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PREFACE TO THE SECOND EDITION

This second edition of the book ELECTROMAGNETIC F IELD THEORY is a major revision of
the first edition that was published on the Internet (www.plasma.uu.se/CED/Book). The main
reasons for trying to improve the presentation and to add more material is that this new edition is
now being made available in printed form by Dover Publications and is to be used in an extended
Classical Electrodynamics course at Uppsala University, at the last-year undergraduate, master,
and beginning post-graduate/doctoral level. Hopefully, this means that the book will find new
uses in Academia and elsewhere.

The revision includes a slight reordering of the chapters. First, we describe the properties
of electromagnetism when the charges and currents are located in otherwise free space, a space
that is free of matter (vacuum) and external fields (e.g., gravitation). Only when the fundamental
properties of the electromagnetic fields in free space have been establised with sufficent rigour
and completeness do we go on to show how the fields interact with matter. In the author’s opinion,
this approach is preferable as it avoids the formal logical inconsistency of discussing, very early
in the book, the effect on the electric and mangetic fields when conductors and dielectrics are
present (and vice versa), before constitutive relations and physical models for the electromagnetic
properties of matter, including conductors and dielectrics, have been derived from first principles.
Curved-space effects are not treated.

In addition to the Maxwell-Lorentz equations, which postulate the beaviour of electromag-
netic fields due to electric charges and currents on a microscopic classical scale, chapter 1 also
introduces Dirac’s symmetrised equations that incorporate the effects of magnetic charges and
currents. In chapter 2, stronger emphasis is now put on the axiomatic foundation of electro-
dynamics as provided by the Maxwell-Lorentz equations. Chapter 4 is new and deals with sym-
metries and conserved quantities in a more rigourous, profound and detailed way than in the first
edition. For instance, the presentation of the theory of electromagnetic angular momentum and
other observables (constants of motion) has been substantially expanded and put on a more firm
basis. chapter 9 is a complete rewrite that combines material that was scattered more or less all
over the first edition. It also contains new material on wave propagation in plasma and other
media. When, in chapter 9, the macroscopic Maxwell equations are introduced, the inherent ap-
proximations in the derived field quantities are clearly pointed out. The collection of formulæ
in appendix F has been augmented quite substantially. In appendix M, the treatment of dyadic
products and tensors has been expanded.

xvii

www.plasma.uu.se/CED/Book


Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 18 of 262.

DRAFT

xviii PREFACE TO THE SECOND EDITION

I want to express my warm gratitude to professor CESARE BARBIERI and his entire group,
particularly FABRIZIO TAMBURINI, at the Department of Astronomy, University of Padova,
for stimulating discussions and the generous hospitality bestowed upon me during several shorter
and longer visits in 2008, 2009, and 2010 that made it possible to prepare the current major
revision of the book. In this breathtakingly beautiful northern Italy, intellectual titan GALILEO

GALILEI worked for eighteen years and gave birth to modern physics, astronomy and science as
we know it today, by sweeping away Aristotelian dogmas, misconceptions and mere superstition,
thus most profoundly changing our conception of the world and our place in it. In the process,
Galileo’s new ideas transformed society and mankind forever. It is hoped that this book may
contribute in some small, humble way to further these, once upon a time, mind-boggling—and
even dangerous—ideas of intellectual freedom and enlightment.

Thanks are also due to JOHAN S JÖHOLM, KRISTOFFER PALMER, MARCUS ERIKS-
SON, and JOHAN L INDBERG who during their work on their Diploma theses suggested im-
provements and additions and to HOLGER THEN and STAFFAN YNGVE for carefully checking
some lengthy calculations and to the numerous undergraduate students, who have been exposed
to various draft versions of this second edtion. In particular, I would like to mention BRUNO

STRANDBERG.
This book is dedicated to my son MATTIAS, my daughter KAROLINA, my four grandsons

MAX , ALBIN , F IL IP and OSKAR, my high-school physics teacher, STAFFAN RÖSBY, and
my fellow members of the CAPELLA PEDAGOGICA UPSALIENSIS.

Padova, Italy BO THIDÉ

February, 2011 www.physics.irfu.se/�bt
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PREFACE TO THE FIRST EDITION

Of the four known fundamental interactions in nature—gravitational, strong, weak, and electro-
magnetic—the latter has a special standing in the physical sciences. Not only does it, together
with gravitation, permanently make itself known to all of us in our everyday lives. Electro-
dynamics is also by far the most accurate physical theory known, tested on scales running from
sub-nuclear to galactic, and electromagnetic field theory is the prototype of all other field theories.

This book, ELECTROMAGNETIC F IELD THEORY, which tries to give a modern view of
classical electrodynamics, is the result of a more than thirty-five year long love affair. In the
autumn of 1972, I took my first advanced course in electrodynamics at the Department of Theor-
etical Physics, Uppsala University. Soon I joined the research group there and took on the task
of helping the late professor PER OLOF FRÖMAN, who was to become my Ph.D. thesis ad-
viser, with the preparation of a new version of his lecture notes on the Theory of Electricity. This
opened my eyes to the beauty and intricacy of electrodynamics and I simply became intrigued by
it. The teaching of a course in Classical Electrodynamics at Uppsala University, some twenty odd
years after I experienced the first encounter with the subject, provided the incentive and impetus
to write this book.

Intended primarily as a textbook for physics and engineering students at the advanced under-
graduate or beginning graduate level, it is hoped that the present book will be useful for research
workers too. It aims at providing a thorough treatment of the theory of electrodynamics, mainly
from a classical field-theoretical point of view. The first chapter is, by and large, a descrip-
tion of how Classical Electrodynamics was established by JAMES CLERK MAXWELL as a
fundamental theory of nature. It does so by introducing electrostatics and magnetostatics and
demonstrating how they can be unified into one theory, classical electrodynamics, summarised
in Lorentz’s microscopic formulation of the Maxwell equations. These equations are used as an
axiomatic foundation for the treatment in the remainder of the book, which includes modern for-
mulation of the theory; electromagnetic waves and their propagation; electromagnetic potentials
and gauge transformations; analysis of symmetries and conservation laws describing the elec-
tromagnetic counterparts of the classical concepts of force, momentum and energy, plus other
fundamental properties of the electromagnetic field; radiation phenomena; and covariant Lag-
rangian/Hamiltonian field-theoretical methods for electromagnetic fields, particles and interac-
tions. Emphasis has been put on modern electrodynamics concepts while the mathematical tools
used, some of them presented in an Appendix, are essentially the same kind of vector and tensor

xix
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analysis methods that are used in intermediate level textbooks on electromagnetics but perhaps a
bit more advanced and far-reaching.

The aim has been to write a book that can serve both as an advanced text in Classical Elec-
trodynamics and as a preparation for studies in Quantum Electrodynamics and Field Theory, as
well as more applied subjects such as Plasma Physics, Astrophysics, Condensed Matter Physics,
Optics, Antenna Engineering, and Wireless Communications.

The current version of the book is a major revision of an earlier version, which in turn was an
outgrowth of the lecture notes that the author prepared for the four-credit course Electrodynam-
ics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit
course Classical Electrodynamics in 1997. To some extent, parts of those notes were based on
lecture notes prepared, in Swedish, by my friend and Theoretical Physics colleague BENGT

LUNDBORG, who created, developed and taught an earlier, two-credit course called Electro-
magnetic Radiation at our faculty. Thanks are due not only to Bengt Lundborg for providing
the inspiration to write this book, but also to professor CHRISTER WAHLBERG, and professor
GÖRAN FÄLDT, both at the Department of Physics and Astronomy, Uppsala University, for
insightful suggestions, to professor JOHN LEARNED, Department of Physics and Astronomy,
University of Hawaii, for decisive encouragement at the early stage of this book project, to pro-
fessor GERARDUS T’HOOFT, for recommending this book on his web page ‘How to become
a good theoretical physicist’, and professor CECILIA JARLSKOG, Lund Unversity, for pointing
out a couple of errors and ambiguities.

I am particularly indebted to the late professor V ITALIY LAZAREVICH G INZBURG, for
his many fascinating and very elucidating lectures, comments and historical notes on plasma
physics, electromagnetic radiation and cosmic electrodynamics while cruising up and down the
Volga and Oka rivers in Russia at the ship-borne Russian-Swedish summer schools that were
organised jointly by late professor LEV M IKAHILOVICH ERUKHIMOV and the author during
the 1990’s, and for numerous deep discussions over the years.

Helpful comments and suggestions for improvement from former PhD students TOBIA CA-
ROZZI, ROGER KARLSSON, and MATTIAS WALDENVIK, as well as ANDERS ERIKSSON

at the Swedish Institute of Space Physics in Uppsala and who have all taught Uppsala students
on the material covered in this book, are gratefully acknowledged. Thanks are also due to the late
HELMUT KOPKA, for more than twenty-five years a close friend and space physics colleague
working at the Max-Planck-Institut für Aeronomie, Lindau, Germany, who not only taught me
the practical aspects of the use of high-power electromagnetic radiation for studying space, but
also some of the delicate aspects of typesetting in TEX and LATEX.

In an attempt to encourage the involvement of other scientists and students in the making of
this book, thereby trying to ensure its quality and scope to make it useful in higher university
education anywhere in the world, it was produced as a World-Wide Web (WWW) project. This
turned out to be a rather successful move. By making an electronic version of the book freely
downloadable on the Internet, comments have been received from fellow physicists around the
world. To judge from WWW ‘hit’ statistics, it seems that the book serves as a frequently used
Internet resource. This way it is hoped that it will be particularly useful for students and research-
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ers working under financial or other circumstances that make it difficult to procure a printed copy
of the book. I would like to thank all students and Internet users who have downloaded and
commented on the book during its life on the World-Wide Web.

Uppsala, Sweden BO THIDÉ

December, 2008 www.physics.irfu.se/�bt
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1

FOUNDATIONS OF CLASSICAL

ELECTRODYNAMICS

The classical theory of electromagnetism deals with electric and magnetic fields
and interactions caused by distributions of electric charges and currents. This
presupposes that the concepts of localised electric charges and currents assume
the validity of certain mathematical limiting processes in which it is considered
possible for the charge and current distributions to be localised in infinitesimally
small volumes of space.1 Clearly, this is in contradistinction to electromagnet- 1 Accepting the mere existence of

an electrically charged particle re-
quires some careful thinking. In his
excellent book Classical Charged
Particles, FRITZ ROHRLICH
writes

‘To what extent does it
make sense to talk about an
electron, say, in classical
terms? These and similar
questions clearly indicate
that ignoring philosophy
in physics means not
understanding physics.
For there is no theoretical
physics without some
philosophy; not admitting
this fact would be self-
deception.’

ism on an atomistic scale, where charges and currents have to be described in a
nonlocal quantum formalism. However, the limiting processes used in the clas-
sical domain, which, crudely speaking, assume that an elementary charge has a
continuous distribution of charge density, will yield results that agree perfectly
with experiments on non-atomtic scales, small or large.

It took the genius of JAMES CLERK MAXWELL to consistently unify the
two distinct theories electricity and magnetism into a single super-theory, elec-
tromagnetism or classical electrodynamics (CED), and to realise that optics is a
sub-field of this super-theory. Early in the 20th century, HENDRIK ANTOON

LORENTZ took the electrodynamics theory further to the microscopic scale and
also laid the foundation for the special theory of relativity, formulated in its
full extent by ALBERT E INSTEIN in 1905. In the 1930’s PAUL ADRIEN

MAURICE D IRAC expanded electrodynamics to a more symmetric form, in-
cluding magnetic as well as electric charges. With his relativistic quantum mech-
anics and field quantisation concepts, he also paved the way for the development
of quantum electrodynamics (QED ) for which R ICHARD PHILLIPS FEYN-
MAN, JULIAN SEYMOUR SCHWINGER, and S IN- ITIRO TOMONAGA were

1
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awarded the Nobel Prize in Physics in 1965. Around the same time, physicists
such as SHELDON GLASHOW, ABDUS SALAM, and STEVEN WEINBERG

were able to unify electrodynamics with the weak interaction theory, creating yet
another super-theory, electroweak theory, an achievement which rendered them
the Nobel Prize in Physics 1979. The modern theory of strong interactions,
quantum chromodynamics (QCD ), is heavily influenced by QED.

In this introductory chapter we start with the force interactions in classical
electrostatics and classical magnetostatics and introduce the static electric and
magnetic fields to find two uncoupled systems of equations for them. Then we
see how the conservation of electric charge and its relation to electric current
leads to the dynamic connection between electricity and magnetism and how the
two can be unified into classical electrodynamics. This theory is described by
a system of coupled dynamic field equations—the microscopic Maxwell equa-
tions introduced by Lorentz—which we take as the axiomatic foundation for the
theory of electromagnetic fields.

At the end of this chapter we present Dirac’s symmetrised form of the Max-
well equations by introducing (hypothetical) magnetic charges and magnetic cur-
rents into the theory. Whereas not not identified unambiguously as free entitied
in experiments yet, magnetic charges and currents make the theory much more
appealing, for instance by allowing for duality transformations in a most nat-
ural way. Besides, in practical work, such as in antenna engineering, magnetic
currents have proved to be a very useful concept. We shall make use of these
symmetrised equations throughout the book.

1.1 Electrostatics

The theory which describes physical phenomena related to the interaction between
stationary electric charges or charge distributions in a finite space with station-
ary boundaries is called electrostatics . For a long time, electrostatics, under
the name electricity, was considered an independent physical theory of its own,
alongside other physical theories such as Magnetism, Mechanics, Optics, and
Thermodynamics.2

2 The physicist and philosopher
P IERRE DUHEM (1861–1916)
once wrote:

‘The whole theory of
electrostatics constitutes
a group of abstract ideas
and general propositions,
formulated in the clear
and concise language of
geometry and algebra,
and connected with one
another by the rules of
strict logic. This whole
fully satisfies the reason of
a French physicist and his
taste for clarity, simplicity
and order. . . .’

1.1.1 Coulomb’s law

It has been found experimentally that in classical electrostatics the interaction
between stationary, electrically charged bodies can be described in terms of two-
body mechanical forces. In the simple case depicted in figure 1.1 on the facing
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q0

q

O

x0

x � x0

x

Figure 1.1: Coulomb’s law de-
scribes how a static electric charge
q, located at a point x relative to
the origin O , experiences an elec-
trostatic force from a static electric
charge q0 located at x0.

page, the force F acting on the electrically charged particle with charge q loc-
ated at x, due to the presence of the charge q0 located at x0 in an otherwise empty
space, is given by Coulomb’s law.3 This law postulates that F is directed along 3 CHARLES-AUGUSTIN DE

COULOMB (1736–1806) was
a French physicist who in 1775
published three reports on the
forces between electrically charged
bodies.

the line connecting the two charges, repulsive for charges of equal signs and
attractive for charges of opposite signs, and therefore can be formulated math-
ematically as

F.x/ D
qq0

4�"0

x � x0

jx � x0j3
D �

qq0

4�"0
r

�
1

jx � x0j

�
D

qq0

4�"0
r 0
�

1

jx � x0j

�
(1.1)

where, in the last step, formula (F.119) on page 201 was used. In SI units ,
which we shall use throughout, the force F is measured in Newton (N), the elec-
tric charges q and q0 in Coulomb (C) or Ampere-seconds (A s), and the length
jx � x0j in metres (m). The constant "0 D 107=.4�c2/ � 8:8542�10�12 Farad
per metre (F m�1) is the vacuum permittivity and c � 2:9979�108 m s�1 is the
speed of light in vacuum.4 In CGS units , "0 D 1=.4�/ and the force is measured 4 The notation c for speed comes

from the Latin word ‘celeritas’
which means ‘swiftness’. This
notation seems to have been intro-
duced by W ILHELM EDUARD
WEBER (1804–1891), and
RUDOLF KOHLRAUSCH (1809–
1858) and c is therefore sometimes
referred to as Weber’s constant .
In all his works from 1907 and
onward, ALBERT E INSTEIN
(1879–1955) used c to denote the
speed of light in vacuum.

in dyne, electric charge in statcoulomb, and length in centimetres (cm).

1.1.2 The electrostatic field

Instead of describing the electrostatic interaction in terms of a ‘force action at a
distance’, it turns out that for many purposes it is useful to introduce the concept
of a field. Therefore we describe the electrostatic interaction in terms of a static
vectorial electric field Estat defined by the limiting process

Estat def
� lim

q!0

F

q
(1.2)

where F is the electrostatic force, as defined in equation (1.1), from a net electric
charge q0 on the test particle with a small electric net electric charge q. Since the
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purpose of the limiting process is to assure that the test charge q does not distort
the field set up by q0, the expression for Estat does not depend explicitly on q but
only on the charge q0 and the relative position vector x � x0. This means that
we can say that any net electric charge produces an electric field in the space
that surrounds it, regardless of the existence of a second charge anywhere in
this space.5 However, in order to experimentally detect a charge, a second (test)

5 In the preface to the first edition
of the first volume of his book
A Treatise on Electricity and
Magnetism, first published in 1873,
James Clerk Maxwell describes
this in the following almost poetic
manner:

‘For instance, Faraday, in
his mind’s eye, saw lines of
force traversing all space
where the mathematicians
saw centres of force
attracting at a distance:
Faraday saw a medium
where they saw nothing
but distance: Faraday
sought the seat of the
phenomena in real actions
going on in the medium,
they were satisfied that they
had found it in a power
of action at a distance
impressed on the electric
fluids.’

charge that senses the presence of the first one, must be introduced.
Using equation (1.1) on page 3 and equation (1.2) on the previous page,

and formula (F.118) on page 201, we find that the electrostatic field Estat at the
observation point x (also known as the field point), due to a field-producing
electric charge q0 at the source point x0, is given by

Estat.x/ D
q0

4�"0

x � x0

jx � x0j3
D �

q0

4�"0
r

�
1

jx � x0j

�
D

q0

4�"0
r 0
�

1

jx � x0j

�
(1.3)

In the presence of several field producing discrete electric charges q0i , located
at the points x0i , i D 1; 2; 3; : : : , respectively, in an otherwise empty space, the
assumption of linearity of vacuum6 allows us to superimpose their individual

6 In fact, vacuum exhibits a
quantum mechanical non-linearity
due to vacuum polarisation
effects manifesting themselves
in the momentary creation and
annihilation of electron-positron
pairs, but classically this non-
linearity is negligible.

electrostatic fields into a total electrostatic field

Estat.x/ D
1

4�"0

X
i

q0i
x � x0iˇ̌
x � x0i

ˇ̌3 (1.4)

If the discrete electric charges are small and numerous enough, we can, in
a continuum limit, assume that the total charge q0 from an extended volume
to be built up by local infinitesimal elemental charges dq0, each producing an
elemental electric field

dEstat.x/ D
dq0

4�"0

x � x0

jx � x0j3
(1.5)

By introducing the electric charge density �, measured in C m�3 in SI units, at
the point x0 within the volume element d3x0 D dx01dx02dx03 (measured in m3),
the elemental charge can be expressed as dq0 D d3x0 �.x0/, and the elemental
electrostatic field as

dEstat.x/ D
d3x0 �.x0/
4�"0

x � x0

jx � x0j3
(1.6)

Integrating this over the entire source volume V 0, we obtain

Estat.x/ D
1

4�"0

Z
V 0

d3x0 �.x0/
x � x0

jx � x0j3

D �
1

4�"0

Z
V 0

d3x0 �.x0/r
�

1

jx � x0j

�
D �

1

4�"0
r

Z
V 0

d3x0
�.x0/

jx � x0j

(1.7)
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V 0

q0i

q

O

x0i

x � x0i

x

Figure 1.2: Coulomb’s law for a
distribution of individual charges
q0
i

localised within a volume V 0 of
limited extent.

where we used formula (F.118) on page 201 and the fact that �.x0/ does not
depend on the unprimed (field point) coordinates on which r operates.

We emphasise that under the assumption of linear superposition, equation
(1.7) on the facing page is valid for an arbitrary distribution of electric charges,
including discrete charges, in which case � is expressed in terms of Dirac delta
distributions:7 7 Since, by definition, the integralZ

V 0
d3x0 ı.x0 � x0

i
/

�

Z
V 0

d3x0 ı.x0 � x0
i
/

� ı.y0�y0
i
/ı.z0�z0

i
/ D 1

is dimensionless, and x has the
dimension m, the 3D Dirac delta
distribution ı.x0 � x0

i
/ must have

the dimension m�3.

�.x0/ D
X
i

q0i ı.x
0
� x0i / (1.8)

as illustrated in figure 1.2. Inserting this expression into expression (1.7) on the
facing page we recover expression (1.4) on the preceding page, as we should.

According to Helmholtz’s theorem , a well-behaved vector field is completely
known if one knows its divergence and curl.8 Taking the divergence of the gen-

8 HERMANN LUDWIG FERDIN-
AND VON HELMHOLTZ (1821–
1894) was a physicist, physician
and philosopher who contrib-
uted to wide areas of science,
ranging from electrodynamics to
ophthalmology.

eral Estat expression for an arbitrary electric charge distribution, equation (1.7)
on the facing page, and using the representation of the Dirac delta distribution
given by formula (F.121) on page 201, one finds that

r � Estat.x/ D r �
1

4�"0

Z
V 0

d3x0 �.x0/
x � x0

jx � x0j3

D �
1

4�"0

Z
V 0

d3x0 �.x0/r � r
�

1

jx � x0j

�
D �

1

4�"0

Z
V 0

d3x0 �.x0/r2
�

1

jx � x0j

�
D

1

"0

Z
V 0

d3x0 �.x0/ ı.x � x0/ D
�.x/

"0

(1.9)

which is the differential form of Gauss’s law of electrostatics .
Since, according to formula (F.107) on page 201, r � Œr˛.x/� � 0 for any
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R3 scalar field ˛.x/, we immediately find that in electrostatics

r � Estat.x/ D �
1

4�"0
r �

�
r

Z
V 0

d3x0
�.x0/

jx � x0j

�
D 0 (1.10)

i.e., that Estat is an irrotational field.
To summarise, electrostatics can be described in terms of two vector partial

differential equations

r � Estat.x/ D
�.x/

"0
(1.11a)

r � Estat.x/ D 0 (1.11b)

representing four scalar partial differential equations.

1.2 Magnetostatics

Whereas electrostatics deals with static electric charges, magnetostatics deals
with static electric currents, i.e., electric charges moving with constant speeds,
and the interaction between these currents. Here we shall discuss this theory in
some detail.

1.2.1 Ampère’s law

Experiments on the interaction between two small electric current loops have
shown that they interact via a mechanical force, much the same way that electric
charges interact. In figure 1.3 on the next page, let F denote such a force acting
on a small loop C , with tangential line element dl, located at x and carrying
a current I in the direction of dl, due to the presence of a small loop C 0, with
tangential line element dl0, located at x0 and carrying a current I 0 in the direction
of dl0 in otherwise empty space. According to Ampère’s law this force is given
by the expression99 ANDRÉ-MARIE AMPÈRE

(1775–1836) was a French math-
ematician and physicist who,
only a few days after he learned
about the findings by the Danish
physicist and chemist HANS
CHRISTIAN ØRSTED (1777–
1851) regarding the magnetic
effects of electric currents, presen-
ted a paper to the Académie des
Sciences in Paris, introducing the
law that now bears his name.

F.x/ D
�0II

0

4�

I
C

dl �

�I
C 0

dl0 �
x � x0

jx � x0j3

�
D �

�0II
0

4�

I
C

dl �

�I
C 0

dl0 � r

�
1

jx � x0j

�� (1.12)

In SI units,�0 D 4��10�7 � 1:2566�10�6 H m�1 is the vacuum permeability.
From the definition of "0 and �0 (in SI units) we observe that

"0�0 D
107

4�c2
(F m�1) � 4� � 10�7 (H m�1) D

1

c2
(s2 m�2) (1.13)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 29 of 262.

DRAFT

1.2. Magnetostatics j 7

C 0

C

dj0

dj

O

x0

x � x0

x

Figure 1.3: Ampère’s law describes
how a small loop C , carrying a
static electric current density ele-
ment dj at x, experiences a mag-
netostatic force from a small loop
C 0, carrying a static electric cur-
rent density element dj0 located at
x0. The loops can have arbitrary
shapes as long as they are simple
and closed.

which is a most useful relation.
At first glance, equation (1.12) on the facing page may appear asymmetric in

terms of the loops and therefore be a force law that does not obey Newton’s third
law. However, by applying the vector triple product ‘bac-cab’ formula (F.73) on
page 200, we can rewrite (1.12) as

F.x/ D �
�0II

0

4�

I
C 0

dl0
I
C

dl � r

�
1

jx � x0j

�
�
�0II

0

4�

I
C

I
C 0

x � x0

jx � x0j3
dl �dl0

(1.14)

Since the integrand in the first integral is an exact differential, this integral van-
ishes and we can rewrite the force expression, formula (1.12) on the facing page,
in the following symmetric way

F.x/ D �
�0II

0

4�

I
C

I
C 0

x � x0

jx � x0j3
dl � dl0 (1.15)

which clearly exhibits the expected interchange symmetry between loops C and
C 0.

1.2.2 The magnetostatic field

In analogy with the electrostatic case, we may attribute the magnetostatic in-
teraction to a static vectorial magnetic field Bstat. The elemental Bstat from the
elemental current element dI0 D I 0dl0 is defined as

dBstat.x/
def
�
�0

4�
dI0 �

x � x0

jx � x0j3
D
�0I

0

4�
dl0 �

x � x0

jx � x0j3
(1.16)
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which expresses the small element dBstat.x/ of the static magnetic field set up
at the field point x by a small line current element dI0 D I 0dl0 of static cur-
rent I 0 directed along the line element dl0 at the source point x0. The SI unit
for the magnetic field, sometimes called the magnetic flux density or magnetic
induction , is Tesla (T).

If we generalise expression (1.16) on the previous page to an integrated
steady state electric current density j.x/, measured in A m�2 in SI units, we
can write I 0dl D dI0 D d3x0 j0.x0/, and we obtain Biot-Savart’s law

Bstat.x/ D
�0

4�

Z
V 0

d3x0 j.x0/ �
x � x0

jx � x0j3

D �
�0

4�

Z
V 0

d3x0 j.x0/ � r

�
1

jx � x0j

�
D
�0

4�
r �

Z
V 0

d3x0
j.x0/

jx � x0j

(1.17)

where we used formula (F.118) on page 201, formula (F.97) on page 200, and
the fact that j.x0/ does not depend on the unprimed coordinates on which r

operates. Comparing equation (1.7) on page 4 with equation (1.17) above, we
see that there exists a close analogy between the expressions for Estat and Bstat

but that they differ in their vectorial characteristics. With this definition of Bstat,
equation (1.12) on page 6 may we written

F.x/ D I

I
C

dl � Bstat.x/ (1.18)

In order to assess the properties of Bstat, we determine its divergence and
curl. Taking the divergence of both sides of equation (1.17) above and utilising
formula (F.106) on page 201, we obtain

r � Bstat.x/ D
�0

4�
r �

�
r �

Z
V 0

d3x0
j.x0/

jx � x0j

�
D 0 (1.19)

since, according to formula (F.106) on page 201, r � .r � a/ vanishes for any
vector field a.x/.

With the use of the operator ‘bac-cab’ rule, formula (F.103) on page 201, the
curl of equation (1.17) above can be written

r � Bstat.x/ D
�0

4�
r �

�
r �

Z
V 0

d3x0
j.x0/

jx � x0j

�
D �

�0

4�

Z
V 0

d3x0 j.x0/r2
�

1

jx � x0j

�
C
�0

4�

Z
V 0

d3x0 Œj.x0/ � r 0�r 0
�

1

jx � x0j

� (1.20)
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In the first of the two integrals on the right-hand side, we use the representation
of the Dirac delta function given in formula (F.121) on page 201, and integrate
the second integral by parts, utilising formula (F.94) on page 200, as follows:Z

V 0
d3x0 Œj.x0/ � r 0�r 0

�
1

jx � x0j

�
D Oxk

Z
V 0

d3x0 r 0 �
�
j.x0/

�
@

@x0
k

�
1

jx � x0j

���
�

Z
V 0

d3x0
�
r 0 � j.x0/

�
r 0
�

1

jx � x0j

�
D Oxk

Z
S 0

d2x0 On0 � j.x0/
@

@x0
k

�
1

jx � x0j

�
�

Z
V 0

d3x0
�
r 0 � j.x0/

�
r 0
�

1

jx � x0j

�
(1.21)

We note that the first integral in the result, obtained by applying Gauss’s theorem,
vanishes when integrated over a large sphere far away from the localised source
j.x0/, and that the second integral vanishes because r � j D 0 for stationary
currents (no charge accumulation in space). The net result is simply

r � Bstat.x/ D �0

Z
V 0

d3x0 j.x0/ı.x � x0/ D �0j.x/ (1.22)

1.3 Electrodynamics

As we saw in the previous sections, the laws of electrostatics and magnetostatics
can be summarised in two pairs of time-independent, uncoupled partial differen-
tial equations, namely the equations of classical electrostatics

r � Estat.x/ D
�.x/

"0
(1.23a)

r � Estat.x/ D 0 (1.23b)

and the equations of classical magnetostatics

r � Bstat.x/ D 0 (1.24a)

r � Bstat.x/ D �0j.x/ (1.24b)

Since there is nothing a priori which connects Estat directly with Bstat, we must
consider classical electrostatics and classical magnetostatics as two separate and
mutually independent physical theories.
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However, when we include time-dependence, these theories are unified into
a single super-theory, classical electrodynamics . This unification of the theories
of electricity and magnetism can be inferred from two empirically established
facts:

1. Electric charge is a conserved quantity and electric current is a transport of
electric charge. As we shall see, this fact manifests itself in the equation of
continuity and, as a consequence, in Maxwell’s displacement current .

2. A change in the magnetic flux through a loop will induce an electromotive
force electric field in the loop. This is the celebrated Faraday’s law of induc-
tion .

1.3.1 The indestructibility of electric charge

Let j.t;x/ denote the time-dependent electric current density. In the simplest
case it can be defined as j D v� where v is the velocity of the electric charge
density �.1010 A more accurate model is to

assume that the individual charge
elements obey some distribution
function that describes their local
variation of velocity in space and
time.

The electric charge conservation law can be formulated in the equation of
continuity for electric charge

@�.t;x/

@t
C r � j.t;x/ D 0 (1.25)

which states that the time rate of change of electric charge �.t;x/ is balanced by
a divergence in the electric current density j.t;x/, i.e. the influx of charge.

1.3.2 Maxwell’s displacement current

We recall from the derivation of equation (1.22) on the preceding page that there
we used the fact that in magnetostatics r �j.x/ D 0. In the case of non-stationary
sources and fields, we must, in accordance with the continuity equation (1.25)
above, set r � j.t;x/ D �@�.t;x/=@t . Doing so, and formally repeating the
steps in the derivation of equation (1.22) on the preceding page, we would obtain
the formal result

r � B.t;x/ D �0

Z
V 0

d3x0 j.t;x0/ı.x � x0/

C
�0

4�

@

@t

Z
V 0

d3x0 �.t;x0/r 0
�

1

jx � x0j

�
D �0j.t;x/C �0

@

@t
"0E.t;x/

(1.26)

where, in the last step, we have assumed that a generalisation of equation (1.7)
on page 4 to time-varying fields allows us to make the identification11

11 Later, we will need to consider
this generalisation and formal
identification further.
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1

4�"0

@

@t

Z
V 0

d3x0 �.t;x0/r 0
�

1

jx � x0j

�
D

@

@t

�
�

1

4�"0

Z
V 0

d3x0 �.t;x0/r
�

1

jx � x0j

��
D

@

@t

�
�

1

4�"0
r

Z
V 0

d3x0
�.t;x0/

jx � x0j

�
D

@

@t
E.t;x/

(1.27)

The result is Maxwell’s source equation for the B field

r � B.t;x/ D �0

�
j.t;x/C

@

@t
"0E.t;x/

�
D �0j.t;x/C �0"0

@

@t
E.t;x/

(1.28)

where "0@E.t;x/=@t is the famous displacement current . This, at the time, un-
observed current was introduced by Maxwell, in a stroke of genius, in order
to make also the right-hand side of this equation divergence-free when j.t;x/

is assumed to represent the density of the total electric current. This total cur-
rent which can be split up into ‘ordinary’ conduction currents, polarisation cur-
rents and magnetisation currents. This will be discussed in subsection 9.1 on
page 170. The displacement current behaves like a current density flowing in
free space. As we shall see later, its existence has far-reaching physical con-
sequences as it predicts that such physical observables as electromagnetic en-
ergy, linear momentum, and angular momentum can be transmitted over very
long distances, even through empty space.

1.3.3 Electromotive force

If an electric field E.t;x/ is applied to a conducting medium, a current dens-
ity j.t;x/ will be set up in this medium. But also mechanical, hydrodynamical
and chemical processes can give rise to electric currents. Under certain physical
conditions, and for certain materials, one can sometimes assume that a linear
relationship exists between the electric current density j and E. This approxim-
ation is called Ohm’s law:12 12 In semiconductors this approx-

imation is in general applicable
only for a limited range of E.j.t;x/ D �E.t;x/ (1.29)

where � is the electric conductivity (S m�1). In the case of an anisotropic con-
ductor, � is a tensor.

We can view Ohm’s law, equation (1.29) above, as the first term in a Taylor
expansion of a general law jŒE.t;x/�. This general law incorporates non-linear
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effects such as frequency mixing and frequency conversion . Examples of media
which are highly non-linear are semiconductors and plasma. We draw the atten-
tion to the fact that even in cases when the linear relation between E and j is a
good approximation, we still have to use Ohm’s law with care. The conductivity
� is, in general, time-dependent (temporal dispersive media) but then it is often
the case that equation (1.29) on the preceding page is valid for each individual
Fourier (spectral) component of the field.

If the current is caused by an applied electric field E.t;x/, this electric field
will exert work on the charges in the medium and, unless the medium is super-
conducting, there will be some energy loss. The time rate at which this energy is
expended is j �E per unit volume (W m�3). If E is irrotational (conservative), j

will decay away with time. Stationary currents therefore require that an electric
field due to an electromotive force (EMF ) is present. In the presence of such a
field Eemf, Ohm’s law, equation (1.29) on the previous page, takes the form

j D �.Estat
C Eemf/ (1.30)

The electromotive force is defined as

E D
I
C

dl � .Estat
C Eemf/ (1.31)

where dl is a tangential line element of the closed loop C .1313 The term ‘electromotive force’
is something of a misnomer since
E represents a voltage, i.e., its SI
dimension is V. 1.3.4 Faraday’s law of induction

In subsection 1.1.2 we derived the differential equations for the electrostatic
field. Specifically, on page 6 we derived equation (1.10) stating that r�Estat D 0

and hence that Estat is a conservative field (it can be expressed as a gradient of a
scalar field). This implies that the closed line integral of Estat in equation (1.31)
above vanishes and that this equation becomes

E D
I
C

dl � Eemf (1.32)

It has been established experimentally that a non-conservative EMF field is
produced in a closed circuit C at rest if the magnetic flux through this circuit
varies with time. This is formulated in Faraday’s law which, in Maxwell’s gen-
eralised form, reads

E.t/ D
I
C

dl � E.t;x/ D �
d
dt
ˆm.t/

D �
d
dt

Z
S

d2x On � B.t;x/ D �
Z
S

d2x On �
@

@t
B.t;x/

(1.33)
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d2x On

B.x/ B.x/

v

dl

C

Figure 1.4: A loop C which moves
with velocity v in a spatially vary-
ing magnetic field B.x/ will sense
a varying magnetic flux during the
motion.

where ˆm is the magnetic flux and S is the surface encircled by C which can
be interpreted as a generic stationary ‘loop’ and not necessarily as a conducting
circuit. Application of Stokes’ theorem on this integral equation, transforms it
into the differential equation

r � E.t;x/ D �
@

@t
B.t;x/ (1.34)

which is valid for arbitrary variations in the fields and constitutes the Maxwell
equation which explicitly connects electricity with magnetism.

Any change of the magnetic flux ˆm will induce an EMF. Let us therefore
consider the case, illustrated in figure 1.4, when the ‘loop’ is moved in such a
way that it encircles a magnetic field which varies during the movement. The
total time derivative is evaluated according to the well-known operator formula

d
dt
D

@

@t
C

dx

dt
� r (1.35)

which follows immediately from the multivariate chain rule for the differenti-
ation of an arbitrary differentiable function f .t;x.t//. Here, dx=dt describes a
chosen path in space. We shall choose the flow path which means that dx=dt D
v and

d
dt
D

@

@t
C v � r (1.36)

where, in a continuum picture, v is the fluid velocity. For this particular choice,
the convective derivative dx=dt is usually referred to as the material derivative
and is denoted Dx=Dt .

Applying the rule (1.36) to Faraday’s law, equation (1.33) on the preceding
page, we obtain

E.t/ D �
d
dt

Z
S

d2x On � B D �
Z
S

d2x On �
@B

@t
�

Z
S

d2x On � .v � r /B (1.37)
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Furthermore, taking the divergence of equation (1.34) on the preceding page, we
see that

r �
@

@t
B.t;x/ D

@

@t
r � B.t;x/ D �r � Œr � E.t;x/� D 0 (1.38)

where in the last step formula (F.106) on page 201 was used. Since this is true
8t , we conclude that

r � B.t;x/ D 0 (1.39)

also for time-varying fields; this is in fact one of the Maxwell equations. Using
this result and formula (F.98) on page 200, we find that

r � .B � v/ D .v � r /B (1.40)

since, during spatial differentiation, v is to be considered as constant, This allows
us to rewrite equation (1.37) on the previous page in the following way:

E.t/ D
I
C

dl � Eemf
D �

d
dt

Z
S

d2x On � B

D �

Z
S

d2x On �
@B

@t
�

Z
S

d2x On � r � .B � v/

(1.41)

With Stokes’ theorem applied to the last integral, we finally get

E.t/ D
I
C

dl � Eemf
D �

Z
S

d2x On �
@B

@t
�

I
C

dl � .B � v/ (1.42)

or, rearranging the terms,I
C

dl � .Eemf
� v � B/ D �

Z
S

d2x On �
@B

@t
(1.43)

where Eemf is the field which is induced in the ‘loop’, i.e., in the moving system.
The application of Stokes’ theorem ‘in reverse’ on equation (1.43) yields

r � .Eemf
� v � B/ D �

@B

@t
(1.44)

An observer in a fixed frame of reference measures the electric field

E D Eemf
� v � B (1.45)

and an observer in the moving frame of reference measures the following Lorentz
force on a charge q

F D qEemf
D qEC q.v � B/ (1.46)

corresponding to an ‘effective’ electric field in the ‘loop’ (moving observer)

Eemf
D EC v � B (1.47)

Hence, we conclude that for a stationary observer, the Maxwell equation

r � E D �
@B

@t
(1.48)

is indeed valid even if the ‘loop’ is moving.
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1.3.5 The microscopic Maxwell equations

We are now able to collect the results from the above considerations and formu-
late the equations of classical electrodynamics valid for arbitrary variations in
time and space of the coupled electric and magnetic fields E.t;x/ and B.t;x/.
The equations are, in SI units ,14

14 In CGS units the microscopic
Maxwell equations are

r �E D 4��

r �E D �
1

c

@B

@t

r �B D 0

r �B D
4�

c
jC

1

c

@E

@t

in Heaviside-Lorentz units (one of
several natural units)

r �E D �

r �E D �
1

c

@B

@t

r �B D 0

r �B D
1

c
jC

1

c

@E

@t

and in Planck units (another set of
natural units)

r �E D 4��

r �E D �
@B

@t

r �B D 0

r �B D 4�jC
@E

@t

r � E D
�

"0
(1.49a)

r � E D �
@B

@t
(1.49b)

r � B D 0 (1.49c)

r � B D �0j C "0�0
@E

@t
D �0j C

1

c2
@E

@t
(1.49d)

In these equations � D �.t;x/ represents the total, possibly both time and space
dependent, electric charge density, with contributions from free as well as in-
duced (polarisation) charges. Likewise, j D j.t;x/ represents the total, pos-
sibly both time and space dependent, electric current density, with contributions
from conduction currents (motion of free charges) as well as all atomistic (po-
larisation and magnetisation) currents. As they stand, the equations therefore
incorporate the classical interaction between all electric charges and currents,
free or bound, in the system and are called Maxwell’s microscopic equations .
They were first formulated by Lorentz and therefore another name often used
for them is the Maxwell-Lorentz equations . Together with the appropriate con-
stitutive relations , which relate � and j to the fields, and the initial and boundary
conditions pertinent to the physical situation at hand, they form a system of well-
posed partial differential equations which completely determine E and B.

1.3.6 Dirac’s symmetrised Maxwell equations

If we look more closely at the microscopic Maxwell equations (1.49), we see
that they exhibit a certain, albeit not complete, symmetry. Dirac therefore made
the ad hoc assumption that there exist magnetic monopoles represented by a
magnetic charge density, which we denote by �m D �m.t;x/, and a magnetic
current density, which we denote by jm D jm.t;x/.15

15 JULIAN SEYMOUR
SCHWINGER (1918–1994)
once put it:

‘. . . there are strong theor-
etical reasons to believe
that magnetic charge exists
in nature, and may have
played an important role
in the development of
the Universe. Searches
for magnetic charge con-
tinue at the present time,
emphasising that electro-
magnetism is very far from
being a closed object’.

The magnetic monopole was first
postulated by P IERRE CURIE
(1859–1906) and inferred from
experiments in 2009.

With these new hypothetical physical entities included in the theory, and with
the electric charge density denoted �e and the electric current density denoted je,
the Maxwell equations will be symmetrised into the following two scalar and
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two coupled vectorial partial differential equations (SI units):

r � E D
�e

"0
(1.50a)

r � E D ��0j
m
�
@B

@t
(1.50b)

r � B D �0�
m (1.50c)

r � B D �0j
e
C "0�0

@E

@t
(1.50d)

We shall call these equations Dirac’s symmetrised Maxwell equations or the
electromagnetodynamic equations .

Taking the divergence of (1.50b), we find that

r � .r � E/ D �
@

@t
.r � B/ � �0r � j

m
� 0 (1.51)

where we used the fact that, according to formula (F.106) on page 201, the di-
vergence of a curl always vanishes. Using (1.50c) to rewrite this relation, we
obtain the equation of continuity for magnetic charge

@�m

@t
C r � jm

D 0 (1.52)

which has the same form as that for the electric charges (electric monopoles) and
currents, equation (1.25) on page 10.

BFaraday’s law derived from the assumed conservation of magnetic chargeEXAMPLE 1 .1

POSTULATE 1.1 (INDESTRUCTIBILITY OF MAGNETIC CHARGE) Magnetic charge ex-
ists and is indestructible in the same way that electric charge exists and is indestructible.

In other words, we postulate that there exists an equation of continuity for magnetic charges:

@�m.t;x/

@t
C r � jm.t;x/ D 0 (1.53)

Use this postulate and Dirac’s symmetrised form of Maxwell’s equations to derive Faraday’s
law.

The assumption of the existence of magnetic charges suggests a Coulomb-like law for mag-
netic fields:

Bstat.x/ D
�0

4�

Z
V 0

d3x0 �m.x0/
x � x0

jx � x0j3
D �

�0

4�

Z
V 0

d3x0 �m.x0/r

�
1

jx � x0j

�
D �

�0

4�
r

Z
V 0

d3x0
�m.x0/

jx � x0j

(1.54)

[cf. equation (1.7) on page 4 for Estat] and, if magnetic currents exist, a Biot-Savart-like
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law for electric fields [cf. equation (1.17) on page 8 for Bstat]:

Estat.x/ D �
�0

4�

Z
V 0

d3x0 jm.x0/ �
x � x0

jx � x0j3
D
�0

4�

Z
V 0

d3x0 jm.x0/ � r

�
1

jx � x0j

�
D �

�0

4�
r �

Z
V 0

d3x0
jm.x0/

jx � x0j

(1.55)

Taking the curl of the latter and using the operator ‘bac-cab’ rule, formula (F.98) on
page 200, we find that

r � Estat.x/ D �
�0

4�
r �

�
r �

Z
V 0

d3x0
jm.x0/

jx � x0j

�
D

D
�0

4�

Z
V 0

d3x0 jm.x0/r2
�

1

jx � x0j

�
�
�0

4�

Z
V 0

d3x0 Œjm.x0/ � r 0�r 0
�

1

jx � x0j

�
(1.56)

Comparing with equation (1.20) on page 8 for Estat and the evaluation of the integrals there,
we realise that

r � Estat.x/ D ��0

Z
V 0

d3x0 jm.x0/ ı.x � x0/ D ��0jm.x/ (1.57)

by analogy.

It is intriguing to note that if we assume that formula (1.55) above is valid also for time-
varying magnetic currents, then, with the use of the representation of the Dirac delta func-
tion, equation (F.121) on page 201, the equation of continuity for magnetic charge, equation
(1.52) on the preceding page, and the assumption of the generalisation of equation (1.54)
on the facing page to time-dependent magnetic charge distributions, we obtain, at least
formally,

r � E.t;x/ D ��0

Z
V 0

d3x0 jm.t;x0/ı.x � x0/

�
�0

4�

@

@t

Z
V 0

d3x0 �m.t;x0/r 0
�

1

jx � x0j

�
D ��0jm.t;x/ �

@

@t
B.t;x/

(1.58)

[cf. equation (1.26) on page 10] which we recognise as equation (1.50b) on the facing
page. A transformation of this electromagnetodynamic result by rotating into the ‘electric
realm’ of charge space, thereby letting jm tend to zero, yields the electrodynamic equation
(1.50b) on the preceding page, i.e., the Faraday law in the ordinary Maxwell equations.
This process would also provide an alternative interpretation of the term @B=@t as a mag-
netic displacement current , dual to the electric displacement current [cf. equation (1.28) on
page 11].

By postulating the indestructibility of a hypothetical magnetic charge, and assuming a dir-
ect extension of results from statics to dynamics, we have been able to replace Faraday’s
experimental results on electromotive forces and induction in loops as a foundation for the
Maxwell equations by a more fundamental one. At first sight, this result seems to be in
conflict with the concept of retardation. Therefore a more detailed analysis of it is required.
This analysis is left to the reader.

End of example 1.1C
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ELECTROMAGNETIC FIELDS AND

WAVES

As a first step in the study of the dynamical properties of the classical electro-
magnetic field, we shall in this chapter, as alternatives to the first-order Maxwell-
Lorentz equations, derive a set of second-order differential equations for the
fields E and B. It turns out that these second-order equations are wave equations
for E and B, indicating that electromagnetic wave modes are very natural and
common manifestations of classical electrodynamics.1

1 In 1864, in a lecture at the
Royal Society of London, JAMES
CLERK MAXWELL (1831–1879)
himself said:

‘We have strong reason
to conclude that light
itself—including radiant
heat and other radiation, if
any—is an electromagnetic
disturbance in the form of
waves propagated through
the electro-magnetic field
according to electro-
magnetic laws.’

But before deriving these alternatives to the Maxwell-Lorentz equations, we
shall discuss the mathematical techniques of making use of complex variables
to represent real physical observables in order to simplify the mathematical
work involved. In this chapter we will also describe how to make use of the
single spectral component (Fourier component) technique, which simplifies the
algebra, at the same time as it clarifies the physical content.

2.1 Axiomatic classical electrodynamics

In chapter 1 we described the historical route which led to the formulation of the
microscopic Maxwell equations. From now on we shall consider these equations
as postulates , i.e., as the axiomatic foundation of classical electrodynamics .2 As

2 FRITZ ROHRLICH writes in
Classical Charged Particles that

‘A physical theory, in
the narrow sense of the
word, is a logical structure
based on assumptions and
definitions which permits
one to predict the outcome
of a maximum number of
different experiments on
the basis of a minimum
number of postulates.
One usually desires the
postulates (or axioms) to be
as self-evident as possible;
one demands simplicity,
beauty, and even elegance.’

such, they describe, in scalar and vector-differential-equation form, the beha-
viour in time t 2 R1 and in space x 2 R3 of the electric and magnetic fields

19
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E.t;x/ 2 R3 and B.t;x/ 2 R3, respectively [cf. equations (1.49) on page 15]:

r � E D
�

"0
2 R1 (Gauss’s law) (2.1a)

r � E D �
@B

@t
2 R3 (Faraday’s law) (2.1b)

r � B D 0 2 R1 (No magnetic charges) (2.1c)

r � B D �0j C "0�0
@E

@t
2 R3 (Maxwell’s law) (2.1d)

We reiterate that in these equations �.t;x/ and j.t;x/ are the total charge and
current densities, respectively. Hence, they are considered microscopic in the
sense that all charges and currents, including the intrinsic ones in matter, such as
bound charges in atoms and molecules, as well as magnetisation currents in mag-
netic material, are included (but macroscopic in the sense that quantum effects
are neglected). These charge and current densities may have prescribed arbitrary
time and space dependencies and be considered the sources of the fields, but
they may also be generated by the fields. Despite these dual rôles, we shall refer
to them as the source terms of the microscopic Maxwell equations and the two
equations where they appear as the Maxwell-Lorentz source equations .

2.2 Complex notation and physical observables

In order to simplify the mathematical treatment, we shall frequently allow the
mathematical variables representing the fields, the charge and current densities,
and other physical quantities to be analytically continued into the complex do-
main. However, when we use such a complex notation we must be very careful
how to interpret the results derived within this notation. This is because every
physical observable is, by definition, real-valued.3 Consequently, the mathemat-

3 A physical observable is some-
thing that can, at least in principle,
be ultimately reduced to an input
to the human sensory system. In
other words, physical observables
quantify (our perception of) the
physical reality and as such they
must, of course, be described by
real-valued quantities.

ical expression for the observable under consideration must also be real-valued
to be physically meaningful.

If a physical scalar variable, or a component of a physical vector or tensor,
is represented mathematically by the complex-valued number  , i.e.,  2 C,
then in classical electrodynamics (in fact, in classical physics as a whole), one
makes the identification  observable D Re

˚
 mathematical

	
. Therefore, it is always

understood that one must take the real part of a complex mathematical variable
in order for it to represent a classical physical observable.4

4 This is at variance with
quantum physics, where
 observable D

ˇ̌
 mathematical

ˇ̌
.

Letting � denote complex conjug-
ation, the real part can be written
Re f g D 1

2
. C �/, i.e., as

the arithmetic mean of  and its
complex conjugate  �. Similarly,
the magnitude can be written
j j D .  �/1=2, i.e., as the
geometric mean of  and  �.
Under certain conditions, also the
imaginary part corresponds to a
physical observable.

For mathematical convenience and ease of calculation, we shall in the fol-
lowing regularly use—and tacitly assume—complex notation, stating explicitly
when we do not. One convenient property of the complex notation is that dif-
ferentiations often become trivial to perform. However, care must always be
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exercised. A typical situation being when products of two or more quantities
are calculated since, for instance, for two complex-valued variables  1 and  2
we know that Re f 1 2g ¤ Re f 1gRe f 2g. On the other hand, . 1 2/� D
 1
� 2

�.

2.2.1 Physical observables and averages

As just mentioned, it is important to be aware of the limitations of complex
representation of real observables when evaluating products of mathematical
variables that represent physical quantities. Let us, for example, consider two
physical vector fields a.t;x/ and b.t;x/ that are represented by their Fourier
components, a0.x/ exp.�i!t/ and b0.x/ exp.�i!t/, i.e., by vectors in (a do-
main of) 3D complex space C3. Furthermore, let ı be a binary operator for these
vectors, representing either the scalar product operator (�), the vector product
operator (�), the dyadic product operator (juxtaposition), or the outer tensor op-
erator (˝). Then we make the interpretation

a.t;x/ ı b.t;x/ D Re fag ı Re fbg D Re
˚
a0.x/ e�i!t	

ı Re
˚
b0.x/ e�i!t	

(2.2)

We can express the real part of the complex vector a as

Re fag D Re
˚
a0.x/ e�i!t	

D
1

2
Œa0.x/ e�i!t

C a0
�.x/ ei!t � (2.3)

and similarly for b. Hence, the physically acceptable interpretation of the scalar
product of two complex vectors, representing classical physical observables, is

a.t;x/ ı b.t;x/ D Re
˚
a0.x/ e�i!t	

ı Re
˚
b0.x/ e�i!t	

D
1

2
Œa0.x/ e�i!t

C a0
�.x/ ei!t � ı

1

2
Œb0.x/ e�i!t

C b0
�.x/ ei!t �

D
1

4

�
a0 ı b0

�
C a0

�
ı b0 C a0 ı b0 e�2i!t

C a0
�
ı b0

� e2i!t�
D
1

2
Re fa0 ı b0

�
g C

1

2
Re
˚
a0 ı b0 e�2i!t	

D
1

2
Re
˚
a0 e�i!t

ı b0
� ei!t	

C
1

2
Re
˚
a0e�i!t

ı b0 e�i!t	
D
1

2
Re fa.t;x/ ı b�.t;x/g C

1

2
Re fa.t;x/ ı b.t;x/g

(2.4)

In physics, we are often forced to measure the temporal average (cycle av-
erage) of a physical observable. We use the notation h� � �it , for such an average
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and find that the average of the product of the two physical quantities represented
by a and b can be expressed as

ha ı bit � hRe fag ı Re fbgit D
1

2
Re fa ı b�g D

1

2
Re fa� ı bg

D
1

2
Re fa0 ı b0

�
g D

1

2
Re fa0� ı b0g

(2.5)

This is because the oscillating function exp.�2i!t/ in equation (2.4) on the pre-
ceding page vanishes when averaged in time over a complete period 2�=! (or
over infinitely many periods), and, therefore, ha.t;x/ ı b.t;x/it gives no con-
tribution.

2.2.2 Maxwell equations in Majorana representation

It is sometimes convenient to introduce the complex-field six-vector , also known
as the Riemann-Silberstein vector

G.t;x/ D E.t;x/C icB.t;x/ (2.6)

where G 2 C3 even if E;B 2 R3. Expressed in this vector, the Maxwell equa-
tions (2.1) on page 20 transform into

r �G D
�

"0
(2.7a)

r �G D ic
�
�0j C

1

c2
@G

@t

�
(2.7b)

In regions where � D 0 and j D 0 these equations reduce to

r �G D 0 (2.8a)

r �G D
i
c

@G

@t
(2.8b)

which, the help of the linear momentum operator ,

yp D �i}r (2.9)

can be rewritten

yp �G D 0 (2.10a)

i}
@G

@t
D ciyp �G (2.10b)

The first equation is the transversality condition p D }k ? G where we anti-
cipate the quantal relation between the field momentum p and the wave vector
k and the second equation describes the dynamics.
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Using formula (F.88) on page 200, we can rewrite equation (2.10b) on the
preceding page as

i}
@G

@t
D cS � ypG (2.11)

where

S D

0B@0 0 0

0 0 �i
0 i 0

1CA Ox1 C
0B@ 0 0 i
0 0 0

�i 0 0

1CA Ox2 C
0B@0 �i 0

i 0 0

0 0 0

1CA Ox3 (2.12)

By introducing the Hamiltonian-like operator

yH D cS � yp (2.13)

the Maxwell-Lorentz equations can be written as

i}
@G

@t
D yHG (2.14)

i.e., as a Schrödinger/Pauli/Dirac-like equation. This formulation of the free-
space electromagnetic field equations is known as the Majorana representation
of the Maxwell-Lorentz equations or the Majorana formalism .5

5 It so happens that ETTORE
MAJORANA (1906-1938) used the
definition G D E � icB, but this
is no essential difference from the
definition (2.6). One may say that
Majorana used the other branch of
p
�1 as the imaginary unit.

BProducts of Riemann-Silberstein vectors with themselves for E;B 2 R3 EXAMPLE 2 .1

One fundamental property of C3, to which the Riemann-Silberstein vector G D E C icB
belongs, is that inner (scalar) products in this space are invariant under rotations just as they
are in R3. However, as discussed in example M.4 on page 215, the inner (scalar) product in
C3 can be defined in two different ways. Considering the special case of the scalar product
of G with itself, assuming that E 2 R3 and B 2 R3, we have the following possibilities of
defining various products of G with itself:

1. The inner (scalar) product defined as G scalar multiplied with itself

G �G D .EC icB/ � .EC icB/ D E2 � c2B2 C 2icE � B (2.15)

Since ‘length’ is a scalar quantity that is invariant under rotations, we find that

E2 � c2B2 D Const (2.16a)

E � B D Const (2.16b)

2. The inner (scalar) product defined as G scalar multiplied with the complex conjugate of
itself

G �G� D .EC icB/ � .E � icB/ D E � EC c2B � B � E2 C c2B2 (2.17)

which is also an invariant scalar quantity. As we shall see in chapter 4, this quantity is
proportional to the electromagnetic field energy density.

3. As with any vector, the cross product of G with itself vanishes:
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G �G D .EC icB/ � .EC icB/

D E � E � c2B � BC ic.E � B/C ic.B � E/

D 0C 0C ic.E � B/ � ic.E � B/ D 0

(2.18)

4. The cross product of G with the complex conjugate of itself does, however, not vanish.
Instead it is

G �G� D .EC icB/ � .E � icB/

D E � EC c2B � B � ic.E � B/C ic.B � E/

D 0C 0 � ic.E � B/ � ic.E � B/ D �2ic.E � B/

(2.19)

that is proportional to the electromagnetic energy flux, to be introduced in chapter 4.

5. The dyadic product of G with itself is

GG D EE � c2BBC ic.EBC BE/ (2.20)

or, in component form,

.GG/ij D EiEj � c
2BiBj C ic.EiBj C BiEj / (2.21)

6. The dyadic product of G� with itself is

G�G� D EE � c2BB � ic.EBC BE/ D .GG/� (2.22)

7. The dyadic product of G with its own complex conjuagte from the right is

GG� D EEC c2BB � ic.EB � BE/ (2.23)

and from the left it is

G�G D EEC c2BBC ic.EB � BE/ D .GG�/
� (2.24)

End of example 2.1C

2.3 The wave equations for E and B

The Maxwell-Lorentz equations (2.1) on page 20 are four first-order coupled
differential equations (both E and B appear in the same equations). Two of the
equations are scalar [equation (2.1a) and equation (2.1c)], and two are in 3D
Euclidean vector form [equation (2.1b) and equation (2.1d)], representing three
scalar equations each. Hence, the Maxwell equations represent eight (1 C 1 C
3C3) scalar coupled first-order partial differential equations. However, it is well
known from the theory of differential equations that a set of first-order, coupled
partial differential equations can be transformed into a smaller set of second
order partial differential equations, which sometimes become decoupled in the
process. It turns out that in our case we will obtain one second-order differential
equation for E and one second-order differential equation for B. These second-
order partial differential equations are, as we shall see, wave equations , and we
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shall discuss the implications of them. For certain media, the B wave field can
be easily obtained from the solution of the E wave equation but in general this
is not the case.

To bring the first-order differential equations (2.1) on page 20 into second
order one needs, of course, to operate on them with first-order differential oper-
ators. If we apply the curl vector operator (r�) to both sides of the two Maxwell
vector equations, equation (2.1b) and equation (2.1d), assuming that our phys-
ical quantities vary in such a regular way that temporal and spatial differentiation
commute, we obtain the second order differential equations

r � .r � E/ D �
@

@t
.r � B/ (2.25a)

r � .r � B/ D �0r � j C "0�0
@

@t
.r � E/ (2.25b)

As they stand, these second-order partial differential equations still appear to be
coupled. However, by using the Maxwell equations once again we can formally
decouple them into

r � .r � E/ D ��0
@j

@t
� "0�0

@2E

@t2
(2.26a)

r � .r � B/ D �0r � j � "0�0
@2B

@t2
(2.26b)

Using to the operator triple product ‘bac-cab’ rule equation (F.103) on page 201,
which gives

r � .r � E/ D r .r � E/ � r2E (2.27)

when applied to E and similarly to B, Gauss’s law equation (2.1a) on page 20,
and then rearranging the terms, recalling that "0�0 D 1=c2 where c is the speed
of light in free (empty) space, we obtain the two inhomogeneous vector wave
equations

�2E D
1

c2
@2E

@t2
� r

2E D �
r�

"0
� �0

@j

@t
(2.28a)

�2B D
1

c2
@2B

@t2
� r

2B D �0r � j (2.28b)

where �2 is the d’Alembert operator , defined according to formula (M.109) on
page 223.

These are the general wave equations for the electromagnetic fields, gener-
ated in regions where there exist sources �.t;x/ and j.t;x/ of any kind. Simple
everyday examples of such regions are electric conductors (e.g., radio and TV
transmitter antennas) or plasma (e.g., the Sun and its surrounding corona). In
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principle, the sources � and j can still cause the wave equations to be coupled,
but in many important situations this is not the case.66 Clearly, if the current density

in the RHS of equation (2.28b) is
a function of E, as is the case if
Ohm’s law j D �E is applicable,
the coupling is not removed.

We notice that outside the source region, i.e., in free space where � D 0

and j D 0, the inhomogeneous wave equations (2.28) on the preceding page
simplify to the well-known uncoupled, homogeneous wave equations

1

c2
@2E

@t2
� r

2E D 0 (2.29a)

1

c2
@2B

@t2
� r

2B D 0 (2.29b)

These equations describe how the fields that were generated in the source region,
e.g., a transmitting antenna, propagate as vector waves through free space. Once
these waves impinge upon another region which can sustain charges and/or cur-
rents for a long enough time, e.g., a receiving antenna or other electromagnetic
sensors, the fields interact with the charges and the currents in this second region
in accordance with equations (2.28) on the previous page.

BWave polarisationEXAMPLE 2 .2

Since electromagnetic waves are vector waves they exhibit wave polarisation . Let us con-
sider a single plane wave that propagates in free space7 i.e., the electric and magnetic field7 A single plane wave is a math-

ematical idealisation. In reality,
a wave appears as a building
block of wave packets , i.e., super-
positions of a (possibly infinite)
number of individual plane waves
with different properties. E.g., a
radio beam from a transmitting
antenna is a superposition (Fourier
sum or integral) of many plane
waves with slightly different angles
relative to a fixed, given axis or a
plane.

vectors are restricted to a two-dimensional plane that is perpendicular the propagation dir-
ection. Let us choose this to be the x1x2 plane and the propagation vector (wave vector) to
be along the x3 axis. A generic temporal Fourier mode of the electric field vector E with
(angular) frequency ! is given by the real-valued expression

E.t;x/ D E1 cos.!t � kx3 C ı1/ Ox1 CE2 cos.!t � kx3 C ı2/ Ox2 (2.30)

In complex notation we can write this as

E.t;x/ D E1eiı1 ei.kx3�!t/ Ox1 CE2eiı2 ei.kx3�!t/ Ox2

D
�
E1eiı1 Ox1 CE2eiı2 Ox2

�
ei.kx3�!t/

D
�
E1 Ox1 CE2eiı0 Ox2

�
ei.kx3�!tCı1/

(2.31)

where ı0 D ı2 � ı1. When this phase ı0 vanishes, the electric field oscillates along a
line directed at an angle arctan .E2=E1/ relative to the x1 axis. This is called linear wave
polarisation . When ı0 ¤ 0 the wave is in general in a state of elliptical wave polarisation .

For the special cases ı0 D ˙�=2 and E1 D E2 D E0 the wave can, in complex notation,
be described as

E.t;x/ D E0 ei.kx3�!tCı1/
�
Ox1 ˙ iOx2

�
(2.32)

As shown in example M.1 on page 207, this describes a rotation. This rotation is called
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circular wave polarisation . The helical base vectors

Oh˙ D
1
p
2

�
Ox1 ˙ iOx2/ (2.33)

which are fixed unit vectors, allow us to write equation (2.32) on the preceding page

E.t;x/ D
p
2E0ei.kx3�!tCı1/ Oh˙ (2.34)

We use the convention that OhC represents left-hand circular polarisation and Oh� right-hand
circular polarisation .8 Left-hand (right-hand) circular polarised waves are said to have

8 In physics, two different conven-
tions are used. The handedness
refers to the rotation in space of the
electric field vector, either when
viewed as the wave propagates
away from the observer or toward
the observer.positive helicity (negative helicity).

End of example 2.2C

BWave equations expressed in terms of Riemann-Silberstein vectors EXAMPLE 2 .3

Using the Maxwell equations expressed in the Riemann-Silberstein vector G D EC icB,
i.e., equations (2.7) on page 22, one can perform similar steps as was used in deriving
equations (2.28) on page 25 and one finds that

�2G D
1

c2
@2G

@t2
� r

2G D �
r�

"0
� �0

@j

@t
C i�0cr � j (2.35)

Taking the real and imaginary parts of this equation, assuming that E;B 2 R3, we recover
the wave equations (2.26) on page 25, as expected.

End of example 2.3C

2.3.1 The time-independent wave equations for E and B

Often one can assume that the temporal dependency of E and B and of the
sources � and j is well-behaved enough that it can be represented by the sum
of a finite number N of temporal spectral components (temporal Fourier com-
ponents), or, in other words, in the form of a temporal Fourier series . In such
situations it is sufficient to study the properties of one arbitrary member of this
set of spectral components f!n W n D 0; 1; 2; : : : ; N � 1g, i.e.,

E.t;x/ D En.x/ cos.!nt / D En.x/Re
˚
e�i!nt

	
� En.x/e�i!nt (2.36a)

B.t;x/ D Bn.x/ cos.!nt / D Bn.x/Re
˚
e�i!nt

	
� Bn.x/e�i!nt (2.36b)

where En;Bn 2 R3 and !n; t 2 R1 is assumed. This is because the Maxwell-
Lorentz equations are linear, implying that the general solution is obtained by a
weighted linear superposition (summation) of the result for each such spectral
component, where the weight of each spectral component is given by its Fourier
amplitude , En.x/, and Bn.x/, respectively.

In a physical system, a temporal spectral component is identified uniquely by
its angular frequency !n. A wave containing only a finite number of temporal
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spectral components is called a time-harmonic wave . In the limit when only
one single frequency is present, we talk about a monochromatic wave . Strictly
speaking, purely monochromatic waves do not exist.99 When subtle classical and

quantum radiation effects are taken
into account, one finds that all
emissions suffer an unavoidable,
intrinsic line broadening . Also,
simply because the Universe has
existed for only about 13.5 billion
years, which is a finite time, no
signals in the Universe can be
observed to have a spectral width
that is smaller than the inverse of
this age.

By inserting the temporal spectral component equation (2.36a) on the previ-
ous page into equation (2.28a) on page 25 one finds that for an arbitrary com-
ponent the following time-independent wave equation is obtained:

r
2Ene�i!nt C

!2n
c2

Ene�i!nt C i!n�0jne�i!nt D
r�n

"0
e�i!nt (2.37)

After dividing out the common factor exp.�i!nt /, this becomes

r
2En C

!2n
c2

En C i!n�0jn D
r�n

"0
(2.38)

and similarly for B. Solving this equation, multiplying the solution obtained by
exp.�i!nt / and summing over all N such Fourier (spectral) components with
frequencies !n; n D 0; 1; 2; : : : ; N � 1 present in the sources, and hence in the
fields, the complete solution of the original wave equation is obtained. This is a
consequence of the superposition principle which is valid as long as nonlinear
effects can be neglected.

In the limit of very many frequency components, the Fourier sum goes over
into a Fourier integral . To illustrate this generic case, let us introduce the Fourier
transform of E.t;x/

E!.x/ D
1

2�

Z 1
�1

dt E.t;x/ ei!t (2.39a)

and the corresponding inverse Fourier transform

E.t;x/ D

Z 1
�1

d! E!.x/ e�i!t (2.39b)

where the amplitude E!.x/ 2 C3 is a continuous function of (angular) fre-
quency ! 2 R1 and of x 2 R3.

We see that the Fourier transform of @E.t;x/=@t becomes

1

2�

Z 1
�1

dt
�
@E.t;x/

@t

�
ei!t

D
1

2�

�
E.t;x/ ei!t �1

�1„ ƒ‚ …
D0 since E!0; t!˙1

�i!
1

2�

Z 1
�1

dt E.t;x/ ei!t

D �i! E!.x/

(2.40)

and that, consequently,

1

2�

Z 1
�1

dt
�
@2E.t;x/

@t2

�
ei!t
D �!2E!.x/ (2.41)
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Fourier transforming equation (2.28a) on page 25 and using (2.40) and (2.41),
we thus obtain

r
2E! C

!2

c2
E! C i!�0j! D

r�!

"0
(2.42)

which is mathematically identical to equation (2.38) on the facing page. A sub-
sequent inverse Fourier transformation of the solution E! of this equation leads
to the same result as is obtained from the solution of equation (2.38) on page 28.
Hence, by considering just one temporal Fourier component we obtain results
which are identical to those that we would have obtained by employing the ma-
chinery of Fourier transforms and Fourier integrals. Hence, under the assump-
tion of linearity (superposition principle) there is usually no need for the formal
forward and inverse Fourier transform technique.

What was said above in general terms about temporal spectral components is
true also for spatial spectral components (spatial Fourier components) only that
we must use a three-dimensional Fourier representation

Ek.t/ D
1

.2�/3

Z 1
�1

d3x E.t;x/ e�ik�x (2.43a)

E.t;x/ D

Z 1
�1

d3k Ek.t/ eik�x (2.43b)

Since we always assume that the real part shall be taken (if necessary), we
can pick an arbitrary pair samples of the spatial amplitudes in equation (2.36a)
and equation (2.36b) on page 27, denote the members of this pair by E0 and B0,
respectively, and then represent them as the Fourier modes

E0.x/ D e0Re
˚
eik0�x

	
D E!;keik�x (2.44a)

B0.x/ D b0Re
˚
eik0�x

	
D B!;keik�x (2.44b)

respectively, where k0 is the wave vector (measured in m�1) of mode 0; in the
last step we introduced a complex notation and also dropped the mode number
since the formulæ are valid for any mode n.

Now, since

@

@t
e�i!t

D �i!e�i!t (2.45a)

and

r eik�x
D Oxi

@

@xi
eikj xj D Oxi ikj ıij eikj xj D ikixieikj xj D ikeik�x (2.45b)

we see that for each spectral component in equations (2.44), temporal and spatial
differential operators turn into algebraic operations according to the following
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scheme:
@

@t
! �i! (2.46a)

r ! ik (2.46b)

r � ! ik� (2.46c)

r � ! ik� (2.46d)

We note that

r � E D ik � E D ik � Ek (2.47a)

r � E D ik � E D ik � E? (2.47b)

r � B D ik � B D ik � Bk (2.47c)

r � B D ik � B D ik � B? (2.47d)

r� D ik� (2.47e)

r � j D ik � j D ik � jk (2.47f)

r � j D ik � j D ik � j? (2.47g)

Hence, with respect to the wave vector k, the r � operator projects out the spa-
tially longitudinal component, and the r� operator projects out the spatially
transverse component of the field vector in question. Put in another way,

.r�/? D 0 (2.48a)

r � E? D 0 (2.48b)

r � Ek D 0 (2.48c)

and so on for the other observables.
As seen from equations (2.46) above, the Fourier transform of a function

of time t is a function of angular frequency !, and the Fourier transform of a
function of the position vector x is a function of the wave vector k. One says
that ! is a reciprocal space to t and that k spans a space that is reciprocal to x.
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ELECTROMAGNETIC POTENTIALS

AND GAUGES

As described in chapter 1, the concepts of electric and magnetic fields were in-
troduced such that they are intimately related to the mechanical forces between
charges and currents given by Coulomb’s law and Ampère’s law, respectively.
Just as in mechanics, it turns out that in electrodynamics it is often more con-
venient to express the theory in terms of potentials rather then in terms of the
electric and magnetic fields (Coulomb and Ampère forces) themselves. This is
particularly true for problems related to radiation and relativity. As we shall see
in chapter 7, the potentials pay a central rôle in the formulation of relativistically
covariant electromagnetism. At the quantum level, electrodynamics is almost
exclusively formulated in terms of potentials rather than electric and magnetic
fields.

In this chapter we introduce and study the properties of such potentials and
shall find that they exhibit some remarkable properties that elucidate the fun-
damental aspects of electromagnetism, lead naturally to the special theory of
relativity and pave the way for gauge field theories.

3.1 The electrostatic scalar potential

As we saw in equation (1.10) on page 6, the time-independent electric (electro-
static) field Estat.x/ is irrotational. Hence, it may be expressed in terms of the

31
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gradient of a scalar field. If we denote this scalar field by ��stat.x/, we get

Estat.x/ D �r�stat.x/ (3.1)

Taking the divergence of this and using equation (1.9) on page 5, we obtain
Poisson’s equation

r
2�stat.x/ D �r � Estat.x/ D �

�.x/

"0
(3.2)

A comparison with the definition of Estat, namely equation (1.7) on page 4,
shows that this equation has the solution

�stat.x/ D
1

4�"0

Z
V 0

d3x0
�.x0/

jx � x0j
C ˛ (3.3)

where the integration is taken over all source points x0 at which the charge dens-
ity �.x0/ is non-zero and ˛ is an arbitrary scalar function that is not dependent on
x, e.g., a constant. The scalar function �stat.x/ in equation (3.3) above is called
the electrostatic scalar potential .

3.2 The magnetostatic vector potential

Consider the equations of magnetostatics (1.24) on page 9. According to formula
(F.106) on page 201 any vector field a has the property that r � .r �a/ � 0 and
in the derivation of equation (1.19) on page 8 in magnetostatics we found that
r � Bstat.x/ D 0. We therefore realise that we can always write

Bstat.x/ D r �Astat.x/ (3.4)

where Astat.x/ is called the magnetostatic vector potential .
We saw above that the electrostatic potential (as any scalar potential) is not

unique since we may, without changing the physics, add to it a quantity whose
spatial gradient vanishes. A similar arbitrariness is true also for the magneto-
static vector potential.

In the magnetostatic case, we may start from Biot-Savart’s law as expressed
by equation (1.17) on page 8. Identifying this expression with equation (3.4)
above allows us to define the static vector potential as

Astat.x/ D
�0

4�

Z
V 0

d3x0
j.x0/

jx � x0j
C a.x/ (3.5)

where a.x/ is an arbitrary vector field whose curl vanishes. According to for-
mula (F.107) on page 201 such a vector field can always be written as the gradi-
ent of a scalar field.
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BMultipole expansion of the electrostatic potential EXAMPLE 3 .1

The integral in the electrostatic potential formula

�stat.x/ D
1

4�"0

Z
V 0

d3x0
�.x0/

jx � x0j
(3.6)

where � is the charge density introduced in equation (1.9) on page 5, is not always possible
to evaluate analytically. However, for a charge distribution source �.x0/ that is well loc-
alised in a small volume V 0 around x0, a series expansion of the integrand in such a way
that the dominant contributions are contained in the first few terms can be made. E.g., if we
Taylor expand the inverse distance 1=

ˇ̌
x � x0

ˇ̌
with respect to the point x0 D x0 we obtain

1

jx � x0j
D

1

j.x � x0/ � .x0 � x0/j

D
1

jx � x0j
C

1X
nD1

1

nŠ

3X
i1D1

� � �

3X
inD1

�

@n 1
jx�x0j

@xi1 � � � @xin
Œ�.x0i1 � x0i1

/� � � � Œ�.x0in � x0in /�

D
1

jx � x0j
C

1X
nD1

X
n1Cn2Cn3Dn

ni�0

.�1/n

n1Šn2Šn3Š

�

@n 1
jx�x0j

@x
n1
1 @x

n2
2 @x

n3
3

.x01 � x01/
n1.x02 � x02/

n2.x03 � x03/
n3

(3.7)

Inserting this into the integral in formula (3.6), we obtain the expansion

�stat.x/ D
1

4�"0

"
1

jx � x0j

Z
V 0

d3x0 �.x0/C
1X
nD1

X
n1Cn2Cn3Dn

ni�0

.�1/n

n1Šn2Šn3Š

�

@n 1
jx�x0j

@x
n1
1 @x

n2
2 @x

n3
3

Z
V 0

d3x0 .x01 � x01/
n1.x02 � x02/

n2.x03 � x03/
n3�.x0/

# (3.8)

Clearly, the first integral in this expansion is nothing but the static net charge

q D

Z
V 0

d3x0 �.x0/ (3.9)

If we introduce the electrostatic dipole moment vector

d.x0/ D

Z
V 0

d3x0 .x0 � x0/ �.x
0/ (3.10)

with components pi , i D 1; 2; 3, and the electrostatic quadrupole moment tensor

Q.x0/ D
Z
V 0

d3x0 .x0 � x0/.x
0
� x0/ �.x

0/ (3.11)

with components Qij ; i; j D 1; 2; 3, and use the fact that

@ 1
jx�x0j

@xi
D �

xi � x0i

jx � x0j
3

(3.12)
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and that

@2 1
jx�x0j

@xi@xj
D
3.xi � x0i /.xj � x0j / � jx � x0j

2 ıij

jx � x0j
5

(3.13)

then we can write the first three terms of the expansion of equation (3.6) on the previous
page as

�stat.x/ D
1

4�"0

"
q

jx � x0j
C

1

jx � x0j
2

d �
x � x0

jx � x0j

C
1

jx � x0j
3
Qij

�3
2

.xi � x0i /

jx � x0j

.xj � x0j /

jx � x0j
�
1

2
ıij

�
C : : :

#
(3.14)

where Einstein’s summation convention over i and j is implied. We see that at large dis-
tances from a localised charge distribution, the electrostatic potential can, to the lowest
order, be approximated by the (Coulomb) potential from a single point charge q located at
the moment point x0. We also see that

d.x0/ D

Z
V 0

d3x0 .x0 � x0/ �.x
0/ D

Z
V 0

d3x0 x0 �.x0/ � x0

Z
V 0

d3x0 �.x0/

D

Z
V 0

d3x0 x0 �.x0/ � x0q (3.15)

from which we draw the conclusion that if q ¤ 0, it is always possible to choose the moment
point x0 such that d D 0, and if q D 0, then d is independent of the choice of moment
point x0. Furthermore, one can show that

˛
1

2
ıij
3.xi � x0i /.xj � x0j / � jx � x0j

2 ıij

jx � x0j
5

D 0 (3.16)

where ˛ is an arbitrary constant. Choosing it to be

˛ D
1

3

Z
V 0

d3x0
ˇ̌
x0 � x0

ˇ̌2
�.x0/ (3.17)

we can transform Qij into

Q0ij D Qij � ˛ıij D

Z
V 0

d3x0
��
.x0i � x0i /.x

0
j � x0j / �

1

3

ˇ̌
x0 � x0

ˇ̌2
ıij
�
�.x0/

�
(3.18)

or

Q0 D Q � 13˛ D
Z
V 0

d3x0
��
.x0 � x0/.x

0
� x0/ � 13

1

3

ˇ̌
x0 � x0

ˇ̌2�
�.x0/

�
(3.19)

where 13 D Oxi Oxi is the unit tensor. It follows immediately that Q0i i D 0 (Einstein summa-
tion), i.e., that Q0 is traceless . Rotating the coordinate system, it is possible to diagonalise
the tensors Q and Q0. For any spherical symmetric distribution of charge, all components
of Q0 vanish if the moment point x0 is chosen as the symmetry centre of the distribution.

If the charge distribution �.x/ is made up of discrete point charges qn with coordinates xn,
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the definitions above of q;d;Q and Q0 become

q D
X
n

qn (3.20a)

d D
X
n

qn.xn � x0/ (3.20b)

Q D
X
n

qn.xn � x0/.xn � x0/ (3.20c)

Q0 D
X
n

qn
�
.xn � x0/.xn � x0/ � 13

1

3
jxn � x0j

2
�

(3.20d)

End of example 3.1C

3.3 The electrodynamic potentials

Let us now generalise the static analysis above to the electrodynamic case, i.e.,
the case with temporal and spatial dependent sources �.t;x/ and j.t;x/, and cor-
responding fields E.t;x/ and B.t;x/, as described the Maxwell-Lorentz equa-
tions (2.1) on page 20. In other words, let us study the electrodynamic potentials
�.t;x/ and A.t;x/.

According to the non-source Maxwell-Lorentz equation (2.1c), r � B D 0

also in electrodynamics. Because of this divergence-free nature of the time- and
space-dependent magnetic field, we can express it as the curl of an electromag-
netic vector potential :

B.t;x/ D r �A.t;x/ (3.21)

Inserting this expression into the other non-source Maxwell-Lorentz equation,
viz. equation (2.1b) on page 20, we obtain

r � E.t;x/ D �
@

@t
Œr �A.t;x/� D �r �

@

@t
A.t;x/ (3.22)

or, rearranging the terms,

r �

�
E.t;x/C

@

@t
A.t;x/

�
D 0 (3.23)

As before we utilise the vanishing curl of a vector expression to write this
vector expression as the gradient of a scalar function. If, in analogy with the
electrostatic case, we introduce the electromagnetic scalar potential function
��.t;x/, equation (3.23) becomes equivalent to

E.t;x/C
@

@t
A.t;x/ D �r�.t;x/ (3.24)
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This means that in electrodynamics, E.t;x/ is calculated from the potentials
according to the formula

E.t;x/ D �r�.t;x/ �
@

@t
A.t;x/ (3.25)

and B.t;x/ from formula (3.21) on the previous page. Hence, it is a matter of
convention (or taste) whether we want to express the laws of electrodynamics in
terms of the potentials �.t;x/ and A.t;x/, or in terms of the fields E.t;x/ and
B.t;x/. However, there is an important difference between the two approaches:
in classical electrodynamics the only directly observable quantities are the fields
themselves (and quantities derived from them) and not the potentials. On the
other hand, the treatment becomes significantly simpler if we use the potentials
in our calculations and then, at the final stage, use equation (3.21) on the preced-
ing page and equation (3.25) above to calculate the fields or physical quantities
expressed in the fields. This is the strategy we shall follow.

3.4 Gauge conditions

Inserting (3.25) and (3.21) on the preceding page into Maxwell’s equations (2.1)
on page 20, we obtain, after some simple algebra and the use of equation (1.13)
on page 6 the equations

r
2� D �

�.t;x/

"0
�
@

@t
.r �A/ (3.26a)

r
2A �

1

c2
@2A

@t2
� r .r �A/ D ��0j.t;x/C

1

c2
r
@�

@t
(3.26b)

Subtracting .1=c2/@2�=@t2 from both sides of the first equation and rearranging,
these equations turn into the following symmetric general inhomogeneous wave
equations

1

c2
@2�

@t2
� r

2� D
�.t;x/

"0
C
@

@t

�
r �AC

1

c2
@�

@t

�
(3.27a)

1

c2
@2A

@t2
� r

2A D �0j.t;x/ � r

�
r �AC

1

c2
@�

@t

�
(3.27b)

These two second order, coupled, partial differential equations, representing
in all four scalar equations (one for � and one each for the three components
Ai ; i D 1; 2; 3 of A) are completely equivalent to the formulation of electro-
dynamics in terms of Maxwell’s equations, which represent eight scalar first-
order, coupled, partial differential equations.
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As they stand, equations (3.26) and equations (3.27) on the preceding page
look complicated and may seem to be of limited use. However, if we write
equation (3.21) on page 35 in the form r � A.t;x/ D B.t;x/ we can consider
this as a specification of r � A. But we know from Helmholtz’ theorem that
in order to determine the (spatial) behaviour of A completely, we must also
specify r �A. Since this divergence does not enter the derivation above, we are
free to choose r � A in whatever way we like and still obtain the same physical
results! This illustrates the power of the formulation of electrodynamics in terms
of potentials.

3.4.1 Lorenz-Lorentz gauge

If we choose r �A to fulfil the so called Lorenz-Lorentz gauge condition1 1 In fact, the Dutch physicist
HENDRIK ANTOON LORENTZ
(1853-1928), who in 1903 demon-
strated the covariance of Max-
well’s equations, was not the
original discoverer of the gauge
condition (3.28). It had been dis-
covered by the Danish physicist
LUDVIG VALENTIN LORENZ
(1829-1891) already in 1867. In
the literature, this fact has some-
times been overlooked and the
condition was earlier referred to as
the Lorentz gauge condition .

r �AC
1

c2
@�

@t
D 0 (3.28)

the coupled inhomogeneous wave equations (3.27) on page 36 simplify to the
following set of uncoupled inhomogeneous wave equations:

�2�
def
�

�
1

c2
@2

@t2
� r

2

�
� D

1

c2
@2�

@t2
� r

2� D
�.t;x/

"0
(3.29a)

�2A
def
�

�
1

c2
@2

@t2
� r

2

�
A D

1

c2
@2A

@t2
� r

2A D �0j.t;x/ (3.29b)

where �2 is the d’Alembert operator , discussed in example M.8 on page 223.
Each of these four scalar equations is an inhomogeneous wave equation of the
following generic form:

�2‰.t;x/ D f .t;x/ (3.30)

where‰ denotes for either � or one of the componentsAi of the vector potential
A, and f is a shorthand for the pertinent generic source component, �.t;x/="0
or �0ji .t;x/, respectively.

We assume that our sources are well-behaved enough in time t so that the
Fourier transform pair for the generic source function f

f .t;x/ D

Z 1
�1

d! f!.x/ e�i!t (3.31a)

f!.x/ D
1

2�

Z 1
�1

dt f .t;x/ ei!t (3.31b)

exists, and that the same is true for the generic potential component ‰:

‰.t;x/ D

Z 1
�1

d! ‰!.x/ e�i!t (3.32a)

‰!.x/ D
1

2�

Z 1
�1

dt ‰.t;x/ ei!t (3.32b)
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Inserting the Fourier representations (3.31) and (3.32a) into equation (3.30) on
the preceding page, and using the vacuum dispersion relation for electromag-
netic waves relating the angular frequency !, the speed of light c, and the wave
number k D .2�/=� where � is the vacuum wavelength ,

! D ck (3.33)

the generic 3D inhomogeneous wave equation (3.30) on the previous page, turns
into

r
2‰!.x/C k

2‰!.x/ D �f!.x/ (3.34)

which is the 3D inhomogeneous time-independent wave equation , often called
the 3D inhomogeneous Helmholtz equation .

As postulated by Huygens’s principle , each point on a wave front acts as a
point source for spherical wavelets of varying amplitude (weight). A new wave
front is formed by a linear superposition of the individual weighted wavelets
from each of the point sources on the old wave front. The solution of (3.34) can
therefore be expressed as a weighted sum of solutions of an equation where the
source term has been replaced by a single point source

r
2G.x;x0/C k2G.x;x0/ D �ı.x � x0/ (3.35)

and the solution of equation (3.34) which corresponds to the frequency ! is
given by the weighted superposition

‰!.x/ D

Z
V 0

d3x0 f!.x0/G.x;x0/ (3.36)

(plus boundary conditions) where f!.x0/ is the wavelet amplitude at the source
point x0. The function G.x;x0/ is called the Green function or the propagator .

Due to translational invariance in space,G.x;x0/ D G.x�x0/. Furthermore,
in equation (3.35) above, the Dirac generalised function ı.x�x0/, which repres-
ents the point source, depends only on x�x0 and there is no angular dependence
in the equation. Hence, the solution can only be dependent on r D jx � x0j and
not on the direction of x � x0. If we interpret r as the radial coordinate in a
spherically polar coordinate system, and recall the expression for the Laplace
operator in such a coordinate system, equation (3.35) becomes

d2

dr2
.rG/C k2.rG/ D �rı.r/ (3.37)

Away from r D jx � x0j D 0, i.e., away from the source point x0, this equation
takes the form

d2

dr2
.rG/C k2.rG/ D 0 (3.38)
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with the well-known general solution

G D CC
eikr

r
C C�

e�ikr

r
� CC

eikjx�x0j

jx � x0j
C C�

e�ikjx�x0j

jx � x0j
(3.39)

where C˙ are constants.
In order to evaluate the constantsC˙, we insert the general solution, equation

(3.39) above, into equation (3.35) on the facing page and integrate over a small
volume around r D jx � x0j D 0. Since

G.
ˇ̌
x � x0

ˇ̌
/ � CC

1

jx � x0j
C C�

1

jx � x0j
;

ˇ̌
x � x0

ˇ̌
! 0 (3.40)

the volume integrated equation (3.35) on the preceding page can be approxim-
ated by

.CC C C�/

Z
V 0

d3x0 r2
�

1

jx � x0j

�
C k2 .CC C C�/

Z
V 0

d3x0
1

jx � x0j
D �

Z
V 0

d3x0 ı.
ˇ̌
x � x0

ˇ̌
/

(3.41)

In virtue of the fact that the volume element d3x0 in spherical polar coordinates
is proportional to r2 D jx � x0j

2 [see formula (F.52) on page 198], the second
integral vanishes when jx � x0j ! 0. Furthermore, from equation (F.121)
on page 201, we find that the integrand in the first integral can be written as
�4�ı.jx � x0j/ and, hence, that

CC C C� D
1

4�
(3.42)

Insertion of the general solution equation (3.39) above into equation (3.36)
on the facing page gives

‰!.x/ D CC

Z
V 0

d3x0 f!.x0/
eikjx�x0j

jx � x0j
C C�

Z
V 0

d3x0 f!.x0/
e�ikjx�x0j

jx � x0j

(3.43)

The inverse Fourier transform of this back to the t domain is obtained by insert-
ing the above expression for ‰!.x/ into equation (3.32a) on page 37:

‰.t;x/ D CC

Z
V 0

d3x0
Z 1
�1

d! f!.x0/
exp

h
�i!

�
t � kjx�x0j

!

�i
jx � x0j

C C�

Z
V 0

d3x0
Z 1
�1

d! f!.x0/
exp

h
�i!

�
t C kjx�x0j

!

�i
jx � x0j

(3.44)
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If we introduce the retarded time t 0ret and the advanced time t 0adv in the following
way [using the fact that k=! D 1=c in free space, according to formula (3.33)
on page 38]:

t 0ret D t
0
ret.t;

ˇ̌
x � x0

ˇ̌
/ D t �

k jx � x0j

!
D t �

jx � x0j

c
(3.45a)

t 0adv D t
0
adv.t;

ˇ̌
x � x0

ˇ̌
/ D t C

k jx � x0j

!
D t C

jx � x0j

c
(3.45b)

and use equation (3.31) on page 37, we obtain

‰.t;x/ D CC

Z
V 0

d3x0
f .t 0ret;x

0/

jx � x0j
C C�

Z
V 0

d3x0
f .t 0adv;x

0/

jx � x0j
(3.46)

This is a solution to the generic inhomogeneous wave equation for the potential
components equation (3.30) on page 37. We note that the solution at time t at the
field point x is dependent on the behaviour at other times t 0 of the source at x0

and that both retarded and advanced t 0 are mathematically acceptable solutions.
However, if we assume that causality requires that the potential at .t;x/ is set
up by the source at an earlier time, i.e., at .t 0ret;x

0/, we must in equation (3.46)
above set C� D 0 and therefore, according to equation (3.42) on the preceding
page, CC D 1=.4�/.22 In fact, inspired by ideas put

forward by PAUL ADRIEN
MAURICE D IRAC (1902–
1984), JOHN ARCHIBALD
WHEELER (1911–2008) and
R ICHARD PHILLIPS FEYNMAN
(1918–1988) derived, in 1945,
a consistent electrodynamics
based on both the retarded and the
advanced potentials.

From the above discussion about the solution of the inhomogeneous wave
equations in the Lorenz-Lorentz gauge we conclude that, if we discard the ad-
vanced potentials, the electrodynamic potentials in free space can be written

�.t;x/ D
1

4�"0

Z
V 0

d3x0
�
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
C ˛ (3.47a)

A.t;x/ D
1

4�"0c2

Z
V 0

d3x0
j
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
C a.x/ (3.47b)

where ˛ is a scalar field depentdent on time at most and therefore has a vanishing
gradient, and a is a time-independent vector field that has vanishing curl. These
retarded potentials were obtained as solutions to the Lorenz-Lorentz equations
(3.29) on page 37. They are therefore valid in the Lorenz-Lorentz gauge but
may be gauge transformed according to the scheme described in subsection 3.5
on page 42. As they stand, we shall use them frequently in the sequel.

3.4.2 Coulomb gauge

In Coulomb gauge , often employed in quantum electrodynamics , one chooses
r �A D 0 so that equations (3.26) or equations (3.27) on page 36 become

r
2� D �

�.t;x/

"0
(3.48a)

r
2A �

1

c2
@2A

@t2
D ��0j.t;x/C

1

c2
r
@�

@t
(3.48b)
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The first of these two is the time-dependent Poisson’s equation which, in analogy
with equation (3.3) on page 32, has the solution

�.t;x/ D
1

4�"0

Z
V 0

d3x0
�.t;x0/

jx � x0j
C ˛.t/ (3.49)

where ˛ may vary in time but has a vanishing (spatial) gradient. We see that
in the scalar potential expression, the charge density source is evaluated at time
t . The retardation (and advancement) effects therefore occur only in the vector
potential A, which is the solution of the inhomogeneous wave equation (3.48b)
on the preceding page.

In order to solve this equation, one splits up j in a longitudinal (k) and trans-
verse (?) part, so that j � jk C j? where r � j? D 0 and r � jk D 0 [cf.
equations (2.48) on page 30], and note that the equation of continuity, equation
(1.25) on page 10 becomes

@�

@t
C r � jk D

�
@

@t

�
�"0r

2�
�
C r � jk

�
D r �

��
�"0r

@�

@t

�
C jk

�
D 0

(3.50)

Furthermore, since r � r D 0 and r � jk D 0, one finds that

r �

��
�"0r

@�

@t

�
C jk

�
D 0 (3.51)

According to Helmholtz’ theorem, this implies that

"0r
@�

@t
D jk (3.52)

The inhomogeneous wave equation (3.48b) on the facing page thus becomes

r
2A �

1

c2
@2A

@t2
D ��0j C

1

c2
r
@�

@t
D ��0j C �0jk D ��0j? (3.53)

which shows that in Coulomb gauge the source of the vector potential A is the
transverse part of the current, j?. The longitudinal part of the current jk does not
contribute to the vector potential. The retarded solution is [cf. equation (3.47a)
on the preceding page]:

A.t;x/ D
�0

4�

Z
V 0

d3x0
j?.t

0
ret;x

0/

jx � x0j
C a.x/ (3.54)

where a.x/ has vanishing curl. The Coulomb gauge condition is therefore also
called the transverse gauge or radiation gauge .
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3.4.3 Velocity gauge

If r � A fulfils the velocity gauge condition , sometimes referred to as the com-
plete ˛-Lorenz gauge ,

r �AC ˛
1

c2
@�

@t
D 0; ˛ D

c2

v2
(3.55)

we obtain the Lorenz-Lorentz gauge condition in the limit v D c, i.e., ˛ D 1,
and the Coulomb gauge condition in the limit v !1, i.e., ˛ D 0, respectively,
where v is the propagation speed of the scalar potential. Hence, the velocity
gauge is a generalisation of both these gauges.3 Inserting equation (3.55) into3 The value ˛ D �1, corres-

ponding to an imaginary speed
v D ic, gives the Kirchhoff gauge ,
published already in 1857 by
GUSTAV ROBERT K IRCHHOFF
(1824–1884).

the coupled inhomogeneous wave equations (3.27) on page 36 they become

r
2� �

1

c2
@2�

@t2
D �

�.t;x/

"0
�
1 � ˛

c2
@

@t

@�

@t
(3.56a)

r
2A �

1

c2
@2A

@t2
D ��0j.t;x/C

1 � ˛

c2
r
@�

@t
(3.56b)

3.4.4 Other gauges

Other useful gauges are

� The Poincaré gauge (or radial gauge) where

�.t;x/ D �x �

Z 1

0

d�E.t; �x/ (3.57a)

A.t;x/ D

Z 1

0

d�B.t; �x/ � �x (3.57b)

� The Weyl gauge , also known as the temporal gauge or Hamilton gauge ,
defined by � D 0.

� The axial gauge , defined by A3 D 0.

The process of choosing a particular gauge condition is known as gauge fixing .

3.5 Gauge transformations

We saw in section 3.1 on page 31 and in section 3.2 on page 32 that in electro-
statics and magnetostatics we have a certain mathematical degree of freedom, up
to terms of vanishing gradients and curls, to pick suitable forms for the potentials
and still get the same physical result. In fact, the way the electromagnetic scalar
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potential �.t;x/ and the vector potential A.t;x/ are related to the physical ob-
servables gives leeway for similar manipulation of them also in electrodynamics.

If we simultaneously transform both �.t;x/ and A.t;x/ into new ones �0.t;x/
and A0.t;x/ according to the scheme

�.t;x/ 7! �0.t;x/ D �.t;x/C
@�.t;x/

@t
(3.58a)

A.t;x/ 7! A0.t;x/ D A.t;x/ � r�.t;x/ (3.58b)

where �.t;x/ is an arbitrary, sufficiently differentiable scalar function called
the gauge function , and insert the transformed potentials into equation (3.25) on
page 36 for the electric field and into equation (3.21) on page 35 for the magnetic
field, we obtain the transformed fields

E0 D �r�0 �
@A0

@t
D �r� �

@.r�/

@t
�
@A

@t
C
@.r�/

@t
D �r� �

@A

@t
(3.59a)

B0 D r �A0 D r �A � r � .r�/ D r �A (3.59b)

where, once again equation (F.107) on page 201 was used. We see that the fields
are unaffected by the gauge transformation (3.58). A transformation of the po-
tentials � and A which leaves the fields, and hence Maxwell’s equations, in-
variant is called a gauge transformation . Any physical law that does not change
under a gauge transformation is said to be gauge invariant . It is only those
quantities (expressions) that are gauge invariant that are observable and there-
fore have experimental significance. Trivially, the electromagnetic fields and the
Maxwell-Lorentz equations themselves are gauge invariant and electrodynamics
is therefore a gauge theory and as such the prototype for all gauge theories.4 4 A very important extension is

the Yang-Mills theory, introduced
in 1954. This theory has had
a profound impact on modern
physics.

As just shown, the potentials �.t;x/ and A.t;x/ calculated from equations
(3.26) on page 36, with an arbitrary choice of r � A, can be gauge transformed
according to (3.58). If, in particular, we choose r � A according to the Lorenz-
Lorentz condition, equation (3.28) on page 37, and apply the gauge transforma-
tion (3.58) on the resulting Lorenz-Lorentz potential equations (3.29) on page 37,
these equations will be transformed into

1

c2
@2�

@t2
� r

2� C
@

@t

�
1

c2
@2�

@t2
� r

2�

�
D
�.t;x/

"0
(3.60a)

1

c2
@2A

@t2
� r

2A � r

�
1

c2
@2�

@t2
� r

2�

�
D �0j.t;x/ (3.60b)

We notice that if we require that the gauge function �.t;x/ itself be restricted to
fulfil the wave equation

1

c2
@2�

@t2
� r

2� D 0 (3.61)
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these transformed Lorenz-Lorentz equations will keep their original form. The
set of potentials which have been gauge transformed according to equation (3.58)
on the previous page with a gauge function �.t;x/ restricted to fulfil equation
(3.61) on the preceding page, or, in other words, those gauge transformed po-
tentials for which the equations (3.29) on page 37 are invariant, comprise the
Lorenz-Lorentz gauge .

BElectromagnetodynamic potentialsEXAMPLE 3 .2

In Dirac’s symmetrised form of electrodynamics (electromagnetodynamics), Maxwell’s
equations are replaced by [see also equations (1.50) on page 16]:

r � E D
�e

"0
(3.62a)

r � E D ��0jm
�
@B

@t
(3.62b)

r � B D �0�
m (3.62c)

r � B D �0je
C "0�0

@E

@t
(3.62d)

In this theory, one derives the inhomogeneous wave equations for the usual ‘electric’ scalar
and vector potentials .�e;Ae/ and their ‘magnetic’ counterparts .�m;Am/ by assuming that
the potentials are related to the fields in the following symmetrised form:

E D �r�e.t;x/ �
@

@t
Ae.t;x/ � r �Am (3.63a)

B D �
1

c2
r�m.t;x/ �

1

c2
@

@t
Am.t;x/C r �Ae (3.63b)

In the absence of magnetic charges, or, equivalently for �m � 0 and Am � 0, these
formulæ reduce to the usual Maxwell theory formula (3.25) on page 36 and formula (3.21)
on page 35, respectively, as they should.

Inserting the symmetrised expressions (3.63) above into equations (3.62), one obtains [cf.,
equations (3.26) on page 36]

r
2�e
C
@

@t

�
r �Ae�

D �
�e.t;x/

"0
(3.64a)

r
2�m
C
@

@t

�
r �Am�

D �
�m.t;x/

"0
(3.64b)

1

c2
@2Ae

@t2
� r

2Ae
C r

�
r �Ae

C
1

c2
@�e

@t

�
D �0je.t;x/ (3.64c)

1

c2
@2Am

@t2
� r

2Am
C r

�
r �Am

C
1

c2
@�m

@t

�
D �0jm.t;x/ (3.64d)

By choosing the conditions on the divergence of the vector potentials as the generalised
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Lorenz-Lorentz condition [cf. equation (3.28) on page 37]

r �Ae
C

1

c2
@

@t
�e
D 0 (3.65)

r �Am
C

1

c2
@

@t
�m
D 0 (3.66)

these coupled wave equations simplify to

1

c2
@2�e

@t2
� r

2�e
D
�e.t;x/

"0
(3.67a)

1

c2
@2Ae

@t2
� r

2Ae
D �0je.t;x/ (3.67b)

1

c2
@2�m

@t2
� r

2�m
D
�m.t;x/

"0
(3.67c)

1

c2
@2Am

@t2
� r

2Am
D �0jm.t;x/ (3.67d)

exhibiting, once again, the striking properties of Dirac’s symmetrised Maxwell theory.

End of example 3.2C

BGauge transformations and quantum mechanics EXAMPLE 3 .3

As discussed in section 2.2 on page 20 quantum theory requires that we take the magnitude
rather than the real part of our mathematical variables in order to turn them into physical
observables. In non-relativistic quantum mechanics, the physical observable probability
density is   � D j j2, where the wave function  2 C solves the Schrödinger equation

i}
@ 

@t
D yH (3.68)

and yH is the Hamilton operator .

The non-relativistic Hamiltonian for a classical particle with charge q in an electromagnetic
field, described by the scalar potential � and vector potential A, is

H D
1

2m
.p � qA/2 C q� (3.69)

where p is the linear momentum. The corresponding quantal Hamilton operator is obtained
by replacing p by the operator yp D �i}r , which is called minimal coupling . This gives
the Schrödinger equation

i}
@ 

@t
D

1

2m
.�i}r � qA/2  C q� (3.70)

The idea is to perform a gauge transformation from the potentials �.t;x/ and A.t;x/ to
new potentials

� !�0.t;x/ D �.t;x/C
@�.t;x/

@t
(3.71)

A!A0.t;x/ D A.t;x/ � r�.t;x/ (3.72)

and then find a �.t;x/, expressed in the gauge function �.t;x/, so that the transformed
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Schrödinger equation can be written

i}
@ei� 

@t
D

1

2m
.�i}r � qA/2 ei� C q�ei� (3.73)

Under the gauge transformation, the Schrödinger equation (3.70) transforms into

i}
@ 0

@t
D

1

2m
Œ�i}r � qAC .qr�/�2  0 C q� 0 C q

@�

@t
 0 (3.74)

Now, setting

 0.t;x/ D ei�.t;x/ .t;x/ (3.75)

we see that

Œ�i}r � qAC .qr�/�2  0

D Œ�i}r � qAC .qr�/� Œ�i}r � qAC .qr�/� ei� 

D Œ�i}r � qAC .qr�/�

�

h
�i}ei� .r / � i}ei� .r �/ � qAei� C .qr�/ei� 

i
D Œ�i}r � qAC .qr�/� ei� Œ�i}r � i}.r �/ � qAC .qr�/�  

D

h
�i}.r �/ei�

� i}ei�r � qAei�
C .qr�/ei�

i
� Œ�i}r � i}.r �/ � qAC .qr�/�  

D ei� Œ�i}r � i}.r �/ � qAC .qr�/�2  

(3.76)

Clearly, the gauge transformed Hamilton operator is unchanged iff }.r �/ D �q.r�/, or,
equivalently, iff �.t;x/ D �q�.t;x/=}. This has as a consequence that

i}
@ 0

@t
� q

@�

@t
 0 D i}

@ 0

@t
C }

@�

@t
 0 D i}

@

@t
.ei� /C }

@�

@t
ei� 

D i2}
@�

@t
ei� C i}ei� @ 

@t
C }

@�

@t
ei� D ei� i}

@ 

@t

(3.77)

Inserting this into the transformed Schrödinger equation (3.74) we recover the untrans-
formed Schrödinger equation (3.70).

We conclude that for a gauge transformation of the potentials � and A and using the minimal
coupling as in equation (3.70) on the preceding page, the Schrödinger equation is invariant,
but that the wave function changes from  to ei� where the phase angle is real-valued.
This means that the non-relativistic quantum physical observable j j2 is unaffected by
a gauge transformation of the classical potentials � and A that appear in the Hamilton
operator. The fact that �.t;x/ is coordinate dependent, means that we are dealing with a
local gauge transformation .

For the gauge transformation given by formulæ (3.71) on the previous page WOLFGANG

PAULI introduced the notation gauge transformation of the second kind whereas he called
a wavefunction phase change, expression (3.75) a gauge transformation of the first kind .

End of example 3.3C
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BLongitudinal and transverse components in gauge transformations EXAMPLE 3 .4

If we represent the vector potential A.t;x/ in the reciprocal k space as described at the end
of subsection 2.3.1, the gauge transformation equation (3.58b) on page 43 becomes

Ak.t/ 7! A0k.t/ � ik�k.t/ (3.78)

we can separate it into its longitudinal and transverse components

A0
k
D Ak � r� (3.79a)

A0
?
D A? (3.79b)

Hence, a law (expression) that depends on A only through its transverse component A? is
gauge invariant, whereas a law that depends on the longitudinal component Ak is in general
not gauge invariant and therefore does not represent a physical observable.

For the electric and magnetic field the following then applies:

Ek D �rˆ �
@Ak

@t
(3.80a)

E? D �
@A?

@t
(3.80b)

B D r �A? (3.80c)

End of example 3.4C
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FUNDAMENTAL PROPERTIES OF

THE ELECTROMAGNETIC FIELD

In this chapter we will explore a number of fundamental properties of the electro-
magnetic fields and their sources, as well as of the physical observables construc-
ted from them. Of particular interest are symmetries since they have a striking
predictive power and are essential ingredients of the physics. This includes both
discrete and continuous geometric symmetries (reflection, translation, rotation)
and intrinsic symmetries (duality, reciprocity). Intimately related to symmet-
ries are conserved quantities (constants of motion) of which our primary interest
will be the electromagnetic energy, linear momentum, angular momentum, and
centre of energy. These conserved quantities can carry information over large
distances and are all more or less straightforwardly related to their counterparts
in classical mechanics (indeed in all field theories). But we will also consider
other conserved quantities, where this relation is perhaps less straightforward.

To derive useful mathematical expressions for the physical observables that
we want to study, we once again take the microscopic Maxwell-Lorentz equa-
tions (2.1) on page 20 as our axiomatic starting point.

4.1 Charge, space, and time inversion symmetries

Let us first investigate how the charge density �, the current density j, and the
fields E and B behave under charge conjugation , i.e., a change of sign of charge
q ! q0 D �q, called C symmetry; under space inversion , i.e., a change of sign

49
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of the space coordinates x ! x0 D �x, called parity transformation and P
symmetry; and under time reversal , i.e., a change of sign of the time coordinate
t ! t 0 D �t , called T symmetry. Recalling that

� / q (4.1a)

and

j D �v D �
dx

dt
(4.1b)

the transformation properties follow directly from the Maxwell-Lorentz equa-
tions (2.1) on page 20. Let us study them one by one.

C SYMMETRY, CHARGE CONJUGATION q ! q0 D �q :

�! �0 D �� (4.2a)

j ! j0 D �0
dx0

dt
D ��

dx0

dt
D ��

dx

dt
D �j (4.2b)

r ! r 0 D r (4.2c)

@

@t
!

@

@t 0
D

@

@t
(4.2d)

When inserted into the two first of the Maxwell-Lorentz equations (2.1) on
page 20 we find that they become

r � E0.t;x/ D
�0

"0
D �

�

"0
D �r � E.t;x/

and

r � E0.t;x/ D r � Œ�E.t;x/� D
@

@t
Œ�B0.t;x/� D

@

@t
B.t;x/

respectively, implying that

E0.t;x/ D �E.t;x/ (4.3a)

B0.t;x/ D �B.t;x/ (4.3b)

Consequently, the Maxwell-Lorentz equations are invariant under charge con-
jugation. No violation of this invariance has yet been found experimentally.

P SYMMETRY, SPACE INVERSION x! x0 D �x :

�! �0 D � (4.4a)

j ! j0 D �0
dx0

dt
D �

d.�x0/

dt
D ��

dx

dt
D �j (4.4b)

r ! r 0 D �r (4.4c)

@

@t
!

@

@t 0
D

@

@t
(4.4d)
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implying that

E0.t;x/ � E.t;�x/ D �E.t;x/ (4.5a)

B0.t;x/ � B.t;�x/ D B.t;x/ (4.5b)

Since, by assumption, t , � and "0 are ordinary scalars and that, consequently,
�="0 is an ordinary scalar, and that the position vector x is the prototype
of all ordinary (polar) vectors, we note that j and E are ordinary vectors,
whereas B is a pseudovector (axial vector) as described in subsection M.1.3.2
on page 217.

T SYMMETRY, TIME REVERSAL t ! t 0 D �t :

�! �0 D � (4.6a)

j ! j0 D �j (4.6b)

r ! r 0 D r (4.6c)

@

@t
!

@

@t 0
D �

@

@t
(4.6d)

implying that

E0.t;x/ � E.�t;x/ D E.t;x/ (4.7a)

B0.t;x/ � B.�t;x/ D �B.t;x/ (4.7b)

We see that E is even and B odd under time reversal. The Universe as a whole
is asymmetric under time reversal. On quantum scales this is exhibited by the
uncertainty principle and on classical scales by the arrow of time which is
related to the increase of thermodynamic entropy in a closed system.

The CPT theorem states that the combined CPT symmetry must hold for all
physical phenomena. No violation of this law has been observed so far.

4.2 Electromagnetic duality

We notice that Dirac’s symmetrised version of the Maxwell equations (1.50) on
page 16 exhibit the following symmetry (recall that "0�0 D 1=c2):

E! cB (4.8a)

cB! �E (4.8b)

c�e
! �m (4.8c)

�m
! �c�e (4.8d)

cje
! jm (4.8e)

jm
! �cje (4.8f)
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which is a particular case (� D �=2) of the general duality transformation , also
known as the Heaviside-Larmor-Rainich transformation (indicated by the Hodge
star operator ? in the upper left-hand corner of the symbol in question)

?E D E cos � C cB sin � (4.9a)

c?B D �E sin � C cB cos � (4.9b)

c?�e
D c�e cos � C �m sin � (4.9c)

?�m
D �c�e sin � C �m cos � (4.9d)

c?je
D cje cos � C jm sin � (4.9e)

?jm
D �cje sin � C jm cos � (4.9f)

This transformation leaves the symmetrised Maxwell equations, and hence the
physics they describe (often referred to as electromagnetodynamics), invariant.
Since E and je are true (polar) vectors, B a pseudovector (axial vector), �e a
(true) scalar, we conclude that the magnetic charge density �m and � , which be-
haves as a mixing angle in a two-dimensional ‘charge space’, must be pseudo-
scalars1 and jm a pseudovector.1 Recall that the Taylor expansion

for cos � contains only even
powers of � whereas the expansion
for sin � contains only odd.

The invariance of Dirac’s symmetrised Maxwell equations under the duality
transformation (4.9) means that the amount of magnetic monopole density �m is
irrelevant for the physics as long as the ratio �m=�e D tan � is kept constant. So
whether we assume that the particles are only electrically charged or have also
a magnetic charge with a given, fixed ratio between the two types of charges
is a matter of convention, as long as we assume that this fraction is the same
for all particles. Such particles are referred to as dyons . By varying the mix-
ing angle � we can change the fraction of magnetic monopoles at will without
changing the laws of electrodynamics. For � D 0 we recover the usual Maxwell
electrodynamics.

BDuality of the electromagnetodynamic equationsEXAMPLE 4 .1

Show that the symmetric, electromagnetodynamic Maxwell-Lorentz equations (Dirac’s
symmetrised Maxwell equations), equations (1.50) on page 16, are invariant under the du-
ality transformation (4.9).

Explicit application of the transformation yields

r � ?E D r � .E cos � C cB sin �/ D
�e

"0
cos � C c�0�m sin �

D
1

"0

�
�e cos � C

1

c
�m sin �

�
D

?�e

"0

(4.10)
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r � ?EC
@?B

@t
D r � .E cos � C cB sin �/C

@

@t

�
�
1

c
E sin � C B cos �

�
D ��0jm cos � �

@B

@t
cos � C c�0je sin � C

1

c

@E

@t
sin �

�
1

c

@E

@t
sin � C

@B

@t
cos � D ��0jm cos � C c�0je sin �

D ��0.�cj
e sin � C jm cos �/ D ��0?jm

(4.11)

r � ?B D r � .�
1

c
E sin � C B cos �/ D �

�e

c"0
sin � C �0�m cos �

D �0
�
�c�e sin � C �m cos �

�
D �0

?�m
(4.12)

r � ?B �
1

c2
@?E

@t
D r � .�

1

c
E sin � C B cos �/ �

1

c2
@

@t
.E cos � C cB sin �/

D
1

c
�0jm sin � C

1

c

@B

@t
cos � C �0je cos � C

1

c2
@E

@t
cos �

�
1

c2
@E

@t
cos � �

1

c

@B

@t
sin �

D �0

�
1

c
jm sin � C je cos �

�
D �0

?je

(4.13)

QED�

End of example 4.1C

BDuality expressed in Riemman-Silberstein formalism EXAMPLE 4 .2

Expressed in the Riemann-Silberstein complex field vector, introduced in equation (2.6) on
page 22, the duality transformation equations (4.9) on the preceding page become

?G D ?EC ic?B D E cos � C cB sin � � iE sin � C icB cos �

D E.cos � � i sin �/C icB.cos � � i sin �/ D .EC icB/e�i�
D Ge�i�

(4.14)

from which it is easy to see that

?G � ?G� D
ˇ̌
?G
ˇ̌2
D Ge�i� �G�ei� D jGj2 (4.15)

whereas

?G � ?G D G �Ge�2i� (4.16)

Furthermore, assuming that � D �.t;x/, we see that spatial and temporal differentiation of
?G leads to

@t
?G �

@?G

@t
D �i.@t�/e�i�G C e�i�@tG (4.17a)

@ � ?G � r � ?G D �ie�i�r � �G C e�i�r �G (4.17b)

@ � ?G � r � ?G D �ie�i�r � �G C e�i�r �G (4.17c)

which means that @t ?G transforms as ?G itself only if � is time-independent, and that
r � ?G and r � ?G transform as ?G itself only if � is space-independent.

End of example 4.2C
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4.3 Conservation laws

It is well established that a deeper understanding of a physical system can be
obtained by studying the system’s conserved quantities (constants of motion),
i.e., those observables that do not change with time. In other words, the task is to
find the conservation laws for the physical system under study, which, according
to Noether’s theorem ,2 is closely related to finding the symmetries of the system.2 AMALIE EMMY NOETHER

(1882–1935) made important
contributions to mathematics and
theoretical physics. Her (first)
theorem, which states that any
differentiable symmetry of the
action of a physical system has a
corresponding conservation law,
is considered to be a fundamental
tool of theoretical physics.

Consider a certain physical property or ‘substance’, e.g. electric charge, that
flows, in a time-dependent way, in 3D space. Let us denote the volume density of
this ‘substance’ by %.t;x/ and its flow velocity by v.t;x/. Let us also introduce
a closed volume V , fixed in space and enclosed by a perfectly permeable surface
S with a infinitesimally small directed area element d2x On D dxidxj On, where
dxi and dxj are two coordinates that span the local tangent plane of the surface
and On is a unit vector, orthogonal to the tangent plane and pointing outward. In
the special case that the volume V is spherical, it is usually referred to as the
control sphere .

The property or ‘substance’ flows into the volume V at the rate %v per unit
area. Clearly, this inward flow will increase the amount of ‘substance’ in V . We
also allow for an increase due to the production of the ‘substance’ inside V . This
increase is quantified by the source density s. Recalling that the normal vector
On points outward, the following balance equation must hold:

d
dt

Z
V

d3x %„ ƒ‚ …
Total change within V

D �

I
S

d2x On � %v„ ƒ‚ …
Flow into V

C

Z
V

d3x s„ ƒ‚ …
Production inside V

(4.18)

With the help of Gauss’s theorem, formula (F.126) on page 202, this balance
equation can be rewrittenZ

V

d3x
�@%
@t
C r � .%v/ � s

�
D 0 (4.19)

Since this equation must hold for an arbitrary volume V , the integrand must
vanish and we obtain the continuity equation

@%

@t
C r � .%v/ D s (4.20)

which expresses, in differential form, the balance between the explicit temporal
change of the density of the ‘substance’, the flow of it across the surface of a
closed volume, and the production of the ‘substance’ in the volume enclosed by
the surface. If there is no production of the ‘substance’ in V , i.e., if s D 0, the
equation describes the constancy of the amount of ‘substance’.
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In fact, since r � .r � a/ D 0 for any arbitrary, differentiable vector field a,
we can generalise equation (4.20) on the preceding page to

@%

@t
C r � .%v C r � a/ D s (4.21)

Furthermore, since the time derivative d=dt operating on a scalar, vector or
tensor field, dependent on t and x.t/, is

d
dt
D

@

@t
C v � r (4.22)

according to the chain rule [cf. equation (1.36) on page 13], and since

r � .%v/ D %r � v C v � r% (4.23)

we can rewrite the equation of continuity as

d%
dt
C %r � .v C r � a/ D s (4.24)

where, again, a is an arbitrary, differentiable pseudovector field with dimension
m2s�1, e.g., the moment of velocity with respect to x0, i.e., .x � x0/ � v .

4.3.1 Conservation of electric charge

When the ‘substance’ density % in equation (4.20) on the preceding page is the
electric charge density �, we exclude any charge-generating mechanisms, i.e.,
we assume that s D 0, and interpret �v as the electric current density j. Then
the continuity equation takes the form

@�.t;x/

@t
C r � j.t;x/ D 0 (4.25)

This is our first conservation law derived from the microscopic Maxwell equa-
tions (2.1) on page 20. This result is, of course, consistent a posteriori with the
fact that these axiomatic laws were formulated with the a priori assumption that
the continuity equation (1.25) on page 10 was valid. The continuity equation
(4.25) describes the fact that electric charge is conserved, i.e., indestructible.3

3 This was postulated in 1747 by
BENJAMIN FRANKLIN (1706–
1770), printer, scientist, inventor,
philosopher, statesman, and one of
the founding fathers of the United
States of America.

4.3.2 Conservation of total electric current

If we use the notation jc for the electric current associated with electric charge
transport and jd for the displacement current @."0E/=@t , equation (2.1d) on
page 20 can be rewritten

1

�0
r � B D jc

C jd (4.26)
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Differentiating this with respect to time t and using the Maxwell equation (2.1b)
on page 20 and formula (F.110) on page 201, we obtain the following conserva-
tion law for the total current

@jc

@t
C
@jd

@t
C r �

�
13 �

1

�0
.r � E/

�
D 0 (4.27)

This is a rather unusual way of writing the wave equation for the electric field
vector Er. Usually it is written as in equation (2.28a) on page 25.

4.3.3 Conservation of energy

The continuity equation (4.25) on the previous page contains the divergence of
the first-order vector quantity j. As one example of the divergence of a second
order vector quantity, let us study the divergence of E � B. Using the Maxwell
equations (2.1) on page 20 we obtain the balance equation

r � .E � B/ D B � .r � E/ � E � .r � B/

D �B �
@B

@t
� �0E � j � "0�0E �

@E

@t

D ��0

� @
@t

"0

2

�
E � EC c2B � B

�
C j � E

� (4.28)

where formula (F.95) on page 200 was used.
Let us introduce the electromagnetic field energy density

uem
D
"0

2
.E � EC c2B � B/ (Jm�3) (4.29)

and the electromagnetic energy flux or the Poynting vector

S D
1

�0
E � B D "0c

2E � B (Wm�2) (4.30)

that can also be viewed as the electromagnetic energy current density.
Employing formula (3.21) on page 35, the Poynting vector S can be ex-

pressed in terms of the vector potential A vector as

S D
1

�0
E � .r �A/ (4.31a)

D
1

�0

�
.r A/ � E � E � .r A/

�
(4.31b)

D
1

�0

�
.r A/ � E � r � .EA/C .r � E/A

�
(4.31c)

D
1

�0

�
�AC .r A/ � E � r � .EA/

�
(4.31d)
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where we used formula (F.100) on page 201 in the first step, formula (F.96)
on page 200 in the second step and the Maxwell-Lorentz equation (2.1a) on
page 20. For each spatial Fourier component, we can use the results in subsection
2.3.1 to resolve A into its longitudinal and transverse components Ak and A?,
respectively, with the result that

S D
1

�0
E � .r �A?/ (4.32a)

D
1

�0

�
.r A?/ � E � E � .r A/?

�
(4.32b)

D
1

�0

�
.r A?/ � E � r � .EA?/C .r � E/A?

�
(4.32c)

D
1

�0

�
�A? C .r A?/ � E � r � .EA/?

�
(4.32d)

With the help of these definitions we can write the balance equation (4.28)
on the facing page as

@uem

@t
C r � S D �j � E (4.33)

i.e., as a continuity equation with a source density

s D �j � E D ��E � v (4.34)

From the definition of E, we conclude that �E represents force per unit
volume (Nm�3) and that �E � v therefore represents work per unit volume or, in
other words, power density (Wm�3). It is known as the Lorentz power density
and is equivalent to the time rate of change of the mechanical energy density
(Jm�3) of the current carrying particles

@umech

@t
D j � E (4.35)

Equation (4.33) above can therefore be written

@umech

@t
C
@uem

@t
C r � S D 0 (4.36)

which is the energy density balance equation in differential form.
Expressing the Lorentz power ,

R
V

d3x j � E, as the time rate of change of the
mechanical energy:

dUmech

dt
D

Z
V

d3x j � E (4.37)

and introducing the electromagnetic field energy U em D U e C Um, where

U e
D
"0

2

Z
V

d3x E � E (4.38)
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is the electric field energy and

Um
D

1

2�0

Z
V

d3x B � B D
"0

2

Z
V

d3x c2B � B (4.39)

is the magnetic field energy, we can write the integral version of the balance
equation (4.36) on the preceding page as

dUmech

dt
C

dU em

dt
C

I
S

d2x On � S D 0 (4.40)

where
This is the energy theorem in Maxwell’s theory , also known as Poynting’s

theorem .
Allowing for an EMF and assuming that Ohm’s law

j D �.EC Eemf/ (4.41)

is a valid approximation, or, equivalently, that

E D
j

�
� Eemf (4.42)

we obtain the relationZ
V

d3x j � E D

Z
V

d3x
j 2

�
�

Z
V

d3x j � Eemf (4.43)

which, when inserted into equation (4.40) above and use is made of equation
(4.37) on the preceding page, yieldsZ

V

d3x j � Eemf„ ƒ‚ …
Supplied electric power

D
dU em

dt„ƒ‚…
Field power

C

I
S

d2x On � S„ ƒ‚ …
Radiated power

Z
V

d3x j � Eemf„ ƒ‚ …
Supplied electric power

(4.44)

This shows how the supplied power (left-hand side, LHS) is expelled in the form
of a time rate change of electric and magnetic field energy, radiated electromag-
netic power , and Joule heat power , i.e., Ohmic losses in the system (right-hand
side, RHS).

BConservation of energyEXAMPLE 4 .3

Show, by explicit calculation, that the total energyH of a closed system comprising charged
particles of mass mi and speed vi and pertinent electromagnetic fields E and B

H D
1

2
miv

2
i C

"0

2

Z
V

d3x .E � EC c2B � B/ (4.45)

is conserved.

End of example 4.3C
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4.3.4 Conservation of linear momentum

The derivation of the energy conservation formula (4.33) on page 57 introduced
the Poynting (energy flux) vector S.t;x/. We now seek a balance equation in-
volving the time derivative of S and find, using the Maxwell equations (2.1) on
page 20, that

@S

@t
D "0c

2
�@E
@t
� BC E �

@B

@t

�
D �"0c

2
�
E � .r � E/C c2B � .r � B/

�
� c2j � B

(4.46)

A combination of formulæ (F.100), (F.91), and (F.96) on page 200, and formula
(F.110) on page 201, using the Maxwell-Lorentz equations (2.1) on page 20 once
more, allows us to write

E � .r � E/ D r E � E � E � r E D
1

2
r .E � E/ � E � r E

D �r � .EE/C
1

2
r .E � E/C .r � E/E

D �r �

�
EE �

1

2
13.E � E/

�
C �E

(4.47)

and similarly for B. Dividing out c2, and rearranging terms, we can write equa-
tion (4.46) as

1

c2
@S

@t
C "0r �

h1
2

13
�
E � EC c2B � B

�
�
�
EEC c2BB

�i
C f D 0 (4.48)

where

f D �EC j � B (4.49)

The polar vector f has the dimension Nm�3 and we therefore identify it as a
force density and call it the Lorentz force density. According to classical mech-
anics (Newton’s second law, Euler’s first law), this mechanical force density
must equal the time rate change of the mechanical linear momentum density

gmech.t;x/ D %m.t;x/v (4.50)

where %m is the (volumetric) mass density (kgm�3).
In the same vein, we introduce the electromagnetic linear momentum density

gem by making the identification

gem.t;x/ D "0E � B D
S.t;x/

c2
(4.51)

or, alternatively,

S D gemc2 (4.52)
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Since the LHS of this equation is (energy density) � (velocity) and the RHS is
(mass density) � (velocity) � c2, we see that this relation forebodes the relativ-
istic relation E D mc2, where E is energy and m is mass.

We are now able to write down the linear momentum density balance equa-
tion (4.46) on the previous page in differential form. It is

@gmech

@t
C
@gem

@t
C r � T D 0 (4.53)

where

T D 13
"0

2

�
E � EC c2B � B

�
� "0

�
EEC c2BB

�
(4.54)

is the electromagnetic linear momentum flux tensor (the negative of the Maxwell
stress tensor), measured in Pa, i.e., Nm�2. The tensor T is the electromagnetic
linear momentum current density of the electromagnetic field. In tensor com-
ponent form, it can be written

Tij D ıiju
em
� "0EiEj �

1

�0
BiBj (4.55)

where the electromagnetic energy density uem is defined in formula (4.29) on
page 56. The component Tij is the electromagnetic linear momentum in the i th
direction that passes a surface element in the j th direction per unit time, per unit
area.

Integration of equation (4.53) above over the entire finite volume V , enclosed
by the surface S , yields the conservation law for linear momentum

dpmech

dt
C

dpem

dt
C

I
S

d2x On � T D 0 (4.56)

where

pmech
D

Z
V

d3x gmech
D

Z
V

d3x %mv (4.57a)

and

pem
D

Z
V

d3x gem
D

Z
V

d3x "0.E � B/ (4.57b)

or Z
V

d3x f„ ƒ‚ …
Force on the matter

C
d
dt

Z
V

d3x "0.E � B/„ ƒ‚ …
EM field momentum

C

I
S

d2x On � T„ ƒ‚ …
Linear momentum flow

D 0 (4.58)

This is the linear momentum theorem in Maxwell’s theory which describes how
the electromagnetic field carries linear momentum.
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If we assume that we have a single localised charge q, i.e., that the charge
density is given in terms of a Dirac distribution as in equation (1.8) on page 5,
where the sum is over one particle only, the evaluation of the first integral in
equation (4.58) on the preceding page shows that the force on this single charged
particle is

F D

Z
V

d3x f D

Z
V

d3x .�EC j � B/ D q.EC v � B/ (4.59)

which is the Lorentz force; see also equation (1.46) on page 14. Note that equa-
tion (4.59) above follows directly from a conservation law, and therefore is a con-
sequence of a symmetry of the microscopic Maxwell equations (2.1) on page 20.
Hence, the Lorentz force does not have to be presupposed.

Using formula (4.31d) on page 56 in formula (4.57b) on the facing page,
the Maxwell-Lorentz equation (2.1a) on page 20, and applying the divergence
theorem, we can write the electromagnetic linear momentum of the field as

pem
D

Z
V

d3x �AC "0

Z
V

d3x .r A/ � E � "0

I
S

d2x On � EA (4.60)

For each spatial Fourier component we use equation (4.32d) on page 57 to find
the manifestly gauge-independent expression

pem
D

Z
V

d3x �A? C "0

Z
V

d3x .r A/? � E � "0

I
S

d2x On � EA? (4.61)

If we restrict ourselves to consider a single temporal Fourier component of
the transverse component and use the results in example 3.4 on page 47 we find
that

E D �
@A

@t
D i!A (4.62)

which allows us to replace A by �iE=!, yielding

pem
trans D Re

�
�i"0
2!

Z
V

d3x .r E/ � E�
�
C Re

�
i"0
!

I
S

d2x On � EE�
�

(4.63)

If EE� falls off sufficiently rapidly at large distances, we can discard the surface
integral term and find that the cycle averaged linear momentum of the transverse
field is

pem
trans D Re

�
�i"0
2!

Z
V

d3x .r E/ � E�
�

(4.64)

where we used formula (2.5) on page 22. In complex tensor notation with Ein-
stein’s summation convention applied, this can be written

pem
trans D

�i"0
2!

Z
V

d3x Ei�rEi (4.65)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 84 of 262.

DRAFT

62 j 4. FUNDAMENTAL PROPERTIES OF THE ELECTROMAGNETIC FIELD

If we recall that the quantal linear momentum operator is

yp D �i}r (4.66)

we see that we can write the expression for the linear momentum of the electro-
magnetic field in terms of this operator as

pem
trans D

"0

2}!

Z
V

d3x Ei�ypEi (4.67)

i.e., as a quantum expectation value where the components of the electric field
vector behave as wavefunctions.

BConservation of linear momentumEXAMPLE 4 .4

Show, by explicit calculation, that the linear momentum p of a closed system comprising
charged particles of mass mi and velocity vi and pertinent electromagnetic fields E and B

p D mivi C "0

Z
V

d3x .E � B/ (4.68)

is conserved.

End of example 4.4C

4.3.5 Conservation of angular momentum

Already 1776 it was shown by LEONHARD EULER that the most general dy-
namical state of a mechanical system is the sum of its translational motion, de-
scribed by the linear momentum mechanical linear momentum pmech, and its ro-
tational motion, described by the system’s mechanical moment of momentum ,
or mechanical angular momentum Jmech.x0/ about the moment point x0, and
that these two momenta are in general independent of each other 4.4 Rational mechanist CLIFFORD

AMBROSE TRUESDELL I I I
(1919–2000) wrote several excel-
lent accounts on how this result
was arrived at by Euler in the latter
half of the 18th century.

In the special case of a classical rigid body for which the contribution from
internal angular momenta cancel the angular momentum around x0 is given by
the pseudovector Jmech.x0/ D .x�x0/�pmech. For a closed system of rotating
and orbiting bodies, e.g., a spinning planet orbiting a (non-rotating) star, the
total mechanical angular momentum of the system is the vectorial sum of two
contributions.

Jmech.x0/ D †
mech
C Lmech.x0/ (4.69)

where †mech is the intrinsic mechanical spin angular momentum , describing
the spin of the planet around its own axis, and Lmech is the extrinsic mechanical
orbital angular momentum , describing the motion of the planet in an orbit around
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the star. As is well known from mechanics, Jmech of a closed mechanical system
is conserved and to change it one has to apply a mechanical torque

�.x0/ D
dJmech.x0/

dt
(4.70)

Starting from the definition of the mechanical linear momentum density
gmech, formula (4.50) on page 59, and suppressing the obvious dependence of
x, we define the mechanical angular momentum density about a fixed moment
point x0 as

hmech.x0/ D .x � x0/ � gmech (4.71)

Analogously, we define the electromagnetic moment of momentum density or
electromagnetic angular momentum density about a moment point x0 as the
pseudovector

hem.x0/ D .x � x0/ � gem (4.72)

where, according to equation (4.52) on page 59, gem D "0E � B D S=c2.
Now, if f is the Lorentz force density as defined in equation (4.49) on page 59,

then

@hmech.x0/

@t
D

@

@t

�
.x � x0/ � gmech�

D
dx

dt
� gmech

C.x � x0/ �
@gmech

@t
D .x � x0/ � f

(4.73)

is the Lorentz torque density. Furthermore,

@hem.x0/

@t
D

@

@t

�
.x � x0/ � gem�

D
dx

dt
� gem

C .x � x0/ �
@gem

@t

D "0.x � x0/ �
@

@t
.E � B/ D

1

c2
.x � x0/ �

@S

@t

(4.74)

By introducing the electromagnetic angular momentum flux tensor

K.x0/ D .x � x0/ � T (4.75)

where T is the electromagnetic linear momentum flux tensor given by expres-
sion (4.54) on page 60, the differential form of the balance equation for angular
momentum density can be written

@hmech.x0/

@t
C
@hem.x0/

@t
C r � K.x0/ D 0 (4.76)

where the pseudotensor K.x0/ represents the electromagnetic angular momentum
current density around x0.
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Integration over the entire volume V , enclosed by the surface S , yields the
conservation law for angular momentum

dJmech.x0/

dt
C

dJ em.x0/

dt
C

I
S

d2x On � K.x0/ D 0 (4.77)

where the mechanical and electromagnetic angular momentum pseudovectors
are

Jmech.x0/ D

Z
V

d3x hmech.x0/ (4.78a)

and

J em.x0/ D

Z
V

d3x hem.x0/ D

Z
V

d3x .x � x0/ � gem

D "0

Z
V

d3x .x � x0/ � .E � B/

(4.78b)

respectively. We can formulate—and interpret—this conservation law in the
following way:Z

V

d3x .x � x0/ � f„ ƒ‚ …
Torque on the matter

C
d
dt
"0

Z
V

d3x .x � x0/ � .E � B/„ ƒ‚ …
Field angular momentum

C

I
S

d2x On � K.x0/„ ƒ‚ …
Angular momentum flow

D 0

(4.79)

This angular momentum theorem is the angular analogue of the linear mo-
mentum theorem, equation (4.58) on page 60. It shows that the electromagnetic
field, like any physical field, can carry angular momentum.

For a single localised charge q, i.e., for a charge density given by equation
(1.8) on page 5 with summation over one particle only, the evaluation of the first
integral in equation (4.79) above shows that the mechanical torque on this single
charged particle is

�.x0/ D

Z
V

d3x .x � x0/ � f D

Z
V

d3x ..x � x0/ � .�EC j � B//

D .x � x0/ � q.EC v � B/

(4.80)

We call it the Lorentz torque .
If we study formula (4.78b) a little closer, we see that it can be written

J em.x0/ D J em.0/ � x0 � "0

Z
V

d3x E � B D J em.0/ � x0 � pem (4.81)
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where use was made of equation (4.57b) on page 60. With the help of equation
(4.31) on page 56 we can write

J em.0/ D "0

Z
V

d3x x � .E � B/ D
1

c2

Z
V

d3x x � S (4.82)

D "0

Z
V

d3x x � Œ.r A/ � E� � "0

Z
V

d3x Œx � E � .r A/� (4.83)

Partial integration of this yields

J em.0/ D "0

Z
V

d3x E �AC "0

Z
V

d3x x � Œ.r A/ � E�

� "0

Z
V

d3x r �.Ex �A/C "0

Z
V

d3x .x �A/.r � E/

(4.84)

By introducing

†em
D "0

Z
V

d3x E �A (4.85a)

and

Lem.0/ D "0

Z
V

d3x x � Œ.r A/ � E�C

Z
V

d3x x � �A (4.85b)

applying Gauss’s theorem, formula (F.126) on page 202, and using the Maxwell-
Lorentz equation (2.1a) on page 20, we find that expression (4.84) above can be
written

J em.0/ D †em
C Lem.0/ � "0

I
S

d2x On � .Ex �A/ (4.86)

If there is no net electric charge density � in the integration volume, the
second integral in the RHS of equation (4.85b) vanishes, and if Ex � A �

E.x � A/ falls off sufficiently fast with jxj, the contribution from the surface
integral in equation (4.86) above can be neglected. Furthermore, for a single
Fourier component and in the complex notation, we obtain the expressions

†em
D �i

"0

2!

Z
V

d3x .E� � E/ (4.87a)

Lem.0/ D �i
"0

2!

Z
V

d3x E�i .x � r /Ei (4.87b)

Recalling that in quantum mechanics the spin angular momentum operator is

b†jk D �i}�ijk Oxi (4.88)

which, with the help of the matrix vector expression (M.27) on page 210 can be
writtenb††† D �}S (4.89)
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and the orbital angular momentum operator is

yL D �i}x � r D �i}�ijkxj @k Oxi (4.90)

we can write

†em
D

"0

2}!

Z
V

d3x E�j b†jkEk (4.91a)

Lem.0/ D
"0

2}!

Z
V

d3x E�i yLEi (4.91b)

Hence, under the assumptions made above, we can interpret †em as the electro-
magnetic spin angular momentum and Lem as the electromagnetic orbital angular
momentum .

BConservation of angular momentumEXAMPLE 4 .5

Show, by explicit calculation, that the total angular momentum J of a closed system com-
prising charged particles located at xi , of mass mi and velocity vi and pertinent electro-
magnetic fields E and B

J D xi �mivi C "0

Z
V

d3x Œx � .E � B/� (4.92)

is conserved.

End of example 4.5C

BSpin angular momentum and wave polarisationEXAMPLE 4 .6

Consider a generic temporal Fourier mode of the electric field vector E of a circularly
polarised wave with (angular) frequency !. According to equation (2.34) on page 27 it can
be written

E.t;x/ D E.t;x/ Oh˙ (4.93)

where

E.t;x/ D
p
2E0 ei.kx3�!tCı1/ (4.94)

and

Oh˙ D
1
p
2

�
Ox1 ˙ iOx2/ (4.95)

As before, we use the convention that OhC represents left-hand circular polarisation and Oh�
right-hand circular polarisation . Noting that

. Oh˙/
�
� Oh˙ D ˙iOz (4.96)

we see that

E� � E D ˙i jEj2 Oz D ˙iE2 Oz (4.97)

When this is inserted into equation (4.87a) on the preceding page one finds that the spin
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angular momentum of a circularly polarised wave is

†em
D ˙

"0

2!

Z
V

d3x E2 Oz D ˙
U em

!
Oz (4.98)

where U em is the field energy. Considering the wave consisting of N photons, then
U em D N}! which means that the spin of the wave is

†em
D ˙

N}!
!
Oz D ˙N} Oz (4.99)

Hence, each photon of a right-hand or a left-hand circular polarised wave carries a spin
angular momentum of } or �}, respectively.

End of example 4.6C

BOrbital angular momentum EXAMPLE 4 .7

The Cartesian components of the quantal orbital angular momentum operator (OAM) yL as
given by expression (4.90) on the preceding page are

yLx D �i}
�
y
@

@z
� z

@

@y

�
(4.100a)

yLy D �i}
�
z
@

@x
� x

@

@z

�
(4.100b)

yLz D �i}
�
x
@

@y
� y

@

@x

�
(4.100c)

In cylindrical coordinates .�; '; z/ they are

yLx D �i}
�

sin'
�
z
@

@�
� �

@

@z

�
C
z

�
cos'

@

@'

�
(4.101a)

yLy D �i}
�

cos'
�
z
@

@�
� �

@

@z

�
�
z

�
sin'

@

@'

�
(4.101b)

yLz D �i}
@

@'
(4.101c)

and in spherical coordinates .r; '; �/ they are

yLx D �i}
�

sin'
@

@�
C cos' cot �

@

@'

�
(4.102a)

yLy D �i}
�

cos'
@

@�
� sin' cot �

@

@'

�
(4.102b)

yLz D �i}
@

@'
(4.102c)

For an electric field E that depends on the azimuthal angle ' in such a way that

E D E0.t;x/ˆ.'/ (4.103)

we find that

yLzE.t;x/ D �i}
�@E0.t;x/

@'
ˆ' � E0.t;x/

@ˆ.'/

@'

�
(4.104)

If E0.t;x/ is rotationally symmetric around the the z axis, so that E0 D E0.�; z/ in cyl-
indrical coordinates , E0 D E0.r; �/ in spherical (polar) coordinates etc., and if the azi-
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muthal part is expressed in a Fourier series

ˆ.'/ D

1X
mD�1

cm eim' (4.105)

we see that

yLzE.t;x/ D

1X
mD�1

cmm}E0 eim'
D

1X
mD�1

cmm}Em (4.106)

i.e., that E is a weighted superpostion of OAM eigenstates Em D E0 eim' . Furthermore,

yLzEm D m}Em (4.107)

which means that for a rotationally symmetric beam with an azimuthal phase dependence
given by exp.m'/ one deduces, according to formula (4.87b) on page 65, that the z com-
ponent of the orbital angular momentum of each photon in this beam is m}.

End of example 4.7C

4.3.6 Conservation of centre of energy

In analogy with the existence of a centre of mass in a classical mechanical sys-
tem, there exists a centre of energy in electrodynamics. It can be shown that this
vectoral quantity is also conserved.

BExamples of other conservation lawsEXAMPLE 4 .8

In addition to the conservation laws for energy, linear momentum and angular momentum,
a large number of other electromagnetic conservation laws can be derived. For instance, as
can be shown by direct calculation based on the Maxwell-Lorentz the following conserva-
tion law holds in free space (vacuum):

@�

@t
C r �X D 0 (4.108)

where the pseudoscalar

� D E � .r � E/C c2B � .r � B/ (4.109)

is the chirality density, and the pseudovector

X D E �
@E

@t
C c2B �

@B

@t
(4.110)

is the chirality flow.

End of example 4.8C
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4.3.7 Electromagnetic virial theorem

If instead of vector multiplying the linear momentum densities gmech and gem

by the position vector relative to a fix point x0 as we did in subsection 4.3.5
on page 62, we scalar multiply, the following differential balance equation is
obtained:

@
�
.x � x0/ � g

mech
�

@t
C
@
�
.x � x0/ � g

em
�

@t
C r �

�
.x � x0/ � T

�
D uem

(4.111)

This is the electromagnetic virial theorem , analogous to the virial theorem of
Clausius in mechanics. The quantity .x� x0/ � g

em is the electromagnetic virial
density. When integrated over space and time averaged, this theorem is a state-
ment of the partitioning of energy in electrodynamics and finds use in, e.g.,
plasma physics .
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FIELDS FROM ARBITRARY CHARGE

AND CURRENT DISTRIBUTIONS

While, in principle, the electric and magnetic fields can be calculated from the
Maxwell equations in chapter 1, or even from the wave equations in chapter 2, it
is often physically more lucid to calculate them from the electromagnetic poten-
tials derived in chapter 3. In this chapter we will derive the electric and magnetic
fields from the potentials.

We recall that in order to find the solution (3.46) for the generic inhomogen-
eous wave equation (3.30) on page 37 we presupposed the existence of a Fourier
transform pair (3.31) on page 37 for the generic source term

f .t;x/ D

Z 1
�1

d! f!.x/ e�i!t (5.1a)

f!.x/ D
1

2�

Z 1
�1

dt f .t;x/ ei!t (5.1b)

That such transform pairs exist is true for most well-behaved physical variables
which are neither strictly monotonically increasing nor strictly monotonically
decreasing with time.1 For charge and current densities varying in time we can 1 An example of a physical quant-

ity that cannot be represented in
Fourier form is white noise.

therefore, without loss of generality, work with individual Fourier components
�!.x/ and j!.x/, respectively. Strictly speaking, the existence of a single Four-
ier component assumes a monochromatic source (i.e., a source containing only
one single frequency component), which in turn requires that the electric and
magnetic fields exist for infinitely long times. However, by taking the proper
limits, we may still use this approach even for sources and fields of finite dura-
tion.

71
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This is the method we shall utilise in this chapter in order to derive the elec-
tric and magnetic fields in vacuum from arbitrary given charge densities �.t;x/
and current densities j.t;x/, defined by the temporal Fourier transform pairs

�.t;x/ D

Z 1
�1

d! �!.x/ e�i!t (5.2a)

�!.x/ D
1

2�

Z 1
�1

dt �.t;x/ ei!t (5.2b)

and

j.t;x/ D

Z 1
�1

d! j!.x/ e�i!t (5.3a)

j!.x/ D
1

2�

Z 1
�1

dt j.t;x/ ei!t (5.3b)

under the assumption that only retarded potentials produce physically acceptable
solutions.

The temporal Fourier transform pair for the retarded scalar potential can then
be written

�.t;x/ D

Z 1
�1

d! �!.x/ e�i!t (5.4a)

�!.x/ D
1

2�

Z 1
�1

dt �.t;x/ ei!t
D

1

4�"0

Z
V 0

d3x0 �!.x0/
eikjx�x0j

jx � x0j
(5.4b)

where in the last step, we made use of the explicit expression for the temporal
Fourier transform of the generic potential component ‰!.x/, equation (3.43) on
page 39. Similarly, the following Fourier transform pair for the vector potential
must exist:

A.t;x/ D

Z 1
�1

d!A!.x/ e�i!t (5.5a)

A!.x/ D
1

2�

Z 1
�1

dt A.t;x/ ei!t
D
�0

4�

Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j
(5.5b)

Similar transform pairs exist for the fields themselves.
In the limit that the sources can be considered monochromatic containing

only one single frequency !0, we have the much simpler expressions

�.t;x/ D �0.x/e
�i!0t (5.6a)

j.t;x/ D j0.x/e
�i!0t (5.6b)

�.t;x/ D �0.x/e
�i!0t (5.6c)

A.t;x/ D A0.x/e
�i!0t (5.6d)

where again the real-valuedness of all these quantities is implied. As discussed
above, we can safely assume that all formulae derived for a general temporal
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Fourier representation of the source (general distribution of frequencies in the
source) are valid for these simple limiting cases. We note that in this context, we
can make the formal identification �! D �0ı.! � !0/, j! D j0ı.! � !0/ etc.,
and that we therefore, without any loss of stringency, let �0 mean the same as
the Fourier amplitude �! and so on.

5.1 The magnetic field

Let us now compute the magnetic field from the vector potential, defined by
equation (5.5a) and equation (5.5b) on the preceding page, and formula (3.21)
on page 35:

B.t;x/ D r �A.t;x/ (5.7)

The calculations are much simplified if we work in ! space and, at the final
stage, inverse Fourier transform back to ordinary t space. We are working in the
Lorenz-Lorentz gauge and note that in ! space the Lorenz-Lorentz condition,
equation (3.28) on page 37, takes the form

r �A! � i
k

c
�! D 0 (5.8)

which provides a relation between (the Fourier transforms of) the vector and
scalar potentials.

Using the Fourier transformed version of equation (5.7) and equation (5.5b)
on the preceding page, we obtain

B!.x/ D r �A!.x/ D
�0

4�
r �

Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j
(5.9)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 96 of 262.

DRAFT

74 j 5. FIELDS FROM ARBITRARY CHARGE AND CURRENT DISTRIBUTIONS

Utilising formula (F.97) on page 200 and recalling that j!.x
0/ does not depend

on x, we can rewrite this as

B!.x/ D �
�0

4�

Z
V 0

d3x0 j!.x0/ �

"
r

 
eikjx�x0j

jx � x0j

!#

D �
�0

4�

"Z
V 0

d3x0 j!.x0/ �
�
�

x � x0

jx � x0j3

�
eikjx�x0j

C

Z
V 0
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(5.10)

From this expression for the magnetic field in the frequency (!) domain, we
obtain the total magnetic field in the temporal (t ) domain by taking the inverse
Fourier transform (using the identity �ik D �i!=c):
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(5.11)

where

Pj.t 0ret;x
0/

def
�

�
@j

@t

�
tDt 0ret

(5.12)

and t 0ret is given in equation (3.45) on page 40. The first term, the induction
field , dominates near the current source but falls off rapidly with distance from
it, is the electrodynamic version of the Biot-Savart law in electrostatics, formula
(1.17) on page 8. The second term, the radiation field or the far field , dominates
at large distances and represents energy that is transported out to infinity. Note
how the spatial derivatives (r ) gave rise to a time derivative (P)!
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5.2 The electric field

In order to calculate the electric field, we use the temporally Fourier transformed
version of formula (3.25) on page 36, inserting equations (5.4b) and (5.5b) as the
explicit expressions for the Fourier transforms of � and A:
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(5.13)

Using the Fourier transform of the continuity equation (1.25) on page 10

r 0 � j!.x
0/ � i!�!.x0/ D 0 (5.14)

we see that we can express �! in terms of j! as follows

�!.x
0/ D �

i
!

r 0 � j!.x
0/ (5.15)

Doing so in the last term of equation (5.13) above, and also using the fact that
k D !=c, we can rewrite this equation as
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(5.16)

The last vector-valued integral can be further rewritten in the following way:
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But, since
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we can rewrite I! as
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(5.19)

where, according to Gauss’s theorem, the last term vanishes if j! is assumed
to be limited and tends to zero at large distances. Further evaluation of the
derivative in the first term makes it possible to write

I! D �

Z
V 0

d3x0
 
�j!

eikjx�x0j

jx � x0j2
C

2

jx � x0j4
�
j! � .x � x0/

�
.x � x0/eikjx�x0j

!

� ik
Z
V 0

d3x0
 
�
Œj! � .x � x0/� .x � x0/

jx � x0j3
eikjx�x0j

C j!
eikjx�x0j

jx � x0j

!
(5.20)

Using the triple product ‘bac-cab’ formula (F.73) on page 200 backwards, and
inserting the resulting expression for I! into equation (5.16) on the previous
page, we arrive at the following final expression for the Fourier transform of the
total E field:
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(5.21)

Taking the inverse Fourier transform of equation (5.21), once again using the
vacuum relation ! D kc, we find, at last, the expression in time domain for the
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total electric field:
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(5.22)

Here, the first term represents the retarded Coulomb field and the last term rep-
resents the radiation field which carries energy over very large distances. The
other two terms represent an intermediate field which contributes only in the
near zone and must be taken into account there.

With this we have achieved our goal of finding closed-form analytic expres-
sions for the electric and magnetic fields when the sources of the fields are com-
pletely arbitrary, prescribed distributions of charges and currents. The only as-
sumption made is that the advanced potentials have been discarded; recall the
discussion following equation (3.46) on page 40 in chapter 3.

5.3 The radiation fields

In this section we study electromagnetic radiation, i.e., those parts of the electric
and magnetic fields, calculated above, which are capable of carrying energy and
momentum over large distances. We shall therefore make the assumption that the
observer is located in the far zone , i.e., very far away from the source region(s).
The fields which are dominating in this zone are by definition the radiation fields .

From equation (5.11) on page 74 and equation (5.22) above, which give the
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total electric and magnetic fields, we obtain
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where
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Instead of studying the fields in the time domain, we can often make a spec-
trum analysis into the frequency domain and study each Fourier component sep-
arately. A superposition of all these components and a transformation back to
the time domain will then yield the complete solution.

The Fourier representation of the radiation fields equation (5.23a) and equa-
tion (5.23b) above were included in equation (5.10) on page 74 and equation
(5.21) on page 76, respectively and are explicitly given by
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where we used the fact that k D k Ok D k.x � x0/= jx � x0j.
If the source is located near a point x0 inside a volume V 0 and has such a

limited spatial extent that sup jx0 � x0j � jx � x0j, and the integration surface
S , centred on x0, has a large enough radius jx � x0j � sup jx0 � x0j, we see
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V 0

O

x0

x

x � x0

On

x0

x � x0

S.x0/

Ok

x0 � x0

Figure 5.1: Relation between the
surface normal and the k vector for
radiation generated at source points
x0 near the point x0 in the source
volume V 0. At distances much lar-
ger than the extent of V 0, the unit
vector On, normal to the surface S
which has its centre at x0, and the
unit vector Ok of the radiation k vec-
tor from x0 are nearly coincident.

from figure 5.1 that we can approximate
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� k � .x � x0/ � k � .x � x0/ � k � .x0 � x0/
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(5.26)

Recalling from Formula (F.50) and formula (F.51) on page 198 that

dS D jx � x0j
2 d� D jx � x0j

2 sin � d� d'

and noting from figure 5.1 that Ok and On are nearly parallel, we see that we can
approximate
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Both these approximations will be used in the following.
Within approximation (5.26) the expressions (5.25a) and (5.25b) for the ra-

diation fields can be approximated as
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I.e., if sup jx0 � x0j � jx � x0j, then the fields can be approximated as spherical
waves multiplied by dimensional and angular factors, with integrals over points
in the source volume only.
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SYSTEMS

In chapter 3 we were able to derive general expressions for the scalar and vector
potentials from which we later (in chapter 5) derived exact analytic expressions
for the total electric and magnetic fields generated by completely arbitrary dis-
tributions of charge and current sources that are located in certain regions. The
only limitation in the calculation of the fields was that the advanced potentials
were discarded on—admittedly not totally convincing—physical grounds.

In chapter 4 we showed that the electromagnetic energy, linear momentum,
and angular momentum are all conserved quantities and in this chapter we will
show that these quantities can be radiated all the way to infinity and therefore
be used in wireless communications over long distances and for observing very
remote objects in Nature, including electromagnetic radiation sources in the Uni-
verse. Radiation processes are irreversible in that the radiation does not return
to the radiator but is lost from it forever.1 However, the radiation can, of course, 1 This is referred to as time arrow

of radiation .be sensed by other charges and currents that are located in free space, possibly
very far away from the sources. This is precisely what makes it possible for our
eyes to observe light, and even more so radio signals, from extremely distant
stars and galaxies. This consequence of Maxwell’s equations, with the displace-
ment current included, was verified experimentally by HEINRICH RUDOLF

HERTZ about twenty years after Maxwell had made his theoretical predictions.
Hertz’s experimental and theoretical studies paved the way for radio and TV
broadcasting, radar, wireless communications, radio astronomy and a host of
other applications and technologies.

81
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Thus, one can, at least in principle, calculate the radiated fields, flux of en-
ergy, linear momentum and angular momentum, as well as other electromagnetic
observables at any time at any point in space for an arbitrary charge and current
density of the source. However, in practice, it is often difficult to evaluate the
source integrals unless the charge and current densities have a simple distribu-
tion in space. In the general case, one has to resort to approximations. We shall
consider both these situations in this chapter.

6.1 Radiation of linear momentum and energy

We saw in chapter 5 that at large distances r from the source, the leading or-
der contributions to the E and B fields are purely transverse and fall off as 1=r .
Hence, at large distances r , the dominating component of the Poynting vector,
Sfar, falls off as 1=r2 and is purely radial there. Consequently, when Sfar is
integrated over a large spherical shell (centred on the source) for which the dir-
ected area element is d2x On D r2d� Or D r2 sin � d� d' Or [cf. formula (F.51) on
page 198], the total integrated power, as given by the surface integral in equation
(4.40) on page 58, tends to a constant at infinity, showing that energy U em and
electromagnetic linear momentum pem is carried all the way to infinity and is ir-
reversibly lost there. This is the physical foundation of the well-known fact that
pem and U em can be transmitted over extremely long distances. The force ac-
tion (time rate of change of pem) on charges in one region in space can therefore
cause a force action on charges in a another region in space. Today’s wireless
communication technology, be it classical or quantal, is based almost exclusively
on the utilisation of this translational degree of freedom of the charges (currents)
and the fields.

Let us consider the linear momentum and energy that is carried in the far
fields Bfar, equation (5.25a), and Efar, equation (5.25b) on page 78. Signals
with limited lifetime and hence finite frequency bandwidth have to be analysed
differently from monochromatic signals.
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6.1.1 Monochromatic signals

If the source is strictly monochromatic, we can obtain the temporal average of
the radiated power P directly, simply by averaging over one period so that

hSi D
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Re fE � B�g D

1

2�0
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D
1

2�0
Re fE! � B�!g

(6.1)

From formula (F.50) on page 198 and formula (F.51) on page 198 we see
that

d2x D jx � x0j
2 d� D jx � x0j

2 sin � d� d'

We also note from figure 5.1 on page 79 that Ok and On are nearly parallel. Hence,
we can approximate

Ok � d2x On

jx � x0j
2
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d2x

jx � x0j
2
Ok � On � d� Ok � On � d� (6.2)

Using the far-field approximations (5.28a) and (5.28b) for the fields and the
fact that 1=c D

p
"0�0, and also introducing the characteristic impedance of

vacuum
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r
�0

"0
� 376:7� (6.3)

for the vacuum resistance R0, we obtain˝
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Consequently, the amount of power per unit solid angle d� that flows across an
infinitesimal surface element r2d� D jx � x0j

2 d� of a large spherical shell
with its origin at x0 and enclosing all sources, is

dP
d�
D
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32�2
R0

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik�.x0�x0/

ˇ̌̌̌2
(6.5)

This formula is valid far away from the sources and shows that the radiated
power is given by an expression which is resistance (R0) times the square of
the supplied current (the integrated current density j!), as expected. We note
that the emitted power is independent of distance and is therefore carried all
the way to infinity. The possibility to transmit electromagnetic power over large
distances, even in vacuum, is the physical foundation for the extremely important
wireless communications technology. Besides determining the strength of the
radiated power, the integral in formula (6.5) above also determines the angular
distribution.
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6.1.2 Finite bandwidth signals

A signal with finite pulse width in time (t ) domain has a certain spread in fre-
quency (!) domain. To calculate the total radiated energy we need to integrate
over the whole bandwidth. The total energy transmitted through a unit area is
the time integral of the Poynting vector:Z 1

�1

dt S.t/ D
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(6.6)

If we carry out the temporal integration first and use the fact thatZ 1
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equation (6.6) can be writtenZ 1
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where the last step follows from physical requirement of real-valuedness of E!

and B! . We insert the Fourier transforms of the field components which dom-
inate at large distances, i.e., the far fields (5.25a) and (5.25b). The result, after
integration over the area S of a large sphere which encloses the source volume
V 0, is
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Inserting the approximations (5.26) and (6.2) into equation (6.9) above, in-
troducing the spectral energy density U! via the definition

U
def
�

Z 1
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d!U! (6.10)
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and recalling the definition (6.3) on page 83, we obtain

dU!
d�

d! �
1

4�
R0

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik�.x0�x0/

ˇ̌̌̌2
d! (6.11)

which, at large distances, is a good approximation to the energy that is radiated
per unit solid angle d� in a frequency band d!. It is important to notice that
Formula (6.11) includes only source coordinates. This means that the amount
of energy that is being radiated is independent on the distance to the source (as
long as it is large).

6.2 Radiation of angular momentum

Not only electromagnetic linear momentum (Poynting vector) can be radiated
from a source and transmitted over very long distances, but the same is also true
for electromagnetic angular momentum J em. Then torque action (the time rate
of change of J em) in one region causes torque action on charges. The use of this
rotational degree of freedom of the fields has only recently been put to practical
use even if it has been known for more than a century.

After lengthy calculations, based on the results obtained in chapter 5, one
finds that the complete cycle averaged far-zone expression for a frequency com-
ponent ! of the electromagnetic angular momentum density generated by arbit-
rary charge and current sources can be approximated by

hhem.x0/i D
1

32�2"0c3

�
On � Re

˚
.cq C In/PI

�
	

c jx � x0j
2

C
On � Re f.cq C In/I�g

jx � x0j
3

�
(6.12)

where, in complex notation,

I.t 0/ �

Z
V 0

d3x0 j.t 0;x0/ (6.13)

and

PI.t 0/ �

Z
V 0

d3x0 Pj.t 0;x0/ (6.14)

We see that at very large distances r , the angular momentum density hem

falls off as 1=r2, i.e., it has precisely the same behaviour in the far zone as the
linear momentum density and can therefore also transfer information wirelessly
over large distances. The only difference is that while the direction of the linear
momentum (Poynting vector) becomes purely radial at infinity, the angular mo-
mentum becomes perpendicular to the linear momentum, i.e. purely transverse,
there.
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6.3 Radiation from a localised source volume at rest

In the general case, and when we are interested in evaluating the radiation far
from a source at rest and which is localised in a small volume, we can introduce
an approximation which leads to a multipole expansion where individual terms
can be evaluated analytically. Here we use Hertz’s method , which focuses on
the physics rather than the mathematics, to obtain this expansion.

6.3.1 Electric multipole moments

Let us assume that the charge distribution � determining the potential in equation
(3.47a) on page 40 has such a small extent that all the source points x0 can
be assumed to be located very near a point x0. At a large distance jx � x0j,
one can then, to a good approximation, approximate the potential by the Taylor
expansion [cf. example 3.1 on page 33]

�.t;x/ D
1

4�"0

"
q.t/

jx � x0j
C

1

jx � x0j
2
di .t;x0/

.x � x0/i

jx � x0j

C
1

jx � x0j
3
Qij .t;x0/

�
3

2

.x � x0/i

jx � x0j

.x � x0/j

jx � x0j
�
1

2
ıij

�
C : : :

#
(6.15)

where

q.t/ D

Z
V 0

d3x0 �.t 0ret;x
0/ (6.16a)

is the total charge or electric monopole moment ,

d.t;x0/ D

Z
V 0

d3x0 .x0 � x0/ �.t
0
ret;x

0/ (6.16b)

with components di , i D 1; 2; 3 is the electric dipole moment vector , and

Q.t;x0/ D
Z
V 0

d3x0 .x0 � x0/.x
0
� x0/ �.t

0
ret;x

0/ (6.16c)

with components Qij ; i; j D 1; 2; 3 (Einstein’s summation convention over i
and j is implied), is the electric quadrupole moment tensor .

The source volume is so small that internal retardation effects can be neg-
lected, i.e., that we can set t 0ret � t � jx � x0j =c. Then

t D t .t 0ret/ � t
0
ret C Const (6.17)
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where

Const D
jx � x0j

c
(6.18)

Hence the transformation between t and t 0ret is a trivial. In the subsequent ana-
lysis in this Subsection we shall use t 0 to denote this approximate t 0ret.

For a normal medium, the major contributions to the electrostatic interactions
come from the net charge and the lowest order electric multipole moments in-
duced by the polarisation due to an applied electric field. Particularly important
is the dipole moment. Let P denote the electric dipole moment density (electric
dipole moment per unit volume; unit: C m�2), also known as the electric po-
larisation , in some medium. In analogy with the second term in the expansion
equation (6.15) on the preceding page, the electric potential from this volume
distribution P .t;x0/ of electric dipole moments d at the source point x0 can be
written

�d.t;x/ D
1

4�"0

Z
V 0

d3x0 P .t 0;x0/ �
x � x0

jx � x0j3

D �
1

4�"0

Z
V 0

d3x0 P .t 0;x0/ � r
�

1

jx � x0j

�
D

1

4�"0

Z
V 0

d3x0 P .t 0;x0/ � r 0
�

1

jx � x0j

� (6.19)

Using expression (M.113) on page 224 and applying the divergence theorem, we
can rewrite this expression for the potential as follows:

�d.t;x/ D
1

4�"0

�Z
V 0

d3x0 r 0�
�

P .t 0;x0/

jx � x0j

�
�

Z
V 0

d3x0
r 0 � P .t 0;x0/

jx � x0j

�
D

1

4�"0

�I
S 0

d2x0 On0 �
P .t 0;x0/

jx � x0j
�

Z
V 0

d3x0
r 0 � P .t 0;x0/

jx � x0j

�
(6.20)

where the first term, which describes the effects of the induced, non-cancelling
dipole moment on the surface of the volume, can be neglected, unless there is a
discontinuity in On �P at the surface. Doing so, we find that the contribution from
the electric dipole moments to the potential is given by

�d.t;x/ D
1

4�"0

Z
V 0

d3x0
�r 0 � P .t 0;x0/

jx � x0j
(6.21)

Comparing this expression with expression equation (3.47a) on page 40for the
potential from a charge distribution �.t;x/, we see that �r � P .t;x/ has the
characteristics of a charge density and that, to the lowest order, the effective
charge density becomes �.t;x/ � r � P .t;x/, in which the second term is a
polarisation term that we call �pol.t;x/.
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6.3.2 The Hertz potential

In section 6.3.1 we introduced the electric polarisation P .t;x/ such that the po-
larisation charge density

�pol
D �r � P (6.22)

If we adopt the same idea for the ‘true’ charge density due to free charges and
introduce a vector field �.t;x/, analogous to P .t;x/, but such that

�true def
� �r � � (6.23a)

which means that the associated ‘polarisation current’ now is the true current:

@�

@t
D jtrue (6.23b)

As a consequence, the equation of continuity for ‘true’ charges and currents [cf.
expression (1.25) on page 10] is satisfied:

@�true.t;x/

@t
C r � jtrue.t;x/ D �

@

@t
r � � C r �

@�

@t
D 0 (6.24)

The vector � is called the polarisation vector because, formally, it treats also the
‘true’ (free) charges as polarisation charges. Since in the microscopic Maxwell-
Lorentz equation (2.1a) on page 20, the charge density �must include all charges,
we can write this equation

r � E D
�

"0
D
�true C �pol

"0
D
�r � � � r � P

"0
(6.25)

i.e., in a form where all the charges are considered to be polarisation charges.
We now introduce a further potential…e with the following property

r �…e
D �� (6.26a)

1

c2
@…e

@t
D A (6.26b)

where � and A are the electromagnetic scalar and vector potentials, respectively.
As we see, …e acts as a ‘super-potential ’ in the sense that it is a potential from
which we can obtain other potentials. It is called the Hertz vector or polarisation
potential . Requiring that the scalar and vector potentials � and A, respectively,
satisfy their inhomogeneous wave equations, equations (3.27) on page 36, one
finds, using (6.23) and (6.26), that the Hertz vector must satisfy the inhomogen-
eous wave equation

�2…e
D

1

c2
@2

@t2
…e
� r

2…e
D
�

"0
(6.27)
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x

x � x0

x0

V 0

O

‚
x0 x0 � x0

x � x0 Figure 6.1: Geometry of a typical
multipole radiation problem where
the field point x is located some dis-
tance away from the finite source
volume V 0 centred around x0. If
k jx0 � x0j � 1 � k jx� x0j,
then the radiation at x is well ap-
proximated by a few terms in the
multipole expansion.

Assume that the source region is a limited volume around some central point
x0 far away from the field (observation) point x illustrated in figure 6.1. Under
these assumptions, we can expand the Hertz vector, expression (6.32) on the next
page, due to the presence of non-vanishing �.t 0ret;x

0/ in the vicinity of x0, in a
formal series. For this purpose we recall from potential theory that

eikjx�x0j

jx � x0j
�

eikj.x�x0/�.x
0�x0/j

j.x � x0/ � .x0 � x0/j

D ik
1X
nD0

.2nC 1/Pn.cos‚/jn.k
ˇ̌
x0 � x0

ˇ̌
/h.1/n .k jx � x0j/

(6.28)

where (see figure 6.1)

eikjx�x0j

jx � x0j
is a Green function or propagator

‚ is the angle between x0 � x0 and x � x0

Pn.cos‚/ is the Legendre polynomial of order n

jn.k
ˇ̌
x0 � x0

ˇ̌
/ is the spherical Bessel function of the first kind of order n

h.1/n .k jx � x0j/ is the spherical Hankel function of the first kind of order n

According to the addition theorem for Legendre polynomials

Pn.cos‚/ D
nX

mD�n

.�1/mPmn .cos �/P�mn .cos � 0/eim.'�'0/ (6.29)

where Pmn is an associated Legendre polynomial of the first kind , related to the
spherical harmonic Y mn as

Y mn .�; '/ D

s
2nC 1

4�

.n �m/Š

.nCm/Š
Pmn .cos �/ eim'
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and, in spherical polar coordinates,

x0 � x0 D .
ˇ̌
x0 � x0

ˇ̌
; � 0; '0/ (6.30a)

x � x0 D .jx � x0j ; �; '/ (6.30b)

This equation is of the same type as equation (3.30) on page 37, and has
therefore the retarded solution

…e.t;x/ D
1

4�"0

Z
V 0

d3x0
�.t 0ret;x

0/

jx � x0j
(6.31)

with Fourier components

…e
!.x/ D

1

4�"0

Z
V 0

d3x0
�!.x

0/eikjx�x0j

jx � x0j
(6.32)

If we introduce the help vector C such that

C D r �…e (6.33)

we see that we can calculate the magnetic and electric fields, respectively, as
follows

B D
1

c2
@C

@t
(6.34a)

E D r �C (6.34b)

Clearly, the last equation is valid only if r � E D 0 i.e., if we are outside the
source volume. Since we are mainly interested in the fields in the so called far
zone , a long distance from the source region, this is no essential limitation.

Inserting equation (6.28) on the preceding page, together with formula (6.29)
on the previous page, into equation (6.32), we can in a formally exact way ex-
pand the Fourier component of the Hertz vector as

…e
! D

ik
4�"0

1X
nD0

nX
mD�n

.2nC 1/.�1/mh.1/n .k jx � x0j/ P
m
n .cos �/ eim'

�

Z
V 0

d3x0 �!.x0/ jn.k
ˇ̌
x0 � x0

ˇ̌
/ P�mn .cos � 0/ e�im'0

(6.35)

We notice that there is no dependence on x�x0 inside the integral; the integrand
is only dependent on the relative source vector x0 � x0.

We are interested in the case where the field point is many wavelengths away
from the well-localised sources, i.e., when the following inequalities

k
ˇ̌
x0 � x0

ˇ̌
� 1� k jx � x0j (6.36)
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hold. Then we may to a good approximation replace h.1/n with the first term in
its asymptotic expansion:

h.1/n .k jx � x0j/ � .�i/nC1
eikjx�x0j

k jx � x0j
(6.37)

and replace jn with the first term in its power series expansion:

jn.k
ˇ̌
x0 � x0

ˇ̌
/ �

2nnŠ

.2nC 1/Š

�
k
ˇ̌
x0 � x0

ˇ̌�n (6.38)

Inserting these expansions into equation (6.35) on the preceding page, we obtain
the multipole expansion of the Fourier component of the Hertz vector

…e
! �

1X
nD0

…e
!
.n/ (6.39a)

where

…e
!
.n/
D .�i/n

1

4�"0

eikjx�x0j

jx � x0j

2nnŠ

.2n/Š

�

Z
V 0

d3x0 �!.x0/ .k
ˇ̌
x0 � x0

ˇ̌
/n Pn.cos‚/ (6.39b)

This expression is approximately correct only if certain care is exercised; if many
…e
!
.n/ terms are needed for an accurate result, the expansions of the spherical

Hankel and Bessel functions used above may not be consistent and must be
replaced by more accurate expressions. Furthermore, asymptotic expansions as
the one used in equation (6.37) on page 91 are not unique.

Taking the inverse Fourier transform of …e
! will yield the Hertz vector in

time domain, which inserted into equation (6.33) on the facing page will yield
C. The resulting expression can then in turn be inserted into equations (6.34) on
the preceding page in order to obtain the radiation fields.

For a linear source distribution along the polar axis, ‚ D � in expression
(6.39b), and Pn.cos �/ gives the angular distribution of the radiation. In the
general case, however, the angular distribution must be computed with the help
of formula (6.29) on page 89. Let us now study the lowest order contributions to
the expansion of the Hertz vector.

6.3.3 Electric dipole radiation

Choosing n D 0 in expression (6.39b), we obtain

…e
!
.0/
D

eikjx�x0j

4�"0 jx � x0j

Z
V 0

d3x0 �!.x0/ D
1

4�"0

eikjx�x0j

jx � x0j
d! (6.40)
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Figure 6.2: If a spherical polar co-
ordinate system .r; �; ') is chosen
such that the electric dipole moment
d (and thus its Fourier transform
d! ) is located at the origin and dir-
ected along the polar axis, the cal-
culations are simplified.

�

x1

x3

Efar

x2

'

Or

x

Ok

Bfar

d

Since � represents a dipole moment density for the ‘true’ charges (in the same
vein as P does so for the polarised charges), d! D

R
V 0

d3x0 �!.x0/ is, by defini-
tion, the Fourier component of the electric dipole moment

d.t;x0/ D

Z
V 0

d3x0 �.t 0;x0/ D
Z
V 0

d3x0 .x0 � x0/�.t
0;x0/ (6.41)

[cf. equation (6.16b) on page 86]. If a spherical coordinate system is chosen with
its polar axis along d! as in figure 6.2, the components of…e

!
.0/ are

…e
r

def
� …e

!
.0/
� Or D

1

4�"0

eikjx�x0j

jx � x0j
d! cos � (6.42a)

…e
�

def
� …e

!
.0/
� O™ D �

1

4�"0

eikjx�x0j

jx � x0j
d! sin � (6.42b)

…e
'

def
� …e

!
.0/
� O® D 0 (6.42c)

Evaluating formula (6.33) on page 90 for the help vector C, with the spher-
ically polar components (6.42) of…e

!
.0/ inserted, we obtain

C! D C
.0/
!;' O® D

1

4�"0

�
1

jx � x0j
� ik

�
eikjx�x0j

jx � x0j
d! sin � O® (6.43)

Applying this to equations (6.34) on page 90, we obtain directly the Fourier
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components of the fields

B! D �i
!�0

4�

�
1

jx � x0j
� ik

�
eikjx�x0j

jx � x0j
d! sin � O® (6.44a)

E! D
1

4�"0

"
2

�
1

jx � x0j
2
�

ik
jx � x0j

�
cos �

x � x0

jx � x0j

C

�
1

jx � x0j
2
�

ik
jx � x0j

� k2
�

sin � O™

#
eikjx�x0j

jx � x0j
d!

(6.44b)

Keeping only those parts of the fields which dominate at large distances (the
radiation fields) and recalling that the wave vector k D k.x � x0/= jx � x0j

where k D !=c, we can now write down the Fourier components of the radiation
parts of the magnetic and electric fields from the dipole:

Bfar
! D �

!�0

4�

eikjx�x0j

jx � x0j
d!k sin � O® D �

!�0

4�

eikjx�x0j

jx � x0j
.d! � k/ (6.45a)

Efar
! D �

1

4�"0

eikjx�x0j

jx � x0j
d!k

2 sin � O™ D �
1

4�"0

eikjx�x0j

jx � x0j
Œ.d! � k/ � k�

(6.45b)

These fields constitute the electric dipole radiation , also known as E1 radiation .

BLinear and angular momenta radiated from an electric dipole in vacuum EXAMPLE 6 .1

The Fourier amplitudes of the fields generated by an electric dipole, d! , oscillating at the
angular frequency !, are given by formulæ (6.44) above. Inverse Fourier transforming to
the time domain, and using a spherical coordinate system .r; �; '/, the physically observable
fields are found to be

B.t;x/ D
!�0

4�
d! sin �

�
1

r2
sin.kr � !t 0/ �

k

r
cos.kr � !t 0/

�
O® (6.46a)

E.t;x/ D
1

4�"0
dw sin �

 
1

r3
cos.kr � !t 0/C

k

r2
sin.kr � !t 0/ �

k2

r
cos.kr � !t 0/

!
O™

C
1

2�"0
dw cos �

�
1

r3
cos.kr � !t 0/C

k

r2
sin.kr � !t 0/

�
Or (6.46b)

where t 0 D t � r=c is the retarded time.

Applying formula (4.51) on page 59 for the electromagnetic linear momentum density to
the fields from a pure electric dipole, equations (6.46) above, one obtains
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gem
D "0E � B D �

!�0

8�2
d2! sin � cos �

�
1

r5
sin.kr � !t 0/ cos.kr � !t 0/

C
k

r4

�
sin2.kr � !t 0/ � cos2.kr � !t 0/

�
�
k2

r3
sin.kr � !t 0/ cos.kr � !t 0/

�
O™

C
!�0

16�2
d2! sin2 �

�
1

r5
sin.kr � !t 0/ cos.kr � !t 0/

C
k

r4

�
sin2.kr � !t 0/ � cos2.kr � !t 0/

�
� 2

k2

r3
sin.kr � !t 0/ cos.kr � !t 0/

C
k3

r2
cos2.kr � !t 0/

�
Or (6.47)

Using well-known trigonometric relations, this can be put in the form

gem
D �

!�0

16�2
d2! sin � cos �

�
1

r5
sinŒ2.kr � !t 0/� � 2

k

r4
cosŒ2.kr � !t 0/�

�
k2

r3
sinŒ2.kr � !t 0/�

�
O™

C
!�0

32�2
d2! sin2 �

�
1

r5
sinŒ2.kr � !t 0/� � 2

k

r4
cosŒ2.kr � !t 0/�

� 2
k2

r3
sinŒ2.kr � !t 0/�C

k3

r2

�
1C cosŒ2.kr � !t 0/�

��
Or (6.48)

which shows that the linear momentum density, and hence the Poynting vector, is strictly
radial only at infinity.

Applying formula (4.72) on page 63 for the electromagnetic angular momentum density
with the momentum point chosen as x0 D 0, i.e.,

hem
D x � gem (6.49)

and using equation (6.48) above, we find that for a pure electric dipole

hem
D�

!�0

8�2
d2! sin � cos �

�
1

r4
sin.kr � !t 0/ cos.kr � !t 0/

C
k

r3

�
sin2.kr � !t 0/ � cos2.kr � !t 0/

�
�
k2

r2
sin.kr � !t 0/ cos.kr � !t 0/

�
O®

(6.50)

or

hem
D�

!�0

16�2
d2! sin � cos �

�
1

r4
sinŒ2.kr � !t 0/�

� 2
k

r3
cosŒ2.kr � !t 0/� �

k2

r2
sinŒ2.kr � !t 0/�

�
O® (6.51)

The total electromagnetic linear momentum is (cf. formula (4.57b) on page 60)

pem
D

Z
V 0

d3x0 gem.t 0;x0/ (6.52)

and the total electromagnetic angular momentum is (cf. formula (4.78b) on page 64)

J em
D

Z
V 0

d3x0 hem.t 0;x0/ (6.53)
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In order to get a total net J em, it is convenient to superimpose several individual dipoles of
(possibly) different strengths and relative phases. Perhaps the most common configuration
yielding a total net J em is two orthogonal co-located dipoles with �=2 phase shift between
them.

We note that in the far zone the linear and angular momentum densities tend to

gem,far.t;x/ �
!�0

16�2
d2!
k3

r2
sin2 � cos2.kr � !t 0/Or

D
!�0

32�2
d2!
k3

r2
sin2 �

�
1C cosŒ2.kr � !t 0/�

�
Or (6.54)

and

hem,far.t;x/ �
!�0

8�2
d2!
k2

r2
sin � cos � sin.kr � !t 0/ cos.kr � !t 0/ O®

D
!�0

16�2
d2!
k2

r2
sin � cos � sinŒ2.kr � !t 0/� O®

(6.55)

respectively. I.e., to leading order, both the linear momentum density gem and the angular
momentum density hem fall off as � 1=r2 far away from the source region. This means
that when they are integrated over a spherical surface / r2 located at a large distance from
the source [cf. the last term in the LHS of formula (4.40) on page 58], there is a net flux so
that the integrated momenta do not fall off with distance and can therefore be transported
all the way to infinity.

End of example 6.1C

6.3.4 Magnetic dipole radiation

The next term in the expression (6.39b) on page 91 for the expansion of the
Fourier transform of the Hertz vector is for n D 1:

…e
!
.1/
D �i

eikjx�x0j

4�"0 jx � x0j

Z
V 0

d3x0 k
ˇ̌
x0 � x0

ˇ̌
�!.x

0/ cos‚

D �ik
1

4�"0

eikjx�x0j

jx � x0j
2

Z
V 0

d3x0 Œ.x � x0/ � .x
0
� x0/��!.x

0/

(6.56)

Here, the term Œ.x � x0/ � .x
0 � x0/��!.x

0/ can be rewritten

Œ.x � x0/ � .x
0
� x0/��!.x

0/ D .xi � x0;i /.x
0
i � x0;i /�!.x

0/ (6.57)

and introducing

�i D xi � x0;i (6.58a)

�0i D x
0
i � x0;i (6.58b)
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the j th component of the integrand in…e
!
.1/ can be broken up into

fŒ.x � x0/ � .x
0
� x0/��!.x

0/gj D
1

2
�i
�
�!;j�

0
i C �!;i�

0
j

�
C
1

2
�i
�
�!;j�

0
i � �!;i�

0
j

� (6.59)

i.e., as the sum of two parts, the first being symmetric and the second antisym-
metric in the indices i; j . We note that the antisymmetric part can be written
as

1

2
�i
�
�!;j�

0
i � �!;i�

0
j

�
D
1

2
Œ�!;j .�i�

0
i / � �

0
j .�i�!;i /�

D
1

2
Œ�!.� � �

0/ � �0.� � �!/�j

D
1

2

˚
.x � x0/ � Œ�! � .x

0
� x0/�

	
j

(6.60)

The utilisation of equations (6.23) on page 88, and the fact that we are con-
sidering a single Fourier component,

�.t;x/ D �!e�i!t (6.61)

allow us to express �! in j! as

�! D i
j!

!
(6.62)

Hence, we can write the antisymmetric part of the integral in formula (6.56) on
the previous page as

1

2
.x � x0/ �

Z
V 0

d3x0 �!.x0/ � .x0 � x0/

D i
1

2!
.x � x0/ �

Z
V 0

d3x0 j!.x0/ � .x0 � x0/

D �i
1

!
.x � x0/ �m!

(6.63)

where we introduced the Fourier transform of the magnetic dipole moment

m! D
1

2

Z
V 0

d3x0 .x0 � x0/ � j!.x
0/ (6.64)

The final result is that the antisymmetric, magnetic dipole, part of…e
!
.1/ can

be written

…e, antisym
!

.1/
D �

k

4�"0!

eikjx�x0j

jx � x0j
2
.x � x0/ �m! (6.65)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 119 of 262.

DRAFT

6.4. Radiation from an extended source volume at rest j 97

In analogy with the electric dipole case, we insert this expression into equation
(6.33) on page 90 to evaluate C, with which equations (6.34) on page 90 then
gives the B and E fields. Discarding, as before, all terms belonging to the near
fields and transition fields and keeping only the terms that dominate at large
distances, we obtain

Bfar
! .x/ D �

�0

4�

eikjx�x0j

jx � x0j
.m! � k/ � k (6.66a)

Efar
! .x/ D

k

4�"0c

eikjx�x0j

jx � x0j
m! � k (6.66b)

which are the fields of the magnetic dipole radiation (M1 radiation).

6.3.5 Electric quadrupole radiation

The symmetric part …e, sym
!

.1/ of the n D 1 contribution in the equation (6.39b)
on page 91 for the expansion of the Hertz vector can be expressed in terms of the
electric quadrupole tensor , which is defined in accordance with equation (6.16c)
on page 86:

Q.t;x0/ D
Z
V 0

d3x0 .x0 � x0/.x
0
� x0/�.t

0
ret;x

0/ (6.67)

Again we use this expression in equation (6.33) on page 90 to calculate the fields
via equations (6.34) on page 90. Tedious, but fairly straightforward algebra
(which we will not present here), yields the resulting fields. The components of
the fields that dominate in the far field zone (wave zone) are given by

Bfar
! .x/ D

i�0!
8�

eikjx�x0j

jx � x0j
.k � Q!/ � k (6.68a)

Efar
! .x/ D

i
8�"0

eikjx�x0j

jx � x0j
Œ.k � Q!/ � k� � k (6.68b)

This type of radiation is called electric quadrupole radiation or E2 radiation .

6.4 Radiation from an extended source volume at rest

Certain radiating systems have a symmetric geometry or are in any other way
simple enough that a direct (semi-)analytic calculation of the radiated fields and
energy is possible. This is for instance the case when the radiating current flows
in a finite, conducting medium of simple geometry at rest such as in a stationary
antenna .
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6.4.1 Radiation from a one-dimensional current distribu-
tion

Let us apply equation (6.5) on page 83 to calculate the radiated EM power from
a one-dimensional, time-varying current. Such a current can be set up by feeding
the EMF of a generator (e.g., a transmitter) onto a stationary, linear, straight, thin,
conducting wire across a very short gap at its centre. Due to the applied EMF, the
charges in this thin wire of finite length L are set into linear motion to produce
a time-varying antenna current which is the source of the EM radiation. Linear
antennas of this type are called dipole antennas . For simplicity, we assume that
the conductor resistance and the energy loss due to the electromagnetic radiation
are negligible.

Choosing our coordinate system such that the x3 axis is along the antenna
axis, the antenna current density can be represented, in complex notation, by
j.t 0;x0/ D ı.x01/ı.x

0
2/J.t

0; x03/ Ox3 (measured in Am�2) where J.t 0; x03/ is the
current (measured in A) along the antenna wire. Since we can assume that the
antenna wire is infinitely thin, the antenna current must vanish at the endpoints
�L=2 andL=2. At the midpoint, where the antenna is fed across a very short gap
in the conducting wire, the antenna current is, of course, equal to the supplied
current.

For each Fourier frequency component !0, the antenna current J.t 0; x03/ can
be written as I.x03/ exp.�i!0t 0/ so that the antenna current density can be repres-
ented as j.t 0;x0/ D j0.x

0/ exp.�i!0t 0/ [cf. equations (5.6) on page 72] where

j0.x
0/ D ı.x01/ı.x

0
2/I.x

0
3/ Ox3 (6.69)

and where the spatially varying Fourier amplitude I.x03/ of the antenna current
fulfils the time-independent wave equation (Helmholtz equation)

d2I
dx023

C k2I.x03/ D 0 ; I.�L=2/ D I.L=2/ D 0 ; I.0/ D I0 (6.70)

This second-order ordinary differential equation with constant coefficients has
the well-known solution

I.x03/ D I0
sinŒk.L=2 �

ˇ̌
x03
ˇ̌
/�

sin.kL=2/
(6.71)

where I0 is the amplitude of the antenna current (measured in A), assumed to be
constant and supplied by the generator/transmitter at the antenna feed point (in
our case the midpoint of the antenna wire) and 1= sin.kL=2/ is a normalisation
factor. The antenna current forms a standing wave as indicated in figure 6.3 on
the facing page.

When the antenna is short we can approximate the current distribution for-
mula (6.71) above by the first term in its Taylor expansion, i.e., by I0.1 �
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j.t 0;x0/
�
L
2

sinŒk.L=2 �
ˇ̌
x03
ˇ̌
/�

L
2

Figure 6.3: A linear antenna used
for transmission. The current in
the feeder and the antenna wire is
set up by the EMF of the generator
(the transmitter). At the ends of the
wire, the current is reflected back
with a 180ı phase shift to produce
a antenna current in the form of a
standing wave.

2jx03j=L/. For a half-wave antenna (L D �=2 , kL D �) formula (6.71)
on the facing page simplifies to I0 cos.kx03/. Hence, in the most general case of
a straight, infinitely thin antenna of finite, arbitrary length L directed along the
x03 axis, the Fourier amplitude of the antenna current density is

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/

sinŒk.L=2 �
ˇ̌
x03
ˇ̌
/�

sin.kL=2/
Ox3 (6.72)

For a half-wave dipole antenna (L D �=2), the antenna current density is simply

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/ cos.kx03/ (6.73)

while for a short antenna (L� �) it can be approximated by

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/.1 � 2

ˇ̌
x03
ˇ̌
=L/ (6.74)

In the case of a travelling wave antenna, in which one end of the antenna is
connected to ground via a resistance so that the current at this end does not
vanish, the Fourier amplitude of the antenna current density is

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/ exp.kx03/ (6.75)

In order to evaluate formula (6.5) on page 83 with the explicit monochro-
matic current (6.72) inserted, we use a spherical polar coordinate system as in
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Figure 6.4: We choose a spher-
ical polar coordinate system .r D
jxj ; �; ') and arrange it so that the
linear electric dipole antenna axis
(and thus the antenna current dens-
ity j! ) is along the polar axis with
the feed point at the origin.

x3 D z

x2

x

j!.x
0/

'

Ok

x1

�

Or

O™

O®

L
2

�
L
2

figure 6.4 to evaluate the source integral

I D
ˇ̌̌̌Z
V 0

d3x0 j0 � k e�ik�.x0�x0/

ˇ̌̌̌2
D

ˇ̌̌̌
ˇ
Z L

2

�L2

dx03I0
sinŒk.L=2 �

ˇ̌
x03
ˇ̌
/�

sin.kL=2/
k sin �e�ikx0

3
cos �eikx0 cos �0

ˇ̌̌̌
ˇ
2

D I 20
k2 sin2 �

sin2.kL
2
/

ˇ̌̌
eikx0 cos �0

ˇ̌̌2 ˇ̌̌̌ˇ2
Z L

2

0

dx03 sin.kL=2 � kx03/ cos.kx03 cos �/

ˇ̌̌̌
ˇ
2

D 4I 20

�
cosŒ.kL=2/ cos �� � cos.kL=2/

sin � sin.kL=2/

�2
(6.76)

Inserting this expression and d� D 2� sin � d� into formula (6.5) on page 83
and integrating over � , we find that the total radiated power from the antenna is

P.L/ D R0I
2
0

1

4�

Z �

0

d�
�

cosŒ.kL=2/ cos �� � cos.kL=2/
sin � sin.kL=2/

�2
sin � (6.77)

One can show that

lim
kL!0

P.L/ D
�

12

�
L

�

�2
R0I

2
0 (6.78)
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where � is the vacuum wavelength.
The quantity

Rrad.L/ D
P.L/

I 2eff
D
P.L/
1
2
I 20
D R0

�

6

�
L

�

�2
� 197

�
L

�

�2
� (6.79)

is called the radiation resistance . For the technologically important case of a
half-wave antenna, i.e., for L D �=2 or kL D � , formula (6.77) on the facing
page reduces to

P.�=2/ D R0I
2
0

1

4�

Z �

0

d�
cos2

�
�
2

cos �
�

sin �
(6.80)

The integral in (6.80) can always be evaluated numerically. But, it can in fact
also be evaluated analytically as follows:Z �

0

cos2
�
�
2

cos �
�

sin �
d� D Œcos � ! u� D

Z 1

�1

cos2
�
�
2
u
�

1 � u2
du D�

cos2
��
2
u
�
D
1C cos.�u/

2

�
D
1

2

Z 1

�1

1C cos.�u/
.1C u/.1 � u/

du

D
1

4

Z 1

�1

1C cos.�u/
.1C u/

duC
1

4

Z 1

�1

1C cos.�u/
.1 � u/

du

D
1

2

Z 1

�1

1C cos.�u/
.1C u/

du D
h
1C u!

v

�

i
D
1

2

Z 2�

0

1 � cos v
v

dv D
1

2
Œ
 C ln 2� � Ci.2�/�

� 1:22

(6.81)

where in the last step the Euler-Mascheroni constant 
 D 0:5772 : : : and the co-
sine integral Ci.x/ were introduced. Inserting this into the expression equation
(6.80) above we obtain the value Rrad.�=2/ � 73 �.

BRadiation from a two-dimensional current distribution EXAMPLE 6 .2

As an example of a two-dimensional current distribution we consider a circular loop an-
tenna of radius a and calculate the far-zone Efar and Bfar fields from such an antenna. We
choose the Cartesian coordinate system x1x2x3 with its origin at the centre of the loop as
in figure 6.5 on the following page.

According to equation (5.28a) on page 79 the Fourier component of the radiation part of the
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Figure 6.5: For the loop an-
tenna the spherical coordinate sys-
tem .r; �; '/ describes the field
point x (the radiation field) and
the cylindrical coordinate system
.�0; '0; z0/ describes the source
point x0 (the antenna current).

x2

Ok

'

O®0

j!.x
0/

x1

x0

O¡0

'0

�

O™

O®
x

Or

x3 D z D z
0

Oz0

magnetic field generated by an extended, monochromatic current source is

Bfar
! D

�i�0eikjxj

4� jxj

Z
V 0

d3x0 e�ik�x0 j! � k (6.82)

In our case the generator produces a single frequency ! and we feed the antenna across a
small gap where the loop crosses the positive x1 axis. The circumference of the loop is
chosen to be exactly one wavelength � D 2�c=!. This means that the antenna current
oscillates in the form of a sinusoidal standing current wave around the circular loop with a
Fourier amplitude

j! D I0 cos'0ı.�0 � a/ı.z0/ O®0 (6.83)

For the spherical coordinate system of the field point, we recall from subsection F.4.1 on
page 198 that the following relations between the base vectors hold:

Or D sin � cos' Ox1 C sin � sin' Ox2 C cos � Ox3
O™ D cos � cos' Ox1 C cos � sin' Ox2 � sin � Ox3
O® D � sin' Ox1 C cos' Ox2

and

Ox1 D sin � cos' Or C cos � cos' O™ � sin' O®

Ox2 D sin � sin' Or C cos � sin' O™C cos' O®

Ox3 D cos � Or � sin � O™

With the use of the above transformations and trigonometric identities, we obtain for the
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cylindrical coordinate system which describes the source:

O¡0 D cos'0 Ox1 C sin'0 Ox2

D sin � cos.'0 � '/Or C cos � cos.'0 � '/ O™C sin.'0 � '/ O®
(6.84)

O®0 D � sin'0 Ox1 C cos'0 Ox2

D � sin � sin.'0 � '/Or � cos � sin.'0 � '/ O™C cos.'0 � '/ O®
(6.85)

Oz0 D Ox3 D cos � Or � sin � O™ (6.86)

This choice of coordinate systems means that k D k Or and x0 D a O¡0 so that

k � x0 D ka sin � cos.'0 � '/ (6.87)

and

O®0 � k D kŒcos.'0 � '/ O™C cos � sin.'0 � '/ O®� (6.88)

With these expressions inserted, recalling that in cylindrical coordinates d3x0 D
�0d�0d'0dz0, the source integral becomesZ

V 0
d3x0 e�ik�x0 j! � k D a

Z 2�

0
d'0 e�ika sin � cos.'0�'/I0 cos'0 O®0 � k

D I0ak

Z 2�

0
e�ika sin � cos.'0�'/ cos.'0 � '/ cos'0 d'0 O™

C I0ak cos �
Z 2�

0
e�ika sin � cos.'0�'/ sin.'0 � '/ cos'0 d'0 O®

(6.89)

Utilising the periodicity of the integrands over the integration interval Œ0; 2��, introducing
the auxiliary integration variable '00 D '0 � ', and utilising standard trigonometric identit-
ies, the first integral in the RHS of (6.89) can be rewrittenZ 2�

0
e�ika sin � cos'00 cos'00 cos.'00 C '/ d'00

D cos'
Z 2�

0
e�ika sin � cos'00 cos2 '00 d'00 C a vanishing integral

D cos'
Z 2�

0
e�ika sin � cos'00

�
1

2
C
1

2
cos 2'00

�
d'00

D
1

2
cos'

Z 2�

0
e�ika sin � cos'00 d'00

C
1

2
cos'

Z 2�

0
e�ika sin � cos'00 cos.2'00/ d'00

(6.90)

Analogously, the second integral in the RHS of (6.89) can be rewrittenZ 2�

0
e�ika sin � cos'00 sin'00 cos.'00 C '/ d'00

D
1

2
sin'

Z 2�

0
e�ika sin � cos'00 d'00

�
1

2
sin'

Z 2�

0
e�ika sin � cos'00 cos 2'00 d'00

(6.91)
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As is well-known from the theory of Bessel functions ,

Jn.��/ D .�1/
nJn.�/

Jn.��/ D
i�n

�

Z �

0
e�i� cos' cosn' d' D

i�n

2�

Z 2�

0
e�i� cos' cosn' d'

(6.92)

which means that

Z 2�

0
e�ika sin � cos'00 d'00 D 2�J0.ka sin �/Z 2�

0
e�ika sin � cos'00 cos 2'00 d'00 D �2�J2.ka sin �/

(6.93)

Putting everything together, we find that

Z
V 0

d3x0 e�ik�x0 j! � k D I� O™C I' O®

D I0ak� cos' ŒJ0.ka sin �/ � J2.ka sin �/� O™

C I0ak� cos � sin' ŒJ0.ka sin �/C J2.ka sin �/� O®

(6.94)

so that, in spherical coordinates where jxj D r ,

Bfar
! .x/ D

�i�0eikr

4�r

�
I� O™C I' O®

�
(6.95)

To obtain the desired physical magnetic field in the radiation (far) zone we must Fourier
transform back to t space and take the real part:

Bfar.t;x/ D Re

(
�i�0e.ikr�!t

0/

4�r

�
I� O™C I' O®

�)
D

�0

4�r
sin.kr � !t 0/

�
I� O™C I' O®

�
D
I0ak�0

4r
sin.kr � !t 0/

�
cos' ŒJ0.ka sin �/ � J2.ka sin �/� O™

C cos � sin' ŒJ0.ka sin �/C J2.ka sin �/� O®
�

(6.96)

From this expression for the radiated B field, we can obtain the radiated E field with the
help of Maxwell’s equations.

End of example 6.2C
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6.5 Radiation from a localised charge in arbitrary mo-
tion

The derivation of the radiation fields for the case of the source moving relative
to the observer is considerably more complicated than the stationary cases that
we have studied so far. In order to handle this non-stationary situation, we start
from the retarded potentials (3.47) on page 40 in chapter 3

�.t;x/ D
1

4�"0

Z
V 0

d3x0
�
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
(6.97a)

A.t;x/ D
�0

4�

Z
V 0

d3x0
j
�
t 0ret;x.t

0
ret/
�

jx.t/ � x0.t 0ret/j
(6.97b)

and consider a source region with such a limited spatial extent that the charges
and currents are well localised. Specifically, we consider a charge q0, for in-
stance an electron, which, classically, can be thought of as a localised, unstruc-
tured and rigid ‘charge distribution’ with a small, finite radius. The part of this
‘charge distribution’ dq0 which we are considering is located in dV 0 D d3x0 in
the sphere in figure 6.6 on the following page. Since we assume that the electron
(or any other similar electric charge) moves with a velocity v 0 whose direction is
arbitrary and whose magnitude can even be comparable to the speed of light, we
cannot say that the charge and current to be used in (6.97) is

R
V 0

d3x0 �.t 0ret;x
0/

and
R
V 0

d3x0 v�.t 0ret;x
0/, respectively, because in the finite time interval during

which the observed signal is generated, part of the charge distribution will ‘leak’
out of the volume element d3x0.

6.5.1 The Liénard-Wiechert potentials

The charge distribution in figure 6.6 on page 106 which contributes to the field
at x.t/ is located at x0.t 0/ on a sphere with radius r D jx � x0j D c.t � t 0/. The
radius interval of this sphere from which radiation is received at the field point
x during the time interval .t 0; t 0 C dt 0/ is .r 0; r 0 C dr 0/ and the net amount of
charge in this radial interval is

dq0 D �.t 0ret;x
0/ dS 0 dr 0 � �.t 0ret;x

0/
.x � x0/ � v 0.t 0/

jx � x0j
dS 0 dt 0 (6.98)

where the last term represents the amount of ‘source leakage’ due to the fact that
the charge distribution moves with velocity v 0.t 0/ D dx0=dt 0. Since dt 0 D dr 0=c
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Figure 6.6: Signals that are ob-
served at time t at the field point x
were generated at time t 0 at source
points x0 on a sphere, centred
on x and expanding, as time in-
creases, with velocity c D �c.x�
x0/= jx� x0j outward from the
centre. The source charge element
moves with an arbitrary velocity v 0

and gives rise to a source ‘leakage’
out of the volume dV 0 D d3x0.

dq0

x.t/

x0.t 0/

dV 0

dr 0

c

dS0x � x0
v 0.t 0/

and dS 0 dr 0 D d3x0 we can rewrite the expression for the net charge as

dq0 D �.t 0ret;x
0/ d3x0 � �.t 0ret;x

0/
.x � x0/ � v 0

c jx � x0j
d3x0

D �.t 0ret;x
0/

�
1 �

.x � x0/ � v 0

c jx � x0j

�
d3x0

(6.99)

or

�.t 0ret;x
0/ d3x0 D

dq0

1 � .x�x0/�v 0

cjx�x0j

(6.100)

which leads to the expression

�.t 0ret;x
0/

jx � x0j
d3x0 D

dq0

jx � x0j � .x�x0/�v 0

c

(6.101)

This is the expression to be used in the formulæ (6.97) on the previous page for
the retarded potentials. The result is (recall that j D �v )

�.t;x/ D
1

4�"0

Z
dq0

jx � x0j � .x�x0/�v 0

c

(6.102a)

A.t;x/ D
�0

4�

Z
v 0 dq0

jx � x0j � .x�x0/�v 0

c

(6.102b)
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For a sufficiently small and well localised charge distribution we can, assuming
that the integrands do not change sign in the integration volume, use the mean
value theorem to evaluate these expressions to become

�.t;x/ D
1

4�"0

1

jx � x0j � .x�x0/�v 0

c

Z
dq0 D

q0

4�"0

1

s
(6.103a)

A.t;x/ D
1

4�"0c2
v 0

jx � x0j � .x�x0/�v 0

c

Z
dq0 D

q0

4�"0c2
v 0

s

D
v 0

c2
�

(6.103b)

where

s D s.t 0;x/ D
ˇ̌
x � x0.t 0/

ˇ̌
�
Œx � x0.t 0/� � v 0.t 0/

c
(6.104a)

D
ˇ̌
x � x0.t 0/

ˇ̌ �
1 �

x � x0.t 0/

jx � x0.t 0/j
�

v 0.t 0/

c

�
(6.104b)

D Œx � x0.t 0/� �

�
x � x0.t 0/

jx � x0.t 0/j
�

v 0.t 0/

c

�
(6.104c)

is the retarded relative distance . The potentials (6.103) are the Liénard-Wiechert
potentials .2 In section 7.3.2 on page 145 we shall derive them in a more elegant

2 These results were derived
independently by ALFRED-
MARIE L IÉNARD (1869–1958)
in 1898 and EMIL JOHANN
W IECHERT (1861–1928) in
1900. When v 0 k .x � x0/ and
v ! c, the potentials become
singular. This was first pointed
out by ARNOLD JOHANNES
W ILHELM SOMMERFELD
(1868–1951) in 1904.

and general way by using a relativistically covariant formalism.
It should be noted that in the complicated derivation presented above, the

observer is in a coordinate system which has an ‘absolute’ meaning and the
velocity v 0 is that of the localised charge q0, whereas, as we shall see later in the
covariant derivation, two reference frames of equal standing are moving relative
to each other with v 0.

The Liénard-Wiechert potentials are applicable to all problems where a spa-
tially localised charge in arbitrary motion emits electromagnetic radiation, and
we shall now study such emission problems. The electric and magnetic fields
are calculated from the potentials in the usual way:

B.t;x/ D r �A.t;x/ (6.105a)

E.t;x/ D �r�.t;x/ �
@A.t;x/

@t
(6.105b)

6.5.2 Radiation from an accelerated point charge

Consider a localised charge q0 and assume that its trajectory is known experi-
mentally as a function of retarded time

x0 D x0.t 0/ (6.106)
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Figure 6.7: Signals that are ob-
served at time t at the field point
x were generated at time t 0 at the
source point x0.t 0/. After this time
t 0 the particle, which moves with
nonuniform velocity, has followed
a so far (i.e., at t ) unknown traject-
ory. Extrapolating tangentially the
trajectory from x0.t 0/, based on the
velocity v 0.t 0/, defines the virtual
simultaneous coordinate x0.t/.

v 0.t 0/q0

x0.t 0/

x.t/

x � x0

jx�x0j
c

v 0 x0.t/

x � x0

� 0
�0

?

(in the interest of simplifying our notation, we drop the subscript ‘ret’ on t 0 from
now on). This means that we know the trajectory of the charge q0, i.e., x0, for all
times up to the time t 0 at which a signal was emitted in order to precisely arrive
at the field point x at time t . Because of the finite speed of propagation of the
fields, the trajectory at times later than t 0 cannot be known at time t .

The retarded velocity and acceleration at time t 0 are given by

v 0.t 0/ D
dx0

dt 0
(6.107a)

a0.t 0/ D Pv 0.t 0/ D
dv 0

dt 0
D

d2x0

dt 02
(6.107b)

As for the charge coordinate x0 itself, we have in general no knowledge of the
velocity and acceleration at times later than t 0, and definitely not at the time of
observation t ! If we choose the field point x as fixed, the application of (6.107)
to the relative vector x � x0 yields

d
dt 0
Œx � x0.t 0/� D �v 0.t 0/ (6.108a)

d2

dt 02
Œx � x0.t 0/� D �Pv 0.t 0/ (6.108b)

The retarded time t 0 can, at least in principle, be calculated from the implicit
relation

t 0 D t 0.t;x/ D t �
jx � x0.t 0/j

c
(6.109)

and we shall see later how this relation can be taken into account in the calcula-
tions.
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According to formulæ (6.105) on page 107, the electric and magnetic fields
are determined via differentiation of the retarded potentials at the observation
time t and at the observation point x. In these formulæ the unprimed r , i.e.,
the spatial derivative differentiation operator r D Oxi@=@xi means that we dif-
ferentiate with respect to the coordinates x D .x1; x2; x3/ while keeping t fixed,
and the unprimed time derivative operator @=@t means that we differentiate with
respect to t while keeping x fixed. But the Liénard-Wiechert potentials � and A,
equations (6.103) on page 107, are expressed in the charge velocity v 0.t 0/ given
by equation (6.107a) on page 108 and the retarded relative distance s.t 0;x/ given
by equation (6.104) on page 107. This means that the expressions for the poten-
tials � and A contain terms that are expressed explicitly in t 0, which in turn is
expressed implicitly in t via equation (6.109) on the facing page. Despite this
complication it is possible, as we shall see below, to determine the electric and
magnetic fields and associated quantities at the time of observation t . To this end,
we need to investigate carefully the action of differentiation on the potentials.

6.5.2.1 The differential operator method

We introduce the convention that a differential operator embraced by parentheses
with an index x or t means that the operator in question is applied at constant x

and t , respectively. With this convention, we find that�
@

@t 0

�
x

ˇ̌
x � x0.t 0/

ˇ̌p
Dp

x � x0

jx � x0j2�p
�

�
@

@t 0

�
x

�
x � x0.t 0/

�
D� p

.x � x0/ � v 0.t 0/

jx � x0j2�p

(6.110)

Furthermore, by applying the operator .@=@t/x to equation (6.109) on the pre-
ceding page we find that�

@t 0

@t

�
x

D 1 �

�
@

@t

�
x

jx � x0.t 0.t;x//j

c

D 1 �

��
@

@t 0

�
x

jx � x0j

c

��
@t 0

@t

�
x

D 1C
.x � x0/ � v 0.t 0/

c jx � x0j

�
@t 0

@t

�
x

(6.111)

This is an algebraic equation in .@t 0=@t/x that we can solve to obtain�
@t 0

@t

�
x

D
jx � x0j

jx � x0j � .x � x0/ � v 0.t 0/=c
D
jx � x0j

s
(6.112)

where s D s.t 0;x/ is the retarded relative distance given by equation (6.104) on
page 107. Making use of equation (6.112) above, we obtain the following useful
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operator identity�
@

@t

�
x

D

�
@t 0

@t

�
x

�
@

@t 0

�
x

D
jx � x0j

s

�
@

@t 0

�
x

(6.113)

Likewise, by applying .r /t to equation (6.109) on page 108 we obtain

.r t 0/t D �

�
r
jx � x0.t 0.t;x//j

c

�
t

D �
x � x0

c jx � x0j
�
�
r .x � x0/

�
t

D �
x � x0

c jx � x0j
C
.x � x0/ � v 0.t 0/

c jx � x0j
.r t 0/t

(6.114)

This is an algebraic equation in .r t 0/t with the solution

.r t 0/t D �
x � x0

cs
(6.115)

which gives the following operator relation when .r /t is acting on an arbitrary
function of t 0 and x:

.r /t D .r t
0/t

�
@

@t 0

�
x

C .r /t 0 D �
x � x0

cs

�
@

@t 0

�
x

C .r /t 0 (6.116)

With the help of the rules (6.116) and (6.113) we are now able to replace t by t 0

in the operations that we need to perform. We find, for instance, that

r� � .r�/t D r

�
1

4�"0

q0

s

�
t

D �
q0

4�"0s2

�
x � x0

jx � x0j
�

v 0.t 0/

c
�

x � x0

cs

�
@s

@t 0

�
x

� (6.117a)

and, from equation (6.103b) on page 107 and equation (6.113),)

@A

@t
�

�
@A

@t

�
x

D

�
@

@t

�
�0

4�

q0v 0.t 0/

s

��
x

D
q0

4�"0c2s3

�ˇ̌
x � x0

ˇ̌
s Pv 0.t 0/ �

ˇ̌
x � x0

ˇ̌
v 0.t 0/

�
@s

@t 0

�
x

� (6.117b)

Utilising these relations in the calculation of the E field from the Liénard-Wiechert
potentials, equations (6.103) on page 107, we obtain

E.t;x/ D �r�.t;x/ �
@

@t
A.t;x/

D
q0

4�"0s2.t 0;x/

"
Œx � x0.t 0/� � jx � x0.t 0/j v 0.t 0/=c

jx � x0.t 0/j

�
Œx � x0.t 0/� � jx � x0.t 0/j v 0.t 0/=c

cs.t 0;x/

�
@s.t 0;x/

@t 0

�
x

�
jx � x0.t 0/j Pv 0.t 0/

c2

#
(6.118)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 133 of 262.

DRAFT

6.5. Radiation from a localised charge in arbitrary motion j 111

Starting from expression (6.104a) on page 107 for the retarded relative distance
s.t 0;x/, we see that we can evaluate .@s=@t 0/x in the following way

�
@s

@t 0

�
x

D

�
@

@t 0

� ˇ̌
x � x0

ˇ̌
�
.x � x0/ � v 0.t 0/

c

��
x

D

�
@

@t 0

ˇ̌
x � x0.t 0/

ˇ̌ �
x

�
1

c

��
@Œx � x0.t 0/�

@t 0

�
x

� v 0.t 0/C Œx � x0.t 0/� �

�
@v 0.t 0/

@t 0

�
x

�
D �

.x � x0.t 0// � v 0.t 0/

jx � x0.t 0/j
C
v02.t 0/

c
�
.x � x0.t 0// � a0.t 0/

c

(6.119)

where equation (6.110) on page 109 and equations (6.107) on page 108, respect-
ively, were used. Hence, the electric field generated by an arbitrarily moving
localised charge at x0.t 0/ is given by the expression

E.t;x/ D
q0

4�"0s3.t 0;x/

�
Œx � x0.t 0/� �

jx � x0.t 0/j v 0.t 0/

c

��
1 �

v02.t 0/

c2

�
„ ƒ‚ …

Velocity field (tends to the Coulomb field when v ! 0)

C
q0

4�"0s3.t 0;x/

(
x � x0.t 0/

c2
�

��
Œx � x0.t 0/� �

jx � x0.t 0/j v 0.t 0/

c

�
� a0.t 0/

�)
„ ƒ‚ …

Acceleration (radiation) field
(6.120)

The first part of the field, the velocity field , tends to the ordinary Coulomb field
when v0 ! 0 and does not contribute to the radiation. The second part of the
field, the acceleration field , is radiated into the far zone and is therefore also
called the radiation field .

From figure 6.7 on page 108 we see that the position the charged particle
would have had if at t 0 all external forces would have been switched off so that
the trajectory from then on would have been a straight line in the direction of
the tangent at x0.t 0/ is x0.t/, the virtual simultaneous coordinate . During the
arbitrary motion, we interpret x � x0.t/ as the coordinate of the field point x

relative to the virtual simultaneous coordinate x0.t/. Since the time it takes for
a signal to propagate (in the assumed free space) from x0.t 0/ to x is jx � x0j =c,
this relative vector is given by

x � x0.t/ D x � x0.t 0/ �
jx � x0.t 0/j v 0.t 0/

c
(6.121)
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This allows us to rewrite equation (6.120) on the preceding page in the following
way

E.t;x/ D
q0

4�"0s3

"�
x � x0.t/

��
1 �

v02.t 0/

c2

�

C
�
x � x0.t 0/

�
�

�
x � x0.t/

�
� a0.t 0/

c2

# (6.122)

The magnetic field can be computed in a similar manner:

B.t;x/ D r �A.t;x/ �
�
r �A

�
t
D
�
r �A

�
t 0
�

x � x0

cs
�

�
@A

@t 0

�
x

D �
q0

4�"0c2s2
x � x0

jx � x0j
� v 0 �

x � x0

c jx � x0j
�

�
@A

@t

�
x

(6.123)

where we made use of equation (6.103) on page 107 and formula (6.113) on
page 110. But, according to (6.117a),

x � x0

c jx � x0j
�
�
r�

�
t
D

q0

4�"0c2s2
x � x0

jx � x0j
� v 0 (6.124)

so that

B.t;x/ D
x � x0

c jx � x0j
�

�
�
�
r�

�
t
�

�
@A

@t

�
x

�
D

x � x0.t 0/

c jx � x0.t 0/j
� E.t;x/

(6.125)

The electric far field is obtained from the acceleration field in formula (6.120)
on the previous page as

Efar.t;x/ D
q0

4�"0c2s3
.x � x0/ �

��
.x � x0/ �

jx � x0j v 0

c

�
� a0

�
D

q0

4�"0c2s3
Œx � x0.t 0/� � fŒx � x0.t/� � a0.t 0/g

(6.126)

where in the last step we again used formula (6.121) on the preceding page.
Combining this formula and formula (6.125) above, the radiation part of the
magnetic field can be written

Bfar.t;x/ D
x � x0.t 0/

c jx � x0.t 0/j
� Efar.t;x/ (6.127)
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6.5.2.2 The direct method

An alternative to the differential operator transformation technique just described
is to try to express all quantities in the potentials directly in t and x. An example
of such a quantity is the retarded relative distance s.t 0;x/. According to equation
(6.104) on page 107, the square of this retarded relative distance can be written

s2.t 0;x/ D
ˇ̌
x � x0.t 0/

ˇ̌2
� 2

ˇ̌
x � x0.t 0/

ˇ̌ Œx � x0.t 0/� � v 0.t 0/

c

C

�
Œx � x0.t 0/� � v 0.t 0/

c

�2 (6.128)

If we use the following handy identity�
.x � x0/ � v 0

c

�2
C

�
.x � x0/ � v 0

c

�2
D
jx � x0j

2
v02

c2
cos2 � 0 C

jx � x0j
2
v02

c2
sin2 � 0

D
jx � x0j

2
v02

c2
.cos2 � 0 C sin2 � 0/ D

jx � x0j
2
v02

c2

(6.129)

we find that�
.x � x0/ � v 0

c

�2
D
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
(6.130)

Furthermore, from equation (6.121) on page 111, we obtain the identity

Œx � x0.t 0/� � v 0 D Œx � x0.t/� � v 0 (6.131)

which, when inserted into equation (6.130), yields the relation�
.x � x0/ � v 0

c

�2
D
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
(6.132)

Inserting the above into expression (6.128) above for s2, this expression becomes

s2 D
ˇ̌
x � x0

ˇ̌2
� 2

ˇ̌
x � x0

ˇ̌ .x � x0/ � v 0

c
C
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
D

�
.x � x0/ �

jx � x0j v 0

c

�2
�

�
.x � x0/ � v 0

c

�2
D .x � x0/

2
�

�
.x � x0/ � v 0

c

�2
� jx � x0.t/j

2
�

�
Œx � x0.t/� � v 0.t 0/

c

�2
(6.133)
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where in the penultimate step we used equation (6.121) on page 111.
What we have just demonstrated is that if the particle velocity at time t can be

calculated or projected from its value at the retarded time t 0, the retarded distance
s in the Liénard-Wiechert potentials (6.103) can be expressed in terms of the
virtual simultaneous coordinate x0.t/, viz., the point at which the particle will
have arrived at time t , i.e., when we obtain the first knowledge of its existence
at the source point x0 at the retarded time t 0, and in the field coordinate x D

x.t/, where we make our observations. We have, in other words, shown that all
quantities in the definition of s, and hence s itself, can, when the motion of the
charge is somehow known, be expressed in terms of the time t alone. I.e., in this
special case we are able to express the retarded relative distance as s D s.t;x/

and we do not have to involve the retarded time t 0 or any transformed differential
operators in our calculations.

Taking the square root of both sides of equation (6.133) on the previous page,
we obtain the following alternative final expressions for the retarded relative
distance s in terms of the charge’s virtual simultaneous coordinate x0.t/ and
velocity v 0.t 0/:

s.t 0;x/ D

s
jx � x0.t/j

2
�

�
Œx � x0.t/� � v 0.t 0/

c

�2
(6.134a)

D jx � x0.t/j

s
1 �

v02.t 0/

c2
sin2 �0.t/ (6.134b)

D

s
jx � x0.t/j

2

�
1 �

v02.t 0/

c2

�
C

�
Œx � x0.t/� � v

0.t 0/

c

�2
(6.134c)

If we know what velocity the particle will have at time t , expression (6.134) for
s will not be dependent on t 0.

Using equation (6.134c) above and standard vector analytic formulae, we
obtain

r s2 D r

"
jx � x0j

2

�
1 �

v02

c2

�
C

�
.x � x0/ � v

0

c

�2#

D 2

�
.x � x0/

�
1 �

v02

c2

�
C

v 0v 0

c2
� .x � x0/

�
D 2

�
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�� (6.135)

We shall use this result in example 6.3 on the facing page for a uniform, unac-
celerated motion of the charge.
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BThe fields from a uniformly moving charge EXAMPLE 6 .3

In the special case of uniform motion,3 the localised charge moves in a field-free, isolated 3 This problem was first solved by
OLIVER HEAVISIDE in 1888.space and we know that it will not be affected by any external forces. It will therefore move

uniformly in a straight line with the constant velocity v 0. This gives us the possibility to
extrapolate its position at the observation time, x0.t/, from its position at the retarded time,
x0.t 0/. Since the particle is not accelerated, Pv 0 � 0, the virtual simultaneous coordinate
x0 will be identical to the actual simultaneous coordinate of the particle at time t , i.e.,
x0.t/ D x0.t/. As depicted in figure 6.7 on page 108, the angle between x � x0 and v 0 is
�0 while then angle between x � x0 and v 0 is � 0.

In the case of uniform velocity v 0, i.e., a velocity that does not change with time, any
physical observable f .t;x/ has the same value at time t and position x as it has at time
t C dt and position xC v 0dt . Hence,

f .t;x/ D f .t C dt;xC v 0dt / (6.136)

Taylor expanding f .tCdt;xCv 0dt ), keeping only linear terms in the infinitesimally small
dt , we obtain

f .t C dt;xC v 0dt / D f .t;x/C
@f

@t
dt C v 0 � rf dt CO

�
.dt /2

�
(6.137)

From this we conclude that for uniform motion

@f

@t
D �v 0 � rf (6.138)

Since f is an arbitrary physical observable, the time and space derivatives must be related
in the following way when they operate on any physical observable dependent on x.t/ [cf.
equation (1.36) on page 13]:

@

@t
D �v 0 � r (6.139)

Hence, the E and B fields can be obtained from formulæ (6.105) on page 107, with the
potentials given by equations (6.103) on page 107 as follows:

E D �r� �
@A

@t
D �r� �

1

c2
@v 0�

@t
D �r� �

v 0

c2
@�

@t

D �r� C
v 0

c

�
v 0

c
� r�

�
D �

�
1 �

v 0v 0

c2
�

�
r�

D

�
v 0v 0

c2
� 13

�
� r�

(6.140a)

B D r �A D r �

�
v 0

c2
�

�
D r� �

v 0

c2
D �

v 0

c2
� r�

D
v 0

c2
�

��
v 0

c
� r�

�
v 0

c
� r�

�
D

v 0

c2
�

�
v 0v 0

c2
� 13

�
� r�

D
v 0

c2
� E

(6.140b)

Here 13 D Oxi Oxi is the unit dyad and we used the fact that v 0 � v 0 � 0. What remains is
just to express r� in quantities evaluated at t and x.

From equation (6.103a) on page 107 and equation (6.135) on the facing page we find
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that

r� D
q0

4�"0
r

�
1

s

�
D �

q0

8�"0s3
r s2

D �
q0

4�"0s3

�
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�� (6.141)

When this expression for r� is inserted into equation (6.140a) on the previous page, the
following result

E.t;x/ D

�
v 0v 0

c2
� 13

�
� r� D �

q0

8�"0s3

�
v 0v 0

c2
� 13

�
� r s2

D
q0

4�"0s3

(
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�

�
v 0

c

�
v 0

c
� .x � x0/

�
�

v 0v 0

c2
�

�
v 0

c
�

�
v 0

c
� .x � x0/

��)

D
q0

4�"0s3

"
.x � x0/C

v 0

c

�
v 0

c
� .x � x0/

�
� .x � x0/

v02

c2

�
v 0

c

�
v 0

c
� .x � x0/

�#

D
q0

4�"0s3
.x � x0/

 
1 �

v02

c2

!

(6.142)

obtains. Of course, the same result also follows from equation (6.122) on page 112 with
Pv 0 � 0 inserted.

From equation (6.142) above we conclude that E is directed along the vector from the
simultaneous coordinate x0.t/ to the field (observation) coordinate x.t/. In a similar way,
the magnetic field can be calculated and one finds that

B.t;x/ D
�0q
0

4�s3

 
1 �

v02

c2

!
v 0 � .x � x0/ D

1

c2
v 0 � E (6.143)

From these explicit formulae for the E and B fields and formula (6.134b) on page 114 for
s, we can discern the following cases:

1. v0 ! 0) E goes over into the Coulomb field ECoulomb

2. v0 ! 0) B goes over into the Biot-Savart field

3. v0 ! c ) E becomes dependent on �0

4. v0 ! c; sin �0 � 0) E! .1 � v02=c2/ECoulomb

5. v0 ! c; sin �0 � 1) E! .1 � v02=c2/�1=2ECoulomb

End of example 6.3C
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6.5.2.3 Small velocities

If the charge moves at such low speeds that v0=c � 1, formula (6.104) on
page 107 simplifies to

s D
ˇ̌
x � x0

ˇ̌
�
.x � x0/ � v 0

c
�
ˇ̌
x � x0

ˇ̌
; v0 � c (6.144)

and formula (6.121) on page 111

x � x0 D .x � x0/ �
jx � x0j v 0

c
� x � x0; v0 � c (6.145)

so that the radiation field equation (6.126) on page 112 can be approximated by

Efar.t;x/ D
q0

4�"0c2 jx � x0j3
.x � x0/ � Œ.x � x0/ � Pv 0�; v0 � c (6.146)

from which we obtain, with the use of formula (6.125) on page 112, the magnetic
field

Bfar.t;x/ D
q0

4�"0c3 jx � x0j2
Œ Pv 0 � .x � x0/�; v0 � c (6.147)

It is interesting to note the close correspondence that exists between the non-
relativistic fields (6.146) and (6.147) and the electric dipole field equations (6.45)
on page 93 if we introduce the electric dipole moment for a localised charge [cf.
formula (6.41) on page 92]

d D q0x0.t 0/ (6.148)

and at the same time make the transitions

q0 Pv 0 D Rd! �!2d! (6.149a)

x � x0 D x � x0 (6.149b)

The energy flux in the far zone is described by the Poynting vector as a
function of Efar and Bfar. We use the close correspondence with the dipole case
to find that it becomes

Sfar
D

�0q
02. Pv 0/2

16�2c jx � x0j2
sin2 �

x � x0

jx � x0j
(6.150)

where � is the angle between Pv 0 and x�x0. The total radiated power (integrated
over a closed spherical surface) becomes

P D
�0q

02. Pv 0/2

6�c
D

q0
2
Pv02

6�"0c3
(6.151)
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Figure 6.8: Polar diagram of the en-
ergy loss angular distribution factor
sin2 �=.1 � v cos �=c/5 during
bremsstrahlung for particle speeds
v0 D 0, v0 D 0:25c, and v0 D
0:5c. v D 0

v

v D 0:5c

v D 0:25c

which is the Larmor formula for radiated power from an accelerated charge.
Note that here we are treating a charge with v0 � c but otherwise totally un-
specified motion while we compare with formulæ derived for a stationary oscil-
lating dipole. The electric and magnetic fields, equation (6.146) on the previous
page and equation (6.147) on the preceding page, respectively, and the expres-
sions for the Poynting flux and power derived from them, are here instantaneous
values, dependent on the instantaneous position of the charge at x0.t 0/. The an-
gular distribution is that which is ‘frozen’ to the point from which the energy is
radiated.

6.5.3 Bremsstrahlung

An important special case of radiation is when the velocity v 0 and the accelera-
tion Pv 0 are collinear (parallel or anti-parallel) so that v 0 � Pv 0 D 0. This condition
(for an arbitrary magnitude of v 0) inserted into expression (6.126) on page 112
for the radiation field, yields

Efar.t;x/ D
q0

4�"0c2s3
.x � x0/ � Œ.x � x0/ � Pv 0�; v 0 k Pv 0 (6.152)

from which we obtain, with the use of formula (6.125) on page 112, the magnetic
field

Bfar.t;x/ D
q0 jx � x0j

4�"0c3s3
Œ Pv 0 � .x � x0/�; v 0 k Pv 0 (6.153)

The difference between this case and the previous case of v0 � c is that the
approximate expression (6.144) on the previous page for s is no longer valid;
instead we must use the correct expression (6.104) on page 107. The angular
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distribution of the energy flux (Poynting vector) far away from the source there-
fore becomes

Sfar
D

�0q
02 Pv02

16�2c jx � x0j2
sin2 ��

1 � v0

c
cos �

�6 x � x0

jx � x0j
(6.154)

It is interesting to note that the magnitudes of the electric and magnetic fields are
the same whether v 0 and Pv 0 are parallel or anti-parallel.

We must be careful when we compute the energy (S integrated over time).
The Poynting vector is related to the time t when it is measured and to a fixed
surface in space. The radiated power into a solid angle element d�, measured
relative to the particle’s retarded position, is given by the formula

dU rad.�/

dt
d� D S � .x � x0/

ˇ̌
x � x0

ˇ̌
d� D

�0q
02 Pv02

16�2c

sin2 ��
1 � v0

c
cos �

�6 d�

(6.155)

On the other hand, the radiation loss due to radiation from the charge at retarded
time t 0 :

dU rad

dt 0
d� D

dU rad

dt

�
@t

@t 0

�
x

d� (6.156)

Using formula (6.112) on page 109, we obtain

dU rad

dt 0
d� D

dU rad

dt
s

jx � x0j
d� D S � .x � x0/s d� (6.157)

Inserting equation (6.154) for S into (6.157), we obtain the explicit expres-
sion for the energy loss due to radiation evaluated at the retarded time

dU rad.�/

dt 0
d� D

�0q
02 Pv02

16�2c

sin2 ��
1 � v0

c
cos �

�5 d� (6.158)

The angular factors of this expression, for three different particle speeds, are
plotted in figure 6.8 on the preceding page.

Comparing expression (6.155) with expression (6.158) above, we see that
they differ by a factor 1� v0 cos �=c that comes from the extra factor s= jx � x0j

introduced in (6.157). Let us explain this in geometrical terms.
During the interval .t 0; t 0 C dt 0/ and within the solid angle element d� the

particle radiates an energy ŒdU rad.�/=dt 0� dt 0d�. As shown in figure 6.9 on the
following page this energy is at time t located between two spheres, one outer
with its origin at x01.t

0/ and radius c.t � t 0/, and one inner with its origin at
x02.t

0 C dt 0/ D x01.t
0/C v 0 dt 0 and radius cŒt � .t 0 C dt 0/� D c.t � t 0 � dt 0/.



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 142 of 262.

DRAFT

120 j 6. RADIATION AND RADIATING SYSTEMS

Figure 6.9: Location of radiation
between two spheres as the charge
moves with velocity v 0 from x01 to
x02 during the time interval .t 0; t 0C
dt 0/. The observation point (field
point) is at the fixed location x.

x01x02
vdt 0

ˇ̌
x � x02

ˇ̌
C c dt 0

dS

dr
x

�

d�
q0

From Figure 6.9 we see that the volume element subtending the solid angle
element

d� D
d2xˇ̌

x � x02
ˇ̌2 (6.159)

is

d3x D d2x dr D
ˇ̌
x � x02

ˇ̌2 d� dr (6.160)

Here, dr denotes the differential distance between the two spheres and can be
evaluated in the following way

dr D
ˇ̌
x � x02

ˇ̌
C c dt 0 �

ˇ̌
x � x02

ˇ̌
�

x � x02ˇ̌
x � x02

ˇ̌ � v 0„ ƒ‚ …
v0 cos �

dt 0

D

 
c �

x � x02ˇ̌
x � x02

ˇ̌ � v 0! dt 0 D
csˇ̌

x � x02
ˇ̌ dt 0

(6.161)

where formula (6.104) on page 107 was used in the last step. Hence, the volume
element under consideration is

d3x D d2x dr D
sˇ̌

x � x02
ˇ̌ d2x cdt 0 (6.162)

We see that the energy that is radiated per unit solid angle during the time interval
.t 0; t 0 C dt 0/ is located in a volume element whose size is � dependent. This
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explains the difference between expression (6.155) on page 119 and expression
(6.158) on page 119.

Let the radiated energy, integrated over �, be denoted QU rad. After tedious,
but relatively straightforward integration of formula (6.158) on page 119, one
obtains

d QU rad

dt 0
D
�0q

02 Pv02

6�c

1�
1 � v02

c2

�3 D 2

3

q0
2
Pv02

4�"0c3

�
1 �

v02

c2

��3
(6.163)

If we know v 0.t 0/, we can integrate this expression over t 0 and obtain the total
energy radiated during the acceleration or deceleration of the particle. This way
we obtain a classical picture of bremsstrahlung (braking radiation , free-free ra-
diation). Often, an atomistic treatment is required for obtaining an acceptable
result.

BBremsstrahlung for low speeds and short acceleration times EXAMPLE 6 .4

Calculate the bremsstrahlung when a charged particle, moving at a non-relativistic speed, is
accelerated or decelerated during an infinitely short time interval.

We approximate the velocity change at time t 0 D t0 by a delta function:

Pv 0.t 0/ D �v 0 ı.t 0 � t0/ (6.164)

which means that

�v 0.t0/ D

Z 1
�1

dt 0 Pv 0 (6.165)

Also, we assume v=c � 1 so that, according to formula (6.104) on page 107,

s �
ˇ̌
x � x0

ˇ̌
(6.166)

and, according to formula (6.121) on page 111,

x � x0 � x � x0 (6.167)

From the general expression (6.125) on page 112 we conclude that E ? B and that it
suffices to consider E �

ˇ̌
Efar

ˇ̌
. According to the ‘bremsstrahlung expression’ for Efar,

equation (6.152) on page 118,

E D
q0 sin � 0

4�"0c2 jx � x0j
�v0 ı.t 0 � t0/ (6.168)

In this simple case B �
ˇ̌
Bfar

ˇ̌
is given by

B D
E

c
(6.169)

Beacuse of the Dirac ı behaviour in time, Fourier transforming expression (6.168) above
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for E is trivial, yielding

E! D
q0 sin � 0

4�"0c2
1

2�

Z 1
�1

dt 0
�v 0ı.t 0 � t0/

jx � x0.t 0/j
ei!t 0

D
q0 sin � 0

8�2"0c2 jx � x0.t0/j
�v0.t0/ e

i!t0

(6.170)

We note that the magnitude of this Fourier component is independent of !. This is a con-
sequence of the infinitely short ‘impulsive step’ ı.t 0�t0/ in the time domain which produces
an infinite spectrum in the frequency domain.

The total radiation energy is given by the expression

QU rad
D

Z 1
�1

dt 0
d QU rad

dt 0
D

Z 1
�1

dt 0
I
S 0

d2x0 On0 �
�

E �
B

�0

�
D

1

�0

I
S 0

d2x0
Z 1
�1

dt 0EB D
1

�0c

I
S 0

d2x0
Z 1
�1

dt 0E2

D "0c

I
S 0

d2x0
Z 1
�1

dt 0E2

(6.171)

According to Parseval’s identity [cf. equation (6.8) on page 84] the following equality
holds:Z 1
�1

dt 0E2 D 4�
Z 1
0

d! jE! j2 (6.172)

which means that the radiated energy in the frequency interval .!; ! C d!/ is

QU rad
! d! D 4�"0c

�I
S 0

d2x0 jE! j2
�

d! (6.173)

For our infinite spectrum, equation (6.170) above, we obtain

QU rad
! d! D

q0
2
.�v0/2

16�3"0c3

I
S 0

d2x0
sin2 � 0

jx � x0j2
d!

D
q0
2
.�v0/2

16�3"0c3

Z 2�

0
d'0

Z �

0
d� 0 sin � 0 sin2 � 0 d!

D
q0
2

3�"0c

�
�v0

c

�2 d!
2�

(6.174)

We see that the energy spectrum QU rad
! is independent of frequency !. This means that if we

would integrate it over all frequencies ! 2 Œ0;1/, a divergent integral would result.

In reality, all spectra have finite widths, with an upper cutoff limit set by the quantum
condition

}!max D
1

2
m.v0 C�v0/2 �

1

2
mv02 (6.175)

which expresses that the highest possible frequency !max in the spectrum is that for which
all kinetic energy difference has gone into one single field quantum (photon) with energy
}!max. If we adopt the picture that the total energy is quantised in terms of N! photons
radiated during the process, we find that

QU rad
! d!
}!

D dN! (6.176)
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or, for an electron where q0 D � jej, where e is the elementary charge,

dN! D
e2

4�"0}c
2

3�

�
�v0

c

�2 d!
!
�

1

137

2

3�

�
�v0

c

�2 d!
!

(6.177)

where we used the value of the fine structure constant ˛ D e2=.4�"0}c/ � 1=137.

Even if the number of photons becomes infinite when ! ! 0, these photons have negligible
energies so that the total radiated energy is still finite.

End of example 6.4C

6.5.4 Cyclotron and synchrotron radiation (magnetic
bremsstrahlung)

Formula (6.125) and formula (6.126) on page 112 for the magnetic field and the
radiation part of the electric field are general, valid for any kind of motion of the
localised charge. A very important special case is circular motion, i.e., the case
v 0 ? Pv 0.

With the charged particle orbiting in the x1x2 plane as in figure 6.10 on the
next page, an orbit radius a, and an angular frequency !0, we obtain

'.t 0/ D !0t
0 (6.178a)

x0.t 0/ D aŒOx1 cos'.t 0/C Ox2 sin'.t 0/� (6.178b)

v 0.t 0/ D Px0.t 0/ D a!0Œ�Ox1 sin'.t 0/C Ox2 cos'.t 0/� (6.178c)

v0 D
ˇ̌
v 0
ˇ̌
D a!0 (6.178d)

Pv 0.t 0/ D Rx0.t 0/ D �a!20 ŒOx1 cos'.t 0/C Ox2 sin'.t 0/� (6.178e)

Pv0 D
ˇ̌
Pv 0
ˇ̌
D a!20 (6.178f)

Because of the rotational symmetry we can, without loss of generality, rotate
our coordinate system around the x3 axis so the relative vector x � x0 from the
source point to an arbitrary field point always lies in the x2x3 plane, i.e.,

x � x0 D
ˇ̌
x � x0

ˇ̌
.Ox2 sin˛ C Ox3 cos˛/ (6.179)

where ˛ is the angle between x � x0 and the normal to the plane of the particle
orbit (see Figure 6.10). From the above expressions we obtain

.x � x0/ � v 0 D
ˇ̌
x � x0

ˇ̌
v0 sin˛ cos' (6.180a)

.x � x0/ � Pv 0 D �
ˇ̌
x � x0

ˇ̌
Pv0 sin˛ sin' D

ˇ̌
x � x0

ˇ̌
Pv0 cos � (6.180b)

where in the last step we simply used the definition of a scalar product and the
fact that the angle between Pv 0 and x � x0 is � .
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Figure 6.10: Coordinate system
for the radiation from a charged
particle at x0.t 0/ in circular mo-
tion with velocity v 0.t 0/ along the
tangent and constant acceleration
Pv 0.t 0/ toward the origin. The x1x2
axes are chosen so that the relative
field point vector x � x0 makes an
angle ˛ with the x3 axis, which is
normal to the plane of the orbital
motion. The radius of the orbit is a.

v

x1

x3

x2

'.t 0/

0
˛

a
Pv

.t;x/ x � x0

x

.t 0;x0/�

q0

The energy flux is given by the Poynting vector, which, with the help of
formula (6.125) on page 112, can be written

S D
1

�0
.E � B/ D

1

c�0
jEj2

x � x0

jx � x0j
(6.181)

Inserting this into equation (6.157) on page 119, we obtain

dU rad.˛; '/

dt 0
D
jx � x0j s

c�0
jEj2 (6.182)

where the retarded distance s is given by expression (6.104) on page 107. With
the radiation part of the electric field, expression (6.126) on page 112, inserted,
and using (6.180a) and (6.180b) on the preceding page, one finds, after some
algebra, that

dU rad.˛; '/

dt 0
D
�0q

02 Pv02

16�2c

�
1 � v0

c
sin˛ cos'

�2
�

�
1 � v02

c2

�
sin2 ˛ sin2 '�

1 � v0

c
sin˛ cos'

�5
(6.183)

The angles � and ' vary in time during the rotation, so that � refers to a moving
coordinate system. But we can parametrise the solid angle d� in the angle ' and
the angle ˛ so that d� D sin˛ d˛ d'. Integration of equation (6.183) above over
this d� gives, after some cumbersome algebra, the angular integrated expression

d QU rad

dt 0
D
�0q

02 Pv02

6�c

1�
1 � v02

c2

�2 (6.184)

In equation (6.183), two limits are particularly interesting:
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1. v0=c � 1 which corresponds to cyclotron radiation .

2. v0=c . 1 which corresponds to synchrotron radiation .

6.5.4.1 Cyclotron radiation

For a non-relativistic speed v0 � c, equation (6.183) on the preceding page
reduces to

dU rad.˛; '/

dt 0
D
�0q

02 Pv02

16�2c
.1 � sin2 ˛ sin2 '/ (6.185)

But, according to equation (6.180b) on page 123

sin2 ˛ sin2 ' D cos2 � (6.186)

where � is defined in figure 6.10 on the preceding page. This means that we can
write

dU rad.�/

dt 0
D
�0q

02 Pv02

16�2c
.1 � cos2 �/ D

�0q
02 Pv02

16�2c
sin2 � (6.187)

Consequently, a fixed observer near the orbit plane (˛ � �=2) will observe
cyclotron radiation twice per revolution in the form of two equally broad pulses
of radiation with alternating polarisation.

6.5.4.2 Synchrotron radiation

When the particle is relativistic, v0 . c, the denominator in equation (6.183) on
the facing page becomes very small if sin˛ cos' � 1, which defines the forward
direction of the particle motion (˛ � �=2; ' � 0). The equation (6.183) on the
preceding page becomes

dU rad.�=2; 0/

dt 0
D
�0q

02 Pv02

16�2c

1�
1 � v0

c

�3 (6.188)

which means that an observer near the orbit plane sees a very strong pulse fol-
lowed, half an orbit period later, by a much weaker pulse.

The two cases represented by equation (6.187) and equation (6.188) above
are very important results since they can be used to determine the characteristics
of the particle motion both in particle accelerators and in astrophysical objects
where a direct measurement of particle velocities are impossible.

In the orbit plane (˛ D �=2), equation (6.183) on the facing page gives

dU rad.�=2; '/

dt 0
D
�0q

02 Pv02

16�2c

�
1 � v0

c
cos'

�2
�

�
1 � v02

c2

�
sin2 '�

1 � v0

c
cos'

�5 (6.189)
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Figure 6.11: If the observation
point x is in the plane of the particle
orbit, i.e., if ˛ D �=2, the lobe
width is given by�� .

v

x1

x3

x2

'.t 0/

0

a ��

��

Pv

.t;x/

x � x0

.t 0;x0/
q0

This vanishes for angles '0 such thati

cos'0 D
v0

c
(6.190a)

sin'0 D

s
1 �

v02

c2
(6.190b)

Hence, the angle '0 is a measure of the synchrotron radiation lobe width �� ;
see figure 6.11. For ultra-relativistic particles, defined by


 D
1s

1 �
v02

c2

� 1;

s
1 �

v02

c2
� 1; (6.191)

one can approximate

'0 � sin'0 D

s
1 �

v02

c2
D
1



(6.192)

Hence, synchrotron radiation from ultra-relativistic charges is characterized
by a radiation lobe width which is approximately

�� �
1



(6.193)

This angular interval is swept by the charge during the time interval

�t 0 D
��

!0
(6.194)
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during which the particle moves a length interval

�l 0 D v0�t 0 D v0
��

!0
(6.195)

in the direction toward the observer who therefore measures a compressed pulse
width of length

�t D �t 0 �
�l 0

c
D �t 0 �

v0�t 0

c
D

�
1 �

v0

c

�
�t 0

D

�
1 �

v0

c

�
��

!0
�

�
1 �

v0

c

�
1


!0
D

�
1 � v0

c

� �
1C v0

c

�
1C

v0

c„ƒ‚…
� 2

1


!0

�

�
1 �

v02

c2

�
„ ƒ‚ …
1=
2

1

2
!0
D

1

2
3
1

!0

(6.196)

Typically, the spectral width of a pulse of length�t is�! . 1=�t . In the ultra-
relativistic synchrotron case one can therefore expect frequency components up
to

!max �
1

�t
D 2
3!0 (6.197)

A spectral analysis of the radiation pulse will therefore exhibit a (broadened)
line spectrum of Fourier components n!0 from n D 1 up to n � 2
3.

When many charged particles, N say, contribute to the radiation, we can
have three different situations depending on the relative phases of the radiation
fields from the individual particles:

1. AllN radiating particles are spatially much closer to each other than a typical
wavelength. Then the relative phase differences of the individual electric and
magnetic fields radiated are negligible and the total radiated fields from all
individual particles will add up to become N times that from one particle.
This means that the power radiated from the N particles will be N 2 higher
than for a single charged particle. This is called coherent radiation .

2. The charged particles are perfectly evenly distributed in the orbit. In this case
the phases of the radiation fields cause a complete cancellation of the fields
themselves. No radiation escapes.

3. The charged particles are somewhat unevenly distributed in the orbit. This
happens for an open ring current, carried initially by evenly distributed charged
particles, which is subject to thermal fluctuations. From statistical mechanics



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 150 of 262.

DRAFT

128 j 6. RADIATION AND RADIATING SYSTEMS

Figure 6.12: The perpendicular
electric field of a charge q0 moving
with velocity v 0 D v0 Ox isE? Oz.

�0

vt

b

B

v D v Ox1
q0

jx � x0j

E? Ox3

we know that this happens for all open systems and that the particle densities
exhibit fluctuations of order

p
N . This means that out of the N particles,

p
N will exhibit deviation from perfect randomness—and thereby perfect

radiation field cancellation—and give rise to net radiation fields which are
proportional to

p
N . As a result, the radiated power will be proportional to

N , and we speak about incoherent radiation . Examples of this can be found
both in earthly laboratories and under cosmic conditions.

6.5.4.3 Radiation in the general case

We recall that the general expression for the radiation E field from a moving
charge concentration is given by expression (6.126) on page 112. This expres-
sion in equation (6.182) on page 124 yields the general formula

dU rad.�; '/

dt 0
D
�0q

02 jx � x0j

16�2cs5
.x � x0/ �

��
.x � x0/ �

jx � x0j v 0

c

�
� Pv 0

�2
(6.198)

Integration over the solid angle � gives the totally radiated power as

d QU rad

dt 0
D
�0q

02 Pv02

6�c

1 � v02

c2
sin2  �

1 � v02

c2

�3 (6.199)

where  is the angle between v 0 and Pv 0.
If v 0 is collinear with Pv 0, so that sin D 0, we get bremsstrahlung . For

v 0 ? Pv 0, sin D 1, which corresponds to cyclotron radiation or synchrotron
radiation .
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6.5.4.4 Virtual photons

Let us consider a charge q0 moving with constant, high velocity v 0.t 0/ along
the x1 axis. According to formula (6.142) on page 116 and figure 6.12 on the
preceding page, the perpendicular component along the x3 axis of the electric
field from this moving charge is

E? D E3 D
q0

4�"0s3

�
1 �

v02

c2

�
.x � x0/ � Ox3 (6.200)

Utilising expression (6.134) on page 114 and simple geometrical relations, we
can rewrite this as

E? D
q0

4�"0

b


2 Œ.v0t 0/2 C b2=
2�
3=2

(6.201)

This represents a contracted Coulomb field, approaching the field of a plane
wave. The passage of this field ‘pulse’ corresponds to a frequency distribution
of the field energy. Fourier transforming, we obtain

E!;? D
1

2�

Z 1
�1

dt E?.t/ ei!t
D

q0

4�2"0bv0

��
b!

v0


�
K1

�
b!

v0


��
(6.202)

Here, K1 is the Kelvin function (Bessel function of the second kind with ima-
ginary argument) which behaves in such a way for small and large arguments
that

E!;? �
q0

4�2"0bv0
; b! � v0
 ,

b

v0

! � 1 (6.203a)

E!;? � 0; b! � v0
 ,
b

v0

! � 1 (6.203b)

showing that the ‘pulse’ length is of the order b=.v0
/.
Due to the equipartitioning of the field energy into the electric and magnetic

fields, the total field energy can be written

QU D "0

Z
V

d3x E2? D "0

Z bmax

bmin

db 2�b
Z 1
�1

dt v0E2? (6.204)

where the volume integration is over the plane perpendicular to v 0. With the use
of Parseval’s identity for Fourier transforms, formula (6.8) on page 84, we can
rewrite this as

QU D

Z 1
0

d! QU! D 4�"0v0
Z bmax

bmin

db 2�b
Z 1
0

d! E2!;?

�
q02

2�2"0v0

Z 1
�1

d!
Z v0
=!

bmin

db
b

(6.205)
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Figure 6.13: Diagrammatic rep-
resentation of the semi-classical
electron-electron interaction
(Møller scattering).

�


p1

p2

p01

p02

from which we conclude that

QU! �
q02

2�2"0v0
ln
�
v0


bmin!

�
(6.206)

where an explicit value of bmin can be calculated in quantum theory only.
As in the case of bremsstrahlung, it is intriguing to quantise the energy into

photons [cf. equation (6.176) on page 122]. Then we find that

N! d! �
2˛

�
ln
�

c


bmin!

�
d!
!

(6.207)

where ˛ D e2=.4�"0}c/ � 1=137 is the fine structure constant .
Let us consider the interaction of two (classical) electrons, 1 and 2. The result

of this interaction is that they change their linear momenta from p1 to p01 and p2

to p02, respectively. Heisenberg’s uncertainty principle gives bmin � }=
ˇ̌
p1 � p01

ˇ̌
so that the number of photons exchanged in the process is of the order

N! d! �
2˛

�
ln
� c

}!

ˇ̌
p1 � p01

ˇ̌� d!
!

(6.208)

Since this change in momentum corresponds to a change in energy }! D E1 �E 01
and E1 D m0
c2, we see that

N! d! �
2˛

�
ln

 
E1

m0c2

ˇ̌
cp1 � cp

0
1

ˇ̌
E1 �E

0
1

!
d!
!

(6.209)

a formula which gives a reasonable semi-classical account of a photon-induced
electron-electron interaction process. In quantum theory, including only the low-
est order contributions, this process is known as Møller scattering . A diagram-
matic representation of (a semi-classical approximation of) this process is given
in figure 6.13.
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RELATIVISTIC

ELECTRODYNAMICS

We saw in chapter 3 how the introduction of electrodynamic potentials led, in
a most natural way, to the existence of a characteristic, finite speed of propaga-
tion of electromagnetic fields (and related quantities) in free space (vacuum) that
equals the speed of light c D 1=

p
"0�0 and which can be considered a constant

of Nature. To take this finite speed of propagation of information into account,
and to ensure that our laws of physics be independent of any specific coordin-
ate frame, requires a treatment of electrodynamics in a relativistically covariant
(coordinate independent) form. This is the objective of this chapter.1

1 The Special Theory of Relativity,
by the physicist and philosopher
DAVID JOSEPH BOHM (1917–
1992), opens with the following
paragraph:

‘The theory of relativity
is not merely a scientific
development of great
importance in its own right.
It is even more significant
as the first stage of a
radical change in our basic
concepts, which began
in physics, and which is
spreading into other fields
of science, and indeed,
even into a great deal of
thinking outside of science.
For as is well known, the
modern trend is away
from the notion of sure
‘absolute’ truth, (i.e., one
which holds independently
of all conditions, contexts,
degrees, and types of
approximation etc.) and
toward the idea that a given
concept has significance
only in relation to suitable
broader forms of reference,
within which that concept
can be given its full
meaning.’

The technique we shall use to study relativity is the mathematical apparatus
developed for non-Euclidean spaces of arbitrary dimensions, here specialised to
four dimensions. It turns out that this theory of Riemannian spaces, derived for
more or less purely mathematical reasons only, is ideal for a formal description
of relativistic physics. For the simple case of the special theory of relativity ,
the mathematics is quite simple, whereas for the general theory of relativity it
becomes more complicated.

7.1 The special theory of relativity

An inertial system , or inertial reference frame , is a system of reference, or rigid
coordinate system, in which the law of inertia (Galileo’s law, Newton’s first
law) holds. In other words, an inertial system is a system in which free bodies

133
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Figure 7.1: Two inertial systems †
and †0 in relative motion with ve-
locity v along the x D x0 axis. At
time t D t 0 D 0 the origin O 0 of
†0 coincided with the origin O of
†. At time t , the inertial system
†0 has been translated a distance vt
along the x axis in †. An event
represented by P.t; x; y; z/ in †
is represented by P.t 0; x0; y0; z0/
in†0.

P.t 0; x0; y0; z0/

vt

P.t; x; y; z/

z0

x x0

z

O O 0

† †0
y y0

v

move uniformly and do not experience any acceleration. The special theory of
relativity describes how physical processes are interrelated when observed in
different inertial systems in uniform, rectilinear motion relative to each other
and is based on two postulates:

POSTULATE 7.1 (Relativity principle; POINCARÉ, 1905) All laws of physics
(except the laws of gravitation) are independent of the uniform translational
motion of the system on which they operate.

POSTULATE 7.2 (EINSTEIN, 1905) The velocity of light in empty space is in-
dependent of the motion of the source that emits the light.

A consequence of the first postulate is that all geometrical objects (vectors,
tensors) in an equation describing a physical process must transform in a covari-
ant manner, i.e., in the same way.

7.1.1 The Lorentz transformation

Let us consider two three-dimensional inertial systems † and †0 in free space.
They are in rectilinear motion relative to each other in such a way that †0 moves
with constant velocity v along the x axis of the † system. The times and the
spatial coordinates as measured in the two systems are t and .x; y; z/, and t 0

and .x0; y0; z0/, respectively. At time t D t 0 D 0 the origins O and O 0 and
the x and x0 axes of the two inertial systems coincide and at a later time t they
have the relative location as depicted in figure 7.1, referred to as the standard
configuration .
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For convenience, let us introduce the two quantities

ˇ D
v

c
(7.1)


 D
1q
1 � ˇ2

(7.2)

where v D jv j. In the following, we shall make frequent use of these shorthand
notations.

As shown by Einstein, the two postulates of special relativity require that the
spatial coordinates and times as measured by an observer in † and †0, respect-
ively, are connected by the following transformation:

ct 0 D 
.ct � xˇ/ (7.3a)

x0 D 
.x � vt/ (7.3b)

y0 D y (7.3c)

z0 D z (7.3d)

Taking the difference between the square of (7.3a) and the square of (7.3b) we
find that

c2t 02 � x02 D 
2
�
c2t2 � 2xcˇt C x2ˇ2 � x2 C 2xvt � v2t2

�
D

1

1 �
v2

c2

�
c2t2

�
1 �

v2

c2

�
� x2

�
1 �

v2

c2

��

D c2t2 � x2

(7.4)

From equations (7.3) above we see that the y and z coordinates are unaffected
by the translational motion of the inertial system †0 along the x axis of system
†. Using this fact, we find that we can generalise the result in equation (7.4) to

c2t2 � x2 � y2 � z2 D c2t 02 � x02 � y02 � z02 (7.5)

which means that if a light wave is transmitted from the coinciding originsO and
O 0 at time t D t 0 D 0 it will arrive at an observer at .x; y; z/ at time t in† and an
observer at .x0; y0; z0/ at time t 0 in†0 in such a way that both observers conclude
that the speed (spatial distance divided by time) of light in vacuum is c. Hence,
the speed of light in † and †0 is the same. A linear coordinate transformation
which has this property is called a (homogeneous) Lorentz transformation .

7.1.2 Lorentz space

Let us introduce an ordered quadruple of real numbers, enumerated with the help
of upper indices � D 0; 1; 2; 3, where the zeroth component is ct (c is the speed
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of light and t is time), and the remaining components are the components of the
ordinary R3 position vector x defined in equation (M.1) on page 205:

x� D .x0; x1; x2; x3/ D .ct; x; y; z/ � .ct;x/ (7.6)

In order that this quadruple x� represent a physical observable , it must transform
as (the component form of) a position four-vector (radius four-vector) in a real,
linear, four-dimensional vector space .2 We require that this four-dimensional2 The British mathematician and

philosopher ALFRED NORTH
WHITEHEAD (1861–1947) writes
in his book The Concept of Nature:

‘I regret that it has been
necessary for me in this
lecture to administer
a large dose of four-
dimensional geometry. I do
not apologise, because I am
really not responsible for
the fact that Nature in its
most fundamental aspect is
four-dimensional. Things
are what they are. . . .’

space be a Riemannian space , i.e., a metric space where a ‘distance’ and a scalar
product are defined. In this space we therefore define a metric tensor , also known
as the fundamental tensor , which we denote by g�� .

7.1.2.1 Radius four-vector in contravariant and covariant form

The position four-vector x� D .x0; x1; x2; x3/ D .ct;x/, as defined in equation
(7.6), is, by definition, the prototype of a contravariant vector (or, more accur-
ately, a vector in contravariant component form). To every such vector there
exists a dual vector . The vector dual to x� is the covariant vector x�, obtained
as

x� D g��x
� (7.7)

where the upper index � in x� is summed over and is therefore a dummy index
and may be replaced by another dummy index �, say. This summation process
is an example of index contraction and is often referred to as index lowering .

7.1.2.2 Scalar product and norm

The scalar product of x� with itself in a Riemannian space is defined as

g��x
�x� D x�x

� (7.8)

This scalar product acts as an invariant ‘distance’, or norm , in this space.
In order to put the physical property of Lorentz transformation invariance,

described by equation (7.5) on the previous page, into a convenient mathematical
framework, we perceive this invariance as the manifestation of the conservation
of the norm in a 4D Riemannian space.

7.1.2.3 Metric tensor

In L4 one can choose the metric tensor g�� to take the simple form

g�� D ��� D

8̂̂<̂
:̂
1 if � D � D 0

�1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(7.9)
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or, in matrix representation,

.���/ D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA (7.10)

i.e., a matrix with a main diagonal that has the sign sequence, or signature ,
fC;�;�;�g, the index lowering operation in our flat 4D space L4 becomes
nearly trivial:

In matrix representation the lowering of the indices of x� becomes0BBB@
x0

x1

x2

x3

1CCCA D
0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA
0BBB@
x0

x1

x2

x3

1CCCA D
0BBB@
x0

�x1

�x2

�x3

1CCCA (7.11)

I four-tensor notation, this can be written

x� D ���x
�
D .ct;�x/ (7.12)

Hence, if the metric tensor is defined according to expression (7.9) on the facing
page, the covariant position four-vector x� is obtained from the contravariant
position four-vector x� simply by changing the sign of the last three compon-
ents. These components are referred to as the space components; the zeroth
component is referred to as the time component .

As we see, for this particular choice of metric, the scalar product of x� with
itself becomes

x�x
�
D .ct;x/ � .ct;�x/ D c2t2 � x2 � y2 � z2 (7.13)

which indeed is the desired Lorentz transformation invariance as required by
equation (7.13) above. Without changing the physics, one can alternatively
choose a signature f�;C;C;Cg. The latter has the advantage that the transition
from 3D to 4D becomes smooth, while it will introduce some annoying minus
signs in the theory. In current physics literature, the signature fC;�;�;�g
seems to be the most commonly used one. Note that our space, regardless of
signature chosen, will have an indefinite norm , i.e., a norm which can be pos-
itive definite, negative definite or even zero. This means that we deal with a
non-Euclidean space and we call our four-dimensional space (or space-time)
with this property Lorentz space and denote it L4. A corresponding real, lin-
ear 4D space with a positive definite norm which is conserved during ordinary
rotations is a Euclidean vector space . We denote such a space R4.

The L4 metric tensor equation (7.9) on the facing page has a number of
interesting properties: firstly, we see that this tensor has a trace Tr

�
���

�
D �2



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 160 of 262.

DRAFT

138 j 7. RELATIVISTIC ELECTRODYNAMICS

whereas in R4, as in any vector space with definite norm, the trace equals the
space dimensionality. Secondly, we find, after trivial algebra, that the following
relations between the contravariant, covariant and mixed forms of the metric
tensor hold:

��� D ��� (7.14a)

��� D ��� (7.14b)

����
��
D ��� D ı

�
� (7.14c)

������ D �
�
� D ı

�
� (7.14d)

Here we have introduced the 4D version of the Kronecker delta ı�� , a mixed
four-tensor of rank 2 that fulfils

ı�� D ı
�
� D

(
1 if � D �

0 if � ¤ �
(7.15)

Clearly, the matrix representation of this tensor is

.ı�� / D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCA (7.16)

i.e., the 4 � 4 unit matrix.

7.1.2.4 Invariant line element and proper time

The differential distance ds between the two points x� and x�C dx� in L4 can
be calculated from the Riemannian metric , given by the quadratic differential
form

ds2 D ���dx�dx� D dx�dx� D .dx0/2 � .dx1/2 � .dx2/2 � .dx3/2

(7.17)

where the metric tensor is as in equation (7.9) on page 136. As we see, this
form is indefinite as expected for a non-Euclidean space. The square root of this
expression is the invariant line element

ds D c dt

q

1 �
1

c2

24 dx
dt

1
!2
C

 
dx
dt

2
!2
C

 
dx
dt

3
!235

D c dt

r
1 �

1

c2

�
.vx/

2
C .vy/

2
C .vz/

2
�
D c dt

s
1 �

v2

c2

D c dt
q
1 � ˇ2 D c

dt


D c d�

(7.18)
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where we introduced

d� D dt=
 (7.19)

Since d� measures the time when no spatial changes are present, i.e., by a clock
that is fixed relative the given frame of reference, it is called the proper time . As
equation (7.19) shows, the proper time of a moving object is always less than
the corresponding interval in the rest system. One may say that moving clocks
go slower than those at rest.

Expressing the property of the Lorentz transformation described by equa-
tions (7.5) on page 135 in terms of the differential interval ds and comparing
with equation (7.17) on the facing page, we find that

ds2 D c2dt2 � dx2 � dy2 � dz2 (7.20)

is invariant, i.e., remains unchanged, during a Lorentz transformation. Con-
versely, we may say that every coordinate transformation which preserves this
differential interval is a Lorentz transformation.

If in some inertial system

dx2 C dy2 C dz2 < c2dt2 (7.21)

ds is a time-like interval , but if

dx2 C dy2 C dz2 > c2dt2 (7.22)

ds is a space-like interval , whereas

dx2 C dy2 C dz2 D c2dt2 (7.23)

is a light-like interval ; we may also say that in this case we are on the light cone .
A vector which has a light-like interval is called a null vector . The time-like,
space-like or light-like aspects of an interval ds are invariant under a Lorentz
transformation. I.e., it is not possible to change a time-like interval into a space-
like one or vice versa via a Lorentz transformation.

7.1.2.5 Four-vector fields

Any quantity which relative to any coordinate system has a quadruple of real
numbers and transforms in the same way as the position four-vector x� does, is
called a four-vector . In analogy with the notation for the position four-vector we
introduce the notation a� D .a0; a/ for a general contravariant four-vector field
in L4 and find that the ‘lowering of index’ rule, formula (7.7) on page 136, for
such an arbitrary four-vector yields the dual covariant four-vector field

a�.x
�/ D ���a

�.x�/ D .a0.x�/;�a.x�// (7.24)
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The scalar product between this four-vector field and another one b�.x�/ is

���a
�.x�/b�.x�/ D .a0;�a/ � .b0;b/ D a0b0 � a � b (7.25)

which is a scalar field , i.e., an invariant scalar quantity ˛.x�/ which depends on
time and space, as described by x� D .ct; x; y; z/.

7.1.2.6 The Lorentz transformation matrix

Introducing the transformation matrix

�
ƒ��

�
D

0BBB@

 �ˇ
 0 0

�ˇ
 
 0 0

0 0 1 0

0 0 0 1

1CCCA (7.26)

the linear Lorentz transformation (7.3) on page 135, i.e., the coordinate trans-
formation x� ! x0� D x0�.x0; x1; x2; x3/, from one inertial system † to
another inertial system †0 in the standard configuration, can be written

x0� D ƒ��x
� (7.27)

7.1.2.7 The Lorentz group

It is easy to show, by means of direct algebra, that two successive Lorentz trans-
formations of the type in equation (7.27) above, and defined by the speed para-
meters ˇ1 and ˇ2, respectively, correspond to a single transformation with speed
parameter

ˇ D
ˇ1 C ˇ2

1C ˇ1ˇ2
(7.28)

This means that the nonempty set of Lorentz transformations constitutes a closed
algebraic structure with a binary operation (multiplication) that is associative .
Furthermore, one can show that this set possesses at least one identity element
and at least one inverse element . In other words, this set of Lorentz transform-
ations constitutes a mathematical group . However tempting, we shall not make
any further use of group theory .

7.1.3 Minkowski space

Specifying a point x� D .x0; x1; x2; x3/ in 4D space-time is a way of saying
that ‘something takes place at a certain time t D x0=c and at a certain place
.x; y; z/ D .x1; x2; x3/’. Such a point is therefore called an event . The tra-
jectory for an event as a function of time and space is called a world line . For
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�

�

X 00

x01

x1

X0 Figure 7.2: Minkowski space can
be considered an ordinary Euc-
lidean space where a Lorentz trans-
formation from .x1;X0 D ict/
to .x01;X 00 D ict 0/ corresponds
to an ordinary rotation through an
angle � . This rotation leaves

the Euclidean distance
�
x1
�2
C�

X0
�2
D x2 � c2t2 invariant.

instance, the world line for a light ray that propagates in vacuum (free space) is
the trajectory x0 D x1.

Introducing

X0 D ix0 D ict (7.29a)

X1 D x1 (7.29b)

X2 D x2 (7.29c)

X3 D x3 (7.29d)

dS D ids (7.29e)

where i D
p
�1, we see that equation (7.17) on page 138 transforms into

dS2 D .dX0/2 C .dX1/2 C .dX2/2 C .dX3/2 (7.30)

i.e., into a 4D differential form that is positive definite just as is ordinary 3D
Euclidean space R3. We shall call the 4D Euclidean space constructed in this
way the Minkowski space M4.3 3 The fact that our Riemannian

space can be transformed in this
way into a Euclidean one means
that it is, strictly speaking, a
pseudo-Riemannian space .

As before, it suffices to consider the simplified case where the relative motion
between † and †0 is along the x axes. Then

dS2 D .dX0/2 C .dX1/2 D .dX0/2 C .dx1/2 (7.31)

and we consider the X0 and X1 D x1 axes as orthogonal axes in a Euclidean
space. As in all Euclidean spaces, every interval is invariant under a rotation of
the X0x1 plane through an angle � into X 00x01:

X 00 D �x1 sin � CX0 cos � (7.32a)

x01 D x1 cos � CX0 sin � (7.32b)

See figure 7.2.
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Figure 7.3: Minkowski diagram
depicting geometrically the trans-
formation (7.33) from the unprimed
system to the primed system. Here
w denotes the world line for an
event and the line x0 D x1 ,
x D ct the world line for a light
ray in vacuum. Note that the event
P is simultaneous with all points
on the x1 axis (t D 0), including
the origin O . The event P 0, which
is simultaneous with all points on
the x0 axis, including O 0 D O ,
to an observer at rest in the primed
system, is not simultaneous withO
in the unprimed system but occurs
there at time jP �P 0j =c.

x0 D ct

ct

x01

x00

x1 D x
O D O 0

'

P

P 0

'

x0 D x1

w†

If we introduce the angle ' D �i� , often called the rapidity or the Lorentz
boost parameter , and transform back to the original space and time variables by
using equation (7.29) on the preceding page backwards, we obtain

ct 0 D �x sinh' C ct cosh' (7.33a)

x0 D x cosh' � ct sinh' (7.33b)

which are identical to the original transformation equations (7.3) on page 135 if
we let

sinh' D 
ˇ (7.34a)

cosh' D 
 (7.34b)

tanh' D ˇ (7.34c)

It is therefore possible to envisage the Lorentz transformation as an ‘ordinary’
rotation in the 4D Euclidean space M4. Such a rotation in M4 corresponds to a
coordinate change in L4 as depicted in figure 7.3. equation (7.28) on page 140
for successive Lorentz transformation then corresponds to the tanh addition for-
mula

tanh.'1 C '2/ D
tanh'1 C tanh'2
1C tanh'1 tanh'2

(7.35)

The use of ict and M4, which leads to the interpretation of the Lorentz trans-
formation as an ‘ordinary’ rotation, may, at best, be illustrative, but is not very
physical. Besides, if we leave the flat L4 space and enter the curved space of
general relativity, the ‘ict ’ trick will turn out to be an impasse. Let us therefore
immediately return to L4 where all components are real valued.
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7.2 Covariant classical mechanics

The invariance of the differential ‘distance’ ds in L4, and the associated differ-
ential proper time d� [see equation (7.18) on page 138] allows us to define the
four-velocity

u� D
dx
d�

�

D 
.c; v/ D

0BBBB@ cs
1 �

v2

c2

;
vs
1 �

v2

c2

1CCCCA D .u0;u/ (7.36)

which, when multiplied with the scalar invariant m0 yields the four-momentum

p� D m0
dx
d�

�

D m0
.c; v/ D

0BBBB@ m0cs
1 �

v2

c2

;
m0vs
1 �

v2

c2

1CCCCA D .p0;p/ (7.37)

From this we see that we can write

p D mv (7.38)

where

m D 
m0 D
m0s
1 �

v2

c2

(7.39)

We can interpret this such that the Lorentz covariance implies that the mass-like
term in the ordinary 3D linear momentum is not invariant. A better way to look
at this is that p D mv D 
m0v is the covariantly correct expression for the
kinetic three-momentum.

Multiplying the zeroth (time) component of the four-momentum p� by the
scalar invariant c, we obtain

cp0 D 
m0c
2
D

m0c
2s

1 �
v2

c2

D mc2 (7.40)

Since this component has the dimension of energy and is the result of a Lorentzco-
variant description of the motion of a particle with its kinetic momentum de-
scribed by the spatial components of the four-momentum, equation (7.37) above,
we interpret cp0 as the total energy E. Hence,

cp� D .cp0; cp/ D .E; cp/ (7.41)
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Scalar multiplying this four-vector with itself, we obtain

cp�cp
�
D c2���p

�p� D c2Œ.p0/2 � .p1/2 � .p2/2 � .p3/2�

D .E;�cp/ � .E; cp/ D E2 � c2p2

D
.m0c

2/2

1 � v2

c2

�
1 �

v2

c2

�
D .m0c

2/2
(7.42)

Since this is an invariant, this equation holds in any inertial frame, particularly
in the frame where p D 0 and there we have

E D m0c
2 (7.43)

This is probably the most famous formula in physics history.

7.3 Covariant classical electrodynamics

Let us consider a charge density which in its rest inertial system is denoted by
�0. The four-vector (in contravariant component form)

j� D �0
dx�

d�
D �0u

�
D �0
.c; v/ D .�c; �v/ (7.44)

with

� D 
�0 (7.45)

is the four-current .
The contravariant form of the four-del operator @� D @=@x� is defined in

equation (M.93) on page 221 and its covariant counterpart @� D @=@x� in equa-
tion (M.94) on page 221, respectively. As is shown in example M.8 on page 223,
the d’Alembert operator is the scalar product of the four-del with itself:

�2 D @�@� D @�@
�
D

1

c2
@2

@t2
� r

2 (7.46)

Since it has the characteristics of a four-scalar, the d’Alembert operator is in-
variant and, hence, the homogeneous wave equation �2f .t;x/ D 0 is Lorentz
covariant.

7.3.1 The four-potential

If we introduce the four-potential

A� D

�
�

c
;A

�
(7.47)
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where � is the scalar potential and A the vector potential, defined in section 3.3
on page 35, we can write the uncoupled inhomogeneous wave equations, equa-
tions (3.29) on page 37, in the following compact (and covariant) way:

�2A� D �0j
� (7.48)

With the help of the above, we can formulate our electrodynamic equations
covariantly. For instance, the covariant form of the equation of continuity , equa-
tion (1.25) on page 10 is

@�j
�
D 0 (7.49)

and the Lorenz-Lorentz gauge condition , equation (3.28) on page 37, can be
written

@�A
�
D 0 (7.50)

The Lorenz-Lorentz gauge is sometimes called the covariant gauge . The gauge
transformations (3.58) on page 43 in covariant form are

A� 7! A0� D A� C @��.x�/ (7.51)

If only one dimension Lorentz contracts (for instance, due to relative motion
along the x direction), a 3D spatial volume element transforms according to

dV D d3x D
1



dV0 D dV0

q
1 � ˇ2 D dV0

s
1 �

v2

c2
(7.52)

where dV0 denotes the volume element as measured in the rest system, then from
equation (7.45) on the facing page we see that

�dV D �0dV0 (7.53)

i.e., the charge in a given volume is conserved. We can therefore conclude that
the elementary electric charge is a universal constant .

7.3.2 The Liénard-Wiechert potentials

Let us now solve the the inhomogeneous wave equations (3.29) on page 37 in
vacuum for the case of a well-localised charge q0 at a source point defined by
the position four-vector x0� � .x00 D ct 0; x01; x02; x03/. The field point (obser-
vation point) is denoted by the position four-vector x� D .x0 D ct; x1; x2; x3/.

In the rest system we know that the solution is simply

.A�/0 D

�
�

c
;A

�
vD0

D

�
q0

4�"0

1

c jx � x0j0
; 0

�
(7.54)
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where jx � x0j0 is the usual distance from the source point to the field point,
evaluated in the rest system (signified by the index ‘0’).

Let us introduce the relative position four-vector between the source point
and the field point:

R� D x� � x0� D .c.t � t 0/;x � x0/ (7.55)

Scalar multiplying this relative four-vector with itself, we obtain

R�R� D .c.t � t
0/;x � x0/ � .c.t � t 0/;�.x � x0// D c2.t � t 0/2 �

ˇ̌
x � x0

ˇ̌2
(7.56)

We know that in vacuum the signal (field) from the charge q0 at x0� propag-
ates to x� with the speed of light c so thatˇ̌

x � x0
ˇ̌
D c.t � t 0/ (7.57)

Inserting this into equation (7.56), we see that

R�R� D 0 (7.58)

or that equation (7.55) above can be written

R� D .
ˇ̌
x � x0

ˇ̌
;x � x0/ (7.59)

Now we want to find the correspondence to the rest system solution, equation
(7.54) on the preceding page, in an arbitrary inertial system. We note from
equation (7.36) on page 143 that in the rest system

.u�/0 D

0BBBB@ cs
1 �

v2

c2

;
vs
1 �

v2

c2

1CCCCA
vD0

D .c; 0/ (7.60)

and

.R�/0 D .
ˇ̌
x � x0

ˇ̌
;x � x0/0 D .

ˇ̌
x � x0

ˇ̌
0
; .x � x0/0/ (7.61)

As all scalar products, u�R� is invariant, which means that we can evaluate it
in any inertial system and it will have the same value in all other inertial systems.
If we evaluate it in the rest system the result is:

u�R� D
�
u�R�

�
0
D .u�/0.R�/0

D .c; 0/ � .
ˇ̌
x � x0

ˇ̌
0
;�.x � x0/0/ D c

ˇ̌
x � x0

ˇ̌
0

(7.62)
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We therefore see that the expression

A� D
q0

4�"0

u�

cu�R�
(7.63)

subject to the condition R�R� D 0 has the proper transformation properties
(proper tensor form) and reduces, in the rest system, to the solution equation
(7.54) on page 145. It is therefore the correct solution, valid in any inertial
system.

According to equation (7.36) on page 143 and equation (7.59) on the facing
page

u�R� D 
.c; v/ �
�ˇ̌

x � x0
ˇ̌
;�.x � x0/

�
D 


�
c
ˇ̌
x � x0

ˇ̌
� v � .x � x0/

�
(7.64)

Generalising expression (7.1) on page 135 to vector form:

ˇ D ˇ Ov
def
�

v

c
(7.65)

and introducing

s
def
�
ˇ̌
x � x0

ˇ̌
�

v � .x � x0/

c
�
ˇ̌
x � x0

ˇ̌
� ˇ � .x � x0/ (7.66)

we can write

u�R� D 
cs (7.67)

and

u�

cu�R�
D

�
1

cs
;

v

c2s

�
(7.68)

from which we see that the solution (7.63) can be written

A�.x�/ D
q0

4�"0

�
1

cs
;

v

c2s

�
D

�
�

c
;A

�
(7.69)

where in the last step the definition of the four-potential, equation (7.47) on
page 144, was used. Writing the solution in the ordinary 3D way, we conclude
that for a very localised charge volume, moving relative an observer with a ve-
locity v , the scalar and vector potentials are given by the expressions

�.t;x/ D
q0

4�"0

1

s
D

q0

4�"0

1

jx � x0j � ˇ � .x � x0/
(7.70a)

A.t;x/ D
q0

4�"0c2
v

s
D

q0

4�"0c2
v

jx � x0j � ˇ � .x � x0/
(7.70b)

These potentials are the Liénard-Wiechert potentials that we derived in a more
complicated and restricted way in subsection 6.5.1 on page 105.
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7.3.3 The electromagnetic field tensor

Consider a vectorial (cross) product c between two ordinary vectors a and b:

c D a � b D �ijkaibj Oxk

D .a2b3 � a3b2/Ox1 C .a3b1 � a1b3/Ox2 C .a1b2 � a2b1/Ox3

(7.71)

We notice that the kth component of the vector c can be represented as

ck D aibj � aj bi D cij D �cj i ; i; j ¤ k (7.72)

In other words, the pseudovector c D a � b can be considered as an antisym-
metric tensor of rank two. The same is true for the curl operator r� operating
on a polar vector. For instance, the Maxwell equation

r � E D �
@B

@t
(7.73)

can in this tensor notation be written
@Ej

@xi
�
@Ei

@xj
D �

@Bij

@t
(7.74)

We know from chapter 3 that the fields can be derived from the electromag-
netic potentials in the following way:

B D r �A (7.75a)

E D �r� �
@A

@t
(7.75b)

In component form, this can be written

Bij D
@Aj

@xi
�
@Ai

@xj
D @iAj � @jAi (7.76a)

Ei D �
@�

@xi
�
@Ai

@t
D �@i� � @tAi (7.76b)

From this, we notice the clear difference between the axial vector (pseudovector)
B and the polar vector (‘ordinary vector’) E.

Our goal is to express the electric and magnetic fields in a tensor form where
the components are functions of the covariant form of the four-potential, equa-
tion (7.47) on page 144:

A� D

�
�

c
;A

�
(7.77)

Inspection of (7.77) and equation (7.76) above makes it natural to define the
four-tensor

F �� D
@A�

@x�
�
@A�

@x�
D @�A� � @�A� (7.78)
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This anti-symmetric (skew-symmetric), four-tensor of rank 2 is called the elec-
tromagnetic field tensor or the Faraday tensor . In matrix representation, the
contravariant field tensor can be written

.F ��/ D

0BBB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

1CCCA (7.79)

We note that the field tensor is a sort of four-dimensional curl of the four-
potential vector A�.

The covariant field tensor is obtained from the contravariant field tensor in
the usual manner by index lowering

F�� D ������F
��
D @�A� � @�A� (7.80)

which in matrix representation becomes

�
F��

�
D

0BBB@
0 Ex=c Ey=c Ez=c

�Ex=c 0 �Bz By

�Ey=c Bz 0 �Bx

�Ez=c �By Bx 0

1CCCA (7.81)

Comparing formula (7.81) with formula (7.79) above we see that the covariant
field tensor is obtained from the contravariant one by a transformation E! �E.

That the two Maxwell source equations can be written

@�F
��
D �0j

� (7.82)

is immediately observed by explicitly solving this covariant equation. Setting
� D 0, corresponding to the first/leftmost column in the matrix representation
of the covariant component form of the electromagnetic field tensor, F �� , i.e.,
equation (7.79), we see that

@F 00

@x0
C
@F 10

@x1
C
@F 20

@x2
C
@F 30

@x3
D 0C

1

c

�
@Ex

@x
C
@Ey

@y
C
@Ez

@z

�
D
1

c
r � E D �0j

0
D �0c�

(7.83)

or, equivalently (recalling that "0�0 D 1=c2),

r � E D
�

"0
(7.84)

which we recognise as the Maxwell source equation for the electric field, equa-
tion (1.49a) on page 15.
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For � D 1 [the second column in equation (7.79) on the preceding page],
equation (7.82) on the previous page yields

@F 01

@x0
C
@F 11

@x1
C
@F 21

@x2
C
@F 31

@x3
D �

1

c2
@Ex

@t
C 0C

@Bz

@y
�
@By

@z

D �0j
1
D �0�vx

(7.85)

This result can be rewritten as

@Bz

@y
�
@By

@z
� "0�0

@Ex

@t
D �0jx (7.86)

or, equivalently, as

.r � B/x D �0jx C "0�0
@Ex

@t
(7.87)

and similarly for � D 2; 3. In summary, we can write the result in three-vector
form as

r � B D �0j.t;x/C "0�0
@E

@t
(7.88)

which we recognise as the Maxwell source equation for the magnetic field, equa-
tion (1.49d) on page 15.

With the help of the fully antisymmetric pseudotensor of rank 4

����� D

8̂̂<̂
:̂
1 if �; �; �; � is an even permutation of 0,1,2,3

0 if at least two of �; �; �; � are equal

�1 if �; �; �; � is an odd permutation of 0,1,2,3

(7.89)

which can be viewed as a generalisation of the Levi-Civita tensor, formula (M.22)
on page 209, we can introduce the dual electromagnetic tensor

?F �� D
1

2
�����F�� D �

?F �� (7.90)

with the further property

?
�
?F ��

�
D �F �� (7.91)

In matrix representation the dual field tensor is

�
?F ��

�
D

0BBB@
0 �Bx �By �Bz

Bx 0 Ez=c �Ey=c

By �Ez=c 0 Ex=c

Bz Ey=c �Ex=c 0

1CCCA (7.92)
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i.e., the dual field tensor is obtained from the ordinary field tensor by the duality
transformation E! cB and B! �E=c.

The covariant form of the two Maxwell field equations

r � E D �
@B

@t
(7.93)

r � B D 0 (7.94)

can then be written

@�
?F �� D 0 (7.95)

Explicit evaluation shows that this corresponds to (no summation!)

@�F�� C @�F�� C @�F�� D 0 (7.96)

sometimes referred to as the Jacobi identity . Hence, equation (7.82) on page 149
and equation (7.96) above constitute Maxwell’s equations in four-dimensional
formalism.

It is interesting to note that equation (7.82) on page 149 and

@�
?F �� D �0j

�
m (7.97)

where jm is the magnetic four-current , represent the covariant form of Dirac’s
symmetrised Maxwell equations (1.50) on page 16.
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ELECTROMAGNETIC FIELDS AND

PARTICLES

In previous chapters, we calculated the electromagnetic fields and potentials
from arbitrary, but prescribed distributions of charges and currents. In this
chapter we first study the opposite situation, viz., the dynamics of charged particles
in arbitrary, but prescribed electromagnetic fields. Then we go on to consider the
general problem of interaction between electric and magnetic fields and electric-
ally charged particles. The analysis is based on Lagrangian and Hamiltonian
methods, is fully covariant, and yields results which are relativistically correct.

8.1 Charged particles in an electromagnetic field

We first establish a relativistically correct theory describing the motion of charged
particles in prescribed electric and magnetic fields. From these equations we
may then calculate the charged particle dynamics in the most general case.

8.1.1 Covariant equations of motion

We will show that for our problem we can derive the correct equations of motion
by using in four-dimensional L4 a function with similar properties as a Lag-
range function in 3D and then apply a variational principle. We will also show
that we can find a Hamiltonian-type function in 4D and solve the corresponding

153
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Hamilton-type equations to obtain the correct covariant formulation of classical
electrodynamics.

8.1.1.1 Lagrangian formalism

In analogy with particle dynamics in 3D Euclidean space, we introduce a gener-
alised 4D action

S4 D

Z
L4.x

�; u�/ d� (8.1)

where d� is the proper time defined via equation (7.18) on page 138, and L4
acts as a kind of generalisation to the common 3D Lagrangian. As a result, the
variational principle

ıS4 D ı

Z �1

�0

L4.x
�; u�/ d� D 0 (8.2)

with fixed endpoints �0; �1 must be fulfilled. We require that L4 is a scalar in-
variant which does not contain higher than the second power of the four-velocity
u� in order that the resulting equations of motion be linear.

According to formula (M.125) on page 227 the ordinary 3D Lagrangian is
the difference between the kinetic and potential energies. A free particle has
only kinetic energy. If the particle mass is m0 then in 3D the kinetic energy is
m0v

2=2. This suggests that in 4D the Lagrangian for a free particle should be

Lfree
4 D

1

2
m0u

�u� (8.3)

Again drawing inferences from analytical mechanics in 3D, we introduce a gen-
eralised interaction between the particles and the electromagnetic field with the
help of the four-potential given by equation (7.77) on page 148 in the following
way

L4 D
1

2
m0u

�u� C qu�A
�.x�/ (8.4)

We call this the four-Lagrangian and shall now show how this function, together
with the variation principle, formula (8.2) above, yields Lorentz covariant results
which are physically correct.

The variation principle (8.2) with the 4D Lagrangian (8.4) inserted, leads to

ıS4 D ı

Z �1

�0

�m0
2
u�u� C qu

�A�.x
�/
�

d�

D

Z �1

�0

�
m0

2

@.u�u�/

@u�
ıu� C q

�
A�ıu

�
C u�

@A�

@x�
ıx�

��
d�

D

Z �1

�0

�
m0u�ıu

�
C q

�
A�ıu

�
C u�@�A�ıx

�
��

d� D 0

(8.5)
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According to equation (7.36) on page 143, the four-velocity is

u� D
dx
d�

�

(8.6)

which means that we can write the variation of u� as a total derivative with
respect to � :

ıu� D ı

�
dx
d�

��
D

d
d�
.ıx�/ (8.7)

Inserting this into the first two terms in the last integral in equation (8.5) on the
preceding page, we obtain

ıS4 D

Z �1

�0

�
m0u�

d
d�
.ıx�/C qA�

d
d�
.ıx�/C qu�@�A�ıx

�

�
d� (8.8)

Partial integration in the two first terms in the right hand member of (8.8) gives

ıS4 D

Z �1

�0

�
�m0

du�
d�

ıx� � q
dA�
d�

ıx� C qu�@�A�ıx
�

�
d� (8.9)

where the integrated parts do not contribute since the variations at the endpoints
vanish. A change of irrelevant summation index from� to � in the first two terms
of the right hand member of (8.9) yields, after moving the ensuing common
factor ıx� outside the parenthesis, the following expression:

ıS4 D

Z �1

�0

�
�m0

du�
d�
� q

dA�
d�
C qu�@�A�

�
ıx� d� (8.10)

Applying well-known rules of differentiation and the expression (7.36) for
the four-velocity, we can express dA�=d� as follows:

dA�
d�
D
@A�

@x�
dx�

d�
D @�A�u

� (8.11)

By inserting this expression (8.11) into the second term in right-hand member
of equation (8.10), and noting the common factor qu� of the resulting term and
the last term, we obtain the final variational principle expression

ıS4 D

Z �1

�0

�
�m0

du�
d�
C qu�

�
@�A� � @�A�

��
ıx� d� (8.12)

Since, according to the variational principle, this expression shall vanish and ıx�

is arbitrary between the fixed end points �0 and �1, the expression inside
� �

in
the integrand in the right hand member of equation (8.12) above must vanish.
In other words, we have found an equation of motion for a charged particle in a
prescribed electromagnetic field:

m0
du�
d�
D qu�

�
@�A� � @�A�

�
(8.13)
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With the help of formula (7.80) on page 149 for the covariant component form
of the field tensor, we can express this equation in terms of the electromagnetic
field tensor in the following way:

m0
du�
d�
D qu�F�� (8.14)

This is the sought-for covariant equation of motion for a particle in an electro-
magnetic field. It is often referred to as the Minkowski equation . As the reader
may easily verify, the spatial part of this 4-vector equation is the covariant (re-
lativistically correct) expression for the Newton-Lorentz force equation .

8.1.1.2 Hamiltonian formalism

The usual Hamilton equations for a 3D space are given by equation (M.136) on
page 228 in appendix M. These six first-order partial differential equations are

@H

@pi
D

dqi
dt

(8.15a)

@H

@qi
D �

dpi
dt

(8.15b)

where H.pi ; qi ; t / D pi Pqi �L.qi ; Pqi ; t / is the ordinary 3D Hamiltonian, qi is a
generalised coordinate and pi is its canonically conjugate momentum .

We seek a similar set of equations in 4D space. To this end we introduce a
canonically conjugate four-momentum p� in an analogous way as the ordinary
3D conjugate momentum

p� D
@L4

@u�
(8.16)

and utilise the four-velocity u�, as given by equation (7.36) on page 143, to
define the four-Hamiltonian

H4 D p
�u� � L4 (8.17)

With the help of these, the position four-vector x�, considered as the generalised
four-coordinate , and the invariant line element ds, defined in equation (7.18) on
page 138, we introduce the following eight partial differential equations:

@H4

@p�
D

dx�
d�

(8.18a)

@H4

@x�
D �

dp�
d�

(8.18b)

which form the four-dimensional Hamilton equations .
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Our strategy now is to use equation (8.16) on the facing page and equations
(8.18) on the preceding page to derive an explicit algebraic expression for the
canonically conjugate momentum four-vector. According to equation (7.41) on
page 143, c times a four-momentum has a zeroth (time) component which we
can identify with the total energy. Hence we require that the component p0 of
the conjugate four-momentum vector defined according to equation (8.16) on
the preceding page be identical to the ordinary 3D Hamiltonian H divided by c
and hence that this cp0 solves the Hamilton equations, equations (8.15) on the
facing page.1 This latter consistency check is left as an exercise to the reader. 1 Recall that in 3D, the Hamilto-

nian equals the total energy.Using the definition of H4, equation (8.17) on the preceding page, and the
expression for L4, equation (8.4) on page 154, we obtain

H4 D p
�u� � L4 D p

�u� �
1

2
m0u

�u� � qu�A
�.x�/ (8.19)

Furthermore, from the definition (8.16) of the canonically conjugate four-mo-
mentum p�, we see that

p� D
@L4

@u�
D

@

@u�

�
1

2
m0u

�u� C qu�A
�.x�/

�
D m0u

�
C qA� (8.20)

Inserting this into (8.19), we obtain

H4 D m0u
�u� C qA

�u� �
1

2
m0u

�u� � qu
�A�.x

�/ D
1

2
m0u

�u�

(8.21)

Since the four-velocity scalar-multiplied by itself is u�u� D c2, we clearly
see from equation (8.21) above that H4 is indeed a scalar invariant, whose value
is simply

H4 D
m0c

2

2
(8.22)

However, at the same time (8.20) provides the algebraic relationship

u� D
1

m0
.p� � qA�/ (8.23)

and if this is used in (8.21) to eliminate u�, one gets

H4 D
m0

2

�
1

m0
.p� � qA�/

1

m0

�
p� � qA�

��
D

1

2m0
.p� � qA�/

�
p� � qA�

�
D

1

2m0

�
p�p� � 2qA

�p� C q
2A�A�

�
(8.24)
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That this four-Hamiltonian yields the correct covariant equation of motion can
be seen by inserting it into the four-dimensional Hamilton equations (8.18) and
using the relation (8.23):

@H4

@x�
D �

q

m0
.p� � qA�/

@A�

@x�

D �
q

m0
m0u

� @A�

@x�

D �qu�
@A�

@x�

D �
dp�
d�
D �m0

du�
d�
� q

@A�

@x�
u�

(8.25)

where in the last step equation (8.20) on the preceding page was used. Rearran-
ging terms, and using equation (7.80) on page 149, we obtain

m0
du�
d�
D qu�

�
@�A� � @�A�

�
D qu�F�� (8.26)

which is identical to the covariant equation of motion equation (8.14) on page 156.
We can therefore safely conclude that the Hamiltonian in question yields correct
results.

Recalling expression (7.47) on page 144 for the four-potential, and repres-
enting the canonically conjugate four-momentum as p� D .p0;p/, we obtain
the following scalar products:

p�p� D .p
0/2 � .p/2 (8.27a)

A�p� D
1

c
�p0 � .p �A/ (8.27b)

A�A� D
1

c2
�2 � .A/2 (8.27c)

Inserting these explicit expressions into equation (8.24) on the preceding page,
and using the fact that H4 is equal to the scalar value m0c2=2, as derived in
equation (8.22) on the previous page, we obtain the equation

m0c
2

2
D

1

2m0

�
.p0/2 � .p/2 �

2

c
q�p0 C 2q.p �A/C

q2

c2
�2 � q2.A/2

�
(8.28)

which is a second-order algebraic equation in p0:

.p0/2 �
2q

c
�p0 �

�
.p/2 � 2qp �AC q2.A/2

�„ ƒ‚ …
.p�qA/2

C
q2

c2
�2 �m20c

2
D 0 (8.29)
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with two possible solutions

p0 D
q

c
� ˙

q
.p � qA/2 Cm20c

2 (8.30)

Since the zeroth component (time component) p0 of a four-momentum vector
p� multiplied by c represents the energy [cf. equation (7.41) on page 143], the
positive solution in equation (8.30) above must be identified with the ordinary
Hamilton function H divided by c. Consequently,

H � cp0 D q� C c

q
.p � qA/2 Cm20c

2 (8.31)

is the ordinary 3D Hamilton function for a charged particle moving in scalar and
vector potentials associated with prescribed electric and magnetic fields.

The ordinary Lagrange and Hamilton functions L and H are related to each
other by the 3D transformation [cf. the 4D transformation (8.17) between L4
and H4]

L D p � v �H (8.32)

Using the the explicit expressions given by equation (8.31) and equation (8.32),
we obtain the explicit expression for the ordinary 3D Lagrange function

L D p � v � q� � c

q
.p � qA/2 Cm20c

2 (8.33)

and if we make the identification

p � qA D
m0vs
1 �

v2

c2

D mv (8.34)

where the quantity mv is the usual kinetic momentum , we can rewrite this ex-
pression for the ordinary Lagrangian as follows:

L D qA � v Cmv2 � q� � c

q
m2v2 Cm20c

2

D mv2 � q.� �A � v/ �mc2 D �q� C qA � v �m0c
2

s
1 �

v2

c2

(8.35)

What we have obtained is the relativistically correct (covariant) expression for
the Lagrangian describing the mechanical motion of a charged particle in scalar
and vector potentials associated with prescribed electric and magnetic fields.
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Figure 8.1: A one-dimensional
chain consisting of N discrete,
identical mass points m, con-
nected to their neighbours with
identical, ideal springs with spring
constants k. The equilibrium dis-
tance between the neighbouring
mass points is a and �i�1.t/,
�i .t/, �iC1.t/ are the instantan-
eous deviations, along the x axis, of
positions of the .i � 1/th, i th, and
.i C 1/th mass point, respectively.

�i �iC1�i�1

k k kk
m m m m

x

m

a a a a

8.2 Covariant field theory

So far, we have considered two classes of problems. Either we have calculated
the fields from given, prescribed distributions of charges and currents, or we
have derived the equations of motion for charged particles in given, prescribed
fields. Let us now put the fields and the particles on an equal footing and present
a theoretical description which treats the fields, the particles, and their interac-
tions in a unified way. This involves transition to a field picture with an infinite
number of degrees of freedom. We shall first consider a simple mechanical prob-
lem whose solution is well known. Then, drawing inferences from this model
problem, we apply a similar view on the electromagnetic problem.

8.2.1 Lagrange-Hamilton formalism for fields and interac-
tions

Consider the situation, illustrated in figure 8.1, with N identical mass points,
each with massm and connected to its neighbour along a one-dimensional straight
line, which we choose to be the x axis, by identical ideal springs with spring con-
stants k (Hooke’s law). At equilibrium the mass points are at rest, distributed
evenly with a distance a to their two nearest neighbours so that the equilibrium
coordinate for the i th particle is xi D ia Ox . After perturbation, the motion of
mass point i will be a one-dimensional oscillatory motion along Ox. Let us denote
the deviation for mass point i from its equilibrium position by �i .t/Ox.

As is well known, the solution to this mechanical problem can be obtained if
we can find a Lagrangian (Lagrange function) L which satisfies the variational
equation

ı

Z
L.�i ; P�i ; t / dt D 0 (8.36)

According to equation (M.125) on page 227, the Lagrangian is L D T � V
where T denotes the kinetic energy and V the potential energy of a classical
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mechanical system with conservative forces . In our case the Lagrangian is

L D
1

2

NX
iD1

h
m P�2i � k.�iC1 � �i /

2
i

(8.37)

Let us write the Lagrangian, as given by equation (8.37) above, in the fol-
lowing way:

L D

NX
iD1

aLi (8.38)

where

Li D
1

2

"
m

a
P�2i � ka

�
�iC1 � �i

a

�2#
(8.39)

is the so called linear Lagrange density, measured in J m�1. If we now let
N !1 and, at the same time, let the springs become infinitesimally short ac-
cording to the following scheme:

a! dx (8.40a)
m

a
!

dm
dx
D � linear mass density (8.40b)

ka! Y Young’s modulus (8.40c)

�iC1 � �i

a
!

@�

@x
(8.40d)

we obtain

L D

Z
L dx (8.41)

where

L

�
�;
@�

@t
;
@�

@x
; t

�
D
1

2

"
�

�
@�

@t

�2
� Y

�
@�

@x

�2#
(8.42)

Notice how we made a transition from a discrete description, in which the mass
points were identified by a discrete integer variable i D 1; 2; : : : ; N , to a con-
tinuous description, where the infinitesimal mass points were instead identified
by a continuous real parameter x, namely their position along Ox.

A consequence of this transition is that the number of degrees of freedom for
the system went from the finite number N to infinity! Another consequence is
that L has now become dependent also on the partial derivative with respect to
x of the ‘field coordinate’ �. But, as we shall see, the transition is well worth the
cost because it allows us to treat all fields, be it classical scalar or vectorial fields,
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or wave functions, spinors and other fields that appear in quantum physics, on
an equal footing.

Under the assumption of time independence and fixed endpoints, the vari-
ation principle (8.36) on page 160 yields:

ı

Z
Ldt

D ı

ZZ
L

�
�;
@�

@t
;
@�

@x

�
dx dt

D

ZZ 24@L
@�
ı� C

@L

@
�
@�
@t

� ı�@�
@t

�
C

@L

@
�
@�
@x

� ı� @�
@x

�35 dx dt

D 0

(8.43)

As before, the last integral can be integrated by parts. This results in the expres-
sionZZ 24@L

@�
�
@

@t

0@ @L

@
�
@�
@t

�
1A � @

@x

0@ @L

@
�
@�
@x

�
1A35 ı� dx dt D 0 (8.44)

where the variation is arbitrary (and the endpoints fixed). This means that the
integrand itself must vanish. If we introduce the functional derivative

ıL

ı�
D
@L

@�
�
@

@x

0@ @L

@
�
@�
@x

�
1A (8.45)

we can express this as

ıL

ı�
�
@

@t

0@ @L

@
�
@�
@t

�
1A D 0 (8.46)

which is the one-dimensional Euler-Lagrange equation .
Inserting the linear mass point chain Lagrangian density, equation (8.42) on

the previous page, into equation (8.46), we obtain the equation of motion for our
one-dimensional linear mechanical structure. It is:

�
@2�

@t2
� Y

@2�

@x2
D 0 (8.47a)

or  
1

v2'

@2

@t2
�
@2

@x2

!
� D 0 (8.47b)
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i.e., the one-dimensional wave equation for compression waves which propagate
with phase speed v' D

p
Y=� along the linear structure.

A generalisation of the above 1D results to a three-dimensional continuum is
straightforward. For this 3D case we get the variational principle

ı

Z
L dt D ı

ZZ
L d3x dt D ı

Z
L

�
�;
@�

@x�

�
d4x

D

ZZ 24@L
@�
�

@

@x�

0@ @L

@
�
@�
@x�

�
1A35 ı� d4x D 0

(8.48)

where the variation ı� is arbitrary and the endpoints are fixed. This means that
the integrand itself must vanish:

@L

@�
�

@

@x�

0@ @L

@
�
@�
@x�

�
1A D @L

@�
� @�

�
@L

@.@��/

�
D 0 (8.49)

This constitutes the four-dimensional Euler-Lagrange equations .
Introducing the three-dimensional functional derivative

ıL

ı�
D
@L

@�
�

@

@xi

0@ @L

@
�
@�

@xi

�
1A (8.50)

we can express this as

ıL

ı�
�
@

@t

0@ @L

@
�
@�
@t

�
1A D 0 (8.51)

In analogy with particle mechanics (finite number of degrees of freedom),
we may introduce the canonically conjugate momentum density

�.x�/ D �.t;x/ D
@L

@
�
@�
@t

� (8.52)

and define the Hamilton density

H

�
�; �;

@�

@xi
I t

�
D �

@�

@t
�L

�
�;
@�

@t
;
@�

@xi

�
(8.53)

If, as usual, we differentiate this expression and identify terms, we obtain the
following Hamilton density equations

@H

@�
D
@�

@t
(8.54a)

ıH

ı�
D �

@�

@t
(8.54b)
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The Hamilton density functions are in many ways similar to the ordinary Hamilton
functions for a system of a finite number of particles and lead to similar results.
However, they describe the dynamics of a continuous system of infinitely many
degrees of freedom.

8.2.1.1 The electromagnetic field

Above, when we described the mechanical field, we used a scalar field �.t;x/.
If we want to describe the electromagnetic field in terms of a Lagrange density
L and Euler-Lagrange equations, it comes natural to express L in terms of the
four-potential A�.x�/.

The entire system of particles and fields consists of a mechanical part, a field
part and an interaction part. We therefore assume that the total Lagrange density
L tot for this system can be expressed as

L tot
D L mech

CL inter
CL em (8.55)

where the mechanical part has to do with the particle motion (kinetic energy).
It is given by L4=V where L4 is given by equation (8.3) on page 154 and V
is the volume. Expressed in the rest mass density %0, the mechanical Lagrange
density can be written

L mech
D
1

2
%0u

�u� (8.56)

The L inter part describes the interaction between the charged particles and
the external electromagnetic field. A convenient expression for this interaction
Lagrange density is

L inter
D j�A� (8.57)

For the field part L em we choose the difference between magnetic and elec-
tric energy density (in analogy with the difference between kinetic and potential
energy in a mechanical field). With the help of the field tensor, we express this
field Lagrange density as

L em
D

1

4�0
F ��F�� (8.58)

so that the total Lagrangian density can be written

L tot
D
1

2
%0u

�u� C j
�A� C

1

4�0
F ��F�� (8.59)

From this we can calculate all physical quantities.
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Using L tot in the 3D Euler-Lagrange equations, equation (8.49) on page 163
(with � replaced by A�), we can derive the dynamics for the whole system. For
instance, the electromagnetic part of the Lagrangian density

L EM
D L inter

CL em
D j �A� C

1

4�0
F ��F�� (8.60)

inserted into the Euler-Lagrange equations, expression (8.49) on page 163, yields
two of Maxwell’s equations. To see this, we note from equation (8.60) and the
results in Example 8.1 that

@L EM

@A�
D j � (8.61)

Furthermore,
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(8.62)

But
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(8.63)

Similarly,

@

@.@�A�/

�
@�A�@�A�

�
D 2@�A� (8.64)
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so that

@�

�
@L EM

@.@�A�/

�
D

1

�0
@� .@

�A� � @�A�/ D
1

�0
@�F

�� (8.65)

This means that the Euler-Lagrange equations, expression (8.49) on page 163,
for the Lagrangian density L EM and with A� as the field quantity become

@L EM

@A�
� @�

�
@L EM

@.@�A�/

�
D j � �

1

�0
@�F

��
D 0 (8.66)

or

@�F
��
D �0j

� (8.67)

which, according to equation (7.82) on page 149, is a Lorentz covariant formu-
lation of Maxwell’s source equations.

BField energy difference expressed in the field tensorEXAMPLE 8 .1
Show, by explicit calculation, that

1

4�0
F��F�� D

1

2

 
B2

�0
� "0E

2

!
(8.68)

i.e., the difference between the magnetic and electric field energy densities.

From formula (7.79) on page 149 we recall that

�
F��

�
D

0BB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By
Ey=c Bz 0 �Bx
Ez=c �By Bx 0

1CCA (8.69)

and from formula (7.81) on page 149 that

�
F��

�
D

0BB@
0 Ex=c Ey=c Ez=c

�Ex=c 0 �Bz By
�Ey=c Bz 0 �Bx
�Ez=c �By Bx 0

1CCA (8.70)

where � denotes the row number and � the column number. Then, Einstein summation and
direct substitution yields

F��F�� D F
00F00 C F

01F01 C F
02F02 C F

03F03

C F 10F10 C F
11F11 C F

12F12 C F
13F13

C F 20F20 C F
21F21 C F

22F22 C F
23F23

C F 30F30 C F
31F31 C F

32F32 C F
33F33

D 0 �E2x=c
2
�E2y=c

2
�E2z =c

2

�E2x=c
2
C 0C B2z C B

2
y

�E2y=c
2
C B2z C 0C B

2
x

�E2z =c
2
C B2y C B

2
x C 0

D �2E2x=c
2
� 2E2y=c

2
� 2E2z =c

2
C 2B2x C 2B

2
y C 2B

2
z

D �2E2=c2 C 2B2 D 2.B2 �E2=c2/

(8.71)
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or [cf. equation (2.16a) on page 23]

1
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F��F�� D

1
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� "0E
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D �

"0

2
.E2 � c2B2/

(8.72)

where, in the last step, the identity "0�0 D 1=c2 was used. QED�

End of example 8.1C

8.2.1.2 Other fields

In general, the dynamic equations for most any fields, and not only electromag-
netic ones, can be derived from a Lagrangian density together with a variational
principle (the Euler-Lagrange equations). Both linear and non-linear fields are
studied with this technique. As a simple example, consider a real, scalar field �
which has the following Lagrange density:

L D
1

2

�
@��@

�� �m2�2
�

(8.73)

Insertion into the 1D Euler-Lagrange equation, equation (8.46) on page 162,
yields the dynamic equation

.�2 �m2/� D 0 (8.74)

with the solution

� D ei.k�x�!t/ e�mjxj

jxj
(8.75)

which describes the Yukawa meson field for a scalar meson with mass m. With

� D
1

c2
@�

@t
(8.76)

we obtain the Hamilton density

H D
1

2

h
c2�2 C .r �/2 Cm2�2

i
(8.77)

which is positive definite.
Another Lagrangian density which has attracted quite some interest is the

Proca Lagrangian

L EM
D L inter

CL em
D j �A� C

1

4�0
F ��F�� Cm

2A�A� (8.78)

which leads to the dynamic equation

@�F
��
�m2A� D �0j

� (8.79)
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This equation describes an electromagnetic field with a mass, or, in other words,
massive photons . If massive photons do exist, large-scale magnetic fields, in-
cluding those of the earth and galactic spiral arms, should be significantly mod-
ified from what they ar to yield measurable discrepancies from their usual form.
Space experiments of this kind on board satellites have led to stringent upper
bounds on the photon mass. If the photon really has a mass, it will have an
impact on electrodynamics as well as on cosmology and astrophysics.
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The microscopic Maxwell equations derived in chapter 1, which in chapter 2
were chosen as the axiomatic basis for the treatment in the remainder of the
book, are valid on all scales where a classical description is good. They provide
a correct physical picture for arbitrary field and source distributions, on mac-
roscopic and, under certain assumptions, microscopic scales. A more complete
and accurate theory, valid also when quantum effects are significant, is provided
by quantum electrodynamics . QED gives a consistent description of how elec-
tromagnetic fields are quantised into photons and describes their intrinsic and
extrinsic properties. However, this theory is beyond the scope of the current
book.

In a material medium, be it in a solid, fluid or gaseous state or a combination
thereof, it is sometimes convenient to replace the Maxwell-Lorentz equations
(2.1) on page 20 by the corresponding macroscopic Maxwell equations in which
auxiliary, derived fields are introduced. These auxiliary fields, viz., the electric
displacement vector D (measured in C m�2) and the magnetising field H (meas-
ured in A m�1), incorporate intrinsic electromagnetic properties of macroscopic
matter, or properties that appear when the medium is immersed fully or partially
in an electromagnetic field. Consequently, they represent, respectively, electric
and magnetic field quantities in which, in an average sense, the material prop-
erties of the substances are already included. In the most general case, these
derived fields are complicated, possibly non-local and nonlinear, functions of

169
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the primary fields E and B :

D D D.t;xIE;B/ (9.1a)

H D H.t;xIE;B/ (9.1b)

An example of this are chiral media .
A general treatment of these fields will not be included here. Only simplified,

but important and illuminating examples will be given.

9.1 Maxwell’s macroscopic theory

Under certain conditions, for instance for small magnitudes of the primary field
strengths E and B, we may assume that the response of a substance to the fields
can be approximated by a linear one so that

D � "E (9.2)

H � ��1B (9.3)

i.e., that the electric displacement vector D.t;x/ is only linearly dependent on
the electric field E.t;x/, and the magnetising field H.t;x/ is only linearly de-
pendent on the magnetic field B.t;x/. In this chapter we derive these linearised
forms, and then consider a simple, explicit linear model for a medium from
which we derive the expression for the dielectric permittivity ".t;x/, the mag-
netic susceptibility �.t;x/, and the refractive index or index of refraction n.t;x/
of this medium. Using this simple model, we study certain interesting aspects of
the propagation of electromagnetic particles and waves in the medium.

9.1.1 Polarisation and electric displacement

By writing the first microscopic Maxwell-Lorentz equation (2.1a) on page 20
as in equation (6.25) on page 88, i.e., in a form where the total charge density
�.t;x/ is split into the charge density for free, ‘true’ charges, �true, and the charge
density, �pol, for bound polarisation charges induced by the applied field E, as

r � E D
�total.t;x/

"0
D
�true.t;x/C �pol.t;x/

"0
D
�true.t;x/ � r � P .t;x/

"0
(9.4)

and at the same time introducing the electric displacement vector (C m�2)

D.t;x/ D "0E.t;x/C P .t;x/ (9.5)
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one can reshuffle expression (9.4) on the preceding page to obtain

r � Œ"0E.t;x/C P .t;x/� D r �D.t;x/ D �true.t;x/ (9.6)

This is one of the original macroscopic Maxwell equations. It is important to
remember that only the induced electric dipole moment of matter, subject to the
field E, was included in the above separation into true and induced charge dens-
ities. Contributions to D from higher-order electric moments were neglected.
This is one of the approximations assumed.

Another approximation is the assumption that there exists a simple linear
relationship between P and E in the material medium under consideration

P .t;x/ D "0�e.t;x/E.t;x/ (9.7)

This approximation is often valid for regular media if the field strength jEj is
low enough. Here the variations in time and space of the the material dependent
electric susceptibility, �e, are usually on much slower and longer scales than
for E itself.1 Inserting the approximation (9.7) into equation (9.5) on the facing 1 The fact that the relation between

the dipole moment per unit volume
P and the applied electric field E
is local in time and space is yet
another approximation assumed in
macroscopic Maxwell theory.

page, we can write the latter

D.t;x/ D ".t;x/E.t;x/ (9.8)

where, approximately,

".t;x/ D "0Œ1C �e.t;x/� D "0�e.t;x/ (9.9)

For an electromagnetically anisotropic medium such as a magnetised plasma or
a birefringent crystal , the susceptibility �e or, equivalently the relative dielectric
permittivity

�e.t;x/ D
".t;x/

"0
D 1C �e.t;x/ (9.10)

will have to be replaced by a tensor. This would still describe a linear relation-
ship between E and P but one where the linear proportionality factor, or, as we
shall call it, the dispersive property of the medium, is dependent on the direction
in space.

In general, however, the relationship is not of a simple linear form as in
equation (9.7) above but non-linear terms are important. In such a situation
the principle of superposition is no longer valid and non-linear effects such as
frequency conversion and mixing can be expected.2 2 The nonlinearity of semicon-

ductor diodes is used, e.g., in radio
receivers to convert high radio
frequencies into lower ones, or
into the audible spectrum. These
techniques are called heterodyning
and demodulation , respectively.
Another example of the nonlinear
response of a medium is the Kerr
effect .

9.1.2 Magnetisation and the magnetising field

An analysis of the properties of magnetic media and the associated currents
shows that three such types of currents exist:
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1. In analogy with true charges for the electric case, we may have true currents
jtrue, i.e., a physical transport of true (free) charges.

2. In analogy with the electric polarisation P there may be a form of charge
transport associated with the changes of the polarisation with time. Such
currents, induced by an external field, are called polarisation currents and are
identified with @P=@t .

3. There may also be intrinsic currents of a microscopic, often atomistic, nature
that are inaccessible to direct observation, but which may produce net effects
at discontinuities and boundaries. These magnetisation currents are denoted
jM.

Magnetic monopoles have not yet been unambiguously identified in experi-
ments. So there is no correspondence in the magnetic case to the electric mono-
pole moment, formula (6.16a) on page 86. The lowest order magnetic moment,
corresponding to the electric dipole moment, formula (6.16b) on page 86, is
the magnetic dipole moment [cf. the Fourier component expression (6.64) on
page 96]

m.t/ D
1

2

Z
V 0

d3x0 .x0 � x0/ � j.t 0;x0/ (9.11)

Analogously to the electric case, one may, for a distribution of magnetic dipole
moments in a volume, describe this volume in terms of its magnetisation , or
magnetic dipole moment per unit volume , M. Via the definition of the vector
potential A one can show that the magnetisation current and the magnetisation
is simply related:

jM
D r �M (9.12)

In a stationary medium we therefore have a total current which is (approx-
imately) the sum of the three currents enumerated above:

jtotal
D jtrue

C
@P

@t
C r �M (9.13)

One might then be led to think that the right-hand side (RHS) of the r � B

Maxwell equation (2.1d) on page 20 should be

RHS D �0

�
jtrue
C
@P

@t
C r �M

�
However, moving the term r �M from the right hand side (RHS) to the left
hand side (LHS) and introducing the magnetising field (magnetic field intensity ,
Ampère-turn density) as

H D
B

�0
�M (9.14)
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and using the definition for D, equation (9.5) on page 170, we find that

LHS D r �H

RHS D jtrue
C
@P

@t
D jtrue

C
@D

@t
� "0

@E

@t

Hence, in this simplistic view, we would pick up a term �"0@E=@t which makes
the equation inconsistent: the divergence of the left hand side vanishes while the
divergence of the right hand side does not! Maxwell realised this and to over-
come this inconsistency he was forced to add his famous displacement current
term which precisely compensates for the last term the RHS expression.3 In 3 This term, which ensures that

electric charge is conserved also
in non-stationary problems, is the
one that makes it possible to turn
the Maxwell equations into wave
equations (see chapter 2) and,
hence, the term that, in a way, is
the basis for radio communications
and other engineering applications
of the theory.

chapter 1, we discussed an alternative way, based on the postulate of conserva-
tion of electric charge, to introduce the displacement current.

We may, in analogy with the electric case, introduce a magnetic susceptibil-
ity for the medium. Denoting it �m, we can write

H.t;x/ D ��1.t;x/B.t;x/ (9.15)

where, approximately,

�.t;x/ D �0Œ1C �m.t;x/� D �0�m.t;x/ (9.16)

and

�m.t;x/ D
�.t;x/

�0
D 1C �m.t;x/ (9.17)

is the relative permeability. In the case of anisotropy, �m will be a tensor, but it
is still only a linear approximation.4 4 This is the case for the Hall effect

which produces a potential differ-
ence across an electric conduction
current channel, orthogonal to
this current, in the presence of
an external magnetic field which
is likewise perpendicular to the
current. This effect was discovered
1879 by the US physicist EDWIN
HERBERT HALL (1855–1938).

9.1.3 Macroscopic Maxwell equations

Field equations, expressed in terms of the derived, and therefore in principle
superfluous, field quantities D and H are obtained from the Maxwell-Lorentz
microscopic equations (2.1) on page 20, by replacing the E and B in the two
source equations by using the approximate relations formula (9.8) on page 171
and formula (9.15) above, respectively:

r �D D �true (9.18a)

r � E D �
@B

@t
(9.18b)

r � B D 0 (9.18c)

r �H D jtrue
C
@D

@t
(9.18d)
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This set of differential equations, originally derived by Maxwell himself, are
called Maxwell’s macroscopic equations . Together with the boundary condi-
tions and the constitutive relations, they describe uniquely (but only approxim-
ately) the properties of the electric and magnetic fields in matter and are conveni-
ent to use in certain simple cases, particularly in engineering applications. How-
ever, the structure of these equations rely on certain linear approximations and
there are many situations where they are not useful or even applicable. There-
fore, these equations, which are the original Maxwell equations (albeit expressed
in their modern vector form as introduced by OLIVER HEAVISIDE), should be
used with some care.55 It should be recalled that Max-

well formulated these macroscopic
equations before it was known that
matter has an atomistic structure
and that there exist electrically
charged particles such as elec-
trons and protons, which possess
a quantum mechanical prop-
erty called spin that gives rise to
magnetism!

9.2 Phase velocity, group velocity and dispersion

If we introduce the phase velocity in the medium as

v' D
1
p
"�
D

1
p
�e"0�m�0

D
c

p
�e�m

(9.19)

where, according to equation (1.13) on page 6, c D 1=
p
"0�0 is the speed of

light, i.e., the phase speed of electromagnetic waves, in vacuum. Associated
with the phase speed of a medium for a wave of a given frequency ! we have a
wave vector , defined as

k
def
� k Ok D k Ov' D

!

v'

v'

v'
(9.20)

The ratio of the phase speed in vacuum and in the medium

c

v'
D
p
�e�m D c

p
"�

def
� n (9.21)

where the material dependent quantity

n.t;x/
def
�

c

v'
D
p
�e.t;x/�m.t;x/ (9.22)

is called the refractive index of the medium and describes its refractive and re-
flective properties.6 In general n is a function of frequency. If the medium

6 In fact, there exist metamaterials
where �e and �m are negative. For
such materials, the refractive index
becomes negative:

n D i
p
j�ej i

p
j�mj

D � j�e�mj
1=2

Such negative refractive index
materials, have quite remarkable
electromagnetic properties.

is anisotropic or birefringent , the refractive index is a rank-two tensor field.
Under our simplifying assumptions, in the material medium that we consider
n D Const for each frequency component of the fields. In certain materials,
the refractive index is larger than unity (e.g., glass and water at optical frequen-
cies), in others, it can be smaller than unity (e.g., plasma and metals at radio and
optical frequencies).



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 197 of 262.

DRAFT

9.3. Radiation from charges in a material medium j 175

It is important to notice that depending on the electric and magnetic proper-
ties of a medium, and, hence, on the value of the refractive index n, the phase
speed in the medium can be smaller or larger than the speed of light:

v' D
c

n
D
!

k
(9.23)

where, in the last step, we used equation (9.20) on the preceding page.
If the medium has a refractive index which, as is usually the case, dependent

on frequency !, we say that the medium is dispersive . Because in this case also
k.!/ and !.k/, so that the group velocity

vg D
@!

@k
(9.24)

has a unique value for each frequency component, and is different from v' .
Except in regions of anomalous dispersion , vg is always smaller than c. In a gas
of free charges, such as a plasma , the refractive index is given by the expression

n2.!/ D 1 �
!2p

!2
(9.25)

where

!2p D
X
�

N�q
2
�

"0m�
(9.26)

is the square of the plasma frequency !p. Here m� and N� denote the mass and
number density, respectively, of charged particle species � . In an inhomogen-
eous plasma, N� D N� .x/ so that the refractive index and also the phase and
group velocities are space dependent. As can be easily seen, for each given fre-
quency, the phase and group velocities in a plasma are different from each other.
If the frequency ! is such that it coincides with !p at some point in the medium,
then at that point v' !1 while vg ! 0 and the wave Fourier component at !
is reflected there.

9.3 Radiation from charges in a material medium

When electromagnetic radiation is propagating through matter, new phenomena
may appear which are (at least classically) not present in vacuum. As mentioned
earlier, one can under certain simplifying assumptions include, to some extent,
the influence from matter on the electromagnetic fields by introducing new, de-
rived field quantities D and H according to

D D ".t;x/E D �e.t;x/"0E (9.27)

B D �.t;x/H D �m.t;x/�0H (9.28)
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9.3.1 Vavilov- LCerenkov radiation

As we saw in subsection 6.3, a charge in uniform, rectilinear motion in va-
cuum does not give rise to any radiation; see in particular equation (6.140a)
on page 115. Let us now consider a charge in uniform, rectilinear motion in a
medium with electric properties which are different from those of a (classical)
vacuum. Specifically, consider a medium where

" D Const > "0 (9.29a)

� D �0 (9.29b)

This implies that in this medium the phase speed is

v' D
c

n
D

1
p
"�0

< c (9.30)

Hence, in this particular medium, the speed of propagation of (the phase planes
of) electromagnetic waves is less than the speed of light in vacuum, which we
know is an absolute limit for the motion of anything, including particles. A
medium of this kind has the interesting property that particles, entering into
the medium at high speeds jv 0j, which, of course, are below the phase speed
in vacuum, can experience that the particle speeds are higher than the phase
speed in the medium. This is the basis for the Vavilov- LCerenkov radiation , more
commonly known in the western literature as Cherenkov radiation , that we shall
now study.

If we recall the general derivation, in the vacuum case, of the retarded (and
advanced) potentials in chapter 3 and the Liénard-Wiechert potentials, equations
(6.103) on page 107, we realise that we obtain the latter in the medium by a
simple formal replacement c ! c=n in the expression (6.104) on page 107
for s. Hence, the Liénard-Wiechert potentials in a medium characterized by a
refractive index n, are

�.t;x/ D
1

4�"0

q0ˇ̌̌
jx � x0j � n .x�x0/�v 0

c

ˇ̌̌ D 1

4�"0

q0

s
(9.31a)

A.t;x/ D
1

4�"0c2
q0v 0ˇ̌̌

jx � x0j � n .x�x0/�v 0

c

ˇ̌̌ D 1

4�"0c2
q0v 0

s
(9.31b)

where now

s D

ˇ̌̌̌ˇ̌
x � x0

ˇ̌
� n

.x � x0/ � v 0

c

ˇ̌̌̌
(9.32)

The need for the absolute value of the expression for s is obvious in the case
when v0=c � 1=n because then the second term can be larger than the first term;
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�c ˛c vq0

x0.t 0/

x.t/ Figure 9.1: Instantaneous picture
of the expanding field spheres from
a point charge moving with con-
stant speed v0=c > 1=n in a me-
dium where n > 1. This generates
a Vavilov- LCerenkov shock wave in
the form of a cone.

if v0=c � 1=n we recover the well-known vacuum case but with modified phase
speed. We also note that the retarded and advanced times in the medium are [cf.
equation (3.45) on page 40]

t 0ret D t
0
ret.t;

ˇ̌
x � x0

ˇ̌
/ D t �

k jx � x0j

!
D t �

jx � x0jn

c
(9.33a)

t 0adv D t
0
adv.t;

ˇ̌
x � x0

ˇ̌
/ D t C

k jx � x0j

!
D t C

jx � x0jn

c
(9.33b)

so that the usual time interval t � t 0 between the time measured at the point of
observation and the retarded time in a medium becomes

t � t 0 D
jx � x0jn

c
(9.34)

For v0=c � 1=n, the retarded distance s, and therefore the denominators in
equations (9.31) on the facing page, vanish when

n.x � x0/ �
v 0

c
D
ˇ̌
x � x0

ˇ̌ nv0
c

cos �c D
ˇ̌
x � x0

ˇ̌
(9.35)

or, equivalently, when

cos �c D
c

nv0
(9.36)

In the direction defined by this angle �c, the potentials become singular. Dur-
ing the time interval t�t 0 given by expression (9.34) above, the field exists within
a sphere of radius jx � x0j around the particle while the particle moves a distance

l 0 D .t � t 0/v0 (9.37)

along the direction of v 0.
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In the direction �c where the potentials are singular, all field spheres are tan-
gent to a straight cone with its apex at the instantaneous position of the particle
and with the apex half angle ˛c defined according to

sin˛c D cos �c D
c

nv0
(9.38)

This is illustrated in figure 9.1 on the preceding page.
The cone of potential singularities and field sphere circumferences propag-

ates with speed c=n in the form of a shock front . The first observation of this
type of radiation was reported by MARIE SKLODOWSKA CURIE in 1910, but
she never pursued the exploration of it. This radiation in question is therefore
called Vavilov- LCerenkov radiation .7

7 The first systematic exploration
of this radiation was made in 1934
by PAVEL ALEKSEEVICH
LCERENKOV(1904–1990),
who was then a doctoral stu-
dent in SERGEY IVANOVICH
VAVILOV’s (1891–1951) research
group at the Lebedev Physical
Institute in Moscow. Vavilov wrote
a manuscript with the experimental
findings, put LCerenkov as the au-
thor, and submitted it to Nature. In
the manuscript, Vavilov explained
the results in terms of radioact-
ive particles creating Compton
electrons which gave rise to the
radiation. This was indeed the
correct interpretation, but the paper
was rejected. The paper was then
sent to Physical Review and was,
after some controversy with the
American editors, who claimed
the results to be wrong, eventually
published in 1937. In the same
year, IGOR’ EVGEN’EVICH
TAMM (1895–1975) and ILYA
M IKHAILOVICH FRANK (1908–
1990) published the theory for the
effect (‘the singing electron’).

In fact, predictions of a similar
effect had been made as early as
1888 by OLIVER HEAVISIDE
(1850–1925), and by ARNOLD
JOHANNES W ILHELM SOM -
MERFELD (1868–1951) in his
1904 paper ‘Radiating body mov-
ing with velocity of light’. On 8
May, 1937, Sommerfeld sent a
letter to Tamm via Austria, saying
that he was surprised that his old
1904 ideas were now becoming
interesting. Tamm, Frank and
LCerenkov received the Nobel Prize
in 1958 ‘for the discovery and
the interpretation of the LCerenkov
effect’ [V ITALIY LAZAREVICH
G INZBURG (1916–2009), private
communication]. The Vavilov-
LCerenkov cone is similar in nature
to the Mach cone in acoustics.

In order to make some quantitative estimates of this radiation, we note that
we can describe the motion of each charged particle q0 as a current density:

j D q0v 0 ı.x0 � v 0t 0/ D q0v0 ı.x0 � v0t 0/ı.y0/ı.z0/Ox1 (9.39)

which has the trivial Fourier transform

j! D
q0

2�
ei!x0=v0 ı.y0/ı.z0/Ox1 (9.40)

This Fourier component can be used in the formulæ derived for a linear current
in subsection 6.4.1 if only we make the replacements

"0 ! " D n2"0 (9.41a)

k !
n!

c
(9.41b)

In this manner, using j! from equation (9.40) above, the resulting Fourier trans-
forms of the Vavilov- LCerenkov magnetic and electric radiation fields can be cal-
culated from the expressions (5.10) on page 74) and (5.21) on page 76, respect-
ively.

The total energy content is then obtained from equation (6.8) on page 84
(integrated over a closed sphere at large distances). For a Fourier component
one obtains [cf. equation (6.11) on page 85]

U rad
! d� �

1

4�"0nc

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik�x0
ˇ̌̌̌2

d�

D
q0
2
n!2

16�3"0c3

ˇ̌̌̌Z 1
�1

exp
h
ix0
�!
v0
� k cos �

�i
dx0
ˇ̌̌̌2

sin2 � d�

(9.42)

where � is the angle between the direction of motion, Ox01, and the direction to the
observer, Ok. The integral in (9.42) is singular of a ‘Dirac delta type’. If we limit
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the spatial extent of the motion of the particle to the closed interval Œ�X;X� on
the x0 axis we can evaluate the integral to obtain

U rad
! d� D

q0
2
n!2 sin2 �
4�3"0c3

sin2
h�
1 � nv0

c
cos �

�
X!
v0

i
��
1 � nv0

c
cos �

�
!
v0

�2 d� (9.43)

which has a maximum in the direction �c as expected. The magnitude of this
maximum grows and its width narrows as X ! 1. The integration of (9.43)
over � therefore picks up the main contributions from � � �c. Consequently,
we can set sin2 � � sin2 �c and the result of the integration is

QU rad
! D 2�

Z �

0

U rad
! .�/ sin � d� D dcos � D ��c D 2�

Z 1

�1

U rad
! .�/ d�

�
q0
2
n!2 sin2 �c

2�2"0c3

Z 1

�1

sin2
h�
1C nv0�

c

�
X!
v0

i
h�
1C nv0�

c

�
!
v0

i2 d�

(9.44)

The integrand in (9.44) is strongly peaked near � D �c=.nv0/, or, equivalently,
near cos �c D c=.nv

0/. This means that the integrand function is practically zero
outside the integration interval � 2 Œ�1; 1�. Consequently, one may extend the �
integration interval to .�1;1/ without introducing too much an error. Via yet
another variable substitution we can therefore approximate

sin2 �c

Z 1

�1

sin2
h�
1C nv0�

c

�
X!
v0

i
h�
1C nv0�

c

�
!
v0

i2 d� �
�
1 �

c2

n2v02

�
cX

!n

Z 1
�1

sin2 x
x2

dx

D
cX�

!n

�
1 �

c2

n2v02

�
(9.45)

leading to the final approximate result for the total energy loss in the frequency
interval .!; ! C d!/

QU rad
! d! D

q0
2
X

2�"0c2

�
1 �

c2

n2v02

�
! d! (9.46)

As mentioned earlier, the refractive index is usually frequency dependent.
Realising this, we find that the radiation energy per frequency unit and per unit
length is

QU rad
! d!
2X

D
q0
2
!

4�"0c2

�
1 �

c2

n2.!/v02

�
d! (9.47)
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This result was derived under the assumption that v0=c > 1=n.!/, i.e., under
the condition that the expression inside the parentheses in the right hand side is
positive. For all media it is true that n.!/ ! 1 when ! ! 1, so there exist
always a highest frequency for which we can obtain Vavilov- LCerenkov radiation
from a fast charge in a medium. Our derivation above for a fixed value of n is
valid for each individual Fourier component.

9.4 Electromagnetic waves in a medium

In section 2.3 in chapter 2 we derived the wave equations for the electric and
magnetic fields, E and B, respectively,

1

c2
@2E

@t2
� r

2E D �
r�

"0
� �0

@j

@t
(9.48a)

1

c2
@2B

@t2
� r

2B D �0r � j (9.48b)

where the charge density � and the current density j were viewed as the sources
of the wave fields. As we recall, these wave equations were derived from the
Maxwell-Lorentz equations (2.1) on page 20, taken as an axiomatic foundation,
or postulates, of electromagnetic theory. As such, these equations just state what
relations exist between (the second order derivatives of) the fields, i.e., essen-
tially the Coulomb and Ampère forces, and the dynamics of the charges (charge
and current densities) in the region under study.

Even if the � and j terms in the Maxwell-Lorentz equations are often referred
to as the source terms, they can equally well be viewed as terms that describe
the impact on matter in a particular region upon which an electromagnetic wave,
produced in another region with its own charges and currents, impinges. In order
to do so, one needs to find the constitutive relations that describe how charge
and current densities are induced by the impinging fields. Then one can solve
the wave equations (9.48) above. In general, this is a formidable task, and one
must often resort to numerical methods.

Let us, for simplicity, assume that the linear relations, as given by formula
(9.8) on page 171 and formula (9.15) on page 173, hold, and that there is also
a linear relation between the electric field E and the current density, known as
Ohm’s law:

j.t;x/ D �.t;x/E.t;x/ (9.49)

where � is the conductivity of the medium. Let us make the further assumption
that " D ".x/, � D �.x/, and �.x/ are not explicitly dependent on time and are
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local in space. Then we obtain the coupled wave equations

r
2E � �.x/�.x/

@E

@t
� ".x/�.x/

@2E

@t2
D .r � E/ � r ln�.x/

�r Œr ln ".x/ � E�C r
�

"

(9.50a)

r
2H � �.x/�.x/

@H

@t
� ".x/�.x/

@2H

@t2
D .r �H/ � r ln ".x/

�r Œr ln�.x/ �H�C r ln ".x/ � .�.x/E/ � Œr�.x/� � E

(9.50b)

For the case � D �0 (no magnetisation) and � D Const in the medium, equa-
tions (9.50) simplify to

r
2E � �0�.x/

@E

@t
� ".x/�0

@2E

@t2
D �r Œr ln ".x/ � E� (9.51a)

r
2B � �0�.x/

@B

@t
� ".x/�0

@2B

@t2
D .r � B/ � r ln ".x/

C�0r ln ".x/ � .�E/ � �0Œr�.x/� � E

(9.51b)

Making the further assumption that the medium is not conductive, i.e., that
� D 0, the uncoupled wave equations

r
2E �

".x/

"0c2
@2E

@t2
D �r fŒr ln ".x/� � Eg (9.52a)

r
2B �

".x/

"0c2
@2B

@t2
D .r � B/ � Œr ln ".x/� (9.52b)

are obtained.

9.4.1 Constitutive relations

In a solid, fluid or gaseous medium the source terms in the microscopic Maxwell
equations (2.1) on page 20 must include all charges and currents in the medium,
i.e., also the intrinsic ones (e.g., the polarisation charges in electrets, and atom-
istic magnetisation currents in magnets) and the self-consistently imposed ones
(e.g., polarisation currents). This is of course also true for the inhomogeneous
wave equations derived from Maxwell’s equations.

From now one we assume that � and j represent only the charge and current
densities (i.e., polarisation and conduction charges and currents, respectively)
that are induces by the E and B fields of the waves impinging upon the medium
of interest.8 8 If one includes also the effect

of the charges on E and B, i.e.,
treat � and j as sources for fields,
singularities will appear in the
theory. Such so called self-force
effects will not be treated here.

Let us for simplicity consider a medium containing free electrons only and
which is not penetrated by a magnetic field, i.e., the medium is assumed to be
isotropic with no preferred direction(s) in space.9

9 To this category belongs unmag-
netised plasma . So do also, to a
good approximation, fluid or solid
metals.
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Each of these electrons are assumed to be accelerated by the Lorentz force,
formula (4.59) on page 61. However, if the fields are those of an electromag-
netic wave one can, for reasonably high oscillation frequencies, neglect the force
from the magnetic field. Of course, this is also true if there is no magnetic field
present. So the equation of motion for each electron in the medium can be writ-
ten

m
d2x
dt2
Cm�

dx

dt
D qE (9.53)

where m and q are the mass and charge of the electron, respectively, � the ef-
fective collision frequency representing the frictional dissipative force from the
surrounding medium, and E the effective applied electric field sensed by the
electron. For a Fourier component of the electric field E D E0 exp .�i!t/, the
equation of motion becomes

!2qx.t/ � i!�qx.t/ D
q2

m
E (9.54)

If the electron is at equilibrium x D 0 when E D 0, then its dipole moment is
d.t/ D qx.t/. Inserting this in equation (9.54) above, we obtain

d D �
q2

m.!2 C i!�/
E (9.55)

This is the the lowest order contribution to the dipole moment of the medium
from each electron under the influence of the assumed electric field. If Nd.x/

electrons per unit volume can be assumed to give rise to the electric polarisation
P , this becomes

P D Ndd D �
Ndq

2

m.!2 C i!�/
E (9.56)

Using this in formula (9.5) on page 170, one finds that

D.t;x/ D ".x/E.t;x/ (9.57)

where

".x/ D "0 �
Nd.x/q

2

m.!2 C i!�/
D "0

�
1 �

Nd.x/q
2

"0m

1

!2 C i!�

�
(9.58)

The quantity

!p.x/ D

s
Nd.x/q

2

"0m
(9.59)
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is called the plasma frequency and

n.x/ D

s
".x/

"0
D

s
1 �

!2p

!2 C i!�
(9.60)

is called the refractive index . At points in the medium where the wave frequency
! equals this plasma frequency and the collision frequency � vanishes, the re-
fractive index n D 0, and the wave is totally reflected. In the ionised outer
part of the atmosphere called the ionosphere this happens for radio waves of
frequencies up to about 10 MHz. This is the basis for over-the-horizon radio
communications.

9.4.2 Electromagnetic waves in a conducting medium

We shall now restrict ourselves to the wave equations for the electric field vector
E and the magnetic field vector B in a electrically conductive and neutral me-
dium, i.e., a volume where there exist no net electric charge, � D 0, no dielectric
effects, " D "0, and no electromotive force, Eemf D 0. A highly conductive
metal is a good example of such a medium.

9.4.2.1 The wave equations for E and B

To a good approximation, metals and other conductors in free space have a
conductivity � that is not dependent on t or x. The wave equations (9.51) on
page 181 are then simplified to

r
2E � �0�

@E

@t
�
1

c2
@2E

@t2
D 0 (9.61)

r
2B � �0�

@B

@t
�
1

c2
@2B

@t2
D 0 (9.62)

which are the homogeneous vector wave equations for E and B in a conducting
medium without EMF.

We notice that for the simple propagation media considered here, the wave
equation for the magnetic field B has exactly the same mathematical form as the
wave equation for the electric field E, equation (9.61). Therefore, in this case
it suffices to consider only the E field, since the results for the B field follow
trivially. For EM waves propagating in more complicated media, containing,
e.g., inhomogeneities, the wave equations for E and for B do not have the same
mathematical form.

Following the spectral component prescription leading to equation (2.38) on
page 28, we obtain, in the special case under consideration, the following time-
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independent wave equation

r
2E0 C

!2

c2

�
1C i

�

"0!

�
E0 D 0 (9.63)

Multiplying by e�i!t and introducing the relaxation time � D "0=� of the me-
dium in question, we see that the differential equation for each spectral compon-
ent can be written

r
2E.t;x/C

!2

c2

�
1C

i
�!

�
E.t;x/ D 0 (9.64)

In the limit of long � (low conductivity � ), (9.64) tends to

r
2EC

!2

c2
E D 0 (9.65)

which is a time-independent wave equation for E, representing undamped propagat-
ing waves. In the short � (high conductivity � ) limit we have instead

r
2EC i!�0�E D 0 (9.66)

which is a time-independent diffusion equation for E.
For most metals � � 10�14 s, which means that the diffusion picture is good

for all frequencies lower than optical frequencies. Hence, in metallic conductors,
the propagation term @2E=c2@t2 is negligible even for VHF, UHF, and SHF
signals. Alternatively, we may say that the displacement current "0@E=@t is
negligible relative to the conduction current j D �E.

If we introduce the vacuum wave number

k D
!

c
(9.67)

we can write, using the fact that c D 1=
p
"0�0 according to equation (1.13) on

page 6,

1

�!
D

�

"0!
D
�

"0

1

ck
D
�

k

r
�0

"0
D
�

k
R0 (9.68)

where in the last step we used the characteristic impedance of vacuum defined
according to formula (6.3) on page 83.

9.4.2.2 Plane waves

Consider now the case where all fields depend only on the distance � to a given
plane with unit normal On. Then the del operator becomes

r D On
@

@�
D Onr (9.69)
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and the microscopic Maxwell equations attain the form

On �
@E

@�
D 0 (9.70a)

On �
@E

@�
D �

@B

@t
(9.70b)

On �
@B

@�
D 0 (9.70c)

On �
@B

@�
D �0j.t;x/C "0�0

@E

@t
D �0�EC "0�0

@E

@t
(9.70d)

Scalar multiplying (9.70d) by On, we find that

0 D On �

�
On �

@B

@�

�
D On �

�
�0� C "0�0

@

@t

�
E (9.71)

which simplifies to the first-order ordinary differential equation for the normal
component En of the electric field

dEn
dt
C
�

"0
En D 0 (9.72)

with the solution

En D En0e��t="0 D En0e�t=� (9.73)

This, together with (9.70a), shows that the longitudinal component of E, i.e., the
component which is perpendicular to the plane surface is independent of � and
has a time dependence which exhibits an exponential decay, with a decrement
given by the relaxation time � in the medium.

Scalar multiplying (9.70b) by On, we similarly find that

0 D On �

�
On �

@E

@�

�
D �On �

@B

@t
(9.74)

or

On �
@B

@t
D 0 (9.75)

From this, and (9.70c), we conclude that the only longitudinal component of B

must be constant in both time and space. In other words, the only non-static
solution must consist of transverse components .

9.4.2.3 Telegrapher’s equation

In analogy with equation (9.61) on page 183, we can easily derive a wave equa-
tion

@2E

@�2
� �0�

@E

@t
�
1

c2
@2E

@t2
D 0 (9.76)
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describing the propagation of plane waves along � in a conducting medium. This
equation is is called the telegrapher’s equation . If the medium is an insulator
so that � D 0, then the equation takes the form of the one-dimensional wave
equation

@2E

@�2
�
1

c2
@2E

@t2
D 0 (9.77)

As is well known, each component of this equation has a solution which can be
written

Ei D f .� � ct/C g.� C ct/; i D 1; 2; 3 (9.78)

where f and g are arbitrary (non-pathological) functions of their respective ar-
guments. This general solution represents perturbations which propagate along
�, where the f perturbation propagates in the positive � direction and the g
perturbation propagates in the negative � direction. In a medium, the general
solution to each component of equation (9.99) on page 189 is given by

Ei D f .� � v' t /C g.� C v' t /; i D 1; 2; 3 (9.79)

If we assume that our electromagnetic fields E and B are represented by a
Fourier component proportional to exp.�i!t/, the solution of equation (9.77)
becomes

E D E0e�i.!t˙k�/
D E0ei.�k��!t/ (9.80)

By introducing the wave vector

k D k On D
!

c
On D

!

c
Ok (9.81)

this solution can be written as

E D E0ei.k�x�!t/ (9.82)

Let us consider the lower sign in front of k� in the exponent in (9.80). This
corresponds to a wave which propagates in the direction of increasing �. Insert-
ing this solution into equation (9.70b) on the previous page, gives

On �
@E

@�
D i!B D ik On � E (9.83)

or, solving for B,

B D
k

!
On � E D

1

!
k � E D

1

c
Ok � E D

p
"0�0 On � E (9.84)
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Hence, to each transverse component of E, there exists an associated magnetic
field given by equation (9.84) on the facing page. If E and/or B has a direction
in space which is constant in time, we have a plane wave .

Allowing now for a finite conductivity � in our medium, and making the
spectral component Ansatz in equation (9.76) on page 185, we find that the time-
independent telegrapher’s equation can be written

@2E

@�2
C "0�0!

2EC i�0�!E D
@2E

@�2
CK2E D 0 (9.85)

where

K2 D "0�0!
2

�
1C i

�

"0!

�
D
!2

c2

�
1C i

�

"0!

�
D k2

�
1C i

�

"0!

�
(9.86)

where, in the last step, equation (9.67) on page 184 was used to introduce the
wave number k. Taking the square root of this expression, we obtain

K D k

r
1C i

�

"0!
D ˛ C iˇ (9.87)

Squaring, one finds that

k2
�
1C i

�

"0!

�
D .˛2 � ˇ2/C 2i˛ˇ (9.88)

or

ˇ2 D ˛2 � k2 (9.89)

˛ˇ D
k2�

2"0!
(9.90)

Squaring the latter and combining with the former, one obtains the second order
algebraic equation (in ˛2)

˛2.˛2 � k2/ D
k4�2

4"20!
2

(9.91)

which can be easily solved and one finds that

˛ D k

vuuut
r
1C

�
�
"0!

�2
C 1

2
(9.92a)

ˇ D k

vuuut
r
1C

�
�
"0!

�2
� 1

2
(9.92b)
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As a consequence, the solution of the time-independent telegrapher’s equation,
equation (9.85) on the previous page, can be written

E D E0e�ˇ�ei.˛��!t/ (9.93)

With the aid of equation (9.84) on page 186 we can calculate the associated
magnetic field, and find that it is given by

B D
1

!
K Ok � E D

1

!
. Ok � E/.˛ C iˇ/ D

1

!
. Ok � E/ jAj ei
 (9.94)

where we have, in the last step, rewritten ˛ C iˇ in the amplitude-phase form
jAj exp.i
/. From the above, we immediately see that E, and consequently also
B, is damped, and that E and B in the wave are out of phase.

In the limit "0! � � , we can approximate K as follows:

K D k

�
1C i

�

"0!

� 1
2

D k

�
i
�

"0!

�
1 � i

"0!

�

�� 12
� k.1C i/

r
�

2"0!

D
p
"0�0!.1C i/

r
�

2"0!
D .1C i/

r
�0�!

2

(9.95)

In this limit we find that when the wave impinges perpendicularly upon the me-
dium, the fields are given, inside the medium, by

E0 D E0 exp
�
�

r
�0�!

2
�

�
exp

�
i
�r

�0�!

2
� � !t

��
(9.96a)

B0 D .1C i/
r
�0�

2!
. On � E0/ (9.96b)

Hence, both fields fall off by a factor 1=e at a distance

ı D

s
2

�0�!
(9.97)

This distance ı is called the skin depth .
Assuming for simplicity that the electric permittivity " and the magnetic per-

meability �, and hence the relative permittivity �e and the relative permeability
�m all have fixed values, independent on time and space, for each type of mater-
ial we consider, we can derive the general telegrapher’s equation [cf. equation
(9.76) on page 185]

@2E

@�2
� ��

@E

@t
� "�

@2E

@t2
D 0 (9.98)

describing (1D) wave propagation in a material medium.
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In chapter 2 we concluded that the existence of a finite conductivity, mani-
festing itself in a collisional interaction between the charge carriers, causes the
waves to decay exponentially with time and space. Let us therefore assume that
in our medium � D 0 so that the wave equation simplifies to

@2E

@�2
� "�

@2E

@t2
D 0 (9.99)

As in the vacuum case discussed in chapter 2, assuming that E is time-
harmonic, i.e., can be represented by a Fourier component proportional to exp.�i!t/,
the solution of equation (9.99) can be written

E D E0ei.k�x�!t/ (9.100)

where now k is the wave vector in the medium given by equation (9.20) on
page 174. With these definitions, the vacuum formula for the associated mag-
netic field, equation (9.84) on page 186,

B D
p
"� Ok � E D

1

v'
Ok � E D

1

!
k � E (9.101)

is valid also in a material medium (assuming, as mentioned, that n has a fixed
constant scalar value). A consequence of a �e ¤ 1 is that the electric field will,
in general, have a longitudinal component.

BElectromagnetic waves in an electrically and magnetically conducting medium EXAMPLE 9 .1

Derive the wave equation for the E field described by the electromagnetodynamic equations
(Dirac’s symmetrised Maxwell equations) [cf. equations (1.50) on page 16]

r � E D
�e

"0
(9.102a)

r � E D �
@B

@t
� �0jm (9.102b)

r � B D �0�
m (9.102c)

r � B D "0�0
@E

@t
C �0je (9.102d)

under the assumption of vanishing net electric and magnetic charge densities and in the
absence of electromotive and magnetomotive forces. Interpret this equation physically.

Assume, for symmetry reasons, that there exists a linear relation between the magnetic
current density jm and the magnetic field B (the magnetic dual of Ohm’s law for electric
currents, je D �eE)

jm
D �mB (9.103)

Taking the curl of (9.102b) and using (9.102d), one finds, noting that "0�0 D 1=c2, that
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r � .r � E/ D ��0r � jm
�
@

@t
.r � B/

D ��0�
mr � B �

@

@t

�
�0je

C
1

c2
@E

@t

�
D ��0�

m
�
�0�

eEC
1

c2
@E

@t

�
� �0�

e @E

@t
�
1

c2
@2E

@t2

(9.104)

Using the vector operator identity r � .r � E/ D r .r � E/ � r2E, and the fact that
r � E D 0 for a vanishing net electric charge, we can rewrite the wave equation as

r
2E � �0

�
�e
C
�m

c2

�
@E

@t
�
1

c2
@2E

@t2
� �20�

m�eE D 0 (9.105)

This is the homogeneous electromagnetodynamic wave equation for E that we were after.

Compared to the ordinary electrodynamic wave equation for E, equation (9.61) on
page 183, we see that we pick up extra terms. In order to understand what these extra
terms mean physically, we analyse the time-independent wave equation for a single Fourier
component. Then our wave equation becomes

r
2EC i!�0

�
�e
C
�m

c2

�
EC

!2

c2
E � �20�

m�eE

D r
2EC

!2

c2

"�
1 �

1

!2
�0

"0
�m�e

�
C i

�e C �m=c2

"0!

#
E D 0

(9.106)

Realising that, according to formula (6.3) on page 83, �0="0 is the square of the vacuum ra-
diation resistance R0, and rearranging a bit, we obtain the time-independent wave equation
in Dirac’s symmetrised electrodynamics

r
2EC

!2

c2

 
1 �

R20
!2
�m�e

!0BB@1C i
�e C �m=c2

"0!

�
1 �

R2
0

!2
�m�e

�
1CCAE D 0 ;

! ¤ R0
p
�m�e

(9.107)

From this equation we conclude that the existence of magnetic charges (magnetic mono-
poles), and non-vanishing electric and magnetic conductivities would lead to a shift in the
effective wave number of the wave. Furthermore, even if the electric conductivity �e van-
ishes, the imaginary term does not necessarily vanish and the wave therefore experiences
damping or growth according as �m is positive or negative, respectively. This would hap-
pen in a hypothetical medium which is a perfect insulator for electric currents but which
can carry magnetic currents.

Finally, we note that in the particular case ! D R0
p
�m�e def

� !m, the time-independent
wave equation equation (9.106) above becomes a time-independent diffusion equation

r
2EC i!�0

�
�e
C
�m

c2

�
E D 0 (9.108)

which in time domain corresponds to the time-dependent diffusion equation

@E

@t
�Dr2E� D 0 (9.109)

with a diffusion coefficient given by
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D D
1

�0

�
�e C �m

c2

� (9.110)

Hence, electromagnetic waves with this particular frequency do not propagate. This means
that if magnetic charges (monopoles) exist in a region in the Universe, electromagnetic
waves propagating through this region would, in this simplistic model, exhibit a lower cutoff
at ! D !m. This would in fact impose a lower limit on the mass of the photon , the quantum
of the electromagnetic field that we shall come across later.

End of example 9.1C
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F.1 The electromagnetic field

F.1.1 The microscopic Maxwell (Lorentz) equations

r � E D
�

"0
(F.1)

r � B D 0 (F.2)

r � E D �
@B

@t
(F.3)

r � B D �0j C "0�0
@E

@t
(F.4)

F.1.1.1 Constitutive relations

"0�0 D
1

c2
(F.5)r

�0

"0
D R0 .� 376:7�/ (F.6)

D � "E (F.7)

H �
B

�
(F.8)

j � �E (F.9)

P � "0�E (F.10)

193
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F.1.2 Fields and potentials

F.1.2.1 Vector and scalar potentials

B D r �A (F.11)

E D �r� �
@A

@t
(F.12)

F.1.2.2 The Lorenz-Lorentz gauge condition in vacuum

r �AC
1

c2
@�

@t
D 0 (F.13)

F.1.3 Force and energy

F.1.3.1 The Poynting vector in vacuum

S D
1

�0
E � B (F.14)

F.1.3.2 Electromagnetic field energy density in vacuum

u D
1

2
"0.E � EC c

2B � B/ (F.15)

F.1.3.3 Linear momentum flux tensor (the negative of the Maxwell
stress tensor)

T D 13
"0

2

�
E � EC c2B � B

�
� "0

�
EEC c2BB

�
(F.16)

Tij D ıiju � "0EiEj �
1

�0
BiBj (F.17)

F.2 Electromagnetic radiation

F.2.1 Relationship between the field vectors in a plane wave

B D
Ok � E

c
(F.18)
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F.2.2 The far fields from an extended source distribution

Bfar
! .x/ D

�i�0
4�

eikjxj

jxj

Z
V 0

d3x0 e�ik�x0 j! � k (F.19)

Efar
! .x/ D

i
4�"0c

eikjxj

jxj
Ox �

Z
V 0

d3x0 e�ik�x0 j! � k (F.20)

F.2.3 The far fields from an electric dipole

Bfar
! .x/ D �

!�0

4�

eikjxj

jxj
d! � k (F.21)

Efar
! .x/ D �

1

4�"0

eikjxj

jxj
.d! � k/ � k (F.22)

F.2.4 The far fields from a magnetic dipole

Bfar
! .x/ D �

�0

4�

eikjxj

jxj
.m! � k/ � k (F.23)

Efar
! .x/ D

k

4�"0c

eikjxj

jxj
m! � k (F.24)

F.2.5 The far fields from an electric quadrupole

Bfar
! .x/ D

i�0!
8�

eikjxj

jxj
.k � Q!/ � k (F.25)

Efar
! .x/ D

i
8�"0

eikjxj

jxj
Œ.k � Q!/ � k� � k (F.26)

F.2.6 The fields from a point charge in arbitrary motion

E.t;x/ D
q

4�"0s3

�
.x � x0/

�
1 �

v02

c2

�
C .x � x0/ �

.x � x0/ � Pv
0

c2

�
(F.27)

B.t;x/ D .x � x0/ �
E.t;x/

cjx � x0j
(F.28)



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 218 of 262.

DRAFT

196 j 6. FORMULÆ

s D
ˇ̌
x � x0

ˇ̌
� .x � x0/ �

v 0

c
(F.29)

x � x0 D .x � x0/ � jx � x0j
v 0

c
(F.30)�

@t 0

@t

�
x

D
jx � x0j

s
(F.31)

F.3 Special relativity

F.3.1 Metric tensor for flat 4D space

�
���

�
D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA (F.32)

F.3.2 Covariant and contravariant four-vectors

v� D ���v
� (F.33)

F.3.3 Lorentz transformation of a four-vector

x0� D ƒ��x
� (F.34)

�
ƒ��

�
D

0BBB@

 �
ˇ 0 0

�
ˇ 
 0 0

0 0 1 0

0 0 0 1

1CCCA (F.35)


 D
1p
1 � ˇ2

(F.36)

ˇ D
v

c
(F.37)

F.3.4 Invariant line element

ds D c
dt


D c d� (F.38)
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F.3.5 Four-velocity

u� D
dx
d�

�

D 
.c; v/ (F.39)

F.3.6 Four-momentum

p� D m0u
�
D

�
E

c
; p

�
(F.40)

F.3.7 Four-current density

j� D �0u
� (F.41)

F.3.8 Four-potential

A� D

�
�

c
; A

�
(F.42)

F.3.9 Field tensor

F �� D @�A� � @�A� (F.43)

�
F ��

�
D

0BBB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

1CCCA (F.44)

F.4 Vector relations

Let x be the position vector (radius vector, coordinate vector) from the origin to
the Cartesian coordinate point .x1; x2; x3/ � .x; y; z/ in 3D Euclidean space R3

and let jxj denote the magnitude (‘length’) of x. Let further ˛.x/; ˇ.x/; : : :, be
arbitrary scalar fields, a.x/;b.x/; : : : , arbitrary vector fields, and A.x/;B.x/; : : : ,
arbitrary rank two tensor fields in this space. Let � denote complex conjugate
and � denote Hermitian conjugate (transposition and, where applicable, complex
conjugation).
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The differential vector operator r is in Cartesian coordinates given by

r �

3X
iD1

Oxi
@

@xi

def
� Oxi

@

@xi

def
� @ (F.45)

where Oxi , i D 1; 2; 3 is the i th unit vector and Ox1 � Ox, Ox2 � Oy , and Ox3 � Oz. In
component (tensor) notation r can be written

ri D @i D

�
@

@x1
;
@

@x2
;
@

@x3

�
D

�
@

@x
;
@

@y
;
@

@z

�
(F.46)

F.4.1 Spherical polar coordinates

F.4.1.1 Base vectors

Or D sin � cos' Ox1 C sin � sin' Ox2 C cos � Ox3 (F.47a)

O™ D cos � cos' Ox1 C cos � sin' Ox2 � sin � Ox3 (F.47b)

O® D � sin' Ox1 C cos' Ox2 (F.47c)

Ox1 D sin � cos' Or C cos � cos' O™ � sin' O® (F.48a)

Ox2 D sin � sin' Or C cos � sin' O™C cos' O® (F.48b)

Ox3 D cos � Or � sin � O™ (F.48c)

F.4.1.2 Directed line element

dx Ox D dl D dr Or C r d� O™C r sin � d' O® (F.49)

F.4.1.3 Solid angle element

d� D sin � d� d' (F.50)

F.4.1.4 Directed area element

d2x On D dS D dS Or D r2d� Or (F.51)

F.4.1.5 Volume element

d3x D dV D dr dS D r2dr d� (F.52)
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F.4.2 Vector and tensor formulæ

In the following, x D xi Oxi and x0 D x0i Oxi are position vectors, k an arbitrary
constant vector, a D a.x/ an arbitrary vector field, r � Oxi

@
@xi

, r 0 � Oxi
@
@x0
i

,
and 1n the n-dimensional unit tensor of rank two.

13 D Oxi Oxi (F.53)

.13/ D

0B@1 0 0

0 1 0

0 0 1

1CA (F.54)

We also introduce the vector

S D Si Oxi (F.55)

where the components Si are the matrices

S1 D

0B@0 0 0

0 0 �i
0 i 0

1CA S2 D

0B@ 0 0 i
0 0 0

�i 0 0

1CA S3 D

0B@0 �i 0

i 0 0

0 0 0

1CA (F.56)

F.4.2.1 General vector and tensor algebraic identities

a � b D b � a D ıijaibj D ab cos � (F.57)

a � b D �b � a D �ijkaj bk Oxi D �jkiakbi Oxj D �kijaibj Oxk (F.58)

.a � b/ D �ia � Sb D �iaS � b (F.59)

A D Aij Oxi Oxj (F.60)

A� D Aij � Oxj Oxi (F.61)

Aij D Oxi � A � Oxj (F.62)

Tr.A/ D Ai i (F.63)

ab D aibj Oxi Oxj (F.64)

a.bC c/ D abC ac (F.65)

.aC b/c D acC bc (F.66)

c � ab D .c � a/b (F.67)

ab � c D a.b � c/ (F.68)

c � ab D .c � a/b (F.69)

ab � c D a.b � c/ (F.70)

ab � cd D .b � c/ad (F.71)

a � .b � c/ D .a � b/ � c (F.72)
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a � .b � c/ D ba � c � ca � b D b.a � c/ � c.a � b/ (F.73)

a � .b � c/C b � .c � a/C c � .a � b/ D 0 (F.74)

.a � b/ � .c � d/ D a � Œb � .c � d/� D .a � c/.b � d/ � .a � d/.b � c/ (F.75)

.a � b/ � .c � d/ D .a � b � d/c � .a � b � c/d (F.76)

F.4.2.2 Special vector and tensor algebraic identities

13 � a D a � 13 D a (F.77)

13 � a D a � 13 (F.78)

.13 � a/ D .a � 13/ D

0B@ 0 �a3 a2

a3 0 �a1

�a2 a1 0

1CA D �iS � a (F.79)

a � .13 � b/ D a � b (F.80)

a � .13 � b/ D a � b (F.81)

13 � .a � b/ D ba � ab (F.82)

F.4.2.3 General vector and tensor analytic identities

r˛ D Oxi@i˛ (F.83)

r a D Oxi Oxj @iaj (F.84)

r � a D @iai (F.85)

a � r D ai@i (F.86)

r � a D �ijk Oxi@jak (F.87)

.r � a/ D �ir � Sa D �ir S � a (F.88)

a � r D �ijk Oxiaj @k (F.89)

r .˛ˇ/ D ˛rˇ C ˇr˛ (F.90)

r .a � b/ D .r a/ � bC .r b/ � a (F.91)

D a � .r � b/C b � .r � a/C .b � r /aC .a � r /b (F.92)

r .a � b/ D .r a/ � b � .r b/ � a (F.93)

r � .˛a/ D a � r˛ C ˛r � a (F.94)

r � .a � b/ D b � .r � a/ � a � .r � b/ (F.95)

r � .ab/ D .r � a/bC a � r b (F.96)

r � .˛a/ D ˛r � a � a � r˛ (F.97)

r � .a � b/ D r � .ba � ab/ (F.98)

r � .ab/ D .r � a/b � a � r b (F.99)
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a � .r � b/ D .r b/ � a � a � r b (F.100)

a � .r � a/ D
1

2
r .a2/ � a � r a (F.101)

.a � r / � b D airbi � a.r � b/ (F.102)

r � .r � a/ D r r � a � r � r a D r .r � a/ � r2a (F.103)

r � r˛ D r2˛ (F.104)

r r � a D r .r � a/ D Oxi@i@jaj (F.105)

r � .r � a/ D 0 (F.106)

r � r˛ D 0 (F.107)

F.4.2.4 Special vector and tensor analytic identities

r � .13˛/ D r˛ (F.108)

r � .13 � a/ D r � a (F.109)

r � .13 � a/ D r � a (F.110)

r � x D 3 (F.111)

r � x D 0 (F.112)

r x D 13 (F.113)

r .x � k/ D k (F.114)

r .x � a/ D aC x.r � a/C .x � r / � a (F.115)

r jxj D
x

jxj
(F.116)

r
�
jx � x0j

�
D

x � x0

jx � x0j
D �r 0

�
jx � x0j

�
(F.117)

r

�
1

jxj

�
D �

x

jxj3
(F.118)

r

�
1

jx � x0j

�
D �

x � x0

jx � x0j3
D �r 0

�
1

jx � x0j

�
(F.119)

r �

�
x

jxj3

�
D �r

2

�
1

jxj

�
D 4�ı.x/ (F.120)

r �

�
x � x0

jx � x0j3

�
D �r

2

�
1

jx � x0j

�
D 4�ı.x � x0/ (F.121)

r �

�
k

jxj

�
D k �

�
r

�
1

jxj

��
D �

k � x

jxj3
(F.122)

r �

�
k �

�
x

jxj3

��
D �r

�
k � x

jxj3

�
if jxj ¤ 0 (F.123)

r
2

�
k

jxj

�
D kr2

�
1

jxj

�
D �4�kı.x/ (F.124)
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r � .k � a/ D k.r � a/C k � .r � a/ � r .k � a/ (F.125)

F.4.2.5 Integral identities

Let V.S/ be the volume bounded by the closed surface S.V /. Denote the 3D
volume element by d3x.� dV / and the surface element, directed along the out-
ward pointing surface normal unit vector On, by dS.� d2x On/. ThenZ

V

d3x r � a D

I
S

dS � a (Gauss’s theorem , divergence theorem) (F.126)Z
V

d3x r˛ D

I
S

dS ˛ (F.127)Z
V

d3x r � a D

I
S

dS � a (F.128)

If S.C / is an open surface bounded by the contour C.S/, whose line element
is dl, thenI

C

dl˛ D

Z
S

dS � r˛ (F.129)I
C

dl � a D

Z
S

dS � .r � a/ (Stokes’ theorem , curl theorem) (F.130)
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MATHEMATICAL METHODS

Physics is the academic discipline which systematically studies and describes the
physical world, finds new fundamental laws of Nature or generalises existing
ones that govern Nature’s behaviour under different conditions, and—perhaps
most important of all—makes new predictions, based on these physical laws.
Then these predictions are put to tough tests in independent, accurately designed,
carefully performed, systematic, repeatable experiments that produce objective
data. Merely describing Nature and explaining physical experiments in terms of
already existing laws is not physics in the true sense of the word. Had this non-
creative, static view of physics been adopted by physicists since the renaissance,
we would all still be doing essentially Newtonian mechanics.

Even if such a scientific giant as M ICHAEL FARADAY, who started out
as a lowly bookbinder apprentice and had very little formal mathematical train-
ing, was able to make truly remarkable contributions to physics (and chemistry)
using practically no formal mathematics whatsoever, it is for us mere mortals
most convenient to use the shorthand language of mathematics, together with
the formal methods of logic, in physics. After all, mathematics was once intro-
duced by us human beings to make it easier to quantitatively and systematically
describe, understand and predict the physical world around us. Examples of
this from ancient times are arithmetics and geometry. A less archaic example is
differential calculus, needed by S IR ISAAC NEWTON to formulate, in a com-
pact and unambiguous manner, the physical laws that bear his name. Another
more modern example is the delta ‘function’ introduced by PAUL ADRIEN

MAURICE D IRAC. But the opposite is also very common: the expansion and
generalisation of mathematics has more than once provided excellent tools for

203
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creating new physical ideas and to better analyse observational data. Examples
of the latter include non-Euclidean geometry and group theory.

Unlike mathematics per se, where the criterion of logical consistency is both
necessary and sufficient, a physical theory that is supposed to describe the phys-
ical reality has to fulfil the additional criterion that its predictions be empiric-
ally testable. Ultimately, as GALILEO GALILEI taught us, physical reality is
defined by the outcome of experiments and observations, and not by mere Ar-
istotelean logical reasoning, however mathematically correct and logically con-
sistent this may be. Common sense is not enough and logic and reasoning can
never ‘outsmart’ Nature. Should the outcome of repeated, carefully performed,
independent experiments produce results that systematically contradict predic-
tions based on a logically stringent theory, the only conclusion one can draw is
that the theory in question is wrong.11 The theoretical physicist S IR

RUDOLF PEIERLS (1907–1995)
described an ideal physical theory
in the following way:

‘It must firstly leave
undisturbed the successes
of earlier work and not
upset the explanations of
observations that had been
used in support of earlier
ideas. Secondly it must
explain in a reasonable
manner the new evidence
which brought the previous
ideas into doubt and
which suggested the
new hypothesis. And
thirdly it must predict
new phenomena or new
relationships between
different phenomena, which
were not known or not
clearly understood at the
time when it was invented.’

On the other hand, extending existing physical theories by mathematical and
logical generalisations is a very powerful way of making hypotheses and pre-
dictions of new physical phenomena. But it is not until these hypotheses and
predictions have withstood empirical tests in physical experiments that they can
be said to extend physics and our knowledge about Nature.

This appendix describes briefly some of the more common mathematical
methods and tools that are used in Classical Electrodynamics.

M.1 Scalars, vectors and tensors

Every physical observable can be represented by a mathematical object. We
have chosen to describe the observables in classical electrodynamics in terms of
scalars, pseudoscalars, vectors, pseudovectors, tensors and pseudotensors, all of
which obey certain canonical rules of transformation under a change of coordin-
ate systems and are completely defined by these rules. Despite certain advant-
ages (and some shortcomings), differential forms will not be exploited to any
significant degree in our mathematical description of physical observables.

A scalar , which may or may not be constant in time and/or space, describes
the scaling of a physical quantity. A vector describes some kind of physical mo-
tion along a curve in space due to vection. A tensor describes the local motion or
deformation of a surface or a volume due to some form of tension and is therefore
a relation between a set vectors. However, generalisations to more abstract no-
tions of these quantities have proved useful and are therefore commonplace. The
difference between a scalar, vector and tensor and a pseudoscalar , pseudovector
and a pseudotensor is that the latter behave differently under those coordinate
transformations that cannot be reduced to pure rotations.
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For computational convenience, it is often useful to allow mathematical ob-
jects representing physical observables to be complex-valued, i.e., to let them
be analytically continued into (a domain of) the complex plane. However, since
by definition our physical world is real, care must be exercised when compar-
ing mathematical results with physical observables, i.e., real-valued numbers
obtained from physical measurements.

Throughout we adopt the convention that Latin indices i; j; k; l; : : : run over
the range 1; 2; 3 to denote vector or tensor components in the real Euclidean
three-dimensional (3D) configuration space R3, and Greek indices�; �; �; �; : : : ,
which are used in four-dimensional (4D) space, run over the range 0; 1; 2; 3.

M.1.1 Vectors

Mathematically, a vector can be represented in a number of different ways. One
suitable representation in a vector space of dimensionN is in terms of an ordered
N -tuple of real or complex numbers2 .a1; a2; : : : ; aN / of the components along 2 It is often very convenient to use

complex notation in physics. This
notation can simplify the math-
ematical treatment considerably.
But since all physical observables
are real, we must in the final step
of our mathematical analysis of a
physical problem always ensure
that the results to be compared
with experimental values are real-
valued. In classical physics this
is achieved by taking the real (or
imaginary) part of the mathem-
atical result, whereas in quantum
physics one takes the absolute
value.

N orthogonal coordinate axes that span the vector space under consideration.
Note, however, that there are many ordered N -tuples of numbers that do not
comprise a vector, i.e., do not exhibit vector transformation properties!

M.1.1.1 Position vector

The most basic vector, and the prototype against which all other vectors are
benchmarked, is the position vector (radius vector , coordinate vector) which is
the vector from the origin of the chosen coordinate system to the actual point
of interest. Its N -tuple representation simply enumerates the coordinates of the
position of this point. In this sense, the vector from the origin to a point is
synonymous with the coordinates of the point itself.

In the 3D Euclidean space R3, we have N D 3 and the position vector x

can be represented by the triplet .x1; x2; x3/ of its coordinates xi , i D 1; 2; 3.
The coordinates xi are scalar quantities which describe the position along the
unit base vectors Oxi which span R3. Therefore a convenient representation of
the position vector in R3 is3

3 We introduce the symbol
def
�

which may be read ‘is, by defin-
ition, to equal in meaning’, or
‘equals by definition’, or, formally,

definiendum
def
� definiens . Another

symbol sometimes used is´.

x D

3X
iD1

xi Oxi
def
� xi Oxi (M.1)

where we have introduced Einstein’s summation convention (E†) which states
that a repeated index in a term implies summation over the range of the index
in question. Whenever possible and convenient we shall in the following always
assume E† and suppress explicit summation in our formulæ. Typographically,



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 228 of 262.

DRAFT

206 j 13. MATHEMATICAL METHODS

we represent a vector or vector operator in 3D Euclidean space R3 by a boldface
letter or symbol in a Roman font, for instance a, r , �, and �.

Alternatively, we can describe the position vector x in component notation
as xi where

xi
def
� .x1; x2; x3/ (M.2)

In Cartesian coordinates44 In spherical polar coordinates
.x1; x2; x3/ D .r; �; '/
and in cylindrical coordinates
.x1; x2; x3/ D .�; '; z/.

.x1; x2; x3/ D .x; y; z/ (M.3)

This component notation is particularly useful in 4D space where we can
represent the (one and the same) position vector either in its contravariant com-
ponent form , (superscript index form) as the quartet

x�
def
� .x0; x1; x2; x3/ (M.4)

or its covariant component form (subscript index form)

x�
def
� .x0; x1; x2; x3/ (M.5)

The relation between the covariant and contravariant forms is determined by
the metric tensor (also known as the fundamental tensor) whose actual form is
dictated by the properties of the vector space in question. The dual representation
of vectors in contravariant and covariant forms is most convenient when we work
in a vector space with an indefinite metric . An example is Lorentz space L4

which is a 4D Riemannian space frequently employed to formulate the special
theory of relativity.

M.1.2 Fields

A field is a physical entity that depends on one or more continuous parameters.
Such a parameter can be viewed as a ‘continuous index’ which enumerates the
‘coordinates’ of the field. In particular, in a field which depends on the usual
position vector x of R3, each point in this space can be considered as one degree
of freedom so that a field is a representation of a physical entity which has an
infinite number of degrees of freedom.

M.1.2.1 Scalar fields

We denote an arbitrary scalar field in R3 by

˛.x/ D ˛.x1; x2; x3/
def
� ˛.xi / (M.6)
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This field describes how the scalar quantity ˛ varies continuously in 3D R3

space.
In 4D, a four-scalar field is denoted

˛.x0; x1; x2; x3/
def
� ˛.x�/ (M.7)

which indicates that the four-scalar ˛ depends on all four coordinates spanning
this space. Since a four-scalar has the same value at a given point regardless of
coordinate system, it is also called an invariant .

M.1.2.2 Vector fields

We can represent an arbitrary 3D vector field a.x/ as follows:

a.x/ D ai .x/Oxi 2 R3 (M.8)

In component notation this same vector can be represented as

ai .x/ D .a1.x/; a2.x/; a3.x// D ai .xj / (M.9)

A 3D complex vector field c.x/ is a vector in C3 (or, if we like, in R6),
expressed in terms of two real vectors cR and cI in R3 in the following way

c.x/
def
� cR.x/C icI.x/ D cR.x/OcR C icI.x/OaI

def
� c.x/Oc 2 C3 (M.10)

which means that

Re fcg D cR (M.11a)

Im fcg D cI (M.11b)

The use of complex vectors is in many cases a very convenient and powerful
technique but requires extra care since physical observables must be represented
by real vectors (2 R3).

BComplex representation of a rotating vector EXAMPLE M .1

Let us consider the complex vector

c D C ei!t .Ox1 ˙ iOx2/ D C
�

cos.!t/C i sin.!t/
�
.Ox1 ˙ iOx2/

D C
�

cos.!t/Ox1 � sin.!t/Ox2
�
C iC

�
sin.!t/Ox1 ˙ cos.!t/Ox2

� (M.12)

We see that the real part of this vector describes a rotation in positive or negative sense,
depending on the sign.

End of example M.1C
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In 4D, an arbitrary four-vector field in contravariant component form can be
represented as

a�.x�/ D .a0.x�/; a1.x�/; a2.x�/; a3.x�// (M.13)

or, in covariant component form, as

a�.x
�/ D .a0.x

�/; a1.x
�/; a2.x

�/; a3.x
�// (M.14)

where x� is the position four-vector (radius four-vector , coordinate four-vector).
Again, the relation between a� and a� is determined by the metric of the phys-
ical 4D system under consideration.

M.1.2.3 Coordinate transformations

We note that for a change of coordinates x� ! x0� D x0�.x0; x1; x2; x3/, due
to a transformation from one coordinate system † to another coordinate system
†0, the differential position vector dx� transforms as

dx0� D
@x0�

@x�
dx� (M.15)

This follows trivially from the rules of differentiation of x0� considered as a
function of four variables x� , i.e., x0� D x0�.x�/. Analogous to the transform-
ation rule for the differential dx�, equation (M.15), the transformation rule for
the differential operator @=@x� under a transformation x� ! x0� becomes

@

@x0�
D
@x�

@x0�
@

@x�
(M.16)

which, again, follows trivially from the rules of differentiation.
Whether an arbitrary N -tuple fulfils the requirement of being an (N -dimen-

sional) contravariant vector or not, depends on its transformation properties
during a change of coordinates. For instance, in 4D an assemblage y� D
.y0; y1; y2; y3/ constitutes a contravariant four-vector (or the contravariant com-
ponents of a four-vector) if and only if, during a transformation from a system
† with coordinates x� to a system †0 with coordinates x0�, it transforms to the
new system according to the rule

y0� D
@x0�

@x�
y� (M.17)

i.e., in the same way as the differential coordinate element dx� transforms ac-
cording to equation (M.15) above.

The analogous requirement for a covariant four-vector is that it transforms,
during the change from † to †0, according to the rule

y0� D
@x�

@x0�
y� (M.18)

i.e., in the same way as the differential operator @=@x� transforms according to
equation (M.16).
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M.1.2.4 Tensor fields

We denote an arbitrary tensor field in R3 by A.x/. This tensor field can be
represented in a number of ways, for instance in the following matrix represent-
ation:5 5 When a mathematical object

representing a physical observable
is given in matrix representation,
we indicate this by enclosing the
mathmatical object in question in
parentheses, i.e., .: : :/.

�
A.x/

� def
�
�
Aij .xk/

� def
�

0B@A11.x/ A12.x/ A13.x/

A21.x/ A22.x/ A23.x/

A31.x/ A32.x/ A33.x/

1CA (M.19)

Strictly speaking, the tensor field described here is a tensor of rank two.
A particularly simple rank two tensor in R3 is the 3D Kronecker delta tensor

ıij , with the following properties:

ıij D

(
0 if i ¤ j

1 if i D j
(M.20)

The 3D Kronecker delta tensor has the following matrix representation

.ıij / D

0B@1 0 0

0 1 0

0 0 1

1CA (M.21)

Another common and useful tensor is the fully antisymmetric tensor of rank
three, also known as the Levi-Civita tensor

�ijk D

8̂̂<̂
:̂
1 if i; j; k is an even permutation of 1,2,3

0 if at least two of i; j; k are equal

�1 if i; j; k is an odd permutation of 1,2,3

(M.22)

Clearly, this tensor fulfils the relations

�ijk D �jki D �kij (M.23)

and

�ijk D ��j ik D ��ikj (M.24)

and has the following further property

�ijk�ilm D ıjlıkm � ıjmıkl (M.25)

In fact, tensors may have any rank n. In this picture, a scalar is considered
to be a tensor of rank n D 0 and a vector to be a tensor of rank n D 1. Con-
sequently, the notation where a vector (tensor) is represented in its component
form is called the tensor notation . A tensor of rank n D 2may be represented by
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a two-dimensional array or matrix, and a tensor of rank n D 3 may be represen-
ted as a vector of tensors of rank n D 2. Assuming that one of the indices of the
Levi-Civita tensor �ijk , e.g., the first index i D 1; 2; 3, denotes the component of
such a vector of tensors, these components have the matrix representations (the
second and third indices, j; k D 1; 2; 3, are the matrix indices)

�
.�ijk/iD1

�
D

0B@�111 �112 �113

�121 �122 �123

�131 �132 �133

1CA D
0B@0 0 0

0 0 1

0 �1 0

1CA D iS1 (M.26a)

�
.�ijk/iD2

�
D

0B@�211 �212 �213

�221 �222 �223

�231 �232 �233

1CA D
0B@0 0 �1

0 0 0

1 0 0

1CA D iS2 (M.26b)

�
.�ijk/iD3

�
D

0B@�311 �312 �313

�321 �322 �323

�331 �332 �333

1CA D
0B@ 0 1 0

�1 0 0

0 0 0

1CA D iS3 (M.26c)

Here we have introduced the matrix vector

S D Si Oxi (M.27)

where the vector components Si are the matrices66 These matrices are the spin
operators for a (classical) 3D
vector field.

S1 D

0B@0 0 0

0 0 �i
0 i 0

1CA S2 D

0B@ 0 0 i
0 0 0

�i 0 0

1CA S3 D

0B@0 �i 0

i 0 0

0 0 0

1CA (M.28)

which satisfy the angular-momentum commutation rule

ŒSi ;Sj � D �i�ijkSk (M.29)

Tensors of rank higher than 3 are best represented in their tensor notation
(component form). It is important to remember that a tensor of any rank is fully
and totally characterized by its transformation properties under the change of
coordinates. This is a very strict constraint.

BTensors in 3D spaceEXAMPLE M .2
Consider a tetrahedron-like volume element V of a solid, fluid, or gaseous body, whose
atomistic structure is irrelevant for the present analysis; figure M.1 on the next page indicates
how this volume may look like. Let dS D d2x On be the directed surface element of this
volume element and let the vector T On d2x be the force that matter, lying on the side of d2x
toward which the unit normal vector On points, acts on matter which lies on the opposite side
of d2x. This force concept is meaningful only if the forces are short-range enough that they
can be assumed to act only in the surface proper. According to Newton’s third law, this
surface force fulfils

T�On D � T On (M.30)

Using (M.30) and Newton’s second law, we find that the matter of massm, which at a given
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x1

d2x

On

x3

x2

V

Figure M.1: Tetrahedron-like
volume element V containing
matter.

instant is located in V obeys the equation of motion

T On d2x � cos �1T Ox1 d2x � cos �2T Ox2 d2x � cos �3T Ox3 d2x C Fext D ma (M.31)

where Fext is the external force and a is the acceleration of the volume element. In other
words

T On D n1T Ox1 C n2T Ox2 C n3T Ox3 C
m

d2x

�
a �

Fext

m

�
(M.32)

Since both a and Fext=m remain finite whereas m=d2x ! 0 as V ! 0, one finds that in
this limit

T On D

3X
iD1

niT Oxi � niT Oxi (M.33)

From the above derivation it is clear that equation (M.33) is valid not only in equilibrium
but also when the matter in V is in motion.

Introducing the notation

Tij D
�
T Oxi

�
j

(M.34)

for the j th component of the vector T Oxi , we can write equation (M.33) above in component
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form as follows

T Onj D .T On/j D

3X
iD1

niTij � niTij (M.35)

Using equation (M.35), we find that the component of the vector T On in the direction of an
arbitrary unit vector Om is

T On Om D T On � Om

D

3X
jD1

T Onjmj D

3X
jD1

 
3X
iD1

niTij

!
mj � niTijmj D On � T � Om

(M.36)

Hence, the j th component of the vector T Oxi , here denoted Tij , can be interpreted as the
ij th component of a tensor T. Note that T On Om is independent of the particular coordinate
system used in the derivation.

We shall now show how one can use the momentum law (force equation) to derive the
equation of motion for an arbitrary element of mass in the body. To this end we consider a
part V of the body. If the external force density (force per unit volume) is denoted by f and
the velocity for a mass element dm is denoted by v , we obtain

d
dt

Z
V

v dm D
Z
V

f d3x C
Z
S

T On d2x (M.37)

The j th component of this equation can be writtenZ
V

d
dt
vj dm D

Z
V
fj d3x C

Z
S
T Onj d2x D

Z
V
fj d3x C

Z
S
niTij d2x (M.38)

where, in the last step, equation (M.35) above was used. Setting dm D � d3x and using the
divergence theorem on the last term, we can rewrite the result asZ

V
�

d
dt
vj d3x D

Z
V
fj d3x C

Z
V

@Tij

@xi
d3x (M.39)

Since this formula is valid for any arbitrary volume, we must require that

�
d
dt
vj � fj �

@Tij

@xi
D 0 (M.40)

or, equivalently

�
@vj

@t
C �v � rvj � fj �

@Tij

@xi
D 0 (M.41)

Note that @vj =@t is the rate of change with time of the velocity component vj at a fixed
point x D .x1; x1; x3/.

End of example M.2C



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 235 of 262.

DRAFT

M.1. Scalars, vectors and tensors j 213

In 4D, we have three forms of four-tensor fields of rank n. We speak of

� a contravariant four-tensor field , denoted A�1�2:::�n.x�/,

� a covariant four-tensor field , denoted A�1�2:::�n.x
�/,

� a mixed four-tensor field , denoted A�1�2:::�k�kC1:::�n.x
�/.

The 4D metric tensor (fundamental tensor) mentioned above is a particularly
important four-tensor of rank two. In covariant component form we shall denote
it g�� . This metric tensor determines the relation between an arbitrary contrav-
ariant four-vector a� and its covariant counterpart a� according to the following
rule:

a�.x
�/

def
� g��a

�.x�/ (M.42)

This rule is often called lowering of index . The raising of index analogue of the
index lowering rule is:

a�.x�/
def
� g��a�.x

�/ (M.43)

More generally, the following lowering and raising rules hold for arbitrary
rank n mixed tensor fields:

g�k�kA
�1�2:::�k�1�k
�kC1�kC2:::�n

.x�/ D A�1�2:::�k�1�k�kC1:::�n
.x�/ (M.44)

g�k�kA�1�2:::�k�1�k�kC1:::�n
.x�/ D A�1�2:::�k�1�k�kC1�kC2:::�n

.x�/ (M.45)

Successive lowering and raising of more than one index is achieved by a repeated
application of this rule. For example, a dual application of the lowering operation
on a rank two tensor in its contravariant form yields

A�� D g��g��A
�� (M.46)

i.e., the same rank two tensor in its covariant form.

BContravariant and covariant vectors in flat Lorentz space EXAMPLE M .3

The 4D Lorentz space L4 has a simple metric which can be described by the metric tensor

g�� D ��� D

8̂<̂
:
1 if � D � D 0

�1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(M.47)

which in matrix notation becomes

.���/ D

0BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA (M.48)

i.e., a matrix with a main diagonal that has the sign sequence, or signature , fC;�;�;�g.
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Alternatively, one can define the metric tensor in L4 as

��� D

8̂<̂
:
�1 if � D � D 0

1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(M.49)

which in matrix representation becomes

.���/ D

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA (M.50)

i.e., a matrix with signature f�;C;C;Cg. Of course, the physics is unaffected by the choice
of metric tensor.

Consider an arbitrary contravariant four-vector a� in this space. In component form it can
be written:

a�
def
� .a0; a1; a2; a3/ D .a0; a/ (M.51)

According to the index lowering rule, equation (M.42) on the preceding page, we obtain the
covariant version of this vector as

a�
def
� .a0; a1; a2; a3/ D ���a

� (M.52)

In the fC;�;�;�g metric we obtain

� D 0 W a0 D 1 � a
0
C 0 � a1 C 0 � a2 C 0 � a3 D a0 (M.53)

� D 1 W a1 D 0 � a
0
� 1 � a1 C 0 � a2 C 0 � a3 D �a1 (M.54)

� D 2 W a2 D 0 � a
0
C 0 � a1 � 1 � a2 C 0 � a3 D �a2 (M.55)

� D 3 W a3 D 0 � a
0
C 0 � a1 C 0 � a2 � 1 � a3 D �a3 (M.56)

or

a� D .a0; a1; a2; a3/ D .a
0;�a1;�a2;�a3/ D .a0;�a/ (M.57)

The radius 4-vector itself in L4 and in this metric is given by

x� D .x0; x1; x2; x3/ D .ct; x; y; z/ D .ct;x/

x� D .x0; x1; x2; x3/ D .ct;�x
1;�x2;�x3/ D .ct;�x/

(M.58)

Analogously, using the f�;C;C;Cg metric we obtain

a� D .a0; a1; a2; a3/ D .�a
0; a1; a2; a3/ D .�a0; a/ (M.59)

End of example M.3C
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M.1.3 Vector algebra

M.1.3.1 Scalar product

The scalar product (dot product , inner product) of two arbitrary 3D vectors a

and b in Euclidean R3 space is the scalar number

a � b D ai Oxi � bj Oxj D Oxi � Oxjaibj D ıijaibj D aibi (M.60)

where we used the fact that the scalar product Oxi � Oxj is a representation of the
Kronecker delta ıij defined in equation (M.20) on page 209.7 The scalar product 7 In the Russian literature, the 3D

scalar product is often denoted
.ab/.

of a vector a in R3 with itself is

a � a
def
� .a/2 D jaj2 D .ai /

2
D a2 (M.61)

and similarly for b. This allows us to write

a � b D ab cos � (M.62)

where � is the angle between a and b.

BScalar products in complex vector space EXAMPLE M .4

Let c be a complex vector defined as in expression (M.10) on page 207.

The inner product of c with itself may be defined as

c2
def
� c � c D c2R � c2I C 2icR � cI

def
� c2 2 C (M.63)

from which we find that

c D

q
c2R � c2I C 2icR � cI 2 C (M.64)

Using this in equation (M.10) on page 207, we see that we can define the complex unit
vector as being

Oc D
c

c
D

cRq
c2R � c2I C 2icR � cI

OcR C i
cIq

c2R � c2I C 2icR � cI

OcI

D

cR

q
c2R � c2I � 2icR � cI

.c2R C c2I /

s
1 �

4c2Rc2I sin2 �

.c2R C c2I /
2

OcR C i
cI

q
c2R � c2I � 2icR � cI

.c2R C c2I /

s
1 �

4c2Rc2I sin2 �

.c2R C c2I /
2

OcI 2 C3

(M.65)

On the other hand, the definition of the scalar product in terms of the inner product of a
complex vector with its own complex conjugate yields

jcj2
def
� c � c� D c2R C c2I D jcj

2 (M.66)

with the help of which we can define the unit vector as
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Oc D
c

jcj
D

cRq
c2R C c2I

OcR C i
cIq

c2R C c2I

OcI

D

cR

q
c2R C c2I

c2R C c2I
OcR C i

cI

q
c2R C c2I

c2R C c2I
OcI 2 C3

(M.67)

End of example M.4C

In 4D space we define the scalar product of two arbitrary four-vectors a� and
b� in the following way

a�b
�
D g��a

�b� D a�b� D g
��a�b� (M.68)

where we made use of the index lowering and raising rules (M.42) and (M.43).
The result is a four-scalar, i.e., an invariant which is independent of in which 4D
coordinate system it is measured.

The quadratic differential form

ds2 D g��dx�dx� D dx�dx� (M.69)

i.e., the scalar product of the differential position four-vector with itself, is an
invariant called the metric . It is also the square of the line element ds which is
the distance between neighbouring points with coordinates x� and x� C dx�.

BScalar product, norm and metric in Lorentz spaceEXAMPLE M .5

In L4 the metric tensor attains a simple form [see example M.3 on page 213] and, hence,
the scalar product in equation (M.68) above can be evaluated almost trivially. For the
fC;�;�;�g signature it becomes

a�b
�
D .a0;�a/ � .b0;b/ D a0b

0
� a � b (M.70)

The important scalar product of the L4 radius four-vector with itself becomes

x�x
�
D .x0;�x/ � .x0;x/ D .ct;�x/ � .ct;x/

D .ct/2 � .x1/2 � .x2/2 � .x3/2 D s2
(M.71)

which is the indefinite, real norm of L4. The L4 metric is the quadratic differential form

ds2 D dx�dx� D c2.dt /2 � .dx1/2 � .dx2/2 � .dx3/2 (M.72)

End of example M.5C
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M.1.3.2 Vector product

The vector product or cross product of two arbitrary 3D vectors a and b in
ordinary R3 space is the vector8 8 Sometimes the 3D vector product

of a and b is denoted a ^ b
or, particularly in the Russian
literature, Œab�.

c D a � b D �ijk Oxiaj bk D �ijkaj bk Oxi (M.73)

Here �ijk is the Levi-Civita tensor defined in equation (M.22) on page 209. Al-
ternatively,

a � b D ab sin � Oe (M.74)

where � is the angle between a and b and Oe is a unit vector perpendicular to the
plane spanned by a and b.

A spatial reversal of the coordinate system, .x01; x
0
2; x
0
3/ D .�x1;�x2;�x3/,

known as a parity transformation , changes sign of the components of the vectors
a and b so that in the new coordinate system a0 D �a and b0 D �b, which is to
say that the direction of an ordinary vector is not dependent on the choice of the
directions of the coordinate axes. On the other hand, as is seen from equation
(M.73) above, the cross product vector c does not change sign. Therefore a (or
b) is an example of a ‘true’ vector, or polar vector , whereas c is an example of
an pseudovector or axial vector .

A prototype for a pseudovector is the angular momentum vector L D x � p

and hence the attribute ‘axial’. Pseudovectors transform as ordinary vectors un-
der translations and proper rotations, but reverse their sign relative to ordinary
vectors for any coordinate change involving reflection. Tensors (of any rank)
which transform analogously to pseudovectors are called pseudotensors . Scal-
ars are tensors of rank zero, and zero-rank pseudotensors are therefore also called
pseudoscalars , an example being the pseudoscalar Oxi � .Oxj � Oxk/ D Oxi � .�ijk Oxi /.
This triple product is a representation of the ijk component of the rank three
Levi-Civita pseudotensor �ijk .

M.1.3.3 Dyadic product

The dyadic product field A.x/ � a.x/b.x/ with two juxtaposed vector fields
a.x/ and b.x/ is the outer product of a and b known as a dyad . Here a is called
the antecedent and b the consequent .

The dyadic product between vectors (rank one tensors) is a special instance
of the direct product , usually denoted˝, between arbitrary rank tensors. This as-
sociative but non-commuting operation is also called the tensor product or, when
applied to matrices (matrix representations of tensors), the Kronecker product .

Written out in explicit form, the dyadic product A.x/ D a.x/b.x/ becomes

A D ab � a˝ b D a1 Ox1b1 Ox1 C a1 Ox1b2 Ox2 C � � � C a3 Ox3b3 Ox3 (M.75a)
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D ai Oxibj Oxj D aibj Oxi Oxj D Oxiaibj Oxj (M.75b)

D

�
Ox1 Ox2 Ox3

�0B@a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

1CA
0B@Ox1Ox2
Ox3

1CA (M.75c)

In matrix representation

.A/ D .ab/ � .a˝ b/ D

0B@a1a2
a3

1CA�b1 b2 b3

�
D

0B@a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

1CA
(M.76)

which we identify with expression (M.19) on page 209, viz. a tensor in matrix
representation. Hence, a dyadic of two vectors is intimately related to a rank two
tensor, emphasising its vectorial characteristics.

Scalar multiplication from the right or from the left of the dyad A.x/ D
a.x/b.x/ by a vector c, produces other vectors according to the scheme

A � c
def
� ab � c

def
� a.b � c/ D aj bici Oxj (M.77a)

c � A
def
� c � ab

def
� .c � a/b D aibj ci Oxj (M.77b)

respectively. These two vectors, proportional to a and b, respectively, are in
general not identical to each other. In the first case, c is known as the postfactor ,
in the second case as the prefactor .

Specifically, if c D Oxj , then

A � Oxj D abj D aibj Oxi (M.78a)

Oxj � A D ajb D aj bi Oxi (M.78b)

which means that

Oxi � A � Oxj D aibj D Aij (M.78c)

The vector product can be represented in matrix form as follows:

.c/ D

0B@c1c2
c3

1CA D .a � b/ D

0B@a2b3 � a3b2a3b1 � a1b3

a1b2 � a2b1

1CA D �ia � Sb D �iaS � b (M.79)

where Sb is dyadic product of the matrix vector S,given by formula (M.27) on
page 210, and the vector b, and aS is the dyadic product of the vector a and the
matrix vector S.
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BMatrix representation of the vector product in R3 EXAMPLE M .6

Prove that the matrix representation of the vector product c D a � b is given by formula
(M.79).

According to formula (M.77) on the facing page, the scalar multiplication of a dyadic
product of two vectors (in our case S and b) from the left by a vector (in our case a) is
interpreted as a � Sb D .a � S/b where

a � S D aiSi (M.80)

and the components Si are given by formula (M.28) on page 210. Hence

a � S D a1

0@0 0 0

0 0 �i
0 i 0

1AC a2
0@ 0 0 i
0 0 0

�i 0 0

1AC a3
0@0 �i 0

i 0 0

0 0 0

1A
D i

240@0 0 0

0 0 �a1
0 a1 0

1AC
0@ 0 0 a2
0 0 0

�a2 0 0

1AC
0@ 0 �a3 0

a3 0 0

0 0 0

1A35
D i

0@ 0 �a3 a2
a3 0 �a1
�a2 a1 0

1A
(M.81)

from which we find that

.a � S/b D i

0@ 0 �a3 a2
a3 0 �a1
�a2 a1 0

1A0@b1b2
b3

1A D i

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A (M.82)

In other words,

�i.a � S/b D �ia � Sb D

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A D .a � b/ (M.83)

Likewise, aS � b D a.S � b/ where

S � b D Sibi D

0@0 0 0

0 0 �i
0 i 0

1A b1 C
0@ 0 0 i
0 0 0

�i 0 0

1A b2 C
0@0 �i 0

i 0 0

0 0 0

1A b3
D i

0@ 0 �b3 b2
b3 0 �b1
�b2 b1 0

1A
(M.84)

and

a.S � b/ D i
�
a1 a2 a3

�0@ 0 �b3 b2
b3 0 �b1
�b2 b1 0

1A D i

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A (M.85)

from which follows

�ia.S � b/ D �iaS � b D

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A D .a � b/ (M.86)

Hence, .a � b/ D �ia � Sb D �iaS � b QED�

End of example M.6C
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Vector multiplication from the right and from the left of the dyad A by a
vector is another dyad according to the scheme

A � c D ab � c
def
� a.b � c/ D �jklaibkcl Oxi Oxj (M.87a)

c � A D c � ab
def
� .c � a/b D �jklalbick Oxj Oxi D �iklalbj ck Oxi Oxj (M.87b)

respectively. In general, the two new dyads thus created are not identical to each
other.

Specifically, if A D 13 D Oxi Oxi , i.e., the unit dyad or the second-rank unit
tensor , then

13 � c D � c3 Ox1 Ox2 C c2 Ox1 Ox3

C c3 Ox2 Ox1 � c1 Ox2 Ox3

� c2 Ox1 Ox3 C c1 Ox3 Ox2 D c � 13

(M.88)

or, in matrix representation,

.13 � c/ D

0B@ 0 �c3 c2

c3 0 �c1

�c2 c1 0

1CA D .c � 13/ (M.89)

Using the matrix vector formula (M.27) on page 210, we can write this as

.13 � c/ D .c � 13/ D �iS � c (M.90)

One can extend the dyadic scheme and introduce abc, called a tryad , and so
on. In this vein, a vector a is sometimes called a monad .

M.1.4 Vector analysis

M.1.4.1 The del operator

In R3 the del operator is a differential vector operator , denoted in Gibbs’ nota-
tion by r and defined as99 This operator was introduced by

W ILLIAM ROWEN HAMILTON
(1805–1865) who, however, used
the symbol B for it. It is therefore
sometimes called the Hamilton
operator .

r D Oxiri
def
� Oxi

@

@xi

def
�

@

@x

def
� @ (M.91)

where Oxi is the i th unit vector in a Cartesian coordinate system. Since the oper-
ator in itself has vectorial properties, we denote it with a boldface nabla (r ).

In ‘component’ (tensor) notation the del operator can be written

@i D

�
@

@x1
;
@

@x2
;
@

@x3

�
(M.92)
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In 4D, the contravariant component representation of the four-del operator is
defined by

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
(M.93)

whereas the covariant four-del operator is

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
(M.94)

We can use this four-del operator to express the transformation properties
(M.17) and (M.18) on page 208 as

y0� D
�
@�x
0�
�
y� (M.95)

and

y0� D
�
@0�x

�
�
y� (M.96)

respectively.

M.1.4.2 The gradient of a scalar field

The gradient of an R1 scalar field ˛.x/, is an R3 vector field

grad˛.x/
def
� r˛.x/ D @˛.x/ D Oxi@i˛.x/ (M.97)

If the scalar field depends only on one coordinate, � say, then

r˛.x/ D r˛.�/ D O—
@˛.�/

@�
D O—r˛.�/ (M.98)

and, therefore, r D O—r. From this we see that the boldface notation for the
gradient (r ) is very handy as it elucidates its 3D vectorial property and separates
it from the nabla operator (r) which has a scalar property.

In 4D, the four-gradient of a four-scalar is a covariant vector, formed as a
derivative of a four-scalar field ˛.x�/, with the following component form:

@�˛.x
�/ D

@˛.x�/

@x�
(M.99a)

with the contravariant form

@�˛.x�/ D
@˛.x�/

@x�
(M.99b)
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BGradient of a scalar product of two vector fieldsEXAMPLE M .7

The gradient of the scalar product of two vector fields a and b can be calculated in the
following way:

r .a � b/ D .Oxi@i /.aj Oxj � bk Oxk/

D Œ.Oxi@i /.aj Oxj /� � .bk Oxk/C .aj Oxj / � Œ.Oxi@i /.bk Oxk/�

D .Oxi@iaj Oxj / � bC .Oxi@ibk Oxk/ � a D .r a/ � bC .r b/ � a

(M.100)

This is the first version of formula (F.91) on page 200.

End of example M.7C

M.1.4.3 The divergence of a vector field

We define the 3D divergence of a vector field a in R3 as

div a.x/
def
� r � a.x/ D

@ai .x/

@xi
D @iai .x/ (M.101)

which, as indicated by the notation ˛.x/, is a scalar field in R3.
The four-divergence of a four-vector a� is the four-scalar

@�a
�.x�/ D

@a�.x�/

@x�
(M.102)

M.1.4.4 The curl of a vector field

In R3 the curl of a vector field a.x/ is another R3 vector field defined in the
following way:

curl a.x/
def
� r � a.x/ D �ijk Oxi@jak.x/ D �ijk Oxi

@ak.x/

@xj
(M.103)

where use was made of the Levi-Civita tensor, introduced in equation (M.22) on
page 209. If a is an ordinary vector (polar vector), then r � a is a pseudovector
(axial vector) and vice versa.

Similarly to formula (M.79) on page 218, we can write the matrix represent-
ation of the curl in R3 as

.r � a/ D

0B@@2a3 � @3a2@3a1 � @1a3

@1a2 � @2a1

1CA D �ir � Sa D �ir S � a (M.104)

where S is the matrix vector given by formula (M.27) on page 210.
The covariant 4D generalisation of the curl of a four-vector field a�.x�/ is

the antisymmetric four-tensor field

A��.x
�/ D @�a�.x

�/ � @�a�.x
�/ D �A��.x

�/ (M.105)

A vector with vanishing curl is said to be irrotational .
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M.1.4.5 The Laplacian

The 3D Laplace operator or Laplacian can be described as the divergence of the
del operator:

r � r D r2
def
� � D @2i D

@2

@x2i
�

3X
iD1

@2

@x2i
(M.106)

The symbol r2 is sometimes read del squared . If, for a scalar field ˛.x/,
r2˛ < 0 at some point in 3D space, ˛ has a concentration at that point.

Numerous vector algebra and vector analysis formulæ are given in appendix
F. Those which are not found there can often be easily derived by using the
component forms of the vectors and tensors, together with the Kronecker and
Levi-Civita tensors and their generalisations to higher ranks and higher dimen-
sions.

BThe four-del operator in Lorentz space EXAMPLE M .8

In L4 the contravariant form of the four-del operator can be represented as

@� D

�
1

c

@

@t
;�@

�
D

�
1

c

@

@t
;�r

�
(M.107)

and the covariant form as

@� D

�
1

c

@

@t
; @

�
D

�
1

c

@

@t
;r

�
(M.108)

Taking the scalar product of these two, one obtains

@�@� D
1

c2
@2

@t2
� r

2
D �2 (M.109)

which is the d’Alembert operator , sometimes denoted �, and sometimes defined with an
opposite sign convention.

End of example M.8C
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BGradients of scalar functions of relative distances in 3DEXAMPLE M .9

Very often electrodynamic quantities are dependent on the relative distance in R3 between
two vectors x and x0, i.e., on jx � x0j. In analogy with equation (M.91) on page 220, we
can define the primed del operator in the following way:

r 0 D Oxi
@

@x0i
D @0 (M.110)

Using this, the corresponding unprimed version, viz., equation (M.91) on page 220, and
elementary rules of differentiation, we obtain the following very useful result:

r
�
jx � x0j

�
D Oxi

@jx � x0j

@xi
D Oxi

@

q
.x1 � x

0
1/
2
C .x2 � x

0
2/
2
C .x3 � x

0
3/
2

@xi

D Oxi
.xi � x

0
i /

jx � x0j
D

x � x0

jx � x0j
D �Oxi

@jx � x0j

@x0i
D �r 0

�
jx � x0j

�
(M.111)

Likewise

r

�
1

jx � x0j

�
D �

x � x0

jx � x0j3
D �r 0

�
1

jx � x0j

�
(M.112)

End of example M.9C

BDivergence in 3DEXAMPLE M .10

For an arbitrary R3 vector field a.x0/, the following relation holds:

r 0 �

�
a.x0/

jx � x0j

�
D

r 0 � a.x0/

jx � x0j
C a.x0/ � r 0

�
1

jx � x0j

�
(M.113)

which demonstrates how the primed divergence, defined in terms of the primed del operator
in equation (M.110), works.

End of example M.10C

BThe Laplacian and the Dirac deltaEXAMPLE M .11

A very useful formula in 3D R3 is

r � r

�
1

jx � x0j

�
D r

2

�
1

jx � x0j

�
D �4�ı.x � x0/ (M.114)

where ı.x � x0/ is the 3D Dirac delta ‘function’. This formula follows directly from the
fact thatZ

V
d3x r � r

�
1

jx � x0j

�
D

Z
V

d3x r �

�
�

x � x0

jx � x0j3

�
D

I
S

d2x On �
�
�

x � x0

jx � x0j3

�
(M.115)

equals�4� if the integration volume V.S/, enclosed by the surface S.V /, includes x D x0,
and equals 0 otherwise.

End of example M.11C
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BThe curl of a gradient EXAMPLE M .12

Using the definition of the R3 curl, equation (M.103) on page 222, and the gradient, equation
(M.97) on page 221, we see that

r � Œr˛.x/� D �ijk Oxi@j @k˛.x/ (M.116)

which, due to the assumed well-behavedness of ˛.x/, vanishes:

�ijk Oxi@j @k˛.x/ D �ijk
@

@xj

@

@xk
˛.x/Oxi

D

 
@2

@x2@x3
�

@2

@x3@x2

!
˛.x/Ox1

C

 
@2

@x3@x1
�

@2

@x1@x3

!
˛.x/Ox2

C

 
@2

@x1@x2
�

@2

@x2@x1

!
˛.x/Ox3

� 0

(M.117)

We thus find that

r � Œr˛.x/� � 0 (M.118)

for any arbitrary, well-behaved R3 scalar field ˛.x/.

In 4D we note that for any well-behaved four-scalar field ˛.x�/

.@�@� � @�@�/˛.x
�/ � 0 (M.119)

so that the four-curl of a four-gradient vanishes just as does a curl of a gradient in R3.

Hence, a gradient is always irrotational.

End of example M.12C

BThe divergence of a curl EXAMPLE M .13
With the use of the definitions of the divergence (M.101) and the curl, equation (M.103) on
page 222, we find that

r � Œr � a.x/� D @i Œr � a.x/�i D �ijk@i@j ak.x/ (M.120)

Using the definition for the Levi-Civita symbol, defined by equation (M.22) on page 209,
we find that, due to the assumed well-behavedness of a.x/,

@i �ijk@j ak.x/ D
@

@xi
�ijk

@

@xj
ak

D

 
@2

@x2@x3
�

@2

@x3@x2

!
a1.x/

C

 
@2

@x3@x1
�

@2

@x1@x3

!
a2.x/

C

 
@2

@x1@x2
�

@2

@x2@x1

!
a3.x/

� 0

(M.121)
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i.e., that

r � Œr � a.x/� � 0 (M.122)

for any arbitrary, well-behaved R3 vector field a.x/.

In 4D, the four-divergence of the four-curl is not zero, for

@�A
�
� D @

�@�a
�.x�/ ��2a�.x�/ ¤ 0 (M.123)

End of example M.13C

BA non-trivial vector analytic triple product formulaEXAMPLE M .14

When differential operators appear inside multiple-product vector formulæ, one has to en-
sure that the range of the operator is taken into account in a proper and correct manner. The
following calculation of the triple product .a�r /� b, where a and b are 3D vector fields,
illustrates how this situation can be handled.

.a � r / � b D .�ijk Oxiaj @k/ � b D .�ijkaj @k/.Oxi � b/

D .�ijkaj @k/.�lmn Oxlıimbn/ D �ijk�lmnıim Oxlaj @kbn

D �ijk�lin Oxlaj @kbn D ��ijk�iln Oxlaj @kbn

(M.124a)

where dummy summation indices were changed. Using formula (M.25) on page 209 with
m D n, we can rewrite this as

.a � r / � b D � .ıjlıkn � ıjnıkl /Oxlaj @kbn

D Oxkaj @kbj � Oxj aj @kbk

D airbi � a.r � b/

(M.124b)

This is formula (F.102) on page 201.

End of example M.14C
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M.2 Analytical mechanics

M.2.1 Lagrange’s equations

As is well known from elementary analytical mechanics, the Lagrange function
or Lagrangian L is given by

L.qi ; Pqi ; t / D L

�
qi ;

dqi
dt
; t

�
D T � V (M.125)

where qi is the generalised coordinate , T the kinetic energy and V the potential
energy of a mechanical system, Using the action

S D

Z t2

t1

dt L.qi ; Pqi ; t / (M.126)

and the variational principle with fixed endpoints t1 and t2,

ıS D 0 (M.127)

one finds that the Lagrangian satisfies the Euler-Lagrange equations

d
dt

�
@L

@ Pqi

�
�
@L

@qi
D 0 (M.128)

To the generalised coordinate qi one defines a canonically conjugate mo-
mentum pi according to

pi D
@L

@ Pqi
(M.129)

and note from equation (M.128) above that

@L

@qi
D Ppi (M.130)

If we introduce an arbitrary, differentiable function ˛ D ˛.qi ; t / and a new
Lagrangian L0 related to L in the following way

L0 D LC
d˛
dt
D LC Pqi

@˛

@qi
C
@˛

@t
(M.131)

then

@L0

@ Pqi
D
@L

@ Pqi
C
@˛

@q
(M.132a)

@L0

@qi
D
@L

@qi
C

d
dt
@˛

@q
(M.132b)
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Or, in other words,

d
dt

�@L0
@ Pqi

�
�
@L0

@qi
D

d
dt

� @L
@ Pqi

�
�
@L

@qi
(M.133)

where

p0i D
@L0

@ Pqi
D
@L

@ Pqi
C
@˛

@qi
D pi C

@˛

@qi
(M.134a)

and

q0i D �
@L0

@ Ppi
D
@L

@ Pp
D qi (M.134b)

M.2.2 Hamilton’s equations

From L, the Hamiltonian (Hamilton function) H can be defined via the Le-
gendre transformation

H.pi ; qi ; t / D pi Pqi � L.qi ; Pqi ; t / (M.135)

After differentiating the left and right hand sides of this definition and setting
them equal we obtain

@H

@pi
dpi C

@H

@qi
dqi C

@H

@t
dt D Pqidpi C pid Pqi �

@L

@qi
dqi �

@L

@ Pqi
d Pqi �

@L

@t
dt

(M.136)

According to the definition of pi , equation (M.129) on the preceding page, the
second and fourth terms on the right hand side cancel. Furthermore, noting that
according to equation (M.130) on the previous page the third term on the right
hand side of equation (M.136) is equal to � Ppidqi and identifying terms, we
obtain the Hamilton equations:

@H

@pi
D Pqi D

dqi
dt

(M.137a)

@H

@qi
D � Ppi D �

dpi
dt

(M.137b)

M.3 Bibliography

[62] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, Dover
Publications, Inc., New York, 1972, Tenth Printing, with corrections.



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 251 of 262.

DRAFT

M.3. Bibliography j 229

[63] G. B. ARFKEN AND H. J. WEBER, Mathematical Methods for Physicists, fourth,
international ed., Academic Press, Inc., San Diego, CA . . . , 1995, ISBN 0-12-059816-
7.

[64] R. A. DEAN, Elements of Abstract Algebra, John Wiley & Sons, Inc.,
New York, NY . . . , 1967, ISBN 0-471-20452-8.

[65] A. A. EVETT, Permutation symbol approach to elementary vector analysis, American
Journal of Physics, 34 (1965), pp. 503–507.

[66] A. MESSIAH, Quantum Mechanics, vol. II, North-Holland Publishing Co., Amster-
dam, 1970, Sixth printing.

[67] P. M. MORSE AND H. FESHBACH, Methods of Theoretical Physics, Part I. McGraw-
Hill Book Company, Inc., New York, NY . . . , 1953, ISBN 07-043316-8.

[68] B. SPAIN, Tensor Calculus, third ed., Oliver and Boyd, Ltd., Edinburgh and London,
1965, ISBN 05-001331-9.

[69] W. E. THIRRING, Classical Mathematical Physics, Springer-Verlag, New York, Vi-
enna, 1997, ISBN 0-387-94843-0.



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 252 of 262.

DRAFT



Draft version released 13th September 2011 at 15:39 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 253 of 262.

DRAFT
INDEX

LCerenkov, Pavel Alekseevich, 178

acceleration field, 111
advanced time, 40
Ampère’s law, 6
Ampère, André-Marie, 6
Ampère-turn density, 172
angular frequency, 27, 38
angular momentum theorem, 64
angular-momentum commutation rule, 210
anisotropic, 174
anisotropic medium, 171
anomalous dispersion, 175
antecedent, 217
antenna, 97
antenna current, 98
antenna feed point, 98
antisymmetric tensor, 148
arrow of time, 51
associated Legendre polynomial of the first

kind, 89
associative, 140
axial gauge, 42
axial vector, 148, 217
axiomatic foundation of classical electrodynam-

ics, 19
azimuthal phase, 68

Barbieri, Cesare, xviii
Bessel functions, 104
Biot-Savart’s law, 8
birefringent, 174
birefringent crystal, 171

Bohm, David Joseph, 133
braking radiation, 121
bremsstrahlung, 121, 128

Carozzi, Tobia, xx
canonically conjugate four-momentum, 156
canonically conjugate momentum, 156, 227
canonically conjugate momentum density, 163
centre of energy, 68
CGS units, 3, 15
characteristic impedance of vacuum, 83, 184
charge conjugation, 49
Cherenkov radiation, 176
chiral media, 170
chirality density, 68
chirality flow, 68
circular wave polarisation, 27
classical electrodynamics, 1, 10
closed algebraic structure, 140
coherent radiation, 127
collision frequency, 182
collisional interaction, 189
complete ˛-Lorenz gauge, 42
complex conjugate, 197
complex notation, 20, 205
complex vector field, 207
complex-field six-vector, 22
component notation, 206
concentration, 223
conductivity, 180
consequent, 217
conservation law, 55
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conservation law for angular momentum, 64
conservation law for linear momentum, 60
conservation law for the total current, 56
conservation laws, 54
conservative field, 12
conservative forces, 161
conserved quantities, 54
constants of motion, 54
constitutive relations, 15, 180
continuity equation, 54
contravariant component form, 136, 206
contravariant field tensor, 149
contravariant four-tensor field, 213
contravariant four-vector, 208
contravariant four-vector field, 139
contravariant vector, 136
control sphere, 54
convective derivative, 13
coordinate four-vector, 208
coordinate vector, 205
cosine integral, 101
Coulomb gauge, 40
Coulomb’s law, 3
coupled differential equations, 24
covariant, 134
covariant component form, 206
covariant field tensor, 149
covariant four-tensor field, 213
covariant four-vector, 208
covariant four-vector field, 139
covariant gauge, 145
covariant vector, 136
CPT theorem, 51
cross product, 217
Curie, Marie Sklodowska, 178
Curie, Pierre, 15
curl, 222
curl theorem, 202
cutoff, 122
cycle average, 21
cyclotron radiation, 125, 128

d’Alembert operator, 25, 37, 144, 223
de Coulomb, Charles-Augustin, 3
definiendum, 205
definiens, 205
del operator, 220
del squared, 223
demodulation, 171
dielectric permittivity, 170
differential distance, 138
differential vector operator, 220
diffusion coefficient, 190
dipole antennas, 98
Dirac delta, 224
Dirac’s symmetrised Maxwell equations, 16
Dirac, Paul Adrien Maurice, 1, 40, 203
direct product, 217
dispersive, 175
dispersive property, 171
displacement current, 11
divergence, 222
divergence theorem, 202
dot product, 215
dual electromagnetic tensor, 150
dual vector, 136
duality transformation, 52, 151
Duhem, Pierre, 2
dummy index, 136
dyad, 217
dyadic product, 217
dyons, 52

E1 radiation, 93
E2 radiation, 97
Einstein’s summation convention, 205
Einstein, Albert, 1, 3
electric and magnetic field energy, 58
electric charge conservation law, 10
electric charge density, 4
electric conductivity, 11
electric current density, 8
electric dipole moment, 92
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electric dipole moment vector, 86
electric dipole radiation, 93
electric displacement current, 17
electric displacement vector, 169, 170
electric field, 3, 170
electric field energy, 58
electric monopole moment, 86
electric permittivity, 188
electric polarisation, 87
electric quadrupole moment tensor, 86
electric quadrupole radiation, 97
electric quadrupole tensor, 97
electric susceptibility, 171
electricity, 1, 2
electrodynamic potentials, 35
electromagnetic angular momentum current

density, 63
electromagnetic angular momentum density,

63, 94
electromagnetic angular momentum flux tensor,

63
electromagnetic energy current density, 56
electromagnetic energy flux, 56
electromagnetic field energy, 57
electromagnetic field energy density, 23, 56
electromagnetic field tensor, 149
electromagnetic linear momentum current dens-

ity, 60
electromagnetic linear momentum density,

59, 93
electromagnetic linear momentum flux tensor,

60
electromagnetic moment of momentum dens-

ity, 63
electromagnetic orbital angular momentum,

66
electromagnetic scalar potential, 35
electromagnetic spin angular momentum, 66
electromagnetic vector potential, 35
electromagnetic virial density, 69
electromagnetic virial theorem, 69

electromagnetism, 1
electromagnetodynamic equations, 16
electromagnetodynamics, 52
electromotive force, 12
electrostatic dipole moment vector, 33
electrostatic quadrupole moment tensor, 33
electrostatic scalar potential, 32
electrostatics, 2
electroweak theory, 2
elliptical wave polarisation, 26
EMF, 12
energy density balance equation, 57
energy theorem in Maxwell’s theory, 58
equation of continuity, 145
equation of continuity for electric charge, 10
equation of continuity for magnetic charge,

16
equations of classical electrostatics, 9
equations of classical magnetostatics, 9
Eriksson, Anders, xx
Eriksson, Marcus, xviii
Erukhimov, Lev Mikahilovich, xx
Euclidean space, 141
Euclidean vector space, 137
Euler’s first law, 59
Euler, Leonhard, 62
Euler-Lagrange equation, 162
Euler-Lagrange equations, 163, 227
Euler-Mascheroni constant, 101
event, 140

far field, 74
far zone, 77, 90
Faraday tensor, 149
Faraday’s law, 12
Faraday’s law of induction, 10
Faraday, Michael, 203
Feynman, Richard Phillips, 1, 40
field, 206
field Lagrange density, 164
field momentum, 22
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field point, 4
field quantum, 122
fine structure constant, 123, 130
four-current, 144
four-del operator, 221
four-dimensional Hamilton equations, 156
four-dimensional vector space, 136
four-divergence, 222
four-gradient, 221
four-Hamiltonian, 156
four-Lagrangian, 154
four-momentum, 143
four-potential, 144
four-scalar, 207
four-tensor fields, 213
four-vector, 139, 208
four-velocity, 143
Fourier amplitude, 27
Fourier integral, 28
Fourier transform, 28, 37
Frank, Ilya Mikhailovich, 178
Franklin, Benjamin, 55
free-free radiation, 121
frequency conversion, 12
frequency mixing, 12
Fröman, Per Olof, xix
fully antisymmetric tensor, 209
functional derivative, 162
fundamental tensor, 136, 206, 213
Fäldt, Göran, xx

Galilei, Galileo, 204
Galileo’s law, 133
gauge fixing, 42
gauge function, 43
gauge invariant, 43
gauge theory, 43
gauge transformation, 43
gauge transformation of the first kind, 46
gauge transformation of the second kind, 46
Gauss’s law of electrostatics, 5

Gauss’s theorem, 202
general inhomogeneous wave equations, 36
general theory of relativity, 133
generalised coordinate, 156, 227
generalised four-coordinate, 156
Gibbs’ notation, 220
Ginzburg, Vitaliy Lazarevich, xx, 178
Glashow, Sheldon, 2
gradient, 221
Green function, 38, 89
group theory, 140
group velocity, 175

Hall effect, 173
Hall, Edwin Herbert, 173
Hamilton density, 163
Hamilton density equations, 163
Hamilton equations, 156, 228
Hamilton function, 228
Hamilton gauge, 42
Hamilton operator, 45, 220
Hamilton, William Rowen, 220
Hamiltonian, 45, 228
Heaviside, Oliver, 115, 174, 178
Heaviside-Larmor-Rainich transformation, 52
Heaviside-Lorentz units, 15
helical base vectors, 27
Helmholtz equation, 98
Helmholtz’ theorem, 37
Helmholtz’s theorem, 5
help vector, 90
Hermitian conjugate, 197
Hertz vector, 88
Hertz’s method, 86
Hertz, Heinrich Rudolf, 81
heterodyning, 171
Hodge star operator, 52
homogeneous vector wave equations, 183
Hooke’s law, 160
Huygens’s principle, 38

identity element, 140
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in a medium, 177
incoherent radiation, 128
indefinite norm, 137
index contraction, 136
index lowering, 136
index of refraction, 170
induction field, 74
inertial reference frame, 133
inertial system, 133
inhomogeneous Helmholtz equation, 38
inhomogeneous time-independent wave equa-

tion, 38
inhomogeneous wave equation, 37
inner product, 215
instantaneous, 118
interaction Lagrange density, 164
intermediate field, 77
invariant, 207
invariant line element, 138
inverse element, 140
inverse Fourier transform, 28
ionosphere, 183
irrotational, 6, 222

Jacobi identity, 151
Jarlskog, Cecilia, xx
Joule heat power, 58

Karlsson, Roger, xx
Kelvin function, 129
Kerr effect, 171
kinetic energy, 160, 227
kinetic momentum, 159
Kirchhoff gauge, 42
Kirchhoff, Gustav Robert, 42
Kohlrausch, Rudolf, 3
Kopka, Helmut, xx
Kronecker delta tensor, 209
Kronecker product, 217

Lagrange density, 161
Lagrange function, 160, 227

Lagrangian, 160, 227
Laplace operator, 223
Laplacian, 223
Larmor formula for radiated power, 118
law of inertia, 133
Learned, John, xx
left-hand circular polarisation, 27, 66
Legendre polynomial, 89
Legendre transformation, 228
Levi-Civita tensor, 209
light cone, 139
light-like interval, 139
Lindberg, Johan, xviii
line broadening, 28
line element, 216
linear mass density, 161
linear momentum density, 60
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