Kernel/x86 - Cleaning up and implmented address space nuking
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15 #include <arch_int.h>
16
17 // === FLAGS ===
18 #define DEBUG_TRACE_SWITCH      0
19 #define DEBUG_DISABLE_DOUBLEFAULT       1
20 #define DEBUG_VERY_SLOW_PERIOD  0
21
22 // === CONSTANTS ===
23 // Base is 1193182
24 #define TIMER_BASE      1193182
25 #if DEBUG_VERY_SLOW_PERIOD
26 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
27 #else
28 # define TIMER_DIVISOR  11932   //~100Hz
29 #endif
30
31 // === TYPES ===
32 typedef struct sCPU
33 {
34         Uint8   APICID;
35         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
36         Uint16  Resvd;
37         tThread *Current;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern int      giNumCPUs;
52 extern int      giNextTID;
53 extern tThread  gThreadZero;
54 extern void     Isr8(void);     // Double Fault
55 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
56 extern char     scheduler_return[];     // Return address in SchedulerBase
57 extern char     IRQCommon[];    // Common IRQ handler code
58 extern char     IRQCommon_handled[];    // IRQCommon call return location
59 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
60 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
61 extern void     Proc_InitialiseSSE(void);
62 extern void     Proc_SaveSSE(Uint DestPtr);
63 extern void     Proc_DisableSSE(void);
64
65 // === PROTOTYPES ===
66 //void  ArchThreads_Init(void);
67 #if USE_MP
68 void    MP_StartAP(int CPU);
69 void    MP_SendIPIVector(int CPU, Uint8 Vector);
70 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
71 #endif
72 void    Proc_IdleThread(void *Ptr);
73 //void  Proc_Start(void);
74 //tThread       *Proc_GetCurThread(void);
75 void    Proc_ChangeStack(void);
76 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
77 // int  Proc_Clone(Uint *Err, Uint Flags);
78 Uint    Proc_MakeUserStack(void);
79 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
80 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
81  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
82 //void  Proc_CallFaultHandler(tThread *Thread);
83 //void  Proc_DumpThreadCPUState(tThread *Thread);
84 void    Proc_Scheduler(int CPU);
85
86 // === GLOBALS ===
87 // --- Multiprocessing ---
88 #if USE_MP
89 volatile int    giNumInitingCPUs = 0;
90 tMPInfo *gMPFloatPtr = NULL;
91 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
92 tAPIC   *gpMP_LocalAPIC = NULL;
93 Uint8   gaAPIC_to_CPU[256] = {0};
94  int    giProc_BootProcessorID = 0;
95 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
96 #endif
97 tCPU    gaCPUs[MAX_CPUS] = {
98         {.Current = &gThreadZero}
99         };
100 tTSS    *gTSSs = NULL;  // Pointer to TSS array
101 tTSS    gTSS0 = {0};
102 // --- Error Recovery ---
103 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
104 tTSS    gDoubleFault_TSS = {
105         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
106         .SS0 = 0x10,
107         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
108         .EIP = (Uint)Isr8,
109         .ESP = (Uint)&gaDoubleFaultStack[1024],
110         .CS = 0x08,     .SS = 0x10,
111         .DS = 0x10,     .ES = 0x10,
112         .FS = 0x10,     .GS = 0x10,
113 };
114
115 // === CODE ===
116 /**
117  * \fn void ArchThreads_Init(void)
118  * \brief Starts the process scheduler
119  */
120 void ArchThreads_Init(void)
121 {
122         Uint    pos = 0;
123         
124         #if USE_MP
125         tMPTable        *mptable;
126         
127         // Mark BSP as active
128         gaCPUs[0].State = 2;
129         
130         // -- Initialise Multiprocessing
131         // Find MP Floating Table
132         // - EBDA/Last 1Kib (640KiB)
133         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
134                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
135                         Log("Possible %p", pos);
136                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
137                         gMPFloatPtr = (void*)pos;
138                         break;
139                 }
140         }
141         // - Last KiB (512KiB base mem)
142         if(!gMPFloatPtr) {
143                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
144                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
145                                 Log("Possible %p", pos);
146                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
147                                 gMPFloatPtr = (void*)pos;
148                                 break;
149                         }
150                 }
151         }
152         // - BIOS ROM
153         if(!gMPFloatPtr) {
154                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
155                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
156                                 Log("Possible %p", pos);
157                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
158                                 gMPFloatPtr = (void*)pos;
159                                 break;
160                         }
161                 }
162         }
163         
164         // If the MP Table Exists, parse it
165         if(gMPFloatPtr)
166         {
167                  int    i;
168                 tMPTable_Ent    *ents;
169                 #if DUMP_MP_TABLE
170                 Log("gMPFloatPtr = %p", gMPFloatPtr);
171                 Log("*gMPFloatPtr = {");
172                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
173                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
174                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
175                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
176                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
177                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
178                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
179                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
180                         gMPFloatPtr->Features[4]
181                         );
182                 Log("}");
183                 #endif          
184
185                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
186                 #if DUMP_MP_TABLE
187                 Log("mptable = %p", mptable);
188                 Log("*mptable = {");
189                 Log("\t.Sig = 0x%08x", mptable->Sig);
190                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
191                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
192                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
193                 Log("\t.OEMID = '%8c'", mptable->OemID);
194                 Log("\t.ProductID = '%8c'", mptable->ProductID);
195                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
196                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
197                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
198                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
199                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
200                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
201                 Log("}");
202                 #endif
203                 
204                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
205                 
206                 ents = mptable->Entries;
207                 giNumCPUs = 0;
208                 
209                 for( i = 0; i < mptable->EntryCount; i ++ )
210                 {
211                          int    entSize = 0;
212                         switch( ents->Type )
213                         {
214                         case 0: // Processor
215                                 entSize = 20;
216                                 #if DUMP_MP_TABLE
217                                 Log("%i: Processor", i);
218                                 Log("\t.APICID = %i", ents->Proc.APICID);
219                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
220                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
221                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
222                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
223                                 #endif
224                                 
225                                 if( !(ents->Proc.CPUFlags & 1) ) {
226                                         Log("DISABLED");
227                                         break;
228                                 }
229                                 
230                                 // Check if there is too many processors
231                                 if(giNumCPUs >= MAX_CPUS) {
232                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
233                                         break;
234                                 }
235                                 
236                                 // Initialise CPU Info
237                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
238                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
239                                 gaCPUs[giNumCPUs].State = 0;
240                                 giNumCPUs ++;
241                                 
242                                 // Set BSP Variable
243                                 if( ents->Proc.CPUFlags & 2 ) {
244                                         giProc_BootProcessorID = giNumCPUs-1;
245                                 }
246                                 
247                                 break;
248                         
249                         #if DUMP_MP_TABLE >= 2
250                         case 1: // Bus
251                                 entSize = 8;
252                                 Log("%i: Bus", i);
253                                 Log("\t.ID = %i", ents->Bus.ID);
254                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
255                                 break;
256                         case 2: // I/O APIC
257                                 entSize = 8;
258                                 Log("%i: I/O APIC", i);
259                                 Log("\t.ID = %i", ents->IOAPIC.ID);
260                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
261                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
262                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
263                                 break;
264                         case 3: // I/O Interrupt Assignment
265                                 entSize = 8;
266                                 Log("%i: I/O Interrupt Assignment", i);
267                                 Log("\t.IntType = %i", ents->IOInt.IntType);
268                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
269                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
270                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
271                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
272                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
273                                 break;
274                         case 4: // Local Interrupt Assignment
275                                 entSize = 8;
276                                 Log("%i: Local Interrupt Assignment", i);
277                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
278                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
279                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
280                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
281                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
282                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
283                                 break;
284                         default:
285                                 Log("%i: Unknown (%i)", i, ents->Type);
286                                 break;
287                         #endif
288                         }
289                         ents = (void*)( (Uint)ents + entSize );
290                 }
291                 
292                 if( giNumCPUs > MAX_CPUS ) {
293                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
294                         giNumCPUs = MAX_CPUS;
295                 }
296                 gTSSs = gaTSSs;
297         }
298         else {
299                 Log("No MP Table was found, assuming uniprocessor\n");
300                 giNumCPUs = 1;
301                 gTSSs = &gTSS0;
302         }
303         #else
304         giNumCPUs = 1;
305         gTSSs = &gTSS0;
306         #endif
307         
308         #if !DEBUG_DISABLE_DOUBLEFAULT
309         // Initialise Double Fault TSS
310         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
311         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
312         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
313         
314         // Set double fault IDT to use the new TSS
315         gIDT[8].OffsetLo = 0;
316         gIDT[8].CS = 5<<3;
317         gIDT[8].Flags = 0x8500;
318         gIDT[8].OffsetHi = 0;
319         #endif
320         
321         // Set timer frequency
322         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
323         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
324         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
325         
326         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
327                 TIMER_BASE/TIMER_DIVISOR,
328                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
329                 );
330         
331         #if USE_MP
332         // Get the count setting for APIC timer
333         Log("Determining APIC Count");
334         __asm__ __volatile__ ("sti");
335         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
336         __asm__ __volatile__ ("cli");
337         Log("APIC Count %i", giMP_TimerCount);
338         {
339                 Uint64  freq = giMP_TimerCount;
340                 freq *= TIMER_BASE;
341                 freq /= TIMER_DIVISOR;
342                 if( (freq /= 1000) < 2*1000)
343                         Log("Bus Frequency %i KHz", freq);
344                 else if( (freq /= 1000) < 2*1000)
345                         Log("Bus Frequency %i MHz", freq);
346                 else if( (freq /= 1000) < 2*1000)
347                         Log("Bus Frequency %i GHz", freq);
348                 else
349                         Log("Bus Frequency %i THz", freq);
350         }
351         
352         // Initialise Normal TSS(s)
353         for(pos=0;pos<giNumCPUs;pos++)
354         {
355         #else
356         pos = 0;
357         #endif
358                 gTSSs[pos].SS0 = 0x10;
359                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
360                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
361                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
362                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
363         #if USE_MP
364         }
365         #endif
366         
367         // Load the BSP's TSS
368         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
369         // Set Current Thread and CPU Number in DR0 and DR1
370         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
371         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
372         
373         gaCPUs[0].Current = &gThreadZero;
374         gThreadZero.CurCPU = 0;
375         
376         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
377         
378         // Create Per-Process Data Block
379         if( !MM_Allocate(MM_PPD_CFG) )
380         {
381                 Panic("OOM - No space for initial Per-Process Config");
382         }
383
384         // Initialise SSE support
385         Proc_InitialiseSSE();
386         
387         // Change Stacks
388         Proc_ChangeStack();
389 }
390
391 #if USE_MP
392 /**
393  * \brief Start an AP
394  */
395 void MP_StartAP(int CPU)
396 {
397         Log_Log("Proc", "Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
398         
399         // Set location of AP startup code and mark for a warm restart
400         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
401         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
402         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
403         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
404         
405         // Delay
406         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
407         
408         // TODO: Use a better address, preferably registered with the MM
409         // - MM_AllocDMA mabye?
410         // Create a far jump
411         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
412         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
413         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
414         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
415         // just filled)
416         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
417         
418         giNumInitingCPUs ++;
419 }
420
421 void MP_SendIPIVector(int CPU, Uint8 Vector)
422 {
423         MP_SendIPI(gaCPUs[CPU].APICID, Vector, 0);
424 }
425
426 /**
427  * \brief Send an Inter-Processor Interrupt
428  * \param APICID        Processor's Local APIC ID
429  * \param Vector        Argument of some kind
430  * \param DeliveryMode  Type of signal
431  * \note 3A 10.5 "APIC/Handling Local Interrupts"
432  */
433 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
434 {
435         Uint32  val;
436         
437         // Hi
438         val = (Uint)APICID << 24;
439 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
440         gpMP_LocalAPIC->ICR[1].Val = val;
441         // Low (and send)
442         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
443 //      Log("%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
444         gpMP_LocalAPIC->ICR[0].Val = val;
445 }
446 #endif
447
448 void Proc_IdleThread(void *Ptr)
449 {
450         tCPU    *cpu = &gaCPUs[GetCPUNum()];
451         cpu->Current->ThreadName = strdup("Idle Thread");
452         Threads_SetPriority( cpu->Current, -1 );        // Never called randomly
453         cpu->Current->Quantum = 1;      // 1 slice quantum
454         for(;;) {
455                 __asm__ __volatile__ ("sti");   // Make sure interrupts are enabled
456                 __asm__ __volatile__ ("hlt");   // Make sure interrupts are enabled
457                 Proc_Reschedule();
458         }
459 }
460
461 /**
462  * \fn void Proc_Start(void)
463  * \brief Start process scheduler
464  */
465 void Proc_Start(void)
466 {
467          int    tid;
468         #if USE_MP
469          int    i;
470         #endif
471         
472         #if USE_MP
473         // Start APs
474         for( i = 0; i < giNumCPUs; i ++ )
475         {
476                 if(i)   gaCPUs[i].Current = NULL;
477                 
478                 // Create Idle Task
479                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
480                 
481                 // Start the AP
482                 if( i != giProc_BootProcessorID ) {
483                         MP_StartAP( i );
484                 }
485         }
486         
487         // BSP still should run the current task
488         gaCPUs[0].Current = &gThreadZero;
489         
490         // Start interrupts and wait for APs to come up
491         Log_Debug("Proc", "Waiting for APs to come up");
492         __asm__ __volatile__ ("sti");
493         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
494         #else
495         // Create Idle Task
496         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
497 //      gaCPUs[0].IdleThread = Threads_GetThread(tid);
498         
499         // Set current task
500         gaCPUs[0].Current = &gThreadZero;
501
502         // Start Interrupts (and hence scheduler)
503         __asm__ __volatile__("sti");
504         #endif
505         MM_FinishVirtualInit();
506 }
507
508 /**
509  * \fn tThread *Proc_GetCurThread(void)
510  * \brief Gets the current thread
511  */
512 tThread *Proc_GetCurThread(void)
513 {
514         #if USE_MP
515         return gaCPUs[ GetCPUNum() ].Current;
516         #else
517         return gaCPUs[ 0 ].Current;
518         #endif
519 }
520
521 /**
522  * \fn void Proc_ChangeStack(void)
523  * \brief Swaps the current stack for a new one (in the proper stack reigon)
524  */
525 void Proc_ChangeStack(void)
526 {
527         Uint    esp, ebp;
528         Uint    tmpEbp, oldEsp;
529         Uint    curBase, newBase;
530
531         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
532         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
533
534         oldEsp = esp;
535
536         // Create new KStack
537         newBase = MM_NewKStack();
538         // Check for errors
539         if(newBase == 0) {
540                 Panic("What the?? Unable to allocate space for initial kernel stack");
541                 return;
542         }
543
544         curBase = (Uint)&Kernel_Stack_Top;
545         
546         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
547
548         // Get ESP as a used size
549         esp = curBase - esp;
550         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
551         // Copy used stack
552         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
553         // Get ESP as an offset in the new stack
554         esp = newBase - esp;
555         // Adjust EBP
556         ebp = newBase - (curBase - ebp);
557
558         // Repair EBPs & Stack Addresses
559         // Catches arguments also, but may trash stack-address-like values
560         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
561         {
562                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
563                         *(Uint*)tmpEbp += newBase - curBase;
564         }
565         
566         Proc_GetCurThread()->KernelStack = newBase;
567         
568         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
569         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
570 }
571
572 void Proc_ClearThread(tThread *Thread)
573 {
574         MM_ClearSpace(Thread->MemState.CR3);
575         if(Thread->SavedState.SSE) {
576                 free(Thread->SavedState.SSE);
577                 Thread->SavedState.SSE = NULL;
578         }
579 }
580
581 int Proc_NewKThread(void (*Fcn)(void*), void *Data)
582 {
583         Uint    esp;
584         tThread *newThread, *cur;
585         
586         cur = Proc_GetCurThread();
587         newThread = Threads_CloneTCB(0);
588         if(!newThread)  return -1;
589         
590         // Set CR3
591         MM_RefPhys( cur->MemState.CR3 );
592         newThread->MemState.CR3 = cur->MemState.CR3;
593
594         // Create new KStack
595         newThread->KernelStack = MM_NewKStack();
596         // Check for errors
597         if(newThread->KernelStack == 0) {
598                 free(newThread);
599                 return -1;
600         }
601
602         esp = newThread->KernelStack;
603         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
604         *(Uint*)(esp-=4) = 1;   // Number of params
605         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
606         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
607         
608         newThread->SavedState.ESP = esp;
609         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
610         newThread->SavedState.SSE = NULL;
611 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
612         
613 //      MAGIC_BREAK();  
614         Threads_AddActive(newThread);
615
616         return newThread->TID;
617 }
618
619 /**
620  * \fn int Proc_Clone(Uint *Err, Uint Flags)
621  * \brief Clone the current process
622  */
623 int Proc_Clone(Uint Flags)
624 {
625         tThread *newThread;
626         tThread *cur = Proc_GetCurThread();
627         Uint    eip;
628
629         // Sanity, please
630         if( !(Flags & CLONE_VM) ) {
631                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
632                 return -1;
633         }
634         
635         // New thread
636         newThread = Threads_CloneTCB(Flags);
637         if(!newThread)  return -1;
638
639         newThread->KernelStack = cur->KernelStack;
640
641         // Clone state
642         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->MemState.CR3);
643         if( eip == 0 ) {
644                 // ACK the interrupt
645                 return 0;
646         }
647         newThread->SavedState.EIP = eip;
648         newThread->SavedState.SSE = NULL;
649         newThread->SavedState.bSSEModified = 0;
650         
651         // Check for errors
652         if( newThread->MemState.CR3 == 0 ) {
653                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
654                 Threads_Delete(newThread);
655                 return -1;
656         }
657
658         // Add the new thread to the run queue
659         Threads_AddActive(newThread);
660         return newThread->TID;
661 }
662
663 /**
664  * \fn int Proc_SpawnWorker(void)
665  * \brief Spawns a new worker thread
666  */
667 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
668 {
669         tThread *new;
670         Uint    stack_contents[4];
671         
672         // Create new thread
673         new = Threads_CloneThreadZero();
674         if(!new) {
675                 Warning("Proc_SpawnWorker - Out of heap space!\n");
676                 return -1;
677         }
678
679         // Create the stack contents
680         stack_contents[3] = (Uint)Data;
681         stack_contents[2] = 1;
682         stack_contents[1] = (Uint)Fcn;
683         stack_contents[0] = (Uint)new;
684         
685         // Create a new worker stack (in PID0's address space)
686         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
687
688         // Save core machine state
689         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
690         new->SavedState.EIP = (Uint)NewTaskHeader;
691         new->SavedState.SSE = NULL;
692         new->SavedState.bSSEModified = 0;
693         
694         // Mark as active
695         new->Status = THREAD_STAT_PREINIT;
696         Threads_AddActive( new );
697         
698         return new->TID;
699 }
700
701 /**
702  * \fn Uint Proc_MakeUserStack(void)
703  * \brief Creates a new user stack
704  */
705 Uint Proc_MakeUserStack(void)
706 {
707          int    i;
708         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
709         
710         // Check Prospective Space
711         for( i = USER_STACK_SZ >> 12; i--; )
712                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
713                         break;
714         
715         if(i != -1)     return 0;
716         
717         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
718         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
719         {
720                 if( !MM_Allocate( base + (i<<12) ) )
721                 {
722                         Warning("OOM: Proc_MakeUserStack");
723                         return 0;
724                 }
725         }
726         
727         return base + USER_STACK_SZ;
728 }
729
730 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, char **ArgV, int DataSize)
731 {
732         Uint    *stack;
733          int    i;
734         char    **envp = NULL;
735         Uint16  ss, cs;
736         
737         // Copy data to the user stack and free original buffer
738         stack = (void*)Proc_MakeUserStack();
739         stack -= DataSize/sizeof(*stack);
740         memcpy( stack, ArgV, DataSize );
741         free(ArgV);
742         
743         // Adjust Arguments and environment
744         if( DataSize )
745         {
746                 Uint delta = (Uint)stack - (Uint)ArgV;
747                 ArgV = (char**)stack;
748                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
749                 envp = &ArgV[i+1];
750                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
751         }
752         
753         // User Mode Segments
754         ss = 0x23;      cs = 0x1B;
755         
756         // Arguments
757         *--stack = (Uint)envp;
758         *--stack = (Uint)ArgV;
759         *--stack = (Uint)ArgC;
760         *--stack = Base;
761         
762         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
763 }
764
765 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
766 {
767         Uint    *stack = (void*)Stack;
768         *--stack = SS;          //Stack Segment
769         *--stack = Stack;       //Stack Pointer
770         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
771         *--stack = CS;          //Code Segment
772         *--stack = IP;  //EIP
773         //PUSHAD
774         *--stack = 0xAAAAAAAA;  // eax
775         *--stack = 0xCCCCCCCC;  // ecx
776         *--stack = 0xDDDDDDDD;  // edx
777         *--stack = 0xBBBBBBBB;  // ebx
778         *--stack = 0xD1D1D1D1;  // edi
779         *--stack = 0x54545454;  // esp - NOT POPED
780         *--stack = 0x51515151;  // esi
781         *--stack = 0xB4B4B4B4;  // ebp
782         //Individual PUSHs
783         *--stack = SS;  // ds
784         *--stack = SS;  // es
785         *--stack = SS;  // fs
786         *--stack = SS;  // gs
787         
788         __asm__ __volatile__ (
789         "mov %%eax,%%esp;\n\t"  // Set stack pointer
790         "pop %%gs;\n\t"
791         "pop %%fs;\n\t"
792         "pop %%es;\n\t"
793         "pop %%ds;\n\t"
794         "popa;\n\t"
795         "iret;\n\t" : : "a" (stack));
796         for(;;);
797 }
798
799 /**
800  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
801  * \brief Demotes a process to a lower permission level
802  * \param Err   Pointer to user's errno
803  * \param Dest  New Permission Level
804  * \param Regs  Pointer to user's register structure
805  */
806 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
807 {
808          int    cpl = Regs->cs & 3;
809         // Sanity Check
810         if(Dest > 3 || Dest < 0) {
811                 *Err = -EINVAL;
812                 return -1;
813         }
814         
815         // Permission Check
816         if(cpl > Dest) {
817                 *Err = -EACCES;
818                 return -1;
819         }
820         
821         // Change the Segment Registers
822         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
823         Regs->ss = ((Dest+1)<<4) | Dest;
824         // Check if the GP Segs are GDT, then change them
825         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
826         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
827         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
828         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
829         
830         return 0;
831 }
832
833 /**
834  * \brief Calls a signal handler in user mode
835  * \note Used for signals
836  */
837 void Proc_CallFaultHandler(tThread *Thread)
838 {
839         // Rewinds the stack and calls the user function
840         // Never returns
841         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
842         for(;;);
843 }
844
845 void Proc_DumpThreadCPUState(tThread *Thread)
846 {
847         if( Thread->CurCPU > -1 )
848         {
849                  int    maxBacktraceDistance = 6;
850                 tRegs   *regs = NULL;
851                 Uint32  *stack;
852                 
853                 if( Thread->CurCPU != GetCPUNum() ) {
854                         Log("  Currently running");
855                         return ;
856                 }
857                 
858                 // Backtrace to find the IRQ entrypoint
859                 // - This will usually only be called by an IRQ, so this should
860                 //   work
861                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
862                 while( maxBacktraceDistance -- )
863                 {
864                         // [ebp] = oldEbp
865                         // [ebp+4] = retaddr
866                         
867                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
868                                 regs = (void*)stack[2];
869                                 break;
870                         }
871                         
872                         stack = (void*)stack[0];
873                 }
874                 
875                 if( !regs ) {
876                         Log("  Unable to find IRQ Entry");
877                         return ;
878                 }
879                 
880                 Log("  at %04x:%08x", regs->cs, regs->eip);
881                 return ;
882         }
883         
884         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
885         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
886         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
887         
888         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
889         {
890                 Log("  Creating process");
891                 return ;
892         }
893         
894         if( diffFromSpawn == 0 )
895         {
896                 Log("  Creating thread");
897                 return ;
898         }
899         
900         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
901         {
902                 // Scheduled out
903                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
904                 return ;
905         }
906         
907         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
908 }
909
910 void Proc_Reschedule(void)
911 {
912         tThread *nextthread, *curthread;
913          int    cpu = GetCPUNum();
914
915         // TODO: Wait for the lock?
916         if(IS_LOCKED(&glThreadListLock))        return;
917         
918         curthread = Proc_GetCurThread();
919
920         nextthread = Threads_GetNextToRun(cpu, curthread);
921
922         if(!nextthread || nextthread == curthread)
923                 return ;
924
925         #if DEBUG_TRACE_SWITCH
926         // HACK: Ignores switches to the idle threads
927         if( nextthread->TID == 0 || nextthread->TID > giNumCPUs )
928         {
929                 LogF("\nSwitching CPU %i to %p (%i %s) - CR3 = 0x%x, EIP = %p, ESP = %p\n",
930                         GetCPUNum(),
931                         nextthread, nextthread->TID, nextthread->ThreadName,
932                         nextthread->MemState.CR3,
933                         nextthread->SavedState.EIP,
934                         nextthread->SavedState.ESP
935                         );
936         }
937         #endif
938
939         // Update CPU state
940         gaCPUs[cpu].Current = nextthread;
941         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
942         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
943
944         // Save FPU/MMX/XMM/SSE state
945         if( curthread && curthread->SavedState.SSE )
946         {
947                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
948                 curthread->SavedState.bSSEModified = 0;
949                 Proc_DisableSSE();
950         }
951
952         if( curthread )
953         {
954                 SwitchTasks(
955                         nextthread->SavedState.ESP, &curthread->SavedState.ESP,
956                         nextthread->SavedState.EIP, &curthread->SavedState.EIP,
957                         nextthread->MemState.CR3
958                         );
959         }
960         else
961         {
962                 SwitchTasks(
963                         nextthread->SavedState.ESP, 0,
964                         nextthread->SavedState.EIP, 0,
965                         nextthread->MemState.CR3
966                         );
967         }
968
969         return ;
970 }
971
972 /**
973  * \fn void Proc_Scheduler(int CPU)
974  * \brief Swap current thread and clears dead threads
975  */
976 void Proc_Scheduler(int CPU)
977 {
978 #if 0
979         tThread *thread;
980         
981         // If the spinlock is set, let it complete
982         if(IS_LOCKED(&glThreadListLock))        return;
983         
984         // Get current thread
985         thread = gaCPUs[CPU].Current;
986         
987         if( thread )
988         {
989                 tRegs   *regs;
990                 Uint    ebp;
991                 // Reduce remaining quantum and continue timeslice if non-zero
992                 if( thread->Remaining-- )
993                         return;
994                 // Reset quantum for next call
995                 thread->Remaining = thread->Quantum;
996                 
997                 // TODO: Make this more stable somehow
998                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
999                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
1000                 thread->SavedState.UserCS = regs->cs;
1001                 thread->SavedState.UserEIP = regs->eip;
1002                 
1003                 if(thread->bInstrTrace) {
1004                         regs->eflags |= 0x100;  // Set TF
1005                         Log("%p De-scheduled", thread);
1006                 }
1007                 else
1008                         regs->eflags &= ~0x100; // Clear TF
1009         }
1010
1011         // TODO: Ack timer?
1012         #if USE_MP
1013         if( GetCPUNum() )
1014                 gpMP_LocalAPIC->EOI.Val = 0;
1015         else
1016         #endif
1017                 outb(0x20, 0x20);
1018         __asm__ __volatile__ ("sti");
1019         Proc_Reschedule();
1020 #endif
1021 }
1022
1023 // === EXPORTS ===
1024 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au