
Number Representations and Precision in Vector Graphics

Author: Samuel Moore[1]

Partners: David Gow[2]

Supervisors: Prof Tim French, Dr Rowan Davies

October 10, 2014

Abstract

Early document formats such as PostScript were motivated by a desire to print text and visual

information onto a static paper medium. Although documents are increasingly viewed digitally,

modern standards including PDF and SVG are still largely based upon this model. Digital docu-

ment viewers are able to scale a subregion of the document to fit the display. However, coordinates

of graphics primitives are typically represented with IEEE-754 floating point numbers. This places

limits on the precision with which primitives in the document can be specified and rendered.

We have implemented a minimal SVG viewer, with which we have compared a number of

approaches to achieving arbitrary precision document formats. We demonstrate the trade off

between performance and precision with alternative number representations including arbitrary

precision floats, rationals, and IEEE-754 fixed precision floats. We also consider approaches to

increasing the precision that can be attained with IEEE-754 floats.

Keywords: document formats, precision, floating point, vector images, graphics, OpenGL,

SDL2, PostScript, PDF, TEX, SVG, HTML5, Javascript

Note: This report is best viewed digitally as a PDF. The digital version is available at

〈http://szmoore.net/ipdf/sam/thesis.pdf〉

Contents

1 Introduction 1

2 Literature Review 2

2.1 Raster and Vector Graphics . 2

2.2 Rendering Vector Primitives . 3

2.2.1 Straight Lines . 3

2.2.2 Bézier Splines . 4

2.2.3 Filled Paths . 5

2.2.4 Compositing . 5

2.2.5 Fonts . 6

2.3 Coordinate Systems and Transformations . 6

2.4 Precision Specified by Document Standards . 7

2.4.1 Interpreted Models: PostScript and PDF . 8

2.4.2 The Document Object Model: SVG . 8

2.4.3 Precision Specified By Standards . 9

2.4.4 PostScript . 9

2.4.5 PDF . 9

2.4.6 TEX and METAFONT . 9

2.4.7 SVG . 9

2.4.8 Javascript . 10

i

http://szmoore.net/ipdf/sam/thesis.pdf

2.5 Fixed Point and Integer Number Representations . 10

2.6 Floating Point Number Representations . 10

2.6.1 Visualisation of Floating Point Representation . 11

2.6.2 Floating Point Operations . 12

2.6.3 Addition and Subtraction . 13

2.6.4 Multiplication and Division . 13

2.6.5 Arbitrary Precision Floating Point Numbers . 14

2.7 Rational Number Representations . 14

2.8 Floating Point Operations on the CPU and GPU . 14

3 Methods and Design 16

3.1 Collaborative Process . 16

3.2 Structure of Software . 16

3.3 Approaches to Arbitrary Precision . 16

3.4 Number Representations Trialed . 17

3.5 Libraries Used . 17

3.6 Design of Performance Tests . 18

4 Results and Discussion 19

4.1 Qualitative Rendering Accuracy . 19

4.1.1 Applying the view transformation directly . 19

4.1.2 Applying cumulative transformations to all Béziers 19

4.1.3 Applying cumulative transformations to Paths . 20

4.2 Quantitative Measurements of Rendering Accuracy . 20

4.2.1 Names of programs in figures . 21

4.2.2 Precision for Fixed View . 21

4.2.3 Accumulated error after changing the View . 22

4.3 Performance Measurements whilst Rendering . 22

5 Conclusion 24

References 27

List of Figures

2.1 Original Vector and Raster Images . 2

2.2 Scaled Vector and Raster Images . 3

ii

iii

2.3 Rasterising a Straight Line . 4

2.4 Constructing a Spline from two cubic Béziers (a) Showing the Control Points (b) Represen-
tations in SVG and PostScript (c) Rendered Spline . 5

2.5 a) Vector glyph for the letter Z b) Screenshot showing Bézier control points in Inkscape . . 6

2.6 Positive 8-Bit Number Representations . 12

2.7 Difference between successive numbers . 12

2.8 Difference in evaluating x2 + y2 < 1 for the x86 64 and various GPUs The view bounds are
identical . 15

4.1 The vector image from Figure 2.1 under two different scales 19

4.2 The effect of applying cumulative transformations to all Béziers 20

4.3 Effect of cumulative transformations applied to Paths a) Path bounds represented using
floats b) Path bounds represented using Rationals . 20

4.4 Effect of applying (2.7) to a grid of lines seperated by 1 pixel a) Near origin (denormals) b),
c), d) Increasing the exponent of (vx, vy) by 1 . 21

4.5 Loss of precision of the grid . 22

4.6 Error in the coordinates of the grid . 22

1. Introduction

Early electronic document formats such as PostScript were motivated by a need to print docu-

ments onto a paper medium. In the PostScript standard, this lead to a model of the document as a

program; a series of instructions to be executed by an interpreter which would result in “ink” being

placed on “pages” of a fixed size[3]. The ubiquitous Portable Document Format (PDF) standard

provides many enhancements to PostScript taking into account desktop publishing requirements[4],

but it is still fundamentally based on the same imaging model[5]. This idea of a document as a

static “page” has lead to limitations on what could be achieved with a digital document viewers

[6].

As most digital display devices are smaller than physical paper medium, all useful viewers

are able to “zoom” to a subset of the document. Vector graphics formats including PostScript,

PDF and SVG support rasterisation at different zoom levels[3, 5, 7], but the use of fixed precision

floating point numbers causes problems due to imprecision either far from the origin, or at a high

level of detail[8, 9].

There are many possible applications for documents in which precision is unlimited. Several

areas of use include: visualisation of extremely large or infinite data sets; visualisation of high

precision numerical computations; digital artwork; computer aided design; and maps.

We have implemented a proof of concept document viewer compatable with a subset of the SVG

standard, which has allowed us to explore the limitations of floating point arithmetic and possible

approaches to achieving arbitrary precision document formats. Using the Rational representation

of the GNU Multiple Precision (GMP) library[?] we are able to implement correct rendering of SVG

test images seperated by arbitrary distances. We demonstrate the trade off between performance

cost and the accuracy of rendering

1

2. Literature Review

An overview will go here.

2.1 Raster and Vector Graphics

At a fundamental level everything that is seen on a display device is represented as either a

vector or raster image. These images can be stored as stand alone documents or embedded within

a more complex document format capable of containing many other types of information.

A raster image’s structure closely matches it’s representation as shown on modern display

hardware; the image is represented as a grid of filled square “pixels”. Each pixel is considered to be

a filled square of the same size and contains information describing its colour. This representation is

simple and also well suited to storing images as produced by cameras and scanners. The drawback

of raster images is that by their very nature there can only be one level of detail; this is illustrated

in Figures 2.1 and 2.2.

A vector image contains information about the positioning and shading of geometric shapes.

To display this image on modern display hardware, coordinates are transformed according to the

view and then the image is converted into a raster like representation. Whilst the raster image

merely appears to contain edges, the vector image actually contains information about these edges,

meaning they can be displayed “infinitely sharply” at any level of detail — or they could be if the

coordinates are stored with enough precision (see Section ??).

Figures 2.1 and 2.2 illustrate the advantage of vector formats by comparing raster and vector

images in a similar way to Worth and Packard[10]. On the right is a raster image which should be

recognisable as an animal defined by fairly sharp edges. Figure 2.2 shows how these edges appear

jagged when scaled. There is no information in the original image as to what should be displayed

at a larger size, so each square shaped pixel is simply increased in size. A blurring effect will

probably be visible in most PDF viewers; the software has attempted to make the “edge” appear

more realistic using a technique called “antialiasing”1.

The left side of the Figures are a vector image. When scaled, the edges maintain a smooth

appearance which is limited by the resolution of the display rather than the image itself.

VECTOR GRAPHICS

Figure 2.1: Original Vector and Raster Images

1We recommend disabling this if your PDF viewer supports it

2

2 Literature Review 3

VECTOR GRAPHICS

Figure 2.2: Scaled Vector and Raster Images

2.2 Rendering Vector Primitives
Hearn and Baker’s textbook “Computer Graphics”[11] gives a comprehensive overview of graph-

ics from physical display technologies through fundamental drawing algorithms to popular graphics

APIs. This section will examine algorithms for drawing two dimensional geometric primitives on

raster displays as discussed in “Computer Graphics” and the relevant literature. This section is

by no means a comprehensive survey of the literature but intends to provide some idea of the

computations which are required to render a document.

It is of some historical significance that vector display devices were popular during the 70s and

80s, and papers oriented towards drawing on these devices can be found[12]. Whilst curves can be

drawn at high resolution on vector displays, a major disadvantage was shading[13]; by the early

90s the vast majority of computer displays were raster based[11].

2.2.1 Straight Lines

It is well known that in cartesian coordinates, a line between points (x1, y1) and (x2, y2), can be

described by:

y(x) = mx+ c on x ∈ [x1, x2] for m =
(y2 − y1)

(x2 − x1)
and c = y1 −mx1 (2.1)

On a raster display, only points (x, y) with integer coordinates can be displayed; however m

will generally not be an integer. Thus a straight forward use of Equation 2.1 will require costly

floating point operations and rounding (See Section??). Modifications based on computing steps

∆x and ∆y eliminate the multiplication but are still less than ideal in terms of performance[11].

It should be noted that algorithms for drawing lines can be based upon sampling y(x) only if

|m| ≤ 1; otherwise sampling at every integer x coordinate would leave gaps in the line because

∆y > 1. Line drawing algorithms can be trivially adopted to sample x(y) if |m| > 1.

Bresenham’s Line Algorithm was developed in 1965 with the motivation of controlling a partic-

2 Literature Review 4

ular mechanical plotter in use at the time[14]. The plotter’s motion was confined to move between

discrete positions on a grid one cell at a time, horizontally, vertically or diagonally. As a result,

the algorithm presented by Bresenham requires only integer addition and subtraction, and it is

easily adopted for drawing pixels on a raster display. Because integer operations are exact, only

an error in the calculation of the line end points will affect the rendering.

In Figure 2.3 a) and b) we illustrate the rasterisation of a line width a single pixel width. The

path followed by Bresenham’s algorithm is shown. It can be seen that the pixels which are more

than half filled by the line are set by the algorithm. This causes a jagged effect called aliasing

which is particularly noticable on low resolution displays. From a signal processing point of view

this can be understood as due to the sampling of a continuous signal on a discrete grid[15].

Figure 2.3 c) shows an (idealised) antialiased rendering of the line. The pixel intensity has been

set to the average of the line and background colours over that pixel. Such an ideal implementation

would be impractically computationally expensive on real devices[16]. In 1991 Wu introduced an

algorithm for drawing approximately antialiased lines which, while equivelant in results to existing

algorithms by Fujimoto and Iwata, set the state of the art in performance[15]2. .

Figure 2.3: Rasterising a Straight Line

a) Before Rasterisation b) Bresenham’s Algorithm c) Anti-aliased Line (Idealised)

2.2.2 Bézier Splines

Splines are continuous curves formed from piecewise polynomial segments. A polynomial of nth

degree is defined by n constants {a0, a1, ...an} and:

y(x) =

n∑
k=0

akx
k (2.2)

Cubic and Quadratic Bézier Splines are used to define curved paths in the PostScript[3], PDF[5]

and SVG[7] standards which we will discuss in Section ??. Cubic Béziers are also used to define

vector fonts for rendering text in these standards and the TEX typesetting language [17, 18].

Although he did not derive the mathematics, the usefulness of Bézier curves was realised by Pierre

Bézier who used them in the 1960s for the computer aided design of automobile bodies[19].

A Bézier Curve of degree n is defined by n “control points” {P0, ...Pn}. Points P (t) = (x(t), y(t))

2Techniques for antialiasing primitives other than straight lines are discussed in some detail in Chapter 4 of
“Computer Graphics” [11]

2 Literature Review 5

along the curve are defined by:

P (t) =

n∑
j=0

Bn
j (t)Pj (2.3)

Where tε[0, 1] is a control parameter. The polynomials Bn
j (t) are Bernstein Basis Polynomials

which are defined as:

Bn
j (t) =

(
n
j

)
tj (1− t)n−j j = 0, 1, ..., n (2.4)

Where
(
n
j

)
=

n!

n!(n− j)!
(The Binomial Coefficients) (2.5)

From these definitions it should be apparent that in all cases, P (0) = P0 and P (1) = Pn. An n = 1

Bézier Curve is a straight line.

Algorithms for rendering Bézier’s may simply sample P (t) for suffiently many values of t —

enough so that the spacing between successive points is always less than one pixel distance. Alter-

nately, a smaller number of points may be sampled with the resulting points connected by straight

lines using one of the algorithms discussed in Section ??.

De Casteljau’s algorithm of 1959 is often used for decomposing Béziers into line segments[11, 17].

This algorithm subdivides the original curve with n control points {P0, ...Pn} into 2 halves, each

with n control points: {Q0, ...Qn} and {R0, ...Rn}; when iterated, the produced points will converge

to P (t). As a tensor equation this subdivision can be expressed as[20]:

Qi =

((
n
j

)
2j

)
Pi and Ri =

(
n−j
n−k

)
2n−j

Pi (2.6)

A0

A1

A2B0

B1

B2

<!-- DOM element in SVG used to construct the spline -->
<path d="M 0,300

C 0,300 200,210 90,140
-20,70 200,0 200,0"
style="stroke:#000000; stroke-width:1px;
fill:none;"/>

% PostScript commands for a similar spline
0 300 moveto
0 300 200 210 90 140 curveto
-20 70 200 0 200 0 curveto stroke

Figure 2.4: Constructing a Spline from two cubic Béziers
(a) Showing the Control Points (b) Representations in SVG and PostScript (c) Rendered Spline

2.2.3 Filled Paths

2.2.4 Compositing

FIXME Really won’t have time to mention these? They are important, but we didn’t end up

2 Literature Review 6

implementing them anyway.

2.2.5 Fonts

Figure 2.5: a) Vector glyph for the letter Z b) Screenshot showing Bézier control points in Inkscape

A the term “font” refers to a set of images used to represent text on a graphical display. In

1983, Donald Knuth published “The METAFONT Book” which described a vector approach to

specifying fonts and a program for creating these fonts[17]. Previously, only rasterised font images

(glyphs) were popular; as can be seen from the zooming in Figure 2.2 this can be problematic given

the prevelance of textual information at different scales and on different resolution displays.

Knuth used Bézier Cubic Splines to define “pleasing” curves in METAFONT, and this approach

is still used in modern vector fonts. Since the paths used to render an individual glyph are used

far more commonly than general curves, document formats do not require such curves to be

specified in situ, but allow for a choice between a number of internal fonts or externally specified

fonts. In the case of Knuth’s typesetting language TEX, fonts were intended to be created using

METAFONT[17]. Figure 2.5 shows a Z (script Z) produced by LATEX with Bézier cubics identified.

2.3 Coordinate Systems and Transformations
Basic vector primitives composed of Béziers may be rendered using only integer operations,

once the starting and ending positions are rounded to the nearest pixel.

However, a complete document will contain many such primitives which in general cannot all

be shown on a display at once. A “View” rectangle can be defined to represent the size of the

display relative to the document. To interact with the document a user can change this view

through scaling or translating with the mouse[].

Primitives which are contained within the view rectangle will be visible on the display. This

involves the transformation from coordinates within the document to relative coordinates within

the view rectangle as illustrated in Figure ??. A point (X,Y) in the document will transform to

a point (x, y) in the view by:

X =
x− vx
vw

Y =
y − vy
vh

(2.7)

Where (vx, vy) are the coordinates of the top left corner and (vw, vh) are the dimensions of the

view rectangle.

2 Literature Review 7

The transformation may also be written as a 3x3 matrix V if we introduce a third coordinate

Z = 1

X = V x (2.8) X

Y

1

 =

1
vw

0 vx

vw

0 1
vh

vy
vh

0 0 1

 x

y

1

 (2.9)

Moving the mouse3 by a distance (∆x,∆y) relative to the size of the view should translate it

by the same amount[]:

vx → vx + ∆x (2.10)

vy → vy + ∆y (2.11)

The document can be scaled by a factor of s about a point (x0, y0) specified relative to the

view (such as the position of the mouse cursor)[]:

vx → vx + x0vw(1− s) (2.12)

vy → vy + y0vh(1− s) (2.13)

vw → svw (2.14)

vh → svh (2.15)

The effect of this transformation is that, measured relative to the view rectangle, the distance

of primitives with coordinates (x, y) to the point (x0, y0) will decrease by a factor of s. For s < 1

the operation is “zooming out” and for s > 1, “zooming in”.

TODO

• Intermediate coordinate systems...

• Write Matrix operations properly

• Link with the results where applying (2.7) directly leads to disaster

• This is because for vw << 1, an error of 1ulp in x − vx is comparable with vw, ie: Can

increase to the order of the size of the display (or more)

2.4 Precision Specified by Document Standards

FIXME: Most of this stuff should probably be appendicised

The representation of information, particularly for scientific purposes, has changed dramatically

over the last few decades. For example, Brassel’s 1979 paper on shading polygons[12] has been

3or on a touch screen, swiping the screen

2 Literature Review 8

produced on a mechanical type writer. Although the paper discusses an algorithm for shading on

computer displays, the figures illustrating this algorithm have not been generated by a computer,

but drawn by Brassel’s assistant. In contrast, modern papers such as Barnes et. al’s 2013 paper

on embedding 3d images in PDF documents[21] can themselves be an interactive proof of concept.

Haye’s 2012 article “Pixels or Perish” discusses the recent history and current state of the art

in documents for scientific publications[6]. Hayes argued that there are currently two different

approaches to representing a document: As a sequence of commands for producing an image

on a static sheets of paper (Interpreted Model) or as a dynamic and interactive way to convey

information, using the Document Object Model.

2.4.1 Interpreted Models: PostScript and PDF

Adobe’s PostScript Language Reference Manual defines a turing complete language for producing

graphics output on an abstract “output device”[3]. A PostScript document is treated as a procedu-

ral program; an interpreter executes instructions in the order they are written by the programmer.

In particular, the document specifies the locations of enclosed curves using Bézier splines (Section

??), whilst text is treated as vector fonts described in Section ??. PostScript was and is still widely

used in printing of documents onto paper; many printers execute postscript directly, and newer

formats including PDF must still be converted into PostScript by printer drivers[5, 4].

Adobe’s Portable Document Format (PDF) is currently used almost universally for sharing

documents; the ability to export or print to PDF can be found in most graphical document editors

and even some plain text editors[4].

Hayes describes PDF as “... essentially ’flattened’ PostScript; its whats left when you remove

all the procedures and loops in a program, replacing them with sequences of simple drawing

commands.”[6].

2.4.2 The Document Object Model: SVG

The Document Object Model (DOM) represents a document as a tree like data structure with

the document as a root node. The elements of the document are represented as children of either

this root node or of a parent element. In addition, elements may have attributes which contain

information about that particular element.

The World Wide Web Consortium (W3C) is an organisation devoted to the development of

standards for structuring and rendering web pages based on industry needs. The DOM is used

in and described by several W3C recommendations including XML[22], HTML[23] and SVG[7].

XML is a general language which is intended for representing any tree-like structure using the

DOM, whilst HTML and SVG are specifically intended for representing text documents and more

general graphics respectively. These languages make use of Cascading Style Sheets (CSS)[24] for

specifying the appearance of elements.

The Scalable Vector Graphics (SVG) recommendation defines a language for representing vector

images using the DOM. This is intended not only for stand alone images, but also for inclusion

within HTML documents. In the SVG standard, each graphics primitive is an element in the

2 Literature Review 9

DOM, whilst attributes of the element give information about how the primitive is to be drawn,

such as path coordinates, line thickness, mitre styles and fill colours.

In the SVG representation, general shapes can be specified by locations of enclosed curves using

Bézier splines (Section ??) - the construction of these curves is very similar to PostScript (refer to

Figure ??). Again, text is created using vector fonts as described in Section ??.

2.4.3 Precision Specified By Standards

TODO: Keep this subsection, appendicise rest of this section

2.4.4 PostScript

The PostScript reference describes a “Real” object for representing coordinates and values as

follows: “Real objects approximate mathematical real numbers within a much larger interval, but

with limited precision; they are implemented as floating-point numbers”[3]. There is no reference

to the precision of mathematical operations, but the implementation limits suggest a range of

±1038 “approximate” and the smallest values not rounded to zero are ±10−38 “approximate”.

2.4.5 PDF

PDF defines “Real” objects in a similar way to PostScript, but suggests a range of ±3.403× 1038

and smallest non-zero values of ±1.175 × 1038[5]. A note in the PDF 1.7 manual mentions that

Acrobat 6 now uses IEEE-754 single precision floats, but “previous versions used 32-bit fixed

point numbers” and “... Acrobat 6 still converts floating-point numbers to fixed point for some

components”.

2.4.6 TEX and METAFONT

In “The METAFONT book” Knuth appears to describe coordinates as fixed point numbers: “The

computer works internally with coordinates that are integer multiples of 1
65536 ≈ 0.00002 of the

width of a pixel”[17]. 4 There is no mention of precision in “The TEX book”. In 2007 Beebe claimed

that TEX uses a 14.16 fixed point encoding, and that this was due to the lack of standardised

floating point arithmetic on computers at the time; a problem that the IEEE-754 was designed to

solve[25]. Beebe also suggested that TEX and METAFONT could now be modified to use IEEE-754

arithmetic.

2.4.7 SVG

The SVG standard specifies a minimum precision equivelant to that of “single precision floats”

(presumably referring to IEEE-754) with a range of -3.4e+38F to +3.4e+38F, and states “It

is recommended that higher precision floating point storage and computation be performed on

operations such as coordinate system transformations to provide the best possible precision and

4This corresponds to using 16 bits for the fractional component of a fixed point representation

2 Literature Review 10

to prevent round-off errors.”[7] An SVG Viewer may refer to itself as “High Quality” if it uses a

minimum of “double precision” floats.

2.4.8 Javascript

We include Javascript here due to its relation with the SVG, HTML5 and PDF standards. Accord-

ing to the EMCA-262 standard, “The Number type has exactly 18437736874454810627 (that is,

264−5 3 + 3) values, representing the double-precision 64-bit format IEEE 754 values as specified

in the IEEE Standard for Binary Floating-Point Arithmetic”[26]. The Number type does differ

slightly from IEEE-754 in that there is only a single valid representation of “Not a Number” (NaN).

The EMCA-262 does not define an “integer” representation.

2.5 Fixed Point and Integer Number Representations

A positive real number z may be written as the sum of smaller integers “digits” di < z multiplied

by powers of a base β.

z =
∞∑

i=−∞
diβ

i (2.16)

Where each digit di < β the base. A set of β unique symbols are used to represent values of di. A

seperate sign ’-’ can be used to represent negative reals using equation (2.16).

To express a real number using equation (2.16) in practice we are limited to a finite number

of terms between i = −m and i = n. Fixed point representations are capable of representing a

discrete set of numbers 0 ≤ |z| ≤ βn+1 − β−m seperated by ∆z = β−m ≤ 1. In the case m = 0,

only integers can be represented.

Example integer representation in base 10 (decimal) and base 2 (binary):

568210 = 5× 103 + 6× 102 + 8× 101 + 2× 100

10110001100102 = 1× 212 + 0× 211 + ... + 0× 20

FIXME Add Maths reference (Cantor’s Diagonal argument) without going into all the Pure

maths details

2.6 Floating Point Number Representations

Whilst a Fixed Point representation keeps the “point” (the location considered to be i = 0 in

(2.16)) at the same position in a string of bits, Floating point representations can be thought of

as scientific notation; an “exponent” and fixed point value are encoded, with multiplication by the

exponent moving the position of the point.

FIXME: Cite properly The use of floating point arithmetic in computer systems was pio-

neered by Knuth[], Goldberg[27], Dekker[], and others, but modern systems are largely compatable

with the IEEE-754 standard pioneered by William Kahan in 1985 [28] and revised (also with con-

tributions from Kahan) in 2008[29].

2 Literature Review 11

A floating point number x is commonly represented by a tuple of values (s, e,m) in base B

as[30, 31]: x = (−1)s ×m×Be

Where s is the sign and may be zero or one, m is commonly called the “mantissa” and e is the

exponent. Whilst e is an integer in some range ±emax, the mantissa m is a fixed point value in

the range 0 < m < B.

The choice of base B = 2 in the original IEEE-754 standard matches the nature of modern

hardware. It has also been found that this base in general gives the smallest rounding errors[30].

Early computers had in fact used a variety of representations including B = 3 or even B = 7[?],

and the revised IEEE-754 standard specifies a decimal representation B = 10 intended for use in

financial applications[29]5. From now on we will restrict ourselves to considering base 2 floats.

The IEEE-754 encoding of s, e and m requires a fixed number of continuous bits dedicated to

each value. Originally two encodings were defined: binary32 and binary64. s is always encoded in

a single leading bit, whilst (8,23) and (11,53) bits are used for the (exponent, mantissa) encodings

respectively.

The encoding of m in the IEEE-754 standard is not exactly equivelant to a fixed point value.

By assuming an implicit leading bit (ie: restricting 1 ≤ m < 2) except for when e = 0, floating

point values are gauranteed to have a unique representations; these representations are said to

be “normalised”. When e = 0 the leading bit is not implied; these representations are called

“denormals” because multiple representations may map to the same real value. The idea of using

an implicit bit appears to have been considered by Goldberg as early as 1967[27].

2.6.1 Visualisation of Floating Point Representation

Figure ?? shows the positive real numbers which can be represented exactly by an 8 bit floating

point number encoded in the IEEE-754 format. We show two encodings using (1,2,5) and (1,3,4)

bits to encode (sign, exponent, mantissa) respectively. For each distinct value of the exponent, the

successive floating point representations lie on a straight line with constant slope. As the exponent

increases, larger values are represented, but the distance between successive values increases; this

can be seen in Figure??. The marked single point discontinuity at 0x10 and 0x20 occur when e

leaves the denormalised region and the encoding of m changes. We have also plotted a fixed point

representation for comparison; fixed point and integer representations appear as straight lines -

the distance between points is always constant.

5Eg: The smallest valid unit of currency $0.01 could not be represented exactly in base 2

2 Literature Review 12

0

5

10

15

20

25

30

35

0x00 0x14 0x28 0x3c 0x50 0x64 0x78

R
ea

l V
al

ue

Representation in Hexadecimal

8 Bit Floats

(1,3,4 encoding)
(4.4 fixed point)

(1,2,5 encoding)

Figure 2.6: Positive 8-Bit Number Representations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0x00 0x14 0x28 0x3c 0x50 0x64 0x78

D
iff

er
en

ce

Representation in Hexadecimal

Difference Between Successive 8 Bit Floats

fr
o
m

 p
re

v
io

u
s

(1,3.4 fixed point)
(1,3,4 encoding)
(1,2,5 encoding)

1/16

1/8

1/4

1/2

1

1/8

1/32
1/64
1/128

0x10

0x20

Figure 2.7: Difference between successive numbers

2.6.2 Floating Point Operations

FIXME: Appendix?

2 Literature Review 13

Real values which cannot be represented exactly in a floating point representation must be

rounded to the nearest floating point value. The results of a floating point operation will in

general be such values and thus there is a rounding error possible in any floating point operation.

Referring to Figure ?? it can be seen that the largest possible rounding error is half the distance

between successive floats; this means that rounding errors increase as the value to be represented

increases. For the result of a particular operation, the maximum possible rounding error can be

determined and is commonly expressed in “units in the last place” (ulp), with 1 ulp equivelant to

half the distance between successive floats[8].

Put this stuff in an Appendix?

2.6.3 Addition and Subtraction

According to the IEEE-754 standard, if e1 < e2, then the preferred form of f1 + f2 is:

m1β
e1 ±m2β

e2 = (m1 ± βe2−e1m2)βe1 (2.17)

This is equivelant to shifting the fixed point in m2 by e2 − e1 to the left, and then per-

forming fixed point addition or subtraction. If the result of the addition/subtraction requires a

carry/borrow, divide result by β (ie: shift digits by 1 the right) and increment/decrement exponent.

Then normalise the result (subtract leading zeros in mantissa from the exponent). Lastly perform

the rounding operation; if this would generate a carry/borrow, shift right and increment/decrement

exponent again, repeat.

2.6.4 Multiplication and Division

m1β
e1 ×m2β

e2 = (m1 ×m2)βe1+e2 (2.18)

m1β
e1 ÷m2β

e2 = (m1 ÷m2)βe1−e2 (2.19)

Multiplication and Division are not inverses.

Floating point operations can in principle be performed using integer operations, but specialised

Floating Point Units (FPUs) are an almost universal component of modern processors[32]. The

improvement of FPUs remains highly active in several areas including: efficiency[33]; accuracy of

operations[34]; and even the adaptation of algorithms originally used in software, such as Kahan’s

Fast2Sum algorithm[35].

2 Literature Review 14

2.6.5 Arbitrary Precision Floating Point Numbers

Arbitrary precision floating point numbers are implemented in a variety of software libraries which

will dynamically allocate extra bits for the exponent or mantissa as required. An example is the

GNU MPFR library discussed by Fousse in 2007[36]. Although many arbitrary precision libraries

already existed, MPFR intends to be fully compliant with some of the more obscure IEEE-754

requirements such as rounding rules and exceptions.

As we have seen, it is trivial to find real numbers that would require an infinite number of bits

to represent exactly. Implementations of “arbitrary” precision must carefully determine at what

point rounding should occur so as to balance performance with memory usage.

2.7 Rational Number Representations

Q =
N

D
(2.20)

• N and D are arbitrary precision integers

N =

S∑
i=0

diβ
i (2.21)

• di are fixed size integers, β = 264

• Size S grows as needed

• Operations are always exact

• Implemented by GNU Multiple Precision Library

2.8 Floating Point Operations on the CPU and GPU

FIXME: I feel this section is important but I’m not quite sure where to place it;

it could almost work as a paper by itself (in fact I sort of wrote one for it already...)

Traditionally, vector images have been rasterized by the CPU before being sent to a spe-

cialised Graphics Processing Unit (GPU) for drawing[11]. Rasterisation of simple primitives such

as lines and triangles have been supported directly by GPUs for some time through the OpenGL

standard[37]. However complex shapes (including those based on Bézier curves such as font glyphs)

must either be rasterised entirely by the CPU or decomposed into simpler primitives that the GPU

itself can directly rasterise. There is a significant body of research devoted to improving the perfor-

mance of rendering such primitives using the latter approach, mostly based around the OpenGL[37]

API[38, 39, 40, 41, 42, 43]. Recently Mark Kilgard of the NVIDIA Corporation described an ex-

tension to OpenGL for NVIDIA GPUs capable of drawing and shading vector paths[44, 45]. From

this development it seems that rasterization of vector graphics may eventually become possible

upon the GPU.

2 Literature Review 15

It is not entirely clear how well supported the IEEE-754 standard for floating point computa-

tion is amongst GPUs6. Although the OpenGL API does use IEEE-754 number representations,

research by Hillesland and Lastra in 2004 suggested that many GPUs were not internally compliant

with the standard[46].

In order to explore this, we implemented a simple fragment shader to render a circle. Points

x2+y2 < 1 should be black. When scaled to bounds of width ≈ 10−6 the edges of the circle become

jagged due to imprecision. However, the behaviour is quite different depending on GPU model. A

CPU renderer was also implemented to evaluate the same function using IEEE-754 singles.

x86-64 CPU nVidia shader

fglrx shader intel shader

Figure 2.8: Difference in evaluating x2 + y2 < 1 for the x86 64 and various GPUs
The view bounds are identical

6Informal technical articles are abundant on the internet — Eg: Regarding the Dolphin Wii GPU Emulator:
〈https://dolphin-emu.org/blog〉 (accessed 2014-05-22)

https://dolphin-emu.org/blog

3. Methods and Design

TODO Write most of this section. I suspect I will have to be very selective about what to fit

in considering the word limit.

3.1 Collaborative Process

• Collaborated with David Gow on the design and implementation of the SVG viewer

• Individual work: Applying GMP Rationals (Sam), Quadtree (David)

– CPU renderer, SVG parsing, Control Panel, Python Scripts - Sam

– Most of the OpenGL stuff, Scaling/Translating controls - David

– Other parts were worked on by everyone

• Used git to collaborate 〈https://git.ucc.asn.au〉

• Used preprocessor defines to not interfere with each other’s code too much

• David used a goto letting the team down

3.2 Structure of Software

• CPU and GPU renderer supported

– See figure in “Floating Point Operations on the CPU and GPU”

• Rendering of Cubic Béziers (no antialiasing)

• Partial implementation of shading Paths on CPU (abandoned)

• Ability to move the view around the document with the mouse

• Ability to insert an SVG into the view location

• typedef for number representations

• Ability to control program through scripts or stdio

• Hacky python scripts to produce plots by abusing this

3.3 Approaches to Arbitrary Precision

• Replace all operations with arbitrary precision (ie: Rationals) - Horrendously slow

• Change approach to applying coordinate transform (2.7)

• Apply view transformations directly to objects as the view is transformed, rather than just

before rendering

– Allows much better precision and range with just regular IEEE-754 floats

16

https://git.ucc.asn.au

3 Methods and Design 17

– But there is an accumulated rounding error, particularly when zooming out and back

in, which is bad

• As above, but introduce intermediate coordinate system; use the Path elements

– Rendering of individual paths is consistent but overall they drift apart

• As above, but specify Path coordinates with arbitrary precision rationals

– Works well, rationals slow down though

3.4 Number Representations Trialed

• IEEE-754 single, double, extended

• Custom implementation of Rationals with int64_t

– Very limited since the integers grow exponentially and overflow

• Custom implementation of Rationals with custom Arbitrary precision integers

– Actually works

– Implementation of division is too slow to be feasible

• Custom rationals but with GMP arbitrary precision integers

– Our implementation of GCD is not feasible

• Paranoid Numbers; store a operation tree of IEEE-754 floats and simplify the tree wherever

FE_INEXACT is not raised

– This was a really, really, really, bad idea

• Just use GMP rationals already

– Works

• MPFR floats

– They work, but they don’t truly give arbitrary precision

– Because you have to specify the maximum precision

– However, this can be changed at runtime

– Future work: Trial MPFR floats changing the precision as needed

3.5 Libraries Used

• SDL2 - Simple Direct media Library

– Used for window management and to obtain an OpenGL context

– Also provides BMP handling which is useful

• Qt4 (optional)

3 Methods and Design 18

– Open source toolkit for Dialog based applications

– We can optionally compile with a Qt4 based control panel

– This is useful for interacting with the document

– Has way more features than we actually use it for

• OpenGL - Standard API for rendering on GPUs

– Using GLSL shaders

– Béziers are rendered using a Geometry shader which produces line segments

• PugiXML - Open source XML parsing library

– Used to parse SVGs

• GNU Multiple Precision (GMP)

– Implements arbitrary precision integers, floats, and rationals

– We can use the arbitrary precision integers with a custom rational type

– Or just use the GMP rational type (much better)

– We don’t use the floats, because they are hardware dependent

• MPFR

– MPFR is built on GMP but ensures IEEE-754 consistent rounding behaviour

– (Not hardware dependent)

– We can compile with MPFR floats but the precision is currently fixed at compile time

3.6 Design of Performance Tests

• This is mostly covered in the Results chapter

• Control the program through stdin using a python script

• Results plotted with matplotlib

4. Results and Discussion

Note: Need to be more consistent, I often refer to Béziers and Objects inter-

changably (since the original design was based around an Object and Bézier was just

one possible Object, but we have moved on to pretty much only caring about Béziers

now)

4.1 Qualitative Rendering Accuracy

Our ultimate goal is to be able to insert detail at an arbitrary point in the document. Therefore,

we are interested in how the same test SVG would appear when scaled to the view coordinates, as

the view coordinates are varied.

4.1.1 Applying the view transformation directly

Figure 4.1 shows the rendering of a vector image1. Transformation (2.7) is applied to object

coordinates with default IEEE-754 rounding behaviour (to nearest). The loss of precision in the

second figure is obvious. This is because division by 10−6 increases the rounding error in x − vx,

by 106, so the total error is of the order 106 ulp which is of the order 0.25

TODO: Calculate that properly, shouldn’t be hard

Figure 4.1: The vector image from Figure 2.1 under two different scales

4.1.2 Applying cumulative transformations to all Béziers

Rather than applying (2.7) to object coordinates specified relative to the document, we can store

the bounds of objects relative to the view and modify these bounds according to transformations

(??) and (??) as the view is changed. This is convenient for an interactive document, as detail is

typically added by inserting objects into the document within the view rectangle. As a result this

approach makes the rendering of detail added to the document independent of the view coordinates

— until the view is moved.

Repeated transformations on the view will cause an accumulated error on the coordinates of

object bounds. This is most noticable when zooming out and then back into the document; the

object coordinates will gradually underflow and eventually round to zero. An example of this effect

is shown in Figure 4.2 b)

1Unfortunately, since a rendered vector image is a raster image and this figure must be scaled to fit the PDF, the
figure as seen here is not a pixel perfect representation of the actual rendering. Most notably, antialiasing effects
will be apparent

19

4 Results and Discussion 20

Figure 4.2: The effect of applying cumulative transformations to all Béziers

4.1.3 Applying cumulative transformations to Paths

In Figure 4.1, transformations are applied to the bounds of each Bézier. Figure 4.3 a) shows the

effect of introducing an intermediate coordinate system expressing Bézier coordinates relative to

the path which contains them. In this case, the rendering of a single path is accurate, but the

overall positions of the paths drift as the view is moved.

We can correct this drift whilst maintaining performance by using an arbitrary or high precision

number representation to express the coordinates of the paths - but maintaining the floating point

coordinates for Bézier curves relative to their path. As we will discuss in Section ??, this offers an

acceptable trade off between rendering accuracy and performance.

Figure 4.3: Effect of cumulative transformations applied to Paths
a) Path bounds represented using floats b) Path bounds represented using Rationals

4.2 Quantitative Measurements of Rendering Accuracy

A useful test SVG is a simple grid of horizontal and vertical lines seperated by 1 pixel. When

this SVG is correctly scaled to a view, all that should be visible is a coloured rectangle filling the

screen. Increasing the magnification will reveal the grid of lines indicating how the original size of

a pixel is scaled.

Figure 4.4 illustrates the effect of applying the view transformation (2.7) directly to the grid.

When the grid is correctly rendered, as in Figure 4.4 a) it appears as a black rectangle. Further

from the origin, not all pixels in the grid can be represented and individual lines become visible.

As the distance from the origin increases, fewer pixel locations can be represented exactly after

performing the view transformation.

4 Results and Discussion 21

An error of 1 ulp is increased by a factor of 106 to end up comparable to the size of the display

(0→ 1).

Figure 4.4: Effect of applying (2.7) to a grid of lines seperated by 1 pixel
a) Near origin (denormals) b), c), d) Increasing the exponent of (vx, vy) by 1

4.2.1 Names of programs in figures

• single - Single precision IEEE-754 with (2.7) applied directly

• double - Double precision IEEE-754 with (2.7) applied directly

• cumul-single - Single precision IEEE-754 with cumulative transforms to Béziers

• cumul-double - Double precision IEEE-754 with cumulative transforms to Béziers

• path-single - Single precision IEEE-754 with cumulative transforms to Paths

• path-double - Single precision IEEE-754 with cumulative transforms to Paths

• path-rat - GNU MP Rationals with cumulative transforms to Paths

4.2.2 Precision for Fixed View

By counting the number of distinctly representable lines within a particular view, we can show the

degradation of precision quantitatively. The test grid is added to each view rectangle.

Figure 4.5 shows how precision degrades with (vx, vy) = (0.5, 0.5). A constant line at 1401 grid

locations indicates no loss of precision.

4 Results and Discussion 22

100 103 106 109 1012 1015 1018 1021 1024 1027 1030

Magnification (1/width)

0

200

400

600

800

1000

1200

1400

1600

Re
pr

es
en

ta
bl

e
Li

ne
s

Loss of Precision for a 1x1 pixel grid
View Top Left: (0.5,0.5)

path-rat
double
single
cumul-single
path-single
path-double
cumul-double

Figure 4.5: Loss of precision of the grid

4.2.3 Accumulated error after changing the View

Figure 4.6 shows the total error in the coordinates of each line in the grid after the view is scaled

(zooming out) by repeated transformations. A constant line at 0 indicates no accumulated error.

100 102 104 106 108 1010 1012 1014 1016 1018 1020

Total scaling factor

10-4

10-2

100

102

104

106

108

1010

1012

1014

1016

1018

Ac
cu

m
ul

at
ed

 E
rr

or

path-rat
double
single
cumul-single
path-single
path-double
cumul-double

Figure 4.6: Error in the coordinates of the grid

By considering Figure 4.5 and 4.6, path-rat is the winner.

4.3 Performance Measurements whilst Rendering
As discussed above, we succeeded in preserving rendering accuracy as defined above for an

arbitrary view. However this comes at a performance cost, as the size of the number representation

4 Results and Discussion 23

must grow accordingly.

TODO: Insert performance measurements here

TODO: Also, would be nice to show a graph (log scale) where something goes past

10±320 (absolute limit for doubles, previous figures are all within range of representable

floats

5. Conclusion

• What we have done?

– Implemented a basic SVG viewer

– Demonstrated how precision affects rendering vector graphics

– Showed how the choice of transformations to apply affects rendering

– Using GMP rationals, demonstrated the ability to render SVGs scaled to an arbitrary

position in a document

• Possible future work

– Implement more of the SVG standard (eg: Shading)

– Trial alternative number representations, eg: MPFR with algorithm to set precision

– Allow for saving and loading SVGs with arbitrary precision

– Deal with zooming very far in to intersection of lines (requires subdividing paths)

– Compare with David’s Quadtree

24

References

[1] Sam Moore. Infinite precision document formats (project proposal).

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉, 2014.

[2] David Gow. Infinite-precision document formats (project proposal).

〈http://davidgow.net/stuff/ProjectProposal.pdf〉, 2014.

[3] Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley Publishing

Company, 3rd edition, 1985 - 1999.

[4] Michael A. Wan-Lee Cheng. Portable document format (PDF) – finally, a universal document

exchange technology. Journal of Technology Studies, 28(1):59 – 63, 2002.

[5] Adobe Systems Incorporated. PDF Reference. Adobe Systems Incorporated, 6th edition,

2006.

[6] Brian Hayes. Pixels or perish. American Scientist, 100(2):106 – 111, 2012.

[7] Erik Dahlstóm, Patric Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack, Doug

Schepers, Jonathon Watt, Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector

graphics (svg) 1.1 (second edition). W3C Recommendation, August 2011. Retrieved 2014-05-

23.

[8] David Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Comput. Surv., 23(1):5–48, March 1991.

[9] David Goldberg. The design of floating-point data types. ACM Lett. Program. Lang. Syst.,

1(2):138–151, June 1992.

[10] Carl Worth and Keith Packard. Xr: Cross-device rendering for vector graphics. In Linux

Symposium, page 480, 2003.

[11] Donald Hearn and M Pauline Baker. Computer Graphics. Prentice Hall, Inc, Upper Saddle

River, New Jersey 07458, USA, 2 edition, 1997.

[12] Kurt E. Brassel and Robin Fegeas. An algorithm for shading of regions on vector display

devices. SIGGRAPH Comput. Graph., 13(2):126–133, August 1979.

[13] J. M. Lane and R. and M. Rarick. An algorithm for filling regions on graphics display devices.

ACM Trans. Graph., 2(3):192–196, July 1983.

[14] Jack E Bresenham. Algorithm for computer control of a digital plotter. IBM Systems journal,

4(1):25–30, 1965.

[15] Xiaolin Wu. An efficient antialiasing technique. SIGGRAPH Comput. Graph., 25(4):143–152,

July 1991.

[16] Hugo Elias. Graphics. 〈http://freespace.virgin.net/hugo.elias/graphics/x main.htm〉 accessed

May 2014.

[17] Donald Knuth. The METAFONT Book. Addison-Wesley, 2 edition, 1983.

[18] Donald Knuth. The TEX Book. Addison-Wesley, 2 edition, 1983.

25

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf
http://davidgow.net/stuff/ProjectProposal.pdf
http://freespace.virgin.net/hugo.elias/graphics/x_main.htm

REFERENCES 26

[19] Pierre E. Bézier. A personal view of progress in computer aided design. SIGGRAPH Comput.

Graph., 20(3):154–159, July 1986.

[20] Ron Goldman. The fractal nature of bezier curves. The de Casteljau subdivision algorithm is

used to show that Bezier curves are also attractors (ie: fractals). A new rendering algorithm

is derived for Bezier curves.

[21] David G. Barnes, Michail Vidiassov, Bernhard Ruthensteiner, Christopher J. Fluke,

Michelle R. Quayle, and Colin R. McHenry. Embedding and publishing interactive, 3-

dimensional, scientific figures in portable document format (pdf) files. PLoS ONE, 8(9):1

– 15, 2013.

[22] W3C. Extensible markup language (xml) 1.0 (fifth edition). W3C Recommendation, November

2008.

[23] W3C. Html5 - developer view - a vocabulary and associated apis for html and xhtml. W3C

Candidate Recommendation, April 2014.

[24] W3C. Cascading style sheets level 2 revision 1 (css 2.1) specification. W3CRecommendation,

June 2011.

[25] Nelson Beebe. Extending TEX and METAFONT with floating-point arithmetic. TUGboat,

28(3), 2007.

[26] ECMA International. ECMAScript Language Specification.

〈http://www.ecma-international.org〉 accessed 2014-05-22, 5.1 edition, June 2011.

[27] I. Bennett Goldberg. 27 bits are not enough for 8-digit accuracy. Commun. ACM, 10(2):105–

106, February 1967.

[28] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985, 1985.

[29] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

[30] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vin-

cent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. Hand-

book of Floating-Point Arithmetic. Birkhäuser Boston Inc., Cambridge, MA, USA, 2010.

[31] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.

[32] Michael J. Kelley, Matthew A. Postiff, Advisor Richard, and B. Brown. A cmos floating point

unit, 1997.

[33] P.-M. Seidel and G. Even. On the design of fast ieee floating-point adders. In Computer

Arithmetic, 2001. Proceedings. 15th IEEE Symposium on, pages 184–194, 2001.

[34] William R. Dieter, Akil Kaveti, and Henry G. Dietz. Low-cost microarchitectural support for

improved floating-point accuracy. IEEE Comput. Archit. Lett., 6(1):13–16, January 2007.

[35] Edin Kadric, Paul Gurniak, and André DeHon. Accurate parallel floating-point accumulation.

In Computer Arithmetic (ARITH), 2013 21st IEEE Symposium on, pages 153–162. IEEE,

2013.

http://www.ecma-international.org

REFERENCES 27

[36] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.

Mpfr: A multiple-precision binary floating-point library with correct rounding. ACM Trans.

Math. Softw., 33(2), June 2007.

[37] Mark Segal, Kurt Akely, and Jon Leech. The OpenGL R©Graphics System: A Specification.

The Kronos Group, Inc, 2014.

[38] Mathieu Robart. OpenVG paint subsystem over OpenGL ES shaders. In Consumer Elec-

tronics, 2009. ICCE’09. Digest of Technical Papers International Conference on, pages 1–2.

IEEE, 2009.

[39] F Leymarie and Martin D Levine. Fast raster scan distance propagation on the discrete

rectangular lattice. CVGIP: Image Understanding, 55(1):84–94, 1992.

[40] Sarah F Frisken, Ronald N Perry, Alyn P Rockwood, and Thouis R Jones. Adaptively sampled

distance fields: a general representation of shape for computer graphics. In Proceedings of the

27th annual conference on Computer graphics and interactive techniques, pages 249–254. ACM

Press/Addison-Wesley Publishing Co., 2000.

[41] Chris Green. Improved alpha-tested magnification for vector textures and special effects. In

ACM SIGGRAPH 2007 courses, pages 9–18. ACM, 2007.

[42] Charles Loop and Jim Blinn. Resolution independent curve rendering using programmable

graphics hardware. ACM Transactions on Graphics (TOG), 24(3):1000–1009, 2005.

[43] Charles Loop and Jim Blinn. Rendering vector art on the gpu. GPU gems, 3:543–562, 2007.

[44] Mark J Kilgard and Jeff Bolz. GPU-accelerated path rendering. ACM Transactions on

Graphics (TOG), 31(6):172, 2012.

[45] Mark J Kilgard. Programming with NV path rendering: An annex to the SIGGRAPH paper

GPU-accelerated path rendering. heart, 300:300.

[46] Karl E Hillesland and Anselmo Lastra. Gpu floating-point paranoia. Proceedings of GP 2004,

2004.

Note: We have collated most of these references at 〈http://szmoore.net/ipdf/documents/references/〉

http://szmoore.net/ipdf/documents/references/

	Introduction
	Literature Review
	Raster and Vector Graphics
	Rendering Vector Primitives
	Straight Lines
	Bézier Splines
	Filled Paths
	Compositing
	Fonts

	Coordinate Systems and Transformations
	Precision Specified by Document Standards
	Interpreted Models: PostScript and PDF
	The Document Object Model: SVG
	Precision Specified By Standards
	PostScript
	PDF
	TeX and METAFONT
	SVG
	Javascript

	Fixed Point and Integer Number Representations
	Floating Point Number Representations
	Visualisation of Floating Point Representation
	Floating Point Operations
	Addition and Subtraction
	Multiplication and Division
	Arbitrary Precision Floating Point Numbers

	Rational Number Representations
	Floating Point Operations on the CPU and GPU

	Methods and Design
	Collaborative Process
	Structure of Software
	Approaches to Arbitrary Precision
	Number Representations Trialed
	Libraries Used
	Design of Performance Tests

	Results and Discussion
	Qualitative Rendering Accuracy
	Applying the view transformation directly
	Applying cumulative transformations to all Béziers
	Applying cumulative transformations to Paths

	Quantitative Measurements of Rendering Accuracy
	Names of programs in figures
	Precision for Fixed View
	Accumulated error after changing the View

	Performance Measurements whilst Rendering

	Conclusion
	References

