
MCTX3420 2013

Exploding Cans Project

Software Team Report

Justin Kruger, 20767264 (Chapter 1)
Sam Moore, 20503628 (Editing/Referencing, Sections 2.1,2.2,2.3 Chapter 3),

Jeremy Tan, 20933708 (Sections 2.4,2.5,2.6)
Callum Scho�eld, 20947475 (Section 2.7)
James Rosher, 20939143 (Section 2.8)
Rowan Heinrich, 20939081 (Section 2.9)

November 2013

Contents

1 Introduction and Approach 1

1.1 System Overview . 1

1.1.1 Experimental Procedure . 2

1.1.2 Components . 2

1.2 Development Process . 3

1.2.1 Planning and Design . 3

1.2.2 Coding . 3

1.2.3 Testing . 4

1.2.4 Collaboration . 4

1.3 Team Collaboration . 4

1.3.1 Communication . 5

1.3.2 Scheduling . 5

1.3.3 Group Participation . 5

1.3.4 Inter-Team Communication . 6

1.3.5 Individual Contributions . 6

1.3.6 Cost Estimation . 7

2 Design and Implementation 8

2.1 Server Program . 9

2.1.1 Threads and Sampling Rates . 9

2.1.2 Main Thread . 10

2.1.3 Sensor Threads . 10

2.1.4 Actuator Threads . 11

2.1.5 Data Storage and Retrieval . 11

2.1.6 Safety Mechanisms . 11

2.2 Hardware Interfacing . 15

2.2.1 Sensors . 15

2.2.2 Actuators . 15

2.3 Authentication Mechanisms . 18

i

CONTENTS ii

2.4 Server/Client Communication . 18

2.4.1 Web server . 19

2.4.2 FastCGI . 20

2.4.3 Server API - Making Requests . 20

2.4.4 Server API - Response Format . 22

2.4.5 Server API - Cookies . 22

2.4.6 Client - JavaScript and AJAX Requests . 23

2.5 Alternative Communication Technologies . 23

2.5.1 Server Interface . 24

2.5.2 Recommendations for Future Work . 25

2.6 BeagleBone Con�guration . 25

2.6.1 Operating system . 25

2.6.2 Required software . 25

2.6.3 Required con�gurations . 26

2.6.4 Logging and Debugging . 26

2.7 Image Processing . 26

2.7.1 OpenCV . 26

2.7.2 Image Streaming . 26

2.7.3 Dilatometer . 27

2.7.4 Design Considerations . 28

2.7.5 Further Design Considerations . 30

2.7.6 Results . 30

2.8 Human Computer Interaction and the Graphical User Interface 31

2.8.1 Design Considerations . 31

2.8.2 Libraries used in GUI construction . 32

2.8.3 Libraries trialled but not used in GUI construction 32

2.8.4 Design Process for the Graphical User Interface 33

2.9 GUI Design Process . 34

2.9.1 Creation . 34

2.9.2 Testing . 35

2.9.3 Iterations . 35

iii

2.9.4 Parallel GUI Design . 36

2.9.5 GUI Aesthetics . 36

2.9.6 HTML Structure . 36

2.9.7 Graphical Development VS Hard Coding 36

2.9.8 Final Design . 36

3 Conclusions and Recommendations 39

References 42

1. Introduction and Approach

The following report describes the work of the software team on the MCTX3420 pressurised can
project during Semester 2, 2013 at UWA. The report is intended to assist others in comprehending
the decisions and processes involved, as well providing a tool for further development of the system.
The report serves as a record of the planning, design, coding, testing and integration of the system,
with speci�c reference to the development of the system software. Extensive documentation is also
provided via a project wiki[1].

The MCTX3420 project aimed to build an experimental apparatus for measuring the behaviour
of a container with pressure � in this case, testing how a drink can deformed as air pressure inside
it increased. The desired result was a self-contained, safe, reliable, e�ective and easy-to-use system
which could perform the desired experimental tasks, to be used by both students and wider industry
professionals.

Unfortunately, the system is (as of 1st November 2013) still not complete; the hardware com-
ponents have not been fully tested and integrated with the software, despite extensive work by all
students. However, the project is very close to completion. The software can interact in the de-
sired manner with the hardware components, and ful�ls the majority of the required functionality.
With some further testing and development using the �nal hardware, the software could easily be
implemented � and the report has been written with this in mind, allowing another group in the
future to build upon the project software.

The report begins with an overview of the whole system and the design of the software com-
ponent. Each subsection then focuses on a speci�c aspect of the software, going into detail about
its design, development, functionality, testing, and integration. Following this, there are sections
focusing on the administrative aspects of the project, including teamwork, the general develop-
ment process, and costs. The report concludes with some documentation of the software and
recommendations for future development.

1.1 System Overview

To aid understanding of the context of the software project, a brief overview of the system as a
whole is presented below. Essentially, the MCTX3420 project apparatus is designed to test the
behaviour of a pressure vessel as air pressure inside it is gradually increased. A very basic system
diagram showing the main components is shown in Figure 1.1, with control components in red,
electronics in green, sensors in purple, pneumatics in blue, and experimental targets in orange.

1

1 Introduction and Approach 2

Figure 1.1: Block diagram of the physical system

1.1.1 Experimental Procedure

The general experimental procedure is to increase the pressure inside a pair of pressure vessels (in
this case, drink cans), measuring one's deformation behaviour and measuring the other to failure
point. The user does this by logging into a web browser interface, starting a new experiment, and
increasing system pressure in the desired fashion.

As pressure is increased, the web browser passes this instruction to the system controller,
which manipulates the pneumatic pressure regulators to input correct pressure to the measured
can. While doing this, the system controller also reads from a collection of sensors and returns this
data to the web browser (strain, pressure, dilatometer deformation, visual images). The vessel's
deformation with pressure can then be characterised.

This continues until the desired �nal pressure is reached. Then, pressure in the failure can may
be increased further until that can reaches its failure point. The experiment then ends and the
system is returned to room pressure. The user can view and download the resulting data.

1.1.2 Components

The main areas of the system are as follows:

• Control: The experiment is controlled through web browser interface from a client PC. This
web interface connects to a server running on what is e�ectively a small, integrated PC � the
�BeagleBone Black� � and this server directly controls the experiment hardware and reads
the sensor data, providing a low-level interface to the system's electronics. The BeagleBone
itself is situated inside the experiment case, and the client PC connects to the BeagleBone
server through the local network.

• Electronics: Because the system features a large array of electronic components, these must
be run through a central �ltering and ampli�cation system to ensure that correct voltages
and currents are provided. There is a circuit board inside the case which performs this task.
The board connects the BeagleBone, pneumatics, sensors, and power supply to facilitate
system operation. System power is provided by a PSU connected to the mains.

1 Introduction and Approach 3

• Pneumatics: The system's pneumatics feed the desired air pressure into the two pressure
vessels being tested. Air is fed through a series of pipes from the laboratory's pressurised air
supply; solenoid valves control on/o� air �ow through the system, while pressure is controlled
via regulators. Exhaust valves are provided for venting the system. Pneumatics are controlled
by the BeagleBone, with signals fed through the electronics board.

• Sensors: A suite of sensors is used to collect system data and measure the deformation of
the pressure vessel. The sensors include strain gauges, pressure sensors, a microphone, a
dilatometer/microscope, and a camera � these give a comprehensive set of data to match
the can's deformation to the pressure level. Each sensor has a di�erent output and must be
conditioned by the central electronics board before its data is recorded by the BeagleBone.

• Mounting and Case: The mounting system for the cans uses a screw-in mechanism to
achieve an airtight seal. This holds the can in place so that pressure can be fed into it
through the base of the mount. The system case holds all of the components in a sealed
protective compartment, which ensures that the system will be safe in the event of failure
and physically separates the various systems. The case also features an interlock switch that
prevents any operation of the system if the lid is not fastened.

The system software essentially is de�ned by the �control� component: allowing a user to control
the experiment hardware. To do this, the software must successfully interface with all of the system
areas above so that the desired experiment can be run.

1.2 Development Process

The development process is outlined below. Each part of the software followed the same general
process, which is discussed in more detail for each section later in the report.

1.2.1 Planning and Design

First, the actual software task to be completed is identi�ed; this is organised with group input.
The software component is then designed according to the requirements. Parameters and features
are chosen based on the project guidelines and how the component interacts with other software.

1.2.2 Coding

Each section is then actually written. Most of the initial work is done individually (for consistency)
and completed in between meetings. At group meetings the code is presented, and may be edited
by other team members to �x issues, increase e�ciency, and integrate it with other code sections.

Extremely important to development was the use of the Git system[2, 3] and GitHub website[2].
GitHub is specially designed for software use and is essentially a web-based hosting service for
development projects, which uses the Git revision control system. It allows all team members to
contribute to the same project by working on their own local �forks�, and then �merging� their
changes back into the main branch of software[4].

The Git system ensures that work by di�erent team members is tracked[5], that work �ts
together consistently, and that other work is not accidentally overwritten or changed (important
when dealing with large amounts of code). Git also features a noti�cations and issue tracking
system with email alerts whenever a change is made. The basic GitHub process is as follows:

1. Create an individual �fork� of the software, separate from the main branch.

2. Modify this fork on a local machine with proposed changes or additions. This fork is also
updated regularly with any changes that were made in the main branch.

1 Introduction and Approach 4

3. When work is complete, create a �pull request� to merge local changes back into the main
code base.

4. The pull request can be reviewed by other team members; if everything �ts, the request is
accepted and the local changes become part of the main code.

In this way, GitHub automates the more tedious aspects of code management.

Another important aspect of the coding process is coding style. Throughout the project, all code
that was written adhered to the same style to make it consistent and easier to read. One aspect of
styling, for example, is use of capitals when de�ning function names (for example, Actuator_Init),
variable names (g_num_actuators), or de�nitions of constants (ACTUATORS_MAX), to make it
immediately clear whether something is a function, variable or constant. Other aspects include
use of indentation, the ordering of functions, and frequent use of comments. Essentially, styling is
used to ensure the code is consistent, easy to follow, and can therefore be worked on by multiple
people.

Coding style is also important when following general code standards. The C language features
many standards and style guidelines which were also adhered to, to make the code readable by
wider industry professionals. Some examples of this include beginning global variables with g_

and correct use of brackets as separators[6]. All e�orts were made to follow common C and HTML
code standards. The use of a common coding style and standards will hopefully make the project
software easily expandable by others in the future.

Code was also expected to adhere to safety standards. In the �rst weeks of the project, a
document[7] was created that outlined all aspects of software safety - both for the software design
itself, and ensuring that the system was still safe if the software failed. The results of this are
explained further later in the report, with one example being the server's �sanity check� functions.

1.2.3 Testing

Once the software section is relatively complete, it can be tested with the larger code base. This
was generally done through writing speci�c test functions. Because the operating system on the
BeagleBone (GNU/Linux) is widely available for commercial PCs and laptops, software develop-
ment and testing could occur without needing to wait for a BeagleBone to become available. Code
was also tested on the BeagleBone itself where possible to ensure correct operation. One example
is for the sensors software - initially, functions were written that simulated sensors, so it could be
tested if data was read correctly. These functions were rewritten for use with actual hardware as
the speci�cs became known later in the project.

1.2.4 Collaboration

After the testing process is satis�ed, the �nal code can be committed to the system. This requires
input from the other project teams. If there is any feedback or the requirements change in the
future, the code can be edited through the above process.

1.3 Team Collaboration

Collaboration between members of the software group was extremely important throughout the
project. Members were often individually responsible for di�erent areas of software � or, alter-
nately, were simultaneously rewriting di�erent sections of the same code � so it was essential
to make sure that all parts were compatible, as well as completed on schedule. Communication
between the software group and other project groups was similarly vital, to ensure that all work
contributed to the project's end goals.

1 Introduction and Approach 5

1.3.1 Communication

The primary time for collaboration was during the team's weekly meetings. Meetings occurred at
2pm-4pm on the Monday of every week, and were generally attended by all group members. While
most work was expected to be done outside this time, the meetings were valuable for planning
and scheduling purposes, for tackling problems and making design decisions as a group. Team
members were able to work together in the meetings to complete certain tasks much more e�ectively.
Importantly, at the end of each meeting, a report of the work done during the prior week and a list
of tasks to do the following week was produced, giving the project a continuous, clear direction.

GitHub was used as the group's repository for software work. The usefulness of GitHub was
explained previously in Section 1.2, but essentially, it is a very e�ective tool for managing and
synchronising a large, multi-person software project. GitHub also features a noti�cations and
issue-tracking system, which was useful for keeping track of tasks and immediately notifying team
members of any changes.

Outside of meetings, email was the main form of communication. Email threads exist for all of
the project's main areas, discussing any ideas, changes or explanations. Email was also used for
announcements and to organise additional meetings. For less formal communication, the software
group created their own IRC channel. This was essentially a chat channel that could be used to
discuss any aspect of the project and for communication about current work.

1.3.2 Scheduling

At the beginning of the project, an overall software schedule was created, outlining the main tasks
to be completed and their target dates. While this was useful for planning purposes and creating
an overall impression of the task, it became less relevant as the semester continued. The nature of
the software team's work meant that it was often changing from week to week; varying hardware
requirements from other teams, unexpected issues and some nebulous project guidelines led to
frequent schedule modi�cations. For instance: use of the BeagleBone turned out to be a signi�cant
time-sink, requiring a lot of troubleshooting due to lack of documentation; and a sophisticated login
system was not mentioned until late in the project, so resources had to be diverted to implement
this. Essentially, while the software group did attempt to keep an overall schedule, this was only
useful in planning stages due to the changing priorities of tasks.

Far more useful was the weekly scheduling system. As mentioned in the �Communication�
section 1.3.1, a weekly task list was created on each Monday, giving the team a clear direction.
This suited the �exibility of the software well; tasks could be shu�ed and re-prioritised easily and
split between team members. It was still very important to keep the project's overall deadline
in mind, and the weekly task lists could be used to do this by looking separately at the main
areas of software (such as GUI design, sensors, and so on) and summarising the remaining work
appropriately. Brief weekly reports also covered what had been completed so far, providing a
further measure of progress.

The group also elected a �meeting convener� to assist with organisation (Samuel Moore). The
meeting convener was responsible for organising group meetings week-to-week and coordinating
group communication. A single elected convener made this process as e�cient as possible.

1.3.3 Group Participation

The nature of software development means that it tends to be very specialised � extensive knowl-
edge of coding is required to be e�ective, which is di�cult to learn in a short time frame. The
members of the software team all had varying levels of experience, and therefore could not con-
tribute equally to all areas of the project. Some team members had done very little coding before
(outside of introductory units at university) which made it di�cult for them to contribute in some
areas, while others had the extensive knowledge required.

1 Introduction and Approach 6

However, di�erent team members had skills in other areas besides coding, and these skills were
allocated to ensure that all members could contribute e�ectively. For instance, as some people
worked on the server code, others worked on the visual GUI design; it made sense for the people
who were most e�cient with coding to work on those elements while others performed di�erent
tasks. Even though the software project was principally coding, there were many supplementary
development tasks � writing documentation, hardware testing, et cetera � that were involved.
Some areas of the software, such as the BeagleBone interfacing, were new to all team members and
were worked on by everyone.

On the whole, group participation was good. Team members regularly attended meetings, did
the expected (often more-than-expected) work, and had a good understanding of the project. While
all team members contributed signi�cantly, some did stand out � in this case Samuel Moore and
Jeremy Tan, who performed a large portion of the vital development work. Without their input
and prior experience, the project would not have been completed to such a high standard, and
their extensive skills and dedication were vital to its success.

1.3.4 Inter-Team Communication

Communication between the various project teams was also essential: the software had to be able
to interact with nearly all aspects of the hardware via the BeagleBone system controller. A weekly
Tuesday meeting was therefore set up speci�cally for inter-team communication, so information
could be exchanged between project groups. For the software team most communication was
with the electronics, sensors and pneumatics teams, as these three hardware areas are all directly
controlled by the software. The fact that the software can interact with these systems should be
evidence that communication was relatively e�ective. Many other meetings also occurred between
the software group and others. Extensive time was spent with the electronics team, testing and
setting up the BeagleBone with the appropriate inputs and outputs. Other meetings also occurred
with the sensors team to select sensors and cameras that were compatible with the software.
Practical sessions with the pneumatics, sensors and electronics teams also occurred, in which the
software was tested with the hardware to ensure that both systems were operating correctly.

Email was used extensively for other communication. All members of the unit were involved
in this, providing input on hardware designs or organising meeting times for testing, and though
email was often less e�ective that face-to-face communication (other teams sometimes did not
respond promptly) it was still useful tool. In addition, an MCTX3420 DropBox was set up as a
common repository for any project-related �les. This was updated often and proved to be a useful
reference. The software team chose to keep their work on GitHub rather than DropBox, and the
GitHub repository was made publicly accessible so that work could be shared.

1.3.5 Individual Contributions

Software project tasks were divided up between team members, and in this report, each team
member has generally been the writer of the sections they actually worked upon. Throughout
the project, team members had clear areas of responsibility, and their work can also be followed
through the GitHub repository (which allows tracking of individual contributions to the code base).
Below is a rough summary of individual areas of interest:

Team Member Development
Samuel Moore Server coding, BeagleBone interface, GUI implementation, hardware testing
Jeremy Tan Server coding, BeagleBone interface, GUI implementation, hardware testing
Callum Scho�eld Image processing, BeagleBone interface, hardware testing
James Rosher Overall GUI design, GUI implementation
Justin Kruger BeagleBone interface, GUI implementation, documentation
Rowan Heinrich GUI implementation, hardware testing

It should also be noted that team members often helped each other with designing, problem
solving and testing, so members did end up contributing in some way to most areas of the software.

1 Introduction and Approach 7

Server coding tasks included the threading system, data handling, sensors/actuators control,
authentication, server/client communication, HTTP(S) use, FastCGI, AJAX and the server API,
which were split mainly by Sam and Jeremy (with signi�cant overlap). BeagleBone interfacing
included hardware access, pin control, networking and testing, and involved most members of the
team. Sam, Jeremy and Justin focused on pin control, Jeremy and Callum investigated webcam
use, and Rowan performed additional testing. GUI design involved the visual design elements,
HTML/CSS webpage coding and Javascript functionality. James was primarily in charge of the
GUI design, functionality and implementation, with assistance and alternate designs provided by
Jeremy. Other team members were responsible for individual GUI sections, including Sam (graphs),
Justin (help and data) and Rowan (widgets). Other tasks included image processing with OpenCV
(Callum) and project documentation and safety (Justin).

1.3.6 Cost Estimation

The vast majority of the cost of the software team's contribution is in man-hours rather than
hardware. The only hardware speci�cally purchased by software was a BeagleBone Black; all other
hardware was part of electronics. Some hardware used for testing was temporarily donated by
team members, and has been included here only for completeness.

Item Cost
BeagleBone Black $45
LinkSys Router (testing) $50
Logitech Webcam (testing) $25
Ethernet and other cabling (testing) $10
Total $130

In regards to the time spent, it is di�cult to get an accurate record. At least three hours per
week were spent in weekly meetings, and by consulting the team's technical diaries, it is estimated
that team members spent an average of ten hours per week working on the project.

Approximate time per week (individual) 10 hours
Team size 6 people
Approximate time per week (team) 60 hours
Project Duration 13 weeks
Total time spent 780 hours
Hourly rate $150 / hour
Total cost $117,000 (+$130 for hardware)

This is a large amount at �rst glance, though it must be remembered that this was a complex
software development project with many interacting parts. There were some ine�ciencies which
did unfortunately add to cost (such as the BeagleBone's lack of documentation) and these could
hopefully avoided in the future. Given the �nal result, however, the cost appears reasonable.

The GitHub repository was also run through an online cost estimator[8], which resulted in a
similar number of $100,000. The estimator takes into account the number of developers, time of
development, and amount of code produced.

2. Design and Implementation

Figures 2.1 and 2.2shows the earliest high level design of the software for the system created in
the �rst and last week of the project. In the early stages the options were kept open for speci�c
implementation details. The early design essentially required software to be written for three
devices; a client computer (GUI), an experiment server (control over access to the system, interface
to the GUI, image processing) and an embedded device (controlling experiment hardware).

As the revised diagram in Figure 2.2 shows, to remove an extra layer of complexity it was decided
to use a single device (the BeagleBone Black) to play the role of both the experiment server and
the embedded device. From a software perspective, this eliminated the need for an entire layer of
communication and synchronization. From a hardware perspective, use of the BeagleBone black
instead of a Raspberry Pi removed the need to design or source analogue to digital conversion
modules.

Another major design change which occurred quite early in the project is the switch from using
multiple processes to running a single multithreaded process on the server. After performing some
rudimentary testing (see Section 2.5.1) it became clear that a system of separate programs would be
di�cult to implement and maintain. Threads are similar to processes but are able to directly share
memory, with the result that much less synchronisation is required in order to transfer information.

Note on �lenames: In the following, �les and directories related to the server are located in
the server directory, �les related to the (currently used) GUI are in testing/MCTXWeb, and �les
created for testing purposes are located in testing.

Figure 2.1: Block Diagram from Week 1 of the Project

8

https://github.com/szmoore/MCTX3420/tree/master/server
https://github.com/szmoore/MCTX3420/tree/master/testing/MCTXWeb
https://github.com/szmoore/MCTX3420/tree/master/testing

2 Design and Implementation 9

Figure 2.2: Block Diagram from Week 14 of the Project

2.1 Server Program

2.1.1 Threads and Sampling Rates

The Server Program runs as a multithreaded process under a POSIX compliant GNU/Linux oper-
ating system1. Each thread runs in parallel and is dedicated to a particular task; the three types
of threads we have implemented are:

1. Main Thread (Section 2.1.2) - Starts all other threads, accepts and responds to HTTP re-
quests passed to the program by the HTTP server in the FastCGI_Loop function (also see
Section 2.4)

2. Sensor Thread (Section 2.1.3) - Each sensor in the system is monitored by an individual
thread running the Sensor_Loop function.

3. Actuator Thread (Section 2.1.4) - Each actuator in the system is controlled by an individual
thread running the Actuator_Loop function.

In reality, threads do not run simultaneously; the operating system is responsible for sharing
execution time between threads in the same way as it shares execution times between processes.
Because the Linux kernel is not deterministic, it is not possible to predict when a given thread is ac-
tually running. This renders it impossible to maintain a consistent sampling rate, and necessitates
the use of time stamps whenever a data point is recorded.

Figure 2.3 shows a distribution of times2 between samples for a test sensor with the software
sampling as fast as possible. Note the logarithmic t axis. Although context switching clearly causes
the sample rate to vary (green), the actual process of reading an ADC (red) using ADC_Read (
bbb_pin.c) is by far the greatest source of variation.

1Tested on Debian and Ubuntu
2The clock speed of the BeagleBone is around 1GHz[9], which is fast enough to neglect the fact that recording

the timestamp takes several CPU cycles.

https://github.com/szmoore/MCTX3420/blob/master/server/bbb_pin.c
https://github.com/szmoore/MCTX3420/blob/master/server/bbb_pin.c

2 Design and Implementation 10

It was not possible to obtain a real time Linux kernel for the BeagleBone. In theory, real
time variants of the Linux kernel improve the reliability of sampling rates. However, testing on an
amd64 laptop showed very little di�erence in the sampling time distribution when the real time
Linux kernel was used.

Figure 2.3: Sample Rate Histogram obtained from timestamps with a single test sensor enabled

2.1.2 Main Thread

The main thread of the process is responsible for transferring data between the server and the
client through the Hypertext Transmission Protocol (HTTP). A library called FastCGI is used to
interface with an existing webserver called nginx[10]. This con�guration and the format of data
transferred between the GUI and the server is discussed in more detail Section 2.4.

Essentially, the main thread of the process responds to HTTP requests. The GUI is designed to
send requests periodically (e.g.: to update a graph) or when a user action is taken (e.g.: changing
the pressure setting). When this is received, the main thread parses the request, the requested
action is performed, and a response is sent. The GUI is then responsible for updating its appearance
or alerting the user based on this response. Figure 2.8 in Section 2.4.3 gives an overview of this
process.

2.1.3 Sensor Threads

Figure 2.4 shows a �ow chart for the thread controlling an individual sensor. This process is
implemented by Sensor_Loop and associated helper functions.

All sensors are treated as returning a single �oating point number when read. A DataPoint

consists of a time stamp and the sensor value. DataPoints are continuously saved to a binary
�le as long as the experiment is in process. An appropriate HTTP request (Section 2.4.3) will
cause the main thread of the server program to respond with DataPoints read back from the �le.
By using independent threads for reading data and transferring it to the GUI, the system does
not rely on maintaining a consistent and synchronised network connection. This means that one
the experiment is started with the desired parameters, a user can safely close the GUI or even
shutdown their computer without impacting on the operation of the experiment.

2 Design and Implementation 11

As Figure 2.4 indicates, the processes of actually controlling sensor hardware has been ab-
stracted out of the control loop. A Sensor structure is de�ned in sensor.h to represent a single
sensor. When this structure is initialised, function pointers must be provided; these functions can
then be called by Sensor_Loop as needed. All functions related to control over speci�c sensor
hardware can be found in the �les within the sensors sub directory.

Earlier versions of the software instead used a switch statement based on the Sensor's id
number to determine how to obtain the sensor value. This was found to be di�cult to maintain
as the number and types of sensors supported by the software were increased.

2.1.4 Actuator Threads

Actuators are controlled by threads in a similar way to sensors. Figure 2.5 shows a �ow chart for
these threads. This is implemented in Actuator_Loop. Control over real hardware is separated
from the main logic in the same way as sensors (relevant �les are in the actuators sub directory).
The use of threads to control actuators gives similar advantages in terms of eliminating the need
to synchronise the GUI and server software.

The actuator thread has been designed for �exibility in how exactly an actuator is controlled.
Rather than specifying a single value, the main thread initialises a structure that determines the
behaviour of the actuator over a period of time. The current structure represents a simple set of
discrete linear changes in the actuator value. This means that a user does not need to specify
every single value for the actuator. The Actuator thread stores a value every time the actuator is
changed which can be requested in a similar way to sensor data.

2.1.5 Data Storage and Retrieval

Each sensor or actuator thread stores data points in a separate binary �le identi�ed by the name
of the device. When the main thread receives an appropriate HTTP request, it will read data back
from the binary �le. To allow for selection of a range of data points from the �le, a binary search
has been implemented. Functions related to data storage and retrieval are located in the data.h
and data.c source �les.

Several alternate means of data storage were considered for this project. Binary �les were
chosen because of the signi�cant performance bene�t after testing, and the ease with which data
can be read from any location in �le and converted directly into values. A downside of using binary
�les is that the server software must always be running in order to convert the data into a human
readable format.

2.1.6 Safety Mechanisms

Given the inexperienced nature of the software team, the limited development time, and the unclear
speci�cations, it is not wise to trust safety aspects of the system to software alone. It should also
be mentioned that the correct functioning of the system is reliant not only upon the software
written during this project, but also the many libraries which are used, and the operating system
under which it runs. We found during development that many of the mechanisms for controlling
BeagleBone hardware are unreliable and have unresolved issues; see the project wiki pages[1] for
more information. We attempted to incorporate safety mechanisms into the software wherever
possible.

Sensors and Actuators should de�ne an initialisation and cleanup function. For an actuator
(e.g.: the pressure regulator), the cleanup function must set the actuator to a prede�ned safe value
(in the case of pressure, atmospheric pressure) before it can be uninitialised. In the case of a
software error or user de�ned emergency, the Fatal function can be called from any point in the
software; this will lead to the cleanup functions of devices being called, which will in turn lead to
the pressure being set to a safe value.

https://github.com/szmoore/MCTX3420/blob/master/server/data.h
https://github.com/szmoore/MCTX3420/blob/master/server/data.c

2 Design and Implementation 12

Sensors and Actuators are designed to include an optional sanity function which will check
a reading or setting is safe respectively. These checks occur whenever a sensor value is read or an
actuator is about to be set. In the case of a sensor reading failing the sanity check, Fatal is called
immediately and the software shuts down the experiment. In the case of an actuator being set to
an unsafe value the software will simply refuse to set the value.

It is recommended that the detection of signals (a mechanism in GNU/Linux by which a
program can detect certain types of unexpected crashes) be investigated. This was attempted in
early implementations; however di�culties were encountered because any thread can catch the
signal and thus will not be able to execute its cleanup function, or in some cases, continue running
after the rest of the program has stopped.

An alternative safety mechanism involves modi�cation of the script that starts the server (
run.sh). This script is already able to detect when the program exits, and it should be possible to
further extend this script to react accordingly to di�erent exit codes.

https://github.com/szmoore/MCTX3420/blob/master/server/run.sh
https://github.com/szmoore/MCTX3420/blob/master/server/run.sh

2 Design and Implementation 13

Figure 2.4: Flow chart for a sensor thread

2 Design and Implementation 14

Figure 2.5: Flow chart for an actuator thread

2 Design and Implementation 15

2.2 Hardware Interfacing

Figure 2.6 shows the pin out diagram of the BeagleBone Black. There are many contradictory pin
out diagrams available on the internet; this �gure was initially created by the software team after
trial and error testing with an oscilloscope to determine the correct location of each pin. Port
labels correspond with those marked on the BeagleBone PCB. The choice of pin allocations was
made by the electrical team after discussion with software when it became apparent that some
pins could not be controlled reliably.

2.2.1 Sensors

Code to read sensor values is located in the sensors subdirectory. With the exception of the
dilatometer (discussed in Section 2.7), all sensors used in this project produce an analogue output.
After conditioning and signal processing, this arrives at an analogue input pin on the BeagleBone
as a signal in the range 0→ 1.8V. The sensors currently controlled by the software are:

• Strain Gauges (x4)

To simplify the ampli�er electronics, a single ADC is used to read all strain gauges. GPIO
pins are used to select the appropriate strain gauge output from a multiplexer. A mutex is
used to ensure that no two strain gauges can be read simultaneously.

• Pressure Sensors (x3)
There are two high range pressure sensors and a single low range pressure sensor; all three
are read independently

• Microphone (x1)

The microphone's purpose is to detect the explosion of a can. This sensor was given a low
priority, but has been tested with a regular clicking tone and found to register spikes with
the predicted frequency (1.5Hz).

• Dilatometer (x2) - See Section 2.7

Additional sensors can be added and enabled through use of the Sensor_Add function in
Sensor_Init in the �le sensors.c.

The function Data_Calibrate located in data.c can be used for interpolating calibration.
The pressure sensors and microphone have been calibrated in collaboration with the Sensors Team;
however only a small number of data points were taken and the calibration was not tested in detail.
We would recommend a more detailed calibration of the sensors for future work.

2.2.2 Actuators

Code to set actuator values is located in the actuators subdirectory. The following actuators are
(as of writing) controlled by the software and have been successfully tested in collaboration with
the Electronics and Pneumatics teams. Additional actuators can be added and enabled through
use of the Actuator_Add function in Actuator_Init in the �le actuators.c.

Relay Controls

The electrical team employed three relays for control over digital devices. The relays are switched
using the GPIO outputs of the BeagleBone Black.

• Can select - Chooses which can can be pressurised (0 for strain, 1 for explode)

https://github.com/szmoore/MCTX3420/blob/master/server/sensors
https://github.com/szmoore/MCTX3420/blob/master/server/sensors.c
https://github.com/szmoore/MCTX3420/blob/master/server/data.c
https://github.com/szmoore/MCTX3420/blob/master/server/actuators
https://github.com/szmoore/MCTX3420/blob/master/server/actuators.c

2 Design and Implementation 16

• Can enable - Allows the can to be pressurised (0 for vent, 1 for enable)

• Main enable - Allows pressure to �ow to the system (0 for vent, 1 for enable) and can be
used for emergency venting

The use of a �can select� and �can enable� means that it is not a software problem to prevent
both cans from simultaneously being pressurised. This both simpli�es the software and avoids
potential safety issues if the software were to fail.

PWM Outputs

A single PWM output is used to control a pressure regulator. The electrical team constructed an
RC �lter circuit which e�ectively averages the PWM signal to produce an almost constant analogue
output. The period of the PWM is 2kHz. This actuator has been calibrated, which allows the user
to input the pressure value in kPa rather than having to control the PWM duty cycle correctly.

2 Design and Implementation 17

S
im

p
li
fi

e
d

 B
e
a
g

le
 B

o
n

e
 B

la
c
k
 P

in
 o

u
t

D
ia

g
ra

m
P

9
P

8
G

N
D

1
2

G
N

D
D

C
_3

.3
V

3
4

D
C

_3
.3

V
V

D
D

_5
V

[1
]

5
6

V
D

D
_5

V
[1

]

S
Y
S

_5
V

7
8

S
Y
S

_5
V

P
W

R
_B

U
T

9
1

0
S

Y
S

_R
E
S

E
T

G
P
IO

 3
0

 C
a
s
e
 s

w
it

c
h

 [6

]

1

1
1

2
G

P
IO

 6
0

G
P
IO

 3
1

1
3

1
4

E
H

R
P
W

M
1

A
 (

P
W

M
3

)
[5

]

G
P
IO

 4
8

1
5

1
6

E
H

R
P
W

M
1

B
 (

P
W

M
4

) [
5

]

G
P
IO

 5
1

7
1

8
G

P
IO

 4
I2

C
1

9
2

0
I2

C
E
H

R
P
W

M
0

B
 (

P
W

M
1

) [
5

]
2

1
2

2
E
H

R
P
W

M
0

A
 (

P
W

M
0

) [
5

]

G
P
IO

 4
9

2
3

2
4

G
P
IO

 1
5

M
C

A
S

P
0

2
5

2
6

G
P
IO

 1
4

 C
a
n

 s
e
le

c
t

G
P
IO

 1
1

5
 C

a
n

 e
n

a
b

le
2

7
2

8
E
C

A
P
2

/M
C

A
S

P
0

 (
P
W

M
7

)[3
]

M
C

A
S

P
0

2
9

3
0

G
P
IO

 1
1

2
 M

a
in

 e
n

a
b

le

M
C

A
S

P
0

3
1

3
2

V
A

D
C

 (
1

.8
V

)
A

IN
4

[4
]

P
re

g
 r

e
tu

rn

 [6
]

3
3

3
4

A
G

N
D

A
IN

6
[4

]
3

5
3

6
A

IN
5

[4
]

L
o
w

 P
re

s
s
u

re

 [6
]

A
IN

2
[4

]
M

ic
ro

p
h

o
n

e
3

7
3

8
A

IN
3

[4
]

H
ig

h
 P

re
s
s
u

re
 1

A
IN

0
[4

]
 S

tr
a
in

 I
n

p
u

t
3

9
4

0
A

IN
1

[4
]

H
ig

h
 P

re
s
s
u

re
 0

C
LK

O
U

T
2

 (
?)

4
1

4
2

E
C

A
P
0

 (
P
W

M
2

)[3
]

 P
re

g
 s

e
t

G
N

D
4

3
4

4
G

N
D

G
N

D
4

5
4

6
G

N
D

D
G

N
D

1
2

D
G

N
D

E
M

M
C

2
 (

S
D

 c
a
rd

)
3

4
E
M

M
C

2
 (

S
D

 c
a
rd

)

E
M

M
C

2
 (

S
D

 c
a
rd

)
5

6
E
M

M
C

2
 (

S
D

 c
a
rd

)

G
P
IO

 6
6

7
8

G
P
IO

 6
7

G
P
IO

 6
9

9
1

0
G

P
IO

 6
8

G
P
IO

 4
5
 S

tr
a
in

 M
u

x
 E

n
a
b

le
1
1

1
2

G
P
IO

 4
4
 S

tr
a
in

0
 (

A
)

S
e
le

c
t

E
H

R
P
W

M
2

B
 (

P
W

M
6

) [
5

]
1
3

1
4

G
P
IO

 2
6
 S

tr
a
in

1
 (

B
)

S
e
le

c
t

G
P
IO

 4
7

1
5

1
6

G
P
IO

 4
6
 S

tr
a
in

2
 (

C
)

S
e
le

c
t

G
P
IO

 2
7

1
7

1
8

G
P
IO

 6
5
 S

tr
a
in

3
 (

D
)

S
e
le

c
t

E
H

R
P
W

M
2

A
 (

P
W

M
5

) [
5
]

1
9

2
0

E
M

M
C

2
 (

S
D

 c
a
rd

)

E
M

M
C

2
 (

S
D

 c
a
rd

)
2
1

2
2

E
M

M
C

2
 (

S
D

 c
a
rd

)

E
M

M
C

2
 (

S
D

 c
a
rd

)
2
3

2
4

E
M

M
C

2
 (

S
D

 c
a
rd

)

E
M

M
C

2
 (

S
D

 c
a
rd

)
2
5

2
6

G
P
IO

 6
1

G
P
IO

 8
6

[2
]

2
7

2
8

G
P
IO

 8
8

[2
]

G
P
IO

 8
7

[2
]

2
9

3
0

G
P
IO

 8
9

[2
]

G
P
IO

 1
0

[2
]

3
1

3
2

G
P
IO

 1
1

[2
]

G
P
IO

 9
[2

]
3
3

3
4

G
P
IO

 8
1

[2
]

G
P
IO

 8
[2

]
3
5

3
6

G
P
IO

 8
0

[2
]

G
P
IO

 7
8

[2
]

3
7

3
8

G
P
IO

 7
9

[2
]

G
P
IO

 7
6

[2
]

3
9

4
0

G
P
IO

 7
7

[2
]

G
P
IO

 7
4

[2
]

4
1

4
2

G
P
IO

 7
5

[2
]

G
P
IO

 7
2

[2
]

4
3

4
4

G
P
IO

 7
3

[2
]

G
P
IO

 7
0

[2
]

4
5

4
6

G
P
IO

 7
1

[2
]

[1
]:

 V
D

D
_5

V
 i
s

a
v
a
ila

b
le

 o
n
ly

 w
h
e
n

 D
C

 j
a
ck

 i
s

co
n
n
e
ct

e
d

[2
]:

 T
h
e
se

 G
P
IO

 p
in

s
a
re

 u
n
a
v
a
ila

b
le

 i
f

H
D

M
I
is

 c
o
n
n
e
ct

e
d
 a

n
d

 t
h
e
 H

D
M

I
ca

p
e
s

a
re

 e
n
a
b
le

d
[3

]:
 I
t

is
 u

n
kn

o
w

n
 i
f

th
e
se

 p
in

s
a
re

 r
e
se

rv
e
d

 o
r

n
o
t

(t
h
e
y
 s

e
e
m

 t
o
 w

o
rk

)
[4

]:
 A

D
C

 p
in

s
a
re

 1
.8

V
 M

A
X

 (
D

O
 N

O
T
 E

X
C

E
E
D

)
[5

]:
 P

W
M

 c
h
a
n
n
e
ls

 x
A

/x
B

 m
u
st

 s
h
a
re

 t
h
e
 s

a
m

e
 p

e
ri

o
d
.

T
o
 c

h
a
n
g
e
 t

h
e
 f

re
q
u
e
n
cy

 i
f

b
o
th

 a
re

 a
ct

iv
a
te

d
,

th
e
 o

th
e
r

h
a
s

to
 b

e
 u

n
e
x
p
o
rt

e
d
.

[6
]:

 T
h
e
se

 p
in

s
w

e
re

 s
p
e
ci

fi
e
d

 b
u
t

cu
rr

e
n
tl

y
 h

a
v
e
n
't

 b
e
e
n
 i
m

p
le

m
e
n
te

d
 o

r
u
se

d
 i
n

 t
e
st

in
g

A
ll

G
P

IO
 p

in
s

o
p
e
ra

te
 a

t
3

.3
V

 l
e
v
e
ls

.
C

u
rr

e
n
t

so
u
rc

e
/s

in
k
in

g
 c

a
p
a
ci

ti
e
s

a
re

 l
im

it
e
d

 -
 4

-6
m

A
 o

u
t

a
n

d
 8

m
A

 i
n

 (
D

O

N
O

T
 E

X
C

E
E
D

)

Figure 2.6: Pinout Table

2 Design and Implementation 18

2.3 Authentication Mechanisms

The Login_Handler function (login.c) is called in the main thread when a HTTP request for
authentication is received (see Section 1.3.1). This function checks the user's credentials and will
give them access to the system if they are valid. Whilst we had originally planned to include
only a single username and password, changing client requirements forced us to investigate many
alternative authentication methods to cope with multiple users.

Several authentication methods are supported by the server; the method to use can be speci�ed
as an argument when the server is started.

1. Unix style authentication

Unix like operating systems store a plain text �le (/etc/shadow) of usernames and encrypted
passwords[11]. To check a password is valid, it is encrypted and then compared to the stored
encrypted password. The actual password is never stored anywhere. The /etc/shadow �le
must be maintained by shell commands run directly from the BeagleBone. Alternatively a
web based system to upload a similar �le may be created.

2. Lightweight Directory Access Protocol (LDAP)

LDAP[12, 13] is a widely used data base for storing user information. A central server is
required to maintain the LDAP database; programs running on the same network can query
the server for authentication purposes.

The UWA user management system (Pheme) employs an LDAP server for storing user in-
formation and passwords. The software has been designed so that it can interface with an
LDAP server con�gured similarly to the server on UWA's network. Unfortunately we were
unable to gain permission to query this server. However an alternative server could be setup
to provide this authentication mechanism for our system.

3. MySQL Database

MySQL[14] is a popular and free database system that is widely used in web applications.
The ability to search for a user in a MySQL database and check their encrypted password
was added late in the design as an alternative to LDAP. There are several existing online user
management systems which interface with a MySQL database, and so it is feasible to employ
one of these to maintain a list of users authorised to access the experiment. UserCake[15] is
recommended, as it is both minimalistic and open source, so can be modi�ed to suit future
requirements. We have already begun integration of the UserCake system into the project,
however a great deal of work is still required.

MySQL and other databases are vulnerable to many di�erent security issues which we did
not have su�cient time to fully explore. Care should be taken to ensure that all these issues
are addressed before deploying the system.

2.4 Server/Client Communication

This section describes the methods and processes used to communicate between the server and
client. For this system, client-server interaction is achieved completely over the internet, via
standard HTTP web requests with TLS encryption. In other words, it has been designed to interact
with the client over the internet, completely through a standard web browser (Figure 2.7).
No extra software should be required from the client. Detailed reasons for this choice are outlined
in Section 2.5

https://github.com/szmoore/MCTX3420/blob/master/server/login.c

2 Design and Implementation 19

Figure 2.7: High level �ow chart of a client request to server response

2.4.1 Web server

Web requests from a user have to be handled by a web server. For this project, the nginx[10]
webserver has been used, and acts as the frontend of the remote interface for the system. As
shown in Figure 2.7, all requests to the system from a remote client are passed through nginx,
which then delegates the request to the required subsystem as necessary.

In particular, nginx has been con�gured to:

1. Use TLS encryption (HTTPS)

2. Forward all HTTP requests to HTTPS requests (force TLS encryption)

3. Display the full sever program logs if given �/api/log� as the address

4. Display the warning and error logs if given �/api/errorlog� as the address

5. Forward all other requests that start with �/api/� to the server program (FastCGI)

6. Process and display PHP �les (via PHP-FPM) for UserCake

7. Try to display all other �les like normal (static content; e.g the GUI)

Transport Layer Security (TLS) encryption, better known as SSL or HTTPS encryption has
been enabled to ensure secure communications between the client and server. This is primarily
important for when user credentials (username / password) are supplied, and prevents what is

2 Design and Implementation 20

called �man-in-the-middle� attacks. In other words, it prevents unauthorised persons from viewing
such credentials as they are transmitted from the client to the server.

As also mentioned in Section 2.3 this system also runs a MySQL server for the user management
system, UserCake. This kind of server setup is commonly referred to as a LAMP (Linux, Apache,
MySQL, PHP) con�guration[16], except in this case, nginx has been used in preference to the
Apache web server.

Nginx was used as the web server because it is well established, lightweight and performance
oriented. It also supports FastCGI by default, which is how nginx interfaces with the server
program. Realistically, any well known web server would have su�ced, such as Apache or Lighttpd,
given that this is not a large scale service.

2.4.2 FastCGI

Nginx has no issue serving static content � that is, just normal �les to the user. Where dynamic
content is required, as is the case for this system, another technology has to be used, which in this
case is FastCGI.

FastCGI is the technology that interfaces the server program that has been written with the
web server (nginx). As illustrated in Figure 2.7, there is a �FastCGI layer�, which translates web
requests from a user to something which the server program can understand, and vice versa for
the response.

2.4.3 Server API - Making Requests

From the client side, the server interface is accessed through an Application Programming Inter-
face (API). The API forms a contract between the client and server; by requesting a URL of a
predetermined format, the response will also be of a predetermined format that the client can use.

Figure 2.8: Flow chart of a client request being processed (within the server program). Relevant
�les are fastcgi.c and fastcgi.h.

https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.h

2 Design and Implementation 21

In the case of the server API designed, requests are formatted as such:

https://host/api/module?key1=value1&key2=value2...&keyN=valueN (where host is re-
placed with the IP address or hostname of the server).

The API consists of modules accepting arguments (speci�ed as key-value pairs), depending
on what that module (Figure 2.9) does. For example, to query the API about basic information
(running state, whether the user is logged in etc), the following query is used:

https://host/api/identify

The server will then respond with this information. In this case, the identify module does not
require any arguments. However, it can accept two optional arguments, sensors and actuators,
which makes it give extra information on the available sensors and actuators present. This makes
the following queries possible:

• https://host/api/identify?sensors=1

• https://host/api/identify?actuators=1

• https://host/api/identify?sensors=1&actuators=1

These give information on the sensors, actuators, or both, respectively. For other modules some
parameters may be required, and are not optional. This form of an API was chosen because it
is simple to use, and extremely easy to debug, given that these requests can just be entered into
any web browser to see the result. The request remains fairly human readable, which was another
bene�t when debugging the server code.

Keeping the API format simple also made it easier to write the code that parsed these requests.
All API parsing and response logic lies in fastcgi.c. The framework in fastcgi.c parses a client
request and delegates it to the relevant module handler. Once the module handler has su�ciently
processed the request, it creates a response, using functions provided by fastcgi.c to do so.

This request handling code went through a number of iterations before the �nal solution was
reached. Changes were made primarily as the number of modules grew, and as the code was used
more.

One of the greatest changes to request handling was with regards to how parameters were
parsed. Given a request of: http://host/api/actuators?name=pregulator&start_time=0&end_
time=2, The module handler would receive as the parameters name=pregulator&start_time=0&end_time=2.
This string had to be split into the key/value pairs, so the function FCGI_KeyPair being made.

With increased usage, this was found to be insu�cient. FCGI_ParseRequest was created in
response, and internally uses FCGI_KeyPair, but abstracts request parsing greatly. In essence,
it validates the user input, rejecting anything that doesn't match a speci�ed format. If it passes
this test, it automatically populates variables with these values. The IndentifyHandler module
handler in fastcgi.c is a very good example of how this works.

API File Function Purpose
�/api/identify� fastcgi.c IdentifyHandler Provide system information
�/api/sensors� sensors.c Sensor_Handler Query sensor data points or set sampling rate
�/api/actuators� actuators.c Actuator_Handler Set actuator values or query past history
�/api/image� image.c Image_Handler Return image from a camera (See Section 2.7)
�/api/control� control.c Control_Handler Start/Stop/Pause/Resume the Experiment
�/api/bind� login.c Login_Handler Attempt to login to the system (See Section 2.4.5)
�/api/unbind� login.c Logout_Handler If logged in, logout.

Figure 2.9: Brief description of the modules currently implemented by the server.

https://host/api/module?key1=value1&key2=value2...&keyN=valueN
https://host/api/identify
https://host/api/identify?sensors=1
https://host/api/identify?actuators=1
https://host/api/identify?sensors=1&actuators=1
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
http://host/api/actuators?name=pregulator&start_time=0&end_time=2
http://host/api/actuators?name=pregulator&start_time=0&end_time=2
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/sensors.c
https://github.com/szmoore/MCTX3420/blob/master/server/actuators.c
https://github.com/szmoore/MCTX3420/blob/master/server/image.c
https://github.com/szmoore/MCTX3420/blob/master/server/control.c
https://github.com/szmoore/MCTX3420/blob/master/server/login.c
https://github.com/szmoore/MCTX3420/blob/master/server/login.c

2 Design and Implementation 22

2.4.4 Server API - Response Format

The server API primarily generates JSON responses to most requests. This was heavily in�uenced
by what the GUI would be programmed in, being JavaScript. This particular format is parsed
easily in JavaScript, and is easily parsed in other languages too.

A standard JSON response looks like such:

{

"module" : "identify",

"status" : 1,

"start_time" : 614263.377670876,

"current_time" : 620591.515903585,

"running_time" : 6328.138232709,

"control_state" : "Running",

"description" : "MCTX3420 Server API (2013)",

"build_date" : "Oct 24 2013 19:41:04",

"api_version" : 0,

"logged_in" : true,

"user_name" : "_anonymous_noauth"

}

Figure 2.10: A standard response to querying the �/api/identify� module

A JSON response is the direct representation of a JavaScript object, which is what makes this
format so useful. For example if the JSON response was parsed and stored in the object data,
the elements would be accessible in JavaScript through data.module or data.status.

To generate the JSON response from the server program, fastcgi.c contains a framework of
helper functions. Most of the functions help to ensure that the generated output is in a valid JSON
format, although only a subset of the JSON syntax is supported. Supporting the full syntax would
overcomplicate writing the framework while being of little bene�t. Modules can still respond with
whatever format they like, using FCGI_JSONValue (aka. FCGI_PrintRaw), but lose the guarantee
that the output will be in a valid JSON format.

Additionally, not all responses are in the JSON format. In speci�c cases, some module handlers
will respond in a more suitable format. For example, the image handler will return an image
(using FCGI_WriteBinary); it would make no sense to return anything else. On the other hand,
the sensor and actuator modules will return data as tab-separated values, if the user speci�cally
asks for it (e.g.: using https://host/api/sensors?id=X&format=tsv)

2.4.5 Server API - Cookies

The system makes use of HTTP cookies to keep track of who is logged in at any point. The cookie
is a small token of information that gets sent by the server, which is then stored automatically
by the web browser. The cookie then gets sent back automatically on subsequent requests to the
server. If the cookie sent back matches what is expected, the user is `logged in'. Almost all web
sites in existence that has some sort of login use cookies to keep track of this sort of information, so
this method is standard practice. In the server code, this information is referred to as the `control
key'. A control key is only provided to a user if they provide valid login credentials, and no one
else is logged in at that time.

The control key used is the SHA-1 hash of some randomly generated data, in hexadecimal
format. In essence, this is just a string of random numbers and letters that uniquely identi�es the
current user.

https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://host/api/sensors?id=X&format=tsv

2 Design and Implementation 23

Initially, users had to pass this information as another key-value pair of the module parameters.
However, this was di�cult to handle, both for the client and the server, which was what precipitated
the change to use HTTP cookies.

2.4.6 Client - JavaScript and AJAX Requests

JavaScript forms the backbone of the web interface that the clients use. JavaScript drives the
interactivity behind the GUI and enables the web interface to be updated in real-time. Without
JavaScript, interactivity would be severely limited, which would be a large hindrance to the learning
aspect of the system.

To maintain interactivity and to keep information up-to-date with the server, the API needs
to be polled at a regular interval. Polling is necessary due to the design of HTTP; a server cannot
�push� data to a client, the client must request it �rst. To be able to achieve this, code was written
in JavaScript to periodically perform what is termed AJAX requests.

AJAX requests are essentially web requests made in JavaScript that occur �behind the scenes�
of a web page. By making such requests in JavaScript, the web page can be updated without having
the user refresh the web page, thus allowing for interactivity and a pleasant user experience.

Whilst AJAX requests are possible with plain JavaScript, the use of the jQuery library (see
Section 2.8.2) greatly simpli�es the way in which requests can be made and interpreted.

2.5 Alternative Communication Technologies

This section attempts to explain the reasoning behind the communication method chosen. This
choice was not trivial, as it had to allow for anyone to remotely control the experiment, while
imposing as little requirements from the user as possible. These requirements can be summarised
by:

1. A widely available, highly accessible service should be used, to reach as many users as possible

2. Communication between client and server should be fairly reliable, to maintain responsiveness
of the remote interface

3. Communication should be secured against access from unauthorised persons, to maintain the
integrity of the system

To satisfy the �rst criteria, remote control via some form of internet access was the natural
choice. Internet access is widely established and highly accessible, both globally and locally, where
it can be (and is) used for a multitude of remote applications. One only needs to look as far as the
UWA Telelabs project for such an example, having been successfully run since 1994 [17].

Internet communications itself is complex, and there is more than one way to approach the issue
of remote control. A number of internet protocols exist, where the protocol chosen is based on the
needs of the application. Arguably most prevalent is the Hypertext Transfer Protocol (HTTP)[18]
used in conjunction with the Transmission Control Protocol (TCP) - to distribute web pages and
related content across the internet. Other protocols exist, but are less widely used. Even custom
protocols can be used, but that comes at the cost of having to build, test and maintain an extra
component of software that likely has no bene�t over pre-existing systems.

As a result, being able to control the system via a web page and standard web browser seemed
the most logical choice, which was why it was used in the �nal design. Firstly, by designing the
system to be controlled from a web page, the system becomes highly accessible, given that where
internet access is present, the presence of a web browser is almost guaranteed. Nothing else from
the client is required.

2 Design and Implementation 24

Secondly, setup and maintenance for the server is less involved, given that there is a wide range
of pre-existing software made just for this purpose. Many features of the web browser can also
be leveraged to the advantage of the system � for example, communications between the client
and server can be quite easily secured using Transport Layer Security (TLS, previously known as
Secure Sockets Layer or SSL).

Thirdly, reliability of the communications is better guaranteed by using such existing technol-
ogy, which has been well tested and proven to work of its own accord. While internet access itself
may not always be fully reliable, the use of such protocols and correct software design allows for a
fair margin of robustness towards this issue. For example, TCP communications have error check-
ing methods built-in to the protocol, to ensure the correct delivery of content. Similarly, HTTP
has been designed with intermittent communications to the client in mind[18].

2.5.1 Server Interface

Other options were explored apart from FastCGI to implement the server interface. Primarily, it
had to allow for continuous sensor/actuator control independent of user requests, which may be
intermittent.

Figure 2.11: Block Diagram of a request to a CGI Application

Initially, a system known as �Common Gateway Interface�, or CGI was explored. However, CGI
based software is only executed when a request is received (Figure 2.11), which makes continuous
control and logging over the sensors and actuators unfeasible.

Figure 2.12: Block Diagram of a request to a custom web server

Another system considered was to build a custom web server (Figure 2.12) that used threading,
integrating both the control and web components. This option was primarily discarded because it
was in�exible to supporting extended services like PHP and TLS encryption. See Issue 6[19] on
GitHub for more information.

Figure 2.13: Block Diagram of a request to a FastCGI application

In comparison, FastCGI (Figure 2.13) can be seen as the �best of both worlds�. As mentioned
previously, it is a variant of CGI, in that it allows some software to respond to web requests.

https://github.com/szmoore/MCTX3420/issues/6

2 Design and Implementation 25

The key di�erence is that with FastCGI, the program is continuously run independent of any web
requests. This overcomes the issues faced with either using CGI or a custom web server; continuous
control can be achieved while also not having to worry about the low-level implementation details
a web server.

2.5.2 Recommendations for Future Work

1. A self-signed TLS certi�cate has been used, as it is free. It is equally secure as any, but users
will get a security warning when accessing the web site. A proper TLS certi�cate signed by
a trusted certi�cate authority should be used instead.

2. Consider expanding the framework of JSON functions to simplify creating a response.

3. Consider using X-Accel-Redirect along with UserCake (Section 2.3) to make a �ner-grained
access control system to information such as the system logs

2.6 BeagleBone Con�guration

2.6.1 Operating system

The Beaglebone has been con�gured to use the Ubuntu operating system. The original operating
system was Angstrom, which was unsuitable because it lacked a number of software packages
required. Detailed instructions on how to install this operating system exist on the project wiki[1].

In particular, Ubuntu 13.04 running Linux kernel 3.8.13-bone28 was used, which is essentially
the latest version available to date for this platform. Normally an older, more tested version is
recommended, especially in a server environment. However, the BeagleBone Black is a relatively
new device, and it was found that a lot of the drivers simply do not work well on older versions.

Speci�cally, there was much grief over getting the pins to function correctly, especially for PWM
output. Lacking any great documentation, much trial and error was spent determining the best
con�guration. The BeagleBone Black uses what is termed a �device tree� [20, 21] and �device tree
overlays� to dynamically determine what each pin does. This is because each pin can have more
than one function, so a �device tree overlay� determines what it does at any one point. However,
this also complicates matters, since what pins do essentially have to be loaded at runtime.

PWM control in particular took many hours to achieve, which was not helped by a lot of
con�icting information available online. As a result, the primary tool used to correctly determine
proper PWM control was the use of a cathode ray oscilloscope. Quite brie�y, it was found that
certain actions had to be performed in a very speci�c order to make PWM control available. The
wiki goes into more detail on the issues found.

Getting the cameras to work on the BeagleBone was another major issue faced. After much
testing, it was simply found that the cameras could only work on the latest version of the operating
system. On anything else, only low resolution captures of around 352x288 pixels could be achieved.

Finally, it should be noted that USB hot-plugging does not work on the BeagleBone. This
means that the cameras have to be plugged in before booting the BeagleBone. Upgrading to a
newer kernel (when it exists) should solve this issue.

2.6.2 Required software

A number of packages are required to compile the code: nginx spawn-fcgi libfcgi-dev gcc

libssl-dev make libopencv-dev valgrind libldap2-dev mysql-server libmysqlclient-dev

php5 php5-gd php5-fpm php5-mysqlnd

2 Design and Implementation 26

These packages should be installed with the command apt-get install.

2.6.3 Required con�gurations

Many components need to be con�gured correctly for the server to work. In particular, these
con�gurations relate to the web server, nginx, as well as logging software used, rsyslog. Executing
install.sh as root should install all the required con�guration �les to run the server correctly.

2.6.4 Logging and Debugging

The function Log located in log.c is used extensively throughout the server program for debugging,
warning and error reporting. This function uses syslog to simultaneously print messages to the
stderr output stream of the program and log them to a �le, providing a wealth of information
about the (mal)functioning of the program. As discussed in Section 2.4.3, the logs may be also be
viewed by a client using the server API.

For more low level debugging, ie: detecting memory leaks, uninitialised values, bad memory
accesses, etc, the program valgrind[22] was frequently used.

2.7 Image Processing

The system contains two USB cameras, the Logitech C170[23] and the Kaiser Baas KBA03030
(microscope)[24]. The Logitech camera will be used to record and stream the can being pressurized
to explode. The microscope will be used to measure the change in width in the can.

2.7.1 OpenCV

For everything related to image acquisition and processing we decided to use a library called
OpenCV[25]. OpenCV uses the capture structure to connect with cameras, and stores the data in
IplImage structures and the newer CvMat structure. As in C we cannot transfer the data straight
to CvMat we need to convert from IplImage to CvMat. There are two main functions required
for use with the camera. We need to be able to stream images to the user interface and use the
microscope as a dilatometer, returning the rate of expansion of the can.

2.7.2 Image Streaming

The image streaming is done through the function �le image.c and the header image.h. There
are only 2 functions in image.c, both of which are externally accessible by the rest of the system.

The Image_Handler function handles requests from the server. The parameters required for
taking the image, such as the camera ID, width and height are determined by calling FCGI_ParseRequest

(see fastcgi.h and fastcgi.c) using the parameter string passed to the function.

The function Camera_GetImage in image.c is used to capture a frame on the camera from the
ID given by num. As we cannot have 2 camera structures open at once, we use a mutex to ensure
the function execute concurrently. We check to see if num is equivalent to the previous camera
ID, if so we do not need to close the capture in order to recreate the connection with the new
camera, which takes time. These considerations are currently redundant as the decision was made
to only have one camera connected at a time, which was mainly due to power and bandwidth issues.
However the code was implemented to allow for further development. If more than 2 cameras are
ever connected, then the allowable upper bound for num will need to be increased to n− 1 (where
n is the number of cameras connected to the system).

After capturing the image we encode the IplImage, which passes back an encoded CvMat.

https://github.com/szmoore/MCTX3420/blob/master/server-configs/install.sh
https://github.com/szmoore/MCTX3420/blob/master/server/log.c
https://github.com/szmoore/MCTX3420/blob/master/server/image.c
https://github.com/szmoore/MCTX3420/blob/master/server/image.h
https://github.com/szmoore/MCTX3420/blob/master/server/image.c
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.h
https://github.com/szmoore/MCTX3420/blob/master/server/fastcgi.c
https://github.com/szmoore/MCTX3420/blob/master/server/image.c

2 Design and Implementation 27

The image is then returned back to the web browser via FCGI_WriteBinary, where it can be
displayed.

2.7.3 Dilatometer

The dilatometer algorithm is used to determine the rate of expansion of the can. The relevant
functions are declared in sensors/dilatometer.c and sensors/dilatometer.h. When an experiment
is started, Dilatometer_Init is executed. This creates all the necessary structures and sets the
initial value of lastPosition, which is a static variable that stores the last edge found.

As the Camera_GetImage function in image.c is external, it can be accessed from sen-
sors/dilatometer.c. This was done so that both the dilatometer and the image stream can gain
access to the camera. The IplImage returned is converted to the CvMat structure g_srcRGB. This
CvMat structure is then passed to a function, CannyThreshold. In this function, a series of steps
are taken to extract an image containing only the edges. First we use cvCvtColor to convert the
CvMat �le to a grayscale image. The image is then blurred using the cvSmooth function, which
we pass the parameters CV_GAUSSIAN and BLUR, so we use a Gaussian blur with a kernel of size
BLUR (de�ned in sensors/dilatometer.h). The blurred �le is then passed to the OpenCV Canny
Edge detector.

The Canny Edge algorithm[26] determines which pixels are �edge� pixels through a series of
steps. The algorithm applies the Sobel operator in the x and y directions using KERNELSIZE for
the size of the kernel. The result of this gives the gradient strength and direction. The direction
is rounded to 0, 45, 90 or 135 degrees. Non-maximum suppression is then used to remove any
pixels not considered to be part of an edge. The pixels left are then put through the hysteresis
step. If the gradient of the pixel is higher than the upper threshold (in our algorithm denoted
by LOWTHRESHOLD*RATIO) then the pixel is accepted as an edge. If it is below the lower threshold
(i.e. LOWTHRESHOLD) then the pixel is disregarded. The remaining pixels are removed unless that
is connected to a pixel above the upper threshold (Canny Edge Detector). The de�ned values in
the header �le can be altered to improve accuracy.

The CannyThreshold function �lls the CvMat g_edges structure with the current image edge
(i.e. an image containing only pixels considering to be edges, see Figure 2.17 (C-F)). The code
then �nds the location of the line. It does this by sampling a number of rows, determined by the
number of samples and the height of the image, �nding the pixel/s in the row considered to be
an edge. The algorithm then takes the average position of these pixels. The average position over
all rows sampled then determines the actual edge position. The rows sampled are evenly spaced
over the height of the image. If a row does not contain an edge, then it will not be included in the
average. If a blank image goes through, or the algorithm has a low number of samples and does
not pick up an edge, then the function will return false and the data point will not be recorded.

Once the edge is found, we will either return the position of the edge, if the DIL_POS ID is set.
It needs to be noted that this will only show the change in position of one side of the can. If the
DIL_DIFF ID is set then the value will be set to the di�erence between the current position and the
last position, multiplied by SCALE and 2. We need to multiply by 2 as we are only measuring the
change in width to one side of the can, however we must assume that the expansion is symmetrical.
The scale will be used to convert from pixels to µm (or a more suitable scale). Currently the scale
is set to 1, as the dilatometer has not been calibrated, thus we are only measuring the rate of
change of pixels (which is arbitrary). The static variable, lastPosition, is then set to determine
the next change in size. If the di�erence is negative, then the can is being compressed or is being
depressurized. The rate of expansion can then be determined from the data set. As the system
does not have a �xed refresh rate, however each data point is time-stamped. If the data is the edge
position, then plotting the derivative of the time graph will show the rate of expansion over time.

https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.c
https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.h
https://github.com/szmoore/MCTX3420/blob/master/server/image.c
https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.c
https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.c
https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.h

2 Design and Implementation 28

2.7.4 Design Considerations

OpenCV

OpenCV was chosen as the image processing library primarily due to it being open source and
widely used in image processing tasks. One thing to note however is the documentation for OpenCV
for the language C is quite di�cult to follow. This is mainly due to the fact that the source (despite
originally being written for C) is now written primarily for use in C++, thus the documentation
and some of the newer functionality is tailored more for C++. This caused some di�culty in
writing the code for C as not all C++ functionality was available for C, or was included in a
di�erent or outdated fashion.

Memory Management

An initial problem I faced when coding in OpenCV was memory leaks. My simple program to take
an image and save it to �le was causing us to lose approximately 18Mb, which is unacceptable and
would cause issues in the long term. After researching the issue I found that I was not properly
releasing the structure dealing with storing the image for the data, IplImage. For example I was
using:

1 cvReleaseImage(&frame) ;

When the correct release function is actually:

1 cvReleaseImageHeader(&frame) ;

Another thing to note was that releasing one of the CvMat structures (g_srcRGB) during
the cleanup of the dilatometer module, a NULL pointer exception was returned and the program
execution stopped. The reason for this is unknown, but the other CvMat structures appear to be
released properly. For now I simply removed this release; however the cause should be looked into.

Dilatometer

The dilatometer code went through a few iterations. Originally we were informed by the Sensors
Team that the camera would be watching the can, rather than object attached to the can. Thus
my original algorithms were revolved around �nding the actual width and change in width of the
can.

Originally I designed the algorithm to �nd the edge of the can via the pixel thresholds. By
�nding the average position of the pixels below a certain threshold (as ideally you would have a
dark can on a light background to create a contrast for the edge). This would already give a fairly
inaccurate result, as it assumes a relatively sharp intensity gradient. Even with little noise the
system would have accuracy issues.

To increase the accuracy in �nding the edge, I considered the Canny Edge theorem. I wrote my
algorithm to �nd all points above a certain threshold and take the average of these, considering
this as an edge. I then scanned through the rest of the image until the next edge was found
and do the same. The width of the can is found by taking the di�erence of the two locations.
I also wrote an algorithm to generate these edges so I can test the algorithm. The function
(Dilatometer_TestImage/, which is still located within sensors/dilatometer.c) generated two
edges, with an amount of noise. The edges were created by taking an exponential decay around the
edge and adding (and subtracting) a random noise from the expected decay. The edges where then
moved outwards using a for loop. From Figure 2.14, it can be seen how e�ective the algorithm was
for a system with negligible noise, as it gave negligible percentage error. However with increasing
levels of noise we notice a considerable increase in inaccuracy (Figure 2.15).

https://github.com/szmoore/MCTX3420/blob/master/server/sensors/dilatometer.c

2 Design and Implementation 29

Figure 2.14: Output of canny edge algorithm applied to generated edges

Figure 2.15: Output of canny edge algorithm applied to generated edges with generated noise

After the Sensors Team relayed that they were now attaching something to the can in order
to measure the change position, I decided to simply stick with the Canny Edge algorithm and
implement something similar to what I had in my previous testing. The images in Figure 2.17
shows the progression of the image through the algorithm. Figure 2.17 A shows the original image,
whereas 2.17B shows the blurred (with a BLUR value of 5) gray scale image. Whereas Figure
2.17C shows the image after going through the Canny Edge algorithm with a low threshold of 35.
Figures 2.17D and 2.17E both have the same input image, however di�erent input values. It can
be seen how tweaking the values can remove outliers, as Figure 2.17E is skewed to the right due
to the outliers. From Figure 2.17F it can be seen that despite there being no points in the edge in
the top half of the image, the edge has still been accurately determined.

The testing done shows that given a rough edge with few outliers an edge can be determined,
however there is an obvious degree of inaccuracy the greater the variance of the edge. The best
solution to this however does not lie in software. If an edge was used that was straight even at
that magni�cation with a good contrast then the results would be much more accurate (i.e. the
accuracy of the dilatometer is currently more dependent on the object used than the software).

Interferometer

Earlier in the semester we were informed by the Sensors Team that instead of a dilatometer we
would be using an interferometer. The algorithm for this was written and tested; it is currently

2 Design and Implementation 30

still located in the �le interferometer.c and header interferometer.h. However development of
the algorithm ceased after the sensors team informed us that the interferometer would no longer
be implemented.

2.7.5 Further Design Considerations

• During testing we noted a considerable degree of lag between the image stream and reality.
Further testing can be done to determine the causes and any possible solutions.

• A function to help calibrate the dilatometer should be created

• The algorithm should be tested over an extended period of time checking for memory leak
issues caused by OpenCV.

• Possibly modify the code to allow the parameters used in the Canny Edge algorithm to be
modi�ed in real time so the user can try and maximize the accuracy of the results. The image
with the edge superimposed on it can also be streamed to the client in the same manner as
the image, so the user can have feedback.

• The algorithm can be improved to try and neglect outliers in the edge image; however this
is not as necessary if the original object used gives a su�ciently smooth and straight edge.

2.7.6 Results

Figure 2.16 shows an image obtained from one of two dilatometers used in the system setup with
collaboration between all teams. The image is of a white Lego tile attached to the can. This image
was successfully streamed using the server software, and results of the dilatometer readings were
monitored using the same software. Unfortunately we were unable to maintain a constant value
for a stationary can, indicating that the algorithm needs further development. Due to a leak in
the can seal we were unable to pressurize the can su�ciently to see a noticeable change in the edge
position.

Figure 2.16: Microscope image of actual Lego tile attached to can in experimental setup

https://github.com/szmoore/MCTX3420/blob/master/server/interferometer.c
https://github.com/szmoore/MCTX3420/blob/master/server/interferometer.h

2 Design and Implementation 31

A B

C D

E F

Figure 2.17: Canny Edge Algorithm in Action

2.8 Human Computer Interaction and the Graphical User
Interface

2.8.1 Design Considerations

There are many considerations that are required to be taken into account for the successful creation
of a Graphical User Interface (GUI) that allows Human Computer Interaction. A poorly designed
GUI can make a system di�cult and frustrating to use. A GUI made with no considerations to the
underlying software can make a system inoperable or block key features. Without a well designed
GUI the Human Computer Interaction becomes di�cult and discourages any interaction with the
system at all.

One of the key considerations made during the design of the GUI was the functionality it
required. Originally this was limited to just allowing for simple control of the system including
a start and stop and a display of system pressures however as the project progressed this was
expanded to include a user login, limited admin functionality, graphing, image streaming and live

2 Design and Implementation 32

server logs. The addition of these features came as a result of changing requirements from the initial
brief as well as logical progression of the GUI's capabilities. This gradual progression represents a
continual improvement in Human Computer interaction for the system.

Ease of Use is the most important consideration of all to ensure that a GUI is well designed.
Accessibility and user friendliness is a key aspect in web development. Burying key functionality
inside menus makes it di�cult to �nd and discourages its use. Making things obvious and accessible
encourages use and makes the software quicker to learn which in turn means that the user is able
to start doing what they want faster. However there are limits and care has to be taken to make
sure that the user isn't bombarded with so many options that it becomes overwhelming for a �rst
time user. Eventually a system of widgets in a sidebar was designed in order to satisfy the ease of
use requirements by allowing functionality to be grouped and easily accessible.

Due to the limits of the Beagle Bone such as available memory and processing power it was
important that the code, images and all libraries used were both small in size and e�cient. This
meant that careful consideration had to be made every time a library was considered for use. It
also meant that where possible processing should be o�oaded onto the client hardware rather than
running on the server which already runs the server side code. This meant large libraries were
ruled out and actions such as graphing were performed by the GUI on the client machine.

The �nal consideration is extensibility. An extensible software base code allows easy addition
of new features. A good extensible interface makes it a simple case of simply dropping the extra
code in in order to add extra features whereas a GUI that doesn't take this into account can require
deleting and recoding of large chunks of the previous code. This means that the interface code
must be structured in a coherent way and all conform to a �standard� across the GUI. Code must
be laid out in the same way from page to page and where possible sections of code facilitating
speci�c goals should be removed from the main page code. The latter was achieved through the
use of the .load() JavaScript function allowing whole widgets to be removed and placed in their
own separate �les. This feature alone lets the developer add new widgets simply by creating a
widget �le conforming to the GUI's standard and then .load() it into the actual page.

2.8.2 Libraries used in GUI construction

These are libraries that we looked at and deemed to be su�ciently useful and as such were chosen
to be used in the �nal GUI design.

jQuery

jQuery[27] is an open source library designed to make web coding easier and more e�ective. It has
cross-platform and browser support all of the most common browsers. Features such as full CSS3
compatibility, overall versatility and extensibility combined with the light weight footprint made
the decision to develop the GUI with this library included an easy one to make.

Flot

Flot[28] is a Javascript library designed for plotting and built for jQuery. This a lightweight easy to
use library that allows easy production of attractive graphs. It also includes advanced support for
interactive features and can support for IE < 9 . The Flot library provided an easy but powerful
way to graph the data being sent by the server.

2.8.3 Libraries trialled but not used in GUI construction

These are libraries that were looked at and considered for use in the GUI software but were decided
to not be used in the �nal product.

2 Design and Implementation 33

jQuery UI

jQueryUI[29] is a library that provides numerous widgets and user interface interactions utilising
the jQuery JavaScript library. Targeted at both web design and web development the library
allows easy and rapid construction of web application and interfaces with many pre-built interface
elements. However this comes with the downside of being a larger library and provides many
features that are unnecessary and is as such un�t for use in the GUI.

chart.js

chart.js[30] is an object orientated JavaScript library that provides graphing capabilities on the
client side. The library uses some HTML5 elements to provide a variety of ways to present data
including line graphs, bar charts, doughnut charts and more. It is a lightweight library that is
dependency free however it is lacking on features compared to Flot and did not get used.

2.8.4 Design Process for the Graphical User Interface

As with any coding, following a somewhat strict design process improves e�ciency and results in
a better end product with more relevant code. Proper planning and testing prevents writing large
amounts of code that is latter scrapped. It also provides a more focused direction than can be
gleaned o� of a project brief.

Producing test GUI's with simple functionality allows the developer to experiment and test
features without investing a large amount of time and code in something that may not work or
solve the required problem. The test GUI's can both functional and aesthetic. Throughout the
project a large amount of test GUI's of both types were produced. Aesthetic test GUI's are great
for experimenting with the look and feel of the software and allow the developer to experience �rst
hand how the page handles. Functional GUI's on the other hand allow the developer to test out
new features and investigate whether the client server interaction is functioning properly.

Whilst producing test GUI's a design document was drawn up. This document encompassed
the design goals and speci�cations for the �nal Human Computer Interface and provided what was
essentially a master plan. Include in the document were things such as what separate pages were
to be included, the overall look of the system and what �nal functionality was desired.

Once a design document was completed a Master Template was created. Firstly a draft was
created in PowerPoint using Smart Art and can be seen in Figure 2.18. After reviewing the draft
and accepting the design a HTML template with CSS elements was produced. This template
mimics the draft with some added features and improvements as seen in Figure 2.19. This was
also reviewed and accepted and formed the base code for the GUI.

With the template completed functionality was then added. By copying the template exactly
for each individual page the look of the software is kept the same throughout. Adding functionality
is a simple case of substituting in functional code in the demonstration panels as well as adding
the necessary JavaScript for the pages to function. E�ort was made to keep as much functional
code separated from the template itself and to load the code into the page from an external �le in
order to facilitate cleaner code with better expandability.

2 Design and Implementation 34

Figure 2.18: Draft GUI designed in Microsoft PowerPoint

Figure 2.19: Screenshot of a GUI using templates to form each panel

2.9 GUI Design Process

2.9.1 Creation

The First iteration of the GUI was a relatively simple and almost purely text based. It held a
graph, along with the basic image stream we had developed. It was formatted all down the Left
hand side of the page.

2 Design and Implementation 35

Figure 2.20: First Test GUI

2.9.2 Testing

Secondly we decided to test the FastCGI protocol. Where FastCGI can be used to interface pro-
grams with a web server. This was the �rst test with the use of sensors and actuators theoretically
collecting data from a server.

Figure 2.21: Testing GUI

This GUI was running over a free domain name which allowed us to play with control and
command.

2.9.3 Iterations

After the basic testing of the initial GUIs we started playing with GUI design ideas which would
be aesthetic, easy to use and re�ect on UWA in a positive way. To do this we looked into how
professional websites were made by opening their source code and investigating techniques into
layout, structure and style. Then we went away and completed some GUI design trees, where

2 Design and Implementation 36

there would be a clear �ow between pages.

2.9.4 Parallel GUI Design

During the GUI development phase, several GUIs were created. Some used graphical development
software, while others used hard coded HTML, JavaScript, and CSS. Due to no organization within
the group and a lack in communication a ��nal GUI� was made by several of the team members.
Some of these are shown below.

2.9.5 GUI Aesthetics

Once we had decided on our core GUI design, we decided that, although not yet complete we would
get Adrian Keating's opinion on the GUI design. While the GUI design was simple and functional
Dr. Keating pointed out the design was bland. He encouraged us to release our artistic �air onto
our GUI and make it more graphical and easy to use. Taking this into account we began work
on another �nal GUI designing almost from scratch. We kept our GUI design �ow, and worked
largely on the look and feel of the GUI rather the functionality the GUI needed.

2.9.6 HTML Structure

The way our GUI works, in a nutshell, is that we use Basic HTML code to lay out what the page
needs, then we have CSS(Styles) on top which lays out and formats the basic HTML code. We
the put JavaScript �les into the HTML code so that graphs and images and be streamed. In our
GUI we have chosen to use JQuery to ask the server for information from the client and �ot for
graphing functionality.

2.9.7 Graphical Development VS Hard Coding

From the Multiple GUI we had accidentally created during the GUI design phase we noticed a large
variety in the styles of GUIs that came out (Which shouldn't have happened) GUIs were created
using HTML CSS and JavaScript being hard coded, from development software like Dreamweaver,
and various Java based development platforms.

2.9.8 Final Design

The �nal concept consists of widgets and a navigation bar to the left. We decided for the maximum
functionality we could get with the time remaining we would have pages for; Control, Graphs, Data,
Data streaming, Pin debugging, and a help screen, shown below.

2 Design and Implementation 37

Figure 2.22: Final GUI

This is the �home screen� it shows the layout of the experiment, the subsystem and a welcome
message.

Figure 2.23: The Experiment (While disconnected from the server in the pic above) displays the
Warnings and the experiment state to allow device use by only 1 student and avoid nasty con�icting
control

Figure 2.24: The Experimental Results page (also currently disconnected)

2 Design and Implementation 38

Figure 2.25: The experimental data page shows the start the sensors and actuators are reading,
useful for checking the condition and measuring the experiment.

Figure 2.26: The BBB Pin test page is for the software team only so that we can test and debug
the experiment we errors are found in the GUI or software.

Figure 2.27: The help page, which links to the wiki information from all the teams and allows new
users to look at all aspects of the project to be further developed and �nished.

3. Conclusions and Recommendations

This report has described the work of the software team on the MCTX3420 pressurised can
project during Semester 2, 2013 at UWA. In summary, we have succeeded in the following goals:

1. Design and implementation of a multithreaded process for providing continuous control over
real hardware in response to intermittent user actions (Section 2.1, 2.2)

2. Design and implementation of a con�guration allowing this process to interface with the
nginx HTTP server (Sections 2.4, 2.6)

3. Use of image processing both for streaming images through the API and for use as a dilatome-
ter (Section 2.7)

4. Design and implementation of a API using the HTTP protocol to allow a client process to
supply user commands to the system (Section 2.4)

5. Design and implementation of the client process using a web browser based GUI that requires
no additional software to be installed on the client PC (Section 2.4, 2.8)

6. Design and implementation of several alternative authentication mechanisms for the system
which can be integrated with di�erent user management solutions (Section 2.3)

7. Design and implementation of image streaming and image processing for use with a dilatome-
ter (Section 2.7)

8. Partial design and implementation of a system for managing the data�les of di�erent users
(Section 2.4.3)

9. Partial design and implementation of a user management system in PHP based upon User-
Cake (Sections 2.3, 2.4.5)

10. Integration and partial testing of the software with the overall MCTX3420 2013 Exploding
Cans project involving extensive collaboration with a class of over 30 students (All sections)

We make the following general recommendations for further development of the system software
(with more speci�c recommendations discussed in the relevant sections):

1. That the current software is built upon, rather than redesigned from scratch. The software
can be adapted to run on a Raspberry Pi, or even a GNU/Linux laptop if required.

2. That more detailed testing and debugging of several aspects of the software are required; in
particular:

(a) The software should be tested for memory leaks by running for an extended time period

(b) Any alternative image processing algorithms should be tested independently of the main
system and then integrated after it is certain that no memory errors remain

3. That work is continued on documenting all aspects of the system.

4. That the GitHub Issues page[19] is used to identify and solve future issues and/or bugs

5. That members of the 2013 software team are contacted if further explanation of any aspect
of the software is needed.

We would also like to make the following recommendations with regard to system hardware:

39

3 Conclusions and Recommendations 40

1. Care is given to protecting the BeagleBone from electrical faults (e.g.: overloading or under-
loading the ADC/GPIO pins, a power surge overloading the supply voltage)

2. A mechanism (possibly employing a high value capacitor) is included to allow a loss of power
to be detected and the BeagleBone shut down safely

References

[1] J. Kruger, S. Moore, and J. Tan, �Mctx3420 project wiki.� https://github.com/szmoore/

MCTX3420/wiki, 2013.

[2] S. Moore, J. Tan, J. Kruger, C. Scho�eld, J. Rosher, and R. Heinrich, �Mctx3420 2013 git
repository at github.� https://github.com/szmoore/MCTX3420, 2013.

[3] S. Moore, J. Tan, J. Kruger, C. Scho�eld, J. Rosher, and R. Heinrich, �Mctx3420 git repository
at ucc.� http://git.ucc.asn.au/?p=matches/MCTX3420.git, 2013.

[4] GitHub, �Fork a repo.� https://help.github.com/articles/fork-a-repo, 2013.

[5] �Mctx3420 2013 github contributions page.� https://github.com/szmoore/MCTX3420/

graphs/contributors.

[6] C. M. University, �C coding standards.� http://users.ece.cmu.edu/~eno/coding/

CCodingStandard.html.

[7] J. Kruger, �Safety systems - general outline.� https://github.com/szmoore/MCTX3420/

blob/master/notes/Safety%20Systems%20-%20general%20outline.docx, August 2013.

[8] Ohloh, �Mctx3420 project summary.� http://www.ohloh.net/p/MCTX3420, 2013.

[9] �Beaglebone black (speci�cations).� http://beagleboard.org/Products/BeagleBone+

Black/, 2013.

[10] Nginx.org, �Nginx http server.� http://wiki.nginx.org/Main. v1.4.0.

[11] �Shadow man pages.� http://linux.die.net/man/3/shadow.

[12] Wikipedia, �Lightweight directory access protocol.� http://en.wikipedia.org/wiki/

Lightweight_Directory_Access_Protocol.

[13] �Ldap man pages.� http://linux.die.net/man/3/ldap. (API for libldab2-dev).

[14] MySQL.com, �Mysql: The world's most popular open source database.� http://www.mysql.
com/.

[15] T. et. al, �Usercake: The fully open source user management script.� http://usercake.com,
2012.

[16] D. Eakins, �Lamp server: A brief overview.� http://home.ite.sfcollege.edu/~daniel.m.
eakins/media/Research_LAMP.pdf, 2012.

[17] J. Trevelyan, �10 years experience with remote laboratories.� International Conference on
Engineering Education Research, Olomouc, Czech Republic http://telerobot.mech.uwa.

edu.au/Information/Trevelyan-INEER-2004.pdf, 2004.

[18] �Http speci�cation (rfc2616).� http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[19] �Mctx3420 2013 github issues page.� https://github.com/szmoore/MCTX3420/issues?

direction=asc&sort=updated&state=open.

[20] P. Antoniou, T. King, and M. Porter, �Beaglebone and the 3.8 kernel.� http://elinux.org/
BeagleBone_and_the_3.8_Kernel, 2013. (Technical details of the Device Tree).

[21] Adafruit, �Introduction to the beaglebone black device tree.� http://www.adafruit.com/

blog/2013/07/29/tutorial-introduction-to-the-beaglebone-black-device-tree/,
2013. (Tutorial of the BeagleBone Black Device Tree).

[22] V. Developers, �Valgrind.� http://valgrind.org/. v3.8.1.

41

https://github.com/szmoore/MCTX3420/wiki
https://github.com/szmoore/MCTX3420/wiki
https://github.com/szmoore/MCTX3420
http://git.ucc.asn.au/?p=matches/MCTX3420.git
https://help.github.com/articles/fork-a-repo
https://github.com/szmoore/MCTX3420/graphs/contributors
https://github.com/szmoore/MCTX3420/graphs/contributors
http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
https://github.com/szmoore/MCTX3420/blob/master/notes/Safety%20Systems%20-%20general%20outline.docx
https://github.com/szmoore/MCTX3420/blob/master/notes/Safety%20Systems%20-%20general%20outline.docx
http://www.ohloh.net/p/MCTX3420
http://beagleboard.org/Products/BeagleBone+Black/
http://beagleboard.org/Products/BeagleBone+Black/
http://wiki.nginx.org/Main
http://linux.die.net/man/3/shadow
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://linux.die.net/man/3/ldap
http://www.mysql.com/
http://www.mysql.com/
http://usercake.com
http://home.ite.sfcollege.edu/~daniel.m.eakins/media/Research_LAMP.pdf
http://home.ite.sfcollege.edu/~daniel.m.eakins/media/Research_LAMP.pdf
http://telerobot.mech.uwa.edu.au/Information/Trevelyan-INEER-2004.pdf
http://telerobot.mech.uwa.edu.au/Information/Trevelyan-INEER-2004.pdf
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://github.com/szmoore/MCTX3420/issues?direction=asc&sort=updated&state=open
https://github.com/szmoore/MCTX3420/issues?direction=asc&sort=updated&state=open
http://elinux.org/BeagleBone_and_the_3.8_Kernel
http://elinux.org/BeagleBone_and_the_3.8_Kernel
http://www.adafruit.com/blog/2013/07/29/tutorial-introduction-to-the-beaglebone-black-device-tree/
http://www.adafruit.com/blog/2013/07/29/tutorial-introduction-to-the-beaglebone-black-device-tree/
http://valgrind.org/

REFERENCES 42

[23] Logitech, �Logitech webcam c170 tehnical speci�cations.� http://

logitech-en-emea.custhelp.com/app/answers/detail/a_id/24412/~/

logitech-webcam-c170-technical-specifications, 2013. (Driver for GNU/Linux is
part of uvcvideo[31]).

[24] K. Baas, �Digital microscope: Study �ne detail with 200x magni�cation.� http://www.

kaiserbaas.com/cameras/digital-microscope, 2013. (Driver for GNU/Linux is part of
uvcvideo[31]).

[25] OpenCV, �Open source computer vision (opencv).� http://opencv.org/, 2013. v2.4.6.0 (we
are using the C API).

[26] OpenCV, �Opencv documentation and tutorials: Canny edge detector.� http://docs.

opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html.

[27] jQuery Foundation, �jquery: write less, do more.� http://www.jquery.com, 2013. v1.10.1.

[28] FlotCharts.org, �Flot: Attractive javascript plotting for jquery.� http://www.flotchargs.

org, 2013. v0.8.1.

[29] jQuery Foundation, �jquery: User interface.� http://jqueryui.com, 2013. v1.10.3.

[30] C. Organisation, �Chart.js.� http://www.chartjs.org, 2013.

[31] L. U. Project, �Usb video class (uvc) linux device driver.� http://www.ideasonboard.org/
uvc/, 2013.

http://logitech-en-emea.custhelp.com/app/answers/detail/a_id/24412/~/logitech-webcam-c170-technical-specifications
http://logitech-en-emea.custhelp.com/app/answers/detail/a_id/24412/~/logitech-webcam-c170-technical-specifications
http://logitech-en-emea.custhelp.com/app/answers/detail/a_id/24412/~/logitech-webcam-c170-technical-specifications
http://www.kaiserbaas.com/cameras/digital-microscope
http://www.kaiserbaas.com/cameras/digital-microscope
http://opencv.org/
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
http://www.jquery.com
http://www.flotchargs.org
http://www.flotchargs.org
http://jqueryui.com
http://www.chartjs.org
http://www.ideasonboard.org/uvc/
http://www.ideasonboard.org/uvc/

REFERENCES 43

Glossary

• Server � Refers to the MCTX3420 program that runs on the system and is responsible for
controlling and querying hardware. �Server� is often also used to refer to a physical machine
(computer or embedded device) that runs a Server program.

• Client � Refers to a program running on a computer that isn't part of the system. This
program provides the user with an interface to the system; it will send commands and queries
to the server as directed by a human user. �Client� is also often also used to refer to a physical
machine that runs a Client program.

• HTTP � Hyper Text Transfer Protocol - The protocol used by web browsers and web
servers to exchange information. A "web" server is technically called a HTTP server. A
"web" client is something like a web browser (�refox, chrome, etc) which uses HTTP to
query servers on the internet.

• HTTPS� HTTP itself involves sending plain text over a network, which can be intercepted
and read by anyone on the network. The HTTPS protocol provides a layer of encryption to
prevent eavesdropping on HTTP tra�c.

• API � Application Programming Interface - A standard de�ned for programs to interact
with each other. In our case, the "Server API" (discussed on this page) de�nes what the
Client can request and give to the Server.

• HTML � Hypertext Markup Language - A language used by web browsers to display web
pages. Static. HTML �les are stored on a system that is running a HTTP server and
transferred to web browsers when they are requested.

• JavaScript (not to be confused with Java) � A language that is interpreted by a web
browser to produce HTML dynamically (which is then rendered by the browser) in response
to events. It can also direct the browser to send HTTP queries (AJAX). The response can
be interpreted by the JavaScript. JavaScript �les are also stored on the server.

• JSON � JavaScript Object Notation - Text that can be directly interpreted as an Object
in JavaScript.

• CGI � Common Gateway Interface - Protocol by which HTTP servers respond to requests
by calling an external (seperate) program. The CGI program does not run continuously.

• FastCGI� Fast Common Gateway Interface - Protocol by which HTTP servers respond to
requests by passing them to an external (separate) program. Di�ers from CGI because the
external program runs continuously and separately from the HTTP server.

• IP Address � Internet Protocol Address - Identi�es a device on a network

• Hostname�A human readable name of a device on a network. The hostname of the device
is associated with its IP address.

• Multithreading � A technique by which a single set of code can be used by several pro-
cessors at di�erent stages of execution.

• OpenCV � A real time Image processing library

• BBB � the BeagleBone Black, ARM processor board acts as the client, and communicates
with the server to send and request data for physically running the experiment.

• nginx � Used for website architecture which integrates e�ciency with functionality

• OpenMP � Multiplatform memory processing: used for parallel tasks (not used in this
project)

• PThreads (POSIX Threads) � A library used for thread management de�ning a set of
c programing functions and constants.

	Introduction and Approach
	System Overview
	Experimental Procedure
	Components

	Development Process
	Planning and Design
	Coding
	Testing
	Collaboration

	Team Collaboration
	Communication
	Scheduling
	Group Participation
	Inter-Team Communication
	Individual Contributions
	Cost Estimation

	Design and Implementation
	Server Program
	Threads and Sampling Rates
	Main Thread
	Sensor Threads
	Actuator Threads
	Data Storage and Retrieval
	Safety Mechanisms

	Hardware Interfacing
	Sensors
	Actuators

	Authentication Mechanisms
	Server/Client Communication
	Web server
	FastCGI
	Server API - Making Requests
	Server API - Response Format
	Server API - Cookies
	Client - JavaScript and AJAX Requests

	Alternative Communication Technologies
	Server Interface
	Recommendations for Future Work

	BeagleBone Configuration
	Operating system
	Required software
	Required configurations
	Logging and Debugging

	Image Processing
	OpenCV
	Image Streaming
	Dilatometer
	Design Considerations
	Further Design Considerations
	Results

	Human Computer Interaction and the Graphical User Interface
	Design Considerations
	Libraries used in GUI construction
	Libraries trialled but not used in GUI construction
	Design Process for the Graphical User Interface

	GUI Design Process
	Creation
	Testing
	Iterations
	Parallel GUI Design
	GUI Aesthetics
	HTML Structure
	Graphical Development VS Hard Coding
	Final Design

	Conclusions and Recommendations
	References

