed background examining the literature

related to rendering, interpreting, and creating document formats, as well as possible techniques

for increased and possibly infinite precision. In Chapter ?? gives the current state of our research

and the progress towards the goals outlined in Chapter 1. In Chapter 5 we will conclude with a

summary of our findings and goals.
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2. Proposal

Most of this chapter is copy pasted from the project proposal

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉

2.1 Aim

In this project, we will explore the state of the art of current document formats including

PDF, PostScript, SVG, HTML, and the limitations of each in terms of precision. We will consider

designs for a document format allowing graphics primitives at an arbitrary level of zoom with no

loss of detail. A viewer and editor will be implemented as a proof of concept; we adopt a low level,

ground up approach to designing this viewer so as to not become restricted by any single existing

document format.

There are many possible applications for documents in which precision is unlimited. Several

areas of use include: visualisation of extremely large or infinite data sets; visualisation of high

precision numerical computations; digital artwork; computer aided design; and maps.

2.1.1 Clarification of Terms

It may be necessary to clarify what we mean by the terms “arbitrary precision” and “document

formats”. Regarding the latter, we consider a document format to be any representation of visual

information which is capable of being stored indefinitely. Regarding the former, we do not propose

to be able to contain an infinite amount of information within such a document. The goal is

to be able to render a primitive at the same level of detail it is specified by a document format,

regardless of how precise this level is. For example, the precision of coordinates of primitives drawn

in a graphical document editor will always be limited by the resolution of the display on which

they are drawn, but not by the viewer.

2.2 Methods

Initial research and software development is being conducted in collaboration with David

Gow[2]. Once a simple testbed application has been developed, we will individually explore ap-

proaches for introducing arbitrary levels of precision; these approaches will be implemented as

alternate versions of the same software. The focus will be on drawing simple primitives (lines,

polygons, circles). However, if time permits we will explore adding more complicated primitives

(font glyphs, bezier curves, embedded bitmaps). Hearn and Baker’s textbook “Computer Graph-

ics” includes chapters providing a good overview of two dimensional graphics[10].

The process of rendering a document will be considered as a common area of research, whilst

individual research will be conducted on means for allowing infinite precision. At this stage we

have identified two possible areas for individual research:

1. Arbitrary Precision real valued numbers — Sam Moore

We plan to investigate the representation of real values to a high or arbitary degree of

precision. Such representations would allow for the coordinates of primitives to be relative to

2
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2 Proposal 3

a single global coordinate system. We would expect a decrease in performance with increased

complexity of the data structure used to represent a real value. Both software and hardware

techniques will be explored. We will also consider the limitations imposed by performing

calculations on the GPU or CPU.

Starting points for research in this area are Priest’s 1991 paper, “Algorithms for Arbitrary

Precision Floating Point Arithmetic”[11], and Goldberg’s 1992 paper “The design of floating

point data types”[9]. A more recent and comprehensive text book, “Handbook of Floating

Point Arithmetic”[12], published in 2010, has also been identified as highly relevant.

2. Local coordinate systems — David Gow [2]

An alternative approach involves segmenting the document into different regions using fixed

precision floats to define primitives within each region. A quadtree or similar data structure

could be employed to identify and render those regions currently visible in the document

viewer. Say more here?

We aim to compare these and any additional implementations considered using the following met-

rics:

1. Performance vs Number of Primitives

As it is clearly desirable to include more objects in a document, this is a natural metric for

the usefulness of an implementation. We will compare the performance of rendering different

implementations, using several “standard” test documents.

2. Performance vs Visible Primitives

There will inevitably be an overhead to all primitives in the document, whether drawn or

not. As the structure of the document format and rendering algorithms may be designed in-

dependently, we will repeat the above tests considering only the number of visible primitives.

3. Performance vs Zoom Level

We will also consider the performance of rendering at zoom levels that include primitives on

both small and large scales, since these are the cases under which floating point precision

causes problems in the PostScript and PDF standards.

4. Performance whilst translation and scaling

Whilst changing the view, it is ideal that the document be re-rendered as efficiently as

possible, to avoid disorienting and confusing the user. We will therefore compare the speed

of rendering as the standard documents are translated or scaled at a constant rate.

5. Artifacts and Limitations on Precision

As we are unlikely to achieve truly “infinite” precision, qualitative comparisons of the accu-

racy of rendering under different implementations should be made.

2.3 Software and Hardware Requirements
Due to the relative immaturity and inconsistency of graphics drivers on mobile devices, our

proof of concept will be developed for a conventional GNU/Linux desktop or laptop computer

using OpenGL. However, the techniques explored could easily be extended to other platforms and

libraries.



3. Literature Review

The first half of this chapter will be devoted to documents themselves, including: the rep-

resentation and displaying of graphics primitives[10], and how collections of these primitives are

represented in document formats, focusing on widely used standards[3, 5, 13].

We will find that although there has been a great deal of research into the rendering, storing,

editing, manipulation, and extension of document formats, modern standards are content to specify

at best single precision IEEE-754 floating point arithmetic.

The research on arbitrary precision arithmetic applied to documents is very sparse; however

arbitrary precision arithmetic itself is a very active field of research. Therefore, the second half of

this chapter will be devoted to considering fixed precision floating point numbers as specified by

the IEEE-754 standard, possible limitations in precision, and alternative number representations

for increased or arbitrary precision arithmetic.

In Chapter ??, we will discuss our findings so far with regards to arbitrary precision arithmetic

applied to document formats, and expand upon the goals outlined in Chapture 2.

3.1 Raster and Vector Images
At a fundamental level everything that is seen on a display device is represented as either a

vector or raster image. These images can be stored as stand alone documents or embedded within

a more complex document format capable of containing many other types of information.

A raster image’s structure closely matches it’s representation as shown on modern display

hardware; the image is represented as a grid of filled square “pixels”. Each pixel is considered to be

a filled square of the same size and contains information describing its colour. This representation

is simple and also well suited to storing images as produced by cameras and scanners.

The drawback of raster images is that by their very nature there can only be one level of detail.

Figures 3.1 and 3.2 attempt to illustrate this by comparing raster images to vector images in a

similar way to Worth and Packard[14].

The right side of Figure 3.1 is a raster image which should be recognisable as an animal defined

by fairly sharp edges. Figure 3.2 shows how these edges appear jagged when scaled. There is no

information in the original image as to what should be displayed at a larger size, so each square

shaped pixel is simply increased in size. A blurring effect will probably be visible in most PDF

viewers; the software has attempted to make the “edge” appear more realistic using a technique

called “antialiasing”.

In contrast, the left sides of Figures 3.1 and 3.2 are a vector image. A vector image contains

information about the positioning and shading of geometric shapes. To display this image on

modern display hardware, coordinates are transformed according to the view and then the image

is converted into a raster like representation. Whilst the raster image merely appears to contain

edges, the vector image actually contains information about these edges, meaning they can be

displayed “infinitely sharply” at any level of detail[?] — or they could be if the coordinates are

stored with enough precision (see Section ??). Vector images are well suited to high quality digital

art1 and text.
1Figure 3.1 is not to be taken as an example of this.
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3 Literature Review 5

VECTOR GRAPHICS

Figure 3.1: Original Vector and Raster Images

VECTOR GRAPHICS

Figure 3.2: Scaled Vector and Raster Images

3.2 Rendering Vector Images

Hearn and Baker’s textbook “Computer Graphics”[10] gives a comprehensive overview of graph-

ics from physical display technologies through fundamental drawing algorithms to popular graphics

APIs. This section will examine algorithms for drawing two dimensional geometric primitives on

raster displays as discussed in “Computer Graphics” and the relevant literature. Informal tutori-

als are abundant on the internet[15]. This section is by no means a comprehensive survey of the

literature but intends to provide some idea of the computations which are required to render a

document.

It is of some historical significance that vector display devices were popular during the 70s and

80s, and papers oriented towards drawing on these devices can be found[16]. Whilst curves can be

drawn at high resolution on vector displays, a major disadvantage was shading; by the early 90s

the vast majority of computer displays were raster based[10].
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3.2.1 Straight Lines

It is well known that in cartesian coordinates, a line between points (x1, y1) and (x2, y2), can be

described by:

y(x) = mx+ c on x ∈ [x1, x2] for m =
(y2 − y1)

(x2 − x1)
and c = y1 −mx1 (3.1)

On a raster display, only points (x, y) with integer coordinates can be displayed; however m

will generally not be an integer. Thus a straight forward use of Equation 3.1 will require costly

floating point operations and rounding (See Section??). Modifications based on computing steps

∆x and ∆y eliminate the multiplication but are still less than ideal in terms of performance[10].

It should be noted that algorithms for drawing lines can be based upon sampling y(x) only if

|m| ≤ 1; if |m| > 1 then sampling at every integer for x would leave gaps in the line. However line

drawing algorithms can be trivially adopted to sample x(y) if |m| > 1.

Bresenham’s Line Algorithm was developed in 1965 with the motivation of controlling a partic-

ular mechanical plotter in use at the time[17]. The plotter’s motion was confined to move between

discrete positions on a grid one cell at a time, horizontally, vertically or diagonally. As a result, the

algorithm presented by Bresenham requires only integer addition and subtraction, and it is easily

adopted for drawing pixels on a raster display. Bresenham himself points out that rasterisation

processes have existed since long before the first computer displays[18].

In Figure 3.3 a) and b) we illustrate the rasterisation of a line width a single pixel width. The

path followed by Bresenham’s algorithm is shown. It can be seen that the pixels which are more

than half filled by the line are set by the algorithm. This causes a jagged effect called aliasing

which is particularly noticable on low resolution displays. From a signal processing point of view

this can be understood as due to the sampling of a continuous signal on a discrete grid[19].

Figure 3.3 c) shows an (idealised) antialiased rendering of the line. The pixel intensity has been

set to the average of the line and background colours over that pixel. Such an ideal implementation

would be impractically computationally expensive on real devices[15]. In 1991 Wu introduced an

algorithm for drawing anti-aliased lines which, while equivelant in results to existing algorithms

by Fujimoto and Iwata, set the state of the art in performance[19]2. .

Figure 3.3: Rasterising a Straight Line

a) Before Rasterisation b) Bresenham’s Algorithm c) Anti-aliased Line (Idealised)

2Techniques for anti-aliasing primitives other than straight lines, including the anti-aliasing of images in a raster
format shown at different scales (such as Figure ??) are discussed in some detail in Chapter 4 of “Computer
Graphics” [10]
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3.2.2 Spline Curves

Splines are continuous curves formed from piecewise polynomial segments. A polynomial of nth

degree is defined by n constants {a0, a1, ...an} and:

y(x) =

n∑
k=0

akx
k (3.2)

Splines may be rasterised by sampling of y(x) at a number of points xi and rendering straight

lines between (xi, yi) and (xi+1, yi+1) as discussed in Section ??.

There are many different ways to define a spline. One approach is to specify “knots” on the

curve and choosing a fixed n (n = 3 for “cubic” splines) solve for the cooefficients to generate

polynomials passing through the points. Alternatively, special polynomials may be defined using

“control” points which themselves are not part of the curve; these are convenient for graphical

based editors. Bezier splines are the most straight forward way to define a curve in the standards

considered in Section 3.3. A spline defined from two cubic beziers is shown in Figure 3.4

A0

A1

A2B0

B1

B2

<!-- DOM element in SVG used to construct the spline -->
<path d="M 0,300

C 0,300 200,210 90,140
-20,70 200,0 200,0"
style="stroke:#000000; stroke-width:1px;
fill:none;"/>

% PostScript commands for a similar spline
0 300 moveto
0 300 200 210 90 140 curveto
-20 70 200 0 200 0 curveto stroke

Figure 3.4: Constructing a Spline from two cubic beziers
(a) Showing the Control Points (b) Representations in SVG and PostScript (c) Rendered Spline

Bezier Curves

Cubic and Quadratic Bezier Splines are used to define curved paths in the PostScript[3], PDF[5]

and SVG[13] standards which we will discuss in Section 3.3. Cubic Beziers are also used to define

vector fonts for rendering text[?] (See Section ??).

A Bezier Curve of degree n is defined by n “control points” {P0, ...Pn}. Points P (t) = (x(t), y(t))

along the curve are defined by:

P (t) =

n∑
j=0

Bn
j (t)Pj (3.3)

Where tε[0, 1] is a control parameter. P (0) = P0 and P (1) = Pn.
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A straightforward algorithm for rendering Bezier’s is to simply sample P (t) for suffiently many

values of t and connect the resulting points with straight lines using Bresenham or Wu’s algorithm

(See Section ??). Whilst the performance of this algorithm is linear, De Casteljau derived a more

efficient means of sub dividing beziers into line segments.

Recently, Goldman presented an argument that Bezier’s could be considered as fractal in nature,

because the De Casteljau algorithm could be modified to be expressed as an iterated function

system[20].

3.2.3 Font Rendering

A typeface or font refers to a set of images used to represent text on a graphical display3. In

1983, Donald Knuth published “The METAFONT Book” which described a vector approach to

specifying fonts and a program for creating these fonts4. Previously, only rasterised font images

were popular; as can be seen from the zooming in Figure 3.2 this is problematic given the prevelance

of textual information at different scales and on different resolution displays.

Knuth used Bezier Cubic Splines as discussed in Section ?? to define “pleasing” curves in

METAFONT, and this approach is still used in modern vector fonts. Since the paths used to

render an individual character (often called “glyphs”) are used far more commonly than general

curves, document formats do not require such curves to be specified in situ, but allow for a choice

between a number of internal fonts or externally specified fonts. In the case of Knuth’s typesetting

language TEX, fonts were intended to be created using METAFONT[?].

Figure 3.5 shows a Z (Z) in Ralph Smith’s Formal Script font5. On the right, a screenshot

taken in the Inkscape vector graphics editor shows the start/end points for each Cubic Bezier in

the Spline defining the glyph outline6.

Figure 3.5: A glyph for the letter Z and a screenshot showing bezier start/end points as squares
and diamonds

3This terminology dates back to printing press technology
4knuth1983metafont
5〈http://www.tug.dk/FontCatalogue/rfsf/〉
6Inkscape activates the two adjacent control points after selecting one of the bezier start/end points; these are

the two circles in Figure 3.5

http://www.tug.dk/FontCatalogue/rfsf/
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3.2.4 Shading

Algorithms for shading on vector displays involved drawing equally spaced lines in the region

with endpoints defined by the boundaries of the region[16]. Apart from being unrealistic, these

techniques required a computationally expensive sorting of vertices[21].

On raster displays, shading is typically based upon Lane’s algorithm of 1983[21]. Lane’s algo-

rithm relies on the ability to “subtract” fill from a region. This algorithm is now implemented in

the GPU stencil buffer-y and... stuff [22]

3.2.5 Compositing and the Painter’s Model

So far we have discussed techniques for rendering vector graphics primitives in isolation, with no

regard to the overall structure of a document which may contain many thousands of primitives. A

straight forward approach would be to render all elements sequentially to the display, with the most

recently drawn pixels overwriting lower elements. Such an approach is particularly inconvenient

for anti-aliased images where colours must appear to smoothly blur between the edge of a primitive

and any drawn underneath it.

Colour raster displays are based on an additive red-green-blue (r, g, b) colour representation

which matches the human eye’s response to light[10]. In 1984, Porter and Duff introduced a fourth

colour channel for rasterised images called the “alpha” channel, analogous to the transparency of a

pixel[23]. In compositing models, elements can be rendered seperately, with the four colour channels

of successively drawn elements being combined according to one of several possible operations.

In the “painter’s model” as described by the SVG standard, Porter and Duff’s “over” operation

is used when rendering one primitive over another[13]. Given an existing pixel P1 with colour values

(r1, g1, b1, a1) and a pixel P2 with colours (r2, g2, b2, a2) to be painted over P1, the resultant pixel

PT has colours given by:

aT = 1− (1− a1)(1− a2) (3.4)

rT = (1− a2)r1 + r2 (similar for gT and bT ) (3.5)

It should be apparent that alpha values of 1 correspond to an opaque pixel; that is, when a2 = 1

the resultant pixel PT is the same as P2. When the final pixel is actually drawn on an rgb display,

the (r, g, b) components are (rT /aT , gT /aT , bT /aT ).

The PostScript and PDF standards, as well as the OpenGL API also use a painter’s model

for compositing. However, PostScript does not include an alpha channel, so PT = P2 always[3].

Figure 3.7 illustrates the painter’s model for partially transparent shapes as they would appear in

both the SVG and PDF models.

3.2.6 Rasterisation on the CPU and GPU

Traditionally, vector graphics have been rasterized by the CPU before being sent to the GPU for

drawing[22]. Lots of people would like to change this [14, 24, 25, 22, 26].
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2. Here are the ways documents are structured ... we got here eventually

3.3 Document Representations

The representation of information, particularly for scientific purposes, has changed dramatically

over the last few decades. For example, Brassel’s 1979 paper referenced earlier has been produced

on a mechanical type writer. Although the paper discusses an algorithm for shading on computer

displays, the figures illustrating this algorithm have not been generated by a computer, but drawn

by Brassel’s assistant[16]. In contrast, modern papers such as Barnes et. al’s recent paper on

embedding 3d images in PDF documents[?] can themselves be an interactive proof of concept.

In this section we will consider various approaches and motivations to specifying the structure

and appearance of a document, including: early interpreted formats (PostScript, TEX, DVI),

the Document Object Model popular in standards for web based documents (HTML, SVG), and

Adobe’s ubiquitous Portable Document Format (PDF). Some of these formats were discussed in

a recent paper “Pixels Or Perish” by Hayes[?] who argues for greater interactivity in the PDF

standard.

3.3.1 Interpreted Document Formats

PostScript

Adobe’s PostScript Language Reference Manual defines a turing complete language for producing

graphics output on an abstract “output device”[3]. A PostScript document is treated as a procedu-

ral program; an interpreter executes instructions in the order they are written by the programmer.

Each symbol is pushed onto a stack as it is read. Special symbols called “operators” can act upon

this stack and/or the output device. An internal “graphics state” stack can be constructed to store

styling information (such as colour, line thickness, the current cursor position). It is possible for

the language to define new operators. Figure 3.6 shows a vector image and one possible way to

express this image in PostScript. PostScript was and is still widely used in printing of documents

onto paper; many printers execute postscript directly, and newer formats including PDFs must

still be converted into PostScript by printer drivers[5, 4].

There are some limitations in PostScript’s model. As mentioned in Section??, since PostScript

predates Porter and Duff Compositing, there is no concept of transparency. In fact, using tools to

convert between the SVG image in Figure 3.7 and PostScript will simply rasterise the image and

embed the rastered image in PostScript7

Another limitation of PostScript is that the model of a document as a static page, convenient for

printers which literally produce static pages, is unable to include interactive or dynamic elements.

Dynamic PostScript attempted to fix this problem, but “never caught on”[?].

7For Figure 3.7 converted using the Inkscape SVG editor: 〈http://szmoore.net/ipdf/figures/shape-svg-converted-to.ps〉

http://szmoore.net/ipdf/figures/shape-svg-converted-to.ps
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%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 -1 85 150
% These lines are comments to aid in human understanding
% Define an operator to produce a rectangular path
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto

0 exch rlineto 0 rlineto closepath } bind def
% Operator to produce the path for the first rectangle
/re1 { 24.613 133.001 24 -120 re } bind def
% Operator to produce the path for the second rectangle
/re2 { 10.215 45.001 48 -16 re } bind def
% Operator which will produce the curved path
/curve { 46.215 1.001 moveto

46.215 1.001 91.812 11.399 71.812 35.399 curveto
51.812 59.399 29.414 33.802 51.812 59.399 curveto
74.215 85.001 93.414 45.802 74.215 85.001 curveto
55.016 125.001 61.414 49.802 46.215 75.399 curveto
31.016 101.001 56.613 126.598 56.613 126.598 curveto
56.613 126.598 88.613 166.598 56.613 137.802 curveto
24.613 109.001 -18.586 83.399 9.414 50.598 curveto
37.414 17.802 45.414 1.001 45.414 1.001 curveto

closepath } bind def
% Set stroke properties
0.8 setlinewidth 0 setlinecap 0 setlinejoin []

0.0 setdash 4 setmiterlimit
% Draw the straight line
0 setgray 0.613 149.001 moveto 83.812 0.2 lineto fill
% Fill and outline the first rectangular path
0 0 1 setrgbcolor re1 fill 0 setgray re1 stroke
% Fill and outline the curved shape
1 0 0 setrgbcolor curve fill 0 setgray curve stroke
% Fill and outline the second rectangle
0 1 0 setrgbcolor re2 fill 0 setgray re2 stroke
showpage

Figure 3.6: Vector image and a possible PostScript representation

TEXand Metafont

TEXis a typesetting language invented by Donald Knuth in 1983.

• This model treats a document as the source code program which produces graphics

• Arose from the desire to produce printed documents using computers (which were still limited

to text only displays).

• Typed by hand or (later) generated by a GUI program

• PostScript — largely supersceded by PDF on the desktop but still used by printers8

• TEX— Predates PostScript, similar idea

– Maybe if LATEXwere more popular there would be desktop viewers that converted

LATEXdirectly into graphics

• Potential for dynamic content, interactivity; dynamic PostScript, enhanced Postscript

• Problems with security — Turing complete, can be exploited easily

8Desktop pdf viewers can still cope with PS, but I wonder if a smartphone pdf viewer would implement it?
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3.3.2 Document Object Model

The Document Object Model (DOM) represents a document as a tree like data structure with

the document as a root node. The elements of the document are represented as children of either

this root node or of a parent element. In addition, elements may have attributes which contain

information about that particular element.

The World Wide Web Consortium (W3C) is an organisation devoted to the development of

standards for structuring and rendering web pages based on industry needs. The DOM is used

in and described by several W3C recommendations including XML[27], HTML[28] and SVG[13].

XML is a general language which is intended for representing any tree-like structure using the DOM,

whilst HTML and SVG are specifically intended for representing visual information to humans.

These languages make use of Cascading Style Sheets (CSS)[29] for specifying the appearance of

elements.

Version 5 of the Hypertext Markup Language (HTML5) is currently a candidate recommenda-

tion which aims to standardise the state of the art in technologies relating to web based documents.

In HTML5 it is possible to achieve almost any level of control over both the structure and ren-

dering of a document desirable. In particular, the interpreted language Javascript included in the

HTML5 standard can be used to dynamically alter the document as it is viewed in response to

user input or other events such as communication with a remote server.

The Scalable Vector Graphics (SVG) recommendation defines a language for representing vector

images using the DOM. This is intended not only for stand alone images, but also for inclusion

within HTML documents. In the SVG standard, each graphics primitive is an element in the DOM,

whilst attributes of the element give information about how the primitive is to be drawn, such as

path coordinates, line thickness, mitre styles and fill colours. Figure 3.7 shows an example of an

SVG image as rendered (left) and represented as text. The textual representation is syntactically a

subset of XML and is similar to HTML.9 Here we have used <rect> elements to position rectangles

and <path> elements to define a straight line and a filled region bounded by a cubic bezier spline;

note that the points and type of curves are defined as a data attribute.

Javascript and the DOM

The W3C has produced a primer describing the use of HTML5 Javascript to produce interactive

SVG’s[30], and the HTML5 and SVG standards themselves include several examples discussing

the use of Javascript to manipulate the DOM.

In Javascript, an element in the DOM can be selected by its type, class, name, or unique

identifier, each of which may be specified as an attribute in the original DOM. Once an element

is selected Javascript can be used to modify its attributes, add children below it in the DOM, or

remove it from the DOM entirely.

For example, the following Javascript acting on the DOM described in Figure 3.7 would change
the fill colour of the curved shape from red #ff0000 to black #000000:

9The exact details of classification of these languages (such as why HTML cannot be defined as a subset of XML)
are beyond the scope of this report.
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var node = document.getElementById("curvedshape"); // Find the node by its unique id
node.style.fill = "#000000"; // Change the ‘‘style’’ attribute and set the CSS fill colour

To illustrate the power of this technique we have produced our own example to generate an

SVG interactively using HTML. The example generates successive iterations of a particular type

of fractal curve first described by Koch[31] in 1904 and a popular example in modern literature [?].

Unfortunately as it is currently possible to directly include W3C HTML in a PDF, we are only

able to provide some examples of the output as static images in Figure 3.8.

In HTML5, Javascript is not restricted to merely manipulating the DOM to alter the appearance

of a document. The <canvas> tag and associated API provide a means to directly set the values

of pixels on a display. This sort of low level API is inteded for performance intensive graphical

applications such as web based games10. As Hayes points out, there is some similarity between the

<canvas> API and the PostScript interpreted approach to drawing[?].

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- These lines are comments to assist human readability -->
<svg id="svg_example"

xmlns="http://www.w3.org/2000/svg"
version="1.1"
width="104"
height="186"
transform="translate(1,0)">

<!-- The straight line -->
<path id="straightline" d = "m 0, 0 104, 186"

style="stroke:#000000;"/>
<!-- The first (bottom) rectangle -->
<rect id="rect1"

x = "30" y = "20" width = "30" height = "150"
style = "fill:#0000ff; fill-opacity:0.5;

stroke:#000000;"/>
<!-- The curved region -->
<path id="curvedshape"

d = "m 57,185 c 0,0 57,-13 32,-43 -25,-30 -53,2 -25,
-30 28,-32 52,17 28,-32 -24,-50 -16,44 -35,12
-19,-32 13,-64 13,-64 0,0 40,-50 -0,-14 -40,36
-94,68 -59,109 35,41 45,62 45,62 z"

style = "fill:#ff0000; fill-opacity:0.75;
stroke:#000000;"/>

<!-- The second (top) rectangle -->
<rect id="rect2"

x = "12" y = "130" width = "60" height = "20"
style = "fill:#00ff00; fill-opacity:0.5;

stroke:#000000;"/>
</svg>

Figure 3.7: Vector image and a possible SVG representation

10For an example by the author including both the canvas2d and experimental WebGL APIs see
〈http://rabbitgame.net〉

http://rabbitgame.net
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Figure 3.8: Koch “snowflakes” generated using Javascript to modify an SVG DOM. The interactive
HTML5 document can be found at 〈http://szmoore.net/ipdf/sam/figures/koch.html〉

3.3.3 The Portable Document Format

Adobe’s Portable Document Format (PDF) is used almost universally for sharing documents; the

ability to export or print to PDF can be found in most graphical document editors, even text

editors.

Hayes describes PDF as “... essentially ’flattened’ PostScript; its whats left when you remove

all the procedures and loops in a program, replacing them with sequences of simple drawing

commands.”[?]. Consultation of the PDF 1.7 standard shows that this statement does not a give a

complete picture — despite being based on the Adobe PostScript model of a document as a series

of “pages” to be printed by executing sequential instructions, from version 1.5 the PDF standard

began to borrow some ideas from the Document Object Model discussed in Section 3.3.2. For

example, interactive elements such as forms may be included as XHTML objects and styled using

CSS. “Actions” are objects used to modify the data structure dynamically. In particular, it is

possible to include Javascript Actions. Adobe defines the API for Javascript actions seperately to

the PDF standard[32]. There is evidence in the literature of attempts to exploit these features,

with mixed success[7, ?].

To quote Adobe’s PDF 1.7 reference manual, “A PDF file should be thought of as a flattened

representation of a data structure consisting of a collection of objects that can refer to each other

in any arbitrary way”[5].

3.3.4 Scientific Computation Packages

The document and the code that produces it are one and the same.

• Numerical computation packages such as Mathematica and Maple use arbitrary precision

floats

– Mathematica is not open source which is an issue when publishing scientific research

(because people who do not fork out money for Mathematica cannot verify results)

– What about Maple? [12] and [33] both mention it being buggy.

– Octave and Matlab use fixed precision doubles

http://szmoore.net/ipdf/sam/figures/koch.html
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• IPython is pretty cool guys

3.4 Precision in Modern Document Formats

We briefly summarise the requirements of the standards discussed so far in regards to the

precision of mathematical operations:

• PostScript predates the IEEE-754 standard and originally specified a floating point rep-

resentation with ? bits of exponent and ? bits of mantissa. Version ? of the PostScript

standard changed to specify IEEE-754 binary32 “single precision” floats.

• PDF has also specified IEEE-754 binary32 since version ?. Importantly, the standard states

that this is a maximum precision; documents created with higher precision would not be

viewable in Adobe Reader.

• SVG specifies a minimum of IEEE-754 binary32 but recommends more bits be used internally

• Javascript uses binary32 floats for all operations, and does not distinguish between integers

and floats.

• Python uses binary64 floats

• Matlab uses binary64 floats

• Mathematica uses some kind of terrifying symbolic / arbitrary float combination

• Maple is similar but by many accounts horribly broken

4. Here is IEEE-754 which is what these standards use

3.5 Real Number Representations

We have found that PostScript, PDF, and SVG document standards all restrict themselves

to IEEE floating point number representations of coordinates. This is unsurprising as the IEEE

standard has been successfully adopted almost universally by hardware manufactures and pro-

gramming language standards since the early 1990s. In the traditional view of a document as a

static, finite sheet of paper, there is little motivation for enhanced precision.

In this section we will begin by investigating floating point numbers as defined in the IEEE

standard and their limitations. We will then consider alternative number representations including

fixed point numbers, arbitrary precision floats, rational numbers, p-adic numbers and symbolic

representations. Oh god I am still writing about IEEE floats let alone all those other things

Reorder to start with Integers, General Floats, then go to IEEE, then other things

3.5.1 IEEE Floating Points

Although the concept of a floating point representation has been attributed to various early com-

puter scientists including Charles Babbage[?], it is widely accepted that William Kahan and his
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colleagues working on the IEEE-754 standard in the 1980s are the “fathers of modern floating

point computation”[?]. The original IEEE-754 standard specified the encoding, number of bits,

rounding methods, and maximum acceptable errors for the basic floating point operations for base

B = 2 floats. It also specifies “exceptions” — mechanisms by which a program can detect an error

such as division by zero11. We will restrict ourselves to considering B = 2, since it was found that

this base in general gives the smallest rounding errors[12], although it is worth noting that different

choices of base had been used historically[?], and the IEEE-854 and later the revised IEEE-754

standard specify a decimal representation B = 10 intended for use in financial applications.

3.5.2 Floating Point Definition

A floating point number x is commonly represented by a tuple of integers (s, e,m) in base B

as[12, 34]:

x = (−1)s ×m×Be

Where s is the sign and may be zero or one, m is commonly called the “mantissa” and e is the

exponent. The name “floating point” refers to the equivelance of the ×Be operation to a shifting

of a decimal point along the mantissa. This contrasts with a “fixed point” representation where x

is the sum of two fixed size numbers representing the integer and fractional part.

In the IEEE-754 standard, for a base of B = 2, numbers are encoded in continuous memory by

a fixed number of bits, with s occupying 1 bit, followed by e and m occupying a number of bits

specified by the precision; 5 and 10 for a binary16 or “half precision” float, 8 and 23 for a binary32

or “single precision” and 15 and 52 for a binary64 or “double precision” float[12, 34].

3.5.3 Precision and Rounding

Real values which cannot be represented exactly in a floating point representation must be rounded.

The results of a floating point operation will in general be such values and thus there is a rounding

error possible in any floating point operation. Goldberg’s assertively titled 1991 paper “What Every

Computer Scientist Needs to Know about Floating Point Arithmetic” provides a comprehensive

overview of issues in floating point arithmetic and relates these to the 1984 version of the IEEE-754

standard[8]. More recently, after the release of the revised IEEE-754 standard in 2008, a textbook

“Handbook Of Floating Point Arithmetic” has been published which provides a thourough review

of literature relating to floating point arithmetic in both software and hardware[12].

Figure ?? shows the positive real numbers which can be represented exactly by an 8 bit base

B = 2 floating point number; and illustrates that a set of fixed precision floating point numbers

forms a discrete approximation of the reals. There are only 27 = 256 numbers in this set, which

means it is easier to see some of the properties of floats that would be unclear using one of the

11Kahan has argued that exceptions in IEEE-754 are conceptually different to Exceptions as defined in several
programming languages including C++ and Java. An IEEE exception is intended to prevent an error by its detection,
whilst an exception in those languages is used to indicate an error has already occurred[]
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IEEE-754 encodings. The first set of points corresponds to using 2 and 5 bits to encode e and m

whilst the second set of points corresponds to a 3 and 4 bit encoding. This allows us to see the

trade off between the precision and range of real values represented.
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Figure 3.9: The mapping of 8 bit floats to reals

3.5.4 Floating Point Operations

Floating point operations can in principle be performed using integer operations, but specialised

Floating Point Units (FPUs) are an almost universal component of modern processors[?]. The

improvement of FPUs remains highly active in several areas including: efficiency[35]; accuracy of

operations[36]; and even the adaptation of algorithms originally used in software for reducing the

overal error of a sequence of operations[37]. In this section we will consider the algorithms for

floating point operations without focusing on the hardware implementation of these algorithms.
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3.5.5 Some sort of Example(s) or Floating Point Mayhem

Eg: f(x) = |x| calculated from sqrt and squaring

Eg: Massive rounding errors from calculatepi

Eg: Actual graphics things :S

3.5.6 Limitations Imposed By Graphics APIs and/or GPUs

Traditionally algorithms for drawing vector graphics are performed on the CPU; the image is

rasterised and then sent to the GPU for rendering[]. Recently there has been a great deal of

literature relating to implementation of algorithms such as bezier curve rendering[] or shading[] on

the GPU. As it seems the trend is to move towards GPU

6. Here are ways GPU might not be IEEE-754 — This goes *somewhere* in here but not sure

yet

• Internal representations are GPU dependent and may not match IEEE[38]

• OpenGL standards specify: binary16, binary32, binary64

• OpenVG aims to become a standard API for SVG viewers but the API only uses binary32

and hardware implementations may use less than this internally[25]

• It seems that IEEE has not been entirely successful; although all modern CPUs and GPUs

are able to read and write IEEE floating point types, many do not conform to the IEEE

standard in how they represent floating point numbers internally.

• Blog post alert 〈https://dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/〉

7. Sod all that, let’s just use an arbitrary precision library (AND THUS WE FINALLY GET

TO THE POINT)

3.5.7 Arbitrary Precision Floating Point Numbers

An arbitrary precision floating point number simply uses extra bits to store extra precision. Do it

all using MFPR[33], she’ll be right.

8. Here is a brilliant summary of sections 7- above

Dear reader, thankyou for your persistance in reading this mangled excuse for a Literature

Review. Hopefully we have brought together the radically different areas of interest together in

some sort of coherant fashion. In the next chapter we will talk about how we have succeeded in

rendering a rectangle. It will be fun. I am looking forward to it.

Oh dear this is not going well

https://dolphin-emu.org/blog/2014/03/15/pixel-processing-problems/


4. Progress Report

This chapter outlines the current state of our research in relation to the aims outlined in Chapter

1.

4.1 Literature Review

We have examined a range of literature that can be broadly classed into three different areas:

1. Rendering Vector Graphics

2. Representations of Vector Documents

3. Floating Point number representations

In summary, we have found:

• Rasterisation of Vector Graphics is non-trivial but well understood

• Traditionally rasterisation has been performed on the CPU and rendering on a dedicated

GPU; current interest is in techniques for utilising the GPU directly to rasterise vector

graphics.

• The popular standards for document formats including PostScript, PDF, HTML, SVG require

IEEE-754 binary32 precision

• Fixed precision floating point numbers make a trade off between precision and range

• IEEE-754 is widely used although there are instances of languages or processors which do

not conform exactly to the standard

• GPUs in particular may not conform to IEEE-754, trading some accuracy of operations for

performance

4.2 Development of Testbed Software

We have produced a basic Document Viewer capable of rendering simple primitives under

translation and scaling. OpenGL 3.1 is used to interface with graphics hardware. This software

has the following features:

1. A type name Real is used in place of the standard floating point types float, double or

long double. This type name can be redefined to refer to one of the standard types or a

custom real number representation, allowing us to easily recompile and test our software for

different representations.

2. Screenshots can be overlaid on top of each other to get a pixel comparison of the graphical

output of different versions of the program

3. Test documents can be loaded and saved so that we can compare different versions of the

program on identical inputs

19
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4. Transformations can be performed on either the GPU or CPU

5. Performance of rendering can be measured

We have found the performance of coordinate transforms on the GPU to be far superior to the

CPU. However, at large enough scales it becomes apparent that the GPU is performing operations

at a lower precision than the CPU. See Figure ??.

4.3 Floating Point Precision
Algorithms for floating point arithmetic may be implemented in software (CPU) or on dedicated

hardware (FPU). We have made progress towards both approaches.

An open source Virtual FPU implemented in the VHDL language has been successfully com-

piled and can be substituted into our testbed software in place of native arithmetic running on

the CPU. The timing diagram for this FPU throughout the execution of test programs can be

extracted. Currently the virtual FPU is restricted to 32 bit floats and the square root operation

is unimplemented.

Mainly motivated by producing Figure ?? we have also implemented functions to convert

arbitrary real numbers (which may themselves be IEEE-754 floats) to and from a fixed size floating

point representation of our choosing. We have not implemented any operations for floating point

arithmetic using these representations.

By using the functions to convert real numbers to variable precision floats as an interface for

the virtual FPU, we hope to illustrate the limitations of floating point arithmetic more clearly than

would be possible using IEEE-754 binary32 as is native to the C and C++ languages.

4.3.1 Prototype Document Formats

Our testbed software is capable of reading primitive attributes from either a binary file or XML

plain text file. Our format is closest to the Document Object Model, although there is currently

only one generation in the tree as no primitives can contain other elements as of yet.

If time permits, we plan to extend our XML format to cover a subset of the SVG standard.

This may allow us to compare the rasterisation of an SVG using our own software and traditional

software relying on IEEE-754 floats.

4.4 Version Control and Backup of Work
Git is a distributed version control system widely used in the development of open source

software[]. All rescources created for or used by this project have been placed in git reposi-

tories on several servers. The repositories are publically accessable at 〈http://git.ucc.asn.au〉,
〈http://szmoore.net/ipdf〉 and 〈david’s website probably I guess〉1

4.5 Timeline
Deadlines enforced by the faculty of Engineering Computing and Mathematics are italicised.

Tasks completed as of the submission of this report are struck through. 2.

1These are all actually on the same filesystem but it sounds impressive anyway
2David Gow is being assessed under the 2014 rules for a BEng (Software) Final Year Project, whilst the author

is being assessed under the 2014 rules for a BEng (Mechatronics) Final Year Project; deadlines and requirements
as shown in Gow’s proposal[2] may differ

http://git.ucc.asn.au
http://szmoore.net/ipdf
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Date Milestone

1st May Testbed Software (basic document format and

viewer) completed and approaches for extending

to allow infinite precision identified.

? May Draft Progress Report and Literature Review

26th May Progress Report and Literature Review due.

9th June Demonstrations of limitations of floating point

precision in the Testbed software.

1st July At least one implementation of infinite precision

for basic primitives (lines, polygons, curves) com-

pleted. Other implementations, advanced fea-

tures, and areas for more detailed research iden-

tified.

1st August Experiments and comparison of various infinite

precision implementations completed.

1st September Advanced features implemented and tested, work

underway on Final Report.

TBA Conference Abstract and Presentation due.

10th October Draft of Final Report due.

27th October Final Report due.



5. Conclusion

This report has provided motivation for considering approaches to achieving an infinite level of

zoom in a document.

5.1 Acheived Milestones

5.2 Areas of further work

• Continue looking for relevant literature

• Implement all those tests mentioned in Chapter 1

• Actually identify the techniques I will use THIS ONE SHOULD BE DONE BEFORE

I HAND IN THE LITERATURE REVIEW!

• Possible Ultimate Goal: Implement (a subset) of SVG and then show an SVG document that

we can render but a browser can’t

– This means extending our viewer to be able to read (a subset) SVG

– Can already read XML, so this shouldn’t actually be too bad

∗ Emphasis on subset

∗ (I’ve seen the SVG standard; I’m talking about implementing the 18 pages under

“Basic Shapes”. The other 818 pages can complain to someone who cares.)

– Suggestion to David that he probably won’t like (or read): Make his octree structure

specifiable as an SVG extension

5.3 Witty Conclusion Goes Here
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