Kernel - Fixing and breaking SMP related stuff
[tpg/acess2.git] / Kernel / arch / x86 / mm_virt.c
1 /*
2  * AcessOS Microkernel Version
3  * mm_virt.c
4  * 
5  * Memory Map
6  * 0xE0 - Kernel Base
7  * 0xF0 - Kernel Stacks
8  * 0xFD - Fractals
9  * 0xFE - Unused
10  * 0xFF - System Calls / Kernel's User Code
11  */
12 #define DEBUG   0
13 #define SANITY  1
14 #include <acess.h>
15 #include <mm_virt.h>
16 #include <mm_phys.h>
17 #include <proc.h>
18 #include <hal_proc.h>
19
20 #define TAB     22
21
22 #define WORKER_STACKS           0x00100000      // Thread0 Only!
23 #define WORKER_STACK_SIZE       MM_KERNEL_STACK_SIZE
24 #define WORKER_STACKS_END       0xB0000000
25 #define NUM_WORKER_STACKS       ((WORKER_STACKS_END-WORKER_STACKS)/WORKER_STACK_SIZE)
26
27 #define PAE_PAGE_TABLE_ADDR     0xFC000000      // 16 MiB
28 #define PAE_PAGE_DIR_ADDR       0xFCFC0000      // 16 KiB
29 #define PAE_PAGE_PDPT_ADDR      0xFCFC3F00      // 32 bytes
30 #define PAE_TMP_PDPT_ADDR       0xFCFC3F20      // 32 bytes
31 #define PAE_TMP_DIR_ADDR        0xFCFE0000      // 16 KiB
32 #define PAE_TMP_TABLE_ADDR      0xFD000000      // 16 MiB
33
34 #define PAGE_TABLE_ADDR 0xFC000000
35 #define PAGE_DIR_ADDR   0xFC3F0000
36 #define PAGE_CR3_ADDR   0xFC3F0FC0
37 #define TMP_CR3_ADDR    0xFC3F0FC4      // Part of core instead of temp
38 #define TMP_DIR_ADDR    0xFC3F1000      // Same
39 #define TMP_TABLE_ADDR  0xFC400000
40
41 #define HW_MAP_ADDR             0xFE000000
42 #define HW_MAP_MAX              0xFFEF0000
43 #define NUM_HW_PAGES    ((HW_MAP_MAX-HW_MAP_ADDR)/0x1000)
44 #define TEMP_MAP_ADDR   0xFFEF0000      // Allows 16 "temp" pages
45 #define NUM_TEMP_PAGES  16
46 #define LAST_BLOCK_ADDR 0xFFFF0000      // Free space for kernel provided user code/ *(-1) protection
47
48 #define PF_PRESENT      0x1
49 #define PF_WRITE        0x2
50 #define PF_USER         0x4
51 #define PF_GLOBAL       0x80
52 #define PF_COW          0x200
53 #define PF_NOPAGE       0x400
54
55 #define INVLPG(addr)    __asm__ __volatile__ ("invlpg (%0)"::"r"(addr))
56
57 typedef Uint32  tTabEnt;
58
59 // === IMPORTS ===
60 extern char     _UsertextEnd[], _UsertextBase[];
61 extern Uint32   gaInitPageDir[1024];
62 extern Uint32   gaInitPageTable[1024];
63 extern void     Threads_SegFault(tVAddr Addr);
64 extern void     Error_Backtrace(Uint eip, Uint ebp);
65
66 // === PROTOTYPES ===
67 void    MM_PreinitVirtual(void);
68 void    MM_InstallVirtual(void);
69 void    MM_PageFault(tVAddr Addr, Uint ErrorCode, tRegs *Regs);
70 //void  MM_DumpTables(tVAddr Start, tVAddr End);
71 //void  MM_ClearUser(void);
72 tPAddr  MM_DuplicatePage(tVAddr VAddr);
73
74 // === GLOBALS ===
75 #define gaPageTable     ((tTabEnt*)PAGE_TABLE_ADDR)
76 #define gaPageDir       ((tTabEnt*)PAGE_DIR_ADDR)
77 #define gaTmpTable      ((tTabEnt*)TMP_TABLE_ADDR)
78 #define gaTmpDir        ((tTabEnt*)TMP_DIR_ADDR)
79 #define gpPageCR3       ((tTabEnt*)PAGE_CR3_ADDR)
80 #define gpTmpCR3        ((tTabEnt*)TMP_CR3_ADDR)
81
82 #define gaPAE_PageTable ((tTabEnt*)PAE_PAGE_TABLE_ADDR)
83 #define gaPAE_PageDir   ((tTabEnt*)PAE_PAGE_DIR_ADDR)
84 #define gaPAE_MainPDPT  ((tTabEnt*)PAE_PAGE_PDPT_ADDR)
85 #define gaPAE_TmpTable  ((tTabEnt*)PAE_TMP_DIR_ADDR)
86 #define gaPAE_TmpDir    ((tTabEnt*)PAE_TMP_DIR_ADDR)
87 #define gaPAE_TmpPDPT   ((tTabEnt*)PAE_TMP_PDPT_ADDR)
88  int    gbUsePAE = 0;
89 tMutex  glTempMappings;
90 tMutex  glTempFractal;
91 Uint32  gWorkerStacks[(NUM_WORKER_STACKS+31)/32];
92  int    giLastUsedWorker = 0;
93 struct sPageInfo {
94         void    *Node;
95         tVAddr  Base;
96         Uint64  Offset;
97          int    Length;
98          int    Flags;
99 }       *gaMappedRegions;       // sizeof = 24 bytes
100
101 // === CODE ===
102 /**
103  * \fn void MM_PreinitVirtual(void)
104  * \brief Maps the fractal mappings
105  */
106 void MM_PreinitVirtual(void)
107 {
108         gaInitPageDir[ PAGE_TABLE_ADDR >> 22 ] = ((tTabEnt)&gaInitPageDir - KERNEL_BASE) | 3;
109         INVLPG( PAGE_TABLE_ADDR );
110 }
111
112 /**
113  * \fn void MM_InstallVirtual(void)
114  * \brief Sets up the constant page mappings
115  */
116 void MM_InstallVirtual(void)
117 {
118          int    i;
119         
120         // --- Pre-Allocate kernel tables
121         for( i = KERNEL_BASE>>22; i < 1024; i ++ )
122         {
123                 if( gaPageDir[ i ] )    continue;
124                 // Skip stack tables, they are process unique
125                 if( i > MM_KERNEL_STACKS >> 22 && i < MM_KERNEL_STACKS_END >> 22) {
126                         gaPageDir[ i ] = 0;
127                         continue;
128                 }
129                 // Preallocate table
130                 gaPageDir[ i ] = MM_AllocPhys() | 3;
131                 INVLPG( &gaPageTable[i*1024] );
132                 memset( &gaPageTable[i*1024], 0, 0x1000 );
133         }
134         
135         // Unset kernel on the User Text pages
136         for( i = ((tVAddr)&_UsertextEnd-(tVAddr)&_UsertextBase+0xFFF)/4096; i--; ) {
137                 MM_SetFlags( (tVAddr)&_UsertextBase + i*4096, 0, MM_PFLAG_KERNEL );
138         }
139 }
140
141 /**
142  * \brief Cleans up the SMP required mappings
143  */
144 void MM_FinishVirtualInit(void)
145 {
146         gaInitPageDir[ 0 ] = 0;
147 }
148
149 /**
150  * \fn void MM_PageFault(tVAddr Addr, Uint ErrorCode, tRegs *Regs)
151  * \brief Called on a page fault
152  */
153 void MM_PageFault(tVAddr Addr, Uint ErrorCode, tRegs *Regs)
154 {
155         //ENTER("xAddr bErrorCode", Addr, ErrorCode);
156         
157         // -- Check for COW --
158         if( gaPageDir  [Addr>>22] & PF_PRESENT  && gaPageTable[Addr>>12] & PF_PRESENT
159          && gaPageTable[Addr>>12] & PF_COW )
160         {
161                 tPAddr  paddr;
162                 if(MM_GetRefCount( gaPageTable[Addr>>12] & ~0xFFF ) == 1)
163                 {
164                         gaPageTable[Addr>>12] &= ~PF_COW;
165                         gaPageTable[Addr>>12] |= PF_PRESENT|PF_WRITE;
166                 }
167                 else
168                 {
169                         //Log("MM_PageFault: COW - MM_DuplicatePage(0x%x)", Addr);
170                         paddr = MM_DuplicatePage( Addr );
171                         MM_DerefPhys( gaPageTable[Addr>>12] & ~0xFFF );
172                         gaPageTable[Addr>>12] &= PF_USER;
173                         gaPageTable[Addr>>12] |= paddr|PF_PRESENT|PF_WRITE;
174                 }
175                 
176 //              Log_Debug("MMVirt", "COW for %p (%P)", Addr, gaPageTable[Addr>>12]);
177                 
178                 INVLPG( Addr & ~0xFFF );
179                 return;
180         }
181         
182         __asm__ __volatile__ ("pushf; andw $0xFEFF, 0(%esp); popf");
183         Proc_GetCurThread()->bInstrTrace = 0;
184
185         // If it was a user, tell the thread handler
186         if(ErrorCode & 4) {
187                 Log_Warning("MMVirt", "User %s %s memory%s",
188                         (ErrorCode&2?"write to":"read from"),
189                         (ErrorCode&1?"bad/locked":"non-present"),
190                         (ErrorCode&16?" (Instruction Fetch)":"")
191                         );
192                 Log_Warning("MMVirt", "Instruction %04x:%08x accessed %p", Regs->cs, Regs->eip, Addr);
193                 __asm__ __volatile__ ("sti");   // Restart IRQs
194                 #if 1
195                 Error_Backtrace(Regs->eip, Regs->ebp);
196                 #endif
197                 Threads_SegFault(Addr);
198                 return ;
199         }
200         
201         Debug_KernelPanic();
202         
203         // -- Check Error Code --
204         if(ErrorCode & 8)
205                 Warning("Reserved Bits Trashed!");
206         else
207         {
208                 Warning("Kernel %s %s memory%s",
209                         (ErrorCode&2?"write to":"read from"),
210                         (ErrorCode&1?"bad/locked":"non-present"),
211                         (ErrorCode&16?" (Instruction Fetch)":"")
212                         );
213         }
214         
215         Log("Code at %p accessed %p", Regs->eip, Addr);
216         // Print Stack Backtrace
217         Error_Backtrace(Regs->eip, Regs->ebp);
218         
219         Log("gaPageDir[0x%x] = 0x%x", Addr>>22, gaPageDir[Addr>>22]);
220         if( gaPageDir[Addr>>22] & PF_PRESENT )
221                 Log("gaPageTable[0x%x] = 0x%x", Addr>>12, gaPageTable[Addr>>12]);
222         
223         //MM_DumpTables(0, -1); 
224         
225         // Register Dump
226         Log("EAX %08x ECX %08x EDX %08x EBX %08x", Regs->eax, Regs->ecx, Regs->edx, Regs->ebx);
227         Log("ESP %08x EBP %08x ESI %08x EDI %08x", Regs->esp, Regs->ebp, Regs->esi, Regs->edi);
228         //Log("SS:ESP %04x:%08x", Regs->ss, Regs->esp);
229         Log("CS:EIP %04x:%08x", Regs->cs, Regs->eip);
230         Log("DS %04x ES %04x FS %04x GS %04x", Regs->ds, Regs->es, Regs->fs, Regs->gs);
231         {
232                 Uint    dr0, dr1;
233                 __ASM__ ("mov %%dr0, %0":"=r"(dr0):);
234                 __ASM__ ("mov %%dr1, %0":"=r"(dr1):);
235                 Log("DR0 %08x DR1 %08x", dr0, dr1);
236         }
237         
238         Panic("Page Fault at 0x%x (Accessed 0x%x)", Regs->eip, Addr);
239 }
240
241 /**
242  * \fn void MM_DumpTables(tVAddr Start, tVAddr End)
243  * \brief Dumps the layout of the page tables
244  */
245 void MM_DumpTables(tVAddr Start, tVAddr End)
246 {
247         tVAddr  rangeStart = 0;
248         tPAddr  expected = 0;
249         void    *expected_node = NULL, *tmpnode = NULL;
250         tVAddr  curPos;
251         Uint    page;
252         const tPAddr    MASK = ~0xF78;
253         
254         Start >>= 12;   End >>= 12;
255         
256         #if 0
257         Log("Directory Entries:");
258         for(page = Start >> 10;
259                 page < (End >> 10)+1;
260                 page ++)
261         {
262                 if(gaPageDir[page])
263                 {
264                         Log(" 0x%08x-0x%08x :: 0x%08x",
265                                 page<<22, ((page+1)<<22)-1,
266                                 gaPageDir[page]&~0xFFF
267                                 );
268                 }
269         }
270         #endif
271         
272         Log("Table Entries:");
273         for(page = Start, curPos = Start<<12;
274                 page < End;
275                 curPos += 0x1000, page++)
276         {
277                 if( !(gaPageDir[curPos>>22] & PF_PRESENT)
278                 ||  !(gaPageTable[page] & PF_PRESENT)
279                 ||  (gaPageTable[page] & MASK) != expected
280                 ||  (tmpnode=NULL,MM_GetPageNode(expected, &tmpnode), tmpnode != expected_node))
281                 {
282                         if(expected) {
283                                 tPAddr  orig = gaPageTable[rangeStart>>12];
284                                 Log(" 0x%08x => 0x%08x - 0x%08x (%s%s%s%s%s) %p",
285                                         rangeStart,
286                                         orig & ~0xFFF,
287                                         curPos - rangeStart,
288                                         (orig & PF_NOPAGE ? "P" : "-"),
289                                         (orig & PF_COW ? "C" : "-"),
290                                         (orig & PF_GLOBAL ? "G" : "-"),
291                                         (orig & PF_USER ? "U" : "-"),
292                                         (orig & PF_WRITE ? "W" : "-"),
293                                         expected_node
294                                         );
295                                 expected = 0;
296                         }
297                         if( !(gaPageDir[curPos>>22] & PF_PRESENT) )     continue;
298                         if( !(gaPageTable[curPos>>12] & PF_PRESENT) )   continue;
299                         
300                         expected = (gaPageTable[page] & MASK);
301                         MM_GetPageNode(expected, &expected_node);
302                         rangeStart = curPos;
303                 }
304                 if(expected)    expected += 0x1000;
305         }
306         
307         if(expected) {
308                 tPAddr  orig = gaPageTable[rangeStart>>12];
309                 Log("0x%08x => 0x%08x - 0x%08x (%s%s%s%s%s) %p",
310                         rangeStart,
311                         orig & ~0xFFF,
312                         curPos - rangeStart,
313                         (orig & PF_NOPAGE ? "p" : "-"),
314                         (orig & PF_COW ? "C" : "-"),
315                         (orig & PF_GLOBAL ? "G" : "-"),
316                         (orig & PF_USER ? "U" : "-"),
317                         (orig & PF_WRITE ? "W" : "-"),
318                         expected_node
319                         );
320                 expected = 0;
321         }
322 }
323
324 /**
325  * \fn tPAddr MM_Allocate(tVAddr VAddr)
326  */
327 tPAddr MM_Allocate(tVAddr VAddr)
328 {
329         tPAddr  paddr;
330         //ENTER("xVAddr", VAddr);
331         //__asm__ __volatile__ ("xchg %bx,%bx");
332         // Check if the directory is mapped
333         if( gaPageDir[ VAddr >> 22 ] == 0 )
334         {
335                 // Allocate directory
336                 paddr = MM_AllocPhys();
337                 if( paddr == 0 ) {
338                         Warning("MM_Allocate - Out of Memory (Called by %p)", __builtin_return_address(0));
339                         //LEAVE('i',0);
340                         return 0;
341                 }
342                 // Map and mark as user (if needed)
343                 gaPageDir[ VAddr >> 22 ] = paddr | 3;
344                 if(VAddr < MM_USER_MAX) gaPageDir[ VAddr >> 22 ] |= PF_USER;
345                 
346                 INVLPG( &gaPageDir[ VAddr >> 22 ] );
347                 memsetd( &gaPageTable[ (VAddr >> 12) & ~0x3FF ], 0, 1024 );
348         }
349         // Check if the page is already allocated
350         else if( gaPageTable[ VAddr >> 12 ] != 0 ) {
351                 Warning("MM_Allocate - Allocating to used address (%p)", VAddr);
352                 //LEAVE('X', gaPageTable[ VAddr >> 12 ] & ~0xFFF);
353                 return gaPageTable[ VAddr >> 12 ] & ~0xFFF;
354         }
355         
356         // Allocate
357         paddr = MM_AllocPhys();
358         //LOG("paddr = 0x%llx", paddr);
359         if( paddr == 0 ) {
360                 Warning("MM_Allocate - Out of Memory when allocating at %p (Called by %p)",
361                         VAddr, __builtin_return_address(0));
362                 //LEAVE('i',0);
363                 return 0;
364         }
365         // Map
366         gaPageTable[ VAddr >> 12 ] = paddr | 3;
367         // Mark as user
368         if(VAddr < MM_USER_MAX) gaPageTable[ VAddr >> 12 ] |= PF_USER;
369         // Invalidate Cache for address
370         INVLPG( VAddr & ~0xFFF );
371         
372         //LEAVE('X', paddr);
373         return paddr;
374 }
375
376 /**
377  * \fn void MM_Deallocate(tVAddr VAddr)
378  */
379 void MM_Deallocate(tVAddr VAddr)
380 {
381         if( gaPageDir[ VAddr >> 22 ] == 0 ) {
382                 Warning("MM_Deallocate - Directory not mapped");
383                 return;
384         }
385         
386         if(gaPageTable[ VAddr >> 12 ] == 0) {
387                 Warning("MM_Deallocate - Page is not allocated");
388                 return;
389         }
390         
391         // Dereference page
392         MM_DerefPhys( gaPageTable[ VAddr >> 12 ] & ~0xFFF );
393         // Clear page
394         gaPageTable[ VAddr >> 12 ] = 0;
395 }
396
397 /**
398  * \fn tPAddr MM_GetPhysAddr(tVAddr Addr)
399  * \brief Checks if the passed address is accesable
400  */
401 tPAddr MM_GetPhysAddr(tVAddr Addr)
402 {
403         if( !(gaPageDir[Addr >> 22] & 1) )
404                 return 0;
405         if( !(gaPageTable[Addr >> 12] & 1) )
406                 return 0;
407         return (gaPageTable[Addr >> 12] & ~0xFFF) | (Addr & 0xFFF);
408 }
409
410 /**
411  * \fn void MM_SetCR3(Uint CR3)
412  * \brief Sets the current process space
413  */
414 void MM_SetCR3(Uint CR3)
415 {
416         __asm__ __volatile__ ("mov %0, %%cr3"::"r"(CR3));
417 }
418
419 /**
420  * \fn int MM_Map(tVAddr VAddr, tPAddr PAddr)
421  * \brief Map a physical page to a virtual one
422  */
423 int MM_Map(tVAddr VAddr, tPAddr PAddr)
424 {
425         //ENTER("xVAddr xPAddr", VAddr, PAddr);
426         // Sanity check
427         if( PAddr & 0xFFF || VAddr & 0xFFF ) {
428                 Warning("MM_Map - Physical or Virtual Addresses are not aligned");
429                 //LEAVE('i', 0);
430                 return 0;
431         }
432         
433         // Align addresses
434         PAddr &= ~0xFFF;        VAddr &= ~0xFFF;
435         
436         // Check if the directory is mapped
437         if( gaPageDir[ VAddr >> 22 ] == 0 )
438         {
439                 tPAddr  tmp = MM_AllocPhys();
440                 if( tmp == 0 )
441                         return 0;
442                 gaPageDir[ VAddr >> 22 ] = tmp | 3;
443                 
444                 // Mark as user
445                 if(VAddr < MM_USER_MAX) gaPageDir[ VAddr >> 22 ] |= PF_USER;
446                 
447                 INVLPG( &gaPageTable[ (VAddr >> 12) & ~0x3FF ] );
448                 memsetd( &gaPageTable[ (VAddr >> 12) & ~0x3FF ], 0, 1024 );
449         }
450         // Check if the page is already allocated
451         else if( gaPageTable[ VAddr >> 12 ] != 0 ) {
452                 Warning("MM_Map - Allocating to used address");
453                 //LEAVE('i', 0);
454                 return 0;
455         }
456         
457         // Map
458         gaPageTable[ VAddr >> 12 ] = PAddr | 3;
459         // Mark as user
460         if(VAddr < MM_USER_MAX) gaPageTable[ VAddr >> 12 ] |= PF_USER;
461         
462         //LOG("gaPageTable[ 0x%x ] = (Uint)%p = 0x%x",
463         //      VAddr >> 12, &gaPageTable[ VAddr >> 12 ], gaPageTable[ VAddr >> 12 ]);
464         
465         // Reference
466         MM_RefPhys( PAddr );
467         
468         //LOG("INVLPG( 0x%x )", VAddr);
469         INVLPG( VAddr );
470         
471         //LEAVE('i', 1);
472         return 1;
473 }
474
475 /**
476  * \brief Clear user's address space
477  */
478 void MM_ClearUser(void)
479 {
480         Uint    i, j;
481         
482         for( i = 0; i < (MM_USER_MAX>>22); i ++ )
483         {
484                 // Check if directory is not allocated
485                 if( !(gaPageDir[i] & PF_PRESENT) ) {
486                         gaPageDir[i] = 0;
487                         continue;
488                 }
489                 
490                 // Deallocate tables
491                 for( j = 0; j < 1024; j ++ )
492                 {
493                         if( gaPageTable[i*1024+j] & 1 )
494                                 MM_DerefPhys( gaPageTable[i*1024+j] & ~0xFFF );
495                         gaPageTable[i*1024+j] = 0;
496                 }
497                 
498                 // Deallocate directory
499                 MM_DerefPhys( gaPageDir[i] & ~0xFFF );
500                 gaPageDir[i] = 0;
501                 INVLPG( &gaPageTable[i*1024] );
502         }
503         INVLPG( gaPageDir );
504 }
505
506 /**
507  * \fn tPAddr MM_Clone(void)
508  * \brief Clone the current address space
509  */
510 tPAddr MM_Clone(void)
511 {
512         Uint    i, j;
513         tVAddr  ret;
514         Uint    page = 0;
515         tVAddr  kStackBase = Proc_GetCurThread()->KernelStack - MM_KERNEL_STACK_SIZE;
516         void    *tmp;
517         
518         Mutex_Acquire( &glTempFractal );
519         
520         // Create Directory Table
521         *gpTmpCR3 = MM_AllocPhys() | 3;
522         if( *gpTmpCR3 == 3 ) {
523                 *gpTmpCR3 = 0;
524                 return 0;
525         }
526         INVLPG( gaTmpDir );
527         //LOG("Allocated Directory (%x)", *gpTmpCR3);
528         memsetd( gaTmpDir, 0, 1024 );
529         
530         if( Threads_GetPID() != 0 )
531         {       
532                 // Copy Tables
533                 for( i = 0; i < 768; i ++)
534                 {
535                         // Check if table is allocated
536                         if( !(gaPageDir[i] & PF_PRESENT) ) {
537                                 gaTmpDir[i] = 0;
538                                 page += 1024;
539                                 continue;
540                         }
541                         
542                         // Allocate new table
543                         gaTmpDir[i] = MM_AllocPhys() | (gaPageDir[i] & 7);
544                         INVLPG( &gaTmpTable[page] );
545                         // Fill
546                         for( j = 0; j < 1024; j ++, page++ )
547                         {
548                                 if( !(gaPageTable[page] & PF_PRESENT) ) {
549                                         gaTmpTable[page] = 0;
550                                         continue;
551                                 }
552                                 
553                                 // Refrence old page
554                                 MM_RefPhys( gaPageTable[page] & ~0xFFF );
555                                 // Add to new table
556                                 if(gaPageTable[page] & PF_WRITE) {
557                                         gaTmpTable[page] = (gaPageTable[page] & ~PF_WRITE) | PF_COW;
558                                         gaPageTable[page] = (gaPageTable[page] & ~PF_WRITE) | PF_COW;
559                                         INVLPG( page << 12 );
560                                 }
561                                 else
562                                         gaTmpTable[page] = gaPageTable[page];
563                         }
564                 }
565         }
566         
567         // Map in kernel tables (and make fractal mapping)
568         for( i = 768; i < 1024; i ++ )
569         {
570                 // Fractal
571                 if( i == (PAGE_TABLE_ADDR >> 22) ) {
572                         gaTmpDir[ PAGE_TABLE_ADDR >> 22 ] = *gpTmpCR3;
573                         continue;
574                 }
575                 
576                 if( gaPageDir[i] == 0 ) {
577                         gaTmpDir[i] = 0;
578                         continue;
579                 }
580                 
581                 //LOG("gaPageDir[%x/4] = 0x%x", i*4, gaPageDir[i]);
582                 MM_RefPhys( gaPageDir[i] & ~0xFFF );
583                 gaTmpDir[i] = gaPageDir[i];
584         }
585         
586         // Allocate kernel stack
587         for(i = MM_KERNEL_STACKS >> 22; i < MM_KERNEL_STACKS_END >> 22; i ++ )
588         {
589                 // Check if directory is allocated
590                 if( (gaPageDir[i] & 1) == 0 ) {
591                         gaTmpDir[i] = 0;
592                         continue;
593                 }               
594                 
595                 // We don't care about other kernel stacks, just the current one
596                 if( i != kStackBase >> 22 ) {
597                         MM_DerefPhys( gaPageDir[i] & ~0xFFF );
598                         gaTmpDir[i] = 0;
599                         continue;
600                 }
601                 
602                 // Create a copy
603                 gaTmpDir[i] = MM_AllocPhys() | 3;
604                 INVLPG( &gaTmpTable[i*1024] );
605                 for( j = 0; j < 1024; j ++ )
606                 {
607                         // Is the page allocated? If not, skip
608                         if( !(gaPageTable[i*1024+j] & 1) ) {
609                                 gaTmpTable[i*1024+j] = 0;
610                                 continue;
611                         }
612                         
613                         // We don't care about other kernel stacks
614                         if( ((i*1024+j)*4096 & ~(MM_KERNEL_STACK_SIZE-1)) != kStackBase ) {
615                                 gaTmpTable[i*1024+j] = 0;
616                                 continue;
617                         }
618                         
619                         // Allocate page
620                         gaTmpTable[i*1024+j] = MM_AllocPhys() | 3;
621                         
622                         MM_RefPhys( gaTmpTable[i*1024+j] & ~0xFFF );
623                         
624                         tmp = (void *) MM_MapTemp( gaTmpTable[i*1024+j] & ~0xFFF );
625                         memcpy( tmp, (void *)( (i*1024+j)*0x1000 ), 0x1000 );
626                         MM_FreeTemp( (Uint)tmp );
627                 }
628         }
629         
630         ret = *gpTmpCR3 & ~0xFFF;
631         Mutex_Release( &glTempFractal );
632         
633         //LEAVE('x', ret);
634         return ret;
635 }
636
637 /**
638  * \fn tVAddr MM_NewKStack(void)
639  * \brief Create a new kernel stack
640  */
641 tVAddr MM_NewKStack(void)
642 {
643         tVAddr  base;
644         Uint    i;
645         for(base = MM_KERNEL_STACKS; base < MM_KERNEL_STACKS_END; base += MM_KERNEL_STACK_SIZE)
646         {
647                 // Check if space is free
648                 if(MM_GetPhysAddr(base) != 0)   continue;
649                 // Allocate
650                 //for(i = MM_KERNEL_STACK_SIZE; i -= 0x1000 ; )
651                 for(i = 0; i < MM_KERNEL_STACK_SIZE; i += 0x1000 )
652                 {
653                         if( MM_Allocate(base+i) == 0 )
654                         {
655                                 // On error, print a warning and return error
656                                 Warning("MM_NewKStack - Out of memory");
657                                 // - Clean up
658                                 //for( i += 0x1000 ; i < MM_KERNEL_STACK_SIZE; i += 0x1000 )
659                                 //      MM_Deallocate(base+i);
660                                 return 0;
661                         }
662                 }
663                 // Success
664 //              Log("MM_NewKStack - Allocated %p", base + MM_KERNEL_STACK_SIZE);
665                 return base+MM_KERNEL_STACK_SIZE;
666         }
667         // No stacks left
668         Log_Warning("MMVirt", "MM_NewKStack - No address space left");
669         return 0;
670 }
671
672 /**
673  * \fn tVAddr MM_NewWorkerStack()
674  * \brief Creates a new worker stack
675  */
676 tVAddr MM_NewWorkerStack(Uint *StackContents, size_t ContentsSize)
677 {
678         Uint    base, addr;
679         tVAddr  tmpPage;
680         tPAddr  page;
681         
682         // TODO: Thread safety
683         // Find a free worker stack address
684         for(base = giLastUsedWorker; base < NUM_WORKER_STACKS; base++)
685         {
686                 // Used block
687                 if( gWorkerStacks[base/32] == -1 ) {
688                         base += 31;     base &= ~31;
689                         base --;        // Counteracted by the base++
690                         continue;
691                 }
692                 // Used stack
693                 if( gWorkerStacks[base/32] & (1 << base) ) {
694                         continue;
695                 }
696                 break;
697         }
698         if(base >= NUM_WORKER_STACKS) {
699                 Warning("Uh-oh! Out of worker stacks");
700                 return 0;
701         }
702         
703         // It's ours now!
704         gWorkerStacks[base/32] |= (1 << base);
705         // Make life easier for later calls
706         giLastUsedWorker = base;
707         // We have one
708         base = WORKER_STACKS + base * WORKER_STACK_SIZE;
709         //Log(" MM_NewWorkerStack: base = 0x%x", base);
710         
711         // Acquire the lock for the temp fractal mappings
712         Mutex_Acquire(&glTempFractal);
713         
714         // Set the temp fractals to TID0's address space
715         *gpTmpCR3 = ((Uint)gaInitPageDir - KERNEL_BASE) | 3;
716         //Log(" MM_NewWorkerStack: *gpTmpCR3 = 0x%x", *gpTmpCR3);
717         INVLPG( gaTmpDir );
718         
719         
720         // Check if the directory is mapped (we are assuming that the stacks
721         // will fit neatly in a directory)
722         //Log(" MM_NewWorkerStack: gaTmpDir[ 0x%x ] = 0x%x", base>>22, gaTmpDir[ base >> 22 ]);
723         if(gaTmpDir[ base >> 22 ] == 0) {
724                 gaTmpDir[ base >> 22 ] = MM_AllocPhys() | 3;
725                 INVLPG( &gaTmpTable[ (base>>12) & ~0x3FF ] );
726         }
727         
728         // Mapping Time!
729         for( addr = 0; addr < WORKER_STACK_SIZE; addr += 0x1000 )
730         {
731                 page = MM_AllocPhys();
732                 gaTmpTable[ (base + addr) >> 12 ] = page | 3;
733         }
734         *gpTmpCR3 = 0;
735         // Release the temp mapping lock
736         Mutex_Release(&glTempFractal);
737
738         // NOTE: Max of 1 page
739         // `page` is the last allocated page from the previious for loop
740         tmpPage = MM_MapTemp( page );
741         memcpy( (void*)( tmpPage + (0x1000 - ContentsSize) ), StackContents, ContentsSize);
742         MM_FreeTemp(tmpPage);   
743         
744         //Log("MM_NewWorkerStack: RETURN 0x%x", base);
745         return base + WORKER_STACK_SIZE;
746 }
747
748 /**
749  * \fn void MM_SetFlags(tVAddr VAddr, Uint Flags, Uint Mask)
750  * \brief Sets the flags on a page
751  */
752 void MM_SetFlags(tVAddr VAddr, Uint Flags, Uint Mask)
753 {
754         tTabEnt *ent;
755         if( !(gaPageDir[VAddr >> 22] & 1) )     return ;
756         if( !(gaPageTable[VAddr >> 12] & 1) )   return ;
757         
758         ent = &gaPageTable[VAddr >> 12];
759         
760         // Read-Only
761         if( Mask & MM_PFLAG_RO )
762         {
763                 if( Flags & MM_PFLAG_RO ) {
764                         *ent &= ~PF_WRITE;
765                 }
766                 else {
767                         gaPageDir[VAddr >> 22] |= PF_WRITE;
768                         *ent |= PF_WRITE;
769                 }
770         }
771         
772         // Kernel
773         if( Mask & MM_PFLAG_KERNEL )
774         {
775                 if( Flags & MM_PFLAG_KERNEL ) {
776                         *ent &= ~PF_USER;
777                 }
778                 else {
779                         gaPageDir[VAddr >> 22] |= PF_USER;
780                         *ent |= PF_USER;
781                 }
782         }
783         
784         // Copy-On-Write
785         if( Mask & MM_PFLAG_COW )
786         {
787                 if( Flags & MM_PFLAG_COW ) {
788                         *ent &= ~PF_WRITE;
789                         *ent |= PF_COW;
790                 }
791                 else {
792                         *ent &= ~PF_COW;
793                         *ent |= PF_WRITE;
794                 }
795         }
796         
797         //Log("MM_SetFlags: *ent = 0x%08x, gaPageDir[%i] = 0x%08x",
798         //      *ent, VAddr >> 22, gaPageDir[VAddr >> 22]);
799 }
800
801 /**
802  * \brief Get the flags on a page
803  */
804 Uint MM_GetFlags(tVAddr VAddr)
805 {
806         tTabEnt *ent;
807         Uint    ret = 0;
808         
809         // Validity Check
810         if( !(gaPageDir[VAddr >> 22] & 1) )     return 0;
811         if( !(gaPageTable[VAddr >> 12] & 1) )   return 0;
812         
813         ent = &gaPageTable[VAddr >> 12];
814         
815         // Read-Only
816         if( !(*ent & PF_WRITE) )        ret |= MM_PFLAG_RO;
817         // Kernel
818         if( !(*ent & PF_USER) ) ret |= MM_PFLAG_KERNEL;
819         // Copy-On-Write
820         if( *ent & PF_COW )     ret |= MM_PFLAG_COW;
821         
822         return ret;
823 }
824
825 /**
826  * \brief Check if the provided buffer is valid
827  * \return Boolean valid
828  */
829 int MM_IsValidBuffer(tVAddr Addr, size_t Size)
830 {
831          int    bIsUser;
832          int    dir, tab;
833
834         Size += Addr & (PAGE_SIZE-1);
835         Addr &= ~(PAGE_SIZE-1);
836
837         dir = Addr >> 22;
838         tab = Addr >> 12;
839         
840 //      Debug("Addr = %p, Size = 0x%x, dir = %i, tab = %i", Addr, Size, dir, tab);
841
842         if( !(gaPageDir[dir] & 1) )     return 0;
843         if( !(gaPageTable[tab] & 1) )   return 0;
844         
845         bIsUser = !!(gaPageTable[tab] & PF_USER);
846
847         while( Size >= PAGE_SIZE )
848         {
849                 if( (tab & 1023) == 0 )
850                 {
851                         dir ++;
852                         if( !(gaPageDir[dir] & 1) )     return 0;
853                 }
854                 
855                 if( !(gaPageTable[tab] & 1) )   return 0;
856                 if( bIsUser && !(gaPageTable[tab] & PF_USER) )  return 0;
857
858                 tab ++;
859                 Size -= PAGE_SIZE;
860         }
861         return 1;
862 }
863
864 /**
865  * \fn tPAddr MM_DuplicatePage(tVAddr VAddr)
866  * \brief Duplicates a virtual page to a physical one
867  */
868 tPAddr MM_DuplicatePage(tVAddr VAddr)
869 {
870         tPAddr  ret;
871         Uint    temp;
872          int    wasRO = 0;
873         
874         //ENTER("xVAddr", VAddr);
875         
876         // Check if mapped
877         if( !(gaPageDir  [VAddr >> 22] & PF_PRESENT) )  return 0;
878         if( !(gaPageTable[VAddr >> 12] & PF_PRESENT) )  return 0;
879         
880         // Page Align
881         VAddr &= ~0xFFF;
882         
883         // Allocate new page
884         ret = MM_AllocPhys();
885         if( !ret ) {
886                 return 0;
887         }
888         
889         // Write-lock the page (to keep data constistent), saving its R/W state
890         wasRO = (gaPageTable[VAddr >> 12] & PF_WRITE ? 0 : 1);
891         gaPageTable[VAddr >> 12] &= ~PF_WRITE;
892         INVLPG( VAddr );
893         
894         // Copy Data
895         temp = MM_MapTemp(ret);
896         memcpy( (void*)temp, (void*)VAddr, 0x1000 );
897         MM_FreeTemp(temp);
898         
899         // Restore Writeable status
900         if(!wasRO)      gaPageTable[VAddr >> 12] |= PF_WRITE;
901         INVLPG(VAddr);
902         
903         //LEAVE('X', ret);
904         return ret;
905 }
906
907 /**
908  * \fn Uint MM_MapTemp(tPAddr PAddr)
909  * \brief Create a temporary memory mapping
910  * \todo Show Luigi Barone (C Lecturer) and see what he thinks
911  */
912 tVAddr MM_MapTemp(tPAddr PAddr)
913 {
914          int    i;
915         
916         //ENTER("XPAddr", PAddr);
917         
918         PAddr &= ~0xFFF;
919         
920         //LOG("glTempMappings = %i", glTempMappings);
921         
922         for(;;)
923         {
924                 Mutex_Acquire( &glTempMappings );
925                 
926                 for( i = 0; i < NUM_TEMP_PAGES; i ++ )
927                 {
928                         // Check if page used
929                         if(gaPageTable[ (TEMP_MAP_ADDR >> 12) + i ] & 1)        continue;
930                         // Mark as used
931                         gaPageTable[ (TEMP_MAP_ADDR >> 12) + i ] = PAddr | 3;
932                         INVLPG( TEMP_MAP_ADDR + (i << 12) );
933                         //LEAVE('p', TEMP_MAP_ADDR + (i << 12));
934                         Mutex_Release( &glTempMappings );
935                         return TEMP_MAP_ADDR + (i << 12);
936                 }
937                 Mutex_Release( &glTempMappings );
938                 Threads_Yield();        // TODO: Use a sleep queue here instead
939         }
940 }
941
942 /**
943  * \fn void MM_FreeTemp(tVAddr PAddr)
944  * \brief Free's a temp mapping
945  */
946 void MM_FreeTemp(tVAddr VAddr)
947 {
948          int    i = VAddr >> 12;
949         //ENTER("xVAddr", VAddr);
950         
951         if(i >= (TEMP_MAP_ADDR >> 12))
952                 gaPageTable[ i ] = 0;
953         
954         //LEAVE('-');
955 }
956
957 /**
958  * \fn tVAddr MM_MapHWPages(tPAddr PAddr, Uint Number)
959  * \brief Allocates a contigous number of pages
960  */
961 tVAddr MM_MapHWPages(tPAddr PAddr, Uint Number)
962 {
963          int    i, j;
964         
965         PAddr &= ~0xFFF;
966         
967         // Scan List
968         for( i = 0; i < NUM_HW_PAGES; i ++ )
969         {               
970                 // Check if addr used
971                 if( gaPageTable[ (HW_MAP_ADDR >> 12) + i ] & 1 )
972                         continue;
973                 
974                 // Check possible region
975                 for( j = 0; j < Number && i + j < NUM_HW_PAGES; j ++ )
976                 {
977                         // If there is an allocated page in the region we are testing, break
978                         if( gaPageTable[ (HW_MAP_ADDR >> 12) + i + j ] & 1 )    break;
979                 }
980                 // Is it all free?
981                 if( j == Number )
982                 {
983                         // Allocate
984                         for( j = 0; j < Number; j++ ) {
985                                 MM_RefPhys( PAddr + (j<<12) );
986                                 gaPageTable[ (HW_MAP_ADDR >> 12) + i + j ] = (PAddr + (j<<12)) | 3;
987                         }
988                         return HW_MAP_ADDR + (i<<12);
989                 }
990         }
991         // If we don't find any, return NULL
992         return 0;
993 }
994
995 /**
996  * \fn tVAddr MM_AllocDMA(int Pages, int MaxBits, tPAddr *PhysAddr)
997  * \brief Allocates DMA physical memory
998  * \param Pages Number of pages required
999  * \param MaxBits       Maximum number of bits the physical address can have
1000  * \param PhysAddr      Pointer to the location to place the physical address allocated
1001  * \return Virtual address allocate
1002  */
1003 tVAddr MM_AllocDMA(int Pages, int MaxBits, tPAddr *PhysAddr)
1004 {
1005         tPAddr  maxCheck = (1 << MaxBits);
1006         tPAddr  phys;
1007         tVAddr  ret;
1008         
1009         ENTER("iPages iMaxBits pPhysAddr", Pages, MaxBits, PhysAddr);
1010         
1011         // Sanity Check
1012         if(MaxBits < 12 || !PhysAddr) {
1013                 LEAVE('i', 0);
1014                 return 0;
1015         }
1016         
1017         // Bound
1018         if(MaxBits >= PHYS_BITS)        maxCheck = -1;
1019         
1020         // Fast Allocate
1021         if(Pages == 1 && MaxBits >= PHYS_BITS)
1022         {
1023                 phys = MM_AllocPhys();
1024                 if( !phys ) {
1025                         *PhysAddr = 0;
1026                         LEAVE_RET('i', 0);
1027                 }
1028                 *PhysAddr = phys;
1029                 ret = MM_MapHWPages(phys, 1);
1030                 if(ret == 0) {
1031                         MM_DerefPhys(phys);
1032                         LEAVE('i', 0);
1033                         return 0;
1034                 }
1035                 LEAVE('x', ret);
1036                 return ret;
1037         }
1038         
1039         // Slow Allocate
1040         phys = MM_AllocPhysRange(Pages, MaxBits);
1041         // - Was it allocated?
1042         if(phys == 0) {
1043                 LEAVE('i', 0);
1044                 return 0;
1045         }
1046         
1047         // Allocated successfully, now map
1048         ret = MM_MapHWPages(phys, Pages);
1049         if( ret == 0 ) {
1050                 // If it didn't map, free then return 0
1051                 for(;Pages--;phys+=0x1000)
1052                         MM_DerefPhys(phys);
1053                 LEAVE('i', 0);
1054                 return 0;
1055         }
1056         
1057         *PhysAddr = phys;
1058         LEAVE('x', ret);
1059         return ret;
1060 }
1061
1062 /**
1063  * \fn void MM_UnmapHWPages(tVAddr VAddr, Uint Number)
1064  * \brief Unmap a hardware page
1065  */
1066 void MM_UnmapHWPages(tVAddr VAddr, Uint Number)
1067 {
1068          int    i, j;
1069         
1070         //Log_Debug("VirtMem", "MM_UnmapHWPages: (VAddr=0x%08x, Number=%i)", VAddr, Number);
1071         
1072         // Sanity Check
1073         if(VAddr < HW_MAP_ADDR || VAddr+Number*0x1000 > HW_MAP_MAX)     return;
1074         
1075         i = VAddr >> 12;
1076         
1077         Mutex_Acquire( &glTempMappings );       // Temp and HW share a directory, so they share a lock
1078         
1079         for( j = 0; j < Number; j++ )
1080         {
1081                 MM_DerefPhys( gaPageTable[ i + j ] & ~0xFFF );
1082                 gaPageTable[ i + j ] = 0;
1083         }
1084         
1085         Mutex_Release( &glTempMappings );
1086 }
1087

UCC git Repository :: git.ucc.asn.au