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SECONDARY ELECTRON EMISSION 

by 

R. E. Bunney 

SUMMA.RY 

This report has been two-fold in purpose: 

1. To review the available literature on secondary electron emission 

and to consolidate the general results of previous experiments with adaptability 

to the present research underway at Colorado State University. 

2. To consolidate under one cover the basic theories of secondary 

emission and to attempt to trace the connections between them noting the 

deficiencies of each. 

Due to the large number of independent publications on this subject, review 

articles have been utilized to the utmost. For the basic theories however, the 

original publications were consulted. The bibliography lists all of the articles 

reviewed, however many of them were not credited specifically in the report 

as the review articles were the principle references cited. 

It is realized that many publications have been omitted entirely. How­

ever, most of these serve as refinements of the basic theories and should be 

included only in reports of broader scope than is outlined under (2) above. 

Thus, the theory as presented in this report is not complete in all aspects, 

however it compares approaches of the principal investigators and considers 

the deficiencies of each. Special emphasis has been placed on quantum theory 

as the author believes that this approach is the best method of gaining physical 

insight into the mechanism of secondary emission, whereas classical theories 

give empirical information only. 
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INTRODUCTION 

The phenomenon of secondary emission has been actively investigated 

since its original observation by Austin and Starke in 1902. Many theories 

have been formed since that time and much experimental evidence has been 

gathered on their behalf. These theories range from relatively simple 

empirical treatments to highly complex quantum mechanical investigations 

wi th side investigations into surface phenomena, crystal formation, diffusion 

theory and other s . 

First investigations of the secondary emissions process indicates a 

very straightforward approach. Primary electrons bombard the surface of 

a material where, by certain physical mechanisms, electrons are caused to 

leave the material. One need merely to measure the number of so- called 

ffsecondary electrons" per second from a unit area on the surface as a 

function of their energy (E), and their direction (9), i. e., measure j(E,9); 

and construct a theory to satisfy these results. This was the emphasis of the 

early investigators; however, to completely understand the mechanism of 

secondary emission within the material more advanced and complicated 

approaches must be made. One author [4] diagrams the scheme of second­

ary emission as is shown in Fig. 1. 

This process is roughly as follows: (1) The primary electron beam 

impinges upon the surface of the material where it interacts with the surface 

barrier and is split into two parts, a) those which are reflected and b) those 

which penetrate the surface; (2) The electrons penetrating the surface interact 

with the nuclei and electrons of the material and are thus distributed by 

elastic collisions with the nuclei and energy is lost through interaction with 

the electrons. The collisions cause the beam to be split again into various 

directions, some of which are back toward the surface. These reflected 

primaries will also produce secondaries, part of which will escape into 

free space. (3) The interactions of the primary electrons and the material 
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electrons will cascade through the material each causing further interactions 

or scattering of which a finite number of electrons will eventually reach the 

surface and escape. 

1. Experimental Results 

A Measurement Results - The problems involved in measurement of 

properties of secondary emission are essentially the same as those encountered 

in electron optics. The electrons are emitted over the entire solid angle, there­

fore it is necessary to collimate the secondaries and then focus them for detec­

tion. Another technique is the use of a retarding field. In this method" the 

electrons when emitted from the material are subjected to a retarding field 

prior to being collected. Therefore, only those electrons with sufficient 

energy to overcome this field arrive at the collector. An inherent problem 

of this method is subtracting the effects ci. tertiary electrons at the collector 

surface. If" however, the collector is large relative to the emitter and the 

energy of the tertiary electrons is sufficiently small, their effect is negligible. 

This type of device is shown in Fig. 2. If the energy distribution is given by 

F{E}, the secondary current is 

so 

( 1) 

di 
s 

F(E) = - d{E ) (2) 
s 

The device in Fig. 2 measures all electrons emitted into the sphere. It is 

possible to segment this sphere in order to determine angular distributions. 

Other methods have been devised to measure secondary emission energy 

distributions. Two of these use magnetic fields. These devices are 

diagrammed in Figs. 3 and 4. In the former" the secondary electrons are 
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deflected by a transverse homogeneous magnetic field forcing the electrons 

into a circular path similar to mass spectroscopic methods. Then, if 

B = Magnetic field, v = velocity of the particle and r = radius of the path; 

B' 
e 
m 

. r = v 

The current at the collector as a function of B is given by 

( 3) 

i = cP (v) 6. v ( 4) 
c 

where cP( v) = velocity distribution of the secondary elect rons. The velocity 

interval 6. v determined by the collector aperature 6.r by the relation 

e 
6.v = B - 6.r 

m 

then, eliminating 6. v from (3) and (4) 

i 
c 

cP(v) = vf 

where f = 6.r isa constant of the apparatus. The main problems involved 
r 

with this device are the required complexity and size. 

( 5) 

( 6) 

The apparatus shown in Fig. 4 uses a longitudinal magnetic field. This 

device uses the principle that if a point source emits electrons with the same 

energy all at the same angle to the lines of force of a homogeneous magnetic 

field, the electrons will focus again at a point. The distance from the image 

point to the point source is proportional to the velocity of the electrons and 

inversely proportional to the magnetic field. This device is then a velocity 

filter in the same sense as the previous one. 

A transverse electric field has been used by Harrower [30] for measuring 

the energy distributions of secondary electrons. This device uses a 127. 2° 

cylindrical electrostatic condenser. The electron beam is focused on a slit 

after deflection. The energy distribution is obtained from the current at the 

collector divided by the electric field E. 
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B. Precautions to be Taken During Measurement - The most important 

points to be observed during measurement are: 

1) The secondary electrons must not be subjected to stray magnetic or 

electric fields from the point of emission to the collector. 

2) Space charge in the field free region must be avoided at all cost un­

less of course it is desirable to determine the effects of such a condition. 

3) The contact potentials of the electrodes must be known. 

4) All measurements must be made in vacuum such that the mean-free­

path is long compared to the vessel. Scattering of the secondary electrons 

by a residual atmosphere will result in questionable results. 

5) The condition of the emitter surface is of prime importance. Here, 

cleanliness is definitely a virtue. Impurities absorbed on the surface 

even in monomolecular layers may falsify the results through variations 

in the work function. 

C. Energy Spectrum - If the number of secondary electrons with energy 

between E and E + D,. E is plotted against E, a typical spectrum results. 

This spectrum is shown in Fig. 5. As is shown, this curve may be divided 

into three distinct regions. The first of these (I) is the region of the primary 

energy E. These are generally considered to be the elastically reflected 
p 

primaries. The second region falls between approximately 50 ev energy 

and E . 
P 

This region has the characteristic shape of the spectrum of an 

electron beam passed through a thin film. These are generally assumed to 

be composed of inelastically reflected and rediffused primaries. Last, the 

region of the curve below 50 ev (In) represents true secondary electrons 

emitted from the material surface. It is these electrons that are of primary 

interest here. It should be pointed out however, that not all electrons with 

energies < 50 ev are secondaries. It is entirely possible for some re­

diffused primaries to fall in this energy range but this is offset by the equal 

possibility of secondaries having energies > 50 ev. 

D. Yield - The yield, def:ip.ed as the ratio of the secondary current to 
1 

the primary current, i. e. , 6::; .s , as a function of primary energy (E ) 
lp P 
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is probably the most investigated phenomenon of secondary emission. The 

plot of 0 vs E is shown in Fig. 6 and is the same general shape for all 
p 

materials. It is assumed that the primaries are incident normal to the 

surface. Alterations to this curve due to primary electron impingement 

at other than normal incidence will be discussed later. For low Ep' 0 is 

much less than unity and increases to a maximum o{max) > 0 = z for pure 

metals as some Ep = Ep{max) at a few hundred ev and then slowly decreases 

as Ep is further increased. Since these curves are so similar authors often 

specify only o(max) and Ep(max) when reporting results of experimentation. 

Impurities in the metal or adsorbed on the surface greatly affect the results 

of this measurement. Mu.ch effort has been expended in producing cleaner 

surfaces to determine 0 more accurately. Some investigators [3] have 

utilized extensive baking processes. This method of surface decontamination 

is effective to gain reproducible values of 0, however the data is somewhat 

questionable in many cases due to the possibility of recrystallation and surface 

oxidation. Bruining [1] and others have attempted to overcome this deficiency 

by using thin films. Recently some researchers [3] have used single crystals 

of the material of interest contending that these represent the highest form of 

purity possible. Even if clean surfaces could be obtained, the yield would be 

radically affected by surface irregularities. Therefore, the data obtained 

on the yield will vary from author to author. Table 1 represents what is 

believed to be the best available results. The values of o( max) are accurate 

to approximately 10 percent, however due to the difficulty in determining 

the peak for a wide maximum, therefore the values of Ep(max) may vary 

greatly from those presented. 

E. Correlation of o{max) and Work Function - McKay [3] has attempted 

to correlate the maximum yield and work function (Fig. 7). He admits that, 

since the surface conditions of these materials and crystal orientation was 

not known, the result has a certain amount of unreliability. However, 

this approach does show certain interesting relationships. As seen from 

Fig. 7, there appears to be a tendency for materials with high work functions 
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to have high yields, however the inference should not be made that increasing 

the work functions will increase the yield. Often the inverse statement would 

be more reliable. In fact, as McKay points out, nearly as reliable data may 

be obtained by plotting o{ max) against the density of the target. Bruining 

performed this correlation and found that o{max) had a tendency to increase 

with the density of the materials. Sternglass attempted also to correlate 

o{max) with the position of metals within the periodic system of elements. 

He found that the yield rises in each horizontal line from the alkalies to the 

multivalent metals. 

F. Normalized Yield - If for a given set of 0 vs Ep curves, each 6 is 

divided by 6{max) and each Ep divided by the respective Ep{max), the 

curves are said to be normalized. From this normalization a unique data 

pattern results. Baroody [52] first demonstrated this to show that the 

dependence of the yield on primary energy was the same for all metals. Pre­

sented in this form, the curves for different metals lie in a narrow range so 

that the representation is nearly a universal yield curve for all metals,. (Fig. 8). 

This phenomenon will be considered in more detail in the theory section of this 

report. 

G. Effects of Temperature on Secondary Emission - Most investigators 

agree that true secondary emission in metals is independent of the temperature 

of the emitter surface. Certain complications do occur however, since changes 

in temperature will change the density of gas adsorbed and could possibly 

change the crystal structure of the surface. Also, for high enough temperature, 

there should be contributions due to Richardson electrons. This should be 

contrasted with the effect of temperature on the secondary emission of insu­

lators. Evidence indicates that there is an inverse relation between temper­

ature and yield. 

H. Angular Distribution of Secondary Electrons - Considering only 

electrons with energy < 50 ev, 1. e., neglecting reflected primaries, 

researchers agree that most secondaries emerge normal to the surface and 

the number decreases with increasing angle of emergence. This indicates a 
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Table 1. Maximum Secondary Emission Yields of Various Clean Metals. 

(Partial Table from K. G. McKay, Advances in Electronics, Academic 

Press, Vol. 1, p. 68, 1948. 

Element o{max) V (max) Volts 
p 

Ag 1.5 800 

A.1 1.0 300 

An 1. 46 800 

Ba 0.83 400 

Bl 0.6 200 

C 1. 0 300 

Cd 1. 1 400 

Co 1. 2 600 

C s 0.72 400 

Cu 1.3 600 

Fe 1.3 200 

K 0.7 350 

Li 0.5 85 

Mg 0.95 300 

Mo 1.25 375 

Nb 1.2 375 

N. 
1 

1.3 550 

P d 1.3 250 

P t 1.6 800 

Rb 0.9 350 

Th 1.1 800 

T· 1 
0.9 280 

W 1.4 600 

Zr 1. 1 350 
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cosine law distribution. This relat.ionship may vary for very low primary 

energies. This could be caused by variation of penetration depths and re­

flected beam density respectively. Faris [76] has derived an angular dis­

tribution relationship which depends upon the ratio of the propogation constant 

of the electron within the surface to that in free space. When this ratio 

approaches zero the distribution function reduces to a direct cosine law. 

This relation appears to be independent of the angle of incidence of the 

primary beam whereas, as will be shown later, the total yield is not. The 

cosine law distribution is not surprising since most electrons emitted at 

large angles of emergence are required to traverse a longer path length 

within the material and therefore, are more likely to be scattered or ab­

sorbed than thos e emitted normal to the surface. 

1. Effect of Angle of Incidence of Primary Electrons [3] - The effect 

of oblique angle of incidence may be seen in Fig. 9 where R is the average 

range of a primary electron into the material. For primaries striking the 

surface at other than normal incidence, their penetration depth normal to 

the surface is only R cos (J while at normal incidence it is R. Therefore, 

secondaries produced at the end of the path have much less chance of being 

absorbed before reaching the surface and will in general have greater energy 

for penetrating the barrier at the interface than thos e coming from a greater 

depth or those produced by a primary beam normal to the surface. Bruining 

[1] has shown experimentally that for low primary velocities, i. e., for low 

penetration, there is very little variation in the yield with angle of incidence. 

He has also shown that a rough etched surface shows no angle of incidence 

dependence which is not too surprising due to the inhomogeneity of the 

orientation of the surface normal. Bruining derived the expression 

where 

1: = 1: ax ( 1 - cos (J) 
u(J uoe m 

() (J = yield at angle of incidence = (J 

() = yield at angle of incidence = 0 
o 

x = mean depth of liberation of electrons 
m 

a = coefficient of electron absorption 
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by assuming an exponential absorption-with-distance relationship (see theory). 

This law would indicate a maximum at B = 1r /2 since there is no absorption 

of secondaries. However, as McKay [3] points out, there is a broader maxi­

mum at a much higher Ep than for primaries incident at B = o. This is 

attributed to the scattering of primary electrons into the surface of the 

material thus producing some secondary absorption. 

J. Effect of Primary Current on Yield - It has been confirmed by many 

investigators under widely varying conditions that the yield is independent of 

the primary current density. Theoretical consideration confirm these results. 

K. Surface Effects - As was indicated earlier, the condition of the 

surface has great bearing on secondary emission. Considerable experimental 

evidence indicates that a rough or porous surface lowers the secondary 

electron yield. At least one author [3] compares a rough surface to a series 

of holes or wells. A. secondary electron, produced in the bottom of the 

well can get trapped on the sides and hence be prevented from being emitted 

at the surface. 

Such a surface may be prepared artificially for investigation by 

covering the target with carbon soot either smoked on or prepared from a 

colloidal system or, by evaporating various metals on the surface through 

a rare gas atmosphere so that metallic agglomerates are formed before 

striking the target surface. Bruining [1] shows that the reduction in yield 

occurs when the carbon granules are approximately 30° A in diameter. 

Much investigation has been performed to determine the effects of 

depositing metals on the target surface [3]. Most results show a decrease 

in the work function, with a maximum occurring coincidentally with the 

attainment of an optimum layer thickness for minimum work function. 

Sixtus and Trelaar obtained the relation {) = eA
- bcP , (where A and b 

are constants for a given metal) for the dependence of the yield on the work 

function. This equation appears to be a good representation in agreement 

with most experimental data and theories. The work function however, 

plays a relatively minor role. McKay showed that an adsorbed layer of 
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sodium on tungsten increased the yield by 60 percent while decreasing the 

work function by a factor of 2. This roughly agrees with Trelors results 

of (- a~) (1n 6 max) ~ o. 12 ev -1. However, in thermionic emission a 

similar decrease in the work function would increase the current by a 

factor of 10. It therefore, seems unlikely that high yields can be obtained 

by uniquely varying the work function of the material. 

Becker and Nichols [3] demonstrated the dependence of the effect 

on the yield of the orientation of the exposed crystal face. The magnitude 

of this effect may be estimated by assuming Trelor's result for variation 

of the work function for tungsten and using Nichol's data showing that the 

work function varies from 4.35 volts for the (111) crystal direction to at 

least 4. 65 for the (110) direction. This gives a variation in om ax" of 

approximately 3 percent. Other researchers have done extensive work on 

this problem and all report that any given face of a crystal exhibits a 

characteristic yield. However, care should be taken when trying to 

correlate this information to experimental results, as a given substance 

need not necessarily exhibit all crystalline faces to the surface with equal 

probability. On the contrary, unless the experiment is precisely designed 

to locate a given lattice plane, the probability of the surface being inhomo­

geneous as to orientation of crystal faces is high. 

The last topic to be covered under surface effects is that of adsorbed 

gas. We would expect a similar effect for adsorbed gas as was found for 

metals deposited on the surface. However, an adsorbed gas layer may 

also contribute significantly to the yield. Data reveal that monoatomic 

layers of adsorbed gas on target surfaces probably have a yield of approx­

imately 0.02 for E ....... 200 volts, thus indicating that the variation for 
p 

layers of this thickness are primarily due to the variation of the work 

function. Most reports attempt to correlate yield as a function of heat 

treatment. This data is usually unreliable as secondary effects may alter 

the emission mechanism, i. e., alter the crystal structure. Also, when 

gas layers are being removed it is extremely difficult (if not impossible) 
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to distinguish thickness and uniformity of remaining layers. Finally, the 

surface may become oxidized which will give unreliable data as oxygen on 

the surface will give erratic results due to the formation of an electrical 

double layer. Further, heating of the surface will not eliminate this 

problem either as oxygen may not be removed by heat treating alone. 

L. Range of Primary Electrons - The range of the primary electron 

is defined as the distance into the material at which the average energy per 
-dE 

unit path length dXP vanishes. Early investigators assumed 

Whiddington's law (see theory) and fast electrons to measure the range. 

These results were introduced into empirical theories as an attempt to 

approximate experimental data. Recently Young [73, 74] studied the pene­

tration of primary electrons of energy O. 5 ev < Ep < 11 kev in A.I. . His 

results are shown in Fig. 12. These results confirm the Whiddington law 

for Ep > 8.5 kev. However, for Ep < 8.5 kev he found that the range was 

proportional to Ep 1. 3 and thus proved that Whiddington t s law was not valid 

in this range. Similar measurements on Ai 203 films concur with the 

above results. He found that for energies 0.3 kev < E < 7.25 kev the range p 
was given by 

R= 0.0115Ep
1

. 35 
(8) 

Other investigators [75] found that for Ai.. 203' the range was proportional 

to Ep 
1

. 66. Therefore, in the range of interest, we must conclude that 

Whiddington t s law is invalid in that the exponent on the primary energy 

must be replaced by a number on the order 1. 5. 

M. Time Lag of Secondary Emission - The secondary emission 

process as defined earlier consisted of penetration of the surface by a 

primary electron, the production of secondary electrons and the rediffusion 

of these secondary electrons back to the surface. It is only reasonable to 

assume that there is a finite time interval between the initial primary 

electron striking the surface of the material and the emission of the first 

secondary electron. One also expects a time interval between the time 

the first and last secondary, caused by a single primary, is emitted from 
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the surface. Most authorities [2] have found that the upper limit of this 

time lag is of the order of magnitude of 10- 11 sec. with perhaps 10- 12 

or 10- 13 sec. being more realistic. 

N. Secondary Electron Emission at the Melting Point and Curie Point -

There appears to be little or no change occurring in the yield of the Curie 

point. The data available with regard to the melting point indicates that the 

yield increases; however" the results are inconclusive and incomplete. This 

may be one area for further investigation. 

o. Backs cattering of Primary Electrons [2] - The number of back­

scattered electrons per incident primary 11 has been investigated by 

many researchers. Results indicate that for primary energies> 2 kev, 

that 11 varies with the atomic number Z. For energies < 2 kev and 

Z < 30 Sternglass [54] showed that 11 is nearly independent of Z and 

elements with Z> 30, 11 decreases with decreasing primary energy. -
Thus" for E < 2 kev and Z ~ 30, 11 may fall below that of those with p 
Z;S 30. Sternglass then argues that on the basis of inelastic scattering 

theory an element of high Z may have a smaller number of electrons 

available for inelastic scattering than an element of low Z. 

P. Fine Structure of the Velocity Distribution in Metals [2] - In 

addition to the general shape of the curve for the energy distribution" 

Haworth [70] finds secondary maxima for 42Mo 96 at 11, 24" and 26 eVa 

These maxima are thought to be associated with the emission of auger 

electrons. Lander and Hagstrum [39] have observed and investigated 

this phenomenon. 

II. Theoretical Considerations 

A. Semi-Empirical Theory [2] - Several investigators have 

attempted to treat the theory of secondary emission empirically. It 

is found that although these theories give good agreement with experiment 

they all have major deficiencies" particularly in explaining the true 
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mechanism of the secondary electron emission process. This theory also 

cannot predict the magnitude of the yield for a given material and does not 

provide a basis for a discussion of the energy distribut ion of the secondary 

electrons. Hence, for the purposes of this report thes e theories will be 

grouped together as the semi-empirical theory. 

These investigators basically start from the expression for the 

yield 

() = J n (x. Eo) f( x) dx (9) 

where n{x, Eo) is the average number of secondaries produced per 

incident primary in a layer of thickness dx at the depth x in the material. 

f{x) is the probability of escape from the surface. Usually, the following 

as sumptions are made: 

a) That a definite distinction between the production mechanism 

and the emission processes may be made, i. e., that these processes 

are completely independent phenomena. 

b) That only the number of secondaries need be considered and the 

energy distribution of the interanl secondaries may be completely 

ignored. 

c) The escape mechanism is described by an exponential law 

without giving any consideration to the physical process involved. 

d) The number of secondaries is proportional to the energy loss 

per unit path length of the primary electron. 

Then" from the above assumptions 

-ax 
f{x) = Be 

idE 
n{x, Eo) = - -d 

€ x 
1 

where a = absorption coefficient and B and are the proportionally 
€ 

constants. 

(i 0) 
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So (9) may be written 

6 ~ -! J (:) e -ax dx ( 11) 

All the semi-empirical theories involve variations of this relation. 

Power Law [2] - This law assumes that 

dE 
- = -
dx 

which can be integrated to 

A 
n-1 

E 

En (x) = En - Anx 
p 

( 12) 

( 13) 

This expression is the celebrated Whiddington' s law for the case n = 2. 

The range of the particle may be found by setting En(x) = 0 or, 

En 

R = --E.. 
An 

For purposes of integration, substitute 
n 

y = a(R-x) 

Then, 

(
B\ (An\1/n -aRl () = -; ,-I e 0 
€ / \ a J 

where yn = a R, i. e., where x = o. 
m 

Ym 

Since we are interested in the dependence of 6 on Ep, introduce 

En 
n p 

( 14) 

( 15) 

( 16) 

r =aR=a--
An (17) 

so 

6 ~ (:) (!nf/n e _r
n Lr 

e
yn 

~ (:) (~n r I n Gn(r) 

dy ( 18) 

Let r = r be the value of r at the point that the yield is maximum, i. e. , 
m 

6 = 6max. Then, by maximizing (18), it can be easily shown that 
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6max: (:)(~nr/n (nr In_l) 

m 

€ 

1/n 
An G (r ) 

Q! n m 
( 19) 

B 
= 

r r m 
Thus" by division and substitution from (17) that = E 

Ep p(max) 

omax n-1 ( 1 = nr Gn ~ E / E ( \ m m p P maxi 
(20) 

Gn( r E /E ) _ m p p(max 
- Gn(r) 

m 

which eliminates many of the unmeasurable constants. This theory shows 

that for a given value of n all materials demonstrate the same reduced 

yield curves. This says that %max is a universal curve. For the 

particular case used by Bruining and Baroody" n = 2, i. e." they assumed 

Whiddington law, and found r to be 0.92 so 
m 

0/ 0 = 1. 85 G2 (0. 92 E / E ( ») m p pmax 
( 21) 

This curve is plotted in Fig. 13. It is obvious that there is a large dis-

crepancy for values of E / E greater than 1. This would indicate that 
p pmax 

perhaps the value n = 2 was too high. 

Young, doing experiments on the range of electrons in A 12
0

3 
(see experimental results) derived the expression (8) 

R:= 0.0115 E1. 35 
P 

comparing this result with Eq. 14 indicates that perhaps n should be more 

of the order of 1.35. The curve of this assumption is also plotted in Fig. 13. 

It is noted that there is far better agreement with theory using this value of n. 
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Theory Including Primary Scattering [2] - Young [73, 74] predicts 

that primary scattering is important and that the end points of the individual 

primary paths are evenly distributed throughout the target. From this 

assumption he concluded that the energy disSipation is linear, i. e., 

dE 
dx 

E 
= --.e. 

R 

Then~ making this substitution into Eq. 11, 

E R 
Ii =: RP J e -Q x dx 

o 
E 

= B -E. (1 _ ea R) 
€ aR 

A.ssuming the energy-range question 

En 
R = ---..E... 

An 

a En n 
aR= - = z 

An p 

Then, 
Ep [1 _ e -a R] B o = 

€ a En 
An p 

B (~n r'n 1 
= 

€ n-1 
z 

B (~nr'n = gn{z) € 

and, by a similar treatment as before, 

{) 

o 
m 

= 
gn(z E IE ) 

m p p{max) 

1 
n -z 

- e 

where zm = z for which gn{z) reaches a maximum using Young's 

exponent for E of n = 1.35 gives the curve shown in Fig. 13 for 
p 

Young's theory_ 

(22) 

(23) 

(24) 

(25) 

(26) 
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Calculation of the Parameters - The equations used above yield good 

results with experiment; however, one must be able to calculate the 

parameters a ~ B, A and G. 

The parameter A. may be determined immediately from the 

experimental-range -energy relationships (14). The quantity r may be 
m 

determined by maximizing the equation obtained from (18) 

njr n 
Gn(r) = e -r eY dy (27) 

o 

for a given value of no Also, if the range-energy relations are known for 

the primaries, then (17) may be used as 

n 
r = aR 

m m 
1 

Then may be determined. The value 
a 

€ can be determined from the 
B 

relationship 

~ = (E Jr () ) G (r ) 
B pmax m m n m 

( 28) 

which follows from Eqs. (17) and (19). 

Sternglass Theory [2] - Sternglass [54] argues that after reaching a 

given depth in the target, the primaries will appear to diffuse at random. 

This characteristic depth A corresponds to a distance for which the 
m 

total angle of deflection is approximately i relative to the direction of 

the incident primaries. Thus, the distance A is the momentum loss 
m 

mean-free-path and dependent upon E . He then simplifies the theory by 
p 

replacing x in Eq. (11) by this distance A , i. e., he assumes that all 
m 

secondaries are produced at one depth in the material. 

He then includes backscattering into his theory by introducing the 

parameters A, defined as the number of electrons per primary electron 

with energies greater than 50 ev, and k defined as the mean fractional 

energy of these electrons with respect to the primary energy. Then, 



29 

{, = B (1 ... 17k) e - X m a J dE dx 
€ dx 

B -X a = - (i-17k) e m E 
€ P 

(29) 

Next, Sternglass considers the Bethe expression 

dE 4 [2E] - -d = (21TNe/E) ~ Z )n -11. 
x n, R. n,1. n, 

(30) 

where N is the number of atoms per unit volume, Zn, 1.. is the number 

of electrons in the shell n, J. and I : n is the binding energy of the electrons 
n,A. 

in the shell n,l. 

Using the approximation 

.!. jny:::::.. 0.62y-11 2 
y 

(which is valid within 10 percent for 2.4 < Y < 47) 

then 

_ _dE_ = O. 62 ( 21T N e 
4 

) ~ Z [2E ] 1/2 
dx E n,l n,J. In,t 

- 1/2 -.. ,-:;- 4 Zn R.. 
= E ( V 2 O. 62) (2 1T N e ) ~ In, i 1/2 

and, upon integration 

so 

where (3 

aX = (3E 1/2 
m p 

B (3E 1/2 
{, = - (1 - 17k) E e - p 

€ P 

contains the term ~ I Iz /I I I 1/2) 
n,;(. t n,x n,l 

( 31) 

(32) 

( 33) 

(34) 

Thus, Sternglass concludes that the inner atomic shells play an important 

role in secondary emission. 

Now, 

{, = B (1 - 17k) E e - (3 E 1/2 
m € p{max) p(max) 

(35) 

or, E 1/2 = 2 
p(max) (3 (36) 

so finally, 



() 

() 
m 

= :p expJ J1 _(:p )1/2] t 
p{max) I L p{max r 

which also agrees very well with experimental data. 
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(37) 

Baroody Theory - Baroody [52] utilizes the Sommerfield model and 

considers the classical interaction with a free electron gas. Due to the 

small temperature dependence he can then treat the lattice electron 

available for reaction as a completely degenerate Fermi-Dirac gas. 

Considering the primary to move with constant velocity in a straight line, 

to interact with a lattice electron of negligible speed he can write the 

momentum transfer perpendicular to the primary path as 

where 

p = impact parameter 

v = velocity of primary 

= 

t = time measured from instant of closest approach. 

Now, in momentum space for Fermi-Dirac statistics, all states lying 

within a sphere of radius p are filled. p is defined by the Eq. 
o 0 

(38) 

pZ 
o 

E f = 2m (39) 

where E
f 

is the fermi energy. 

Thus, for the conduction electron at P.. the effect of passing a primary 

is a shift of the center of the momentum-space sphere from the origin by 

an amount Ap. The number of secondaries produced per unit volume at 

p having p> I-tP is the volume of the displaced sphere lying outside 
o 

~3 I-tP 0 where 2/ h3 is the density in phase space. Llet G be this number 

then, for I-t > 1, 
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11'P 3 

G(S) = 6h~S [3(~2_1)2 - 8(~3-1)S+ 6(~2+1)S2 - S4] (~-1< S~ /..t + 1) 

= 

where 

811'p 3 
o 

Now, from above 

Then 

where 

4 
811'e 

211' pdp = - ~2 
o 

dS 
S3 

where, since ~ is the momentum distribution" the differential 

gives the internal momentum distribution. 

We can also write 

where 

E = primary energy; 
p 

W = kinetic energy of the secondaries; and 

16011'2(6)1/2 m 3/2 e7 / 2 _ 8 112 -1 
B = 3h3 - 2. 95 x 10 ev cm 

dN 
$ 

( 40) 

( 41) 

( 42) 

( 43) 

(44) 

( 45) 

If ~o is the minimum ~ for escape from metals and W -- 10 2 ev, then 
7 -1 

N(~o) - 10 em Now, considering the case for singly scattered second-

aries let () be the number of secondary electrons leaving the surface 

having undergone a single elastic collision. The probability of this in 

the depth rand r + dr is given by 

-err 
P = e 

dr 
d£ 

( 46) 
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where the inverse mean free path is (1 + A) / 1.. A. Integration over r 

gives the probability per unit solid angle 

p(n) - 1 
411' <T .£ 

(47) 

Let q denote the cosine of the angle with respect to the outward normal 

to the surface. Then" the probability of scattering into dq is 

P(dq) = :i<T ( 48) 

Let N( q, z) be the number of secondaries produced per unit path length 

at depth z with enough energy to escape at angle cos -1 q . So, by also 

including factors for absorption and scattering 

but 

where 

6
1 

= (2icr)-1J
1 fCD N(q,z)e-cr3 / q dzdq 

o -0) 

I.l 2 = (E + q,) / E ( ........ 1. 5 to 2.0) 
o P P 

q, = work function of the material. 

A.ssuming - ~': inversely proportional to W, i. e. " 

( 49) 

(50) 

W 2 = W 2 - az ( 51) 
P 

Then we can write 

1/2 2/ / 
BE J 1JWp a z -<TZ q d d () _ 0 qe zq 

1 - 2 £ <T (W 2 )1/2( 2 2) o 0 -az I.l - q 
o 0 

-1/2 changing variable to let q = w, 

where 

2BE 1/2 
() _ P JOO F(Hw) dw 

1 - i <T 3 / 2 a 1/2 1 (I.l 2 w 4 _ 1)w 4 
o 

(52) 

(53) 



and 

F(x) = 2jX -x 
e 

o 

H = ( W G (j I a) 1/2 
p 
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(54) 

(55) 

and F(H" w) has a maxima at Hw = 0.92 and the remaining factors are 

largest for w = 1 and decrease in value rapidly for larger values of w. 

Thus, for H""" 1" {) 1 can be approximated by 

2BE1/2 00 

61 ~ 31Z 1/Z F(H) J z~ 4 
~ (j a 1 (~o w -1)w 

( 56) 

which is accurate to about one percent. 

Next, Baroody considers the case for multiplying scattered secondaries. 

For 1 < < A" the electrons move to the surface by means of a diffusion 

process. Then" for a primary current of unit density" the production of 

secondary electrons between ~ and ~ + d~ per unit volume per unit 

time is given by 

2BE 1/2 d 
p IJ IJ 

(57) 

If all secondary electrons for which IJ > IJ could leave the surface upon 
o 

arrival, diffusion theory gives the secondary current density as 

is =JwG/aJoo ZBE;/Z e-3/L 
f.I df.l dz 

o ~o (W ~ - azl/2 
(IJG - 1)G 

(58) 

where 

L= (x;(Z 
The actual momentum (IJ po) must exceed lJollJ. Thus the equation above 

must be multiplied by the corresponding fraction of forward solid angle 

(IJ - ~ 0) IIJ . 
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Then" 

(59) 

where F{ x) is defined above. 

To consider the variation of the secondary emission with primary energy', 

Baroody refers to Bruining's equation 
A 1/2 / 

{, = K -;; F [(W ~ ~) 1 2] 

Assuming A < <,L, this gives the same result as the above equations. 

Bruining shows that F{x) = F{x) for x = O. 92 so that max 

Then 

(W ) = 0.92 
o max (

A a )1/2 

{, 

{, 
max 

= 1.85 F 0.92 ~ } 
o max 

This is the familiar expression derived earlier in the semi-empirical 

theory_ 

( 61) 

( 62) 

(63) 

Baroody divides the velocity distribution of the emitted secondaries 

into two parts: 

a) Normal energy distribution - The expression 

1/2 -1 
E (,.." ctnh "" - 1) P 0 0 

(64) 

is used to calculate the fraction of emitted secondaries for which the 

normal energy (! m v z Z) is greater than the energy. This is the fraction 

of the emitted secondaries which would escape if the work function were 

greater by an amount E, namely 

-1 
""1 ctnh ""1 - 1 

-1 
"" ctun "" - 1 o 0 

( 65) 

where 

"" Z = 1 + (q, + E) / E = "" Z + (,.." Z - 1) E / q, 
1 0 0 0 

(66) 
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b) Total energy distribution - from above, the number of electrons 

leaving the metal with kinetic energy greater than € <p is proportional to 

where 

IJ. a = IJ a + (/-l a - 1) € 
1 0 0 

The corresponding fraction of secondaries is given by 

P{ €) = Q(/-l1) / Q(/-lo) 

and 

(67) 

( 68) 

( 69) 

(70) 

By substitution of the proper values, the energy of the greatest number of 

secondaries is approximately 0.7 of the work function. 

To find the angular distribution of the secondaries, consider the 

following: according to the refraction law, an electron incident on the 

inside at an angle {3 with the normal will emerge at an angle e with 

the normal given by 

sine = /-l sin {3 (/-l a - /-l al/2 
(71) 

o 

where the electrons have the momentum /-lP . For given {3, all electrons 
o 

emerging at angles less than (J are those for which 

or 

/-l < 
( a a)1/ 2 

/-l -#.t 
o 

sin 
sin {3 

/-l a sin e 
lIa > ~ 
I"" sin a/-l - sin a(3 

for (3 < e and zero outside the range. 

Assuming that the number of electrons incident in range d{3 is pro­

portional to the corresponding solid angle, the number of electrons 

emerging for angles less than e is proportional to 

(72) 

(73) 
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which is approximately cos e in the range of interest. 

Fig. (13) through (16) correlate the experimental data with the 

results of this theory. 

III. Quantum Mechanical Theories 

39 

Earlier theories have given approaches which adequately predict 

(75) 

the experimental points without regard to the physical processes involved. 

This section will cover the important theories, whereby, to obtain feeling 

for the physical phenomena of secondary emission, the interaction proba­

bilities and potentials are considered. This, of course, may be accomp­

lished only through quantum mechanical formulation. Due to its com­

plexity' most of the mathematical detail of this section has been relegated 

to an appendix. 

A. Woolridge Theory [62] - One of the first to consider secondary 

emission quantum mechanically, Woolridge based his theory on the 

following assumptions: 

1. Bound valence electrons 

2. Incident primary forces are independent of restraint forces. 

3. Lattice electrons are considered distinguishable. 

4. Lattice has simple cubic structures. 

From the last assumption, the unperturbed eigenfunctions may be written 

as Bloch functions of the type: 

where Uk(r) contains the periodicity of the lattice and may be written 

in the form 

Uk(r) = ~ (3 (k) 2ki{m . r) /.R 
m m e 

(76) 

(77) 
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where .f. is the lattice spacing and each component of m is a positive or 

negative unit vector. The unperturbed eigenfunction for a free electron 

is given by 

e 
i(K . R) 

(78) 

Thus, the unperturbed wave function for a system of two particles, one 

free and one bound in a periodic lattice is 

!/J
k 

JJt) = ~ Uk(r) ACK. R) + k . ~J ei(EK+ E k) t 
, 

Assuming the coulomb interaction potential, 

e Z 

V= tit - ¥l 
then, one can write, 

f/lk. K (t) d T dt 

(79) 

(80) 

( 81) 

where dt is the time differential element and dT the space differential 

element dXdYdZdxdydz and I AkfK,lz is the interaction probability. 

By integrating, 

i/fl€t 1 e -
ilK 

~ 
m, n 

x p* (k) p (k) d T 
m n r 

(82) 

where 
...::::. ......:. 1 ..... ~ ~ ........lo. ~ 

S = J K - K' L s =: k - k'l, p = m-n. (83) 

For A
k

, K' to be non zero, it is necessary that , 
~ ~ ~ 
S+s+21Tip/f=0 (84) 

This is the law of cons ervation of momentum. For free electron case, 

p = 0 .. 0, 0 and the expression reduces to the classical conservation of 
mn 

momentum expression. Hence, this will be one of the system constraints, 

i. e., that momentum is conserved in the form of Eq. (84). 
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The probability amplitude; 

invol ves the product of two terms leading to the conditions that 

--' -' 2ye S+ s + = 0 

as before and 

(86) 

or, that energy is conserved as a second restriction on the system, These 

two restrictions define a six-dimensional k', K' space within which the 

state specified by k' and K' (specified as k and K at time t = 0) will 

b C 'd' I-cos € t b 1 1 . f t' . e non-zero. onSI erlng (€t) 2 to e a s ow y varyIng unc lon, 1. e., 

nearly constant, the number of lattice electrons available for collision" i. e., 

the number at time t which have their wave functions in the range d-r k' 

around k', may be determined. This expression is found to be 

where 

4 a 
dN - 2e t 

- 11",[211 2 

~ --..l. ~ 

p+ m = n. F(€ t) = 2( 1 - COS€pt) I (€pt) Z • 
P 

(87) 

(88) 

Since these expressions are derived from a two-particle model it becomes 

necessary to consider the actual case, i. e., to expand it into a many particle 

Illodel. Let Np and N£ (k) be the numbers of primary and lattice electrons 

respectively. Let Pp = Np/n and p J.. (k) = N.£ (k) In. Then, if the primary 

current density is J (Elect. cm -2 sec -1) and if the primary electron 
p 

velocity is v, 
J 

Pp =-E. (89) 
v 

but 
hK (90) v= -
m 

so J m 

Pp 
=-p- (91) 

Kh 



Then, the above expression must be multiplied by Nj = PI nand 

N = J mn /Kh for the total number variation; thus 
p p 

4 
dN = ~ dN = J n t 2me 
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p p 1r113 p,(k) K1 [S1/4 F(€pt)]I~ (3 (k) (3* (kf)[a d'T 
A P M p+m m k' 

(92) 

which must be evaluated for any given p. 

Using the conservation restrictions, a spherical surface of radius Rand 

surface element do- and geometrical arguments (see appendix), Woolridge shows 

that the rate of transition is given by 

dN 
-p = 
dt 

J 
2R 
-p 

p (k) P K r ~ (3 (k) (3 * (k+ 21rp ) j a 
i [(2;p). (2ip + 2k)}m p+ m m £ 

(93) 

2R 
where for large K" K........ 1 and the transition rate is independent of the 

primary energy; a result verified by experimental result. 

Woolridge then shows (by work of P. M. Morse" Phys. Rev. 35" 1311 

(1930» that using only the values p = 0, 0, + 1; P = 0, + 1, 0; P = ±. 1, 0, ° a 

good first approximation of the problem may be found. This approximation is 

where 

(95) 

and 

b (k) = ~ {3 (k) {3* (k) 
P m p+m m 

(96) 

From here, by use of Fermi statistics and the exclusion principle, he shows 

that the average energy absorbed by a lattice electron from a primary electron 

is given by 

(97) 
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and that the production of secondaries falloff rapidly when 

E <E + E 
P 0 max 

(98) 

quoting as an example Silver, for which E - 25 ev and E -- 5 ev he 
o max 

expects the secondary emission to drop off rapidly when the bombarding energy 

(inside the metal) drops below 25 or 30 ev. 

Free Electron Approximation - From the expression for dN, utilizing 
p 

the born approximation rather than the exclusion principle, and assuming 

l'kl < < 1K:[, the expression 

4 4 
(sec a + csc a) 4 cos a dw 

(99) 

may be obtained. This is the Rutherford scattering formula, which should be 

expected from these conditions. 

This equation divides the primary beam into two groups: 

1) Electrons which after collision differ only slightly in direction 

from the primary beam. For purposes of calculation these are assumed 

to remain in the primary beam. 

2) Electrons which are scattered into states of lower energy and 

which move away at angles greater than 45°. 

If one calculates the rate at which electrons are produced in the second group 

with energies and direction which make it possible for them to escape from the 

back side of the target, a rough estimate of secondary emission may be obtained 

from the free electron approximation. This result is given by 

E a 
= 4ib1(k)la -!~l 

l~:r2 -1 

(100) 

where it has been assumed that p and K coincide so that 1 p I = 1 and 
4 

w = E cos a From this relation and from experimental results, a p max 
Woolridge concludes that when electrons of a few hundred electron-volt energy 

travel through metal, they lose energy principally by the production of 
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secondaries corresponding to the expansion for which p =I 0 until their 

energy becomes too small to produce further secondaries (for Ag,......" 25 ev). 

For the remainder of their path, the rate of energy loss is probably determined 

by "free electron" scattering. 

Limitations and Applicability of Results - To compare the theoretical 

transition rate with experimental results, one would like to consider some 

averaging process over all lattice points to eliminate the k dependence. 

However, it is obvious that for a given direction of p there will exist a 

few electrons such that their momentum, direction and magnitude will require 

that 

(~) . (~ + 2k) = 0 (101) 

For such electrons, k apparently lies on the surface of a Brillouin zone. 

It then appears that the transition rate assigns a definite probability of tran­

sition of these electrons into a new state 

--=- ~ 211'p 
K= K+ T (102) 

It is easily shown however, that such a transition is forbidden, i. e., the 

approximation is not valid. If, however, it is assumed that k . p= 0, then 

for p = 1 

dN 
-p = 
dt 

where now it is accurate enough to write 

[ 
( 

211') ,2MEF ~ ~] 1/2 
2K : ( 2.111'p) 

F (K) = 1 - 1 + 2 h
2 

-
P K K2 

( 103) 

( 104) 

Woolridge interprets this equation as follows: A current of primary electrons 

of number J per cm' per sec and of momentum 11K travels through a p 
simple cubic lattice of principal axes (1, 0, 0), (0, 1, 0) and (0, 0, 1). Cor-

responding to each of the six directions p = (1, 0, 0), (-1, 0, 0) ... a group of 

secondary electrons is produced at a rate given by dapl dt. The average 
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energy of a secondary electron is 

E = E + - (105) 1i
a 

(-y21T) a 
av F 2m 

where EF is the mean Fermi energy of the lattice Electrons and ~: (¥f 
is the average energy lost

j 
by a primary electron in producing one secondary 

electron. For a given P, the secondaries all have their directions bunched 
21T 

around the direction of p. If 7» k, the spread of energies will be small. 

Finally, due to the approximations, the equations become invalid for S . + O. 
mIn 

But, this occurs regardless of the condition It· P = 0 for large K. Therefore, 

it is possible to predict that the yield will decrease for high primary energies 

in agreement with experimental results. 

Application of Results - Utilizing (103) and (104) from the previous section 

along with their subsequent interpretation and with the conclusion that primary 

energy is lost principally through secondary electron production and, assuming 

an inhomogeneous surface, Woolridge derives an expression for the reduced yield 

6~ = 1 - exp[t {1 - (W a/
6
(:0 +EF » 1/2} (::) _ 1] (106) 

1. {1 - (W I(E + E ) 1/21(~ - 1) 

(Wa t2 
2 a 0 F J Eo J -v 1 E e dv (107) +-

1 + Eo + EF {, 2 
o .-.E. 00 

E 1 1 - (W / (E + E » 1/2 0 -
2 a 0 F 

where 

fb r a d1 
Wa 

1/2 ~ 4 
- (Eo + EF) 

() 
961T mae 1 

= 
h4 Pi (~~ r 00 " 

(108) 

,,= absorption coefficient of the material 

Thus, if () is known the () vs E curves may be plotted. 
00 p 
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This expression has been derived for a simple cubic lattice structure. 

However, most materials of interest possess either a body centered or a face 

centered cubic structure. This correction may be made by the approximation 

that 

where 

.1 =0.9..e 
o 

(109) 

Comparison of Theory and Experiment - The figures shown are 

examples of the experimental-theory correlation. It is seen that except for 

cesium and barium" the agreement between theory and experiment is within 

50 percent. The curves for copper and silver are excellent probably because 

these metals exhibit a yield which is practically constant over a wide range 

of primary energies. For all other metals correlated" (except for C and 
s 

B ) the theoretical curve is always appreciably below the experimental 
a 

curves. This may be eliminated by considering the yield decreas e at high 

primary energies and primary reflection at low energies. 

The apparent incompatability of experiment and theory in the instances 

of Cs and Ba is too large to be explained by either of the above causes. 

It is felt that perhaps the theory breaks down for these elements. This is 

possibly due to non -negligible Rutherford scattering, or due to the large 

volume of these elements in relation to their small yield. It is also possible 

that these discrepancies arise from ignoring the conduction band interactions. 
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B. Theory of Van Der Ziel and Dekker [41] - These authors have ex­

tended Woolridge's theory in an attempt to resolve some of the deficiencies 

and made an attempt to justify his work as being a portion of a more general 

theory. The main deficiency that they attempt to remove is that of the impos­

sibility of obtaining secondary emission from a free gas due to the conservation 

of momentum. 

They begin by questioning the coulomb interaction potential 

e 2 

U= rn - "FI ( 111) 

in this general theory. They suggest, for example a better approach might be 

to consider the conduction electrons along with the positive ion cores as a 

plasma. For their arguments in this work, however, they do concede to the 

assumption of the coulomb potential being valid and attempt to consolidate the 

theories of Baroody and Woolridge into a basic theory_ 

The Fundamental Process - Considering a free primary electron of wave 
- 1i 2K a iK' it vector K and of energy -2m and wave function e and a lattice electron 

with wave vector k and wave function ifik(r) and considering no interaction, they 

write the wave function of the system as 

U
o 

= ei(Ko R) tPk(r)e - ~ Et ( 112) 

where 
-fi2 

E = E(k) + 2m K2 ( 113) 

~ 

Because of the interaction, transitions are such that the state k is 
_ -.-.It. ~ 

transformed into the state k' and the state K into K'. Thus" the transition 

rate must be computed for the solution to the problem, i. e., the transition 

rate P(K, k -.i:> K', k')dS11 for which the primary electron is scattered into a 

solid angle drl' around K' and for which the lattice electron is scattered 

into the state k' _ By the usual methods, the wave function for this system 

at time t may be expanded into 

~~ i 
U(t) = :Z;:Z; A. (t) ei(K- R)ifik,(r) e - 1'f Elt 

k'K' kK' 
( 114) 



where 

E' = E(k') +1:121 2m 

Then, assuming a coulomb interaction 

A (t)=i 1/2r ei(K-K').R e
2
...::... 1 J

t ~ ~ .-\ 

k'K j rt{ - rl 
R 0 

xe -i(E- E') t/11 dt dr dR 

As before, use Bethe's relationship 

~ .....:. ~ 

where q = K - K' 

. ...::.. --'" 
lq· r 

e 

50 

( 115) 

( 116) 

( 117) 

By substitution, this leads to the transition probability amplitude 

IA (t)IZ = 161T
2
e

4 
2 ~l-COS[(EI-E) t/J~ iII2 (118) 

k',KI qr- (E'-E)Z 

where 

( 119) 

Large values of t in the transition probability lead to processes for which 

energy is conserved. 

By standard procedures it is possible to derive the transition rate as 

4m
2

e
4

K' I J P(K, k-t>K', k') dO' = h4q
4

K 
I 2 dO' (120) 

The basic theories now vary from this expression only in the manner in which 

I is evaluated. 

Assuming free lattice electrons should lead to Baroody's conclusions; 

the nearly free approximation should lead to results similar to Woolridge and 

tightly bound electron to those of Rudberg and Slater (69]. 

Weakly Bound Lattice Electrons - This assumption allows the lattice 

electrons to be described by Block functions of the form 
.-.lI> _ 

i(k· r) 
t/J (r) = e U (r) 

k k 
( 121) 
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where Uk(r) contains the periodicity of the lattice and may be expanded by 

Fourier series as 

( 122) 

where 

( 123) 

Here" 

a) 
n 

21l' 
is a vector of one of the points in the reciprocal lattice. 

b) 
An 
21l' 

represents a vector of integral components if A is one of the 

lattice constants. 

Then, 

c) For a body centered lattice, those coefficients are zero for which 

the sum of the components of :: is odd. 

d) For a face centered cubic lattice only those coefficients do not vanish 

for which all components of :: is odd. 

e) A, lattice electron may be considered completely free if either n = 0 

or the coefficient is zero, i. e., if C (k ') = 1 and C (k) = O. 
000 n 

I:: !:; C (k)Je i(q + k - k' + Ii) . r dr 
n n 

( 124) 

which equals unity if 
-"'" ....... .... ...... 
q + k - k' + n:: 0 ( 125) 

or, 
-::. ~ --"....... -2> 

K + k + n = C = k' + K (126) 
n 

and is negligible otherwise. This represents the conservation of momentum 

for the system. Then, for a particular n, 

Now, 

, I 4 z 4K , 
P (Kk -.i> K I k ') dO 1 = I C (k) Z 1l' 4 ~ dO ' 

n n h q K 

P »1 for q < < 1, however, from the conservation of energy 
n 

E(k) - E(k) 
K+K 

E(k') - E(k) < < 1 
K 

which holds for K» k and K» 1. 

( 127) 

( 128) 
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Also, from the conservation of momentum equation, the transitions for which 

k' rvk + n 

and 
K + k = K' + k' 

are the only ones allowable. 

n -:/ 0 
( 129) 

n = 0 

Transitions Defined by n = 0 - In momentum state, define a polar 

coordinate system with K as the Z-axis and 9 and <p as the polar angles 

defining K I, then 

or, 

and it follows that 

qdq = - K' Kd (cos9) 

dOl = qdq deb 
KK' 

( 130) 

( 131) 

Substituting this into the transition rate expression and integrating gives 

where 

E = E (kf) - E(k) 
kk' 

~ dJ. =:::.lfc (k) t z 
KK' '" h 

( 132) 

and it is noted that P is independent of the energy of the primary particle 
n 

except for the assumption K»k. Since E Z kk' is in the denominator and 

Ie (k) IZ in the numerator, the number of these processes decrease for in­
n 

creasing n. It is also worth noting that the above expression is nearly 

identical with Woolridge's result. 

Since k is usually smaller than Inl ,. the momenta of the secondaries 

are strongly influenced by the direction of n. The magnitude of this influence 

may be estimated by 

E{k}= 1i;~ ( 133) 

then 
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(2'i1:
m

Z
) E

kk
, = (n Z + 2k . n) 

--(112mZ 1 (n Z + 2k n) 
n 

( 134) 

So that for a given Inl and Ik r , the transition probability is maximum when 

k and n are in opposite directions and minimum when nand k are parallel. 

Thus, for a given n all those lattice electrons for which the components of k 

along n has value between k and k + dk will gain energy between E , 
n n n kk 

and E + dE , Denoting this group by N(E
kk

,) dE
kk

" the distribution 
kk' kk 

loss is given by 4 

P n(total) Ekk,dEkk, = vn < ICn(k)1
2 

> ;;r" :k' N(Ekk ,) dEkk, (135) 

where v = the number of vectors n that have the same I nl , < Ie (k)l> = 
n n 

a suitable average to account for the fact that not all electrons in N(Ekk,)dE
kk

_ 

have the same e (k). Then, it is easily shown that the total energy loss of the 
n 

primary path per unit path length is 

_(d~) 
n 

= 

= 

4 
811' e Nm 

4 
411'e N 

E 
o 

v < Ie (k)1 Z> 
n n 

( 136) 

which is independent of the energy of the primary particles. The above equation 

however, is only a rough approximation since by us ing the average value E , 
o 

the higher probability of the smaller energy losses has not been considered. 

Similarly, the production of secondaries may be approximated by 
4 

P (k')=' 411'e N v <Ie (k)IZ> 
n E 2 n n 

o 
( 137) 

Transition Defined by n = 0 - This case corresponds to the Sommerfeld 

model of a metal. Due to the conservation of momentum lattice electrons gain 
~ 

momentum perpendicular to the wave vector K of the primary electron. Thus, 
--=0.. 

if K is perpendicular to the surface, the lattice electrons gain momentum 

parallel to the surface. This led Woolridge to neglect this case. However, 

Baroody has shown that, by scattering, this case may still be included. Thus, 

it is not at all obvious that the case n = 0 should be neglected. 
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Suppose the wave vectors of a lattice electron and a primary electron are 
---. ~ - --"" ...... 

known. Then, the momentum law requires that K + k = C = K' + k'. 
o 

Introducing a polar coordinate system with C as the Z-axis and the angles 
o 

o and c/J define K', then 

k,a = K,a + C a - 2 C K' cosO (138) 
o 0 

and, by differentiation 

-d (cosO) = k'dk' (2 _ cosol~ k'dk' 
K' C K' KK' 

o 

so 

( 139) 

which is valid for K» k. 

Substitution leads to the number of transitions per unit time whereby k 

is scattered into a state between k' and k' + dk' to 

where 

4 a 4k 'dk' J 211" P (k') dk' = _m_e.,........ __ 
o 114 K a 

o 

C (k) = 1 

dO 
( 140) 

o 
For k'» k~ the integral reduces to 211" /k,4. This is equivalent to Baroody's 

assumption k = 0 for the momentum transfer process. For N free electrons, 

where 

811" mae 4N 
P (k')dk' = 

o(tot) h4 K Z 

E = primary energy 
p 

E
k

, = energy loss in anyone transition. 

dk' 
¥ 

( 141) 

The assumption k'»k is usually not allowed because the transition probability 

lk' - k I is most often small. This problem may be circumvented as follows: 

multiply P o(k')dk' by the number of lattice electrons that may be scattered 

into states k' by an increase of momentum 11 Ik' -kl. If a is the angle 



between k and k' and this number is equal to k2.dk sin a d a 121f 2, 

Integration of this expression over a and <I> then yields, 

2. 4 JHm k2.dk P (k')dk' - 8m e k'dk' 
o(tot) - 1T1i4K2 (kfLk2.)2. 

o 
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( 142) 

where k m is the wave number of an electron at the top of the Fermi distri­

bution. Integration over k gives 

(kf)d _ 2me 
4 

k1dk'l k m 1 (kl+km j] ( ) 
P o(tot) k - 1T'"h 2Ep k,2.-kn: - 2k' log kf -k

m
} 143 

Putting k 3 = 31T 2. m and forming an expansion in terms of k Ik' this ex-
m m 

pression reduces to Eq. (141). 

To obtain the distribution of energy losses, introduce Ekk' =1i2.(k' 2. _k2.) 12m 

as variable instead of k' in Eq. (142) and integrate over k, thus 

E _ 1T e~ dEkk, 
p o(tot)( kk,)dEkk, - Ep E\k' Ekk ,> Em 

= 1T e 4N [1 -.11 _(Ekk'f/~J dEkk~ Em > Ekkl 
Ep 1 Em J r. E kk, 

( 144) 

The total energy loss per unit path length is given by 

( 145) 

which may also be written 

_ (dEP) = 1T e 4N 1 (2 EP) 
d Ep og E. 

x n=O 1 

( 146) 

where 

E. = 8 E e - 8/3 = O. 55 E 
1 m m 

( 147) 

The Approximation of Strongly Bound Electrons - For strongly bound 

electrons, the wave functions are nearly identical to the atomic wave functions. 

This means that the wave function of a lattice point defined by the vector 

is appreciable only in the range rt -r.1 of order of the atomic nucleus. 
1 

since q -q ., 
mln 

r. 
1 

Thus, 



56 

iq. r [1 .~ (- ~)] i(q· r.) e = + lq. r -r. e 1 
1 

( 148) 

SOl' using the orthogonality of l/Ik(r) and l/Ik,(r) leads to 

hal ='Jiq· (t-I\)t !/Jk(r) !/Jk'* (r)drl
a = qZ ILkk,!2 ( 149) 

where I L
kk

, I G is the optical transition probability and is zero unless the 

reduced wave vector is the same before and after transition. 

The number of transitions P(kk ') may then be written 

411' me4 qmax 
P(kk ' ) = 1i2Ep I L kk, I G log 

qmin 
( 150) 

where 

q -K-K'==mE /hGK 
min - kk' ( 151) 

and 

q - K 
max 

Thus, 
4 

P(kk') = 41T me riG 1 2Ep 
l1 zEp Lkk , og E

kk
, 

= 27r e 
4 

fkk , log 2Ep 
Ep E kk , E

kk
, 

( 152) 

where 

( 153) 

Then, the distribution of energy losses suffered by the primary may be written 

dE
kk

, 
P(Ekk ,) dEkk , = Const fkk,N(Ekkl) E 

kk' 
( 154) 

where N(Ekk,)dEkk' is the number of transitions giving rise to energy losses 

in the defined range. The energy loss per unit path length may be derived as 

-(:p) = 
4 

21T e 
Ep 

N 
a 

y.:E f 1 2Ep 
:kl kkk' og E 

kk' 

Introducing the atomic number Z through the equation 

Z' log Eli = ~, ~ fkk , log E kk , 

( 155) 

( 156) 
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the above may also be written 

_ (ddxEP] = 211' e 
4 N Z' 10 (2EPj 

Ep agE. 
1 

( 157) 

All of the above approximations should apply to those energy bands for which it 

is most fitting, allowing of course for a certain amount of overlapping. For 

instance, the free electron approximation would be expected to hold reasonably 

well for the valence electrons of the alkali metals whereas for valence electrons 

of other metals a combination of n = 0 and n =I 0 would probably be more suitable. 

The contribution of the innermost electronic shells to the production of secondaries 

and to the energy losses suffered by the primaries is probably best described by 

the tight binding approximation. 

Van Der Ziel's Theory [38] - Dekker and Van Der Ziel [41] unified some 

of the existing theories, however, due to the use of the coulomb interaction 

energy, this unifi.cation has many of the same difficulties of the previous works. 

Some of these difficulties are: 

a} In a single collision between a primary and lattice electron the 

probability P(E
kk

,) dE
kk

, of an energy loss between Ekkt and 

E
kk

, + dE
kk

, becomes infinite for E
kk

, ~ o. 
b) The probability P(k')dk' of a transition of a lattice electron to an 

energy state having an absolute value of the wave vector between k' 

and k' + dk' becomes infinite at the Fermi level. 

c) The rate of energy loss (dEPj due to the lattice electron for a primary 

electron of energy Ep v:!~es as Ep-1 log (~~) for very small El
o

' 

In this work, Van Der Ziel attempts to correct this defic~ency by use of a 

screened coulomb interaction, i. e., by use of 

V(R ) 
_ e 2 -XrR-FI 

, r - [It -rJ e ( 158) 

where X is determined by the properties of the electron gas and is estimated 
8 -1 

X= 10 cm for a metal. 
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It is assumed that the metal is a cube of volume 1 cm3 and that the 

primary beam has the intensity 1 electron per cmz per sec. and that energy 

is conserved in the process, i. e.-

h ZK Z /2m+ E= h ZK,z/2m+ Er. ( 159) 

Then, from Van Der Ziel and Dekker's work, 

P{ K k -I> K r k r) dO' = m Z (K' / K) J Z I I I Z d 0 r 
" 41l' z1f4 ( 160) 

where 

J =J V{R, r) e
iq . {it - I1dR ( 161) 

1 . r J 
.-a. ...... 

I = f/lk{r) f/lk f >',< (r) e q dr 

which has been shown to be valid for any arbitrary interaction V{R, r). Then, 

by substituting V{R, r)" 

and 

41l' e Z 

J-- q2+A Z ( 162) 

( 163) 

For the case A ~ 0, then V{R, r) reduces to the coulomb potential and 

P{Kk~ K'k) goes to Dekker and Van Der Ziel's solution. To evaluate the 

production of secondaries, (I) must be evaluated in terms of weakly and strongly 

bound lattice electrons independently. 

Weakly Bound Lattice Electrons - .For weakly bound lattice electrons, 

tPk{r) is in the form of the Bloch function Uk{r)e
ik

' r which may be expanded 

by Fourier series since Uk{r) contains the periodicity of the lattice to 

l/Jk{r) = :E C (k) e i(n+k} . r 
n n 

and 

l/Jk(r) =:E C (kr) ei{m + k) . r 
m m 

( 164) 

which then yields for I, 

I = :E:E C (k) C >',< (k') 
n m n m 

( 165) 
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-~~~-..lo. ~....l. 

if C = K + k + n - m = K' + k' (momentum law) and zero otherwise; 

- h(n - m) = - i'lp is the momentum absorbed by the lattice. 

For a given '1ip 

P (K k -> K' k') dO' = 12; C (k) C * (k f) 12 p' , m m+p m 

( 166) 

where 

IK - KrJ = [k' - k -pi ( 167) 

Introducing a polar coordinate system with -C = (K+ k+ p) as the 
p 

Z-axis. Then, since C == K if K» lk+ pi 
p 

dO' = k'dk' dcP = k'dk' dcP 
C K' KK' 

( 168) 
p 

so that 
2 4 J211' dA. , 

P (k ')dk' 4m e k'dk' 'fI 12; C (k)C * (k') 12 p 1)04KZ OIt:'-"K+plz+AZ)2 m m+p m 
o 

( 169) 

Now, have two cases for momentum -l1p taken up by the lattice, a) p =I 0, 

and b) P = O. For A = 0, these cases reduce to Woolridge's and Baroody's 

theory res pecti vely . 

Comparing the cases p =I 0 and p = 0, 

12; C (k) C* (k')I« 1 
m m+p m 

(p =I 0) 

(p = 0) ( 170) 

Then p =I 0 has smaller probability than for p = O. For A = 0 this is offset 

by the factor Ik' -k - P 1-4 
has a sharp maximum around k':::, (k + p), but for 

A = 0 this is no longer true. The unimportance of p =I 0 is further strengthened 

by the fact 

(2; C (k) C * (k')r = 0 for k'= k+ P 
m m+p m 

( 171) 

Thus, Woolridge's mechanism is unimportant for the screened potential and 

it is sufficient only to consider the case p = 0 (Baroody's mechanism). 



Assuming k'» kl 

P(k') dk' = 
k'dk' 

and the rate of energy loss between E
kk

, 

4 
11" Ne 

P(Ekk ,) dEkk , = Ep 

and Ekk' + dEkk , 

dEkk, 

where 

N = conduction electron density 

E = h
a 

A a 
o 2m 

h a 
Ka Ep = 

2m 
h a 

Ekk' = E' = 2m k' a = energy loss. 

The rate of energy loss is therefore 

dEp lEP 
- dx = Ekk' P(Ekk ,) dEkk , 

o 

_ 11" N e 
4 

[ ( Ep + Eo) 
- E log E 

p 0 

which, for Ep» E may be written 
o 

4 
1rNe 

Ep 
log~ 

€E 
o 

where € = base of natural logarithms. 

Ep ] 
Ep + Eo 
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( 172) 

occurs as 

( 173) 

( 174) 

( 175) 

( 176) 

The number of states in k space from which an electron may be 

scattered into a new state k' by an increase in momentum h / (k' - k') is 

2·211" kadk sin e d e/811" 3 

where e is the angle between k and k'. Thenl the number of transitions per 

unit time may be written 

8mae 4k 'dk'kadk 
( 177) 

integrating this with respect to k between k = 0 and k = k corresponding 
m 

to the wave vector magnitude at the Fermi level gives 
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Considering the log term as being a function of (k 2 + k'z+ A2) 
m 

and making 

a series expansion gives 

where 

Substituting 

4 
P(E ') dE':::- 11' Ne 

Ep 
dE' 

( 179) 

E = -1l'2 (k' 2 _k2) as the new variable of integration .. 
kk' 2m 

E = (112 j' A 2 as a constant .. 
o 2m 

one can then integrate to get 

4 
P(E )dE = 11' Ne dEkk ' 

kk' kk' Ep 

for E > E ' and 
kk ' - m 

3 
4E E 

o m 
(
Ekk+E ) (2(E E )1/2) 

1 - 2(E E )1/2 tan E . 0 + ~ 
o m kk' 0 

( 181) 
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Thus, P(Ekkr)~ 0 if E
kk

, -;::... ° so that the previous infinity at this 

value has been eliminated, Further, this relationship shows the maximum 

value for Ekk , <" Em observed by Rudberg and Slater who could only theoret­

ically treat the free electrons as bound. 

For the case A = 0, 

as before. 

4 
'If Ne 

Ep 
( 182) 

Strongly Bound Electrons - A s before, W
k 

('If) in this case strongly 

resembles the atomic wave function whereby the approximation 

i(k. r) ( 1 ',~ (..... ~) Hi· r,] e = + lq' r - r. e 1 
1 

and, by making use of the orthogonali.ty of wk(r) and wk,(r) leads to 

r 112 = q 2 if ~ q. (~- 1\) "'k(r) "'k~ (r)drI
2 = I L kk .1 2

q2 

whereby substitution yields 
4mze~r/K 

P(K, k~ K', k') = 1i4 

choosing K as the Z-axis of a Polar coordinate system 

dO =:::. qdq d cP 

dO' 

KK' E
kk

, 
and integrating with limits cP = ° to cP = 2'1f and q , = m ~ zK to mln '11 

( 183) 

( 18"4) 

( 185) 

( 186) 

( 187) 

For Ep» Eo and Er~k» 4E
o

Ep, 

for the ordinary coulomb potential 

this expression reduces to that found 

4 
P(k k') = 4'1f me , ..fl.z Ep L Z I 2Ep 

kk ' og--E kk , 

which occurs at the deeper-lying bound electrons. If" however, 

E~k' « 4E
o

Ep, this reduces to 

( 188) 

Ep»E and 
o 



4 
P(k k') = 411' me , 1t2Ep 

2 1 ~ 
L kk , 2 log € E 

o 
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( 189) 

Thus, the screened potential does not vary the theory for tightly bound lattice 

electrons significantly. 

III. Theories of Miscellaneous Phenomena 

A. The Cascade Theory - This theory concerns the secondary electrons 

introduced by previously formed secondaries diffusing back toward the surface 

of the material. The interaction between these electrons was shown earlier 

to be of the form of a screened coulomb potential and since the yield is essentially 

temperature independent, the electron-phonon interactions are negligible. The 

basic equation describing this process is 

where 

aN( n'ti") AN( n E) vN(r,n,E,t) at r, H,-Lof, t + V· ~ r, H, ,t = - A (E) 

S( nEt) JdEI r v'N(r, n ' , E', t) F(nf EI nEd nt) + r,H, , + j A{E') iH, ,H, , ,~ti 

N{r, n, E, t) = number of electrons as a function of r 

n = unit vector in direction of velocity v 

E = Energy 

t = time 

A(E) = mean free path of electron of energy E. 

( 190) 

F{n', EI, n, E) = probability for an electron initially in the state n l
, 

E' is found after scattpring in the state n, E. 

S(r" n, E" t) = Source function = density of internal secondaries produced 

by the bombarding primaries. 

Neglecting the exclusion principle" the normalization is obtained by 

( 191) 
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where the 2 represents the fact that for each electron in the cascade there are 

two after the scattering. For the case of normal incidence of primaries and 
aN 

for at = 0, and transforming to a polar coordinate system the above may 

be greatly simplified. Expanding N, F and S into spherical harmonics, thus" 

N(z, cos9, E) - ~ ! 2~; 1 ) N,R (z, E) ~ (cos9) 

S(z, cos9, E) =!:~ (2:: 1 ) N,( (z, E) p~ (cos9) (192) 
F(fl', E, fl, E) - F{coscP, E, EI) = !:£ (2!: 1h (EI, E) If (cos9) 

where 4> = angle between n I and n. 
Introducing 

v~ 
ifJ1 = A(E) 

( 193) 

( 194) 

then" the following set of simultaneous integra-differential equations are 

obtained; _ ~(--L-) a~ -1 /1+ l' a~ + 1] 
l/I1 - A (E) I~ 2.1+ 1 (}z + 21+ 11 (}z 

rOO 

+ 1m dEIF,e (EI, E) l/If.. (z, EI) + S/z, E) ( 195) 

the solution of which is beyond the scope of this report. 

B. Relation to Photoeffect - Since the production of secondary electrons 

and photoelectrons are both caused by lattice excitations there could be a 

similarity between them. Let the material be described by the dielectric 

constant € = (n + ik) 2. Then the intensity of a monochromatic wave in this 

material is 
-2 wk(w) x 

I(x" w) = I(w)e e ( 196) 

For the case x« c ) 
2wk(w) , 

T(x"w) = I(w) (1 - 2 wk(w) x) 
c 

( 197) 

considering a disk of thickness d < < 2w~(w)' the energy 
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( 198) 

is absorbed for each unit surface area per sec. If this wave is composed of 

quanta tlw, the number of photo electrons SL(w) excited by I(w) per cm 2 

per sec in the disk is given by 

S (w) = 2d k(w) I(w) = 2d n(w) k(w) (€(w) r a I(w) 
L nc i'ic 1€(w)1 2 n(w) 

( 199) 

If jL (E, 9, w) = current density of external photo electrons in the state (E, 9). 

I(w) = incident radiation energy, then 

2d f€(w)1 2 

jL (E, 9, w) = hL (E, 9, w) SL (w) = .-fie fL (E, 9, w) n(w) I(w) (200) 

where 

( 
_ n(w)k(w) 

fL E, 9, w) - hL (E, 9, w) I €(w) 12 (201) 

which may be determined if the optical constants n(w) and k(w) are known. 

From Fermi theory, 

dEp 4e 02 JOO n(w)k(W) 
- dx =?"" w I€(w) I z x Ko (X)K1 (x)dw 

P 0 

(202) 

where r 
min 

x= w 
v 

P 

-8 
v ......, 10 cm 

min 

K (x), K
1
(x) = modified Bessel functions 

o 
and is valid for (32 €< < 1 

If above is the energy losses of the electron caused by emission, then the 

number of quanta 1'tw absorbed per unit path length in dw is 

which for any length d, one electron will emit 

4e 2 
o 

fi-;vr 
p 

n(w)k(w) 
xK (x) K (x)dw 

J€(wH z 0 1 

quanta -fiW per cm 2 per sec. 

(203) 

(204) 
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Assuming 

(205) 

Then 
4e 2 d 00 

jS(E, 9) = i'i 11" ~ 2 J fL (E,9,w) x Ko(X) Kl (x)dx (206) 
P 0 

whereby if fL (E, 8, w) is known the external secondary current density may be 

determined. 

C. Angular Distribution of Secondaries - Faris [7S] has approached this 

problem from diffusion theory_ His argument starts from the expression for 

the density of excited electrons 

where 

L =-y..i.~7' = diffusion length 

T = mean lifetime of the excited electrons 

v = mean velocity of excited electrons 

.i = total mean free path of the excited electrons. 

He next assumes 

q(zt) = q (const); z'< z 
max 

= 0 otherwise 

and shows for z < z 
max 

(20S) 

(z) = 7 2 _[2e-Z/L_(eZ/L_e-Z/L) e-Zmax/ L] (209) 

and for z < z 
max 

() Tq -z/L( zmax/ L -zmax/L 2) z=- e e e -
2 

(210) 

He then states the probability that an electron will make its last collision at 

depth z and will arrive at the surface in the solid angle dO at the angle 9 

to the normal at 
-z sec 91J. 

n(z, 8) - dz dO = Kp(z)e dz dO (211 ) 

So by the integration, 
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rOO I 
(I"(6)ctn = J (z) e -z sec J dz dO 

o 

= orq (ef3 + e-f3 -2) (co e -z/L e -z sec/L dz 
2 'Jf3L 

2 -f3 
= "rq L (1 - e ) cos Z 6 (212) 

where L» ~ and z = f3 L. 
max 

Assuming the medium extends to infinity in all directions, and maintaining the 

same source distribution, Faris approaches this prob lem in a different manner. 

He then states that for this case 
z 

p(z) = ...!- I max[qe -Iz - Z'l/L] dz' 
2L 0 

which, upon integrating 

p(z) = ori (2 - e -z/L _ez / L - Zmax/ L ) 

(213) 

(z < z ) 
max 

(z > z ) 
max 

(214) 

and proceeds to show that the angular distribution of the secondaries as they 

arri ve at the surface is 

(1"(6) = At orq t 2(t_e-f3 ) [cos 2 6+ ~ cos 6, 

where, by using the relationship 

k sin 6 = k' sin 6 

The distribution becomes 

(1"(6)= K[-Vt - ~I 2sin26 1 + ~] (~T cos6 

(215) 

(216) 

(217) 

where k and k' are the propogation vectors inside and outside the surface 

( k')Z respectively. When k approaches unity, the distribution inside and out-

side the surface is identical. 
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SUMMARY 

To briefly summarize, the early theories were strictly empirical to 

attempt to explain experimental results. These theories are probably still 

sufficient to predict within experimental error results obtained from measure­

ments taken of secondary emission. The difficulties arise from these theories 

when one attempts to explain the physical processes involved. 

In this vein, Woolridge and others have developed and modified a 

quantum mechanical theory which appears at best only to approximate experi­

mental results under the most rigid conditions and most general assumptions. 

However, these theories probably can not be greatly improved until more is 

known about the general solution to the many-body problem. 

To summarize the starting points of these theories and some of the 

properties of them, a translation by D. Winder from the Encyclopedia of 

Physics ~ p. 284-85 (1956) is included. 
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APPENDIX A 

Mathematical Treatment of Quantum Theory 

A,. Woolridge Theory [ 6 2] 

i. General Treatment - Assume Bloch functions for the lattice unper­

turbed eigenfunctions of the form 

Uk(r)ei(k. r) (A-i) 

for which 
(m. r) 

U (r) = ~ f3 (k) e 2 11" i -r 
k m m (A-2) 

where 

1. = lattice spacing 
...::.. 
m = vector for which each component is a positive or negative unit vector" 

and" from normalization" 
r 

~J U: Uk d'T = 1 (A,-3) 

Assuming the free electron unperturbed eigenfunction" the unperturbed time 

independent wave function for a system of two particles, one free and one 

bound is given by .... 
• /, (~) = ! U (....::a..) i [(K' R) + (k . ~) J 
'Pk, k r n k r e (A-4) 

and the time dependent wave function 

tP
k

, k( t) = tP
k

, k(?) e -! (Ek + E~t (A-5) 

where if;* if; d 'T R 'T r dt is the probability of finding a primary electron (free 

electron) in the volume element of d'T R = dXdY dZ at a position R and a 

lattice electron in the volume element d'T = dxdydz at the position r at a 
r 

given time t. n is the normalization constant. If one has an interaction 

potential U" then J if;* U if; d'T d'T dt is the probability of interaction of the r r 
two particles. Defining Akt , K' as this interaction probability and assuming 

the coulomb potential 

U= (A-6) 
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Then, 

Ak " K' ~Jr{i k, K( t) U r{ik, K(t) dT dt 

2J [..::::.. ....::::.. ~..JIo. i [ [....:::... ....:::... ..:::. "::::"'J 
= ~ uk*(r)e- i K.R+k.r e - l1 E k+EKJt_1_ U (I:)eiK.R+kor 

.)W 1-- --I k' R-r 

i 
en Et d'T dt 

(A-7) 

where 

But Bethe [72] has shown 

.-. .-. ..;:::... 

J 
ei(K' -K) 0 R 

lIt - 1'1 d'TR = 

...::::.. ~-i(K' - K} . r 
41T e (A.-g) 

Hence 

(A -1 0) 

But 

U ~ (I) Uk,(r) = ~ i3 ~ (k) i3
m

(k)e
2

'1I'i (min) . r 

= ~ {3 (k) {3 (k) e 21T i R. ? 
n,m n m 1. 

(A-11) 

h ~ -.::0. --were p = m - n 

(A.-12) 
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and then, the amplitude of the wave is given by 

~ (A-13) 
If n is large, the range of K' will be such that (1- cos Et) I (Et) 2 may be con-

~ ~ ~...:::......::::. 

sidered constant. If K' = K' for a given k, K and k' allowed by the conser­
p 

vation of momentum, then by integration 

IAk' K,I2 
, P 

1 
= -z n (A-14) 

where 

F( E t) = 2( 1 - cos E e t) 
p (E t) 2 

P 

S
. ..::::........::a.-.lo. 
Ince p = m - n, one can rewrite the above as 

1Ak' K' 12 = ~2 16~:e4 ~I~ (3;+ m(k) {3m{k)IZ t 2 F(c:pt) 
, p p 

(A-15) 

Summing over all p gives 

2 4 2 l J I61T e t ~ 1 F(E t)f ~ {3 * (k)f3 (k)J 2 
-1\2 p S'7f p m p+m m 

p 

(A-16) 

Converting this to an integral will give the number of lattice electrons which 

at time t have their wave ves-tors in range dT k' around k'. Thus, 

n 1 I61T ze 4t2l1 -=--1 J 
dN =811"3 02 11:1 .~ F(c:pt) 1 ~ (3~m(k) 2 d'Tk , (A-17) 

for two particles, or 

dN = J 0 t Z 2:;/ p (k) K1 [S'7f1 
F(E t)1 ~ f3 ~ (k) t.3 (k) I zJ d Tkl 

P Pip p m p+m I m 

(A.-18) 



For N particles where 

p = ~ 
R n 

J = KhNp 
P mn 

which reduces the problem to evaluating dN for a given p. 
p 

From conservation of momentum equation 
~ ~ 2iP :=;+ s + = 0 

and cons ervation of energy 

k,a+K,a= ka+K a 

~ -:::r.. 
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we know the constraining relationships on the final states k' and Kt. From 

Fig. A. 1 and the requirement that 
11' 

a< '2 I it can be shown 

k' I .,'--_----I. ______ ~- ________ J 

I. d p ... 1 
~ ..:::... -::. 211'~ 

Fig. A,. 1. Vector diagram of conservation of momentum. Principle c = k+K+ T 
that 

where 

-2 = It + k + 2iP 
n 2= 2(c 2 - k a _K a) 

d = C cos a 

If a sphere of radius 

(A-19) 

R: [~(C2 -n2)] 1/2 (A-20) 

is constructed with its center at the midpoint of C, then it is easily shown 

that P must lie on the surface of the sphere. 
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Now, to evaluate N, the above indicates splitting the problem into spherical 
p 

coordinates by the substitution 

dT
k

, = dRd<T (A-21) 

where d<T = spherical surface element. 

A.ssume that t is large so F(€pt) is much more varying than any other 

term. Then, all other terms may be considered constant and therefore one 

need only to eValuatJe 
F ( t) dR =J F(€t) d (€t) 

€ d( €t) 

Fig. A. 2. Vector diagram of conservation of energy principle. 

From Fig. A. 2. 

Q 

Fig. A. 3. Vector diagram showing the determination of S . 
mIn 

(A-22) 

(A-23) 
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Or, from Fig. A.3. 

(A-24) 

Therefore 

d(€t) = 2ft t R 
dR m 

(A-25) 

so 

(A-26) 

where 

dx = 21r (A-27) 

Hence, 

F(€t) dR = 1 ?rm 1 -
t 1i R 

(A-28) 

and 
a 4 

dN = J nt 2m e 
Pi (k) 

1 1 [ 1 -
K~ P P 114 R 

I ~ {3 ( k) {3 (k) 121 do- ( A - 29) 
m p+m J 

->0 ->. 2:fe In Fig. A. 3. , C is resolved into the components K and k + . Defining 

Then 

but 

Therefore 

A = ~ C - (k + 2~P) 

1 ~-l.2~ ~ 2....!l. 
= 2 (K + k + ; p) - (k + T ) (A-30) 

A 2 = ~ [K2 _ 2It< (k+ 2iP) + (k+ 21jP )2] (A-31) 

R 2 = ~ [K2 -2K < (k+ 21'» + k2 - (2;f)2 - 2k < 2:P'] (A-32) 

(A-33) 

Now" S is the length of the vector joining Q to a point P on the sphere 

so a possible minimum value of S is given by 

S . = A - R (A - 34) 
min 2?rp ~ ..!io. ....:lI.. 

If the primary electrons have high energy so that < < K and k < < K, 
1 P 

then R ........ - K so that 
2 



or 

I 21t' P I Since T «H, 

[~'I~ + ikll 
A---R+! i R{ 'JR 

1 S . ~­
mIn 4 

0/. [71+ 2k] R 

S . «H. 
mIn 

HZ 
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(A-35) 

(A-36) 

Thus, 
1 
S4 is only important over a small portion of the sphere and the 

Fourier components in the expression for dN may be treated as constants. 

As a consequence, one must evaluateJ ~. ~hiS is easily accomplished over 

the surface of the sphere as 

= ... ....:.... 2 

[~. ~+ 2k] 
(A-37) 

Thus, upon substitution 

dNp 161t' m 2 e 
4 

= n J:t 
dt ii 

dNp dNp 
where -t - has been replaced by dt to indicate the time rate of transitions. 

2H dNp. . d d f h . For large K, K -.. 1 and dt IS In epen ent 0 t e prImary energy. 
-.:::... -=::.. 

For usually observed secondaries, k' and K have approximately 
~ ~ 21Tp -- 1 1.....:!o..1 r,. 2iPI opposite directions. Since k'- K + T ; H > 2 K for K > Ik + . 

~ ... ...:. ...::... 
Because k· P is inhomogeneous, one may choose k = O. Therefore, the 

expression for A is valid as long as (2;p(/ K2 < < 1. This means that ~4 
has a large value over only a small portion of the sphere and is a good approxi­

mation allowing the Fourier components in the integration to be considered 

constant and allows the approximation 

k' = k + 2IP (A-39) 

I.....:!o.. 2iPI ~ A more detailed investigation shows that even when k + ........ K and when 
...::... ...:a. 1 
k' and K do not have opposite directions the same assumptions on 8'4 
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and the Fourier components hold. In this range, the factor [~] p becomes 

important. Since only primary energies very much greater than the Fermi 

energy will be considered, ~ may be neglected. Hence, one may write 

.....:.... ....:=. 2R [ (k + 2?') 2K. (k + 211" e )] 1/2 

so 

where 

F (k K) = [-] = 1 - - ~ (A -40) p' K P K~ K~ . 

dNp = n 
dt 

...... ...:... 
b (k) = !; {3 * (k) (3 (k) 

P m p-m m 

F (k: K) (A-41) 
p 

B. Free Electron Approximation - To calculate the production rate of 

electrons which are scattered into states of lower energy and which move away 

at 45 0.. for normal incidence, one must merely integrate the Rutherford scattering 

formula, thus 

J a = a max e 2 4 4 
m 2v4 (sec a + csc a) 4 cos a dw 

1t 
a=4" 

(A-42) 

where a = angle at which the secondary beam is normal to the target 
max 

surface. 

0' = pi = Q 

Fig. A. 4. Special case of momentum principle for which p = o. 
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From Fig. A,. 4. it is clear that the energy of an electron scattered into an 

angle a is E cos Z a. Hence, 
p 

(E cos z a ) cosza = W 
P max max a 

(A-43) 

or 

COS Z a = (Wa) 1/2 
max E p 

(A-44) 

Therefore, the rate of production of electrons which can escape from the 

back of the target is given by 
a = a 

1 i 1 J 4 J max 4 4 
J Ot (dNo)tot = ~ 2 7r (sec a + csc a) cos a dw 

Pi p pa=4 

(A-45) 

Z 4 
where the approximation W < < E has been made and by letting E Z = m

4
v . 

a p p 
From the expression for the transition probability and assuming p and k 

to coincide in direction along one of the axes of the lattice, the number of for-

ward electrons due to the "bound" term for which I"PI = 

1 1 167r mZe 4 Ib l(k)lz 
p/ p m (N 1) ~ -tl. 4 ( :;) 4 

h4 
where E »0. If -z = 

p m 

or, since 

i 

1 
Ot N -1 

47r e 4/ b1 (k)1 Z 

E 2 (E IE ) 2 
pop 

i is given by 

(A-46) 

(A-47) 

(A-48) 

(A-49) 



andl by division 

C. Application of Results - For p = 11 

4 lb 12 
1 dNp 161Tm 2 e -L 
n dt = h 

4 '1 J P I ¥l 4 

where 

~ 

F (K) 
p 
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(A-50) 

(A-51) 

Fp(K) = [K2 -!~t + 2m':l - 2K· !2;fly/2 ~2 (A-52) 
and Ib 12 = Ib (k) 12 averaged over all lattice electrons. 

p p 
Assuming an inhomogeneous surfacel the fraction of all the cyrstallites 

which have one of their six directions for Ipl = 1 within the solid angle dw 

making an angle 8 with the normal to the target surface is 6:. Thus, a 

volume element dn averaged over a time dt emits a number of secondaries 

dN at directions included within the solid angle dw at an angle 8 to the 

normal where 

(A-53) 

where, for normal incidence, 

[ 
( 

21T) 2 2mEF 41T ] 1/2 
F 1 (K, 8) = 1 - Kt + (fiK) 2 + KI cos (A-54) 

If dO lies directly on the surface of the target, then the emitted 

secondaries are those for which their directions make angles of less than 

8 with the normal, where 
max 

(E + E
F

) cos 2 8 = W 
o max a 

(A-55) 

and 

W a = E F (max) + q, (work function) 

= normal component of energy which the electron must 

have to escape. 



Also, 

The fraction of the secondaries which can escape is 

f= 
1

8 max dw 

8 = 0 F 1 (K, 8) 4; 

which may be evaluated. The result may be expanded as 

where it can be easily shown that 

I'IT F 1 {K, e}:!,; = 1 + 0 (2~)2 
o 

Assuming the exponential absorption law 

-'(x 
g(x) = f(x) e 

Then the expression for the yield is 

biZ J1 (E p) -'(x 

P.l (¥t 0 f{x}e dx 
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(A-57) 

(A-58) 

(A -59) 

(A-60) 

(A-6i) 

(A-62) 

where l(Ep) is the distance the primary electrons travel into the material 

before they lose too much energy to produce secondary electrons. 

so 

When the bombarding energy is high, 

f{x} = ~ j 1 - (E~~Fr2 f 

() = 
00 

1 
'( 

(A-63) 

~ 11 - {E~~~ 1/2 f {A-64} 



or" by dividing, 

(, 
(X) 

= 

i(~) 
y f f(x)e -yx dx 

o 

1 1 Wa '2 1 - (E +E ) 1/2 
o F 

- I Y j(E..)r 1 l' Waf J1(Ep) 211' -yx 
- ) 1 - e -P + '2 1 + (E + E ) 1/2 lK(x) e dx 

j 0 F 0 
t 
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(A-65) 

The number of secondaries produced by a primary electron traveling a 

distance dx into the target is given by 

The energy lost by the primary is thus 

-dE = E dn 
o 

= E 
o 

Ib fa 
1 dx 

(¥14 

when the primary has penetrated a depth 

E -E 
n (E ) _ p 0 

~ p - - (:1 

(A-66) 

(A-67) 

(A-68) 

its energy is only 

can be shown that 

E and it can produce no more secondaries, then, it 
o 

where 

Y 6 
(X) 

E(x) = E p E 
P" x 0 

y 6 
(X) 

(A-69) 

(A-70) 



or 

E{x) 
E 

o 

E 
=~ 

E 
o 

Then, by combining equations 

o 

where 

t2~(X) = (~(X)) 1/2 
o 

x'l (, 
00 

82 

(A-71) 

(A-72) 
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APPENDIX B 

As a separate entity, the specific treatment of the work function cP 

of cesium on tungsten is treated here. The most complete article found is thflt 

of Chapter XII of NASA Technical Translation NASA TT F-73 which is included 

here in its entirety. 

CESIUM ON TUNGSTEN 

In 1923, Langmuir and Kingdon (Ref. 39), observed a large emission 

of thermal electrons from tungsten in cesium vapor of low density, even at 

relatively low temperatures of the tungsten. Thus, for T = 690° K(i. e., 

417°C, at which temperature the filament is still dark) and for a pressure of 

the cesium vapor corresponding to a temperature t = 30°C, the density of 

the current was equal to j = 10-4 ~, 
em 

19i 

8 opt 

wcs 

1 
T 

8 1 

1 

8 '= 1 T 

Fig. 51 

a) 

b) 

while for tungsten at this temperature j-1 0 -26 ~. If this temperature is 
cm 

raised or lowered, the cesium vapor pressure remaining constant, the emission 

current decreases. The emission increases even more sharply, for oxidized 

tungsten in cesium vapor. For instance, for t = 30°C and T = 10000K, the 
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a 
emission current from oxidized tungsten is j = O. 35 cm z, while the current 

-24 a 
from pure tungsten is 10 cm z, and that from oxidized tungsten not sur-

rounded by cesium vapor is still lower. 

The characteristic temperature curves of the thermionic emission for these 

cases are of the form of thos e in Fig. 31 a . Their behaviour is explained as 

follows. For every temperature of the filament and every pressure of the 

cesium vapor, the coverage of the cathode with cesium atoms reaches a value 

which represents an equilibrium between the number of atoms absorbed on the 

surface of the filament from the cesium atmosphere and the number of atoms 

evaporated in the same time. The number of cesium atoms absorbed on the 

tungsten surface per sec per cm 2 is proportional to the number of atoms falling 

on the surface from the vapor. From the kinetic theory of gases, this number is 

known to be: 

1 PCs 

4 nv =~==========~ -V 2lT kmCs T Cs 

where PCs is the pressure and T Cs the temperature of the cesium vapor, 

and mCs the mass of the cesium atom. The number of cesium atoms evapor­

ated per sec per cm 2 is proportional to the coverage 8' Cs of the tungsten by 

cesium and to the probability of evaporation. The probability increases with 
. - A/kT 

the temperature of the fIlament as e , where A is the heat of evapor-

ation of cesium from a tungsten surface. Thus, the condition for equilibrium 

is of the form: 

PCs a _.-.-

-JTCs 

A 
= b 8' e - kT 

Cs 

The probability of evaporation increases with the temperature of the cathode. 

As a result the equilibrium covering of the filament will decrease, the pressure 

of the cesium vapor remaining constant. At low temperatures, the cathode is 

covered with a relatively thick layer of cesium, (~~ Cs = 1.87 ev.), but the 

emission from this cathode will be very weak because of the low temperature. 

As the temperature increases, the surplus cesium is evaporated, and a 
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monomolecular or less than monomolecular layer is established as the optimal 

covering. At the same time, the work function falls from cp Cs to tP min 

(Fig. 5ib). The decrease of the work function with the increase of the temper­

ature leads to a rapid increase of the electron current. Further increases in 

the temperature of the tungsten and the resulting decreases in (:J' Cs increase 

the work function, which approaches the work function of pure tungsten as 

(:JI CS ~ O. At first, the temperatures at which this begins to increase have 

a stronger influence on the emission than the slight increase in <p near the 

minimum. The current still continues to increase, although at a slower rate 

than at lower temperatures. Soon however, the increase in the work function 

caused by the decreasing covering has a stronger effect, and the current begins 

to fall, despite the further increase in T. Finally, for BCS ~ 0, the work 

function is almost constant and nearly equal to the work function for pure tungsten 

so that the emission current again begins to grow according to equation (6. 8) 

for pure tungsten. The optimum coverage and maximum current of oxidized 

tungsten occur at a higher cathode temperature. The reason for this is that 

the work of evaporation of cesium atoms from oxidized tungsten is larger 

than from pure tungsten. Cons equently, since the number of atoms falling on 

the filament from the vapor is unchanged, a given equilibrium covering for 

this number of atoms is established only at a higher temperature, when the 

probability of evaporation attains the value it had for pure tungsten at a lower 

temperature (See the dotted line in Fig. 5ia.) 

1910i 

A 
-2 

-3 

-4 

-5 

-6 

O. 7 0. 8 a flO 1.1 1.2 

Fig. 52 

B 

1.7 
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If the density of the cesium vapor is raised, increasing the stream of 

atoms falling on the surface of the cathode, the tungsten temperature at which a 

given covering of cesium atoms is established will be higher. As a result, the 

optimal coverage and the maximum in the emission curve shift towards higher 

filament temperatures. Simultaneously, the magnitude of the maximum current 

grows, corresponding to the increase of the cathode temperature. For a given 

filament temperature T, as p Cs' and consequently T Cs' grow, the equilibrium 

coverage 9
C 

increases. For 9< 9 t' the increase of the coverage results s op 
in the decrease of the work function. Therefore, the curve i(T) will extend 

increases of the higher for larger T Cs than for smaller T Cs . For 9 > 9 t op 
coverage are accompanied by increases of the work functions. Therefore, the 

maximum height of the curve i(T) decreases with increasing TCs for such 

coverings. In Fig. 52, the family of curves 19 i = f( ~) is described for a 

number of different cesium vapor pressures determined by different T Cs' 

19i 

1 
T 

We examine the methods' of determining the thermionic constants of 

tungsten covered with cesium. Let a filament be rapidly cooled from a 

given, sufficiently high temperature T A (Fig. 53) to a temperature T B' 

corresponding to an equilibrium covering 9 f > 9 t' The covering will in-
op 

crease, approaching the equilibrium 9 1 corresponding T = T B' As a result 

of absorption of cesium, the work function will decrease with time, reach a 

minimum for 9 = 9 t' and then increase again (Ref. 35). Simultaneously, 
op 
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the electron current will grow with time, reaching a maximum (the point Bf) 

when the coverage is at its optimum value, and then decreases to a constant 

value (the point B) corresponding to an equilibrium covering 9' > 9 t. If 
op 

after this, the temperature is quickly raised to T C' for which the equilibrium 

covering 9' < 9 t cesium will begin to evaporate, the current will grow with 
op 

time, reaching a maximum value (the point C') when 9' = 9 t and then decreases 
op 

to a constant equilibrium value (the point C). The points C' and B I represent 

the emission at temperatures T C and TB for the identical covering 9 = 9 opt' 

By drawing Richardson's line through them, we can find ~ , and A t' . mln op 
It is evident that this line must touch the equilibrium characteristic temperature 

curve 1 g ~2 = f (~) at some point, for in the interval T C - T B' there is a 

point on the characteristic curve corresponding to the emission for the optimum 

covering, which is attained at some intermediate temperature. 

The values of ti> , and A t can be determined in another way, by , mln op 
drawing a common tangent to the family of characteristic temperature curves 

of the electron current for different cesium vapor pressures (Ref. 41). Indeed, 

on each curve, there is a point representing the emission for the equilibrium 

optimum covering 9' = 9 t' As shown above, each of these points occurs for 
op 

a different filament temperature T. Therefore, the family of curves 
i 1 1 g ~ = f (-) must have a common tangent, which is identical with Richardson's 
T T 

line for 9' = 9 t' op 

-3 

-4 

-5 

-6 

0 

19i 

fE-:::: 
1f::6100 

'/'\...5700 

40 80 120 160 
t sec 

Fig. 54 



88 

Finally, a third method (Ref. 42) of determining cb , and A t . mln op 
reduces to the following. A filament is cleaned from cesium by annealing 

at sufficiently high temperatures and is rapidly cooled to a temperature, at 

which the equilibrium 8' is larger than O. This will cause 8' to increase 

with time, approaching an equilibrium value, At the same time, the electron 

current will also grow, passing through a maximum at 8' = 8 t' and then 
op 

decrease to an equilibrium value (Fig. 54). 

By doing this experiment for a number of filament temperatures, we 

can construct Richardson's line through the points corresponding to the current 

maximums and thus find {IJ • and A t' In these experiments, it was found 
I mln op 

that the time T, in which the current reaches its maximum for a given pres-

sure of the cesium vapor, does not depend on the temperature of the tungsten 

filament. This means that in the temperature range defined by Of < 0 tall 
op 

the cesium atoms falling on the surface of the filament are absorbed on it and 

practically none are evaporated in the period T. 

If the pressure and temperature of the cesium vapor and the time T, in 

which 0 t' is reached" are known" the equations of the kinetic theory of gases 
oP' 

yield the number of atoms n t absorbed in a time T per cm Z and corres­
op 

ponding to 0 = 8 opt" By comparing this number with n
i
" the number of 

cesium atoms in a monomolecular layer, one can find the true 8 t' It was op 
found that 8 t = 0.67. op 

The values of dJ • and At' measured by different investigators . mln op 
using different methods, disagree conspicuously with one another. For tungsten 

covered with cesium: 

l/> • - 1,5 mln At""'" 3 at cmz . degree Z 

op 

For oxidized tungsten covered with cesium, there are two extremely different 

groups of results: 

I) A ~ 10-4 at cm z. degree z; ,I.. 
"f'min 0, 6 v; 

II) A s::::= 107 a/cm z . degree z;. -- 2v. 'P min 
Effects analogous to the ones described above occur in rubidium and 

potassium vapors. 
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SECONDA.RY ELECTRON EMISSION 

by 

R. E. Bunney 

ABSTRACT 

The report reviews the available literature on secondary 

electron emission from metallic surfaces. The basic theories of 

secondary electron emission are considered in relation to one another. 

Special emphasis w'as placed on the quantum theories. 
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