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1. Introduction

In 1857, Michael Faraday provided a fascinating description of the various colours of colloidal sus-
pensions and thin films of gold nanoparticles [1]. He presented results of the first detailed nanotech-
nology experiments, and discussed the phenomena which we now attribute to absorption and
scattering of light by plasmon resonances. In fact, colloidal noble metal particles are found dispersed
in beautifully coloured glass thousands of years old, the most prominent example being the Roman era
Lycurgus cup [2]. In the last few decades the field of nano-optics has developed thanks to advances in
nanoscale fabrication and physical phenomena based primarily on plasmons. The name ‘‘plasmonics’’
was originally coined in analogy with electronics [3] although the term is now broadly used to de-
scribe all plasmon-related optical research [4].

Like a tiny antenna, the electrons in a conductive nanoparticle resonate collectively, concentrating
photonic energy into strongly localized electric fields at dimensions well below the diffraction limit.
Exploiting these field enhancements, metallic nanoparticles are utilized to enhance chemical sensing
[5], photovoltaic [6] and LED [7] efficiency. These collective electron oscillations, or plasmons, may
also couple to a photon at a planar metal/dielectric interface, creating a surface plasmon polariton.
The energy and geometry of the coupling are extremely sensitive to changes in the dielectric environ-
ment, leading to biological sensor elements termed surface plasmon resonance (SPR) sensors [8].
Recently, mesoscopic ‘‘artificial atoms’’ with defined plasmonic resonances have been used to design
and build photonic metamaterials [9] displaying artificial magnetism and negative index of refraction.

Simultaneously with fabrication advances, nanotechnology has also progressed due to improved
metrology. The accurate measurement of both particle sizes and their spectral resonances allows
correlation of the optical and structural properties. Particle sizes are routinely measured in a small
area of the sample using scanning probe and electron microscopy. In contrast, optical spectroscopy
is usually performed by reflection or transmission measurements over a relatively large area. One
observes the interaction of comparatively-long electromagnetic waves with charges and currents on
the atomic scale. A statistical averaging of the microscopic properties is therefore a requirement of
any mathematical analysis. The question has recently been posed as to how much useful information
can be determined regarding the material nanostructure using macroscopic spectroscopy [10].
Obviously a technique that can simultaneously determine both the nanoscale structural and
macroscopic optical properties of a material would be of great value.

This article aims to review the current status of ellipsometry, a sensitive polarized optical spectros-
copy, in the context of plasmonics. While any discussion of ellipsometry is fundamentally related to
the electromagnetic properties of materials, namely the permittivity and permeability discussed in
Section 2, in this work we aim to describe other physical parameters that can be probed. From the
Drude theory discussed in Section 3 one may link the optical measurements to the oscillations of
bound and free electrons, from which one can determine the electrical conductivity, electron density
and the mean free path of the electrons. By exciting plasmon waves on a metal surface one can probe
the near surface region, of the order of a few nanometres, with extreme sensitivity, which has
applications in the study of molecular absorption. We shall show in Section 4 that using ellipsometry
provides additional phase information which increases the sensitivity yet further. Section 5 discusses
the polarization of nanostructured metal elements which results in resonant absorption features in
the optical spectra. The frequency, width and amplitude of these absorption curves depend on the
particle density and shape, and the medium surrounding the metal. By applying effective medium
theories one can determine these parameters from ellipsometry spectra, thereby providing nanostruc-
tural information from macroscopic measurements. In Section 6, we will show that applying General-
ized and Mueller matrix ellipsometry to the study of plasmonic metamaterials has the potential to
determine not only the dielectric and magnetic resonances of the artificial atoms, but also the
permeability and permittivity tensors of anisotropic materials, including the gryrotropic tensors
linking the electric and magnetic responses.

It is of historical interest to note that Paul Drude plays an important role in the establishment of
both ellipsometry and the theory of metal optics on which plasmonics is based. Drude was an early
champion of Maxwell’s theory in Germany and developed the Drude model of metals, linking the
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conductivity with the optical dispersion properties [11–14]. Drude experimentally demonstrated his
theory using ellipsometry and, although its roots lie in the work of others in the decades prior [15],
he is attributed with establishing the technique by laying the theoretical groundwork.
2. Spectroscopic ellipsometry

The polarization-dependence of plasmon resonances was observed by Wood in 1902, who sur-
mised that ‘‘the results obtained with polarized light will be the means of eventually determining
the exact cause of the colours’’ [16]. Spectroscopic ellipsometry is the measurement of polarized light
reflected from a material surface or thin film in a configuration described as a ‘‘common-path polar-
ization interferometer’’ [17]. From the measured quantities the optical properties and nanostructure
of the materials may be calculated. Due to demanding measurement and calculation procedures,
ellipsometry was historically applied in only the simplest of cases, primarily to determine the macro-
scopic optical properties of isotropic, homogeneous materials and thin films.

In the later part of last century, experimental ellipsometry was transformed by a number of tech-
nological advances, namely; the availability of computers to simplify the modelling process; instru-
ment automation; multichannel spectral measurement; and extension of the measurement range to
UV and infrared frequencies. Additionally, the mathematical models to handle the data analysis of
anisotropic and depolarizing materials were developed and written into computer algorithms. For a
detailed review of ellipsometry the reader is referred to the classic book of Azzam and Bashara [18]
and also the contemporary works of Fujiwara [19], Schubert [20] and Tompkins and Irene [21]. To
see what ellipsometry can tell us about the shape, size and electronic properties of nanostructured
metals, first we need to consider what ellipsometry actually measures.

2.1. The dielectric function

To characterise the optical properties of a material we define parameters that relate the change in
the electric and magnetic fields of light after reflection from, or transmission through, that material.
Electromagnetic (EM) radiation causes a redistribution of the charges and currents in a material which
is well described by the equations of Maxwell. The constitutive relations link the external electric and
magnetic fields to the internal fields in the material, via the relative permittivity e and permeability l
[22]
D � ee0E ¼ e0Eþ P ð2:1Þ

B � ll0H ¼ l0HþM ð2:2Þ
where E and B are the electric and magnetic fields, D and H are the electric displacement and magnetic
induction, P and M are the electric and magnetic polarizations, and e0 and l0 are the permittivity and
permeability of vacuum, respectively. The solution to Maxwell’s equations for an EM wave in an iso-
tropic medium has electric and magnetic field transverse to the wave vector k, defined as k = ks, where
s is the unit vector and k = 2p/k, where k is the wavelength of the light in the medium. The dispersion
relation for transverse waves is
k2 ¼ x2

c2 e k;xð Þl k;xð Þ ð2:3Þ
where c is the speed of light in a vacuum and x is the angular frequency. In this work we will primarily
use the photon energy, �hx, in units of eV.

For homogeneous materials it is convenient to assume that the wavelength is infinitely large, in
which case k! 0 and one may ignore any spatial frequency dependence. This assumption is valid
for materials where the constituent units are much smaller than the light wavelength, such as atoms
in the infrared and visible wavelength range. For very high frequencies (e.g., X-rays) the periodic
crystal planes diffract the waves, as do diffraction gratings at visible frequencies, and the spatial
dependence must be explicitly incorporated into any description of the dielectric function. For many
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plasmonic materials and metamaterials this distinction is important since the size of the metallic
structures is often at the boundary where spatial frequency dependence is required. Diffraction and
scattering may also cause depolarization which is important to take into account in ellipsometry
measurements.

If e and l are independent of both spatial and temporal frequency, Eq. (2.3) becomes
1 For
k ¼ x
c

ffiffiffiffiffiffi
el
p ð2:4Þ
Limiting ourselves for now to non-magnetic materials1 the material permittivity e ¼ 1þ P=Ee0 (also
called the dielectric constant) is a measure of the macroscopic electric polarizability of a material. All
materials exhibit temporal frequency dispersion and e is a complex function of angular frequency x such
that eðxÞ ¼ e0ðxÞ þ ie00ðxÞ, where the sign of the imaginary part is consistent with the convention used in
physics [19]. It is assumed from this point that the frequency dependence is implicit in e. The dielectric
function is related to the complex index of refraction N, by e ¼ N2 ¼ ðnþ ijÞ2 where n is the refractive
index and j is the absorption coefficient. To avoid confusion between the absorption coefficient and
the wave vector we will endeavour to use the dielectric function where possible. The dielectric function
is also related to the optical conductivity r by e ¼ 1þ ir=e0x [24].

If one assumes the dependence on spatial frequency is negligible then we may assign a dielectric
tensor to a material. In the general case
e
$
¼

exx exy exz

eyx eyy eyz

ezx ezy ezz

2
64

3
75 ð2:5Þ
For the case of a surface or thin film, the tensor axes are generally defined in orthogonal Cartesian
coordinates with the x and y axes parallel to the surface and the z-axis in the direction normal to the
plane. If the material optical properties are orthorhombic [19], one may apply a transformation matrix
by defining the Euler rotation angles to rotate the dielectric function such that the principle material
axes align with the laboratory axes. Then the diagonal tensor elements reduce to ex, ey and ez and the
off-diagonals are zero. For isotropic materials ex ¼ ey ¼ ez. For materials with monoclinic or triclinic
optical properties, one may apply a further rotation using a transfer function to determine the angles
between the principle axes [25].

2.2. Ellipsometric measurement

There are two standard techniques to determine the dielectric function of a material; reflection and
transmission (R&T) measurements, and ellipsometry. R&T measures the intensity of transmitted and/
or reflected light after interaction with a material. By combining the R&T data one can determine the
complex permittivity. If only one of the measurements is available (e.g., the material may be opaque)
then it is possible to use the Kramers–Kronig (KK) theorem to determine the dielectric function. How-
ever, there is often an associated uncertainty in the value of e0. In contrast, ellipsometry measures the
change in polarization state of light reflected from a material. The advantage of ellipsometry is the
simultaneous measurement of both the amplitude ratio and phase difference of orthogonally polar-
ized light (Fig. 1). This provides two measured parameters with which to calculate the real and imag-
inary parts of the dielectric function, thereby avoiding the need to resort to KK analysis. In addition, by
measuring ratios of the intensities, calibration procedures are simplified.

Ellipsometry exploits the fact that polarized light, at off-normal incidence, is reflected (and trans-
mitted) differently from a surface depending on whether its electric field is aligned parallel (p) to the
plane of incidence, or perpendicular to it (s, from the German, senkrecht). Fig. 1 shows the case of light
reflected from a surface which originally contains equal components of s- and p-polarized light (i.e.,
linearly polarized with electric field oriented 45 degrees from the incidence plane). The contrast in
the dielectric functions at the interface causes the phase of one component to be delayed with respect
most natural materials l = 1 at frequencies higher than the microwave region [23].



Fig. 1. Ellipsometric measurement geometry.
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to the other by an amount D and the reflected electric field amplitudes to be dissimilar. Thus, in gen-
eral, the reflected light will be elliptically polarized. While the case described above uses linearly
polarized incident light, the ellipsometric principle applies to elliptically polarized incident light or
even modulated incoming state-of-polarization. So long as the initial polarization state is known,
the dielectric function of the sample may be deduced from a measurement of the ellipticity of the final
state; hence the term ellipsometry.

2.2.1. The Stokes formalism
In the most general description the polarization state of a light beam is described by the Poincaré

sphere or the Stokes formalism. The Stokes method defines parameters which are directly measure-
able as irradiance, I. The Stokes parameters in vector form are defined by [26]
S0 ¼ Ix þ Iy ð2:6aÞ

S1 ¼ Ix � Iy ð2:6bÞ

S2 ¼ Iþ45 � I�45 ð2:6cÞ

S3 ¼ IR � IL ð2:6dÞ
where the subscripts denote polarization in the orthogonal x and y directions, at 45 degrees to x and y,
and right circularly and left circularly polarized. The Stokes vector is simply
S ¼

S0

S1

S2

S3

2
6664

3
7775 ð2:7Þ
The 4 � 4 Mueller matrix represents the transformation of an incident Stokes vector Si to its reflec-
tion from a sample surface Sr.
Sr ¼

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
6664

3
7775Si ð2:8Þ
A complete or partial measurement of the Mueller matrix using ellipsometric concepts is referred
to as Mueller matrix ellipsometry (MME). Knowledge of the Mueller matrix provides practically all
information about the interaction of polarized light with the sample. Complete measurement of all
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16 elements of the matrix is therefore somewhat of a holy grail for applied ellipsometrists. The first
MME measurements were performed in the late 1970s, however only recently has the hardware be-
come generally available to perform such measurements [27].

MME is necessary if the sample depolarizes the probe beam (i.e., converts it to partially polarized or
unpolarised light). There are a number of common causes of depolarization and one should always be
mindful of the potential for its occurrence since it may significantly alter the results of an ellipsometric
analysis. Primary causes include; large sample surface roughness causing scattering of the probe
beam; thin film thickness inhomogeneity (e.g., thickness gradient); backside reflection from a weakly
absorbing substrate; and variation in the incident angle of the probe beam (e.g., caused by focusing
optics). Depolarisation has been used as a technique to determine the thickness gradient in thin films
[28,29] and proposed as a method to determine the roughness of a surface [30]. Depolarization phe-
nomena occur not only for heterogeneous samples. Strongly varying optical properties as a function of
wavelength (strong dispersion) or incident angle can induce depolarization. Thus plasmonic reso-
nances cause depolarization effects.

2.2.2. The Jones formalism
If the sample is non-depolarizing, a 4 � 4 Mueller matrix (with real valued elements) may alterna-

tively be described using a 2 � 2 Jones matrix (with complex valued elements) [18]. In the Jones for-
malism one defines the polarization states as orthogonal electric field components, Ep and Es.
Reflection from a surface of a propagating light ray is expressed by the Jones matrix [31]
Erp

Ers

� �
¼

rpp rps

rsp rss

� �
Eip

Eis

� �
ð2:9Þ
where matrix elements are the reflection coefficients and the subscripts r and i denote the reflected
and incident rays, respectively (note that the ordering of the subscripts are interchanged in some nota-
tions [21]). In isotropic materials the off-diagonal elements, rps and rsp (which correspond to the re-
flected p-polarized light induced by incident s-polarized light, and the reflected s-polarized light
induced by incident p-polarized light, respectively [19]) are zero. The diagonal elements rpp and rss

may then be simply written rp and rs. This allows one to define the ellipsometric parameters, W
and D, as the ratio of the reflection coefficients
q � rp

rs
� tan We�iD ð2:10Þ
The angles W and D correspond to the amplitude ratio and the phase difference of the reflection
coefficients, respectively. The parameter q is in practice directly measureable, however in modern
rotating element ellipsometers one generally measures Fourier coefficients of the detector and con-
verts them to the Jones matrix [32].

2.2.3. Generalized ellipsometry
If the film and/or substrate are optically anisotropic a proportion of incident p-polarised light is

converted to s-polarised light (and vice versa) and the off-diagonal elements of the Jones matrix are
non-zero. They must be determined using generalized ellipsometry (GE), introduced by Azzam and
Bashara [33] in the early 1970s. The basic principle is to define and determine three independent nor-
malized Jones matrix elements for fixed measurement geometry. The GE parameters Wij and Dij are
defined by [19]
qpp �
rpp

rss
¼ tan Wpp e�iDpp ð2:11aÞ

qps �
rps

rss
¼ tan Wps e�iDps ð2:11bÞ

qsp �
rsp

rss
¼ tan Wsp e�iDsp ð2:11cÞ
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Note that rpp is also used in some works to normalise the Jones matrix elements. As pointed out by
Schubert, different normalizations may be appropriate for different ellipsometric configurations [34].
To measure the six independent parameters (Wpp, Wps, Wsp, Dpp, Dps, Dsp) that define the Jones matrix
requires at least three independent measurements with different angles of light polarization [18]. In
practice, the system is usually over-determined by measuring a large number of polarization angles.

2.3. Parameter retrieval

Predicting reflection and transmission spectra by solving Maxwell’s equations for specific geome-
tries and permittivities is often termed the ‘‘forward problem’’. We are concerned with the ‘‘reverse
problem’’; the retrieval of the permittivities and geometries from reflection and transmission spectra.
Solving the reverse problem for complicated structures using reflection spectra has been compared
with trying to determine ‘‘the shape of a dragon from its footprints’’ [35]. Therefore we need to start
with simple problems and work our way up. In the simplest case of reflection from a planar interface
between two semi-infinite materials the reverse problem reduces to determining the pseudodielectric
function using the Fresnel equations [22].

2.3.1. The pseudodielectric function
To describe the angle-dependent refraction and reflection of light at a sharp interface between two

media with real refractive indexes, n0 and n1, we recall Snell’s law
2 Not
n0 sin h0 ¼ n1 sin h1 ð2:12Þ
and the Fresnel equations
rp ¼
n1 cos h0 � n0 cos h1

n1 cos h0 þ n0 cos h1
ð2:13Þ

rs ¼
n0 cos h0 � n1 cos h1

n0 cos h0 þ n1 cos h1
ð2:14Þ
where h is the angle the wave vector makes with the surface normal (Fig. 1). Whilst Eqs. (2.12), (2.13),
and (2.14) are written for real valued n, they are valid for complex values, N = n + ij. Recalling N2 ¼ e,
we can combine Eqs. (2.10) with (2.12), (2.13) and (2.14) for a relation connecting the dielectric
functions of the two media
eh i ¼ e0 sin2 h0 þ
ð1� qÞ2ðsin2 h0Þðtan2 h0Þ

ð1þ qÞ2
ð2:15Þ
where hei is termed the pseudodielectric function.2 In the case that surface layers can be neglected
hei ¼ e1. Thus assuming the ambient dielectric function is known (e0 � 1 for air) then the material dielec-
tric function may be determined from the incident angle h0 and the reflectance ratio q. Since ellipsom-
etry measures two values the retrieval procedure can unambiguously determine both the real and
imaginary parts of the dielectric function.

2.3.2. Thin films
The pseudodielectric function only works for the case where there is no thin film or overlayer on

the surface. If light is able to penetrate the film and reflect from the film/substrate interface the effects
of multiple reflections in the film must be accounted for. The application of ellipsometry to plasmonics
deals with the optical properties of thin films, the basics of which are well presented by Abelés [36].
The Abelés method to determine the dielectric properties of thin films and stratified media treats each
layer as a 2 � 2 matrix [37]. A final transfer matrix is then determined from the product of all the
layers [32]. The Abelés method has the advantage that it can be used for anisotropic films in certain
cases, and can be easily extended to the 4 � 4 Berreman method for general anisotropic cases. In
e that here e0 is the ambient dielectric function, not the vacuum permittivity.
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the special case that there is only a single isotropic thin film of thickness d on a substrate, the Abelés
method reduces to the well known Airy formulas
r012p ¼
r01p þ r12p expði2bÞ

1þ r01pr12p expði2bÞ ð2:16aÞ
r012s ¼
r01s þ r12s expði2bÞ

1þ r01sr12s expði2bÞ ð2:16bÞ
where
b ¼ 2pdN1 cos h1

k
ð2:17Þ
and the subscripts 0, 1 and 2, denote the ambient, film and substrate respectively. Multilayer systems
may be analysed in a similar way by extending this procedure although it is rather cumbersome and
the Abelés method is recommended.

The film thickness is often unknown. If the dielectric functions of all layers are known then the
film thickness may be determined with great accuracy. However care must be taken since the thin film
dielectric function often differs markedly from the bulk. If only the substrate and ambient dielectric
functions are known then the three unknowns (e01, e001; d) cannot be uniquely determined from the
two ellipsometric parameters. If e001 is very small (e.g., transparent glass or polymer) then the problem
may be approximated to two unknowns. However for metal films e001 is significant and other methods
are required. One method is to use a prominent optical feature in the substrate. If d is incorrect then
this feature will appear in the film dielectric function. Thus, d may be iteratively adjusted to remove
the feature and obtain the correct thickness and dielectric functions. This method has been termed the
‘‘Arwin-Aspnes’’ method if the feature is a semiconductor transition [38] or the ‘‘interference’’ method
if the feature arises from an interference fringe from a thick transparent film on the substrate [39].
Characterization of thin absorbing films with ellipsometry has been reviewed by Hilfiker et al. [40] .
2.3.3. Anisotropic thin films
The Fresnel approach to determine anisotropic dielectric tensors is quite demanding and the use of

the 4 � 4 matrix method is generally employed. The method is based on the Berreman transfer matrix
method [41] and was established by Schubert in its currently used form [42,43]. Briefly, one defines an
incident matrix to project the electric fields of the transmitted wave onto the rear surface of the film.
Those fields are then projected to the top surface by a 4 � 4 partial transfer matrix which is defined
using the material dielectric functions. Finally an exit matrix projects the fields into the incident
and reflected waves. Further partial transfer matrices may be introduced to account for multiple
layers. The incident, exit and partial transfer matrices are then multiplied to give a final transfer
matrix. The elements of the Jones matrix are determined from algebraic ratios of the transfer matrix
elements and compared with the measured values.
2.3.4. Fitting procedure in ellipsometry
By constructing an optical slab model of parallel layers for the substrate and any overlayers the

parameters defining the layers, such as the thickness and optical constants, may be determined by
fitting to measured data. In the simplest case of a flat bulk absorbing material, the problem reduces
to determining the optical constants using Eq. (2.15). In that case the number of unknowns is equal
to the number of measured parameters and the system is uniquely determined. A similar case occurs
for a thin film if the thickness is known, as described above. However using spectroscopic data we may
also be interested in determining the parameters which define the optical constants, such as the
electron density or mean-free-path using the models described in Section 3. In that case we can define
a number of fitting parameters in the model and – using an error fitting function – minimize the error
between the model and the experimental data using a linear regression analysis, such as the
Levenberg–Marquardt method. The fitting procedure is described in greater detail in Ref. [19].
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3. Optical models of metals

The features of the dielectric function in the visible region arise from the response of bound and
unbound charges to the electric and magnetic fields of light. The optical properties of metals stem
predominantly from unbound conduction electrons, which give rise to the plasmons which we are
interested in, although the bound electrons have a significant influence. The Lorentzian model is
the general starting equation for the resonant behaviour of bound electrons in an electric field. For
transparent dielectrics, the Sellmeier model is a special case Lorentzian where the absorption is zero.
The Drude model of metals is a special case Lorentzian where the resonance frequency is zero.

3.1. The Lorentz model

The Lorentz model describes the motion of an electron bound to a positive ion core in an electric
field. We assume that the motion of the ion core is negligible and that there is a linear restoring force
on the electron. The electron with mass, me and charge, �e, in an external electric field, E = E0 exp(
�ixt), has the equation of motion
3 Not
me
d2x
dt2 ¼ �meC

dx
dt
�mex2

0x� eE0 exp �ixtð Þ ð3:1Þ
The first term on the right hand side accounts for damping of the oscillation due to scattering from
defects and impurities, where C is the damping constant. The second term accounts for the restoring
force where x0 is the resonance frequency of the oscillation. The final term is the electrostatic force
from the externally applied field.

For a material where the number of electrons per unit volume is Ne, the polarization becomes
P = �eNex(t). Combining Eqs. (2.1) and (3.1) and rearranging gives us
e xð Þ ¼ 1þ e2Ne

e0me

1
x2

o �x2 � iCx
ð3:2Þ
This is the expression for a Lorentz oscillator. It is particularly effective for modelling chemical
bonds at infra-red frequencies. If the material is a non-absorbing dielectric, such as a transparent glass
or polymer, we may set C to zero, giving us the Sellmeier model. The commonly used Cauchy model is
an approximation of the Sellmeier model in terms of the real refractive index, n.

3.2. The Drude model

Conduction electrons in a free-electron metal (such as the noble metals) are essentially unbound.
The Drude–Sommerfeld model assumes that the conduction band electrons act in phase in response to
an applied electric field. Since there is essentially no restoring force on the electrons, the centre fre-
quency of Eq. (3.1) is zero, resulting in the Drude equation3
e xð Þ ¼ 1�
x2

p

x2 þ iCx
¼ 1�

x2
p

x2 þ C2 þ i
x2

pC

x x2 þ C2
� � ð3:3Þ
where xp is the Drude plasma frequency defined by
xp ¼

ffiffiffiffiffiffiffiffiffiffiffi
e2Ne

e0me

s
ð3:4Þ
The mass of the electron may be replaced by an effective mass, m0, to describe the coupling to the
ion core. This is especially important in semiconductors. The collective motion is damped by scattering
from surfaces, defects and grain boundaries in the metallic crystal. The damping constant, C, is related
to the electron mean free path, l, by
e that the sign in the denominator is reversed to denote losses.
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C ¼ v f

l
¼ 1

s
ð3:5Þ
where vf is the Fermi velocity and s is the collision frequency. Thus the DC conductivity r0 of a metal
may be determined from the Drude model via the relation
r0 ¼
e2Ne

me
s ¼

x2
pe0

C
ð3:6Þ
3.3. Interband transitions

In real metals the bound electrons contribute to the dielectric function, especially in the UV region
where interband transitions are excited. In the noble metals – which are the materials of choice for
plasmonics – the lowest energy interband transitions occur at �hx = 2.1, 3.8 and 2.4 eV for Cu, Ag
and Au respectively [44]. These correspond to transitions from the 3d-4s, 4d-5s and 5d-6s bands,
respectively. For energies below the transition edge there is negligible contribution to the imaginary
part e00. The contribution to the real part e0 may be approximated by a constant offset e1. Eq. (3.3) thus
becomes
e xð Þ ¼ e1 �
x2

p

x2 þ iCx
ð3:7Þ
The accuracy of this model decreases as the transition energy is approached. The interband transi-
tion may be explicitly modelled with multiple Lorentz-oscillators [45] but this does not take into ac-
count the actual band-gap. The Tauc–Lorentz (TL) model, on the other hand, explicitly incorporates the
band-gap. The model described by Jellison and Modine [46] combines the Lorentzian equation (Eq.
(3.1)) with an expression for e00 developed by Tauc et al. [47] and expanded by Forouhi and Bloomer
[48]. It describes interband mechanisms with an optical band gap �hxg . The final expression is
e00 xð Þ ¼
Ax0C x�xg

� �2

x2 �x2
0

� �2 þ C2x2
� 1
x

ð3:8Þ
for frequencies above the gap and e00 (x) = 0 for frequencies equal to or below the gap. In Eq. (3.8) the
fitting parameters A, x0, C and xg are the amplitude, centre frequency, broadening and band gap
frequency, respectively. e0 is obtained by Kramers–Kronig integration. Away from the band edge
Lorentzian oscillations are useful to account for further structure in the dielectric function. Note that
Eq. (3.8) was originally derived for amorphous materials and its applicability to a crystalline material
is debatable. However it was successfully applied for crystalline materials such as TCOs [49] and high-
j dielectrics [50] and an equivalent formula also gives a reasonable representation of the interband
transitions in Au [51].

3.4. Dielectric functions of the noble metals

The noble metals (or coinage metals) are of great practical interest in plasmonics for two reasons.
Firstly, they are comparatively inert. In particular, gold is widely used in biomedical applications.
Secondly, the noble metals have comparatively low damping constants C, especially silver which
has a small C across the entire visible spectrum. Thus the plasmon resonances are quite narrow
and losses acceptable. Fig. 2 shows the experimental data of Palik for silver [52] with fits of the Drude
(Eq. (3.7)) and Tauc–Lorentz (Eq. (3.8)) expressions in the range �hx ¼ 1—6 eV. The parameter e1 (fit
value = 1.64 eV) is included to account for interband transitions at higher energies. At energies below
the band edge (3.7 eV) the TL is zero for the imaginary part and approaches a constant value for the
real part. Close to the band edge the model underestimates the imaginary part.

In the majority of works in the literature concerning the optical properties of gold, silver and cop-
per, the experimentally determined dielectric functions of Johnson and Christy [53] in the energy
range �hx ¼ 0:5—6:5 eV are utilized as input parameters for theoretical predictions or as references



Fig. 2. Experimental data for the dielectric function of silver from Ref. [52] fit with the Drude (Eq. (3.7)) and Tauc–Lorentz (Eq.
(3.8)) expressions.

(a)

(b)

(c)

Fig. 3. Dielectric functions of (a) copper, (b) gold and (c) silver from experimental data of Palik [52] Johnson and Christy [53],
Hollstein et al. [56] and Stahrenberg et al. [57].
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Table 3.1
Drude model parameters in units of eV for the dielectric functions of the noble metals using the data of Johnson and Christy [53].

e1 �hxp �hC Eg

Cu 7.96 8.88 0.1015 2.08
Ag 4.10 9.18 0.0207 3.86
Au 10.30 9.05 0.0778 2.38
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for experimental measurements. The real and imaginary parts are shown in Fig. 3. The data shows a
number of discontinuities, especially around 1 eV. Palik’s Handbook of Optical Constants gives slightly
different values [52] and for silver in the Drude region the data is more consistent, although there is a
discontinuity around 1 eV. Alternative dielectric functions for 12 metals (including the noble metals)
were published by Ordal et al. in the infrared region [54,55] and Holstein et al. for Cu and Ag in the
intermediate region between pure Drude and interband transitions (1.8–3 eV) [56]. More recently,
measurements in the range from 2.5 to 9 eV were presented by Stahrenberg et al. for Cu and Ag under
UHV conditions [57] (available on request [58]). Parameterized dielectric functions of 11 metals were
published by Rakic et al. with the interband transitions fit using multiple Lorentzians [59]. The data of
a number of the above references are plotted together in Fig. 3 for copper, gold and silver. Note the
difference in the onset of the interband transitions in the different materials.

In Table 3.1, we list model parameters fit using the Drude model of Eq. (3.7) to the data of Johnson
and Christy [53] from 0.6 eV to the onset of interband transitions, Eg ¼ �hxg [60]. This provides an
accurate description of the dielectric function in the energy range from virtually DC to Eg. Note that
the intraband parameters xp and C are quite similar for the three metals, whereas the interband
parameters Eg and e1 differ markedly. The value of Eg is instrumental in determining the colour of
the metal; photons of energy less than Eg will be strongly reflected.
3.5. Materials other than the noble metals

Whilst the noble metals dominate the literature on plasmonics there has been a recent push to
investigate alternative materials [61]. This is primarily aimed at finding low-loss materials and a de-
sire to move to other regions of the EM spectrum. Sodium and potassium also have much lower losses
than silver however they are highly reactive in air and therefore impractical. Their plasmonic proper-
ties are well discussed in [60]. Aluminum, gallium, platinum and palladium have also been demon-
strated as plasmonic materials although their losses are higher than the noble metals. Aluminium
has a plasma frequency in the UV and an interband transition at 1.5 eV. The surface oxidation of alu-
minium can be used to advantage in practical applications, however it complicates modelling [62,63].
Gallium also has a plasmon frequency in the UV and it is stable upon exposure to air. Gallium nano-
particles have the interesting property of being a liquid in the temperature range from �80 to 600 �C.
Wu et al. [64–66] have performed a number of spectroscopic ellipsometric studies on the plasmon res-
onances of Ga nanoparticles and their relationship to the deposition conditions, substrate material and
Raman enhancement. Gallium/aluminium composite has also been investigated as a potential mate-
rial for optical modulation of plasmonics resonances [67]. Palladium and platinum are also interesting
materials, especially in regards to hydrogen storage and catalysis [68,69]. The particle plasmon reso-
nances (discussed below) of these and other metals are presented in Ref. [60]. Whilst the problem of
losses will not easily be overcome by changing the conductive material, other work has focused on
reducing the apparent losses by embedding the plasmonic elements in a gain medium [70].

Looking to unconventional materials, large band-gap doped oxides, also called transparent conduc-
tive oxides (TCOs), such as zinc oxide, both aluminium and gallium doped, and tin doped indium oxide
(ITO), have plasma frequencies in the infrared [71]. The electron density and therefore the plasma fre-
quency can be tuned by adjusting the doping in these materials. This creates a novel way to tune the
plasmon resonance frequency. A number of recent studies on the plasmon resonances in ITO have
been presented by Franzen et al. [72–76], discussed further in Section 4.2. The imaginary part of
the dielectric function of ITO from ref [49] is shown in Fig. 4. The interband transitions occur at ener-



Fig. 4. Imaginary part of the dielectric functions of graphene (generated from theory in [79]) and ITO (fitted model from
measured data in [71]).
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gies above 3.5 eV (not shown). Graphene has been trumpeted as a wonder material due to its extre-
mely high mobility (and therefore low losses) [77] and has been theoretically proposed in plasmonic
applications [78]. One interesting aspect of graphene is the ability to tune not only the plasma fre-
quency but also the onset of the interband transition by shifting the Fermi level by applying a gate
bias. Fig. 4 shows a theoretical prediction of the imaginary part of the dielectric function of pristine
graphene with a Fermi energy of 0.6 eV, with the thermally broadened interband transition at
1.2 eV (twice the Fermi energy) [79]. Note the similarity in shape to the silver dielectric function, with
the energies shifted into the IR.

3.6. Volume plasmons

In a pure Drude metal, Eq. (3.3) indicates that if C is very small then eðxpÞ ! 0. Collective longitu-
dinal optical (LO) modes can propagate in a material when e ¼ 0 and in the visible range this is termed
the volume plasmon frequency or the ‘‘bulk’’ plasmon frequency. Excitation of LO modes was initially
performed using electron energy loss spectroscopy (EELS) through thin metal films by Ferrell [80] and
explained theoretically by Ritchie [81]. McAlister and Stern [82] showed that in very thin films, p-
polarized light incident at an oblique angle can excite resonances normal to the film plane which ap-
pear as absorption bands in reflection and transmission measurements. In a thin film of conductor
these modes are plasmon resonances termed Ferrell modes. In ionic dielectrics analogous phonon
modes may be excited which are known as Berreman modes [83].

To describe the effect we consider a thin slab of pure Drude material. Displacement of a region of
the electronic cloud by a distance x, results in a surface charge density Nex, where N is the electron
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density. Thus an electric field is established inside the slab, E ¼ Nex=e0 resulting in a restoring force on
the displaced electrons,
F ¼ �eE ¼ �Ne2x
e0
¼ m

d2x
dt2 ð3:9Þ
or
d2x
dt2 ¼ �

Ne2x
me0

¼ �x2
px ð3:10Þ
The electrons thus oscillate at a natural frequency equal to the plasma frequency, xp.
For a real material, the volume plasmon is not found at xp but is red shifted as a result of the inter-

band transitions. Using Eq. (3.7) and calculating the frequency at which the real part is zero gives the
screened plasmon frequency xps
x2
ps ¼

x2
p

e1
� C2 ð3:11Þ
Thus interband transitions have a strong influence on the observed values of the bulk plasmon in
the noble metals. For both silver and gold, Eq. (3.3) predicts the bulk plasmon energy at around 9 eV,
as observed in Table 3.1 for �hxp. Using Eq. (3.11) gives a �hxp’s of 4.5 and 2.8 eV for silver and gold,
respectively. However experimental values are around 3.8 and 6 eV, respectively. The discrepancy is
due to the poor representation of Eq. (3.7) above Eg. Note that in Eq. (3.10) there is no dependence
on the film thickness. In optical experiments the thickness must be less than the skin depth and phase
retardation becomes important when the thickness is not significantly less than the wavelength.

In gold e00 is comparatively large at xps and the LO mode is strongly damped and thus rarely
observed in optical experiments. The LO mode is observed in oblique angle p-polarized reflection from
thin silver films in the UV [84] and films of transparent conducting oxides at infrared frequencies [75].
To demonstrate the effect on ellipsometric measurements, Fig. 5 shows calculated ellipsometric angles
and s- and p-polarized transmission and reflection at an incident angle of 75� for a 20 nm thick free-
standing silver film. We use the bulk dielectric function from [52], fit using a parameterized model as
in Fig. 2. s-Polarised reflection and transmission is closely related to e00, whereas p-polarised reflection
and transmission shows a strong feature close to xps, which is also observed in the ellipsometric
angles.

4. Surface plasmon polaritons

The bulk plasmons described above are radiative modes that may be excited by fast electrons or
oblique incidence photons. Once excited they will oscillate until they decay either by spontaneous
photon emission or collisional damping. Alternatively a plasmon may couple to a photon and propa-
gate with the same wave vector. If the photon is subsequently decoupled then the plasmon is extin-
guished. A coupled photon and plasmon is termed a plasmon polariton [85]. Propagation of EM waves
is forbidden in materials where e0 is negative, such as metals below the plasma frequency. An EM wave
may however propagate as a surface bound wave or surface electromagnetic wave (SEW) and when
coupled to a photon it is called a surface plasmon polariton (SPP). SPPs are reviewed extensively in a
number of texts [86,87].

The SPP phenomenon may be exploited for biosensing and is commonly referred to as the surface
plasmon resonance (SPR) technique [88]. The irradiance of internally reflected p-polarized light from a
thin gold layer on glass strongly depends on the adsorbed mass of biomolecules on the gold surface. A
minimum (the SPR dip) in the reflectance curve is then obtained when the polarization, angle of inci-
dence, gold layer thickness and wavelength are optimized to excite an SPP. In principle all energy from
the EM wave can be coupled over to the plasmon wave at resonance. The angular position of the dip
becomes very sensitive to the refractive index of the medium close to the gold layer (within the eva-
nescent field depth). If biomolecules adsorb onto the gold layer they can therefore easily be detected
and quantified. In most sensor applications, the angular position of the SPR-dip is measured whereby



Fig. 5. The ellipsometric angles, W and D, and the reflection and transmission of s- and p-polarized light from a 20 nm free-
standing silver film. At the screened plasma frequency, xps, the real part of the dielectric function is zero and an LO plasmon is
excited in the film.
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irradiance measurements are performed and thus the amplitude information of the reflected light is
monitored. However, also the phase difference between the p- and s-polarized waves carries informa-
tion about the SPP excitation. This phase difference is the ellipsometric parameter D and it has been
shown that monitoring D can give even higher sensitivity than monitoring irradiance [89].

4.1. The dispersion relation of a SPP

The study of SPP excitation and propagation is analogous to the study of related quasiparticle
polaritons in solids, such as phonons, magnons and excitons [90]. The full derivation of the surface
polariton dispersion relation is presented in a number of texts (e.g., [86,90]) and is obtained by solving
Maxwell’s equations with appropriate boundary conditions, which for surface polaritons is defined by
the interface between two semi-infinite media coupled by continuity at the boundary. Since this is
analogous to the boundary conditions for the Fresnel reflection coefficients we may use them as the
starting point and look for a solution for a wave propagating along the surface.

Due to the electric dipoles created by the redistribution of charges in a plasmonic wave (shown
schematically in Fig. 6), an electromagnetic wave propagating in the surface plane must have a compo-
nent of electric field perpendicular to the surface. Since the electric field of s-polarized light is always
parallel to the surface (a transverse electric or TE wave) we conclude that only the component of p-
polarized light with electric field perpendicular to the surface (a transverse magnetic or TM wave)
can couple to a surface plasmon mode on a flat metal surface. At resonance rp ¼ 0 and the p-polarized
Fresnel reflection coefficient at a single interface between a metal and ambient becomes [20]
kz;m

em
þ kz;a

ea
¼ 0 ð4:1Þ
where kz is the wave vector in the z direction (perpendicular to the interface), and the subscripts m
and a denote the metal and ambient, respectively. One case in which (4.1) is fulfilled is if the signs



Fig. 6. Schematic of the charge distribution and electric fields of a surface plasmon polariton at the boundary between an
insulator and a good conductor.
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of the dielectric functions are opposite. This may be achieved when e0m < 0 (i.e., a metal below the
plasma frequency) and ea > 0 (a dielectric). The field associated with the SPP has its maximum at
the interface and decreases exponentially (evanescent fields) into both media with normal compo-
nents of wave vectors being purely imaginary. The source of the field is a charge oscillation in the me-
tal surface (Fig. 6). Combining (4.1) with the wave equation for a transverse wave (Eq. (2.4)) gives the
dispersion relation for a SPP propagating along the interface with the x-component of the SP wave vec-
tor k1SP
Fig. 7.
interfac
branch
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figure l
k1SP ¼
x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eaem

ea þ em

r
¼ k1

0

SP þ iC1 ð4:2Þ
where the superscript 1 indicates a semi-infinite geometry, and k1
0

SP and C1 are the real and imagi-
nary part of k1SP. We are here only concerned with surface-bound waves and normal components of
the SP wave vectors ideally should be purely imaginary, otherwise a wave propagating in the z-direc-
tion would exist.

Fig. 7 shows a plot of Eq. (4.2) at the interface between a Drude metal (Eq. (3.3)) with negligible
damping (C = 0) and vacuum (ea = 1). Below the plasma frequency, xp, in the limit of very small k
(the retarded region) the dispersion curve approaches the light line, x = ck, whereas for large k values
(the non-retarded region) the graph reaches an asymptotic value given by the solution to
The real (black solid line) and imaginary (red dash line) parts of the surface polariton dispersion, �hx vs kc, Eq. (4.2), at the
e between vacuum (ea = 1) and a Drude metal (Eq. (3.3)) with �hxp ¼ 3:8 eV and negligible damping (C = 0). The lower
is bounded by the light line �hx ¼ kc (dotted line) and the surface plasmon frequency, xsp ¼ xp=

ffiffiffi
2
p

, (dashed line). emh is
above xp and light can propagate in the material (upper branch). (For interpretation of the references to colour in this

egend, the reader is referred to the web version of this article.)



Fig. 8. The Kretschmann geometry for excitation of SPP by light through a hemispherical prism. The light with wave vector in
the x-direction of kxa is incident on a thin gold film of thickness d. By tunneling through the film the photons can excite a SPP at
the metal–air (or metal/liquid) interface when the wave vector matches the SP wave vector, kSP.
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ea þ em ¼ 0 ð4:3Þ
which for a Drude metal of Eq. (3.7) is the surface plasmon frequency, xsp, at a metal/dielectric
interface
x2
sp ¼

x2
p

e1 þ ea
ð4:4Þ
For a pure Drude material (e1 ¼ 1) in vacuum (ea = 1), Eq. (4.4) reduces to the standard expression
for the surface plasmon frequency xsp ¼ xp=

ffiffiffi
2
p

. Above xp the metal is transparent and light radiates
into the material, represented by the dispersion line in the upper left. Thus we have two modes; a
bound SPP below xsp and a radiative mode above xp. Between xsp and xp there is a region where
propagation cannot occur since the propagation constant is imaginary (red dashed line in Fig. 7). How-
ever this is only the case if one assumes a perfect conductor. In real metals the damping is significant
and the dielectric function, and therefore also the propagation constant, is complex valued. Propaga-
tion in the region between xsp and xp is thus allowed, albeit in a quasibound, or so called ‘leaky’ mode.
The bound SPPs are limited to a maximum finite wave vector at the surface plasmon frequency.

4.2. Excitation of a surface plasmon-polariton

In a standard reflection arrangement we have a beam incident at an angle ha. The x-component of
the wave vector for the light is
klight
xa ¼ x

c
ffiffiffiffiffi
ea
p

sin ha ð4:5Þ
However, for no angle of incidence we can find a match so that k1SP becomes equal to klight
xa . There are

a number of methods to circumvent this problem and excite SPPs, including charged particle impacts
and grating coupling. Another solution would be to come in with the light through the metal, which is
impossible in the semi-infinite case due to the absorption of the metal. However if the metal is an
ultrathin film then the fields can tunnel through to the metal/air interface and excite a SPP there.
The Kretschmann method is based on illuminating the metal/dielectric interface through a glass prism
[91]. At angles greater than the critical angle the light will be totally internally reflected inside the
prism (Fig. 8) with a component in the plane of the interface. Although it is not possible to achieve
momentum matching and excite an SPP at the glass/metal interface, a SPP may be excited at the me-
tal/air (or metal/liquid) interface.

Notice that in the prism method, ea in (4.5) is the glass dielectric function and thus a larger klight
xa

compared to if air is used as ambient can be obtained and used to match k1SP. However, for a thin metal
film, the SP conditions will change compared to for a semi-infinite metal and due to the presence of
the prism, a perturbation term DkSP will be added to k1SP and we obtain a modified wave vector now
called kSP according to



Fig. 9. The top panel (a) shows the ellipsometric angle W as a function of silver film thickness and photon energy for an AOI of
55�. The bottom panels show AOI-dependent data at thicknesses of (b) 45 nm and (c) 12 nm (i.e., sections through the white
dashed lines in (a)). The sharp absorption near 3.8 eV is the Ferrell mode volume plasmon resonance whereas the AOI-
dependent absorption below 3.3 eV is the SPP-mode. The absorption above 3.8 eV is due to interband transitions.
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kSP ¼ k1SP þ DkSP ¼
x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eaem

ea þ em

r
þ DkSP ¼ k1

0

SP þ Dk0SP þ i C1 þ Crad
� �

ð4:6Þ
where the perturbation Dksp ¼ Dk0sp þ iCrad is a correction that takes into account the fact that the SPPs
are inherently leaky and lose energy via radiation into the prism. The perturbation term depends on
the metal layer thickness and can thus be controlled. For a very large thickness, DkSP goes to zero. The
excitation of the SP wave is thus obtained when
klight
xa ¼ kSP ð4:7Þ
The detailed derivation of DkSP for a double interface is presented in [90].
Rhodes et al. performed an interesting study of the angular and film thickness dependence of the

SPP excitation in indium tin oxide (ITO) films [73] using the Kretschmann method. The experimental
results were well matched by theory using the Airy formulas (Eq. (2.16)) with glass as the ambient,
vacuum as the substrate and the film modelled by the Drude equation (Eq. (3.7)). A similar theoretical
demonstration is also presented for the phonon-dependent Berreman mode in the infrared by Röseler
[92]. In Fig. 9 an analogous simulation is presented. Here the film dielectric function is represented by
the silver data from ref [53]. The upper plot, Fig. 9(a), shows a contour plot of W as a function of pho-
ton energy and silver film thickness at an angle of incidence of 55�. When the thickness reaches a few
nanometres a LO bulk plasmon resonance (Ferrell mode) is observed close to the plasma energy of sil-
ver, ⁄xp = 3.8 eV. The bottom plot, Fig. 9(c), shows a slice through Fig. 9(a) at a thickness of 12 nm,
with the angle of incidence (AOI) varied from 45� to 55�. The Ferrell mode is observed to show very
little dependence on the AOI. As the film thickness is increased the Ferrell mode shifts due to retarda-
tion effects and dies out, whereas as the critical matching thickness is approached (around 45 nm) an
angle-dependent absorption dip appears; the SPP mode. A slice through Fig. 9(a) at 45 nm is shown in
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Fig. 9(b) with AOI from 45� to 55�, demonstrating the high angular-dependence of the SPP mode. The
absorption above 3.8 eV is due to the interband transition. Note that gold has a relatively high absorp-
tion at the plasma frequency and the Ferrell mode is not observed.

4.3. SPP resonances in ellipsometric modes

Abelés [93] showed that ellipsometric monitoring of surface electromagnetic waves is very
sensitive for superficial films. Experimentally a considerable enhancement in sensitivity can be
obtained if ellipsometry is performed in a Kretschmann configuration. For adsorption of a protein
monolayer on gold, changes in the ellipsometric parameter D of 90� or more are observed [94] com-
pared to a few degrees in ordinary external mode ellipsometry [95]. After Abelés work the technique
was not significantly explored until the 1990s and is now gaining interest again. The methodology
has been called surface plasmon resonance enhanced ellipsometry [96], differential surface plasmon
ellipsometry [97] and also total internal reflection ellipsometry (TIRE) [98]. TIRE shows several
similarities to SPR techniques for sensor applications. A major difference is, however, that in SPR
normally only the intensity information for reflection of p-polarized light is utilized, whereas ellips-
ometry in addition utilizes the s-polarization. Ellipsometry is thus more complex but has two major
advantages over SPR techniques: (1) the s-polarization provides a reference for the overall irradiance
transmittance and (2) not only the amplitude (irradiance) information in the reflected beam is
utilized but also phase information in terms of D. A similar approach has earlier been proposed
by Kabashin et al. [99] who suggested to enhance the resolution of SPR-based bio- and chemical
sensors by using phase-polarization contrast. Earlier Nelson et al. suggested phase detection by
using an SPR heterodyne phase detection sensing configuration [100] and also demonstrated that
phase detection in SPR has at least five times better resolution compared to angle of incidence or
wavelength detection. Nabok et al. compared TIRE with SPR by modelling of the response of TIRE
to changes in the thickness and refractive index of the dielectric coating on gold, concluding a
10-fold enhancement when compared to standard SPR sensing [101].

It should be noticed that no new physics is introduced as the phenomena are fully included in the
Fresnel formalism and are readily modeled in multilayer systems using e.g., scattering matrix formal-
isms [102]. However, such a treatment does not provide detailed insight in the physics and depen-
dence on system parameters. To study the reflection of light at an SP we need an expression for rp.
The reflection of the s-component is of minor interest as it has no x-component and cannot couple
to a SP. In the special situation with film properties and instrumental parameters selected so that
an SP resonance is excited, a series of approximations can be performed on Eq. (2.16a) to derive a sim-
plified expression for rp near resonance. Following the derivation by Raether [86] gives
rp ¼ r01p
klight

xa � ðk1
0

SP þ Dk0SPÞ � iðC1 � CradÞ
klight

xa � ðk10SP þ Dk0SPÞ � iðC1 þ CradÞ
ð4:8Þ
Eq. (4.5) shows that there is a possibility to adjust klight
xa with h or x. The SP resonance condition is thus

attained by varying either the angle of incidence or the frequency to match the thin-film perturbed
real part of the x-component of the SP wave to fulfil klight

xa ¼ k1
0

SP . Under these conditions rp has a min-
imum at the SP resonance. Ideally rp ¼ 0 if the metal thickness is tuned so that C1 ¼ Crad and the res-
onance is then Lorentzian broadened.

In ellipsometry the angle of incidence and/or wavelength dispersion in D and W are of interest.
Close to an SP resonance Eq. (4.8) gives
q ¼ rp

rs
¼ r01p

rs

klight
xa � ðk1

0

SP þ Dk0SPÞ � iðC1 � CradÞ
klight

xa � ðk10SP þ Dk0SPÞ � iðC1 þ CradÞ
ð4:9Þ
where q is the complex reflectance ratio and rs the s-reflection coefficient. From Eq. (2.10) it follows
tan W ¼ jr01pj
jrsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4C1Crad

Q 2 þ ðC1 þ CradÞ2

s
ð4:10Þ



(a) (b)

Fig. 10. A comparison of (a) the standard SPR response with (b) the SPR-ellipsometry parameters. Black lines are for a 45.1 nm
gold film on glass in water at 76.2 degrees incident angle, and red lines are with a 1 nm thick layer (e = 2.25) added. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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D ¼ arg
r01p

rs
þ arctan

2QCrad

Q2 þ ðC1 þ CradÞðC1 � CradÞ
ð4:11Þ
where Q ¼ klight
xa � ðk1

0

SP þ Dk0SPÞ. Neither r01p and rs are involved in the SP and are slowly varying func-
tions of klight

xa around the SP resonance. The dispersion in tan W is dominated by the expression under
the square root in Eq. (4.10). Often W is shown and close to the resonance tan W � W for small W. The
dispersion in D is dominated by the second term in Eq. (4.11). If the metal layer thickness is matched
for zero reflectance, i.e., C1 ¼ Crad, then Eq. (4.11) reduces to
D ¼ arg
r01p

rs
þ arctan

2Crad

klight
xa � ðk1

0

SP þ Dk0SPÞ
ð4:12Þ
Eq. (4.12) shows that, at an SP resonance, i.e., klight
xa ¼ k1

0

SP þ Dk0SP, D is a step function with step p if klight
xa

is varied by scanning either x or ha over the resonance.
In a real measurement non-idealities such as surface and interface roughness, or imperfectly

matched metal layer thickness, will come into play. If a small mismatch DC ¼ C1 � Crad is introduced,
Eq. (4.12) becomes
D ¼ arg
r01p

rs
þ arctan

1
klight

xa �ðk10SP þDk0SPÞ
2C1 þ DC

klight
xa �ðk10SP þDk0SPÞ

ð4:13Þ
When klight
xa ¼ ðx=cÞ ffiffiffiffiffiea

p
sin ha is varied by scanning either x or h0 over the SP resonance, the

variation of D is dominated by the behaviour of argument of the arctan function in the second term
in Eq. (4.13). If DC is made very small by carefully controlling the metal film thickness, a sharp
resonance will occur in a frequency interrogation when x ¼ xres where subscript res indicates the
SP resonance values.4

A comparison of the standard SPR response with the SPR-ellipsometry parameters is presented in
Fig. 10 for a 1 nm thick layer (e = 2.25) on a 45.1 nm gold film on glass in water at 76.2 degrees
incident angle. Near the resonance the W response is not only sharper but also the D response gives
additional sensitivity which may be modelled to provide information about the surface layer. Several
angle of incidence is then assumed to be at hres. In an angle of incidence interrogation the resonance occurs in an angle
en h = hres if the frequency is set at x = xres.
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biosensor applications have been suggested for SPR-ellipsometry but so far there are few applications
outside academic research. Current research involves imaging to allow high throughput screening
[103]. A main advantage for biosensing is the increased sensitive compared to ordinary SPR method-
ology but often applicability is not sensitivity limited. In most cases the biochemical specificity is lim-
iting and unwanted bioadsorption above detection limits of SPR instruments occurs. There is thus no
need for the improved capability of SPR-ellipsometry especially as it technically is more complex. A
promising recently suggested application is gas sensing based on SPR-ellipsometry. Nooke et al.
[104,105] have shown that ellipsometry using SPR enhancement in thin gold films can be used to de-
tect and monitor hazardous gases. They used various coatings on the gold film and detection limits
below 100 ppm were found for methane, propane and carbon dioxide and below 10 ppm for hydrogen.

5. Particle plasmon resonances

The bulk plasmon resonance discussed in Section 3 can be predicted using the Airy equations
(2.16), which may be derived by solving Maxwell’s equations for planar geometry. If we move away
from the planar geometry to spherical geometry, the symmetry demands that excitation of the reso-
nance no longer depends on the direction of the incident light. A spherical solution to Maxwell’s equa-
tions was presented by Mie which accurately predicts the resonance frequency of spherical metal
particles. These resonances go variously by the names localized SPR, localized SPP, Mie plasmon polar-
itons, particle plasmon polaritons, and particle plasmon resonances.5 After the descriptions by Faraday,
the relation between the size of the particle and the observed colour was part of extensive investigation
in the 19th century. A first success was Maxwell Garnett’s theory (MGT) in 1904 relating the change in
colour to the polarizability of a particle and the optical properties of the ambient [106,107]. The MGT
holds for the long wavelength approximation but fails when the particle size increases such that retar-
dation (phase) effects become important. In 1908, Gustav Mie solved Maxwell’s equations for spherical
geometry, providing the modern version of the theory of scattering and absorption of electromagnetic
radiation by a sphere [108].

5.1. Isolated spherical particles

5.1.1. The quasistatic approximation
The Mie solution predicts the absorption and scattering properties for particles of arbitrary size. For

small particles it is well approximated by a sum of multipolar resonances with varying size-dependent
strengths. In the quasistatic limit (Rayleigh limit) one may ignore the effects of the phase variation of
the electric field at different points on the particle (retardation) and the dipolar oscillation mode dom-
inates the response. For a spherical particle, surrounded by a medium with dielectric constant ea, the
polarizability a (defined as p = eaaE0, where p is the dipole moment) in the dipolar limit is
5 As d
plasmo
constan
a ¼ 4pe0a3 em � ea

em þ 2ea
ð5:1Þ
where a is the radius of the particle, emðxÞ ¼ e0m þ ie00m is the dielectric function of the metal sphere.
Thus, provided e00 is small or weakly dependent on x, a resonance occurs if e0m ¼ �2ea. This is known
as the Fröhlich condition [60].

For a Drude metal with a dielectric function as given in Eq. (3.7), the Fröhlich condition leads to the
particle plasmon resonance frequency,
x2
pp ¼

x2
p

e1 þ 2ea
� C2 ð5:2Þ
For a pure Drude metal with e1 ¼ 1 and C�xp in air (ea � 1) one obtains xpp ¼ xp=
ffiffiffi
3
p

[60]. For gold
(e1 ¼ 10) and silver (e1 ¼ 4), the actual resonance frequency is considerably reduced.
iscussed in the previous section, the term polariton refers to a photon coupled to a quasiparticle such as a plasmon. Particle
n resonances and bulk plasmon resonances are not coupled to photons and decay due to damping with a characteristic time
t when the external stimuli is removed.



Fig. 11. Calculated extinction cross sections for single silver spheres using the Mie theory.
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Fig. 11 shows the spectral plane-wave extinction cross-sections of silver particles of 20, 60 and
100 nm diameter in glass, calculated using the MiePlot software [109]. The quasistatic approximation
is valid for the 20 nm particle and only a dipolar mode is observed. At larger diameters, the dipolar
mode is redshifted due to retardation. The quadrupolar mode is already visible in the 60 nm particle
on the high-energy side of the dipolar mode. In the 100 nm particle the quadrupolar mode is stronger
than the dipolar mode and the octupolar mode is visible. The broadening of the dipolar oscillation also
increases with particle size, both in Mie theory and experimentally [110]. The broadening occurs due
to a dephasing of the plasmon, arising from both radiative and non-radiative (absorption) relaxation
channels. In the dipolar-dominated small size limit the particle may be considered as a classical oscil-
lating dipole and the absorbed photons are thus efficiently reradiated. As the particle size increases
the radiative processes are retarded and absorption processes increase.

5.1.2. Small particle broadening
The absence of a size dependence in Eq. (5.2) implies that the resonance should not change for

particles below the quasistatic limiting diameter of around 20 nm. In practice, for 5 nm particles
the resonance is strongly damped and for particles below around 2 nm it completely disappears
[111]. This is understood in the context of the increase of the Drude broadening parameter, C, by
effects such as impurities, lattice defects and surface scattering [60]. Note that quantum effects for
metal particles are not apparent for particles with more than a few hundred atoms, which corresponds
to a diameter below 1 nm [60]. For a bulk crystal, the mean free path l1 is determined by electron and
phonon interactions. This length scale reflects the distance between memory cancelling collisions of
the electrons. As long as these collisions are slightly inelastic, the interaction involves electrons close
to the Fermi surface and hence:
C1 ¼
vF

l1
ð5:3Þ
Here vF is the Fermi velocity of the electrons. For a small particle with radius a the effect is empir-
ically accounted for by introducing an additional term into the broadening [112]:
CðRÞ ¼ C1 þ
AvF

a
ð5:4Þ
The parameter A accounts for the spherical nature and can as well account for the influence of the
chemical environment. For a spherical particle with no chemical effects, A = 4/3 [60] [113]. The
chemical effect on the A parameter may be determined experimentally by comparing the broadening
with microstructural analysis of the particle size. While the broadening can be determined using



Fig. 12. (a) The measured extinction spectrum of 5 nm diameter silver nanoparticles with a 2 nm dodecanethiol shell
suspended in hexane (blue circles). Also shown are the calculation of the particle extinction derived from the silver dielectric
function shown in (b) and (c) for bulk silver (black solid lines) and with a reduced electron mean free path (red dashed lines).
The result of the dodecanethiol shell and the hexane solution are also shown (black dashed line) (Adapted from [119]). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reflection and transmission measurements [114] it can also be determined using spectroscopic
ellipsometry. The method is generally only useful for well-dispersed particles suspended in a film
of transparent media such as glass or polymer. Dalacu and Martinu analysed SE data from co-
sputtered Au/SiO2 films and compared the resonance to the size determined from transmission
electron microscopy to determine A = 0.16 [115]. They also investigated plasma-polymerized fluoro-
carbon / gold composites and determined a A = 0.25 Dalacu [116]. Dynamic SE was used to observe
the growth of silver nanoparticles in polymer thin films by temperature induced reduction of silver
salts[117,118]. By determining a final A = 0.41 using scanning electron microscopy, the data could
be modelled to give the particle radius during growth. The plasmon resonance was completely broad-
ened for particles smaller than about 2 nm due to surface damping. For the analysis of a thin film
obtained from the deposition of nanocolloidal particles that are prepared prior in a fluid solution,
an extinction spectrum of the particle solution can be used to extract the change in dielectric function
as a result of the limited size of the colloids. An example of this is shown in Fig. 12 for silver colloids
[119]. A modification of the Drude part of the dielectric function as given by Eq. (5.4) and displayed in
Fig. 12 allows a good simulation of the measured extinction spectrum. A similar characterisation was
also performed for nanocolloidal Au particles [120,121].
5.2. Effective medium theories

When moving from the case of an individual particle to a large ensemble of particles we must take
into account the collective behaviour of the particles in a medium and their affect on each other. By
treating the material as having a spatially homogeneous effective permittivity the Fresnel equations
and those of geometrical optics may still be applied. The effective medium concept reflects the
fundamental connection between the macroscopic permittivity of a material and the microscopic
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polarizabilities of the constituents. Aspnes gives an excellent contemporary review of effective med-
ium theories in the context of plasmonics [122].

On a microscopic level, the polarization P in the constitutive relation (2.1) is the sum of the polar-
ization of all atoms, molecules or particles in the medium with polarizability a, such that
P ¼ Ne / ðEþ EindÞ ¼ Ne / Eeff ð5:5Þ
where Ne is the number of elements and Eeff is the effective field at the position of the element. The
contribution of surrounding elements to the polarization is reflected by the local induced electric field,
Eind. The effective permittivity of the material is calculated by determining the effective electric field
due to all atoms on a single atom and then summing over all atoms. One method to do this is to find
the field at the centre of a spherical volume (Lorentz cavity) in a dielectric with permittivity e, which is
[123]
Eeff ¼ Eþ P
3e0

ð5:6Þ
Introducing Eqs. (2.1) and (5.5) yields the Clausius–Mossotti relation.
e� 1
eþ 2

¼ Nea
3e0

ð5:7Þ
The Lorentz-Lorenz effective medium expression uses this approach to relate the optical polariz-
ability of gas molecules to the refractive index of a gas mixture [124]. It accounts very well for the ef-
fect of gas pressure, temperature and composition. However, it did not solve the problem of
understanding the coloration of glass by metal nanoparticles; a widely discussed topic at that time.
5.2.1. Maxwell Garnett theory
Maxwell Garnett extended the Lorentz-Lorenz approach from the atomic case to account for spher-

ical particles in a dielectric medium [106,107]. The Maxwell Garnett theory (MGT) uses the Rayleigh
formulas and takes the first order approximation of this relation, i.e., all particles give a similar change
to the dielectric function and the change in the dielectric function of the host is negligible with the
inclusion of more particles. Under these conditions, an ensemble of particles in the quasistatic limit,
have an effective dielectric function, eeff
eeff � ea

eeff þ 2ea
¼ F

em � ea

em þ 2ea
ð5:8Þ
where F is the volume fraction of the particles in the medium. The first order approximation explains
the limited F range in which the MGT can be used. Usually only a few percent is used as a limit,
although practically good agreement with experiment is found for up to F = 0.3. The MGT has been
used extensively to model the dielectric functions of metal/dielectric composites (especially CerMets
– ceramic/metal composites). A good example of an ellipsometry application is the work of Palpant
et al. [125], who determined the isotropic n and j of very small gold clusters (2 - 4 nm average size)
embedded in alumina matrix formed by CW laser evaporation via the MGT. In this size range the ef-
fects of a modified broadening due to increased surface scattering are important. Cho et al. performed
a similar study of alternately sputtered Au/SiO2 [126].

We should expect that in the limit of very small F the MGT converges to the quasistatic Mie case
(Eq. (5.2)). For metallic spheres with a Drude dielectric function (Eq. (3.7)), Eq. (5.8) describes a
Lorentzian with a resonance frequency of
x2
0 ¼

x2
pð1� FÞ

e1 þ 2ea
ð5:9Þ
This formula converges in the limit F ! 0 with Eq. (5.2) as expected. As F increases the MGT pre-
dicts a red-shift of the resonance frequency. This is logical since the resonance frequency of a Drude
metal is zero, which would be the case in the limit F ! 1.



Fig. 13. Side view SEM of a silver metal island film (MIF) deposited on SiO2 by magnetron sputtering at room temperature. The
particles are truncated spheroids. Scale bar is 100 nm.
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5.2.2. The MGT in ellipsometry
The Lorentzian shape of the resonance in the MGT for a Drude metal in a dielectric can be used as a

quick approximation to determine the dielectric function from ellipsometric data without explicitly
fitting F or other unknowns. Yamaguchi was one of the first to note this [127]. He observed resonance
type absorption in discontinuous evaporated noble metal island films (MIFs) (Fig. 13) and used the
MGT to derive a Lorentzian expression for the resonance.6 This Lorentzian depends on the fill factor
of the material, and the energy position of the resonance maximum depends only on F, according to
Eq. (5.9). It can therefore be used to determine the area coverage of the metal film. Doremus [128]
exploited this dependence in a similar approach and derived an equation that predicts the resonance
maximum in island films of noble metals using the measured bulk dielectric functions of the metal.
The maximum is expected to occur when the real part of the dielectric function is related to:
6 Yam
e0m ¼ �
ð2þ /Þn2

d

1� /
ð5:10Þ
where / is the projected surface area coverage of the particles on the substrate, and nd is the refractive
index of the substrate. The expected maximum frequency as a function of the surface coverage for a
silver MIF is plotted in Fig. 14. Also shown is the prediction of the thin island film (TIF) theory (dis-
cussed below). Doremus later empirically demonstrated the applicability of Eq. (5.10) using a wide ar-
ray of published results for various discontinuous metal films [129]. Wormeester et al. showed the
effect of e1 on the resonance position and broadening [130].

Using spectroscopic ellipsometry, a large number of authors have applied the simple Lorentz
oscillator approach to determine the dielectric function of gold nanoparticle/organic films
[131–133], electrodeposited gold on anodized and etched Al and Cu films [134], nanoporous silver
[135], gold [136] [137] and platinum [138], and hollow gold nanoparticles [139]. The applicability
of the Lorentzian assumption and its limitations in the event of larger / was demonstrated by Oates
et al. using in situ real time spectroscopic ellipsometry (RTSE) on films deposited at room temperature
and 150 �C [140]. Fig. 15 shows the effective dielectric functions of the island film deposited at 150 �C
as a function of nominal film thickness, determined using both the Arwin-Aspnes method (Section
2.3.2) and a Lorentzian expression to approximate the MGT. As more material is deposited and the
surface coverage increases, the plasmon resonance red shifts, grows in amplitude and broadens.
The Lorentzian fit provides a good approximation of the plasmon frequency but not the broadening
or amplitude. RTSE during the Volmer–Weber growth of MIFs)is a classic example of the power of
ellipsometry for plasmonic investigations. After the early single wavelength experiments on silver
[141], the development of multichannel detectors by the Collins group allowed full spectroscopic
aguchi assumed that e1 = 1 which limited the application of his approach.



Fig. 15. Effective dielectric functions of silver island films from in situ RTSE. On the left (a,c) are the real and imaginary parts
determined using the Arwin–Aspnes method (Section 2.3.2) whereas the right panels shows the data fit with a Lorentzian
expression to approximate the MGT. In the lower panels e00 clearly shows the plasmon resonance growing in amplitude and
broadening as the surface coverage increases. The Lorentzian fit provides a good approximation of the plasmon frequency but
not the broadening or amplitude.

Fig. 14. Dependence of the plasmon resonance maximum in a MIF as a function of the surface area coverage, as predicted by Eq.
(5.10) and the Thin Island Film (TIF) theory.
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measurements on aluminum with an MGT analysis [142,143], silver with a simple Lorentzian analysis
[144–146] and gold using the Mie equations [147].

Whereas RTSE provides an extended data set in the time domain, intentionally creating films with a
thickness gradient provides an extended data set in space. The gradient may be used as a library of
particle sizes, shapes and spacings for a combinatorial investigation of the effect of these parameters
on the optical properties using multiple analysis techniques. Bhat and Genzer used a chemical gradi-
ent to create a number density of gold nanoparticles on a substrate. They then used SE as a quick
method to determine the particle density by comparing the maximum in the SPR from the ellipsomet-
ric phase data with the surface coverage determined from AFM and X-ray analysis [148]. Oates et al.
compared the Raman enhancement from silver island films with the optical properties determined
using SE. Additional information was taken from SEM images to compare the particle dimensions.
The spatial resolution of the Raman results was around 1 lm, allowing identification of a dependence
in the optimal enhancement morphology on the Raman laser wavelength [149]. The use of compli-
mentary analysis methods is critical to provide information for the SE modelling, or to compare the
predictions of the models. Common techniques are AFM [150] and electron microscopy [151],
although the power of X-ray scattering (especially GISAXS) is becoming more accessible [152].

5.2.3. Percolation
The success of the MGT in the application to small metal particles stems from the fact that it is

quite good in the prediction of the resonance energy. However, the MGT does not predict a percolation
threshold. This results not just from the fact that it is small volume approximation. The MGT also uses
a specific topology, i.e., the inclusion of spherical particles. The latter condition implies that for a 50%
volume fraction, a change of the role of the host and the inclusion leads to a different result. Both of
these limitations have been addressed by Bruggeman [153]. In his seminal paper several EMAs for dif-
ferent topologies are derived. The most widely used considers a material volume made entirely of two
(or more) spherical inclusions of material b and c. This leads to the Bruggeman EMA formula:
F
eb � eeff

eb þ 2eeff
þ ð1� FÞ ec � eeff

ec þ 2eeff
¼ 0 ð5:11Þ
where F is the volume fraction of material b. In this expression, the particle and host media are inter-
changeable and it may be used to model higher volume fractions and percolation events. Although this
expression and its 2D analogue [154] are valid for high volume fractions, this expression is not as
accessible for an analytical expression of the plasmon resonance energy.

The study of percolating systems has an extensive history, with interest being particularly strong in
the study of CerMets in the 1970s [155] and continuing to attract significant attention today [156].
With respect to discontinuous metal films, the percolation threshold may be defined as the point
where the particles form a continuous network inside the matrix or, equivalently, the point at which
the size of connected clusters diverges. For the purposes of deposited metal island films it is conve-
nient to define the percolation threshold as a critical thickness, dc, which is dependent on the Vol-
mer–Weber growth conditions. Both the DC conductivity and the far-field optical response show
unique characteristics at percolation. For this reason spectroscopic ellipsometry has been used widely
to determine the percolation threshold and is complimentary to conductivity measurements
([39,140,157]). It is especially effective for investigating the applicability of percolation models due
to the simultaneous determination of the dielectric function as well as the film thickness.

In MIFs of gold and silver the particle plasmon resonance, clearly observed in e00, shifts to lower
frequencies as dc is approached. Well past dc, extrapolation of e00 to x = 0 gives an indication of the
DC conductivity in accordance with Eq. (3.6), and e0 will give the static dielectric constant. Since the
material undergoes a insulator-to-metal transition at percolation we may expect that e0 in the infrared
region will transit from positive (as for an insulator) to negative at dc. The experimental results in
Fig. 16 from the work of Hövel et al. [158] show that e0 in fact rises as dc is approached, then goes
through a maximum at dc before becoming negative. This fits well with percolation theory for low-
frequency conductivity of percolating networks which predicts a divergence of the static dielectric
constant at dc according to



Fig. 16. Divergence of the static dielectric constant as a function of the nominal film thickness for gold deposited on Si/SiO2. The
solid lines correspond to Eq. (5.12) with dc = 6.4 nm, s = 1 below percolation and dc = d0 = 6.7 nm and s = �1 above percolation
(image courtesy of B. Gompf, from reference [158], Copyright (2010) by the American Physical Society).
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e0ð0;dÞ / ðdc � dÞ�s ð5:12Þ
where s is the critical exponent. At a small but non-zero frequency, x, the divergence becomes a max-
imum according to
e0ðx; dÞ ¼ es
rm

xe0es

	 
1�u

ð5:13Þ
where es is the dielectric constant of the insulating component and rm is the real part of the conduc-
tivity of the metallic component. The critical exponents s and u are predicted to be 1 and 0.62, respec-
tively, for a 3-D system and 1.3 and 0.5, respectively, for a 2-D system. An experimental value for s of
between 1.1 and 1.7 was determined for 2-D titanium films using spectroscopic ellipsometry [39].

A parametric model for the dielectric function close to and above percolation is not straightforward
due to the complexity of the material nanostructure. Below percolation a resonant component
(Lorentzian) should be incorporated for the particle plasmon resonance. Above percolation the fre-
quency of this resonance will tend toward zero (i.e., the Drude free electron model) [145], however
it is logical that very close to dc both the plasmon resonance and the free electron behaviour should
co-exist [158]. This is especially important when modelling the optical properties of nanoporous
metallic films [154,156].

5.3. Anisotropic particle resonances

5.3.1. Elliptical particles
The Mie solution is derived for a spherical particle. It is straightforward to extend the approach to

an ellipsoidal geometry in the quasistatic limit. The deviation from spherical symmetry results in
splitting of the plasmon resonances in isolated nanoparticles. Noble metal nanorods exhibit two
prominent plasmon peaks with frequencies dependent on the aspect ratio (length/width), as well as
the influences described above for spherical particles. To account for the shape anisotropy Gans
[159] provided an extension to the Mie formulas in the quasistatic limit by splitting the polarizability
into Cartesian components. Eq. (5.1) then becomes [160]



Fig. 17. Dipole coupling between neighbouring nanoparticles. An external field polarizes a particle, creating an internal dipole
moment (yellow arrow) and a dipole field (blue lines). At a neighbouring particle the dipole field either (a) subtracts from the
external field, red shifting the resonance frequency, or (b) adds to the external field, blue shifting the resonance energy. The
effect is reciprocal and in a metal island film two polarization-dependent resonances will be observed. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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ai ¼
4pe0abcðem � eaÞ
3ea þ 3Liðem � eaÞ

ð5:14Þ
and introducing a depolarization factor, Li, where the subscript i denotes the three principle axes of the
ellips, x, y, z, (x being the long axis) and a, b and c are the length of the ellipsoid in those directions,
respectively. The depolarization factors are
Lx ¼
1� e2

e2 �1þ 1
2e

ln
1þ e
1� e

	 

; ð5:15Þ

Ly;z ¼
1� Lx

2
; ð5:16Þ
where e is the rod ellipticity e2 = 1-(b/a)2. One should note that since the Gans formula is based on the
quasistatic assumption the particle major axis should not be significantly greater than around 20 nm.
Larger and more complex shaped particles exhibit multiple resonances peaks and further lifting of
degeneracy due to asymmetrical shapes. Lamarre et al. incorporated the Gans equations into the
MGT and applied it for the SE analysis of gold particles in SiO2 bombardment by heavy ions where
the nanoparticles were elongated in the direction of the ion velocity [161].

5.3.2. Dipole coupling
In many practical cases the nanoparticles under investigation are in close proximity to one another

and the electric fields generated by the polarized particles interact strongly with adjacent particles.
Consider the simple case of a dimer of metallic nanoparticles in the quasistatic limit excited by an
electric field parallel to the dimer axis (Fig. 17(a)). If the particle separation is small the electric fields
generated by the plasmonic dipoles will reduce the restoring force on the electrons in the neighbour-
ing particle, thereby red-shifting the resonance frequency. Conversely, if the external field is perpen-
dicular to the dipole axis (Fig. 17(b)) the dipole fields will blue-shift the resonance frequency. Since
the effect of each particle on the other is reciprocal the plasmons hybridize [162]. In the large-gap lim-
it the effect is akin to the interaction between two isolated dipoles, whilst for small gaps the effects of
higher order multipoles come into play. The electric fields are highly concentrated in the gap, increas-
ing with a reduced gap distance. This is the origin of the extreme enhancement factors observed in
surface-enhanced Raman scattering (SERS) experiments [5].

Extending the concept to a layer of isolated densely-packed particles on a surface, it is clear that the
plasmon resonance in the in-plane direction will be red-shifted with respect to the out-of-plane
resonance. Maxwell-Garnett already noted that the dielectric function, ez, of a film of nanoparticles
may be different from ex, and ‘‘if so, the film behaves optically like a uniaxial crystal’’[163]. This results
in a splitting of the plasmon resonance. The two modes; a low-energy absorption parallel to the



Fig. 18. The energy of the plasmon resonance maximum for the in-plane (a-mode) (red symbols/lines) and out-of-plane (c-
mode) (blue symbols/lines). The lines show the prediction of the TIF theory for hexagonal distribution (dashed), and isotropic
distribution (solid). The data points are taken from [114]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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substrate surface (a-mode) and a high energy absorption normal to the substrate surface (c-mode), are
easily observed in the reflection spectrum of p-polarized light at large angles from the surface normal
[164,165]. The position of the resonances depends strongly on /, as shown in Fig. 18. This plot shows
experimental data from [114] compared with simulation of the TIF theory (discussed below). Splitting
is first observed at / � 0:1. As / increases toward unity the a-mode resonance red-shifts toward
�hx ¼ 0 and the c-mode resonance blue-shifts toward the screened plasma frequency, �hxps. One
may intuitively consider this as the a-mode shifting toward the Drude case as the film percolates
and in-fills, and the c-mode shifting toward the volume plasmon case as the geometry moves from
an array of spheres to an ultrathin slab.

Although alluded to in the original work, the peak splitting is not predicted by the Maxwell-Garnett
formalism, and the effect of the dipole interaction will significantly alter the prediction of the reso-
nance frequency in the a-mode resonance. In fact, the situation is somewhat more complicated when
the particles are in proximity to a surface since the particles are rarely spherical, but tend to be trun-
cated oblate spheroids, especially for evaporated or plasma deposited films (Fig. 13). An additional fac-
tor due to the substrate is the breaking of symmetry of the surrounding medium and the effect of
substrate interactions (or image effects). The presence of the interface results in the formation of an
image of the metal particle across this interface. In the dipole approximation, this is described by
the generation of an image dipole in the substrate [166,167]. For higher coverage, the interaction
between the images of neighbouring dipoles also has to be considered. This effect is even more
important for oblate particles. As a result, the resonance frequency can be considerably reduced.

Eq. (5.2), which was derived for isolated non-interacting spherical particles, may be generalized for
interacting non-spherical particles on a surface to:
x2 ¼
x2

p

e1 þ ksea
� C2 ð5:17Þ
where ks is the screening parameter. The above expression is the general case of Eqs. (4.3), (5.2) and
also of Eq. (5.9) (for F = 1). ks = 2 for non-interacting spherical particles. If the observed anisotropy is
caused purely by the particle shape then ks is related to the depolarization factor in Eq. (5.14) via
ks = (1 � L)/L. This effect also leads to a split of the resonance energy. However if the particle density
is high enough that the dipolar interactions become significant then one cannot discern the relative
contributions from the shape and coupling effects. The same is true for the image dipole.

Peak splitting is observed in oblique-angle reflection measurements of p-polarized light of dense
nanoparticle films and is thus accessible by SE measurements. To unambiguously determine the
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z-component requires measurements at multiple oblique-angles [168]. The effect of the image dipole
of a particle on the collective optical response was explicitly incorporated into a simple dipolar model
by Yamaguchi [169]. Truong et al. performed measurements of the anisotropy in aggregated gold
films, looking at the component of the dielectric function normal to the surface by performing
multiple angle measurements. The results were modelled using a modified Yamaguchi approach, with
the substrate image dipoles explicitly incorporated [170]. Anisotropy was also studied using the
Yamaguchi theory by Toudert et al. in their work on quantitative modelling of the surface plasmon
resonances of silver nanoclusters sandwiched between Si3N4 layers [151]. Their thorough analysis
investigated the influence of nanocluster size, shape and organization as measured by transmission
electron microscopy, with the anisotropic optical properties determined using variable angle spectro-
scopic ellipsometry. They conclude that the spectral position of the plasmon resonance appears to be
mainly affected by the average shape of the clusters, and weakly by their size, their shape distribution
and the electromagnetic interaction between them.

5.3.3. Thin Island film theory
At the same time as the Yamaguchi work appeared, Bedeaux and Vlieger presented an alternative

approach [171]. The polarizability of (identical) particles on a surface is modified to an effective
polarizability of each particle. The image effect leads to an effective polarizability that differs for
the direction parallel and perpendicular to the interface. The incorporation of the image effect was
the start for the development of the so-called Thin Island Film (TIF) theory by Bedeaux and co-workers
[172] which also incorporates the neighbour interaction effect and the description of non-spherical
particles. This TIF theory is in principle a multipole expansion of the electro-magnetic problem of
the response of identical particles by an incident electric field. However, as shown by Haarmans
et al. [173] a noble metal particle film with a coverage up to 50% is well described by dipole and
quadrupole terms. Wormeester et al. [119] showed that if image effects are negligible, dipolar terms
are sufficient to describe the optical response in this coverage range. A computer program that
calculates the optical response with the TIF theory up to arbitrary order, called GRANFILM, has been
published by Lazarri and Simonsen [174].

The collective optical effect of a deposited ensemble of particles is expressed by the so-called
excess dipole strength, c and b, parallel and perpendicular to the interface, respectively, described by:
c ¼ /4aea
em � ea

em þ ks;pea
¼ /

4aea

3
de

1þ Lpde
ð5:18aÞ

b ¼ /4a
ea

em � ea

em þ ks;zea
¼ /

4a
3ea

de
1þ Lzde

ð5:18bÞ
de = (em�ea)/ea is referred to as the dielectric contrast. For non-interacting spherical particles without
image effects, the screening parameter ks,p = ks,z = 2 for the parallel (p) and perpendicular (z) direction
to the interface. The depolarization parameters Lp and Lz are 1/3 in this case.

The effect of interacting particles was studied by Barrera et al. [175]. They considered the particles
placed on a lattice with r0 the nearest neighbour distance. The depolarization factor for the two
directions is:
Lp ¼
1
3

1� 1
2

a
r0

	 
3

S

 !
ð5:19aÞ

Lz ¼
1
3

1þ a
r0

	 
3

S

 !
ð5:19bÞ
with S the result of the weighted sum over all lattice sites. For a lattice normalized to the nearest
neighbour distance, this summation is given by S = R1/r3. For a hexagonally closed packed lattice
S = 11.034 whereas S = 9.03 for a cubic lattice. Note that this neighbour interaction has no effect on
the sum of the depolarization factors, 2Lp + Lz = 1. Fig. 19 shows the effect of surface coverage for a



Fig. 19. Depolarization factors, Lp (blue lines) and Lz (red lines) as a function of surface coverage for a hexagonal lattice (dashed),
a square lattice (dotted) and uniform distribution (solid line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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hexagonal lattice (dashed), a square lattice (dotted) and uniform distribution (solid line) on the depo-
larization factor. The change in the depolarization factor as a result of collective interaction results in a
separate resonance energy for the parallel and perpendicular component according to Eq. (5.17). This
interaction thus creates an effective polarizability that mimics an oblate particle. The split in reso-
nance energy depends on the coverage and explains qualitatively the effect on the resonance energy
as shown in Fig. 18. An approximation of the shift in resonance energy is shown.

The image effect gives an additional change to the depolarization factors. Haarmans and Bedeaux
[176] derived an explicit form up to quadrupole order for these effects on the excess dipole strength c
and b:
cqu ¼ /
4aea

3
de 1þ L1pde
� �

1þ Lpde
� �

1þ L1pde
� �

þKpde2
ð5:20aÞ

bqu ¼ /
4a
3ea

de 1þ L1zdeð Þ
1þ Lzdeð Þ 1þ L1zdeð Þ þKzde2 ð5:20bÞ
Here, Lp and Lz represent the dipolar correction terms and L1p and L1z, Kp and Kz are the quadrupole
depolarization factors. The definition of these terms as a function of surface coverage is provided in the
appendix. The factors Kp and Kz are quite small and are only present if image effects play a role. Very
often, Kp and Kz� 1 in a coverage range up to 50%. In this case the quadrupole contribution vanishes,
and only the dipole contribution remains.

5.3.4. The incorporation of TIF in ellipsometry
The effect of the excess polarizabilities c and b on the optical response can in a first approach be

related to the so-called Drude thin film approximation, whose derivation already appears in the work
of Rijn van Alkemade [177]. The thin film approximation describes the influence on the optical re-
sponse by a thin film with thickness d that has an uniaxial dielectric function e// and e? that are a func-
tion of the height (z) above the substrate. The change in optical response is proportional to the integral
value J:
J ¼
Z d

0
ekðzÞ � ea þ ea

1
e?ðzÞ

� 1
ea

	 

dz: ð5:21Þ
Lekner argued that ellipsometry is only sensitive to the value of this so-called invariant J, but not to
the specific details of the variation of the dielectric function, either parallel or perpendicular to the
interface with position in the film z [178]. Bedeaux and Vlieger showed that



Fig. 20. Measured and theoretical dependence of the cosine of the ellipsometric phase angle, D, on photon energy for a silicon
substrate covered with 13.6 nm diameter gold colloids.
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J ¼ cþ eaesb ð5:22Þ
This enables a first evaluation of the optical response. However, as shown by Wormeester et al.
[130], the coupling between the thin layer and substrate has to be taken into account in a more rig-
orous way. For this the coupling in terms of the Abelés matrix formalism described by Bohmer et al.
[179] has to be used. This coupling uses the polarization dependent reflection and transmission coef-
ficients for a thin island film. For s-polarized light
rs
‘ ¼

Xs

1� Xs and ts
‘ ¼

1
1� Xs ð5:23Þ
with
Xs ¼ ixc
2n0cosðh0Þ
and for p-polarized light
rp
‘ ¼

Xp

1� Xp �
Yp

1� Yp and tp
‘ ¼ 1þ Xp þ Yp � 2XpYp

ð1� XpÞð1� YpÞ ð5:24Þ
with
Xp ¼ ixbðn0Þ3 sin2ðh0Þ
2 cosðh0Þ

and Yp ¼ ixccos h0ð Þ
2n0

:

The Abelés film matrix for the interface reflection of a particulate film in terms of these reflection
and transmission coefficients is given by
F ¼ 1
t‘

1 �r‘
r‘ t2

‘ � r2
‘

	 

ð5:25Þ
Note that this matrix describes a non-invariant beam, i.e., the response from the opposite side of
the interface is different. The overall matrix becomes
A ¼ FLFI1;3L3I3;4 ð5:26Þ
In this the matrices In;m and Lm are the normal Abelés matrices. The layer matrix LF, identical to the
layer matrices Lm used in the Abelés formalism, has a phase factor D ¼ hxn0cosh0, where h is the
height of the excess dipoles above the Fresnel interface. If the particles are directly on the substrate
surface, h = d.
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The effect on the evaluated optical response of the TIF compared to Bruggeman’s effective medium
theory and MGT is illustrated in Fig. 20. This displays the measured value of the ellipsometric phase
for a Si substrate covered with Au nanocolloids with 13.6 nm diameter. SEM measurements showed a
surface coverage of 12%. With this surface coverage, the result of Bruggeman’s EMA, the MGT result
and the TIF result were calculated. Only the TIF result provides an accurate representation of the plas-
mon resonance observed around 2.25 eV. Bruggeman’s EMA predicts a larger red shift of the resonance
energy, whereas MGT has a correct resonance energy but a much smaller change in ellipsometric
phase. A detailed analysis shows that the latter is a direct consequence of the optical coupling between
the excess polarizability and the substrate properties as taken into account with the Abelés formalism
[130]. The TIF theory has been successfully applied to ellipsometric studies of colloidal gold films
[120,121,180–182] and colloidal crystals [119], as well as combined in situ surface difference reflec-
tion spectroscopy and GISAXS studies of the growth of silver island films Lazzari [183,184]. With the
GISAXS parameters the model parameters in the TIF theory can be independently verified, showing
excellent agreement with the calculations.
6. Plasmonic metamaterials

In the last decade, artificially structured materials with fascinating optical properties have been
engineered. These ‘‘metamaterials’’ are composed of artificial ‘‘meta-atoms’’ – sub-wavelength metal-
lic structures of dimension a, usually arranged in a periodic array of unit cell P. The simplest metam-
aterials may be defined as the nanoparticle composites and films described in Section 5. For those
materials we used the concept of an effective medium and assigned an effective permittivity eeff to
a bulk material composed of metal nanoparticles of radius a. The limiting requirement was that the
dimensions of the particles were much less than the photon vacuum wavelength, a� k0. In principle,
the same concept applies for an effective permeability leff, however natural materials with a non-
unity permeability at frequencies above the microwave regime are extremely rare.

In their seminal paper on ‘‘magnetism from conductors’’ [185] Pendry et al. proposed artificial
metallic atoms in the form of dual, concentric, split-ring resonators (SRR). A magnetic field perpendic-
ular to the axis of the ring induces a current around it (an inductive element) and the split in the ring,
and also the gap between the two rings, act as a capacitive elements. Thus, the ring is analogous to an
LC circuit and there will be a magnetic resonance with a Lorentzian dispersion
leff xð Þ ¼ 1þ
x2

mp

x2
0 �x2 � iCx

ð6:1Þ
where the magnetic plasma frequency xmp and the resonance frequency x0 depend on the geometry
of the rings and the conductivity of the metal [185]. Immediately above the resonance frequency the
real part of leff is negative (provided the impedance of the metal is low). While the idea of artificial
magnetism was in itself novel, what garnered attention was the suggestion of creating a material with
a negative refractive index by combining a negative l with a negative e (an idea theoretically proposed
by Veselago in 1968 [186]), and the promise of a ‘‘perfect’’ lens [187]. Experimental demonstration of
such a metamaterial in the microwave range soon followed by combining SRRs (negative leff) with a
wire array medium (negative eeff) [188].

Metamaterials have now become synonymous with negative refractive index materials (NIMs), and
the field has progressed from the ‘‘double negative’’ materials described above, to negative refraction
based on strong anisotropy, spatial dispersion and other phenomena. Thus one should distinguish be-
tween NIMs and materials (including metamaterials) which cause negative refraction due to other
physical properties. The general condition for a NIM is often defined as that the angle between the
wave vector k (in the direction of the phase velocity vp) and the Poynting vector S (in the direction
of the group velocity vg) form an obtuse angle in the material, i.e., k � S < 0. There are a number of con-
temporary books on metamaterials which cover this rapidly expanding field [189–191]. If metamate-
rials are to be applied as homogeneous materials in technological applications it is imperative that a
procedure is defined by which the macroscopic material parameters may be determined. This in turn
depends on defining an accepted mathematical description of metamaterials. Here we will discuss



Fig. 21. The blue circles shows the isofrequency curves in air. For a given incident wave vector (black arrow) the refracted wave
vector (thin grey arrow) in an isotropic material (a) will be parallel to the Poynting vector (thick grey arrow). In a weakly
anisotropic material (b) they will not be parallel, and in a highly anisotropic indefinite material (c) the x-components will be
anti-parallel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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three schemes by which negative refraction may be obtained and show that ellipsometry is well suited
to the characterization of such materials, although significant challenges remain.
6.1. Highly anisotropic metamaterials

Negative refraction can occur at the interface of two non-magnetic media if the permittivity of one
medium is highly anisotropic. This has been experimentally demonstrated in a natural anisotropic
crystal such as YVO4 [192], and in an artificially constructed super-lattice [193] and wire array com-
posites [194]. In natural crystals the dielectric tensor elements are all positive and negative refraction
occurs at a twinning plane in uniaxial crystals [192]. In artificially constructed non-magnetic indefinite
metamaterials [195], one of the effective permittivity tensor elements is of opposite sign over a spec-
ified wavelength interval, and negative refraction may be observed in this range. Note that these are
not NIMs since k � S > 0.

Consider a plane-wave incident on an air-material interface in the x-z plane. The dispersion rela-
tion for an anisotropic material is
k2
z

ez
þ k2

x

ex
¼ x2

c2 ð6:2Þ
The direction of the group and phase velocities are observed in a plot of the isofrequency curves in
k-space (Fig. 21). For a given point on the isofrequency curve the wave vector k (thin arrow) is repre-
sented by a vector from the origin to that point, and the Poynting vector S (thick arrow) is normal to
the tangent to the curve at that point. If the material is isotropic the isofrequency curve will be circular
(Fig. 21(a)), and k and S will be parallel in all directions. In weakly anisotropic materials the isofre-
quency curve will describe an ellipse (Fig. 21(b)) and the group and phase velocities are in general
not parallel. For highly anisotropic indefinite materials (e.g., with ex > 0 and ez < 0) the isofrequency
curve is hyperbolic (Fig. 21(c)) and the signs of kx and Sx are opposite, leading to negative refraction
[196].

Using the above concepts, anisotropic wire arrays have been used to experimentally demonstrate
negative refraction [194]. In many cases the Maxwell-Garnett effective medium theory with
anisotropic screening parameters accurately predicts the permittivity of wire arrays [196]. However
Belov et al. showed that a uniaxially anisotropic wire array does not show purely local dispersion
but rather shows strong spatial dispersion even in the long wavelength limit [197]. Interestingly,
isotropic sub-wavelength wire arrays were one of the first optical metamaterials, designed to provide
control over the effective plasma frequency. The value of the plasma frequency defined in Eq. (3.4) is
defined by the electron density, Ne, and the effective mass, me. We may assign an effective plasma
frequency to a nanowire composite, with Ne proportional to the fill factor F of the metallic component.



Fig. 22. (a) SEM image of silver nanowires deposited by oblique evaporation on ion-sputtered rippled substrates (scale
bar = 100 nm). (b) and (c) show the effective dielectric tensor elements for the three orthogonal directions determined using
generalized ellipsometry. The blue line (x-direction) and red line (y-direction) are horizontal and vertical in the plane of the
page, respectively. The black line (z-direction) is normal to the page. (adapted from [200]). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

364 T.W.H. Oates et al. / Progress in Surface Science 86 (2011) 328–376
In a sub-wavelength wire arrays we must also take into account the self-inductance of the wires which
significantly increases me. Pendry et al. showed that the plasma frequency could be pushed into the
far-infrared using isotropic 3D wire arrays [198].

To characterize anisotropic wire arrays requires the determination of the three orthogonal permit-
tivity tensor components. In a 3D array of oriented, equally-spaced nanowires two of the tensor ele-
ments are degenerate, resulting in a uniaxially anisotropic material. In an ellipsometry measurement,
if the long axis of the wires is oriented perpendicular to the substrate surface, as in [194], then
ex ¼ ey–ez and the ordinary (ex, ey) and extra-ordinary (ez) tensor components may be determined
using standard ellipsometry with measurements at multiple incident angles. If the long axis of the
wires is parallel to the substrate surface, or otherwise inclined at an angle, then ex–ey–ez and the
optical properties should be determined using generalized ellipsometry (Section 2.2.3).

As an example we consider a single layer of aligned metallic wires which is biaxially anisotropic
(i.e., ex–ey–ez). Sub-wavelength 2D wire arrays were produced by evaporating metal at an oblique
angle onto self-organized periodic ripple patterns formed by low-energy ion beam sputtering [199].
Fig. 22 shows SEM micrographs of these silver wires formed on a 35 nm period silicon ripple pattern.
The dielectric tensor components of these arrays were determined using generalized ellipsometry
[200]. In the direction parallel to the wires the tensor component exhibits a predominantly metallic
behaviour. However perpendicular to the wires a large plasmon resonance is observed with the real
part being positive at frequencies below the resonance frequency. In the direction perpendicular to
the surface the tensor component is close to the bulk silver dielectric function. A plane wave in the
x-y or y-z planes would be expected to show negative refraction at frequencies below the resonance
(ey > 0). There will be an optimum frequency and direction where the losses are minimized. If the
wires are discontinuous (arrays of aligned rods of spheres) then the plasmon resonances are observed
in both ex and ey, with different resonance frequencies depending primarily on the surface coverage of
the silver in that direction. The range of negative refraction is thus tuneable [201], however the high
absorption near the resonances severely limits such a scheme.

Super-lattices – alternating layers of selectively doped semiconductors or metal/dielectrics – dis-
play resonant behaviour. As shown in Section 3.6, a single layer of silver has a resonant LO mode at
the screened plasma frequency. A multilayer stack of these layers, separated by a dielectric may be
described by an effective medium expression with a depolarization factor L (Eq. (5.14)) equal to 1
(maximum screening) in the direction perpendicular to the layer plane. The effective dielectric
function in this direction will exhibit a resonance, with the frequency dependent on the volume frac-
tion of the layers and the dielectric functions of the materials. Humlicek presented an ellipsometric
investigation of a super-lattice of doped semiconductors, with the resonance located in the infrared
[202], and reproduced the measured parameters with an effective medium approach. These same
materials were demonstrated to show negative refraction [193].



T.W.H. Oates et al. / Progress in Surface Science 86 (2011) 328–376 365
6.2. Metamaterials with artificial effective permeability

Materials which have simultaneous negative effective permittivity and permeability have a nega-
tive refractive index and are true NIMs (k � S < 0). The unambiguous retrieval of eeff and leff from
metamaterials is not a trivial task. Additionally, mathematically describing these materials using eeff

and leff is only one way to define the macroscopic material parameters. An alternative description
based on spatial dispersion is essentially equivalent for materials in the optical range.

6.2.1. Parameter retrieval
The study of metamaterials originated in microwave research [203] where it is relatively straight-

forward to fabricate sub-wavelength artificial atoms, and much of the terminology is derived from
that field. Smith et al. [204] discussed the inverse problem of retrieving the constitutive parameters
eeff and leff of metamaterials from transmission and reflection coefficients (which are also referred
to as scattering parameters in microwave research, and hence the method is termed S-parameter re-
trieval). The S-parameter method was developed to determine the complex refractive index N ¼ ffiffiffiffiffiffielp

and impedance Z ¼
ffiffiffiffiffiffiffiffi
l=e

p
of a thin film of thickness d from the complex transmission coefficient t and

reflection coefficient r, given by
Z ¼ � ð1þ rÞ2 � t2

ð1� rÞ2 � t2

" #1
2

ð6:3aÞ
and
cosðNkdÞ ¼ ð1� rÞ2 þ t2

2t
ð6:3bÞ
where k is the free-space wave vector. Clearly this method does not give unique solutions for complex
e and l although it is possible to resolve the issue by a process of intuitive elimination [189]. Impor-
tantly, normal incidence reflection and transmission measurements contain no magnetic field compo-
nent perpendicular to the surface, and thus a magnetic resonance cannot be directly excited by the
magnetic field component in planar SRRs under normal incidence. In an important step for ellipsom-
etry applications, Eq. (6.3) have since been extended for oblique incidence reflection and transmission
[205].

As micro-fabrication methods pushed metamaterials further toward the optical range ellipsometry
was identified as an important characterization method. In 2004 Yen et al. used ellipsometry to dem-
onstrate a terahertz magnetic response in 3 different sized SRRs with dimensions from 2 to 50 lm
[206]. Ellipsometric parameters were measured at 30� incidence angle, over the frequency range from
0.6 – 1.8 THz. The authors chose to represent the data as the absolute inverse square of qðxÞ. They
argue that this parameter is the natural function to use because it provides the ratio of the magnetic
to electric response from the SRRs. However the phase information was ignored, and parameter retrie-
val was not attempted.

The retrieval problem is essentially one of measuring more independent experimental parameters
than the unknowns in the equations. This in turn depends on the symmetry properties of the material.
The ellipsometric parameters W and D are sufficient to determine complex e for isotropic, non-mag-
netic materials if the thickness is known. If the material is uniaxially anisotropic then multiple inci-
dent angle measurements may be sufficient to determine the 4 unknowns, depending on the
sample orientation. If the material is biaxially anisotropic then generalized ellipsometry (GE) provides
the 6 unknowns required to determine the solution. Marques et al. [207] showed that SRRs are bi-
anisotropic, i.e., they have magneto-electric coupling. In addition to the 2nd-rank tensors e and l,
the magneto-optical permittivities, n and f – which describe the coupling of the magnetic-to-electric
response and electric-to-magnetic response, respectively – must also be defined (these are also called
the gyrotropic parameters).
D ¼ e0eEþ n=c
� �

H ð6:4aÞ



Table 6.1
The material parameters that influence the polarized reflection coefficients for orthogonal planes of incidence.

x–z plane y–z plane x–y–z plane

rp ex, ly, ez lx, ey, ez ex, ey, ez, lx, ly

rs lx, ey, lz ex, ly, lz ex, ey, lx, ly, lz
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B ¼ l0lHþ f=c
� �

E ð6:4bÞ
Thus to describe the complete electromagnetic properties of SRRs one needs four 2nd rank tensors –
potentially up to 36 complex quantities.

In practice, the gyrotropic parameters are often vanishingly small and then one normally needs to
determine only the diagonal elements of e and l. The 6 parameters determined from generalized
ellipsometry (GE) are therefore not sufficient to unambiguously determine these 6 complex parame-
ters. The sample orientation with respect to the plane of incidence is of critical importance in deter-
mining how the anisotropy influences the measurement. Table 6.1 shows the material parameters that
influence the polarized reflection coefficients for orthogonal planes of incidence. An ellipsometric
measurement in just one plane parallel to the optical axis will be influenced by all the orthogonal ten-
sor elements, however only two independent parameters will be measured. GE measurements at mul-
tiple incidence, rotation and polarization angles should allow one to over-determine the system.

For parameter retrieval the refractive index in the Fresnel equations (Eqs. (2.13) and (2.14)) may be
defined by the four tensors in Eq. (6.4), rather than the straightforward dependence on e. A derivation
for the Fresnel coefficients for a bianisotropic materials is given in [190]. The most general description
for oblique coherent reflection for an anisotropic material is Berreman’s 4 � 4 matrix formalism [41].
With the Berreman formalism one can analytically model the dependence of the transmission and
reflection Fresnel coefficients and derive in first order their analytic dependence on the effective per-
meability and permittivity tensor components. The forward problem of calculating the ellipsometric
response from pre-defined material parameters has recently been performed using the Berreman for-
malism [208]. The retrieval of the material parameters from measured ellipsometric data by mathe-
matical inversion has to date not been reported for artificial magnetic metamaterials. However
ellipsometry is still extremely useful for characterizing NIMs, as we will show below.
6.2.2. Characterisation of single split ring resonators
After the initial demonstration of artificial magnetism in SRRs at microwave frequencies there was

steady progress toward the THz range by a process of miniaturization [206]. A surprising advance was
reported by Linden et al. [209] who claimed to observe a magnetic response at 100 THz (3 lm) in
single split-ring resonators (SSRR) (Fig. 23), even when the magnetic field is parallel to the plane of
the SSRR. In this geometry the magnetic field will not generate a current in the ring, and hence no
magnetic response was expected. However, using only polarised light at near-normal incidence, the
authors showed that a magnetic-type resonance could still be observed. The explanation is that an
electric field polarized in the x direction (Fig. 23) will initiate a current in the ring which is out-
of-phase in the two y-arms, thus creating a magnetic moment. The plasmon resonances established
in the arms will thus couple asymmetrically [210]. Conversely, with the electric field in the y-direc-
tion, the currents in the arms will be in-phase, the plasmon resonances will couple symmetrically
and no magnetic moment will be established. The SSRR structure has since been pushed to the limits
of microfabrication, exhibiting magnetic resonances at above 300 THz (900 nm) [211].

SSRRs have been investigated by IR-ellipsometry [212]. Periodically arranged gold SSRRs on a Si
substrate (native oxide) were fabricated using nano-imprint lithography with dimensions of
P = 1000 nm, base and side legs = 780 nm, width = 80 nm, gap = 250 nm, and gold layer thickness
d = 54 nm on a 2 nm layer of Ti. The ellipsometric spectra were measured using FTIR spectroscopic
ellipsometry at AOI = 45� and 65� in the xz and yz incidence planes. The ellipsometric angles are shown
in Fig. 23. Pronounced peaks are observed in the W spectra in the xz-plane at 800 cm-1 and 2200 cm-1.
These correspond to the first and third (i.e., asymmetrically coupled) plasmonic modes of the SSRR. In



Fig. 23. Left, a SSRR showing the measurement co-ordinates. On the right are ellipsometric angles of an array of SSRRs
(dimensions in text) measured at 40� and 65� in the xz- and yz-planes.
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the yz-plane a pronounced peak at 1700 cm-1 and a weak peak at 2900 cm-1, corresponding to the sec-
ond and fourth plasmonic modes [213] are observed. The peaks in W correspond primarily to the
peaks in rp. Similarly the phase difference D is also dominated by the p-polarised phase response. Note
that unambiguous retrieval of the tensor elements of eeff and leff is not possible from these measure-
ments alone, and the gyrotropic parameters may also be present [214].
6.2.3. Characterisation of fishnet metamaterials
In recent years a range of new designs with improved symmetry have emerged. Most of these are

based on a simple design of pairs of rods. Podolskiy [215] theorised that metallic rod pairs may exhibit
a diamagnetic response and negative index in the optical range due to a localized plasmonic reso-
nance. As with the SSRR design, opposing currents in the lengths of the rods produce an effective mag-
netic moment. The main difference to the SSRRs is that the driving mechanism is the phase difference
in the plane wave, and not the current in the base arm of the ring. In 2005, Shalaev demonstrated this
experimentally with magnetic resonances near the important communications wavelength of 1.5 lm
[216]. The Babinet principle indicates that if pairs of conductive rods in a dielectric medium exhibit
magnetic resonances, then elongated holes in parallel metallic films should also be magnetically
active. This is the basis for the resonant structures demonstrated by Zhang et al., first using circular
holes [217] and later using elliptical holes [218]. This idea was taken further by the same group in
a ‘‘nano fishnet’’ structure of rectangular holes in parallel metallic films (Fig. 24). They achieved a real
refractive index of �2 at a wavelength of 1.45 lm [219], and later a value of n = �0.6 at 780 nm [220].

A fishnet metamaterial produced by nanoimprint lithography was recently investigated by spectro-
scopic ellipsometry [221]. The fishnet material comprises a three layer structure of Au/MgO/Au (each
30 nm) on a glass substrate with periodic rectangular holes (Fig. 24). The hole dimensions are 135 x
350 nm, and the unit cell is 500 x 600 nm in the x- and y-directions, respectively. The sidewall angles,
due to the fabrication procedure, are 20�. Ellipsometric data was taken in two orthogonal directions
along the xz- and yz- planes of the material, using Vis-NIR ellipsometry (Fig. 24(a-d)). In the xz- plane
the large angle dependent resonance peaks below 1100 nm are due to diffraction effects (the Wood/
Rayleigh anomaly). The intense peaks near 1300 nm corresponds to the symmetrically coupled
plasmon resonances in the gold layers. The small resonance at higher wavelengths is the anti-
symmetric resonance, designed to provide a negative leff (the continuous gold strips provide eeff).
The resonance frequency is above 2000 nm and dependent on the incidence angle in the xz-plane,
however it is near 1800 nm and independent on the AOI in the yz-plane. Similarly to the SSRRs, these
standard ellipsometric measurements do not provide enough information to unambiguously



Fig. 24. Left, schematic of a three layer fishnet material, and right, measured ellipsometric parameters in the xz- (a, b) and yz-
planes (c, d).
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determine the optical tensor elements, however the rational to assign homogenized parameters to
these materials is debatable, discussed below.
6.2.4. Spatial dispersion
The SSRRs and fishnet designs rely on coupled localized plasmon resonances in adjacent metallic

rods or plates. The magnetic resonance corresponds to an anti-symmetric coupling. The separation
of the rods must be optimized: they must be close enough that the coupling splits the isolated plas-
mon resonance into a blue shifted symmetric mode and a red-shifted anti-symmetric mode, but sep-
arated by enough that the anti-symmetric mode is not over-damped [210]. The required separation
brings into question the validity of the long wavelength assumption and the homogenization of the
effective parameters. Essentially, the origin of the magnetic resonance depends on spatial dispersion,
i.e., the anti-symmetric coupling requires a non-local electric field in the medium. This can be observed
in the fact that the dimensions of the SSRR and fishnet metamaterials are generally larger than k0/10.

Describing metamaterials using an effective permeability has been heavily debated. At issue is the
use of a magnetic description at frequencies where magnetism loses its physical meaning. In fact the
plasmonic resonances are caused by currents initiated by the electric field component of the light. An
alternative method of describing materials with weak spatial dispersion is to expand in a power series
the generalized dielectric tensor eij(x,k) up to second order in the wave vector, k such that [222]
eij x;kð Þ ¼ eij xð Þ þ icijl xð Þkl þ aijlm xð Þklkm ð6:5Þ
where eij(x) is the usual dielectric tensor and cijl(x) and aijlm(x) are tensors which include spatial dis-
persion of first and second order, respectively. In a material with spatial inversion symmetry the sec-
ond term (representing the gyrotropic or chiral response) vanishes. The third term is associated with
the magnetic dipole response but also contains information about the electric quadrupole [223]. Note
that the effective permeability description and the weak spatial dispersion description are mathemat-
ically equivalent. Menzel et al. [205] have derived the incident angle dependent forms of eqs (6.2) and
(6.3) in terms of the incident wave vector. By applying the equations to a fishnet metamaterial they
conclude that the retrieved parameters N and Z strongly depend on the lateral wave vector component
(i.e., the incident angle). They also showed that the long-wavelength assumption implicit in applying
an eeff and leff to metamaterials is generally violated [205]. Thus there is still debate over whether it is
appropriate to describe materials with a magnetic resonance based on anti-symmetrically coupled
plasmon resonances using homogenized effective material parameters. One should always consider
that metamaterials occur in the interesting range between a purely homogeneous material and a
non-local medium such as a photonic crystal.
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6.3. Chiral metamaterials

An alternative route to negative refraction using chiral materials was theoretically predicted inde-
pendently by Pendry [224]and Tretyakov et al. [225]. In a chiral material the asymmetry defines the
magneto-optical parameters in (Eq. (6.4)) as n = �f. The refractive index is defined for a chiral material
as NL;R ¼

ffiffiffiffiffiffielp � n where the subscripts L and R denote left and right circularly polarized light respec-
tively. Thus in a metamaterial where e and l are simultaneously small and n is large enough to dom-
inate, one of the circular polarization states may exhibit a negative N.

In transmission, Mueller matrix ellipsometry (or polarimetry) is the method of choice for charac-
terization of chiral materials [226]. Similarly, reflection ellipsometry has been applied for over a dec-
ade to the study of chiral materials such as liquid crystals [43] [227]. Chirality is observed in
transmission mode as non-zero contributions to the off-diagonal Mueller matrix elements. However
the off-diagonal MM elements are convolutions of contributions from linear and circular birefringence
and dichroism. It is possible to decompose the measured MM into products representing basic optical
devices [228]. In reflection mode it is crucial to distinguish between linear birefringence due to anisot-
ropy, and chiral effects due to intrinsic gyrotropy.

It is interesting to note that chiral metamaterials consisting of nanoscale coils fabricated by glanc-
ing angle deposition were proposed in the early 1990s [229], well before the recent interest in nega-
tive index metamaterials. Such materials were recently fabricated and characterised by ellipsometry
[230]. Another class of materials often classified as metamaterials is sub-wavelength hole arrays
(SWHA) in metal films. Ebbesen et al. showed in 1998 that the measured transmission through an
optically thick silver film perforated with a SWHA was higher than expected by the theory of Bethe
[231]. The observation has been explained by considering the coupling of the light to surface plasmon
polaritons which guide the energy through the holes [232].

Due to spatial dispersion, the study of SWHAs by ellipsometry is not straightforward. However
with the advent of fully automated angle of incidence, rotation angle and data collection, combined
with the necessary data processing, ellipsometry appears set to contribute to the study of SWHAs,
especially in the Mueller matrix configuration. Braun et al. used MME to measure the reflection prop-
erties of SWHAs on very thin gold layers [233]. The data is represented by polar contour plots (incident
and rotation angles) of the MM elements at a specific frequency. This allows one to interpret the rota-
tional symmetry of the scattered orders. Gompf et al. [234] showed that using MM ellipsometry one
can observe chiral effects such as optical activity and circular dichroism in SWHAs. The authors point
out that these effects arise not from any inherent magnetism, but from spatial dispersion.
7. Outlook

The utility of spectroscopic ellipsometry is only beginning to be discovered for the characterization
of plasmonic thin films and metamaterials. New advances in ellipsometric hardware and software
continue to create opportunities to study complex nanostructured materials, while at the same time
the range of materials is expanding dramatically due to new fabrication techniques. This review gives
a summary of the state-of-art with the additional aim of providing a coherent terminology to describe
new materials and systems.

The scope for combining ellipsometry in sensing applications using TIRE is vast, both for biological
and gas sensing. The increase in the speed of data acquisition, combined with in situ ellipsometry
measurement geometries will be a rapidly growing field for the study of the growth of metal island
films and their interaction with gases and organic molecules. Sculpting these films using oblique-an-
gle incidence and ion-beam sputtering will result in the creation of anisotropic particles and distribu-
tions which will have unusual optical properties. The symmetric and anti-symmetric coupling of
plasmonic resonances in such materials, and others designed and manufactured using top-down-
methods, will providing a fertile and challenging field for ellipsometric characterization of chiral
materials and effects based on weak spatial dispersion. The further development of effective medium
and thin island film theories, and a coherent description of spatial dispersion in metamaterials, are re-
quired to provide accurate homogenized optical parameters to these complex materials.
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Appendix A

The dipolar and quadrupole depolarization factors as a function of surface coverage are:
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The image effect is incorporated in these depolarization factors by an attenuation factor
Bsa ¼ ea � esð Þ= ea þ esð Þ that descibes the contrast between ambient and substrate. This contrast is
quite considerable for semiconductors and metals (Bsa � �1), whereas it is quite reduced for dielec-
trics. For instance for a glass substrate in a water ambient, Bsa and thus the image effect, is reduced
by an order of magnitude compared to metals. Note that as a result of the image effect the sum of
the depolarization factors Lp þ Lz ¼ 1þ Bsa
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no longer equals 1.
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