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We present a new high-quality nucleon-nucleon potential with explicit charge dependence and
charge asymmetry, which we designate Argonne v&8. The model has a charge-independent part
with 14 operator components that is an updated version of the Argonne vq4 potential. Three
additional charge-dependent and one charge-asymmetric operators are added, along with a complete
electromagnetic interaction. The potential has been fit directly to the Nijmegen pp and np scattering
database, low-energy nn scattering parameters, and deuteron binding energy. With 40 adjustable
parameters it gives a g per datum of 1.09 for 4301 pp and np data in the range 0—350 MeV.

PACS number(s): 13.75.Cs, 12.39.Pn, 21.30.+y

I. INTRODUCTION

Traditionally, nucleon-nucleon (NN) potentials are
constructed by fitting np data for T = 0 states and either
np or pp data for T = 1 states. Examples of potentials fit
to np data in all states are the Argonne vi4 [1], Urbana
vi4 [2], and most of the Bonn potentials [3,4]. In contrast,
the Reid [5], Nijmegen [6], and Paris [7] potentials were fit
to pp data for T = 1 channels. Unfortunately, potential
models which have been fit only to the np data often give
a poor description of the pp data [8], even after applying
the necessary corrections for the Coulomb interaction.
By the same token, potentials fit to pp data in T = 1
states give only a mediocre description of np data. Fun-
damentally, this problem is due to charge-independence
breaking in the strong interaction.

In the present work we construct an updated version of
the Argonne potential that fits both pp and np data, as
well as low-energy nn scattering parameters and deuteron
properties. The strong interaction potential is written in
an operator format that depends on the values of S, T,
and T, of the NN pair. We then project the potential
into a charge-independent (CI) part that has 14 operator
components (as in the older Argonne vi4 model) and a
charge-independence breaking (CIB) part that has three
charge-dependent (CD) and one charge-asymmetric (CA)
operators. We also include a complete electromagnetic
potential, containing Coulomb, Darwin-Foldy, vacuum
polarization, and magnetic moment terms with finite-size
efFects. We designate the new model Argonne vi8.

In a number of applications it is important for a NN
potential to reproduce correct np and pp scattering pa-
rameters. For example, in thermal neutron radiative cap-
ture on the proton, iH(n, p)2H, it is crucial to have the
correct singlet np scattering length in the initial state

to get the cross section. However, in low-energy proton
weak capture, iH(p, e+v, )2H, it is equally important that
the correct pp scattering length be provided by the inter-
action. Clearly, a complete potential model should meet
both requirements.

Another important application is in the formulation
of three-nucleon (NNN) potentials. In general, nuclei
are underbound using only NN potentials fit to the scat-
tering data. Nontrivial many-nucleon interactions are
expected to make up a portion of the missing binding
energy. Phenomenologically we may choose to construct
a many-body Hamiltonian, such as

and constrain the strength parameters of the NNN po-
tential by requiring that H gives the correct trinucleon
binding energy. Similar considerations apply if we choose
a relativistic formulation. Clearly, such constraints are
ambiguous or even meaningless if the NN potential used
in the calculations does not adequately describe the two-
nucleon data. For He ( H), in which the NN interaction
underbinds by 1 MeV, there are two np pairs and one
pp (nn) pair. To a good approximation, the two np pairs
will be in the S = 1, T = 0 state 75% of the time, and
in the S = 0, T = 1 state 25%%up of the time, while the pp
(nn) pair will be pure S = 0, T = 1. If the chosen NN
potential fits only the more repulsive pp (nn) data in the
T = 1 state, we would get a smaller NN contribution to
the binding energy and thus overestimate the NNN po-
tential strength required. By the same token, a model fit
to np data in the T = 1 state would be too attractive and
we would underestimate the NNN potential. The difFer-
ence can be as much as 0.4 MeV, leading to variations in
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the NNN potential strength of order +20 jo. This would
have significant eKects in larger many-body systems.

Because we include a complete electromagnetic po-
tential and fit low-energy nn scattering parameters, the
present model also can be used to study charge-symmetry
breaking, as in the H- He mass difFerence [9], or more
generally the Nolen-SchifFer anomaly [10]. The electro-
magnetic potential is in principle well known and is the
longest-range part of the interaction. Potential models
commonly fit the deuteron energy to better than 1 keV
accuracy. Since we find that the electromagnetic terms
give a non-negligible 18 keV repulsion in the deuteron
and moderate shifts in the np and nn scattering lengths,
we deem it desirable to include these terms explicitly.

The major goal of the present work is to construct a
nonrelativistic potential that can be used easily in nuclear
many-body calculations and that accurately fits both pp
and np data. We adopt the local operator structure of
the older Argonne v~4 and Urbana v~4 potentials, which
have been used extensively in calculations of finite nuclei,
nuclear matter, and neutron stars [ll—13]. The assump-
tion of an underlying operator structure relates all par-
tial waves in a simple manner, without imposing a one-
boson-exchange (OBE) form which might be too restric-
tive at short distances. Recently, the Nijmegen group
has shown [14] that it is feasible to construct potential
models which fit the NN data with the almost perfect

per datum of 1. However, these models differ in each
partial wave and thus implicitly introduce nonlocalities
from one partial wave to the next that may be diKcult
to characterize and treat accurately in many-body calcu-
lations. When they limit the potential to an OBE form,
which has a local operator structure (save for a nonlocal
part in the central potential) describing all partial waves
simultaneously, the y per datum increases to 1.87, albeit
with a much smaller number of parameters. The present
model is a compromise between these two approaches,

adopting a phenomenological form (unrestricted by an
OBE picture) at short distances, but maintaining a local
operator structure. The potential was directly fit to the
Nijmegen NN scattering database [15,16], which contains
1787 pp and 2514 np data in the range 0—350 MeV, and
has an excellent y per datum of 1.09.

In Sec. II we present the analytical form of the po-
tential in the various spin and isospin states. Special
attention is given to the electromagnetic part of the in-
teraction. The free parameters are fit to the NN scatter-
ing data and deuteron binding energy in Sec. III, where
we also present the phase shifts. Section IV discusses the
projection of the potential into operator format. Static
deuteron properties and electromagnetic form factors,
with relativisitic and exchange current contributions, are
presented in Sec. V. Conclusions and an outlook are
given in Sec. VI.

II. FORM OF THE POTENTIAL
IN S) T) T STATES

The NN potential is written as a sum of an electro-
magnetic (EM) part, a one-pion-exchange (OPE) part,
and an intermediate- and short-range phenomenological
part:

v(NN) = v (NN) + v (NN) + v (NN) . (2)

The EM interaction is the same as that used in the
Nijmegen partial-wave analysis, with the addition of
short-range terms and finite-size effects [17—19]. (Values
for the masses and other physical constants used in the
following formulae are given in Table I.) For pp scatter-
ing we include one- and two-photon Coulomb terms, the
Darwin-Foldy term, vacuum polarization, and the mag-
netic moment interaction, each with an appropriate form
factor:

v (pp) = Vci (pp) + Vc2 + VD~ + Vv p + VMM (pp) .

Here

(4)

&C2 =— (~. k)& () + ()(~ ~)
' + ()

2M2 r r Mp r

+DF =
2 b(r)4M2 (6)

(7)

VM~(pp) =—
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TABLE I. Values of fundamental constants adopted in this
work.

197.32705
134.9739
139.5675
938.27231
939.56563
137.03599

2.79285
-1.91304

MeV fm
MeV/c
MeV/c
MeV/c
MeV/c

po
Po

E

O

O

cd 2

Fjr (fm )
------ Fs (fm )
———— Fjr (fm )

3 -3——— F„/r (fm )
———F„,/r (fm )

The Coulomb interaction includes an energy dependence
through the a' = 2kn/(M„vi b) [20], which is signifi-
cantly different from a at even moderate energies ( 20%%up

difFerence at Ti b = 250 MeV). The vacuum polariza-
tion and two-photon Coulomb interaction are important
for fitting the high-precision low-energy scattering data.
The Fc, Fg, Fq, and F~, are short-range functions that
represent the finite size of the nucleon charge distribu-
tions. They have been obtained under the assumption
that the nucleon form factors are well represented by a
dipole form

0

r (fm)

FIG. 1. Form factors in the electromagnetic interaction.

(13)

where the function F „is obtained assuming the neutron
electric form factor [22]

G M M G

where 6 = 4.27 fm . The functions are given by

11 3 1
Fc(r) = 1 —

~

1+ —*+—*'+—*'
~

e
16 16 48 )

, r1
Eg(r) =6

~

—+ —x+ —x ~e
i 16 16 48 )

(9)

(10)
F „(r) =b (15x+15x +6x +x ) 384

(14)

Here P„= [dG&/dq2]~ p ——0.0189 fm, the experimen-
tally measured slope [23]. We have checked this form fac-
tor in a self-consistent calculation of the deuteron struc-
ture function A(q2) used to extract G& [24] and find it
gives a fairly good fit to the data. This simple form leads
to

r 4F,(r)=1 —~1+x+-x +-x + —x + x ~e *,
2 6 24 144 j

7
E&, (r) = 1 —/1+x+ -x'+ —x'+ —x'

/

e *,
2 48 48

with x = br The deriv. ation of Fc is given in [21],
while the others are related by Eg = V' (Fc/r), Ft ———

(Fc/r)" —(Ec/r)'/r, and Ei, ——(Fc/r)'/r In the limit.
of point nucleons, Ec = Ft ——Fi, = 1 and. Fg = 47rb (r).
These form factors are illustrated in Fig. 1. The use of
Fc in Vi ~ is an approximate method of removing the 1/r
singularity (the logarithmic singularity remains) which is
justified by its short range and the overall smallness of
the term. Similarly, the use of F& in V~2 is an approxi-
mate method of removing the 1/r2 singularity. We note
that because we use the Sachs nucleon form factors, there
are no additional magnetic Darwin-Foldy terms [22].

For the np system we include a Coulomb term at-
tributable to the neutron charge distribution in addition
to the interaction between magnetic moments,

(nJ) = Vci(np) + VMM(np)

The F „ is also shown in Fig. 1. The magnetic moment
interaction is given by

VMM(np) =— 2 F(r)
4M' 3 r3p„pp Fg(r)o; cr, +— S,,

p„(L.S + L.A), (15)

v (nn) = VMM(nn)
n , 2 F, (r)p„Fp (r) cr; o, +— S,~. .(16)

where M„ is the nucleon reduced mass. The term pro-
portional to A = 2(o', —o'z. ) is a "class IV" charge-
asymmetric force [25], which mixes spin-singlet and spin-
triplet states. Its contribution is very small, and we only
include it when we construct the magnetic moment scat-
tering amplitude [19].

Finally, for nn scattering, we neglect the Coulomb in-
teraction between the neutron form factors, so there is
only a magnetic moment term

Here

Vci(np) = o.P„E„„(r)
(12)

The charge-dependent structure of the OPE potential
is the same as that used in the Nijmegen partial-wave
analysis and reads



51 ACCURATE NUCLEON-NUCLEON POTENTIAL WITH CHARGE-. . . 41

v (pp) = f„'„v (m o),

v (np) = f„zf v (mo, ) + ( )—+ 2f, v (m +), (17)

t „(.) = ' "
(i —.—."'),

3 l e —.2 2

Tj.(e)=~1+ —+
~ (1 —e ")

pr ()ar)') pr
(19)

v nn = v~ m~0

where T is the isospin and

2

v (m) =
~ ~

smc [Y„(r)cr;.cr~ + T„(r)S;~] . (18)
(m, )

(Strictly speaking, the neutron-proton mass difference
gives rise to an OPE "class IV" force as well, which again
we only explicitly include when we construct the OPE
scattering amplitude [19].) Here Y„(r) and T„(r) are the
usual Yukawa and tensor functions with the exponential
cutoff of the Urbana and Argonne v~4 models

where p = mc/h, . The scaling mass m„ introduced in
Eq. (18) to make the coupling constant dimensionless, is
taken to be the charged-pion mass, m +. The Nijmegen
partial-wave analysis of NN scattering data below 350
MeV finds very little difFerence between the coupling con-
stants [26], so we choose them to be charge independent,
i.e. , fez —— f —= f, = f, with the recommended value
f2 = 0.075. Thus all charge dependence in Eqs. (17) is
due simply to the difference in the charged- and neutral-
pion masses.

The remaining intermediate- and short-range phe-
nomenological part of the potential is expressed, as in
the Argonne v~4 model, as a sum of central, L, tensor,
spin-orbit, and quadratic spin-orbit terms (abbreviated
as c, l2, t, ls, ls2, respectively) in different S, T, and T,
states:

vsT(NN) = vsT NN(r) + vsT NN(r)L + vsT NN(r)Si2+ vsT NN(r)L S+ vsT NN(r)(L. S) (20)

Each of these terms is given the general form

sT,NN(r) IsT,NN (r) + sT,NN + Pr QsT, NN + (P'r) +sT,NN W(r) (21)

where p =
2 (m, o + 2m + )c/h, is the average of the

pion masses and T„(r) is given by Eq. (19). Thus the
T2(r) term has the range of a two-pion-exchange force.
The W(r) is a Woods-Saxon function which provides the
short-range core:

- —1
W(r) = 1+e("-")~ (22)

vsT, NN(r —0) —0 ~

igt
ST,NN

Or
(23)

Since the tensor part of the OPE potential already van-
ishes at r = 0, the first condition is satisfied by setting
Ps@, ~~ ——0. The second condition is equivalent to fixing,
for i t,

1 , OTV Ov&&QSTNN, e g PSTNN g + ic g r ( )

where we only have to evaluate the derivative of the spin-
spin part of the OPE potential.

The four sets of constants IST NN, PST NN, QST NN, and

R&& ~~ are parameters to be fit to data. However, we
t

also impose a regularization condition at the origin which
reduces the number of free parameters by one for each
vsT NN. We require that

III. DATA FITTING

An initial survey of possible potential forms was made
by fitting to the y hypersurface of the Nijmegen partial-
wave analysis of pp and np data [16]. These studies
helped select the final form of the potential ( 10 vari-
ations were tried) and the values of the function shape
parameters c, Tp, and a. Eventually, the cutoff param-
eter in the OPE functions Y„(r) and T„(r) was set at
c = 2.1 fm, while the parameters in the short-range
Woods-Saxon W(r) were set at ro ——0.5 fm and a = 0.2
fm. This value of c is slightly different from the 2.0 fm
used in the Urbana and Argonne vq4 models, while ro
and. a are the same. Attempts to make a softer-core
model led. to a poorer fit. Sensitivity to the OPE cou-
pling constant was also checked before the recommended
value [26], f = 0.075, was adopted as satisfactory.

Once these four parameters were set, a preliminary
fit of the rem»»ng parameters IsT,NN, PsT, NN QsT, NN

and R&& N~ to the phase shifts was made. The final
values were obtained by a direct fit to the Nijmegen pp
and np scattering data base and the deuteron binding en-
ergy. We use nonrelativistic kinematics, i.e., the deuteron
binding energy is taken as Eg = K2/2M, . In practice, we
found no benefit to including an R&& ~~ in spin-singlet

t

states, so these values were set to zero. Also, we found
no indication of a need for charge depend. ence in the phe-
nomenological part of spin-triplet states. In the final fit



42 R. B. WIRINGA, V. G. J. STOKS, AND R. SCHIAVILLA

TABLE II. Short-range potential parameters in MeV. The asterisk denotes that the value was
computed by Eq. (23) and not fit. The three shape parameters are c = 2.1 fm, rs ——0.5 fm, and
a = 0.2 fm.

Channel
S = 0, T = 1(pp)
S = 0, T = l(np)
S = O, T = 1(nn)

S=0,T =1

Type
C

I
-11.27028
—10.66788
-11.27028

0.12472

P
3346.6874
3126.5542
3342.7664

16.7780

1859.5627*
1746.4298*
1857.4367*

9.0972*

B
0

0
0

S=0,T =0 —2.09971
—0.31452

1204.4301
217.4559

511.9380*
117.9063+

S = 1,T = 1(pp)
S = 1,T = 1(np)
S = 1,T = 1(nn)

S = 1,T = 1 l2

ls
ls2

—7.62701
—7.62701
—7.62701

O.G6709
1.07985

—0.6269?
0.74129

1815.492G
1813.5315
1811.5710
342.0669

0
—570.5571

9.3418

969.3863*
966.2483*
967.2603*
185.4713*

-190.0949
—309.3605+

5.0652*

1847.8059
1847.8059
1847.8059
-615.2339
-811.2040
819.1222

-376.4384

S = 1,T = 0
l2
t
ls

ls2

—8.62770
-0.13201

1.485601
0.10180
0.07357

2605.2682
253.4350

0
86.0658

—217.5791

1459.6345+
137.4144+

—1126.8359
46.6655*

—117.9731+

441.9733
-1.0076

370.1324
—356.5175

18.3935

there are 40 nonzero intermediate- and short-range pa-
rameters. These are given in Table II.

In addition, we Gt the singlet nn scattering length
and efFective range by slightly modifying the short-range
S = 0, T = 1 pp potential. The nn e8'ective range pa-
rameters are the only real experimental constraint on
the nn interaction, and they are not known very pre-
cisely. In particular, there is a considerable spread of
values for a depending on whether the experiment
involves two or three nucleons in the final state [27].
We fit the values obtained from the analysis [28] of
2H(vr, p)nn experiments [29,30], which are unaffected
by possible three-nucleon forces and allow for a better
determination of ir„. (They are also more consistent
with the observed charge-symmetry breaking in the trin-

ucleon bound state [9] and theoretical models based on
p-u and m-il-iv mixing [36].) This results in a small dif-
ference between Poz „„and Poz „. The same diH'erence
was carried over to the triplet channel by introducing a
Pyy term, as discussed below in Sec. IV. These addi-
tional potential parameters are also given in Table II.

The Nijmegen NK scattering data base [15,16] includes
1787 pp data (1656 observables and 131 normalization
data) and 2514 np data (2366 observables and 148 nor-
malization data) in the range 0—350 MeV. The total y
of the potential is 4675, divided into y (pp) = 1962 and
g (np) = 2713. A detailed breakdown of the y, anal-
ogous to Ref. [8] for the pp data, is given in Table III.
We also show the breakdown for the Nijmegen combined
partial-wave analysis [16]. The difference between these

TABLE III. Distribution of y by laboratory kinetic energy of the Nijmegen combined par-
tial-wave analysis [16] (PWA93) and the new Argonne vis potential. N„„(N„„)denotes the number
of pp (np) data in each energy bin.

Bin (MeV)
0.0-0.5
0.5—2

2—8
8—17

17-35
35—75
75-125

125-183
183-290
290-350

0-350

Npp
134
63
48

108
59

243
167
343
239
383

1787

x'(pp)
PWA93

134.5
39.7
45.0

103.0
63.1

213.4
169.5
379.7
285.9
360.7

1794.5

V18

136.3
41.1
36.0

111.6
72.2

251.5
171.5
415.7
304.8
421.3

1962.0

N„p
10

5
55

182
293
328
232
333
517
571

2526

y (np)
PWA93

9.7
3.8

52.4
168.3
226.6
335.2
237.1
336.8
494.6
599.0

2463.5

U18

11.8

51.0
164.8
234.9
339.3
231.3
363.5
574.0
708.0

2685.8
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TABLE IV. pp phase shifts in degrees. Energies are in MeV. The So includes the full electro-
magnetic interaction [v (pp)] and is with respect to electromagnetic wave functions. The non-S
waves are nuclear phase shifts of the Coulomb interaction including the form factor (Vci) with

respect to Coulomb wave functions.

Tlab
1
5

10
25
50

100
150
200
250
300
350

'So
32.68
54.74
55.09
48.51
38.78
25.01
15.00
6.99
0.23

—5.64
—10.86

D
0.00
0.04
0.17
0.71
1.73
3.84
5.77
7.37
8.61
9.52

10.14

3P
0.14
1.61
3.80
8.78

11.75
9.61
4.72

—0.50
—5.50

-10.17
—14.49

Pg
—0.08
—0.90
—2.05
—4.89
—8.23

—13.11
—17.27
—21.16
—24.86
—28.37
-31.70

P
0.01
0.22
0.66
2.49
5.79

10.98
14.14
15.91
16.77
17.01
16.81

82
—0.00
—0.05
—0.20
—0.83
—1.77
—2.78
—3.02
—2.88
—2.58
—2.23
—1.88

3Q

0.00
0.00
0.01
0.10
0.32
0.73
1.06
1.24
1.21
0.90
0.29

3+
—0.00
—0.01
—0.03
—0.23
—0.69
—1.47
—1.96
—2.25
—2.45
—2.66
—2.95

starts to increase beyond 150 MeV. We should mention
that there are a number of groups of np total cross sec-
tion data which extend over a wide energy range. So in
order to present the results in the form of Table III, we
had to split each of these groups into a number of sub-
groups, each contributing in its appropriate energy bin.
Whenever one of these groups has a normalization error,
we choose to apply this same normalization for each of
its subgroups. As a consequence, the number of np data
in Table III is increased by 12, while the total y (np)
is lowered by 28. The reason for this reduction in y is
that these 12 extra normalizations are optimized for each
subgroup separately.

As an independent test, we have also checked our
results with the scattering analysis interactive dial-in
(SAID) program, of the Virginia Polytechnic Institute and
State University (VPINSU) group [31]. We provided
sAID with phase shifts calculated at the 17 energies 1,
5, 10, 25 (25), 350 MeV. The SAID program then uses
an interpolation routine to provide the phase shifts at
all energies at which the experimental data were mea-
sured. For the S waves below 25 MeV, this interpolation
deviates slightly from the actual values of the potential.
Moreover, the treatment of the electromagnetic contribu-
tions is less sophisticated in the VPIQSU analysis, which

leads to a large discrepancy for laboratory energies below
2 MeV. When we then compare with the data between
2 and 350 MeV, we obtain a y (pp) = 2107 for 1644 pp
data and a y (np) = 4157 for 3020 np data, all from
their data set NN943. The total y per datum by this
comparison is still a very respectable 1.34.

To demonstrate once more the importance of fitting
to both pp and np data, we used the np version of the
Argonne vi8 potential, included the proper electromag-
netic interaction, and con&onted it with the pp data. In
this way we partially simulate the comparison with the
pp data of a potential model fit only to the np data.
Of course, the analogue is not perfect, because in the
Argonne vq8 potential the l2, t, le, l82 parameters in the
triplet T = 1 partial waves are fit to both pp and np data.
Still, this modified np potential gives a y per datum of
4.4 for the pp data between 2 and 350 MeV, which is
much worse than the y2 per datum of 1.1 for the actual
pp Argonne v&8 potential on the same energy interval.
Similarly, we can replace the T = 1 np part of the Ar-
gonne v&8 potential by the T = 1 pp part and con&ont it
with the np data. This modified potential then gives a

per datum of 1.8 on the np data between 2 and 350
MeV, rather than 1.1 for the actual np Argonne vis.

The L = 0 phase shifts are calculated using the poten-

TABLE V. nn phase shifts in degrees. Energies are in MeV. The So includes the full electro-
magnetic interaction [v™(nn)].The non-S waves only include the nuclear interaction. All phase
shifts are with respect to Riccati-Bessel functions.

Tlab
1
5

10
25
50

100
150
200
250
300
350

1S
57.07
60.64
57.48
48.80
38.47
24.45
14.38
6.34

—0.42
—6.31

-11.53

'D2
0.00
0.05
0.18
0.74
1.79
3.92
5.87
7.48
8.72
9.62

10.24

Po
0.21
1.88
4.17
9.13

11.89
9.48
4.46

—0.81
—5.85

-10.54
—14.87

P
—0.12
—1.04
—2.24
—5 ~ 12
—8.48

—13.38
—17.58
-21.49
—25.21
—28.73
-32.08

3P
0.02
0.27
0.76
2.69
6.08

11.31
14.45
16.19
17.00
17.20
16.96

—0.00
—0.06
—0.22
—0.86
—1.80
—2.79
—3.00
—2.84
—2.53
—2.18
—1.83

3pl

0.00
0.00
0.01
0.11
0.32
0.74
1.07
1.25
1.21
0.88
0.25

3Q
—0.00
—0.01
—0.04
—0.24
—0.70
—1.49
—1.98
—2.26
—2.46
—2.68
—2.97
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TABLE VI. np T = 1 phase shifts in degrees. Energies are in MeV. The So includes the full
electromagnetic interaction [v™(np)].The uon-S waves only include the nuclear interaction. All
phase shifts are with respect to Riccati-Bessel functions.

+lab
1
5

10
25
50

100
150
200
250
300
350

'So
62.02
63.50
59.78
50.61
40.09
26.02
15.98
8.00
1.28

—4.54
—9.71

D2
0.00
0.04
0.16
0.68
1.70
3.81
5.72
7.30
8.52
9.43

10.06

Po
0.18
1.64
3.71
8.32

10.99
8.69
3.78

—1.43
—6.41

—11.06
-15.36

P
—0.11
—0.93
—2.04
—4.82
—8.15

—13.07
—17.28
—21.22
—24.95
—28.49
-31.85

P
0.02
0.26
0.72
2.57
5.86

11.00
14.12
15.86
16.70
16.91
16.69

E'2

—0.00
—0.05
—0.19
—0.77
—1.68
—2.69
—2.95
—2.82
—2.54
—2.21
—1.88

3+
0.00
0.00
0.01
0.08
0.28
0.67
0.98
1.15
1.10
0.77
0.14

3Q
—0.00
—0.00
—0.03
—0.20
—0.61
—1.35
—1.82
—2.10
—2.30
—2.51
—2.81

tials discussed in Sec. II, i.e., including the complete elec-
tromagnetic interaction, and by matching to electromag-
netic wave functions (hEM+~ in the notation of Ref. [32]).
For I g 0 we use the fact that bEEMM+~ can be reasonably
approximated [32,16] by only including the Coulomb in-
teraction with n' (in case of pp scattering) or no elec-
tromagnetic interaction at all (in the case of np or nn
scattering). The resulting phase shifts for partial waves
with J & 3 are shown in Table IV for pp scattering, in
Table V for nn, in Table VI for np in T = 1 states, and
in Table VII for np in T = 0 states. Note that the non-S
pp phase shifts in Table IV are calculated including the
form factor Ec (r) in the Coulomb potential Vcy(pp).

In addition, we show figures of some of the more inter-
esting phases and compare to the Nijmegen multienergy
partial-wave analysis [16], the single-energy analysis Rom
sAID [31],and recent single-energy analyses by Bugg and
Bryan [33],and by Henneck [34]. In Fig. 2 the pp, nn, and
np So phases of Argonne vqs are shown, and seen to be in
good agreement with the various analyses. The charge
dependence is clearly evident; a discussion of the rela-
tive size of various contributions to charge-independence
breaking is given below in Sec. IV. The Po phases are
shown in Fig. 3; the Po channel displays the second
greatest amount of CIB after the So channel. Again
there seems to be reasonable agreement with the various

partial-wave analyses. The eq mixing parameter, shown
in Fig. 4, is both the most dificult to determine in single-
energy analyses, as indicated by the range of values and
size of error bars, and one of the most important be-
cause of its relation to the strength of the tensor inter-
action. The Argonne vq8 value tracks the Nijmegen mul-
tienergy analysis up to T~ b ——100 MeV before deviating
slightly on the high side. However, the differences with
the Nijmegen multienergy analysis are still w'ithin two
standard deviations. Finally, the Pq phase shift, which
is intimately related to the eq mixing parameter, is shown
in Fig. 5. Here the present model is somewhat less re-
pulsive than the various partial-wave analyses above 150
MeV.

The low-energy scattering parameters are shown in Ta-
ble VIII and compared to experimental results [27,32,35].
The scattering lengths and effective ranges are calculated
both with and without the electromagnetic interaction.
Without the electromagnetic interaction, the effective
range function is simply given by I" (k ) = kcoth~
—I/a + ~ pk2 + Q(k4). In the presence of the electro-
magnetic interaction, we have to use a more complicated
effective range function [32], where the phase shifts are
with respect to the full long-range electromagnetic inter-
action.

TABLE VII. np T = 0 phase shifts in degrees. Energies are in MeV. The coupled Sq- Dq
channel includes the full electromagnetic interaction [v (np)]. The uou-S waves only include the
nuclear interaction. All phase shifts are with respect to Riccati-Bessel functions.

+lab
1
5

10
25
50

100
150
200
250
300
350

1P
—0.19
—1.51
—3.11
—6.48
—9.85

—14.20
—17.68
-20.79
—23.65
—26.28
—28.71

1+
—0.00
—0.01
—0.07
—0.42
—1.13
—2.22
—2.98
—3.61
—4.22
—4.87

147.75
118.18
102.62
80.68
62.89
43.51
31.19
21.94
14.45
8.13
2.65

0.11
0.66
1.14
1.77
2.11
2.52
2.96
3.43
3.92
4.43
4.95

3D
—0.00
—0.17
—0.65
—2.72
—6.28

-12.04
—16.39
-19.82
-22.59
—24.83
—26.65

D
0.01
0.22
0.85
3.71
8.94

17.10
21.85
24.20
25.06
25.01
24.41

3D
0.00
0.00
0.01
0.08
0.40
1.61
2.92
4.00
4.76
5.21
5.39

8'3

0.00
0.01
0.08
0.55
1.61
3.50
4.88
5.88
6.61
7.16
7.59

3Q
—0.00
—0.00
—0.00
—0.05
—0.26
—0.93
—1.74
—2.58
—3.41
—4.20
—4.96



ACCURATE NUCLEON-NUCLEON POTENTIAL %ITH CHARGE-. . . 4S

70

60

50

40

Argonne v„
& Bugg-Bryan 92
~ Nijmegen 93
0 Henneck 93
+ vPIkSU 94

30

20

10

-10

-20
0 100 200

Ei.b (MeV)

I

300 400
p

0 100
I

200

E„,(MeV)
300 400

FIG. 4. The e1 mixing parameter compared to various par-
tial-wave phase-shift analyses.

60

0

50

-10

40

0
bO
Cl

6Q
-20

30
0 10 20

E„,(MeV)
30 40 50

-30

P,
FIG. 2. Phase shifts in the Sp channel for np, nn, and

pp scattering, compared to various partial-wave phase-shift
analyses.

-40
0

I

100
I

200

E„,(MeV)

I

300 400

10

FIG. 5. Phase shifts in the P1 channel, compared to vari-
ous partial-wave phase-shift analyses.

TABLE VIII. Scattering lengths and effective ranges in fm.

-10

-15

-20
0 100 200

E,~b (MeV)

I

300 400

1
app

1
rpp

1
ann.

1rnn
1
anp

1
rnp

3a p
3

rnp

Experiment
—7.8063+0.0026

2.794 + 0.014
—18.5 + 0.4

2 80 + 0 11
-23.749 + 0.008'

2.81 + 0.05'
5.424 + 0.003'
1.760 + 0.005'

Argonne v18
—7.8064

2.788
—18.487

2.840
—23.732

2.697
5.419
1.753

~/ov M

—17.164
2.865

—18.818
2.834

—23.084
2.703
5.402
1.752

FIG. 3. Phase shifts in the Pq channel for np, nn, and
pp scattering, compared to various partial-wave phase-shift
analyses.

Reference [32].
Reference [28].

'Reference [35].
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IV. PROJECTION INTO OPERATOR FORMAT

We can project the strong interaction potential given
above &om S, T, T, states into an operator format with
18 terms

vi~ = ) vp(re )O,~
. (25)

p=1,18

Here the first 14 operators are the same charge-
independent ones used in the Argonne v14 potential and
are given by

O,",='" = &, T;.T, , ~.--~&, (~'-~')(T' T~) ~'~ ~V(T' T~). I.S I.S(T'.T~)

L2, L (T;.T~) LI(cr, o~)IL (cr, cr~)(T, T~)I (L S), (L.S) (T; T~) . (26)

These 14 components are denoted by the abbreviations
c, r, o, o r, t, tr, l s, Isr, l2, l2r, l2o, l2o.r, ls2, and ls2r.
The four additional operators break charge independence
and are given by

0,". . ' = Ta, a (cr; cr~)Ti, a S;;Ta, a (Tz, +T )zI(27)

1 1
VtT 0 [2 (Vl1 pp + Vl 1,nn) Vl 1)lnp]

Finally, the charge-asymmetric terms are given by

(34)

The charge-dependent tensor term comes only from the
spin-triplet channel, and reads

c CI CD~ CA/
VS1,~~ = Vsl + Vsl &ij + Vsl (uzi + &zj )

For the charge-independent potential this implies

CI 1( c
Sl $( Sl,pp + Sl,nn + Sl,np)

We then project

ls(9"11 + 3"lo + 3vol + "oo) I
1 CI CI CI CI

1 CI CI CI CI
ls (3v11 3vlo + vol Voo ) I

CI CI CI CI
ls (3v11 + vlo 3vo1 voo ) I

1r CI CI CI CI~
16( 11 10 01 + 00) )

(28)

(3Oa)

(3Ob)

(30c)

(30d)

where of course v10 ——v10 p and v00 ——v00 „.A similarCI c CI c

set of projections is used for the I parts of the interac-
tion. For the tensor, spin-orbit, and quadratic spin-orbit
pieces, which exist only in S = 1 channels, the projec-
tions are (x = t, ts, ts2)

where T;z ——3r;r~~ —v, .r~ is the isotensor operator,
defined analogous to the S;~ operator. These terms are
abbreviated as T, oT, tT, and rz. The T, o.T, and tT
operators are charge dependent and are "class II" forces,
while the rz operator is charge asymmetric and is a "class
III" force [25].

The operator potential terms, vp, can be obtained &om
the channel potentials, vsT ~~, by a simple set of projec-
tions. We first introduce charge splitting for the central
T = 1 states,

CA 1( c c
S1 4 k Sl,pp Sl,nn (35)

which leads to

1 CA CA
v~z = 4(3"11 + "ol ) I

1 g CA CAq~«4k 11 01 J ~

(36a)

(36b)

As discussed in the previous section, we fix v01 to repro-
duce the singlet nn scattering length by adjusting the pa-
rameter P01 to be slightly difFerent from P01 „„.We are
unaware of any nn data that would allow us to fix v11,
but there have been numerous theoretical predictions for
charge-symmetry breaking based on p-~ and ~-g-g' mix-
ing. Such models suggest that v11 should be somewhat
larger than vl, but with a similar shape [36]. In the
present work we make the simple assumption v11 = voc1A

which implies there is no v term. We also neglect
the possibility of a charge-asymmetric tensor term v&

which is why we end up with only one charge-asymmetric

4( 11 + 10)
1 x

11 10

(3ia)
(3ib)

The charge-dependent terms in Eq. (28) are given by

CD 1 1 c C Cvsl = —.[-, (vsl, pp+ vsl...) —vsl,.pl

which can be projected as

(32) -200
0.0

I

0.5
I

1.0
r (fm)

1.5 2.0

VT 4 (3 11 + 01 )
1 CD CD

1 CD CD
4 11 01

FIG. 6. Central, isospin, spin, and spin-isospin components
of the potential. The central potential has a peak value of
2031 MeV at r = 0.
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FIG. 7. Tensor and tensor-isospin parts of the potential.
Also shown are the OPE contribution to the tensor-isospin po-
tential, and for comparison an OPE potential with a monopole
form factor containing a 900 MeV cutoff mass.

FIG. 9. L components of the potential.

operator in our model. These choices are reflected in the
parameters of Table II.

The first four operator components of the potential are
shown in Fig. 6. The tensor components are shown in
Fig. 7 where we also show the CI part of the OPE poten-
tial used here, and for comparison an OPE potential con-
structed using the same coupling constant and a dipole
form factor (monopole at each nucleon-nucleon-pion ver-
tex) with the cutoff mass A = 900 MeV. The spin-orbit
and quadratic spin-orbit terms are shown in Fig. 8, while
the various I components are shown in Fig. 9. Finally,
the charge-dependent and charge-asymmetric terms are
shown in Fig. 10, along with the static Coulomb potential
for comparison.

The relative importance of the diferent CIB compo-
nents is illustrated in Table IX, where the evolution from
the CI part of the interaction to the full pp interaction

10.0

5.0 'rz
—- —Cl(pp)

0.0

-5.0

-10.0
0.0

I

0.5
I

1.0
r (fm)

I

1.5 2.0

FIG. 10. Charge-dependent and charge-asymmetric com-
ponents of the potential. Also shown for comparison is the
Coulomb potential, V~q(pp).

100

-100

TABLE IX. Evolution of So pp phase shifts from the
charge-independent potential to the full interaction, as de-
scribed in the text. Energies are in MeV.

-200

-300

-400
0.0

I

0.5 1.0
r (fm)

1.5 2.0

FIG. 8. Spin-orbit and quadratic spin-orbit components of
the potential.

Tlab
1
5

10
25
50

100
150
200
250
300
350

CI
57.99
61.22
57.98
49.22
38.87
24.87
14.83
6.82
0.08

—5.78
—10.99

+ mp
57.80
61.12
57.90
49.17
38.84
24.85
14.81
6.80
0.06

—5.79
-11.00

+ CDv"
57.42
60.88
57.71
49.05
38.76
24.80
14.77
6.77
0.04

—5.82
—11.01

+ CDvR
55.50
59.78
56.84
48.36
38.13
24.19
14.16
6.15

—0.60
—6.47

—11.69

EM

32.68
54.74
55.09
48.51
38.78
25.01
15.00
6.99
0.23

—5.64
—10.86
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TABLE X. Static deuteron properties.

(T)
(v )
(v )
(v )
As

rd

q~
Pd,

Experiment
2.224575(9)

0.8781(44)
0.0256(4)'
1.953(3)
0.857406(1)'
0.2859(3)

Argonne vq8

2.224575
19.814
0.018

-21.286
-0.770
0.8850
0.0250
1.967
0.847
0.270
5.76

0.871
0.275

Units
MeV
MeV
MeV
MeV
MeV

1/2

fm
po
fm
Fo

Reference [37].
Reference [38].

'Reference [39].

Reference [40 .
'Reference [41 .
Reference [42].

is displayed. The successive columns give the So phase
shifts for (1) the CI potential with an average nucleon
and average pion mass, (2) with the correct proton mass,
(3) with the correct CD OPE tail (i.e., correct neutral-
pion mass) but the CI core, (4) with both the CD OPE
and core interactions, and (5) with the electromagnetic
potential added. From these it can be seen that the nu-
cleon mass has a relatively small efFect, while the CD
OPE and core terms have relatively large efFects at low

energy, and the core contribution becomes dominant at
higher energies.

V. DEUTERON PROPERTIES

The static deuteron properties are shown in Table X
and compared to experimental values [37—42]. The bind-
ing energy, E~, is fit exactly by construction. The ex-
pectation values for the kinetic energy, T, and for the
EM, OPE, and remaining potentials are also shown. We
note that the OPE potential dominates, while the EM
potential gives a small but non-negligible 18 keV contri-
bution, mostly from the magnetic moment term. The
asymptotic S-state normalization, As, and the D/S ra-
tio, g, are both 1.5 standard deviations from experi-
ment. The deuteron radius, rg, is o8 rather more, which
is a persistent problem with NN potential models. The
magnetic moment, pg, and the quadrupole moment, Q~,
are both underpredicted in impulse approximation; both
have significant relativistic and meson-exchange correc-
tions, as discussed below. (Such corrections ta rd, are
quite small. ) Finally, the D-state percentage is about
5%%uo smaller than that of the older Argonne vq4 model [1]
and almost identical to that of the Paris potential [7].

The S- and D-wave components of the deuteron wave
function are shown in Fig. 11, where they are compare
to those for the older vi4 model. The short-range be-
havior of the wave function components is moderately
different. The A(q2) and B(q ) structure functions and
tensor polarization T2o(q ) obtained with the present in-
teraction model are displayed in Figs. 12—14; the exper-
imental data are from Refs. [24,43—51]. The model for
the isoscalar electromagnetic current operator has been

0.5

04

6

8 03
~3

& 02

Q

0.0
0.0 1.0 2.0

r (fm)
3.0 4.0 5.0

FIG. 11. The deuteron 8- and D-+rave function compo-
nents divided by r.

discussed in detail in Refs. [52,53], here we only summa-
rize its general structure, which consists of one- and two-
body parts. The one-body part has the standard impulse
approximation (IA) form, with inclusion, in the charge
component, of the Darwin-Foldy and spin-orbit relativis-
tic corrections [54]. The two-body charge operators con-
tain contributions that correspond (in an OBE picture)
to those obtained from pion- and vector-meson (p and u)
exchanges. These are obtained from the nonrelativistic
reduction of the Born terms in the corresponding rela-
tivistic photoproduction amplitudes [54]. The two-body
current operators are constructed from the spin-orbit and
quadratic momentum-dependent components of the in-
teraction with the methods developed in Refs. [52,55].
We also consider the two-body charge and current op-
erators associated with the perp mechanism. In partic-
ular, we include in the nonrelativistic reduction of its
current component the next to leading order correction
arising from the tensor coupling of the p meson to the
nucleon [53]. The Hohler parametrization 8.2 [56] is used
for the electromagnetic form factors of the nucleon, while
an u-pole term form factor is included at the perp elec-
tromagnetic vertex.
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FIG. 12. The deuteron electromagnetic structure function
A(q ) in impulse approximation (dashed line) and with rel-
ativistic and exchange-current corrections (solid line). Data
are from Bonn [44], Mainz [43], Saclay [24], and SLAG [45].

FIG. 14. The deuteron tensor polarization Tzp in im-
pulse approximation (dashed line) and with relativistic and
exchange-current corrections (solid line). Data are from
Bates [48,49] and Novosibirsk [50,51].
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The calculated A(q ) structure function is in excellent
agreement with the experimental data over the whole
range of measured momentum transfers. The Darwin-
Foldy and spin-orbit relativistic corrections to the single-
nucleon charge operator as well as the leading two-body
charge contribution due to pion exchange play an im-
portant role, as it is evident &om Fig. 12. However,
these same contributions lead to a significant discrepancy
between theory and experiment in the tensor polariza-
tion. This observable and the A(q ) structure function
are mostly sensitive to the charge and quadrupole form
factors. In particular, the momentum transfer at which
the minimum of T2p(q ) occurs is related to the position
of the charge form factor zero. The relative shift between
the predicted and experimental T2p(q ) minima implies,
therefore, a corresponding shift between the charge form
factor zeros.

The calculated B(q2) structure function is found to
overpredict the experimental data in the momentum
transfer range 10—45 fm, and has a zero around 60
fm . The leading two-body contributions are those due
to the spin-orbit and quadratic spin-orbit components of
the interaction. They are of opposite sign. However,
the overestimate of the data indicates that the degree
of cancellation between them is not quite enough. The
p7rp current contribution is small over the momentum
transfer range considered here (we have used the rather
soft cutoff values of 0.75 GeV and 1.25 GeV at the vrNN
and pNN vertices, respectively, as suggested in Ref. [57]).
At present, the two-body currents associated with the
quadratic spin-orbit and L components of the inter-
action are essentially obtained by minimal substitution
p; -+ p; —[G&(q2) + G&(q2)r, ;]A(r;), where A is the
vector potential, G& and GE the isoscalar and isovector
nucleon electric form factors [52]. It would be desirable to
construct these current components in a more systematic
way, as suggested in Ref. [58].

Finally, the values for the quadrupole and magnetic
moments obtained with the full charge and current oper-
ators are Q~ = 0.275 fm2 and pg = 0.871 pp. The mea-
sured quadrupole moment is underestimated by roughly
4%, while the measured magnetic moment is overesti-
mated by 1.5%. The two-body charge and current contri-
butions amount to 2% and 3% increases of the IA values
for Qg and pg, as listed in Table X.

10
VI. CONCLUSIONS AND OUTLOOK

10
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q (fm)
50 60

I

70 80

FIG. 13. The deuteron electromagnetic structure func-
tion B(q ) in impulse approximation (dashed line) and with
exchange-current corrections (solid line). Data are from
Bonn [44], Mainz [43], Saclay [46], and SLAG [47].

We have constructed a nonrelativistic NN potential
with a local operator structure that gives an excellent fj.t
to pp and np scattering data, as well as to low-energy
nn scattering and the deuteron binding energy. We have
projected the potential into charge-independent, charge-
dependent, and charge-asymmetric pieces. In T = 0
many-body systems only the CI part of the potential will
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contribute, while the CA part will contribute in systems
with T )

2 and the CD part for T ) 1 systems. Because
of the isotensor projection, the CI part automatically has
the correct average of s pp (or nn) and s np T = 1 in-
teraction in the trinucleons, thus serving as a correct ref-
erence point for building NNN potentials. The CA part
will contribute to the energy differences of mirror nu-
clei (the Nolen-Schiffer anomaly [10]),while the CD part
will contribute to the splitting of isobaric analog states,
e.g. , in the A = 6 nuclei. Studies of these effects are in
progress.

We have also computed the deuteron electromagnetic
properties in both impulse approximation and with rela-
tivistic and exchange-current corrections. The least sat-
isfactory prediction of the potential is the small value for
Qd, even after corrections are added. The full 4% dis-
crepancy between the predicted and empirical Qg values
is unlikely to be resolved by additional relativistic and/or
two-body corrections not included in the present calcu-
lation. Similar low values were found by the Nijmegen
group in their recent fits [14], which used rather differ-
ent potential forms than the present model. We are less
concerned about the 1.5% error in the magnetic moment
or the overprediction of the B(q ) structure function be-
cause of the uncertainties in the exchange currents dis-
cussed above. The A(q ) structure function is very well
reproduced, while the experimental tensor polarization
T2p(q ) still has rather large error bars above 10 fm

Compared to the older Argonne vq4 potential, the

present model has a weaker tensor force, which will gen-
erally lead to more binding in light nuclei and less rapid
saturation in nuclear matter. This is counteracted by the
weaker attraction in T = 1 NN states because of the mix
of pp and np components. Initial calculations of few-body
nuclei with the vqs model show a slight net reduction in
the binding energies of H and He compared to the vq4
model. Another feature of the new model is a moder-
ately greater attraction in P waves. Few-body nuclei are
not sensitive to this part of the NN interaction. However,
preliminary calculations [59] of the binding energy of sO
show a significant improvement in the relative stability of
isO and 4He, which has been a persistent problem [12].
We believe the Argonne vqs potential has an promising
future for use in microscopic nuclear many-body theory.
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