

Number Representations and Precision in Vector Graphics

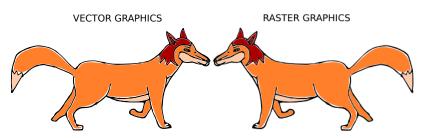
Implementation of an Arbitrary Precision SVG Viewer

Sam Moore

Supervisors: Tim French, Rowan Davies

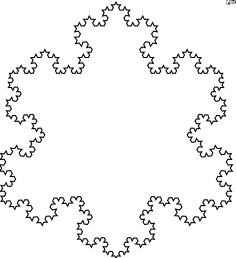
October 13, 2014

Summary



- Vector graphics allow detail to be scaled but not by an arbitrary amount
- We've implemented a vector graphics viewer which does allow arbitrary scaling

Graphics Formats


- Document formats (eg: PDF and SVG) are formats for vector graphics
- Vector graphics scale better than raster graphics

Motivation

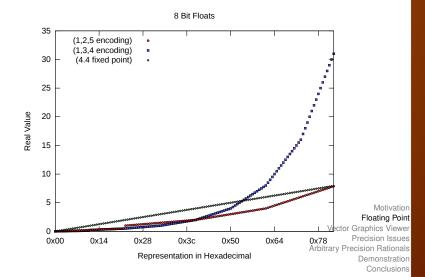
Is there a zoom limit?

Motivation

Is there a zoom limit?

- SVG, PostScript, PDF specify IEEE-754 single floating point number representations
- ▶ Range of values: $\approx 3 \times 10^{-38} \rightarrow 3 \times 10^{+38}$
- ► Rough Floating Point Definition¹:

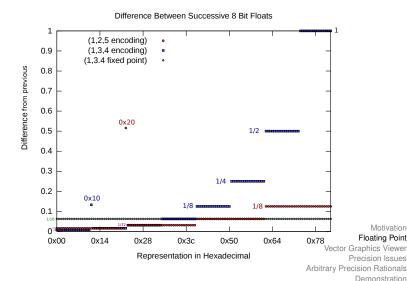
$$X = m \times 2^{E} \tag{1}$$


- ▶ m and E are encoded in a fixed length string of bits
- ▶ Floating Point ≈ Scientific Notation for computers

¹IEEE-754 is more complicated

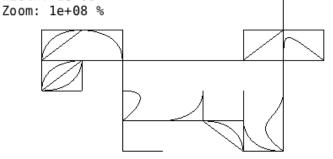
Visualisation of Floats

- ▶ With total length of *m* and *E* limited to 7 bits (1 sign bit)
- Operations are inexact (in general)



Visualisation of Floats II

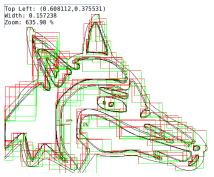
Conclusions


Difference between successive floats

Precision is limited

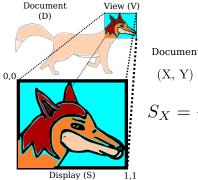
Top Left: (0.5,0.5) Width: 1e-06

Structure of Vector Graphics


- ► Bézier Curve (Quadratic or Cubic Parametric Polynomial)
- ▶ Path of Bézier Curves → Shapes (with fill)
- Shapes include font glyphs, like this *2*

Structure of Vector Graphics II

- Upload bounding rectangles of individual objects to renderer (OpenGL)
- Rectangles show individual Béziers forming outline of the Fox


Motivation Floating Point Vector Graphics Viewer Precision Issues Arbitrary Precision Rationals

> Demonstration Conclusions

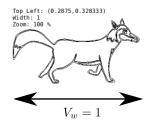
Viewing Vector Graphics

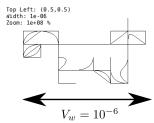
► Tranform coordinates in document → display

Document via View to Display (S)

$$(X, Y) \longrightarrow (S_X, S_Y)$$

$$S_X = \frac{X - V_x}{V_w}$$
 $S_Y = \frac{Y - V_y}{V_h}$


Floating point calculations go wrong



Example: Insert objects at very small scale

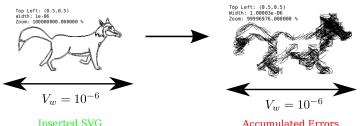
$$S_X = \frac{X - V_x}{V_w}$$
 $S_Y = \frac{Y - V_y}{V_h}$

Division by small value \implies amplify rounding errors

Motivation Floating Point Vector Graphics Viewer Precision Issues

Arbitrary Precision Rationals

Demonstration


Conclusions

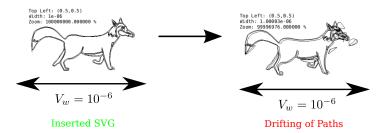
Reducing error

- Don't apply view transformation directly
- Store object bounds relative to the display
- When modifying the view, modify object bounds
- Detail inserted into the view looks good, But...

Zoom out by a large amount then back in

Accumulated Errors

Floating Point Vector Graphics Viewer Precision Issues Arbitrary Precision Rationals Demonstration Conclusions


Motivation

Cumulated Errors with intermediate coord system

- Apply transformations to Paths not individual Béziers
- Paths render correctly, but drift appart

Zoom out by a large amount then back in

We only need to transform the Paths with increased precision

on Motivation Floating Point Vector Graphics Viewer

Conclusions

Precision Issues
Arbitrary Precision Rationals
Demonstration

Arbitrary Precision Rationals

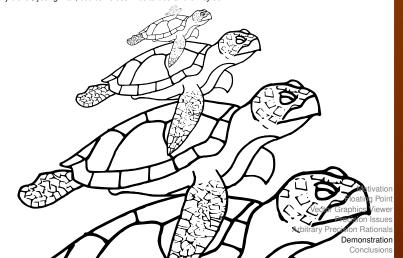
$$Q = \frac{N}{D} \tag{2}$$

N and D are arbitrary precision integers

$$N = \sum_{i=0}^{S} d_i \beta^i \tag{3}$$

- d_i are fixed size integers, $\beta = 2^{64}$
- Size S grows as needed
- Operations are always exact
- Implemented by GNU Multiple Precision Library

Use Rationals to represent Path Coordinates



- Can move view to arbitrary point
- Insert detail (ie: Test SVG image) in Display coordinates
- Move view to another arbitrary point
- Move view back
- Detail is unchanged

Demonstration

- We can import standard SVGs wherever we want
- If we are willing to wait long enough
- "... But, asks the scientist, what does that turtle stand on? To which the lady triumphantly answers: 'You're very clever, young man, but it's no use it's turtles all the way down!'."

What was done

- Implemented a basic SVG viewer
- Demonstrated how precision affects rendering vector graphics
- Using GMP rationals, demonstrated the ability to render SVGs scaled to an arbitrary position in a document

Future work

- Implement more of the SVG standard
- Trial alternative number representations
- Allow for saving and loading SVGs with arbitrary precision

References & More information

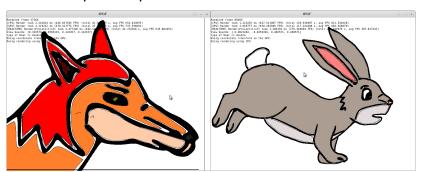
- Work on SVG viewer collaborative with David Gow
 - See David Gow's presentation about Quadtrees
- Muller et al, Handbook of Floating Point Arithmetic,
- Hearn, Baker Computer Graphics
- Kahan et al, IEEE-754 (1985 and 2008 revision)
- Dahlstóm et al, SVG WC3 Recommendation 2011
- Grunland et al, GNU Multiple Precision Manual 6.0.0a
- ► Kahan's website http://http.cs.berkeley.edu/~wkahan

Q: Why not just increase floating point precision?

- Any fixed precision format will still give inexact results
- Eg: Accuracy of rendering a grid

Q: Arbitrary precision floats?

$$X = m \times 2^{E} \tag{4}$$


- ▶ m and E are of arbitrary size
- Implemented by MPFR or GMP
- Difficulties:
 - Need to manually set precision (size) of m
 - Some operations require infinite precision:

How do you choose when to increase precision?

Q: Why don't you have colour?

- ▶ We do!²
- A complete implementation of SVG is "future work"

²If you are willing to wait long enough