\documentclass[10pt]{article} \usepackage{graphicx} \usepackage{caption} \usepackage{amsmath} % needed for math align \usepackage{bm} % needed for maths bold face \usepackage{graphicx} % needed for including graphics e.g. EPS, PS \usepackage{fancyhdr} % needed for header %\usepackage{epstopdf} % Needed for eps graphics \usepackage{hyperref} \usepackage{lscape} % Needed for landscaping stuff - when printing \usepackage{pdflscape} % Needed for landscaping - in pdf viewer \topmargin -1.5cm % read Lamport p.163 \oddsidemargin -0.04cm % read Lamport p.163 \evensidemargin -0.04cm % same as oddsidemargin but for left-hand pages \textwidth 16.59cm \textheight 21.94cm %\pagestyle{empty} % Uncomment if don't want page numbers \parskip 7.2pt % sets spacing between paragraphs %\renewcommand{\baselinestretch}{1.5} % Uncomment for 1.5 spacing between lines \parindent 0pt % sets leading space for paragraphs \newcommand{\vect}[1]{\boldsymbol{#1}} % Draw a vector \newcommand{\divg}[1]{\nabla \cdot #1} % divergence \newcommand{\curl}[1]{\nabla \times #1} % curl \newcommand{\grad}[1]{\nabla #1} %gradient \newcommand{\pd}[3][ ]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} %partial derivative \newcommand{\der}[3][ ]{\frac{d^{#1} #2}{d #3^{#1}}} %full derivative \newcommand{\phasor}[1]{\tilde{#1}} % make a phasor \newcommand{\laplacian}[1]{\nabla^2 {#1}} % The laplacian operator \usepackage{color} \usepackage{listings} \definecolor{darkgray}{rgb}{0.95,0.95,0.95} \definecolor{darkred}{rgb}{0.75,0,0} \definecolor{darkblue}{rgb}{0,0,0.75} \definecolor{pink}{rgb}{1,0.5,0.5} \lstset{language=Java} \lstset{backgroundcolor=\color{darkgray}} \lstset{numbers=left, numberstyle=\tiny, stepnumber=1, numbersep=5pt} \lstset{keywordstyle=\color{darkred}\bfseries} \lstset{commentstyle=\color{darkblue}} %\lstset{stringsyle=\color{red}} \lstset{showstringspaces=false} \lstset{basicstyle=\small} \begin{document} \pagestyle{fancy} \fancyhead{} \fancyfoot{} \fancyhead[LO, L]{} \fancyfoot[CO, C]{\thepage} %\title{\bf Characterisation of nanostructured thin films} %\author{Sam Moore\\ School of Physics, University of Western Australia} %\date{April 2012} %\maketitle \section{Ellipsometry} \subsection{Description of Method} Ellipsometry is a versatile optical technique commonly employed for determining the thickness of multilayered thin films \cite{}. In general, ellipsometry measures the parameters $\psi$ and $\Delta$, which are related to the complex Fresnel reflection coefficients $r_s$ and $r_p$: \begin{align*} \tan \psi e^{i \Delta} &= \rho = \frac{r_p}{r_s} \end{align*} $r_s$ is the For a bulk substrate (the simplest possible sample), $r_s$ and $r_p$ may be directly related to the optical constants of the material: \begin{align*} \end{align*} \emph{TODO: Multilayered thin films}. \section{Variable Angle Spectroscopic Ellipsometry} Traditional ellipsometers were limited to single measurements at a fixed wavelength and angle; the analysis of thin films involved \cite{}. With the \subsection{Results} \subsubsection{Application of Ellipsometry to Multilayered Sample} \pagebreak \bibliographystyle{unsrt} \bibliography{thesis} \end{document}