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Abstract

Collective electronic excitations at metal surfaces are well known to play a key role in a wide
spectrum of science, ranging from physics and materials science to biology. Here we focus
on a theoretical description of the many-body dynamical electronic response of solids, which
underlines the existence of various collective electronic excitations at metal surfaces, such as the
conventional surface plasmon, multipole plasmons and the recently predicted acoustic surface
plasmon. We also review existing calculations, experimental measurements and applications.
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1. Introduction

In his pioneering treatment of characteristic energy losses of fast electrons passing through
thin metal films, Ritchie predicted the existence of self-sustained collective excitations at metal
surfaces [1]. It had already been pointed out by Pines and Bohm [2, 3] that the long-range
nature of the Coulomb interaction between valence electrons in metals yields collective plasma
oscillations similar to the electron-density oscillations observed by Tonks and Langmuir in
electrical discharges in gases [4], thereby explaining early experiments by Ruthemann [5] and
Lang [6] on the bombardment of thin metallic films by fast electrons. Ritchie investigated
the impact of the film boundaries on the production of collective excitations and found that
the boundary effect is to cause the appearance of a new lowered loss due to the excitation
of surface collective oscillations [1]. Two years later, in a series of electron energy-loss
experiments Powell and Swan [7] demonstrated the existence of these collective excitations,
the quanta of which Stern and Ferrell called the surface plasmon [8].

Since then, there has been a significant advance in both theoretical and experimental
investigations of surface plasmons, which for researches in the field of condensed matter and
surface physics have played a key role in the interpretation of a great variety of experiments
and the understanding of various fundamental properties of solids. These include the nature of
Van der Waals forces [9-11], the classical image potential acting between a point classical
charge and a metal surface [12—-15], the energy transfer in gas—surface interactions [16],
surface energies [17—19], the damping of surface vibrational modes [20, 21], the energy loss
of charged particles moving outside a metal surface [22,23] and the de-excitation of adsorbed
molecules [24]. Surface plasmons have also been employed in a wide spectrum of studies
ranging from electrochemistry [25], wetting [26] and biosensing [27-29] to scanning tunnelling
microscopy [30], the ejection of ions from surfaces [31], nanoparticle growth [32,33], surface-
plasmon microscopy [34,35] and surface-plasmon resonance technology [36—42]. Renewed
interest in surface plasmons has come from recent advances in the investigation of the
electromagnetic properties of nanostructured materials [43, 44], one of the most attractive
aspects of these collective excitations now being their use to concentrate light in subwavelength
structures and to enhance transmission through periodic arrays of subwavelength holes in
optically thick metallic films [45,46].

The so-called field of plasmonics represents an exciting new area for the application of
surface and interface plasmons, an area in which surface-plasmon based circuits merge the
fields of photonics and electronics at the nanoscale [47]. Indeed, surface-plasmon polaritons
can serve as a basis for constructing nanoscale photonic circuits that will be able to carry
optical signals and electric currents [48,49]. Surface plasmons can also serve as a basis for the
design, fabrication and characterization of subwavelength waveguide components [50-64]. In
the framework of plasmonics, modulators and switches have also been investigated [65, 66],
as well as the use of surface plasmons as mediators in the transfer of energy from donor to
acceptors molecules on opposite sides of metal films [67].

According to the work of Pines and Bohm, the quantum energy collective plasma
oscillations in a free electron gas with equilibrium density n is hw, = h(4wne*/m.)'/?,
wp being the so-called plasmon frequency®. In the presence of a planar boundary, there is
a new mode (the surface plasmon), the frequency of which equals in the nonretarded region
(where the speed of light can be taken to be infinitely large) Ritchie’s frequency ws = w,/ V2
at wave vectors ¢ in the range ws/c < g < gr (gr being the magnitude of the Fermi wave

4 The electron density n is usually characterized by the density parameter ry = (3/4mn)'/3 /ay, ap being the Bohr
radius, ap = 0.529 A. In metals the electron-density parameter of valence electrons is typically in therange 2 < ry < 6,
which corresponds to plasmon energies on the order of 10 eV and frequencies that lie in the optical regime.
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vector) and exhibits some dispersion as the wave vector is increased. In the retarded region,
where the phase velocity wg/gq of the surface plasmon is comparable to the velocity of light,
surface plasmons couple with the free electromagnetic field. These surface-plasmon polaritons
propagate along the metal surface with frequencies ranging from zero (at ¢ = 0) towards the
asymptotic value w, = wp/ V/2, the dispersion relation w(q) lying to the right of the light line
and the propagating vector being, therefore, larger than that of bare light waves of the same
energy. Hence, surface-plasmon polaritons in an ideal semi-infinite medium are nonradiative
in nature, i.e. cannot decay by emitting a photon and, conversely, light incident on an ideal
surface cannot excite surface plasmons.

In the case of thin films, the electric fields of both surfaces interact. As a result, there
are (i) tangential oscillations characterized by a symmetric disposition of charge deficiency or
excess at opposing points on the two surfaces and (ii) normal oscillations in which an excess
of charge density at a point on one surface is accompanied by a deficiency at the point directly
across the thin film. The phase velocity of the tangential surface plasmon is always less than
the speed of light, as it occurs in the case of a semi-infinite electron system. However, the
phase velocity of normal oscillations may surpass that of light, thereby becoming a radiative
surface plasmon that should be responsible for the emission of light [68]. This radiation was
detected using electron beam bombardment of thin films of Ag, Mg and Al with thicknesses
ranging between 500 and 1000 A [69,70]. More recently, light emission was observed in the
ultraviolet from a metal-oxide—metal tunnel diode and was attributed to the excitation of the
radiative surface plasmon [71].

Nonradiative surface plasmons in both thin and thick films can couple to electromagnetic
radiation in the presence of surface roughness or a grating, as suggested by Teng and Stern [72].
Alternatively, prism coupling can be used to enhance the momentum of incident light, as
demonstrated by Otto [73] and by Kretchmann and Raether [74]. Since then, this so-called
attenuated reflection (ATR) method and variations upon it have been used by several workers
in a large variety of applications [75-81].

During the last decades, there has also been a significant advance in our understanding of
surface plasmons in the nonretarded regime. Ritchie [82] and Kanazawa [83] were the first
to attack the problem of determining the dispersion w(q) of the nonretarded surface plasmon.
Bennett [84] used a hydrodynamical model with a continuous decrease of the electron density
at the metal surface and found that a continuous electron-density variation yields two collective
electronic excitations: Ritchie’s surface plasmon at w ~ wg, with a negative energy dispersion
at low wave vectors, and an upper surface plasmon at higher energies. In the direction normal
to the surface, the distribution of Ritchie’s surface plasmon consists of a single peak, i.e. it has
a monopole character; however, the charge distribution of the upper mode has a node, i.e. it
has a dipole character and is usually called multipole surface plasmon.

Bennett’s qualitative conclusions were generally confirmed by microscopic descriptions
of the electron gas. On the one hand, Feibelman showed that in the long-wavelength
limit the classical result w, = w,/ V2 is correct for a semi-infinite plane-bounded electron
gas, irrespective of the exact variation of the electron density in the neighbourhood of the
surface [85]. On the other hand, explicit expressions for the /inear momentum dispersion of
the conventional monopole surface plasmon that are sensitive to the actual form of the electron-
density fluctuation at the surface were derived by Harris and Griffin [86] using the equation
of motion for the Wigner distribution function in the random-phase approximation (RPA)
and by Flores and Garcia-Moliner [87] solving Maxwell’s equations in combination with an
integration of the field components over the surface region. Quantitative RPA calculations
of the linear dispersion of the monopole surface plasmon were carried out by several authors
using the infinite-barrier model (IBM) of the surface [88], a step potential [89, 90], and the
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more realistic Lang—Kohn [91] self-consistent surface potential [92]. Feibelman’s calculations
showed that for the typical electron densities in metals (2 < ry < 6) the initial slope of the
momentum dispersion of monopole surface plasmons of jellium surfaces is negative [92], as
anticipated by Bennett [84].

Negative values of the momentum dispersion had been observed by high-energy electron
transmission on uncharacterized Mg surfaces [93] and later by inelastic low-energy electron
diffraction on the (100) and (111) surfaces of Al [94,95]. Nevertheless, Klos and Raether [96]
and Krane and Raether [97] did not observe a negative dispersion for Mg and Al films.
Conclusive experimental confirmation of the negative surface plasmon dispersion of a variety
of simple metals (Li, Na, K, Cs, Al and Mg) did not come about until several years
later [98—101], in a series of experiments based on angle-resolved low-energy inelastic electron
scattering®. These experiments showed good agreement with self-consistent dynamical-
response calculations carried out for a jellium surface® in a time-dependent adiabatic extension
of the density-functional theory (DFT) of Hohenberg, Kohn and Sham [102]. Furthermore,
these experiments also showed that the multipole surface plasmon was observable, its energy
and dispersion being in quantitative agreement with the self-consistent jellium calculations
that had been reported by Liebsch [103].

Significant deviations from the dispersion of surface plasmons at jellium surfaces occur
on Ag [104-107] and Hg [108], due to the presence of filled 4d and 5d bands, respectively,
which in the case of Ag yields an anomalous positive dispersion. In order to describe the
observed features of Ag surface plasmons, various simplified models for the screening of d
electrons have been developed [109—113]. Most recently, calculations have been found to yield
a qualitative understanding of the existing electron energy-loss measurements by combining
a self-consistent jellium model for valence Ss electrons with a so-called dipolium model in
which the occupied 4d bands are represented in terms of polarizable spheres located at the
sites of a semi-infinite face-cubic-centred (fcc) lattice [114].

Ab initio bulk calculations of the dynamical response and plasmon dispersions of noble
metals with occupied d bands have been carried out recently [115-117]. However, first-
principles calculations of the surface-plasmon energy and linewidth dispersion of real solids
have been carried out only in the case of the simple-metal prototype surfaces Mg(0001) and
Al(111) [118,119]. These calculations lead to an accurate description of the measured surface-
plasmon energy dispersion that is superior to that obtained in the jellium model, and they show
that the band structure is of paramount importance for a correct description of the surface-
plasmon linewidth.

The multipole surface plasmon, which is originated in the selvage electronic structure at the
surface, has been observed in a variety of simple metals at w ~ 0.8w,, [98-101], in agreement
with theoretical predictions. Nevertheless, electron energy-loss spectroscopy (EELS)
measurements of Ag, Hg and Li revealed no clear evidence of the multipole surface plasmon. In
the case of Ag, high-resolution energy-loss spectroscopy low-energy electron diffraction (ELS-
LEED) measurements indicated that a peak was obtained at 3.72 eV by subtracting the data for
two different impact energies [120], which was interpreted to be the Ag multipole plasmon.
However, Liebsch argued that the frequency of the Ag multipole surface plasmon should be
in the 6-8 eV range above rather than below the bulk plasma frequency and suggested that the
observed peak at 3.72 eV might not be associated with a multipole surface plasmon [121].

> Since the finite angular acceptance of typical energy-loss spectrometers guarantees that the momentum transfer is
associated with a plasmon wavelength larger than the wavelength of light at @ = w, 2c/ws ~ 10> A), only the
nonretarded region is observed in these experiments.

6 A jellium surface consists of a fixed uniform positive background occupying a halfspace plus a neutralizing cloud
of interacting electrons.
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An alternative spectroscopy technique to investigate multipole surface plasmons is
provided by angle- and energy-resolved photoyield experiments (AERPY) [122]. In fact,
AERPY is more suitable than electron energy-loss spectroscopy to identify the multipole
surface plasmon, since the monopole surface plasmon of clean flat surfaces (which is the
dominant feature in electron energy-loss spectra) is not excited by photons and thus the
weaker multipole surface mode (which intersects the radiation line in the retardation regime)
can be observed. A large increase in the surface photoyield was observed at w = 0.8w),
from Al(100) [122] and Al(111) [123]. Recently, the surface electronic structure and optical
response of Ag has been studied using this technique [124]. In these experiments, the
Ag multipole surface plasmon is observed at 3.7eV, while no signature of the multipole
surface plasmon is observed above the plasma frequency (w, = 3.8eV) in disagreement
with the existing theoretical prediction [121]. Hence, further theoretical work is needed on
the surface electronic response of Ag that go beyond the s—d polarization model described
in [121].

Another collective electronic excitation at metal surfaces is the so-called acoustic surface
plasmon that has been predicted to exist at solid surfaces where a partially occupied
quasi-two-dimensional surface-state band coexists with the underlying three-dimensional
continuum [125, 126]. This new low-energy collective excitation exhibits linear dispersion
at low wave vectors and might therefore affect electron-hole (e-h) and phonon dynamics
near the Fermi level’. It has been demonstrated that it is a combination of the nonlocality
of the 3D dynamical screening and the spill out of the 3D electron density into the vacuum
which allows the formation of 2D electron-density acoustic oscillations at metal surfaces,
since these oscillations would otherwise be completely screened by the surrounding 3D
substrate [127]. This novel surface-plasmon mode has been observed recently at the (0001)
surface of Be, showing a linear energy dispersion that is in very good agreement with first-
principles calculations [128].

Finally, we note that metal—dielectric interfaces of arbitrary geometries also support charge
density oscillations similar to the surface plasmons characteristic of planar interfaces. These
are localized Mie plasmons occurring at frequencies which are characteristic of the interface
geometry [129]. The excitation of localized plasmons on small particles has attracted great
interest over the years in scanning transmission electron microscopy [130-135] and near-field
optical spectroscopy [136]. Recently, new advances in structuring and manipulating on the
nanometre scale have rekindled interest in this field [137]. In nanostructured metals and
carbon-based structures, such as fullerenes and carbon nanotubes, localized plasmons can be
excited by light and can therefore be easily detected as pronounced optical resonances [138—
140]. Furthermore, very localized dipole and multipole modes in the vicinity of highly coupled
structures are responsible for surface-enhanced Raman scattering [141, 142] and other striking
properties like, for example, the blackness of colloidal silver [143].

Collective electronic excitations in thin adsorbed overlayers, semiconductor heterostruc-
tures, and parabolic quantum wells have also attracted attention over the last years. The
adsorption of thin films is important, because of the drastic changes that they produce in the
electronic properties of the substrate and also because of related phenomena such as catalytic
promotion [144]; however, the understanding of adsorbate-induced collective excitations is
still incomplete [145-152]. The excitation spectrum of collective modes in semiconductor
quantum wells has been described by several authors [153—157]. These systems, which have
been grown in semiconductor heterostructures with the aid of molecular beam epitaxy [158],

7 The sound velocity of this acoustic mode is, however, close to the Fermi velocity of the 2D surface-state band,
which is typically a few orders of magnitude larger than the sound velocity of acoustic phonons in metals but still
about three orders of magnitude smaller than the velocity of light.
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z=0

Figure 1. Two semi-infinite media with dielectric functions €| and €, separated by a planar interface
atz =0.

form a nearly ideal free-electron gas and have been, therefore, a playground on which to test
existing many-body theories [159, 160].

Major reviews on the theory of collective electronic excitations at metal surfaces have
been given by Ritchie [161], Feibelman [162] and Liebsch [163]. Experimental reviews
are also available, which focus on high-energy EELS experiments [164], surface plasmons
on smooth and rough surfaces and on gratings [165] and angle-resolved low-energy EELS
investigations [166, 167]. An extensive review on plasmons and magnetoplasmons in
semiconductor heterostructures has been given recently given by Kushwaha [168].

This review will focus on a unified theoretical description of the many-body dynamical
electronic response of solids, which underlines the existence of various collective electronic
excitations at metal surfaces, such as the conventional surface plasmon, multipole plasmons
and the acoustic surface plasmon. We also review existing calculations, experimental
measurements and some of the most recent applications including particle—solid interactions,
scanning transmission electron microscopy and surface-plasmon based photonics, i.e.
plasmonics.

2. Surface-plasmon polariton: classical approach

2.1. Semi-infinite system

2.1.1. The surface-plasmon condition. ~We consider a classical model consisting of two
semi-infinite nonmagnetic media with local (frequency-dependent) dielectric functions €; and
€; separated by a planar interface at z = 0 (see figure 1). The full set of Maxwell’s equations
in the absence of external sources can be expressed as follows [169]:

10

VXH,' =€; — _Ei7 (21)
c ot
19

VxE =—— —H,, (2.2)
c ot
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and
V-H; =0, 2.4)
where the index i describes the media: i = latz < 0,andi =2 atz > 0.

Solutions of equations (2.1)—(2.4) can generally be classified into s-polarized and p-
polarized electromagnetic modes, the electric field E and the magnetic field H being parallel to
the interface, respectively. For an ideal surface, if waves are to be formed that propagate along
the interface there must necessarily be a component of the electric field normal to the surface.
Hence, s-polarized surface oscillations (whose electric field E is parallel to the interface) do
not exist; instead, we seek conditions under which a travelling wave with the magnetic field H
parallel to the interface (p-polarized wave) may propagate along the surface (z = 0), with the
fields tailing off into the positive (z > 0) and negative (z < 0) directions. Choosing the x-axis
along the propagating direction, we write

E; = (E; 0, E;)e "l gil@ren 2.5)
and

H;, = (0, Ei),, 0) e—xilzl ei(qix—wt), (2.6)
where g; represents the magnitude of a wave vector that is parallel to the surface. Introducing
equations (2.5) and (2.6) into equations (2.1)—(2.4), one finds

w
il('] Hlv =+?61 E]X, (27)

iko Hy, = _2 e by (2.8)
: c

2 @’
Ki =/q; — € ? (29)

The boundary conditions imply that the component of the electric and magnetic fields
parallel to the surface must be continuous. Using equations (2.7) and (2.8), one writes the
following system of equations:

and

K1 K2
D+ 2, =0 (2.10)
€] €
and
Hy, — Hy =0, 2.11)
which has a solution only if the determinant is zero, i.e.
g2 (2.12)
K1 K>

This is the surface-plasmon condition.

From the boundary conditions also follows the continuity of the 2D wave vector g entering
equation (2.9), i.e. g = ¢» = g. Hence, the surface-plasmon condition (equation (2.12)) can
also be expressed as follows [170]:

g =2 [ 2 (2.13)
c\ € t+eé

where w/c represents the magnitude of the light wave vector. For a metal—dielectric interface
with the dielectric characterized by e, the solution w (g) of equation (2.13) has slope equal to
¢/ /€2 at the point ¢ = 0 and is a monotonic increasing function of ¢, which is always smaller
than c g /./€; and for large g is asymptotic to the value given by the solution of

€1 +e =0. (2.14)
This is the nonretarded surface-plasmon condition (equation (2.12) with k| = x; = ¢), which
is valid as long as the phase velocity /g is much smaller than the speed of light.
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30 T
25— ) -

200 ' -

0 |
0 0.01 0.02

q@™

Figure 2. The solid lines represent the solutions of equation (2.16) with w, = 15¢eV: the dispersion
of light in the solid (upper line) and the surface-plasmon polariton (lower line). In the retarded
region (¢ < ws/c), the surface-plasmon polariton dispersion curve approaches the light line
w=cq (- ). At short wave lengths (¢ > ws/c), the surface-plasmon polariton approaches
asymptotically the nonretarded surface-plasmon frequency ws = wp,/ N2 (---2).

2.1.2. Energy dispersion. In the case of a Drude semi-infinite metal in vacuum, one has
€ = 1and[171]
2

6g=1-—2> (2.15)
w(w+1n)

n being a positive infinitesimal. Hence, in this case equation (2.13) yields

(2.16)

We have represented in figure 2 by solid lines the dispersion relation of equation (2.16),
together with the light line w = ¢ g (dotted line). The upper solid line represents the dispersion
of light in the solid. The lower solid line is the surface-plasmon polariton

w?(q) = w§/2 +c2q* — [y /4 +ctqt, (2.17)

which in the retarded region (where g < ws/c) couples with the free electromagnetic field
and in the nonretarded limit (g > w,/c) yields the classical nondispersive surface-plasmon
frequency ws = wp/ V2.

We note that the wave vector ¢ entering the dispersion relation of equation (2.17) (lower
solid line of figure 2) is a 2D wave vector in the plane of the surface. Hence, if light hits the
surface in an arbitrary direction the external radiation dispersion line will always lie somewhere
between the light line ¢ g and the vertical line, in such a way that it will not intersect the surface-
plasmon polariton line, i.e. light incident on an ideal surface cannot excite surface plasmons.
Nevertheless, there are two mechanisms that allow external radiation to be coupled to surface-
plasmon polaritons: surface roughness or gratings, which can provide the requisite momentum
via umklapp processes [72], and attenuated total reflection (ATR) which provides the external
radiation with an imaginary wave vector in the direction perpendicular to the surface [73,74].
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Figure 3. Schematic representation of the electromagnetic field associated with a surface-plasmon
polariton propagating along a metal—dielectric interface. The field strength E; (see equation (2.5))
decreases exponentially with the distance |z| from the surface, the decay constant ; being given by
equation (2.18). + and — represent the regions with lower and higher electron density, respectively.

400 T ‘

vacuum

3001 : -
2 1/q

1. (A)

metal

100 - T -

| | |
0 0.005 0.01 0.015 0.02
g™

Figure 4. Attenuation length /; = 1/«;, versus ¢, as obtained from equation (2.18) at the surface-
plasmon polariton condition (equation (2.17)) for a Drude metal in vacuum. €; has been taken to
be of the form of equation (2.15) with w, = 15eV and €; has been set up to unity. The dotted line
represents the large-g limit of both /; and /5, i.e. 1/q.

2.1.3. Skin depth. Finally, we look at the spatial extension of the electromagnetic field
associated with the surface-plasmon polariton (see figure 3). Introducing the surface-plasmon
condition of equation (2.13) into equation (2.9) (with g; = g2 = ¢), one finds the following
expression for the surface-plasmon decay constant «; perpendicular to the interface:

(2.18)

which allows to define the attenuation length /; = 1/k; at which the electromagnetic field
falls to 1/e. Figure 4 shows [; as a function of the magnitude g of the surface-plasmon
polariton wave vector for a Drude metal [¢; of equation (2.15)] in vacuum (¢; = 1). In the
vacuum side of the interface, the attenuation length is over the wavelength involved (I, > 1/q),
whereas the attenuation length into the metal is determined at long-wavelengths (¢ — 0) by
the so-called skin depth. At large ¢ (where the nonretarded surface-plasmon condition of
equation (2.14) is fulfilled), the skin depth is ; ~ 1/4 thereby leading to a strong concentration
of the electromagnetic surface-plasmon field near the interface.
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2.2. Thin films

Thin films are also known to support surface collective oscillations. For this geometry, the
electromagnetic fields of both surfaces interact in such a way that the retarded surface-plasmon
condition of equation (2.12) splits into two new conditions (we only consider nonradiative
surface plasmons), depending on whether electrons in the two surfaces oscillate in phase or
not. In the case of a thin film of thickness a and dielectric function ¢, in a medium of dielectric
function €,, one finds [165]:

€1 €

+2 =0 (2.19)
k1 tanh(k1a/2) ko

and
€] €
——+ = =0. (2.20)
ki coth(k1a/2)  k»
Instead, if the film is surrounded by dielectric layers of dielectric constant €y and equal thickness
t on either side, one finds

€] €0

_— + =0 (2.21)
kivtanh(kia/2) ko
and
€1 €0
+ 2 =0, (2.22)
kivcoth(kia/2) ko
where
1 — Ae 2ot
S —— 2.23
1+ A2t 223)
with
A = K2€0 T ko€ (2.24)
K2€0 + Kp€r
and

2 ?
Ko =14/4° — €0 0_2 (225)

Electron spectrometry measurements of the dispersion of the surface-plasmon polariton in
oxidized Al films were reported by Pettit ez al [172], spanning the energy range from the short-
wavelength limit where  ~ w,/ /2 all the way to the long-wavelength limit where  ~ ¢ g.
The agreement between the experimental measurements and the prediction of equations (2.21)—
(2.25) (with a Drude dielectric function for the Al film and a dielectric constant €y = 4 for the
surrounding oxide) is found to be very good, as shown in figure 5.

In the nonretarded regime (g > ws/c), where k1 = k, = ¢, equations (2.19) and (2.20)
take the form

€1 t+é€

= Fe 9, (2.26)
€1 — €

which for a Drude thin slab (e; of equation (2.15)) in vacuum (e, = 1) yields [1]
@p —qay1/2
w=——(1xe9%"/, 2.27)
V2

This equation has two limiting cases, as discussed by Ferrell [68]. At short wavelengths
(gqa > 1), the surface waves become decoupled and each surface sustains independent
oscillations at the reduced frequency ws = wp/ /2 characteristic of a semi-infinite electron gas
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Figure 5. Dispersion w(g) of the surface-plasmon polariton of an Al film of thickness a = 120 A
surrounded by dielectric layers of equal thickness 1 = 40 A. The solid lines represent the result
obtained from equations (2.21)—(2.25) with e = 1, €g = 4 and a frequency-dependent Drude
dielectric function €; (see equation (2.15)) with wp, = 15eV and n = 0.75 eV8. The solid
circles represent the electron spectrometry measurements reported by Petit er al [172]. The
dashed line represents the nonretarded surface-plasmon frequency wp/ /3, which is the solution
of equation (2.14) with €, = 4 and a Drude dielectric function €. The dotted line represents the
light line @ = cq.

with a single plane boundary. At long wavelengths (ga < 1), there are normal oscillations at
wp and tangential 2D oscillations at

wip = 2mnaq)'?, (2.28)

which were later discussed by Stern [173] and observed in artificially structured
semiconductors [174] and more recently in a metallic surface-state band on a silicon
surface [175].

3. Nonretarded surface plasmon: simplified models

The classical picture leading to the retarded equation (2.12) and nonretarded equation (2.14)
ignores both the nonlocality of the electronic response of the system and the microscopic spatial
distribution of the electron density near the surface. This microscopic effects can generally be
ignored at long wavelengths where ¢ < gr; however, as the excitation wavelength approaches
atomic dimensions nonlocal effects can be important.

As nonlocal effects can generally be ignored in the retarded region where g < w,/c (since
ws/c K qr), here we focus our attention on the nonretarded regime where ws/c < ¢. In
this regime and in the absence of external sources, the w-components of the time-dependent
electric and displacement fields associated with collective oscillations at a metal surface satisfy

8 Although in the case of an ideal damping-free electron gas the quantity 7 entering the Drude dielectric function
of equation (2.15) should be a positive infinitesimal, a phenomenological finite parameter 7 is usually introduced in
order to account for the actual electron damping occurring in real solids.
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the quasi-static Maxwell’s equations

V -E(r,v) = —4n én(r, w), 3.D
or, equivalently,

V2p(r, w) = 47 Sn(r, o) (3.2)
and

V -D(r,w) =0, 3.3)

on(r, w) being the fluctuating electron density associated with the surface plasmon and ¢ (r, w)
being the w component of the time-dependent scalar potential.

3.1. Planar surface plasmon

3.1.1. Classical model. In the classical limit, we consider two semi-infinite media with local
(frequency-dependent) dielectric functions €; and €, separated by a planar interface at z = 0, as
in section 2.1 (see figure 1). In this case, the fluctuating electron density dn(r, w) corresponds
to a delta-function sheet at z = 0:
dn(r, w) = dn(r), o) §(z), (3.4)
where r| defines the position vector in the surface plane, and the displacement field D(r, w)
takes the following form:
e Er w), 7 <0,
D(r,w) = (3.5)
& E(r,w), z > 0.
Introducing equation (3.4) into equation (3.2), one finds that self-sustained solutions of
Poisson’s equation take the form
P(r,w) = oet” e 1, (3.6)

where ¢q is a 2D wave vector in the plane of the surface, and ¢ = |q|. A combination of
equations (3.3), (3.5) and (3.6) with E(r, w) = —V¢(r, o) yields the nonretarded surface-
plasmon condition of equation (2.14), i.e.

€1 +€ =0. 3.7

3.1.2. Nonlocal corrections. Now we consider a more realistic jellium model of the solid
surface consisting of a fixed semi-infinite uniform positive background at z < 0 plus a
neutralizing nonuniform cloud of interacting electrons. Within this model, there is translational
invariance in the plane of the surface; hence, we can define 2D Fourier transforms E(z; g, w)
and D(z; q, ), the most general linear relation between them being

D(z; g, w) = fdz’e(z, 75q,0)-E(Z; q, w), (3.8)

where the tensor €(z, 7'; g, w) represents the dielectric function of the medium.

In order to avoid an explicit calculation of €(z, 7’; ¢, ®), one can assume that far from
the surface and at low wave vectors (but still in the nonretarded regime, i.e. ws/c < g < gp)
equation (3.8) reduces to an expression of the form of equation (3.5):

€ E(z; q, w), z <z,
D(z;q,0) = (3.9
& E(z;q, ), 7> 2,
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where z; <« 0 and z; > 0. Equations (3.2) and (3.3) with E(r, ) = —V ¢ (r, w) then yield
the following integration of the field components E, and D, in terms of the potential ¢ (z) at
z1 and z, [where it reduces to the classical potential of equation (3.6)]:

/ dzE (259, 0) = ¢(22;q, w) — (215 ¢, ®) (3.10)

21
and
22
- i/ dzD.(z;q,w) = €¢(22; g, w) — €1 9(21; q, w). (3.1D)
21

Neglecting quadratic and higher-order terms in the wave vector, equations (3.10) and
(3.11) are found to be compatible under the surface-plasmon condition [87]

€1 t+é

= qldi(w) — dj(w)], (3.12)
€1 — €

d| (w) and d)(w) being the so-called d-parameters introduced by Feibelman [162]:

d| (w) =/dzzdiZEZ(z,w)/ /dz diZEZ(z,w) =/dzz§n(z, )/ /szn(z,w) (3.13)
and

dj(w) = /dzz iDz(z, w)/ /dz iDz(z, ), (3.14)
dz dz

where E,(z, w), D, (z, w) and én(z, w) represent the fields and the induced density evaluated
in the ¢ — O limit.

For a Drude semi-infinite metal in vacuum [¢; = 1 and equation (2.15) for €], the
nonretarded surface-plasmon condition of equation (3.12) yields the nonretarded dispersion
relation

o = ws{l — gRe[d | (w5) — dj(ws)]/2+ ...}, (3.15)

where wj is Ritchie’s frequency: ws = w,/ V2. For neutral jellium surfaces, dj(w) coincides
with the jellium edge and the linear coefficient of the surface-plasmon dispersion w(q),
therefore, only depends on the position d | (ws) of the centroid of the induced electron density
at w; (see equation (3.13)) with respect to the jellium edge.

3.1.3. Hydrodynamic approximation. In a hydrodynamic model, the collective motion of
electrons in an arbitrary inhomogeneous system is expressed in terms of the electron density
n(r, t) and the hydrodynamical velocity v(r, t), which assuming irrotational flow we express
as the gradient of a velocity potential ¥ (r, t) such that v(r, t) = —V ¢ (r, t). First of all, one
writes the basic hydrodynamic Bloch’s equations (the continuity equation and the Bernoulli’s
equation) in the absence of external sources [176]:

%n(r, )=V -[n@r,t) Vi@, 1)] (3.16)
and
%w(r, t) = % [V (r, t)|2+%+¢(r, 1), (3.17)

and Poisson’s equation:

Vi (r, 1) = 4w n(r, 1), (3.18)
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where G[n] is the internal kinetic energy, which is typically approximated by the Thomas—
Fermi functional

Gln] = 1% GBr®*3 [n@r, ). (3.19)

The hydrodynamic equations (equations (3.16)—(3.18)) are nonlinear equations, difficult
to solve. Therefore, one typically uses perturbation theory to expand the electron density and
the velocity potential as follows:

n(r,t) =no(r)+n(r,t) +... (3.20)
and

Y, ) =0+yi(r,0+..., (3.21)
so that equations (3.16)—(3.18) yield the linearized hydrodynamic equations

%nl(r, 1) =V -[no(r) Vi (r, 0], (3.22)

d o m(r, 1)

Ewl(r, n =[] o) +1(r, 1), (3.23)
and

Vipi(r, 1) = 4m ny(r. 1), (3.24)

where n¢(r) is the unperturbed electron density and B(r) = +/1/3 [372n((r)]'/? represents the
speed of propagation of hydrodynamic disturbances in the electron system’.
We now consider a semi-infinite metal in vacuum consisting of an abrupt step of the
unperturbed electron density at the interface, which we choose to be located at z = 0:
n, z<0,
no(z) = (3.25)
0, z> 0.
Hence, within this model n((r) and B(r) are constant at z < 0 and vanish at z > 0.

Introducing Fourier transforms, equations (3.22)—(3.25) yield the basic differential
equation for the plasma normal modes at z < 0:

V(@ — ) + B2V (r,w) =0 (z <0) (3.26)
and Laplace’s equation at z > O:
V2 (r, ) =0 (z > 0), (3.27)

where both n;(r, ®) and ¥ (r, ) vanish. Furthermore, translational invariance in the plane
of the surface allows to introduce the 2D Fourier transform 