Literally more Literature
[ipdf/sam.git] / chapters / Introduction.tex
index 8d92b54..ade601b 100644 (file)
 \chapter{Introduction}\label{Introduction}
 
 \chapter{Introduction}\label{Introduction}
 
-The introduction will be witty and engaging and a joy to read.
+\rephrase{Most of this chapter is copy pasted from the project proposal} \\
+ \url{http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf}
 
 
-I hope.
+Early electronic document formats such as PostScript were motivated by a need to print documents onto a paper medium. In the PostScript standard, this lead to a model of the document as a program; a series of instructions to be executed by an interpreter which would result in ``ink'' being placed on ``pages'' of a fixed size\cite{plrm}. The ubiquitous Portable Document Format (PDF) standard provides many enhancements to PostScript taking into account desktop publishing requirements\cite{cheng2002portable}, but it is still fundamentally based on the same imaging model\cite{pdfref17}. This idea of a document as a static ``page'' has lead to limited precision in these and other traditional document formats. 
+
+The emergence of the internet, web browsers, XML/HTML, JavaScript and related technologies has seen a revolution in the ways in which information can be presented digitally, and the PDF standard itself has begun to move beyond static text and figures\cite{hayes2012pixels, barnes2013embedding}. However, the popular document formats are still designed with the intention of showing information at either a single, fixed level of detail, or a small range of levels.
+
+As most digital display devices are smaller than physical paper medium, all useful viewers are able to ``zoom'' to a subset of the document. Vector graphics formats including PostScript and PDF support rasterisation at different zoom levels\cite{plrm, pdfref17}, but the use of fixed precision floating point numbers causes problems due to imprecision either far from the origin, or at a high level of detail\cite{goldberg1991whatevery, goldberg1992thedesign}.
+
+We are now seeing a widespread use of mobile computing devices with touch screens, where the display size is typically much smaller than paper pages and traditional computer monitors; it seems that there is much to be gained by breaking free of the restricted precision of traditional document formats. 
+
+\section{Aim}
+
+In this project, we will explore the state of the art of current document formats including PDF, PostScript, SVG, HTML, and the limitations of each in terms of precision.
+We will consider designs for a document format allowing graphics primitives at an arbitrary level of zoom with no loss of detail. We will refer to such a document format as ``infinite precision''. A viewer and editor will be implemented as a proof of concept; we adopt a low level, ground up approach to designing this viewer so as to not become restricted by any single existing document format.
+
+There are many possible applications for documents in which precision is unlimited. Several areas of use include: visualisation of extremely large or infinite data sets; visualisation of high precision numerical computations; digital artwork; computer aided design; and maps.
+
+\subsection{Clarification of Terms}
+
+It may be necessary to clarify what we mean by the terms ``infinite precision'' and ``document formats''. Regarding the latter, we consider a document format to be any representation of visual information which is capable of being stored indefinitely. Regarding the former, we do not propose to be able to contain an infinite amount of information within such a document. The goal is to be able to render a primitive at the same level of detail it is specified by a document format, regardless of how precise this level is. For example, the precision of coordinates of primitives drawn in a graphical document editor will always be limited by the resolution of the display on which they are drawn, but not by the viewer.
+
+
+   
+\section{Methods}
+
+Initial research and software development is being conducted in collaboration with David Gow\cite{proposalGow}. Once a simple testbed application has been developed, we will individually explore approaches for introducing arbitrary levels of precision; these approaches will be implemented as alternate versions of the same software. The focus will be on drawing simple primitives (lines, polygons, circles). However, if time permits we will explore adding more complicated primitives (font glyphs, bezier curves, embedded bitmaps). 
+
+The process of rendering a document will be considered as a common area of research, whilst individual research will be conducted on means for allowing infinite precision.
+At this stage we have identified two possible areas for individual research:
 
 
-Points to address:
 \begin{enumerate}
 \begin{enumerate}
-       \item What this is.
-       \item Why we should care
-       \item Most recent development
-       \item Do we really mean ``infinite''? (No. Sorry. We lied)
-       \item Foundational papers. Historical notes.
+
+       \item {\bf Arbitrary Precision real valued numbers} --- Sam Moore
+
+       We plan to investigate the representation of real values to a high or arbitary degree of precision. Such representations would allow for a document to be implemented
+       using a single global coordinate system. However, we would expect a decrease in performance with increased complexity of the data structure used to represent a real value. \rephrase{Both software and hardware techniques will be explored.} We will also consider the limitations imposed by performing calculations on the GPU or CPU.
+
+       Starting points for research in this area are Priest's 1991 paper, ``Algorithms for Arbitrary Precision Floating Point Arithmetic''\cite{priest1991algorithms}, and Goldberg's 1992 paper ``The design of floating point data types''\cite{goldberg1992thedesign}. \rephrase{A more recent and comprehensive text book, ``Handbook of Floating Point Arithmetic''\cite{HFP}, published in 2010, has also been identified as highly relevant.}
+
+       \item {\bf Local coordinate systems} --- David Gow \cite{proposalGow}
+       
+       An alternative approach involves segmenting the document into different regions using fixed precision floats to define primitives within each region. A quadtree or similar data structure could be employed to identify and render those regions currently visible in the document viewer.\rephrase{Say more here?}
+
 \end{enumerate}
 \end{enumerate}
+\pagebreak
+We aim to compare these and any additional implementations considered using the following metrics:
+\begin{enumerate}
+
+       \item {\bf Performance vs Number of Primitives}
+
+       As it is clearly desirable to include more objects in a document, this is a natural metric for the usefulness of an implementation.
+       We will compare the performance of rendering different implementations, using several ``standard'' test documents.
+       
+       \item {\bf Performance vs Visible Primitives}
+
+       There will inevitably be an overhead to all primitives in the document, whether drawn or not.
+       As the structure of the document format and rendering algorithms may be designed independently, we will repeat the above tests considering only the number of visible primitives. 
+       
+       
+       \item {\bf Performance vs Zoom Level}
+
+       We will also consider the performance of rendering at zoom levels that include primitives on both small and large scales, since these are the cases under which floating point precision causes problems in the PostScript and PDF standards.
+
+       \item {\bf Performance whilst translation and scaling}
+
+       Whilst changing the view, it is ideal that the document be re-rendered as efficiently as possible, to avoid disorienting and confusing the user.
+       We will therefore compare the speed of rendering as the standard documents are translated or scaled at a constant rate.
+
+       \item {\bf Artifacts and Limitations on Precision}
+
+       As we are unlikely to achieve truly ``infinite'' precision, qualitative comparisons of the accuracy of rendering under different implementations should be made.
+
+\end{enumerate}
+
+\section{Software and Hardware Requirements}
+
+Due to the relative immaturity and inconsistency of graphics drivers on mobile devices, our proof of concept will be developed for a conventional GNU/Linux desktop or laptop computer using OpenGL. However, the techniques explored could easily be extended to other platforms and libraries.
+
 
 
-See also: The Abstract.
-See also: The Conclusion.
+\pagebreak
 
 
-The remainder of this report will be organised as follows: Chapters \ref{BackgroundHardware} and \ref{BackgroundSoftware} will discuss approaches to representation of numbers in both Hardware and Software respectively; Chapter \ref{Approach} will outline the approach [reword] considering <insert fuzzy list of faculty dependent requirements here (Safety, Ethics, Group Work Process, etc)>. Chapter/Appendices \ref{Implementation} will provide implementation notes. Chapter \ref{Results} will describe our results. Chapter \ref{Conclusion} will be the conclusion.
+\section{Timeline}
 
 
+Deadlines enforced by the faculty of Engineering Computing and Mathematics are \emph{italicised}.\footnote{David Gow is being assessed under the 2014 rules for a BEng (Software) Final Year Project, whilst the author is being assessed under the 2014 rules for a BEng (Mechatronics) Final Year Project; deadlines and requirements as shown in Gow's proposal\cite{proposalGow} may differ}.
 
 
+\begin{center}
+\begin{tabular}{l|p{0.5\textwidth}}
+       {\bf Date} & {\bf Milestone}\\
+       \hline
+       $17^{\text{th}}$ April & Draft Literature Review completed. \rephrase{This sort of didn't happen...}\\
+       \hline
+       $1^{\text{st}}$ May & Testbed Software (basic document format and viewer) completed and approaches for extending to allow infinite precision identified. \\
+       \hline
+       $26^{\text{th}}$ May & \emph{Progress Report and Revised Literature Review due.}\\
+       \hline
+       $9^{\text{th}}$ June & Demonstrations of limitations of floating point precision in the Testbed software. \\
+       $1^{\text{st}}$ July & At least one implementation of infinite precision for basic primitives (lines, polygons, curves) completed. Other implementations, advanced features, and areas for more detailed research identified. \\
+       \hline
+       $1^{\text{st}}$ August & Experiments and comparison of various infinite precision implementations completed. \\
+       \hline
+       $1^{\text{st}}$ September & Advanced features implemented and tested, work underway on Final Report. \\
+       \hline
+       TBA & \emph{Conference Abstract and Presentation due.} \\
+       \hline
+       $10^{\text{th}}$ October & \emph{Draft of Final Report due.} \\
+       \hline
+       $27^{\text{th}}$ October & \emph{Final Report due.}\\
+       \hline
+\end{tabular}
+\end{center}
 
 
-NOTE: Given that I don't actually need a full thesis, change from Chapters to Sections?
-NOTE2: Will treat as a full thesis but if it gets too big, submit a condensed version as the MCTX "report".
 
 
-NOTE3: In final version, put the Approach at the end and/or in appendices before the Implementation notes rather than the start (?)

UCC git Repository :: git.ucc.asn.au