Kernel - Split Mutexes/Semaphores out
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15
16 // === FLAGS ===
17 #define DEBUG_TRACE_SWITCH      0
18 #define DEBUG_DISABLE_DOUBLEFAULT       1
19 #define DEBUG_VERY_SLOW_SWITCH  0
20
21 // === CONSTANTS ===
22 // Base is 1193182
23 #define TIMER_BASE      1193182
24 #if DEBUG_VERY_SLOW_PERIOD
25 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
26 #else
27 # define TIMER_DIVISOR  11932   //~100Hz
28 #endif
29
30 // === TYPES ===
31 typedef struct sCPU
32 {
33         Uint8   APICID;
34         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
35         Uint16  Resvd;
36         tThread *Current;
37         tThread *IdleThread;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern int      giNumCPUs;
52 extern int      giNextTID;
53 extern tThread  gThreadZero;
54 extern void     Isr8(void);     // Double Fault
55 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
56 extern char     scheduler_return[];     // Return address in SchedulerBase
57 extern char     IRQCommon[];    // Common IRQ handler code
58 extern char     IRQCommon_handled[];    // IRQCommon call return location
59 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
60 extern void     Threads_AddToDelete(tThread *Thread);
61 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
62 extern void     Proc_InitialiseSSE(void);
63 extern void     Proc_SaveSSE(Uint DestPtr);
64 extern void     Proc_DisableSSE(void);
65
66 // === PROTOTYPES ===
67 //void  ArchThreads_Init(void);
68 #if USE_MP
69 void    MP_StartAP(int CPU);
70 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
71 #endif
72 void    Proc_IdleThread(void *Ptr);
73 //void  Proc_Start(void);
74 //tThread       *Proc_GetCurThread(void);
75 void    Proc_ChangeStack(void);
76 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
77 // int  Proc_Clone(Uint *Err, Uint Flags);
78 Uint    Proc_MakeUserStack(void);
79 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
80 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
81  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
82 //void  Proc_CallFaultHandler(tThread *Thread);
83 //void  Proc_DumpThreadCPUState(tThread *Thread);
84 void    Proc_Scheduler(int CPU);
85
86 // === GLOBALS ===
87 // --- Multiprocessing ---
88 #if USE_MP
89 volatile int    giNumInitingCPUs = 0;
90 tMPInfo *gMPFloatPtr = NULL;
91 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
92 tAPIC   *gpMP_LocalAPIC = NULL;
93 Uint8   gaAPIC_to_CPU[256] = {0};
94  int    giProc_BootProcessorID = 0;
95 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
96 #endif
97 tCPU    gaCPUs[MAX_CPUS];
98 tTSS    *gTSSs = NULL;  // Pointer to TSS array
99 tTSS    gTSS0 = {0};
100 // --- Error Recovery ---
101 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
102 tTSS    gDoubleFault_TSS = {
103         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
104         .SS0 = 0x10,
105         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
106         .EIP = (Uint)Isr8,
107         .ESP = (Uint)&gaDoubleFaultStack[1024],
108         .CS = 0x08,     .SS = 0x10,
109         .DS = 0x10,     .ES = 0x10,
110         .FS = 0x10,     .GS = 0x10,
111 };
112
113 // === CODE ===
114 /**
115  * \fn void ArchThreads_Init(void)
116  * \brief Starts the process scheduler
117  */
118 void ArchThreads_Init(void)
119 {
120         Uint    pos = 0;
121         
122         #if USE_MP
123         tMPTable        *mptable;
124         
125         // Mark BSP as active
126         gaCPUs[0].State = 2;
127         
128         // -- Initialise Multiprocessing
129         // Find MP Floating Table
130         // - EBDA/Last 1Kib (640KiB)
131         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
132                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
133                         Log("Possible %p", pos);
134                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
135                         gMPFloatPtr = (void*)pos;
136                         break;
137                 }
138         }
139         // - Last KiB (512KiB base mem)
140         if(!gMPFloatPtr) {
141                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
142                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
143                                 Log("Possible %p", pos);
144                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
145                                 gMPFloatPtr = (void*)pos;
146                                 break;
147                         }
148                 }
149         }
150         // - BIOS ROM
151         if(!gMPFloatPtr) {
152                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
153                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
154                                 Log("Possible %p", pos);
155                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
156                                 gMPFloatPtr = (void*)pos;
157                                 break;
158                         }
159                 }
160         }
161         
162         // If the MP Table Exists, parse it
163         if(gMPFloatPtr)
164         {
165                  int    i;
166                 tMPTable_Ent    *ents;
167                 Log("gMPFloatPtr = %p", gMPFloatPtr);
168                 Log("*gMPFloatPtr = {");
169                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
170                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
171                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
172                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
173                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
174                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
175                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
176                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
177                         gMPFloatPtr->Features[4]
178                         );
179                 Log("}");
180                 
181                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
182                 Log("mptable = %p", mptable);
183                 Log("*mptable = {");
184                 Log("\t.Sig = 0x%08x", mptable->Sig);
185                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
186                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
187                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
188                 Log("\t.OEMID = '%8c'", mptable->OemID);
189                 Log("\t.ProductID = '%8c'", mptable->ProductID);
190                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
191                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
192                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
193                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
194                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
195                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
196                 Log("}");
197                 
198                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
199                 
200                 ents = mptable->Entries;
201                 giNumCPUs = 0;
202                 
203                 for( i = 0; i < mptable->EntryCount; i ++ )
204                 {
205                          int    entSize = 0;
206                         switch( ents->Type )
207                         {
208                         case 0: // Processor
209                                 entSize = 20;
210                                 Log("%i: Processor", i);
211                                 Log("\t.APICID = %i", ents->Proc.APICID);
212                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
213                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
214                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
215                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
216                                 
217                                 
218                                 if( !(ents->Proc.CPUFlags & 1) ) {
219                                         Log("DISABLED");
220                                         break;
221                                 }
222                                 
223                                 // Check if there is too many processors
224                                 if(giNumCPUs >= MAX_CPUS) {
225                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
226                                         break;
227                                 }
228                                 
229                                 // Initialise CPU Info
230                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
231                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
232                                 gaCPUs[giNumCPUs].State = 0;
233                                 giNumCPUs ++;
234                                 
235                                 // Set BSP Variable
236                                 if( ents->Proc.CPUFlags & 2 ) {
237                                         giProc_BootProcessorID = giNumCPUs-1;
238                                 }
239                                 
240                                 break;
241                         
242                         #if DUMP_MP_TABLES
243                         case 1: // Bus
244                                 entSize = 8;
245                                 Log("%i: Bus", i);
246                                 Log("\t.ID = %i", ents->Bus.ID);
247                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
248                                 break;
249                         case 2: // I/O APIC
250                                 entSize = 8;
251                                 Log("%i: I/O APIC", i);
252                                 Log("\t.ID = %i", ents->IOAPIC.ID);
253                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
254                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
255                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
256                                 break;
257                         case 3: // I/O Interrupt Assignment
258                                 entSize = 8;
259                                 Log("%i: I/O Interrupt Assignment", i);
260                                 Log("\t.IntType = %i", ents->IOInt.IntType);
261                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
262                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
263                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
264                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
265                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
266                                 break;
267                         case 4: // Local Interrupt Assignment
268                                 entSize = 8;
269                                 Log("%i: Local Interrupt Assignment", i);
270                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
271                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
272                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
273                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
274                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
275                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
276                                 break;
277                         default:
278                                 Log("%i: Unknown (%i)", i, ents->Type);
279                                 break;
280                         #endif
281                         }
282                         ents = (void*)( (Uint)ents + entSize );
283                 }
284                 
285                 if( giNumCPUs > MAX_CPUS ) {
286                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
287                         giNumCPUs = MAX_CPUS;
288                 }
289                 gTSSs = gaTSSs;
290         }
291         else {
292                 Log("No MP Table was found, assuming uniprocessor\n");
293                 giNumCPUs = 1;
294                 gTSSs = &gTSS0;
295         }
296         #else
297         giNumCPUs = 1;
298         gTSSs = &gTSS0;
299         #endif
300         
301         #if !DEBUG_DISABLE_DOUBLEFAULT
302         // Initialise Double Fault TSS
303         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
304         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
305         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
306         
307         // Set double fault IDT to use the new TSS
308         gIDT[8].OffsetLo = 0;
309         gIDT[8].CS = 5<<3;
310         gIDT[8].Flags = 0x8500;
311         gIDT[8].OffsetHi = 0;
312         #endif
313         
314         // Set timer frequency
315         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
316         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
317         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
318         
319         Log("Timer Frequency %i.%03i Hz",
320                 TIMER_BASE/TIMER_DIVISOR,
321                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
322                 );
323         
324         #if USE_MP
325         // Get the count setting for APIC timer
326         Log("Determining APIC Count");
327         __asm__ __volatile__ ("sti");
328         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
329         __asm__ __volatile__ ("cli");
330         Log("APIC Count %i", giMP_TimerCount);
331         {
332                 Uint64  freq = giMP_TimerCount;
333                 freq /= TIMER_DIVISOR;
334                 freq *= TIMER_BASE;
335                 if( (freq /= 1000) < 2*1000)
336                         Log("Bus Frequency %i KHz", freq);
337                 else if( (freq /= 1000) < 2*1000)
338                         Log("Bus Frequency %i MHz", freq);
339                 else if( (freq /= 1000) < 2*1000)
340                         Log("Bus Frequency %i GHz", freq);
341                 else
342                         Log("Bus Frequency %i THz", freq);
343         }
344         
345         // Initialise Normal TSS(s)
346         for(pos=0;pos<giNumCPUs;pos++)
347         {
348         #else
349         pos = 0;
350         #endif
351                 gTSSs[pos].SS0 = 0x10;
352                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
353                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
354                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
355                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
356         #if USE_MP
357         }
358         #endif
359         
360         // Load the BSP's TSS
361         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
362         // Set Current Thread and CPU Number in DR0 and DR1
363         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
364         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
365         
366         gaCPUs[0].Current = &gThreadZero;
367         gThreadZero.CurCPU = 0;
368         
369         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
370         
371         // Create Per-Process Data Block
372         if( !MM_Allocate(MM_PPD_CFG) )
373         {
374                 Panic("OOM - No space for initial Per-Process Config");
375         }
376
377         // Initialise SSE support
378         Proc_InitialiseSSE();
379         
380         // Change Stacks
381         Proc_ChangeStack();
382 }
383
384 #if USE_MP
385 void MP_StartAP(int CPU)
386 {
387         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
388         
389         // Set location of AP startup code and mark for a warm restart
390         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
391         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
392         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
393         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
394         
395         // Delay
396         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
397         
398         // TODO: Use a better address, preferably registered with the MM
399         // - MM_AllocDMA mabye?
400         // Create a far jump
401         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
402         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
403         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
404         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
405         // just filled)
406         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
407         
408         giNumInitingCPUs ++;
409 }
410
411 /**
412  * \brief Send an Inter-Processor Interrupt
413  * \param APICID        Processor's Local APIC ID
414  * \param Vector        Argument of some kind
415  * \param DeliveryMode  Type of signal?
416  */
417 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
418 {
419         Uint32  val;
420         
421         // Hi
422         val = (Uint)APICID << 24;
423         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
424         gpMP_LocalAPIC->ICR[1].Val = val;
425         // Low (and send)
426         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
427         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
428         gpMP_LocalAPIC->ICR[0].Val = val;
429 }
430 #endif
431
432 void Proc_IdleThread(void *Ptr)
433 {
434         tCPU    *cpu = Ptr;
435         cpu->IdleThread->ThreadName = strdup("Idle Thread");
436         Threads_SetPriority( cpu->IdleThread, -1 );     // Never called randomly
437         cpu->IdleThread->Quantum = 1;   // 1 slice quantum
438         for(;;) {
439                 HALT();
440                 Proc_Reschedule();
441         }
442 }
443
444 /**
445  * \fn void Proc_Start(void)
446  * \brief Start process scheduler
447  */
448 void Proc_Start(void)
449 {
450          int    tid;
451         #if USE_MP
452          int    i;
453         #endif
454         
455         #if USE_MP
456         // Start APs
457         for( i = 0; i < giNumCPUs; i ++ )
458         {
459                 if(i)   gaCPUs[i].Current = NULL;
460                 
461                 // Create Idle Task
462                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
463                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
464                 
465                 // Start the AP
466                 if( i != giProc_BootProcessorID ) {
467                         MP_StartAP( i );
468                 }
469         }
470         
471         // BSP still should run the current task
472         gaCPUs[0].Current = &gThreadZero;
473         
474         // Start interrupts and wait for APs to come up
475         Log("Waiting for APs to come up\n");
476         __asm__ __volatile__ ("sti");
477         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
478         #else
479         // Create Idle Task
480         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
481         gaCPUs[0].IdleThread = Threads_GetThread(tid);
482         
483         // Set current task
484         gaCPUs[0].Current = &gThreadZero;
485
486 //      while( gaCPUs[0].IdleThread == NULL )
487 //              Threads_Yield();
488         
489         // Start Interrupts (and hence scheduler)
490         __asm__ __volatile__("sti");
491         #endif
492         MM_FinishVirtualInit();
493 }
494
495 /**
496  * \fn tThread *Proc_GetCurThread(void)
497  * \brief Gets the current thread
498  */
499 tThread *Proc_GetCurThread(void)
500 {
501         #if USE_MP
502         return gaCPUs[ GetCPUNum() ].Current;
503         #else
504         return gaCPUs[ 0 ].Current;
505         #endif
506 }
507
508 /**
509  * \fn void Proc_ChangeStack(void)
510  * \brief Swaps the current stack for a new one (in the proper stack reigon)
511  */
512 void Proc_ChangeStack(void)
513 {
514         Uint    esp, ebp;
515         Uint    tmpEbp, oldEsp;
516         Uint    curBase, newBase;
517
518         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
519         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
520
521         oldEsp = esp;
522
523         // Create new KStack
524         newBase = MM_NewKStack();
525         // Check for errors
526         if(newBase == 0) {
527                 Panic("What the?? Unable to allocate space for initial kernel stack");
528                 return;
529         }
530
531         curBase = (Uint)&Kernel_Stack_Top;
532         
533         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
534
535         // Get ESP as a used size
536         esp = curBase - esp;
537         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
538         // Copy used stack
539         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
540         // Get ESP as an offset in the new stack
541         esp = newBase - esp;
542         // Adjust EBP
543         ebp = newBase - (curBase - ebp);
544
545         // Repair EBPs & Stack Addresses
546         // Catches arguments also, but may trash stack-address-like values
547         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
548         {
549                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
550                         *(Uint*)tmpEbp += newBase - curBase;
551         }
552         
553         Proc_GetCurThread()->KernelStack = newBase;
554         
555         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
556         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
557 }
558
559 void Proc_ClearThread(tThread *Thread)
560 {
561         if(Thread->SavedState.SSE) {
562                 free(Thread->SavedState.SSE);
563                 Thread->SavedState.SSE = NULL;
564         }
565 }
566
567 int Proc_NewKThread(void (*Fcn)(void*), void *Data)
568 {
569         Uint    esp;
570         tThread *newThread, *cur;
571         
572         cur = Proc_GetCurThread();
573         newThread = Threads_CloneTCB(0);
574         if(!newThread)  return -1;
575         
576         // Set CR3
577         newThread->MemState.CR3 = cur->MemState.CR3;
578
579         // Create new KStack
580         newThread->KernelStack = MM_NewKStack();
581         // Check for errors
582         if(newThread->KernelStack == 0) {
583                 free(newThread);
584                 return -1;
585         }
586
587         esp = newThread->KernelStack;
588         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
589         *(Uint*)(esp-=4) = 1;   // Number of params
590         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
591         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
592         
593         newThread->SavedState.ESP = esp;
594         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
595         newThread->SavedState.SSE = NULL;
596         Log("New (KThread) %p, esp = %p\n", newThread->SavedState.EIP, newThread->SavedState.ESP);
597         
598 //      MAGIC_BREAK();  
599         Threads_AddActive(newThread);
600
601         return newThread->TID;
602 }
603
604 /**
605  * \fn int Proc_Clone(Uint *Err, Uint Flags)
606  * \brief Clone the current process
607  */
608 int Proc_Clone(Uint Flags)
609 {
610         tThread *newThread;
611         tThread *cur = Proc_GetCurThread();
612         Uint    eip;
613
614         // Sanity, please
615         if( !(Flags & CLONE_VM) ) {
616                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
617                 return -1;
618         }
619         
620         // New thread
621         newThread = Threads_CloneTCB(Flags);
622         if(!newThread)  return -1;
623
624         newThread->KernelStack = cur->KernelStack;
625
626         // Clone state
627         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->MemState.CR3);
628         if( eip == 0 ) {
629                 // ACK the interrupt
630                 return 0;
631         }
632         newThread->SavedState.EIP = eip;
633         newThread->SavedState.SSE = NULL;
634         newThread->SavedState.bSSEModified = 0;
635         
636         // Check for errors
637         if( newThread->MemState.CR3 == 0 ) {
638                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
639                 Threads_AddToDelete(newThread);
640                 return -1;
641         }
642
643         // Add the new thread to the run queue
644         Threads_AddActive(newThread);
645         return newThread->TID;
646 }
647
648 /**
649  * \fn int Proc_SpawnWorker(void)
650  * \brief Spawns a new worker thread
651  */
652 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
653 {
654         tThread *new;
655         Uint    stack_contents[4];
656         
657         // Create new thread
658         new = Threads_CloneThreadZero();
659         if(!new) {
660                 Warning("Proc_SpawnWorker - Out of heap space!\n");
661                 return -1;
662         }
663
664         // Create the stack contents
665         stack_contents[3] = (Uint)Data;
666         stack_contents[2] = 1;
667         stack_contents[1] = (Uint)Fcn;
668         stack_contents[0] = (Uint)new;
669         
670         // Create a new worker stack (in PID0's address space)
671         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
672
673         // Save core machine state
674         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
675         new->SavedState.EIP = (Uint)NewTaskHeader;
676         new->SavedState.SSE = NULL;
677         new->SavedState.bSSEModified = 0;
678         
679         // Mark as active
680         new->Status = THREAD_STAT_PREINIT;
681         Threads_AddActive( new );
682         
683         return new->TID;
684 }
685
686 /**
687  * \fn Uint Proc_MakeUserStack(void)
688  * \brief Creates a new user stack
689  */
690 Uint Proc_MakeUserStack(void)
691 {
692          int    i;
693         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
694         
695         // Check Prospective Space
696         for( i = USER_STACK_SZ >> 12; i--; )
697                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
698                         break;
699         
700         if(i != -1)     return 0;
701         
702         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
703         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
704         {
705                 if( !MM_Allocate( base + (i<<12) ) )
706                 {
707                         Warning("OOM: Proc_MakeUserStack");
708                         return 0;
709                 }
710         }
711         
712         return base + USER_STACK_SZ;
713 }
714
715 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, char **ArgV, int DataSize)
716 {
717         Uint    *stack;
718          int    i;
719         char    **envp = NULL;
720         Uint16  ss, cs;
721         
722         // Copy data to the user stack and free original buffer
723         stack = (void*)Proc_MakeUserStack();
724         stack -= DataSize/sizeof(*stack);
725         memcpy( stack, ArgV, DataSize );
726         free(ArgV);
727         
728         // Adjust Arguments and environment
729         if( DataSize )
730         {
731                 Uint delta = (Uint)stack - (Uint)ArgV;
732                 ArgV = (char**)stack;
733                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
734                 envp = &ArgV[i+1];
735                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
736         }
737         
738         // User Mode Segments
739         ss = 0x23;      cs = 0x1B;
740         
741         // Arguments
742         *--stack = (Uint)envp;
743         *--stack = (Uint)ArgV;
744         *--stack = (Uint)ArgC;
745         *--stack = Base;
746         
747         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
748 }
749
750 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
751 {
752         Uint    *stack = (void*)Stack;
753         *--stack = SS;          //Stack Segment
754         *--stack = Stack;       //Stack Pointer
755         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
756         *--stack = CS;          //Code Segment
757         *--stack = IP;  //EIP
758         //PUSHAD
759         *--stack = 0xAAAAAAAA;  // eax
760         *--stack = 0xCCCCCCCC;  // ecx
761         *--stack = 0xDDDDDDDD;  // edx
762         *--stack = 0xBBBBBBBB;  // ebx
763         *--stack = 0xD1D1D1D1;  // edi
764         *--stack = 0x54545454;  // esp - NOT POPED
765         *--stack = 0x51515151;  // esi
766         *--stack = 0xB4B4B4B4;  // ebp
767         //Individual PUSHs
768         *--stack = SS;  // ds
769         *--stack = SS;  // es
770         *--stack = SS;  // fs
771         *--stack = SS;  // gs
772         
773         __asm__ __volatile__ (
774         "mov %%eax,%%esp;\n\t"  // Set stack pointer
775         "pop %%gs;\n\t"
776         "pop %%fs;\n\t"
777         "pop %%es;\n\t"
778         "pop %%ds;\n\t"
779         "popa;\n\t"
780         "iret;\n\t" : : "a" (stack));
781         for(;;);
782 }
783
784 /**
785  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
786  * \brief Demotes a process to a lower permission level
787  * \param Err   Pointer to user's errno
788  * \param Dest  New Permission Level
789  * \param Regs  Pointer to user's register structure
790  */
791 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
792 {
793          int    cpl = Regs->cs & 3;
794         // Sanity Check
795         if(Dest > 3 || Dest < 0) {
796                 *Err = -EINVAL;
797                 return -1;
798         }
799         
800         // Permission Check
801         if(cpl > Dest) {
802                 *Err = -EACCES;
803                 return -1;
804         }
805         
806         // Change the Segment Registers
807         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
808         Regs->ss = ((Dest+1)<<4) | Dest;
809         // Check if the GP Segs are GDT, then change them
810         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
811         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
812         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
813         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
814         
815         return 0;
816 }
817
818 /**
819  * \brief Calls a signal handler in user mode
820  * \note Used for signals
821  */
822 void Proc_CallFaultHandler(tThread *Thread)
823 {
824         // Rewinds the stack and calls the user function
825         // Never returns
826         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
827         for(;;);
828 }
829
830 void Proc_DumpThreadCPUState(tThread *Thread)
831 {
832         if( Thread->CurCPU > -1 )
833         {
834                  int    maxBacktraceDistance = 6;
835                 tRegs   *regs = NULL;
836                 Uint32  *stack;
837                 
838                 if( Thread->CurCPU != GetCPUNum() ) {
839                         Log("  Currently running");
840                         return ;
841                 }
842                 
843                 // Backtrace to find the IRQ entrypoint
844                 // - This will usually only be called by an IRQ, so this should
845                 //   work
846                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
847                 while( maxBacktraceDistance -- )
848                 {
849                         // [ebp] = oldEbp
850                         // [ebp+4] = retaddr
851                         
852                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
853                                 regs = (void*)stack[2];
854                                 break;
855                         }
856                         
857                         stack = (void*)stack[0];
858                 }
859                 
860                 if( !regs ) {
861                         Log("  Unable to find IRQ Entry");
862                         return ;
863                 }
864                 
865                 Log("  at %04x:%08x", regs->cs, regs->eip);
866                 return ;
867         }
868         
869         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
870         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
871         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
872         
873         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
874         {
875                 Log("  Creating process");
876                 return ;
877         }
878         
879         if( diffFromSpawn == 0 )
880         {
881                 Log("  Creating thread");
882                 return ;
883         }
884         
885         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
886         {
887                 // Scheduled out
888                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
889                 return ;
890         }
891         
892         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
893 }
894
895 void Proc_Reschedule(void)
896 {
897         tThread *nextthread, *curthread;
898          int    cpu = GetCPUNum();
899
900         // TODO: Wait for the lock?
901         if(IS_LOCKED(&glThreadListLock))        return;
902         
903         curthread = Proc_GetCurThread();
904
905         nextthread = Threads_GetNextToRun(cpu, curthread);
906
907         if(!nextthread)
908                 nextthread = gaCPUs[cpu].IdleThread;
909         if(!nextthread || nextthread == curthread)
910                 return ;
911
912         #if DEBUG_TRACE_SWITCH
913         LogF("\nSwitching to task %i, CR3 = 0x%x, EIP = %p, ESP = %p\n",
914                 nextthread->TID,
915                 nextthread->MemState.CR3,
916                 nextthread->SavedState.EIP,
917                 nextthread->SavedState.ESP
918                 );
919         #endif
920
921         // Update CPU state
922         gaCPUs[cpu].Current = nextthread;
923         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
924         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
925
926         // Save FPU/MMX/XMM/SSE state
927         if( curthread->SavedState.SSE )
928         {
929                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
930                 curthread->SavedState.bSSEModified = 0;
931                 Proc_DisableSSE();
932         }
933
934         SwitchTasks(
935                 nextthread->SavedState.ESP, &curthread->SavedState.ESP,
936                 nextthread->SavedState.EIP, &curthread->SavedState.EIP,
937                 nextthread->MemState.CR3
938                 );
939
940         return ;
941 }
942
943 /**
944  * \fn void Proc_Scheduler(int CPU)
945  * \brief Swap current thread and clears dead threads
946  */
947 void Proc_Scheduler(int CPU)
948 {
949         tThread *thread;
950         
951         // If the spinlock is set, let it complete
952         if(IS_LOCKED(&glThreadListLock))        return;
953         
954         // Get current thread
955         thread = gaCPUs[CPU].Current;
956         
957         if( thread )
958         {
959                 tRegs   *regs;
960                 Uint    ebp;
961                 // Reduce remaining quantum and continue timeslice if non-zero
962                 if( thread->Remaining-- )
963                         return;
964                 // Reset quantum for next call
965                 thread->Remaining = thread->Quantum;
966                 
967                 // TODO: Make this more stable somehow
968                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
969                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
970                 thread->SavedState.UserCS = regs->cs;
971                 thread->SavedState.UserEIP = regs->eip;
972                 
973                 if(thread->bInstrTrace) {
974                         regs->eflags |= 0x100;  // Set TF
975                         Log("%p De-scheduled", thread);
976                 }
977                 else
978                         regs->eflags &= ~0x100; // Clear TF
979         }
980
981 #if 0
982         // TODO: Ack timer?
983         #if USE_MP
984         if( GetCPUNum() )
985                 gpMP_LocalAPIC->EOI.Val = 0;
986         else
987         #endif
988                 outb(0x20, 0x20);
989         __asm__ __volatile__ ("sti");
990         Proc_Reschedule();
991 #endif
992 }
993
994 // === EXPORTS ===
995 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au