VM8086 Support, Starting on VESA Driver
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <mm_virt.h>
8 #include <errno.h>
9 #if USE_MP
10 # include <mp.h>
11 #endif
12
13 // === FLAGS ===
14 #define DEBUG_TRACE_SWITCH      0
15
16 // === CONSTANTS ===
17 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
18 // Base is 1193182
19 #define TIMER_DIVISOR   11931   //~100Hz
20
21 // === IMPORTS ===
22 extern tGDT     gGDT[];
23 extern void APStartup();        // 16-bit AP startup code
24 extern Uint     GetEIP();       // start.asm
25 extern Uint32   gaInitPageDir[1024];    // start.asm
26 extern void     Kernel_Stack_Top;
27 extern volatile int     giThreadListLock;
28 extern int      giNumCPUs;
29 extern int      giNextTID;
30 extern int      giTotalTickets;
31 extern int      giNumActiveThreads;
32 extern tThread  gThreadZero;
33 extern tThread  *gActiveThreads;
34 extern tThread  *gSleepingThreads;
35 extern tThread  *gDeleteThreads;
36 extern tThread  *Threads_GetNextToRun(int CPU);
37 extern void     Threads_Dump();
38 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
39 extern void     Isr7();
40
41 // === PROTOTYPES ===
42 void    ArchThreads_Init();
43 #if USE_MP
44 void    MP_StartAP(int CPU);
45 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
46 #endif
47 void    Proc_Start();
48 tThread *Proc_GetCurThread();
49 void    Proc_ChangeStack();
50  int    Proc_Clone(Uint *Err, Uint Flags);
51 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP);
52 void    Proc_Scheduler();
53
54 // === GLOBALS ===
55 // --- Multiprocessing ---
56 #if USE_MP
57 volatile int    giNumInitingCPUs = 0;
58 tMPInfo *gMPFloatPtr = NULL;
59 tAPIC   *gpMP_LocalAPIC = NULL;
60 Uint8   gaAPIC_to_CPU[256] = {0};
61 tCPU    gaCPUs[MAX_CPUS];
62 #else
63 tThread *gCurrentThread = NULL;
64 #endif
65 #if USE_PAE
66 Uint32  *gPML4s[4] = NULL;
67 #endif
68 tTSS    *gTSSs = NULL;
69 tTSS    gTSS0 = {0};
70 // --- Error Recovery ---
71 char    gaDoubleFaultStack[1024];
72 tTSS    gDoubleFault_TSS = {
73         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
74         .SS0 = 0x10,
75         .EIP = (Uint)Isr7
76 };
77
78 // === CODE ===
79 /**
80  * \fn void ArchThreads_Init()
81  * \brief Starts the process scheduler
82  */
83 void ArchThreads_Init()
84 {
85         Uint    pos = 0;
86         
87         #if USE_MP
88         tMPTable        *mptable;
89         
90         // Mark BSP as active
91         gaCPUs[0].State = 2;
92         
93         // -- Initialise Multiprocessing
94         // Find MP Floating Table
95         // - EBDA/Last 1Kib (640KiB)
96         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
97                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
98                         Log("Possible %p", pos);
99                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
100                         gMPFloatPtr = (void*)pos;
101                         break;
102                 }
103         }
104         // - Last KiB (512KiB base mem)
105         if(!gMPFloatPtr) {
106                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
107                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
108                                 Log("Possible %p", pos);
109                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
110                                 gMPFloatPtr = (void*)pos;
111                                 break;
112                         }
113                 }
114         }
115         // - BIOS ROM
116         if(!gMPFloatPtr) {
117                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
118                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
119                                 Log("Possible %p", pos);
120                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
121                                 gMPFloatPtr = (void*)pos;
122                                 break;
123                         }
124                 }
125         }
126         
127         // If the MP Table Exists, parse it
128         if(gMPFloatPtr)
129         {
130                  int    i;
131                 tMPTable_Ent    *ents;
132                 Log("gMPFloatPtr = %p", gMPFloatPtr);
133                 Log("*gMPFloatPtr = {");
134                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
135                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
136                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
137                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
138                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
139                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
140                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
141                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
142                         gMPFloatPtr->Features[4]
143                         );
144                 Log("}");
145                 
146                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
147                 Log("mptable = %p", mptable);
148                 Log("*mptable = {");
149                 Log("\t.Sig = 0x%08x", mptable->Sig);
150                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
151                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
152                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
153                 Log("\t.OEMID = '%8c'", mptable->OemID);
154                 Log("\t.ProductID = '%8c'", mptable->ProductID);
155                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
156                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
157                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
158                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
159                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
160                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
161                 Log("}");
162                 
163                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
164                 
165                 ents = mptable->Entries;
166                 giNumCPUs = 0;
167                 
168                 for( i = 0; i < mptable->EntryCount; i ++ )
169                 {
170                          int    entSize = 0;
171                         switch( ents->Type )
172                         {
173                         case 0: // Processor
174                                 entSize = 20;
175                                 Log("%i: Processor", i);
176                                 Log("\t.APICID = %i", ents->Proc.APICID);
177                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
178                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
179                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
180                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
181                                 
182                                 
183                                 if( !(ents->Proc.CPUFlags & 1) ) {
184                                         Log("DISABLED");
185                                         break;
186                                 }
187                                 
188                                 // Check if there is too many processors
189                                 if(giNumCPUs >= MAX_CPUS) {
190                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
191                                         break;
192                                 }
193                                 
194                                 // Initialise CPU Info
195                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
196                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
197                                 gaCPUs[giNumCPUs].State = 0;
198                                 giNumCPUs ++;
199                                 
200                                 // Send IPI
201                                 if( !(ents->Proc.CPUFlags & 2) )
202                                 {
203                                         MP_StartAP( giNumCPUs-1 );
204                                 }
205                                 
206                                 break;
207                         case 1: // Bus
208                                 entSize = 8;
209                                 Log("%i: Bus", i);
210                                 Log("\t.ID = %i", ents->Bus.ID);
211                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
212                                 break;
213                         case 2: // I/O APIC
214                                 entSize = 8;
215                                 Log("%i: I/O APIC", i);
216                                 Log("\t.ID = %i", ents->IOAPIC.ID);
217                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
218                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
219                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
220                                 break;
221                         case 3: // I/O Interrupt Assignment
222                                 entSize = 8;
223                                 Log("%i: I/O Interrupt Assignment", i);
224                                 Log("\t.IntType = %i", ents->IOInt.IntType);
225                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
226                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
227                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
228                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
229                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
230                                 break;
231                         case 4: // Local Interrupt Assignment
232                                 entSize = 8;
233                                 Log("%i: Local Interrupt Assignment", i);
234                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
235                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
236                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
237                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
238                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
239                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
240                                 break;
241                         default:
242                                 Log("%i: Unknown (%i)", i, ents->Type);
243                                 break;
244                         }
245                         ents = (void*)( (Uint)ents + entSize );
246                 }
247                 
248                 if( giNumCPUs > MAX_CPUS ) {
249                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
250                         giNumCPUs = MAX_CPUS;
251                 }
252         
253                 while( giNumInitingCPUs )
254                         MM_FinishVirtualInit();
255                 
256                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
257         }
258         else {
259                 Log("No MP Table was found, assuming uniprocessor\n");
260                 giNumCPUs = 1;
261                 gTSSs = &gTSS0;
262         }
263         #else
264         giNumCPUs = 1;
265         gTSSs = &gTSS0;
266         MM_FinishVirtualInit();
267         #endif
268         
269         // Initialise Double Fault TSS
270         /*
271         gGDT[5].LimitLow = sizeof(tTSS);
272         gGDT[5].LimitHi = 0;
273         gGDT[5].Access = 0x89;  // Type
274         gGDT[5].Flags = 0x4;
275         */
276         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
277         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
278         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
279         
280         #if USE_MP
281         // Initialise Normal TSS(s)
282         for(pos=0;pos<giNumCPUs;pos++)
283         {
284         #else
285         pos = 0;
286         #endif
287                 gTSSs[pos].SS0 = 0x10;
288                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
289                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
290                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
291                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
292         #if USE_MP
293         }
294         for(pos=0;pos<giNumCPUs;pos++) {
295         #endif
296                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
297         #if USE_MP
298         }
299         #endif
300         
301         #if USE_MP
302         gaCPUs[0].Current = &gThreadZero;
303         #else
304         gCurrentThread = &gThreadZero;
305         #endif
306         
307         #if USE_PAE
308         gThreadZero.MemState.PDP[0] = 0;
309         gThreadZero.MemState.PDP[1] = 0;
310         gThreadZero.MemState.PDP[2] = 0;
311         #else
312         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
313         #endif
314         
315         // Set timer frequency
316         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
317         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
318         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
319         
320         // Create Per-Process Data Block
321         MM_Allocate(MM_PPD_CFG);
322         
323         // Change Stacks
324         Proc_ChangeStack();
325 }
326
327 #if USE_MP
328 void MP_StartAP(int CPU)
329 {
330         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
331         // Set location of AP startup code and mark for a warm restart
332         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
333         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
334         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
335         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
336         giNumInitingCPUs ++;
337 }
338
339 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
340 {
341         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
342         Uint32  val;
343         
344         // Hi
345         val = (Uint)APICID << 24;
346         Log("*%p = 0x%08x", addr+0x10, val);
347         *(Uint32*)(addr+0x10) = val;
348         // Low (and send)
349         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
350         Log("*%p = 0x%08x", addr, val);
351         *(Uint32*)addr = val;
352 }
353 #endif
354
355 /**
356  * \fn void Proc_Start()
357  * \brief Start process scheduler
358  */
359 void Proc_Start()
360 {
361         // Start Interrupts (and hence scheduler)
362         __asm__ __volatile__("sti");
363 }
364
365 /**
366  * \fn tThread *Proc_GetCurThread()
367  * \brief Gets the current thread
368  */
369 tThread *Proc_GetCurThread()
370 {
371         #if USE_MP
372         return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->ID.Val&0xFF] ].Current;
373         #else
374         return gCurrentThread;
375         #endif
376 }
377
378 /**
379  * \fn void Proc_ChangeStack()
380  * \brief Swaps the current stack for a new one (in the proper stack reigon)
381  */
382 void Proc_ChangeStack()
383 {
384         Uint    esp, ebp;
385         Uint    tmpEbp, oldEsp;
386         Uint    curBase, newBase;
387
388         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
389         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
390
391         oldEsp = esp;
392
393         // Create new KStack
394         newBase = MM_NewKStack();
395         // Check for errors
396         if(newBase == 0) {
397                 Panic("What the?? Unable to allocate space for initial kernel stack");
398                 return;
399         }
400
401         curBase = (Uint)&Kernel_Stack_Top;
402         
403         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
404
405         // Get ESP as a used size
406         esp = curBase - esp;
407         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
408         // Copy used stack
409         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
410         // Get ESP as an offset in the new stack
411         esp = newBase - esp;
412         // Adjust EBP
413         ebp = newBase - (curBase - ebp);
414
415         // Repair EBPs & Stack Addresses
416         // Catches arguments also, but may trash stack-address-like values
417         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
418         {
419                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
420                         *(Uint*)tmpEbp += newBase - curBase;
421         }
422         
423         Proc_GetCurThread()->KernelStack = newBase;
424         
425         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
426         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
427 }
428
429 /**
430  * \fn int Proc_Clone(Uint *Err, Uint Flags)
431  * \brief Clone the current process
432  */
433 int Proc_Clone(Uint *Err, Uint Flags)
434 {
435         tThread *newThread;
436         tThread *cur = Proc_GetCurThread();
437         Uint    eip, esp, ebp;
438         
439         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
440         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
441         
442         newThread = Threads_CloneTCB(Err, Flags);
443         if(!newThread)  return -1;
444         
445         // Initialise Memory Space (New Addr space or kernel stack)
446         if(Flags & CLONE_VM) {
447                 newThread->MemState.CR3 = MM_Clone();
448                 newThread->KernelStack = cur->KernelStack;
449         } else {
450                 Uint    tmpEbp, oldEsp = esp;
451
452                 // Set CR3
453                 newThread->MemState.CR3 = cur->MemState.CR3;
454
455                 // Create new KStack
456                 newThread->KernelStack = MM_NewKStack();
457                 // Check for errors
458                 if(newThread->KernelStack == 0) {
459                         free(newThread);
460                         return -1;
461                 }
462
463                 // Get ESP as a used size
464                 esp = cur->KernelStack - esp;
465                 // Copy used stack
466                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
467                 // Get ESP as an offset in the new stack
468                 esp = newThread->KernelStack - esp;
469                 // Adjust EBP
470                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
471
472                 // Repair EBPs & Stack Addresses
473                 // Catches arguments also, but may trash stack-address-like values
474                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
475                 {
476                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
477                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
478                 }
479         }
480         
481         // Save core machine state
482         newThread->SavedState.ESP = esp;
483         newThread->SavedState.EBP = ebp;
484         eip = GetEIP();
485         if(eip == SWITCH_MAGIC) {
486                 outb(0x20, 0x20);       // ACK Timer and return as child
487                 return 0;
488         }
489         
490         // Set EIP as parent
491         newThread->SavedState.EIP = eip;
492         
493         // Lock list and add to active
494         Threads_AddActive(newThread);
495         
496         return newThread->TID;
497 }
498
499 /**
500  * \fn int Proc_SpawnWorker()
501  * \brief Spawns a new worker thread
502  */
503 int Proc_SpawnWorker()
504 {
505         tThread *new, *cur;
506         Uint    eip, esp, ebp;
507         
508         cur = Proc_GetCurThread();
509         
510         // Create new thread
511         new = malloc( sizeof(tThread) );
512         if(!new) {
513                 Warning("Proc_SpawnWorker - Out of heap space!\n");
514                 return -1;
515         }
516         memcpy(new, &gThreadZero, sizeof(tThread));
517         // Set Thread ID
518         new->TID = giNextTID++;
519         // Create a new worker stack (in PID0's address space)
520         // The stack is relocated by this code
521         new->KernelStack = MM_NewWorkerStack();
522
523         // Get ESP and EBP based in the new stack
524         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
525         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
526         esp = new->KernelStack - (cur->KernelStack - esp);
527         ebp = new->KernelStack - (cur->KernelStack - ebp);      
528         
529         // Save core machine state
530         new->SavedState.ESP = esp;
531         new->SavedState.EBP = ebp;
532         eip = GetEIP();
533         if(eip == SWITCH_MAGIC) {
534                 outb(0x20, 0x20);       // ACK Timer and return as child
535                 return 0;
536         }
537         
538         // Set EIP as parent
539         new->SavedState.EIP = eip;
540         // Mark as active
541         new->Status = THREAD_STAT_ACTIVE;
542         Threads_AddActive( new );
543         
544         return new->TID;
545 }
546
547 /**
548  * \fn Uint Proc_MakeUserStack()
549  * \brief Creates a new user stack
550  */
551 Uint Proc_MakeUserStack()
552 {
553          int    i;
554         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
555         
556         // Check Prospective Space
557         for( i = USER_STACK_SZ >> 12; i--; )
558                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
559                         break;
560         
561         if(i != -1)     return 0;
562         
563         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
564         for( i = 0; i < USER_STACK_SZ/4069; i++ )
565                 MM_Allocate( base + (i<<12) );
566         
567         return base + USER_STACK_SZ;
568 }
569
570
571 /**
572  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
573  * \brief Starts a user task
574  */
575 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
576 {
577         Uint    *stack = (void*)Proc_MakeUserStack();
578          int    i;
579         Uint    delta;
580         Uint16  ss, cs;
581         
582         LOG("stack = 0x%x", stack);
583         
584         // Copy Arguments
585         stack = (void*)( (Uint)stack - DataSize );
586         memcpy( stack, ArgV, DataSize );
587         
588         // Adjust Arguments and environment
589         delta = (Uint)stack - (Uint)ArgV;
590         ArgV = (char**)stack;
591         for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
592         i ++;
593         EnvP = &ArgV[i];
594         for( i = 0; EnvP[i]; i++ )      EnvP[i] += delta;
595         
596         // User Mode Segments
597         ss = 0x23;      cs = 0x1B;
598         
599         // Arguments
600         *--stack = (Uint)EnvP;
601         *--stack = (Uint)ArgV;
602         *--stack = (Uint)ArgC;
603         while(*Bases)
604                 *--stack = *Bases++;
605         *--stack = 0;   // Return Address
606         
607         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
608 }
609
610 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
611 {
612         Uint    *stack = (void*)Stack;
613         *--stack = SS;          //Stack Segment
614         *--stack = Stack;       //Stack Pointer
615         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
616         *--stack = CS;          //Code Segment
617         *--stack = IP;  //EIP
618         //PUSHAD
619         *--stack = 0xAAAAAAAA;  // eax
620         *--stack = 0xCCCCCCCC;  // ecx
621         *--stack = 0xDDDDDDDD;  // edx
622         *--stack = 0xBBBBBBBB;  // ebx
623         *--stack = 0xD1D1D1D1;  // edi
624         *--stack = 0x54545454;  // esp - NOT POPED
625         *--stack = 0x51515151;  // esi
626         *--stack = 0xB4B4B4B4;  // ebp
627         //Individual PUSHs
628         *--stack = SS;  // ds
629         *--stack = SS;  // es
630         *--stack = SS;  // fs
631         *--stack = SS;  // gs
632         
633         __asm__ __volatile__ (
634         "mov %%eax,%%esp;\n\t"  // Set stack pointer
635         "pop %%gs;\n\t"
636         "pop %%fs;\n\t"
637         "pop %%es;\n\t"
638         "pop %%ds;\n\t"
639         "popa;\n\t"
640         "iret;\n\t" : : "a" (stack));
641         for(;;);
642 }
643
644 /**
645  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
646  * \brief Demotes a process to a lower permission level
647  * \param Err   Pointer to user's errno
648  * \param Dest  New Permission Level
649  * \param Regs  Pointer to user's register structure
650  */
651 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
652 {
653          int    cpl = Regs->cs & 3;
654         // Sanity Check
655         if(Dest > 3 || Dest < 0) {
656                 *Err = -EINVAL;
657                 return -1;
658         }
659         
660         // Permission Check
661         if(cpl > Dest) {
662                 *Err = -EACCES;
663                 return -1;
664         }
665         
666         // Change the Segment Registers
667         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
668         Regs->ss = ((Dest+1)<<4) | Dest;
669         // Check if the GP Segs are GDT, then change them
670         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
671         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
672         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
673         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
674         
675         return 0;
676 }
677
678 /**
679  * \fn void Proc_Scheduler(int CPU)
680  * \brief Swap current thread and clears dead threads
681  */
682 void Proc_Scheduler(int CPU)
683 {
684         Uint    esp, ebp, eip;
685         tThread *thread;
686         
687         // If the spinlock is set, let it complete
688         if(giThreadListLock)    return;
689         
690         // Clear Delete Queue
691         while(gDeleteThreads)
692         {
693                 thread = gDeleteThreads->Next;
694                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
695                         gDeleteThreads->Status = THREAD_STAT_NULL;
696                         free( gDeleteThreads );
697                 }
698                 gDeleteThreads = thread;
699         }
700         
701         // Check if there is any tasks running
702         if(giNumActiveThreads == 0) {
703                 Log("No Active threads, sleeping");
704                 __asm__ __volatile__ ("hlt");
705                 return;
706         }
707         
708         // Get current thread
709         #if USE_MP
710         thread = gaCPUs[CPU].Current;
711         #else
712         thread = gCurrentThread;
713         #endif
714         
715         // Reduce remaining quantum and continue timeslice if non-zero
716         if(thread->Remaining--) return;
717         // Reset quantum for next call
718         thread->Remaining = thread->Quantum;
719         
720         // Get machine state
721         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
722         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
723         eip = GetEIP();
724         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
725         
726         // Save machine state
727         thread->SavedState.ESP = esp;
728         thread->SavedState.EBP = ebp;
729         thread->SavedState.EIP = eip;
730         
731         // Get next thread
732         thread = Threads_GetNextToRun(CPU);
733         
734         // Error Check
735         if(thread == NULL) {
736                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
737                 return;
738         }
739         
740         #if DEBUG_TRACE_SWITCH
741         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
742                 thread->TID,
743                 thread->MemState.CR3,
744                 thread->SavedState.EIP
745                 );
746         #endif
747         
748         // Set current thread
749         #if USE_MP
750         gaCPUs[CPU].Current = thread;
751         #else
752         gCurrentThread = thread;
753         #endif
754         
755         // Update Kernel Stack pointer
756         gTSSs[CPU].ESP0 = thread->KernelStack-4;
757         
758         // Set address space
759         #if USE_PAE
760         # error "Todo: Implement PAE Address space switching"
761         #else
762                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
763         #endif
764         // Switch threads
765         __asm__ __volatile__ (
766                 "mov %1, %%esp\n\t"     // Restore ESP
767                 "mov %2, %%ebp\n\t"     // and EBP
768                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
769                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
770                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
771                 );
772         for(;;);        // Shouldn't reach here
773 }
774
775 // === EXPORTS ===
776 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au