Misc - Cleaning up logging output
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15
16 // === FLAGS ===
17 #define DEBUG_TRACE_SWITCH      0
18 #define DEBUG_DISABLE_DOUBLEFAULT       1
19 #define DEBUG_VERY_SLOW_SWITCH  0
20
21 // === CONSTANTS ===
22 // Base is 1193182
23 #define TIMER_BASE      1193182
24 #if DEBUG_VERY_SLOW_PERIOD
25 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
26 #else
27 # define TIMER_DIVISOR  11932   //~100Hz
28 #endif
29
30 // === TYPES ===
31 typedef struct sCPU
32 {
33         Uint8   APICID;
34         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
35         Uint16  Resvd;
36         tThread *Current;
37         tThread *IdleThread;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern int      giNumCPUs;
52 extern int      giNextTID;
53 extern tThread  gThreadZero;
54 extern void     Isr8(void);     // Double Fault
55 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
56 extern char     scheduler_return[];     // Return address in SchedulerBase
57 extern char     IRQCommon[];    // Common IRQ handler code
58 extern char     IRQCommon_handled[];    // IRQCommon call return location
59 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
60 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
61 extern void     Proc_InitialiseSSE(void);
62 extern void     Proc_SaveSSE(Uint DestPtr);
63 extern void     Proc_DisableSSE(void);
64
65 // === PROTOTYPES ===
66 //void  ArchThreads_Init(void);
67 #if USE_MP
68 void    MP_StartAP(int CPU);
69 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
70 #endif
71 void    Proc_IdleThread(void *Ptr);
72 //void  Proc_Start(void);
73 //tThread       *Proc_GetCurThread(void);
74 void    Proc_ChangeStack(void);
75 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
76 // int  Proc_Clone(Uint *Err, Uint Flags);
77 Uint    Proc_MakeUserStack(void);
78 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
79 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
80  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
81 //void  Proc_CallFaultHandler(tThread *Thread);
82 //void  Proc_DumpThreadCPUState(tThread *Thread);
83 void    Proc_Scheduler(int CPU);
84
85 // === GLOBALS ===
86 // --- Multiprocessing ---
87 #if USE_MP
88 volatile int    giNumInitingCPUs = 0;
89 tMPInfo *gMPFloatPtr = NULL;
90 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
91 tAPIC   *gpMP_LocalAPIC = NULL;
92 Uint8   gaAPIC_to_CPU[256] = {0};
93  int    giProc_BootProcessorID = 0;
94 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
95 #endif
96 tCPU    gaCPUs[MAX_CPUS] = {
97         {.Current = &gThreadZero}
98         };
99 tTSS    *gTSSs = NULL;  // Pointer to TSS array
100 tTSS    gTSS0 = {0};
101 // --- Error Recovery ---
102 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
103 tTSS    gDoubleFault_TSS = {
104         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
105         .SS0 = 0x10,
106         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
107         .EIP = (Uint)Isr8,
108         .ESP = (Uint)&gaDoubleFaultStack[1024],
109         .CS = 0x08,     .SS = 0x10,
110         .DS = 0x10,     .ES = 0x10,
111         .FS = 0x10,     .GS = 0x10,
112 };
113
114 // === CODE ===
115 /**
116  * \fn void ArchThreads_Init(void)
117  * \brief Starts the process scheduler
118  */
119 void ArchThreads_Init(void)
120 {
121         Uint    pos = 0;
122         
123         #if USE_MP
124         tMPTable        *mptable;
125         
126         // Mark BSP as active
127         gaCPUs[0].State = 2;
128         
129         // -- Initialise Multiprocessing
130         // Find MP Floating Table
131         // - EBDA/Last 1Kib (640KiB)
132         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
133                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
134                         Log("Possible %p", pos);
135                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
136                         gMPFloatPtr = (void*)pos;
137                         break;
138                 }
139         }
140         // - Last KiB (512KiB base mem)
141         if(!gMPFloatPtr) {
142                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
143                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
144                                 Log("Possible %p", pos);
145                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
146                                 gMPFloatPtr = (void*)pos;
147                                 break;
148                         }
149                 }
150         }
151         // - BIOS ROM
152         if(!gMPFloatPtr) {
153                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
154                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
155                                 Log("Possible %p", pos);
156                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
157                                 gMPFloatPtr = (void*)pos;
158                                 break;
159                         }
160                 }
161         }
162         
163         // If the MP Table Exists, parse it
164         if(gMPFloatPtr)
165         {
166                  int    i;
167                 tMPTable_Ent    *ents;
168                 Log("gMPFloatPtr = %p", gMPFloatPtr);
169                 Log("*gMPFloatPtr = {");
170                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
171                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
172                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
173                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
174                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
175                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
176                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
177                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
178                         gMPFloatPtr->Features[4]
179                         );
180                 Log("}");
181                 
182                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
183                 Log("mptable = %p", mptable);
184                 Log("*mptable = {");
185                 Log("\t.Sig = 0x%08x", mptable->Sig);
186                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
187                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
188                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
189                 Log("\t.OEMID = '%8c'", mptable->OemID);
190                 Log("\t.ProductID = '%8c'", mptable->ProductID);
191                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
192                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
193                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
194                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
195                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
196                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
197                 Log("}");
198                 
199                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
200                 
201                 ents = mptable->Entries;
202                 giNumCPUs = 0;
203                 
204                 for( i = 0; i < mptable->EntryCount; i ++ )
205                 {
206                          int    entSize = 0;
207                         switch( ents->Type )
208                         {
209                         case 0: // Processor
210                                 entSize = 20;
211                                 Log("%i: Processor", i);
212                                 Log("\t.APICID = %i", ents->Proc.APICID);
213                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
214                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
215                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
216                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
217                                 
218                                 
219                                 if( !(ents->Proc.CPUFlags & 1) ) {
220                                         Log("DISABLED");
221                                         break;
222                                 }
223                                 
224                                 // Check if there is too many processors
225                                 if(giNumCPUs >= MAX_CPUS) {
226                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
227                                         break;
228                                 }
229                                 
230                                 // Initialise CPU Info
231                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
232                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
233                                 gaCPUs[giNumCPUs].State = 0;
234                                 giNumCPUs ++;
235                                 
236                                 // Set BSP Variable
237                                 if( ents->Proc.CPUFlags & 2 ) {
238                                         giProc_BootProcessorID = giNumCPUs-1;
239                                 }
240                                 
241                                 break;
242                         
243                         #if DUMP_MP_TABLES
244                         case 1: // Bus
245                                 entSize = 8;
246                                 Log("%i: Bus", i);
247                                 Log("\t.ID = %i", ents->Bus.ID);
248                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
249                                 break;
250                         case 2: // I/O APIC
251                                 entSize = 8;
252                                 Log("%i: I/O APIC", i);
253                                 Log("\t.ID = %i", ents->IOAPIC.ID);
254                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
255                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
256                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
257                                 break;
258                         case 3: // I/O Interrupt Assignment
259                                 entSize = 8;
260                                 Log("%i: I/O Interrupt Assignment", i);
261                                 Log("\t.IntType = %i", ents->IOInt.IntType);
262                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
263                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
264                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
265                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
266                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
267                                 break;
268                         case 4: // Local Interrupt Assignment
269                                 entSize = 8;
270                                 Log("%i: Local Interrupt Assignment", i);
271                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
272                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
273                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
274                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
275                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
276                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
277                                 break;
278                         default:
279                                 Log("%i: Unknown (%i)", i, ents->Type);
280                                 break;
281                         #endif
282                         }
283                         ents = (void*)( (Uint)ents + entSize );
284                 }
285                 
286                 if( giNumCPUs > MAX_CPUS ) {
287                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
288                         giNumCPUs = MAX_CPUS;
289                 }
290                 gTSSs = gaTSSs;
291         }
292         else {
293                 Log("No MP Table was found, assuming uniprocessor\n");
294                 giNumCPUs = 1;
295                 gTSSs = &gTSS0;
296         }
297         #else
298         giNumCPUs = 1;
299         gTSSs = &gTSS0;
300         #endif
301         
302         #if !DEBUG_DISABLE_DOUBLEFAULT
303         // Initialise Double Fault TSS
304         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
305         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
306         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
307         
308         // Set double fault IDT to use the new TSS
309         gIDT[8].OffsetLo = 0;
310         gIDT[8].CS = 5<<3;
311         gIDT[8].Flags = 0x8500;
312         gIDT[8].OffsetHi = 0;
313         #endif
314         
315         // Set timer frequency
316         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
317         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
318         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
319         
320         Log_Debug("Proc", "PIT Frequency %i.%03i Hz",
321                 TIMER_BASE/TIMER_DIVISOR,
322                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
323                 );
324         
325         #if USE_MP
326         // Get the count setting for APIC timer
327         Log("Determining APIC Count");
328         __asm__ __volatile__ ("sti");
329         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
330         __asm__ __volatile__ ("cli");
331         Log("APIC Count %i", giMP_TimerCount);
332         {
333                 Uint64  freq = giMP_TimerCount;
334                 freq /= TIMER_DIVISOR;
335                 freq *= TIMER_BASE;
336                 if( (freq /= 1000) < 2*1000)
337                         Log("Bus Frequency %i KHz", freq);
338                 else if( (freq /= 1000) < 2*1000)
339                         Log("Bus Frequency %i MHz", freq);
340                 else if( (freq /= 1000) < 2*1000)
341                         Log("Bus Frequency %i GHz", freq);
342                 else
343                         Log("Bus Frequency %i THz", freq);
344         }
345         
346         // Initialise Normal TSS(s)
347         for(pos=0;pos<giNumCPUs;pos++)
348         {
349         #else
350         pos = 0;
351         #endif
352                 gTSSs[pos].SS0 = 0x10;
353                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
354                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
355                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
356                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
357         #if USE_MP
358         }
359         #endif
360         
361         // Load the BSP's TSS
362         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
363         // Set Current Thread and CPU Number in DR0 and DR1
364         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
365         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
366         
367         gaCPUs[0].Current = &gThreadZero;
368         gThreadZero.CurCPU = 0;
369         
370         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
371         
372         // Create Per-Process Data Block
373         if( !MM_Allocate(MM_PPD_CFG) )
374         {
375                 Panic("OOM - No space for initial Per-Process Config");
376         }
377
378         // Initialise SSE support
379         Proc_InitialiseSSE();
380         
381         // Change Stacks
382         Proc_ChangeStack();
383 }
384
385 #if USE_MP
386 void MP_StartAP(int CPU)
387 {
388         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
389         
390         // Set location of AP startup code and mark for a warm restart
391         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
392         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
393         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
394         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
395         
396         // Delay
397         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
398         
399         // TODO: Use a better address, preferably registered with the MM
400         // - MM_AllocDMA mabye?
401         // Create a far jump
402         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
403         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
404         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
405         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
406         // just filled)
407         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
408         
409         giNumInitingCPUs ++;
410 }
411
412 /**
413  * \brief Send an Inter-Processor Interrupt
414  * \param APICID        Processor's Local APIC ID
415  * \param Vector        Argument of some kind
416  * \param DeliveryMode  Type of signal?
417  */
418 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
419 {
420         Uint32  val;
421         
422         // Hi
423         val = (Uint)APICID << 24;
424         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
425         gpMP_LocalAPIC->ICR[1].Val = val;
426         // Low (and send)
427         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
428         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
429         gpMP_LocalAPIC->ICR[0].Val = val;
430 }
431 #endif
432
433 void Proc_IdleThread(void *Ptr)
434 {
435         tCPU    *cpu = Ptr;
436         cpu->IdleThread->ThreadName = strdup("Idle Thread");
437         Threads_SetPriority( cpu->IdleThread, -1 );     // Never called randomly
438         cpu->IdleThread->Quantum = 1;   // 1 slice quantum
439         for(;;) {
440                 HALT();
441                 Proc_Reschedule();
442         }
443 }
444
445 /**
446  * \fn void Proc_Start(void)
447  * \brief Start process scheduler
448  */
449 void Proc_Start(void)
450 {
451          int    tid;
452         #if USE_MP
453          int    i;
454         #endif
455         
456         #if USE_MP
457         // Start APs
458         for( i = 0; i < giNumCPUs; i ++ )
459         {
460                 if(i)   gaCPUs[i].Current = NULL;
461                 
462                 // Create Idle Task
463                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
464                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
465                 
466                 // Start the AP
467                 if( i != giProc_BootProcessorID ) {
468                         MP_StartAP( i );
469                 }
470         }
471         
472         // BSP still should run the current task
473         gaCPUs[0].Current = &gThreadZero;
474         
475         // Start interrupts and wait for APs to come up
476         Log("Waiting for APs to come up\n");
477         __asm__ __volatile__ ("sti");
478         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
479         #else
480         // Create Idle Task
481         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
482         gaCPUs[0].IdleThread = Threads_GetThread(tid);
483         
484         // Set current task
485         gaCPUs[0].Current = &gThreadZero;
486
487 //      while( gaCPUs[0].IdleThread == NULL )
488 //              Threads_Yield();
489         
490         // Start Interrupts (and hence scheduler)
491         __asm__ __volatile__("sti");
492         #endif
493         MM_FinishVirtualInit();
494 }
495
496 /**
497  * \fn tThread *Proc_GetCurThread(void)
498  * \brief Gets the current thread
499  */
500 tThread *Proc_GetCurThread(void)
501 {
502         #if USE_MP
503         return gaCPUs[ GetCPUNum() ].Current;
504         #else
505         return gaCPUs[ 0 ].Current;
506         #endif
507 }
508
509 /**
510  * \fn void Proc_ChangeStack(void)
511  * \brief Swaps the current stack for a new one (in the proper stack reigon)
512  */
513 void Proc_ChangeStack(void)
514 {
515         Uint    esp, ebp;
516         Uint    tmpEbp, oldEsp;
517         Uint    curBase, newBase;
518
519         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
520         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
521
522         oldEsp = esp;
523
524         // Create new KStack
525         newBase = MM_NewKStack();
526         // Check for errors
527         if(newBase == 0) {
528                 Panic("What the?? Unable to allocate space for initial kernel stack");
529                 return;
530         }
531
532         curBase = (Uint)&Kernel_Stack_Top;
533         
534         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
535
536         // Get ESP as a used size
537         esp = curBase - esp;
538         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
539         // Copy used stack
540         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
541         // Get ESP as an offset in the new stack
542         esp = newBase - esp;
543         // Adjust EBP
544         ebp = newBase - (curBase - ebp);
545
546         // Repair EBPs & Stack Addresses
547         // Catches arguments also, but may trash stack-address-like values
548         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
549         {
550                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
551                         *(Uint*)tmpEbp += newBase - curBase;
552         }
553         
554         Proc_GetCurThread()->KernelStack = newBase;
555         
556         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
557         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
558 }
559
560 void Proc_ClearThread(tThread *Thread)
561 {
562         Log_Warning("Proc", "TODO: Nuke address space etc");
563         if(Thread->SavedState.SSE) {
564                 free(Thread->SavedState.SSE);
565                 Thread->SavedState.SSE = NULL;
566         }
567 }
568
569 int Proc_NewKThread(void (*Fcn)(void*), void *Data)
570 {
571         Uint    esp;
572         tThread *newThread, *cur;
573         
574         cur = Proc_GetCurThread();
575         newThread = Threads_CloneTCB(0);
576         if(!newThread)  return -1;
577         
578         // Set CR3
579         newThread->MemState.CR3 = cur->MemState.CR3;
580
581         // Create new KStack
582         newThread->KernelStack = MM_NewKStack();
583         // Check for errors
584         if(newThread->KernelStack == 0) {
585                 free(newThread);
586                 return -1;
587         }
588
589         esp = newThread->KernelStack;
590         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
591         *(Uint*)(esp-=4) = 1;   // Number of params
592         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
593         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
594         
595         newThread->SavedState.ESP = esp;
596         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
597         newThread->SavedState.SSE = NULL;
598 //      Log("New (KThread) %p, esp = %p", newThread->SavedState.EIP, newThread->SavedState.ESP);
599         
600 //      MAGIC_BREAK();  
601         Threads_AddActive(newThread);
602
603         return newThread->TID;
604 }
605
606 /**
607  * \fn int Proc_Clone(Uint *Err, Uint Flags)
608  * \brief Clone the current process
609  */
610 int Proc_Clone(Uint Flags)
611 {
612         tThread *newThread;
613         tThread *cur = Proc_GetCurThread();
614         Uint    eip;
615
616         // Sanity, please
617         if( !(Flags & CLONE_VM) ) {
618                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
619                 return -1;
620         }
621         
622         // New thread
623         newThread = Threads_CloneTCB(Flags);
624         if(!newThread)  return -1;
625
626         newThread->KernelStack = cur->KernelStack;
627
628         // Clone state
629         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->MemState.CR3);
630         if( eip == 0 ) {
631                 // ACK the interrupt
632                 return 0;
633         }
634         newThread->SavedState.EIP = eip;
635         newThread->SavedState.SSE = NULL;
636         newThread->SavedState.bSSEModified = 0;
637         
638         // Check for errors
639         if( newThread->MemState.CR3 == 0 ) {
640                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
641                 Threads_Delete(newThread);
642                 return -1;
643         }
644
645         // Add the new thread to the run queue
646         Threads_AddActive(newThread);
647         return newThread->TID;
648 }
649
650 /**
651  * \fn int Proc_SpawnWorker(void)
652  * \brief Spawns a new worker thread
653  */
654 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
655 {
656         tThread *new;
657         Uint    stack_contents[4];
658         
659         // Create new thread
660         new = Threads_CloneThreadZero();
661         if(!new) {
662                 Warning("Proc_SpawnWorker - Out of heap space!\n");
663                 return -1;
664         }
665
666         // Create the stack contents
667         stack_contents[3] = (Uint)Data;
668         stack_contents[2] = 1;
669         stack_contents[1] = (Uint)Fcn;
670         stack_contents[0] = (Uint)new;
671         
672         // Create a new worker stack (in PID0's address space)
673         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
674
675         // Save core machine state
676         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
677         new->SavedState.EIP = (Uint)NewTaskHeader;
678         new->SavedState.SSE = NULL;
679         new->SavedState.bSSEModified = 0;
680         
681         // Mark as active
682         new->Status = THREAD_STAT_PREINIT;
683         Threads_AddActive( new );
684         
685         return new->TID;
686 }
687
688 /**
689  * \fn Uint Proc_MakeUserStack(void)
690  * \brief Creates a new user stack
691  */
692 Uint Proc_MakeUserStack(void)
693 {
694          int    i;
695         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
696         
697         // Check Prospective Space
698         for( i = USER_STACK_SZ >> 12; i--; )
699                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
700                         break;
701         
702         if(i != -1)     return 0;
703         
704         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
705         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
706         {
707                 if( !MM_Allocate( base + (i<<12) ) )
708                 {
709                         Warning("OOM: Proc_MakeUserStack");
710                         return 0;
711                 }
712         }
713         
714         return base + USER_STACK_SZ;
715 }
716
717 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, char **ArgV, int DataSize)
718 {
719         Uint    *stack;
720          int    i;
721         char    **envp = NULL;
722         Uint16  ss, cs;
723         
724         // Copy data to the user stack and free original buffer
725         stack = (void*)Proc_MakeUserStack();
726         stack -= DataSize/sizeof(*stack);
727         memcpy( stack, ArgV, DataSize );
728         free(ArgV);
729         
730         // Adjust Arguments and environment
731         if( DataSize )
732         {
733                 Uint delta = (Uint)stack - (Uint)ArgV;
734                 ArgV = (char**)stack;
735                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
736                 envp = &ArgV[i+1];
737                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
738         }
739         
740         // User Mode Segments
741         ss = 0x23;      cs = 0x1B;
742         
743         // Arguments
744         *--stack = (Uint)envp;
745         *--stack = (Uint)ArgV;
746         *--stack = (Uint)ArgC;
747         *--stack = Base;
748         
749         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
750 }
751
752 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
753 {
754         Uint    *stack = (void*)Stack;
755         *--stack = SS;          //Stack Segment
756         *--stack = Stack;       //Stack Pointer
757         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
758         *--stack = CS;          //Code Segment
759         *--stack = IP;  //EIP
760         //PUSHAD
761         *--stack = 0xAAAAAAAA;  // eax
762         *--stack = 0xCCCCCCCC;  // ecx
763         *--stack = 0xDDDDDDDD;  // edx
764         *--stack = 0xBBBBBBBB;  // ebx
765         *--stack = 0xD1D1D1D1;  // edi
766         *--stack = 0x54545454;  // esp - NOT POPED
767         *--stack = 0x51515151;  // esi
768         *--stack = 0xB4B4B4B4;  // ebp
769         //Individual PUSHs
770         *--stack = SS;  // ds
771         *--stack = SS;  // es
772         *--stack = SS;  // fs
773         *--stack = SS;  // gs
774         
775         __asm__ __volatile__ (
776         "mov %%eax,%%esp;\n\t"  // Set stack pointer
777         "pop %%gs;\n\t"
778         "pop %%fs;\n\t"
779         "pop %%es;\n\t"
780         "pop %%ds;\n\t"
781         "popa;\n\t"
782         "iret;\n\t" : : "a" (stack));
783         for(;;);
784 }
785
786 /**
787  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
788  * \brief Demotes a process to a lower permission level
789  * \param Err   Pointer to user's errno
790  * \param Dest  New Permission Level
791  * \param Regs  Pointer to user's register structure
792  */
793 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
794 {
795          int    cpl = Regs->cs & 3;
796         // Sanity Check
797         if(Dest > 3 || Dest < 0) {
798                 *Err = -EINVAL;
799                 return -1;
800         }
801         
802         // Permission Check
803         if(cpl > Dest) {
804                 *Err = -EACCES;
805                 return -1;
806         }
807         
808         // Change the Segment Registers
809         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
810         Regs->ss = ((Dest+1)<<4) | Dest;
811         // Check if the GP Segs are GDT, then change them
812         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
813         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
814         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
815         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
816         
817         return 0;
818 }
819
820 /**
821  * \brief Calls a signal handler in user mode
822  * \note Used for signals
823  */
824 void Proc_CallFaultHandler(tThread *Thread)
825 {
826         // Rewinds the stack and calls the user function
827         // Never returns
828         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
829         for(;;);
830 }
831
832 void Proc_DumpThreadCPUState(tThread *Thread)
833 {
834         if( Thread->CurCPU > -1 )
835         {
836                  int    maxBacktraceDistance = 6;
837                 tRegs   *regs = NULL;
838                 Uint32  *stack;
839                 
840                 if( Thread->CurCPU != GetCPUNum() ) {
841                         Log("  Currently running");
842                         return ;
843                 }
844                 
845                 // Backtrace to find the IRQ entrypoint
846                 // - This will usually only be called by an IRQ, so this should
847                 //   work
848                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
849                 while( maxBacktraceDistance -- )
850                 {
851                         // [ebp] = oldEbp
852                         // [ebp+4] = retaddr
853                         
854                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
855                                 regs = (void*)stack[2];
856                                 break;
857                         }
858                         
859                         stack = (void*)stack[0];
860                 }
861                 
862                 if( !regs ) {
863                         Log("  Unable to find IRQ Entry");
864                         return ;
865                 }
866                 
867                 Log("  at %04x:%08x", regs->cs, regs->eip);
868                 return ;
869         }
870         
871         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
872         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
873         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
874         
875         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
876         {
877                 Log("  Creating process");
878                 return ;
879         }
880         
881         if( diffFromSpawn == 0 )
882         {
883                 Log("  Creating thread");
884                 return ;
885         }
886         
887         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
888         {
889                 // Scheduled out
890                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
891                 return ;
892         }
893         
894         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
895 }
896
897 void Proc_Reschedule(void)
898 {
899         tThread *nextthread, *curthread;
900          int    cpu = GetCPUNum();
901
902         // TODO: Wait for the lock?
903         if(IS_LOCKED(&glThreadListLock))        return;
904         
905         curthread = Proc_GetCurThread();
906
907         nextthread = Threads_GetNextToRun(cpu, curthread);
908
909         if(!nextthread)
910                 nextthread = gaCPUs[cpu].IdleThread;
911         if(!nextthread || nextthread == curthread)
912                 return ;
913
914         #if DEBUG_TRACE_SWITCH
915         LogF("\nSwitching to task %i, CR3 = 0x%x, EIP = %p, ESP = %p\n",
916                 nextthread->TID,
917                 nextthread->MemState.CR3,
918                 nextthread->SavedState.EIP,
919                 nextthread->SavedState.ESP
920                 );
921         #endif
922
923         // Update CPU state
924         gaCPUs[cpu].Current = nextthread;
925         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
926         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
927
928         // Save FPU/MMX/XMM/SSE state
929         if( curthread->SavedState.SSE )
930         {
931                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
932                 curthread->SavedState.bSSEModified = 0;
933                 Proc_DisableSSE();
934         }
935
936         SwitchTasks(
937                 nextthread->SavedState.ESP, &curthread->SavedState.ESP,
938                 nextthread->SavedState.EIP, &curthread->SavedState.EIP,
939                 nextthread->MemState.CR3
940                 );
941
942         return ;
943 }
944
945 /**
946  * \fn void Proc_Scheduler(int CPU)
947  * \brief Swap current thread and clears dead threads
948  */
949 void Proc_Scheduler(int CPU)
950 {
951         tThread *thread;
952         
953         // If the spinlock is set, let it complete
954         if(IS_LOCKED(&glThreadListLock))        return;
955         
956         // Get current thread
957         thread = gaCPUs[CPU].Current;
958         
959         if( thread )
960         {
961                 tRegs   *regs;
962                 Uint    ebp;
963                 // Reduce remaining quantum and continue timeslice if non-zero
964                 if( thread->Remaining-- )
965                         return;
966                 // Reset quantum for next call
967                 thread->Remaining = thread->Quantum;
968                 
969                 // TODO: Make this more stable somehow
970                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
971                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
972                 thread->SavedState.UserCS = regs->cs;
973                 thread->SavedState.UserEIP = regs->eip;
974                 
975                 if(thread->bInstrTrace) {
976                         regs->eflags |= 0x100;  // Set TF
977                         Log("%p De-scheduled", thread);
978                 }
979                 else
980                         regs->eflags &= ~0x100; // Clear TF
981         }
982
983 #if 0
984         // TODO: Ack timer?
985         #if USE_MP
986         if( GetCPUNum() )
987                 gpMP_LocalAPIC->EOI.Val = 0;
988         else
989         #endif
990                 outb(0x20, 0x20);
991         __asm__ __volatile__ ("sti");
992         Proc_Reschedule();
993 #endif
994 }
995
996 // === EXPORTS ===
997 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au