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The kinetic energy correction is investigated within
perturbation theory. We observe that —V', ' is of the
order 1/r„; i.e., it is of the same size as the perturbing
Hamiltonian in (25). If we expand the determinantal

'

function 4, we find that

+0(1/r. ') (35)

The first term is of the order 1/r„' since m, "' is propor-
tional to 1/r„s T.erms of the order 1/r, s and higher are
neglected here, but would have to be included in an
evaluation of quadrupole terms. The 1/r„' term in (35)
appears to be of the same order as V„.Upon substitution
of the perturbed wave functions m, &'& into (35), it is
found that the integral vanishes upon integration over
solid angle. Consequently there is no contribution from
the kinetic energy correction of the same order in r, as
the dipole polarization potential.
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The angle-energy distribution of a fast electron losing energy to the conduction electrons in a thick
metallic foil has been derived assuming that the conduction electrons constitute a Fermi-Dirac gas and
that the fast electron undergoes only small fractional energy and momentum changes, This distribution
exhibits both collective interaction characteristics and individual interaction characteristics, and is more
general than the result obtained by other workers. Describing the conduction electrons by the hydro-
dynamical equations of Bloch, it has been shown that for very thin idealized foils energy loss may occur at a
value which is less than the plasma energy, while as the foil thickness decreases below v/cu„ the loss at the
plasma energy becomes less than that predicted by more conventional theories. The net result is an increase
in the energy loss per unit thickness as the foil thickness is decreased. It is suggested that the predicted loss
at subplasma energies may correspond to some of the low-lying energy losses which have been observed by
experimenters using thin foils.

I. INTRODUCTION

'HERE has been recently a rather extraordinary
amount of experimental and theoretical work on

the origin and implications of characteristic energy
losses experienced by fast electrons in passing through
foils. This eRort has received great impetus from the
suggestion by Pines and Bohm' that some of these
energy losses are due to the excitation of plasma oscilla-
tions or "plasmons" in the sea of conduction electrons
and from their work on the theory of these oscillations. '
An alternate explanation, which has been advanced
many times by various workers, is that these losses
are due to interband transitions of individual conduction
electrons. Evidence in support of this has been pre-
sented' showing correlation between the fine structure
of x-ray absorption edges and the characteristic loss
lines. The plasma interpretation has been strengthened
by Watanabe's' experimental verification of the Pines-
Bohm plasma dispersion relation [Eq. (12) below] in

*This paper represents a portion of a dissertation submitted
by the author to the University of Tennessee in partial fulfillment
of the requirements for the Ph.D. degree.' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

2 D. Pines and D. Bohm, Phys. Rev. 82, 625 (1951); 85, 338
(1952); 92, 609, 626 (1953).

I.eder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
4 H. Watanabe, J. Phys. Soc. Japan ll, 112 (1956).

Be, Al, Mg, and Ge. A critical review of the present
status of the theory and experiment in this field has
been given by Pines. '

It is the purpose of this paper to examine theo-
retically the energy and angular distribution of a fast
electron which has lost energy to plasma oscillations in
an infinite foil and to consider the eRect of the 6nite-
ness of the foil. Ferrell' has investigated the angular
dependence of the characteristic energy losses of fast
electrons to an inhnite plasma using the theory of Pines
and Bohm. ' He obtains one formula which involves the
collective interaction of conduction electrons with the
incident electrons and another which includes only the
eRect of individual interactions between conduction
electrons and the incident electrons. A single formula
will 'be derived which includes both collective and
individual interactions and which depends upon the
momentum distribution of the undisturbed plasma.

Gabor' has considered the interaction of a fast elec-
tron with a small metallic crystal containing free
electrons. He assumes that the electric field is always
zero at the surface of the crystal and examines the

D. Pines, in Solid State Physics (Academic Press, Inc. , New
York, 1955). See also D. Pines, Revs. Modern Phys. 28, 184
(1956).' R. A. Ferrell, Phys. Rev. 101, 554 (1956).

7 D. Gabor, Phil. Mag. 1, 1 (1956).
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probability of interaction in the crystal as it becomes
very thin in the direction of the electron beam. It will
be shown that his boundary condition leads to un-
realistic results. Applying a more realistic boundary
condition, the interaction probability in very thin
films is derived and the consequences of the results
are discussed.

II. DIELECTRIC TREATMENT OF AN
ELECTRON GAS

In the following the interaction between an incident
fast electron and metal electrons will be considered.
The view will be taken that the ensemble of conduction
electrons in a metal may be characterized by a di-
electric constant which is a function both of the fre-
quency and wave vector of the electromagnetic dis-
turbance in the metal. As long as one considers inter-
electronic action over distances large compared with
the interelectronic spacing, the metal may be treated
as though it is a continuous homogeneous medium and
can hence be described in terms of its dielectric
properties.

The dielectric approach seems to have been first
used by Fermi~ to calculate the stopping power of
matter for fast charged particles. Kramers' used a similar
consideration to calculate specifically the stopping
power due to conduction electrons. Both of these
authors considered that the dielectric constant is a
function of frequency only. A classical theory of the
dielectric constant of an assembly of free electrons has
been given"" which includes the motion of the un-
disturbed electrons and results in a dependence of the
dielectric constant s(k,co) on the wave vector k of the
disturbance. Lindhard" and Hubbard" have derived
the dielectric constant of conduction electrons by
means of quantum perturbation theory. In these
treatments it is assumed that there exists a common
electric 6eld" y(r, t) in space and time in which the
separate electrons move and to which they give rise.
The development of the wave functions of the electrons
is calculated by time-dependent perturbation theory,
taking into account that they do not develop inde-
pendently in time because each electron moves in a
field determined by all others.

Hubbard" has extended the dielectric treatment to
the calculation of the energy-angle distribution of fast
electrons in passing through and losing energy to solids,
using a method similar to the Weizsacker-Williams
treatment of scattering. The fast electron is repre-

' E. Fermi, Phys. Rev. 57, 485 (1940).
H. A. Kramers, Physica 13, 401 (1947). See also A. Bohr,

Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. 24, No. 19
(1948).

'0 J. I.indhard, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 28, No. 8 (1954)."J. Neufeld and R. H. Ritchie, Phys. Rev. 98, 1632 (1955)."J.Hubbard, Proc. Phys. Soc. (Londonl 68, 976 l1955l.

"In the following it will be assumed that the gauge is chosen
so that the vector potential is zero. Also, all velocities are assumed
to be nonrelativistic.

where y(k, &u) and p(k, &o) are the four-dimensional
Fourier transforms of y(r, t) and p(r, t). The field y is
regarded as a perturbation acting on the electrons of
the metal. This perturbation causes transitions from
occupied to unoccupied levels. An electron making
such a transition will acquire Aa& and momentum Ak
and the fast electron must suffer a corresponding loss.
The probability for absorption of energy @co and mo-
mentum Ak per unit path length is

1
P(k,~) =—W(k, co),

SM

where W(k, &o) is the energy absorbed per unit volume
in k space per unit frequency interval and per unit
path length of the fast electron. Now if one is able to
express the energy loss dW/dx per umt path length by'

the fast electron to the medium as an integral over k, co

space, then the integrand is identically W(k, ~) and the
interaction probability P(k, a&) is known.

Hubbard considered the energy-angle distribution of
fast electrons in plasma but obtained essentially
Ferrell's result since he used a simplified form of the
dielectric constant. In the present work the approach
of Lindhard and Hubbard will be extended to yield a
more detailed description of the angle-energy distribu-
tion of fast electrons losing energy to plasma.

III. DISTRIBUTION IN ENERGY AND ANGLE OF
FAST ELECTRONS IN AN INFINITE PLASMA

The equation for the electric potential due to a point
charge, (—e), moving with uniform velocity v in a
uniform infinite plasma, is given by

s(k,~)7'p(r, t) =kre5(r —vt),

so that in Fourier space

Ss'e 8(k v+cu)

s(k,a)) A'

where
1

dk ~d&u expLi(k r+~t)]y(k, co). (5)9 (r,t)=
(2s.)'&

"E.J. %illiams, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 13, No. 4 (1935).

sented as an appropriate charge distribution p(r, t)
= —eb(r —vt). It is well known" that a fast electron
which interacts with matter may be considered to be a
point charge with a well-defined path as long as one is
concerned with processes in which the fractional changes
of energy and momentum of the electron are small. The
field which is generated is then given by Poisson's
equation,

s(k,(o) Prp(r, t) = 47rp—(r, t),

so that in Fourier space
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Then the energy loss per unit path in the medium is and me is its momentum. Then
given by

Cu„2e2ar

P(84p)dQ= 2yL fpp' —ip„'(1+8)}'+4y'4«Pj '
(6)

'
~'kv'

dS' e
=e&.~r=v4 ——-v E(x=v4,

t& v

X (11)
$8'+ (kip/mv')'jwhere E, is the x component of the electric held due to

the medium alone. Expressing q in terms of its Fourier
representation

ip'=ip '(1+8).
we may write immediately for the transition probability
per unit path length Solving this equation by iteration,

where dQ is the element of solid angle around 8. The
term in the square brackets has the character of a 6

dW e'
I t" ( 1 ) 5(k v+ip) function if the damping constant y is assumed to be

dip ip ™l I (&) vanishingly small. The resonance occurs when
dh v'v& & p & «(k, ip) ) k'

2

P(k, ip) =
m'fi~

(1)b(k v+ip)
Im] —

fI«) k
(8)

k2
ip'= i«a'+ —(k4/4+3k(Pk'/5) .

m2
(12)

Now divide k into k, and k„, which are perpendicular
and parallel, respectively, to v. We may integrate over
kl& immediately, obtaining

e2

P(k4, 4p)
='

7I O'v

2 2
lm-

«(k4, '+ip«/v')

YVe have now to obtain an approximate expression for
«(k, ip). Lindhard" gives for the dielectric constant of a
sea of free electrons

f(&-)
«(k, ip) =1—ip„' Q—

n

k y
' k'k4

&& I
~—4&+—k k-

(
— (9)

IE

where

1) 2+Goy Go

Imf —
f

=
E «& (ip« —4« '(1+6)}'+4y'ip'

1 k' (k4 3k'k(P)
&=——

I
—+

ip'm'l4 5

(1O)

and ko is the maximum wave vector of the undisturbed
plasma. We now substitute this into Eq. (8) and employ
the approximation, good for 8 small, that k, =8mv/k
where 8 is the angular deviation of the fast electron

where y is essentially the damping constant of the ex-
cited states, co„ is the plasma frequency, E is the density
of electrons and f(E„) is the density of states having
energy E„in the undisturbed plasma.

First, we may expand the denominator of Eq. (9)
assuming that co is large compared with the other terms
in the denominator. Then, assuming that the density of
states is so great that the sum may be replaced by an
integral, we finally obtain

X , (»)
k'

p
k' k' 3kp'k' q8'+

I ~'+ +
(2E)' 4 m' 4 5

where k'=&p„'/v'+(mv8/k)'. Now, collecting terms and
neglecting higher powers of hip„and k'kp'/2m compared
with E, the energy of the incident electron, we And

ego„2
P(8)dQ= gripy'+ (6/5)ippipg8'+i«/'8'j '*

2+5~2
dO

X (14)
8'+ (ip,/24ps)'

where ipp ——kkpP/2m and ipse ——E/k.
Now, if one lets coo—4 and neglects the 8' term in this

expression, one finds Ferrell's' Eq. (8) and Hubbard's"
Eq. (29) for the angular distribution. Further, one sees
that instead of «(k, ip) for the free electron gas, one
could have used the semiclassical formula for the
dielectric constant,

4~$e2
«(ip) = 1+

m i 404 +zg,cp —G7

(15)

This is just the plasma dispersion relation obtained
by Pines. ' Equation (11) contains the major features
of the angle-energy losses of fast electrons to free
electron plasma. The resonance term yields explicitly
the parabolic connection between energy loss and angu-
lar distribution found experimentally by Watanabe. '
The factor in brackets contains the coulomb scattering
loss form given by Ferrell. ' Now to obtain the angular
distribution of the fast electrons after losing energy to
the plasma, we integrate over all energy losses,
obtaining

e2Q) 2 f/2 2

P (8)dQ =—ip„'+ (k4/4+ 3kp'—k'/5)
2mb V2 m2
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where N is the atomic density of the medium, and f;,
~;, and g; are the oscillator strength, transition fre-
quency and damping constant of the ith interband
transition, respectively. Assuming that in the neighbor-
hood of the jth transition only the jth term in this series
is important, substituting this e in Eq. (8) and inte-
grating over k„and &e, one finds, for the probability
of scattering through the angle 8, after losing energy to
the jth transition,

e2

(~6)
$ s

L
.s+ 2)$ Les+ ( 2+,2)/ 2]

where ciP=4rrNe'f, /tN. This again has the same form
as Ferrell's Eq. (8) except that in place of the plasma
frequency, there appears the one-electron transition
frequency ~, , shifted due to mutual interaction between
electrons in the medium. If the frequency co, &&n; cor-
responding to the case of free electrons, then o,;=co„'.
Thus if the k dependence of the dielectric constant of
the conduction electrons is neglected, one obtains the
same form for the angular distribution, whether the
fast electron has excited interband transitions in the
solid or whether it has lost energy to plasma oscilla-
tions. However, the k dependence introduces a factor
which, although slowly varying, may be verihed
experimentally.

To examine the origin of the 84 term in the expression
for &(8), suppose that ri, the density of conduction
electrons, is low so that co„and ~0 are very small. Then

(17)

which is just the small angle approximation to the
Rutherford scattering of electrons on free electrons.
Thus, the formula (14) displays both collective and
individual interaction characteristics. It shows that
when the scattering angles are very small the collective
behavior of the ensemble of electrons determines the
angular distribution. For larger angles or for very low
electron densities, individual interaction between the
fast electron and the electrons in the medium becomes
the determining eGect. Even though the quantum di-
electric formulation is valid for values of the wave
vector which are not too large, it seems somewhat more
general than the procedure of Ferrell who used 6rst-
order perturbation theory and the cut-o6 wave vector
approach of Pines and Bohm. Thus, he obtains separate
formulas valid in the ranges k&k, and k) k, where k,
is the cutoG wave vector. The collective treatment was
used when k &k, and individual interaction was assumed
for k&k.. The dielectric treatment yields a result
which bridges the gap to a certain extent, even though
it can be shown that it is also equivalent to first-order
perturbation theory '0 i2

IV. DISTRIBUTION OF FAST ELECTRONS PASSING
THROUGH THIN FOILS

To treat a 6nite foil, we shall proceed in much the
same way as above. The potential throughout space.
due to a point charge —e moving with velocity v will

be calculated, including the modifying eGect of the
foil. The energy loss in the foil will be expressed in
terms of this potential and as an integral over k and co.

The integrand again will be interpreted as Ace times the
probability that the electron will lose energy A~ and
momentum Ak in passing through the foil.

Gabor' has treated the thin foil problem by making
the assumption that the electric Geld intensity is zero
at the boundaries of the foil. This is not in accord with
experimental work on the optics of thin 6lms, since it
results in the prediction that a metal grain does not
interact with electromagnetic radiation originating
outside of the grain. His conclusion that the probability
for plasma loss should decrease strongly with decreasing
foil thickness is a direct consequence of 'this assumption.
The difference which he finds between "coherent" and
"incoherent" illumination is due to the same assumption.

To compare with Gabor's treatment, one may ex-
pand the field given by Eq. (3) in terms of a Fourier
integral in Y, s, and 3 and as a Fourier series involving
only cosine functions of the x coordinate, thereby
assuming that the electric field intensity is zero both
at the boundaries and everywhere outside the foil.
Then, using the method described above to calculate
the interaction probability P(k,ce) in the foil, one finds
a factor which shows the same limitation obtained by
Gabor on x-momentum transfer to the foil. In reality
the 6eld is not zero at the surfaces of the foil nor zero
outside so that such restrictions on x-momentum trans-
fer do not occur for this reason. "More realistic bound-
ary conditions will be used in the treatment given below.

A quantum-mechanical derivation of the dielectric
constant of a 6nite metal seems rather dificult. One
might assume that the metal electrons experience a
uniform potential inside the foil and that their wave
functions vanish at the foil boundaries, rather than
taking free electron momentum eigenfunctions appro-
priate to an infinite medium. One Gnds in this case
that the Fourier components of the field are not pro-
portional to the same Fourier components of the sources

'~ Gabor's unconventional application of first-order time de-
pendent perturbation theory leads to a result which disagrees
with the Pines-Bohm formula for the mean free path for plasma
loss in thick films. He assumes that the wave function of the
incident electron is a plane wave with duration v-))1/~„, where
M„ is the energy loss of the incident electron. He finds that the
total probability of plasma excitation is proportional to the dura-
tion v which leads to an unrealistic result for an infinitely long
wavetrain. The more conventional perturbation theory PL. I.
SchiR, QNantem Mechanics, McGraw-Hill Book Company, Inc. ,
New York, 1949), second edition, p. 200) shows that instead of r,
one should use a/v, the electron "transit time" in the foil. Experi-
mental evidence on the energy variation of mean free path for
plasma loss LBIackstock, Ritchie, and Birkhoff, Phys. Rev. 100,
1078 (1955)]shows good agreement with the Pines-Bohm formula
and does not agree as well with Gabor's Eq. (34).
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of the field. Hence the dielectric constant as it isusually
defined does not exist for the finite foil. However,
quantum corrections to the classical expression for the
dielectric constant of a free electron gas are not im-
portant as long as one considers only small deflections
of incident electrons with energies much greater than
the plasma energy Ace„. To show this, we consider the
angular distribution for the infinite medium, Eq. (14).

8 e Ip
c4+—4 = ——~+

Bt m mPp
(19a)

The angular distribution of fast electrons which one
obtains is essentially the same as Eq. (14) above except
for the quantum correction term.

If one assumes irrotational motion, the linearized
Bloch equations may be written

co~e' 6copco~ co~'
P(0)d0= 1+ 8'+ 04

2&kv — 5M 2) coy

Bp/Bt =psPQ,

V s &=4~e&+4~e~(x—.~)6(y)~(s).

(19b)

(19c)

&& Le'+ ((o„/2n~~)'j
—'dQ

Now cop and co„are usually not greatly different, so that
the square-root term may be written approximately

M@ ME
1+—8'+) —0'

~

(gp

The term in 0' represents the plasma dispersion property
which may be obtained classically while the quantum
correction is given by the term in O'. Now if we take the
case of 1.5-kev electrons incident on Al, for which
A~„14.7 ev, then &os/id„10' and we have

co„e2

P(8) L1+10'0'+10'8'$ *'$8'+—'&(10 'j—'.
2xkv

The Coulomb factor (the last one) begins to vary
appreciably at 8 5 milliradians, while at this angle the
dispersion term represents a correction of only 0.25%
and the quantum correction only 10 '%. Furthermore,
both of these corrections become less important for
higher incident energies. Thus we may assume that a
semiclassical treatment of the finite foil case will give
a good approximation to the correct energy-angle
distribution.

Pines" has pointed out that quantum effects show

up in finite foils in another way. On the basis of the
uncertainty principle one may say that when a fast
electron interacts with plasma confined to a foil of
thickness a, there must be restrictions on the x-momen-
tum transfer to the plasma, vis. , it must take place in
multiples of k/a. Again, because of the fact that e is a
slowly varying function of k, this quantum effect
should introduce only small errors in the semiclassical
treatment given below.

We shall now employ the linearized hydrodynamical
equations of Bloch"" to describe the behavior of the
perturbed conduction electrons. One may show" that
the dielectric constant of an infinite free-electron gas
derived from the Bloch model is a good approximation
to the correct one in the case which we are considering.

"D. Pines (private communication).
'7 F. Bloch, Z. Physik 81, 363 (1933);Helv. Phys. Acta I, 385

(&934).
's H. Jensen, Z. Physik 106, 620 (1937)."See reference 10, p. 23.

Here f is the velocity potential, y the electric potential,
and p is the electronic density in the foil, all considered
as perturbations around the undisturbed state of the
plasma. The three equations (19) are, respectively, the
first integral of the equation of motion, the equation of
continuity, and Poisson s equation; pp is the electronic
density in the undisturbed state, P/p& is the pressure
change per unit number density in the undisturbed gas,
and P= (3k'/8s. )1ps'/3m. The term gP in Eq. (19a) is
intended to represent a schematic damping of the
electronic motion. The exact value of g is unimportant
since we shall assume it to be small. This damping term
is quite similar to the damping introduced in the classical
derivation of the dielectric constant for free electrons.

We are now in a position to solve for the electric
potential everywhere in space. The foil will be assumed
infinite in the y and s directions and the boundaries of
the foil will be taken at x=0 and x= a.

Outside the foil it is assumed that the electric poten-
tial is the solution of

V"(p=4n.eb(x-vt)5(y)6(s). (19d)

—~ &x&0
q=~ p2) 0&x&a

a&x&~.
(20)

The boundary conditions are that the electric potential
and field intensity must be continuous, and the normal
component of velocity must vanish at the foil surfaces.
The set of Eqs. (19) subject to the given boundary
conditions may be solved by expanding the y, s, and t

dependence of &p, P, and p in Fourier integrals as
follows:

1 f f'

y (x,y, s, t) = dk„dk, dpi q (x,k„,k.,ca)
(2~)s ~

Xexp)i(yk„+sk, +cot)) (21).
Equations (19) are then reduced to linear differential
equations and may be solved in a straightforward
manner. To be consistent with the assumption that the
incident electron velocity is large compared with the
Fermi velocity in the plasma, we shall assume that the
term involving P in Eq. (19a) is small. This term repre-
sents the propagation of disturbances in the hydro-
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dynamical gas. Retaining only first-order terms in
P/porn one may readily solve for q. This is also equiva-
lent to neglecting the dispersion term in Eq. (18) for
the angular distribution in the infinite metal. This
neglect has been shown above to introduce little error
for fast incident electrons.

The total energy loss of the electron is given by
~00

W= —e l

—ym(r, t) I
*=.i, w=*=odx

8x
2e

dk dcdk, b(k.+co/v) y(k, (e), (22)

where y„(r,t) represents the field in the medium minus
the vacuum field of the incident particle and qr (k,a&)

is its Fourier transform. One notes that just as in the
case of an infinite medium there is a restriction on the
v component of momentum loss of the fast electron.
i'his is just an expression of the fact that if the fast
electron undergoes momentum change Ak, in the x
direction and is deflected through a small angle then
from conservation of energy and momentum Ak,

d,E/—v where AE is its energy loss.
Carrying out the integration over k and collecting

terms, one finds eventually for the total transition
probability

e2

P(k„a))=
K Av

fig a
Iml —

l

0 e) (kim+aP/v')

+ Im
(k 2+~%2)2

1—e 2(e—1) cos(cva/v)+ (e—1) exp( —k,a)+ (1—e') exp(kig)
0

(e—1)' exp( —k,a) —(e+1)' exp(k, a)
(23)

where e= $1 cu„'/(c—o igloo) j.
One sees that the first term is just a times the transi-

tion probability per unit path length in an infinite
medium. The other terms represent the boundary cor-
rection. One may examine first the boundary correction
term in the limit of large a. Then

e'u Im(1/e)
P(k„(o)

Av'v' (ki2+aP/v')

2k, ](1—e)'~
~Iml

l
. (24)

g(kP+ie'/v')' (t(1+e)J I

Now let us define

P (k, ,a)) = (aP„'(k„cu)+Pi,(ki,(u) ),

gG) ~

~2$v2 (k 2+~2/v2)2

4(d y CO@

(25)
(~ 1~ 2)2+g2~2 (~2 ~ 2)2+g2~2

One notes that the e6ect of the boundary is to cause a
decrease in loss at the plasma frequency and an addi-
tional loss at cu=cov/K2. Call the probabilities for these
processes Pb& and P», respectively. Then integrating
over co,

e Go~ 1 kg

vrkv' (a„(kg+co„'/v')'

e co& v2 ki
~ ~

~kv2 ~ (k 2+~ 2/2v2)2

(26)

(27)

where P„ is the transition probability per unit foil
thickness in an infinite foil and Pb is the term introduced
by the boundary eGect. Then one may write, inserting
the expression for e,

Again setting ki=mv8/5, one sees that the angular
dependence in these terms is very different from that
occurring in the angular term for the infinite medium.
Carrying out the integrations over k&, we find

Pg, = —-,'v. (e'/Av),

Pg, ——v (e'/hv).

(28)

(29)

The Pb~ term subtracts from the aP„' term, showing
that the loss at the plasma frequency should decrease
as the foil thickness decreases, while the loss at cov/v2
is negligible for thick foils but increases as the thickness
decreases.

This shift in the resonance frequency is due to the
depolarizing e'Feet of the surfaces of the foil."Jensen"
has shown that the resonance frequency of plasma
contained in a small sphere is less than the value
appropriate to an infinite plasma by a factor of 1/K3
and that this shift is due to the depolarizing e6ect of
surface charge on the sphere. An analogous effect occurs
for the plane foil. lt may easily be verified using a
simple classical analysis that the resonance frequency is
indeed ~0„/V2 for electrons in a plane foil so thin that
the surface charge determines the Geld within the foil.

To examine the trend of Pbj for small a, one may
return to Eq. (20), integrate over a& taking account of
only the resonance at ~=co„and then integrate over k&.
One finds

—2e' p" x'dx coshx —cost

Av ~ 0 (x'+P)' sinhx
(3o)

where t= cue„/v.
Now substituting the rational fraction expansion of

cothx and cschx into this equation and assuming t to

'0 The writer is indebted to Dr. David Pines for pointing out
this fact to him.
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Then

be small, one Ands

Psi ————t 1n~ — I+1.st
Et)

Now one may also write'

(31)

uP„' = t ln (
— (+lnak,—,

ks It) (32)

where k„ is the cut-oG wave vector introduced by Pines
and Bohm. ' Then the total transition probability for
loss at the plasma energy in very thin films (t«1)
should be

e' ( ak,
aP„'+Psi= —t ln(

ks (4.82 )
This formula is obviously wrong when ak, &4.82. How-
ever, the theory used here will surely break down
before the foil thickness becomes this small, since k, is
approximately the reciprocal of the mean interelectronic
spacing. ' Figure 1 shows a plot of Psr(t) as a function
of t.

The P~~ term is interesting in that it shows a coupling
between 8 and co as a becomes small. This is shown by
considering the behavior of the denominator. It is
found that resonances occur at

2
t= ore~/v

Fzo. 1. Interaction probability in thin foil vs foil thickness.
Curve A is I'f,1, the decrease in interaction probability at' plasma
frequency due to finiteness of foil. Curve 8 is P», the probability
for loss at "lowered" plasma frequency; a is the foil thickness;
v is the electron velocity; and co„ is the plasma frequency.

Pss(ki) 2rrkrdkr

e' co„ lrr+l 1—cos(tn+&/V2)=——v2kr'dk, '
ke v rr (krs+co~'n~/2s')'

rr & 1+cos(tn l/V2)
(34)

n~ (krs+co~'n /2v')'

~'0. S. Heavens, Optima/ I'roperkes of Thin Solid Films (Aca-
demic Press, Inc. , New York, 1955).

s' D. Pines, . Revs. Modern Phys. 28, 198 (1956).

The first term in this equation comes from the resonance
at o&=~„n+&/v2 and the second from &o=o&„n &/v2. To
find the total interaction probability one may now
integrate over k&. The result is shown in Fig. 1. The
distribution of losses in the I'~2 term is peaked about
the energy loss Aa&„/v2 even for t 1. This may be
easily shown by converting P(k,) to the probabi1ity
distribution in oi, using the relation t Eq. (33)j between
k~ and co.

The net boundary effect is an increase in total energy
1oss to the conduction electrons above the value which
would exist in its absence. The total energy loss to the
conduction electrons per unit thickness increases loga-
rithmically as the foil thickness decreases.

The possibility occurs to one that these sub-plasma
frequency losses may be identified with the low-lying
}osses observed by some experimenters using thin foils. '
It does not seem that the observed values of the losses
are 1/v2 times the "characteristic" losses observed in
the same metals. However, it should be noted that thin
metallic 6lms may have a strongly granular structure.
The strong variation of the grain structure with sub-
strate composition, rate and amount of condensation,
etc. , of thin evaporated metallic films has been dis-
cussed by Heavens. "In this reference are given electron
micrographs which clearly show the transition from
small grain size to a state in which the grains merge to
form a nearly uniform 61m as the amount of material
deposited is increased in a series of films. The surface
depolarization effect will certainly be larger for a small
grain of average dimension a than for the semi-infinite
plane foil of thickness a which was treated above. Thus
one would expect the "lowered" losses in an actual foil
to lie closer to the value Aa&„/V3, appropriate to a
spherical grain, than to the value Ao&„/v2. This seems to
be true for the low-lying losses which have been
observed.

The two most puzzling features about the experi-
mental result on low-lying losses are (a) that such loss
lines seem to be narrower and to occur with higher
probability than one would expect if they were due to
interband transitions of individual electrons s' and (b)
that some experimenters observe these losses while
others do not. The depolarization e6ect seems to oGer
a possible explanation of these features.
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One expects losses at the "lowered" plasma energy to
occur whenever the 61m or grain dimensions approach
values ~e/~~ and that in this event the probability
of such losses would be comparable with losses at the
plasma energy. Since grain size as well as 61m thickness
may vary greatly from one experiment to another, one
might expect that the "lowered" plasma losses would
not be seen by all experimenters.

Existing experimental evidence from the study of
solids by means of fast electron bombardment does not
seem to be detailed enough as yet to judge whether or
not these "lowered" losses really occur. However, the
depolarization e6ect has been observed in optical in-
vestigation of thin solid films. To account for the ob-
served variation in the optical constants of metallic
films with 61m thickness it has been necessary to take
into account the, depolarization effect of grain bound-
aries and the depolarizing e6ect of the grains upon each
other. This eGect has been calculated classically by
David and others. ' The close relation between the
response of a solid to electromagnetic radiation and to
bombardment by electrons is well known. Hence one
expects that a similar depolarization eGect may occur
in experiments with fast electrons.

The present observations serve to strengthen the
recommendation of Pines' that a careful investigation
of electron losses in a single metal for various foil thick-
nesses and bombarding energies should be made.

The detailed mathematical treatment given above
applies to a rather idealized model of a metal foil.
However, qualitative considerations based upon this
treatment should enable one to interpret experimental
evidence on the variation of mean free path with foil
thickness. If the probability of a low-lying loss is found
to decrease linearly as the foil thickness decreases and
if it occurs with constant probability relative to the
plasma loss probability, then one would conclude that

"E.David, Z. Physik 114, 389 (1939).

it is due to one-electron interband transitions. On the
other hand, if the probability of a low-lying loss is
found to increase relative to the probability for plasma
loss as the grain size and foil thickness decrease, then
the depolarization eGect is the more likely explanation.

As noted above, the depolarization e6ect is expected
to have little influence upon the one-electron levels in
a solid metallic foil, while this eQect may make a large
diGerence in the energy required to produce a plasmon
in the foil. If one could determine that the "lowered"
losses do exist in certain solids, then the collective
nature of the characteristic losses in those solids would
be firmly established.
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Rote added iw proof. The aut—hor has developed a
quantum generalization of the dielectric approach hf
Lindhard and Hubbard which makes unnecessary the
concept of the classically prescribed field, q (r,t), which
is present in the theory of Lindhard and Hubbard. In
a subsequent paper it will be shown that the dielectric
approach is capable of describing simultaneously the
individual and collective aspects of electronic motion
in plasma and is valid for all values of the wave vector
in the region of validity of 6rst-order perturbation
theory. A formula will be given which is identical with
Eq. (11) above for small momentum transfers by fast
electrons to plasma and which reduces to the Born scat-
tering formula for large momentum transfers. The
correlation energy in metals, excitations in the general
dielectric medium including both long- and short-
range interactions, and the relativistic generalization
of the dielectric theory will also be considered.


