Modules/E1000 - Enabled bus master for qemu (which doesn't enable it)
[tpg/acess2.git] / KernelLand / Modules / Network / E1000 / e1000.c
1 /*
2  * Acess2 E1000 Network Driver
3  * - By John Hodge (thePowersGang)
4  *
5  * e1000.c
6  * - Intel 8254x Network Card Driver (core)
7  */
8 #define DEBUG   1
9 #define VERSION VER2(0,1)
10 #include <acess.h>
11 #include "e1000.h"
12 #include <modules.h>
13 #include <drv_pci.h>
14 #include <IPStack/include/adapters_api.h>
15 #include <timers.h>     // Time_Delay
16
17 const struct sSupportedCard {
18         Uint16  Vendor, Device;
19 } caSupportedCards[] = {
20         {0x8086, 0x100E},       // 82540EM-A Desktop
21         {0x8086, 0x1010},       // 82546EB-A1 Copper Dual Port
22         {0x8086, 0x1012},       // 82546EB-A1 Fiber
23         {0x8086, 0x1019},       // 82547[EG]I Copper
24         {0x8086, 0x101A},       // 82547EI Mobile
25         {0x8086, 0x101D},       // 82546EB-A1 Copper Quad Port
26 };
27 const int ciNumSupportedCards = sizeof(caSupportedCards)/sizeof(caSupportedCards[0]);
28
29 // === PROTOTYPES ===
30  int    E1000_Install(char **Arguments);
31  int    E1000_Cleanup(void);
32 tIPStackBuffer  *E1000_WaitForPacket(void *Ptr);
33  int    E1000_SendPacket(void *Ptr, tIPStackBuffer *Buffer);
34 void    E1000_IRQHandler(int Num, void *Ptr);
35  int    E1000_int_InitialiseCard(tCard *Card);
36 Uint16  E1000_int_ReadEEPROM(tCard *Card, Uint8 WordIdx);
37
38 // === GLOBALS ===
39 MODULE_DEFINE(0, VERSION, E1000, E1000_Install, E1000_Cleanup, NULL);
40 tIPStack_AdapterType    gE1000_AdapterType = {
41         .Name = "E1000",
42         .Type = ADAPTERTYPE_ETHERNET_1G,        // TODO: Differentiate differnet wire protos and speeds
43         .Flags = ADAPTERFLAG_OFFLOAD_MAC,       // TODO: IP/TCP/UDP checksum offloading
44         .SendPacket = E1000_SendPacket,
45         .WaitForPacket = E1000_WaitForPacket
46         };
47 tCard   *gaE1000_Cards;
48
49 // === CODE ===
50 int E1000_Install(char **Arguments)
51 {
52          int    card_count = 0;
53         for( int modelidx = 0; modelidx < ciNumSupportedCards; modelidx ++ )
54         {
55                 const struct sSupportedCard     *cardtype = &caSupportedCards[modelidx];
56                 card_count += PCI_CountDevices(cardtype->Vendor, cardtype->Device);
57         }
58         LOG("card_count = %i", card_count);
59         if( card_count == 0 ) {
60                 LOG("Zero cards located");
61                 return MODULE_ERR_NOTNEEDED;
62         }
63
64         // Allocate card array
65         gaE1000_Cards = calloc(sizeof(tCard), card_count);
66         if( !gaE1000_Cards ) {
67                 return MODULE_ERR_MALLOC;
68         }       
69
70         // Initialise cards
71         int card_idx = 0;
72         for( int modelidx = 0; modelidx < ciNumSupportedCards; modelidx ++ )
73         {
74                 const struct sSupportedCard     *cardtype = &caSupportedCards[modelidx];
75                 for( int id = -1, i = 0; (id = PCI_GetDevice(cardtype->Vendor, cardtype->Device, i)) != -1; i ++ )
76                 {
77                         tCard   *card = &gaE1000_Cards[card_idx++];
78                         card->MMIOBasePhys = PCI_GetValidBAR(id, 0, PCI_BARTYPE_MEMNP);
79                         if( !card->MMIOBasePhys ) {
80                                 Log_Warning("E1000", "Dev %i: BAR0 should be non-prefetchable memory", id);
81                                 continue;
82                         }
83
84                         card->IRQ = PCI_GetIRQ(id);
85                         IRQ_AddHandler(card->IRQ, E1000_IRQHandler, card);
86                         PCI_SetCommand(id, PCI_CMD_MEMENABLE|PCI_CMD_BUSMASTER, 0);
87                 
88                         Log_Debug("E1000", "Card %i: %P IRQ %i", card_idx, card->MMIOBasePhys, card->IRQ);
89
90                         if( E1000_int_InitialiseCard(card) ) {
91                                 return MODULE_ERR_MALLOC;
92                         }
93                         
94                         card->IPStackHandle = IPStack_Adapter_Add(&gE1000_AdapterType, card, card->MacAddr);
95                 }
96         }
97         return MODULE_ERR_OK;
98 }
99
100 int E1000_Cleanup(void)
101 {
102         return 0;
103 }
104
105 void E1000_int_ReleaseRXD(void *Arg, size_t HeadLen, size_t FootLen, const void *Data)
106 {
107         tCard   **cardptr = Arg;
108         tCard   *Card = *cardptr;
109          int    rxd = (Arg - (void*)Card->RXBackHandles) / sizeof(void*);
110
111         LOG("RXD %p %i being released", Card, rxd);
112         ASSERT(rxd >= 0 && rxd < NUM_RX_DESC);
113
114         Card->RXDescs[rxd].Status = 0;
115         Mutex_Acquire(&Card->lRXDescs);
116         if( rxd == REG32(Card, REG_RDT) ) {
117                 while( rxd != Card->FirstUnseenRXD && !(Card->RXDescs[rxd].Status & RXD_STS_DD) ) {
118                         rxd ++;
119                         if( rxd == NUM_RX_DESC )
120                                 rxd = 0;
121                 }
122                 REG32(Card, REG_RDT) = rxd;
123                 LOG("Updated RDT=%i", rxd);
124         }
125         Mutex_Release(&Card->lRXDescs);
126 }
127
128 tIPStackBuffer *E1000_WaitForPacket(void *Ptr)
129 {
130         tCard   *Card = Ptr;
131         
132         if( Semaphore_Wait(&Card->AvailPackets, 1) != 1 )
133                 return NULL;
134         
135         ENTER("pPtr", Ptr);
136
137         Mutex_Acquire(&Card->lRXDescs);
138          int    first_rxd = Card->FirstUnseenRXD;
139          int    last_rxd = first_rxd;
140          int    nDesc = 1;
141         while( last_rxd != Card->LastUnseenRXD  ) {
142                 if( !(Card->RXDescs[last_rxd].Status & RXD_STS_DD) )
143                         break;  // Oops, should ahve found an EOP first
144                 if( Card->RXDescs[last_rxd].Status & RXD_STS_EOP )
145                         break;
146                 nDesc ++;
147                 last_rxd = (last_rxd + 1) % NUM_RX_DESC;
148         }
149         Card->FirstUnseenRXD = (last_rxd + 1) % NUM_RX_DESC;
150         Mutex_Release(&Card->lRXDescs);
151
152         LOG("nDesc = %i, first_rxd = %i", nDesc, first_rxd);
153         tIPStackBuffer *ret = IPStack_Buffer_CreateBuffer(nDesc);
154          int    rxd = first_rxd;
155         for( int i = 0; i < nDesc; i ++ )
156         {
157                 IPStack_Buffer_AppendSubBuffer(ret, 0, Card->RXDescs[rxd].Length, Card->RXBuffers[rxd],
158                         E1000_int_ReleaseRXD, &Card->RXBackHandles[rxd]);
159         }
160
161         LEAVE('p', ret);
162         return ret;
163 }
164
165 int E1000_SendPacket(void *Ptr, tIPStackBuffer *Buffer)
166 {
167         tCard   *Card = Ptr;
168
169         ENTER("pPtr pBuffer", Ptr, Buffer);
170
171          int    nDesc = 0;
172         size_t  len;
173         const void      *ptr;
174         // Count sub-buffers (including splitting cross-page entries)
175          int    idx = -1;
176         while( (idx = IPStack_Buffer_GetBuffer(Buffer, idx, &len, &ptr)) != -1 )
177         {
178                 if( len > PAGE_SIZE ) {
179                         LOG("len=%i > PAGE_SIZE", len);
180                         LEAVE('i', EINVAL);
181                         return EINVAL;
182                 }
183                 if( MM_GetPhysAddr(ptr) + len-1 != MM_GetPhysAddr((char*)ptr + len-1) ) {
184                         LOG("Buffer %p+%i spans non-contig physical pages", ptr, len);
185                         nDesc ++;
186                 }
187                 nDesc ++;
188         }
189         
190         // Request set of TX descriptors
191         int rv = Semaphore_Wait(&Card->FreeTxDescs, nDesc);
192         if(rv != nDesc) {
193                 LEAVE('i', EINTR);
194                 return EINTR;
195         }
196         Mutex_Acquire(&Card->lTXDescs);
197          int    first_txd = Card->FirstFreeTXD;
198         Card->FirstFreeTXD = (first_txd + nDesc) % NUM_TX_DESC;
199          int    last_txd = (first_txd + nDesc-1) % NUM_TX_DESC;
200
201         LOG("first_txd = %i, last_txd = %i", first_txd, last_txd);
202
203         // Populate buffers
204         idx = -1;
205          int txd = first_txd;
206         while( (idx = IPStack_Buffer_GetBuffer(Buffer, idx, &len, &ptr)) != -1 )
207         {
208                 if( MM_GetPhysAddr(ptr) + len-1 != MM_GetPhysAddr((char*)ptr + len-1) )
209                 {
210                         size_t  remlen = PAGE_SIZE - ((tVAddr)ptr & (PAGE_SIZE-1));
211                         // Split in two
212                         // - First Page
213                         Card->TXDescs[txd].Buffer = MM_GetPhysAddr(ptr);
214                         Card->TXDescs[txd].Length = remlen;
215                         Card->TXDescs[txd].CMD = TXD_CMD_RS;
216                         txd = (txd + 1) % NUM_TX_DESC;
217                         // - Second page
218                         Card->TXDescs[txd].Buffer = MM_GetPhysAddr((char*)ptr + remlen);
219                         Card->TXDescs[txd].Length = len - remlen;
220                         Card->TXDescs[txd].CMD = TXD_CMD_RS;
221                 }
222                 else
223                 {
224                         // Single
225                         volatile tTXDesc *txdp = &Card->TXDescs[txd];
226                         txdp->Buffer = MM_GetPhysAddr(ptr);
227                         txdp->Length = len;
228                         txdp->CMD = TXD_CMD_RS;
229                         LOG("%P: %llx %x %x", MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
230                 }
231                 txd = (txd + 1) % NUM_TX_DESC;
232         }
233         Card->TXDescs[last_txd].CMD |= TXD_CMD_EOP|TXD_CMD_IDE|TXD_CMD_IFCS;
234         Card->TXSrcBuffers[last_txd] = Buffer;
235
236         __sync_synchronize();
237         {
238                 volatile tTXDesc *txdp = Card->TXDescs + last_txd;
239                 LOG("%p %P: %llx %x %x", txdp, MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
240                 volatile tTXDesc *txdp_base = MM_MapTemp(MM_GetPhysAddr((void*)Card->TXDescs));
241                 txdp = txdp_base + last_txd;
242                 LOG("%p %P: %llx %x %x", txdp, MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
243                 MM_FreeTemp( (void*)txdp_base);
244         }
245         // Trigger TX
246         IPStack_Buffer_LockBuffer(Buffer);
247         LOG("Triggering TX - Buffers[%i]=%p", last_txd, Buffer);
248         REG32(Card, REG_TDT) = Card->FirstFreeTXD;
249         Mutex_Release(&Card->lTXDescs);
250         LOG("Waiting for TX to complete");
251         
252         // Wait for completion (lock will block, then release straight away)
253         IPStack_Buffer_LockBuffer(Buffer);
254         IPStack_Buffer_UnlockBuffer(Buffer);
255
256         // TODO: Check status bits
257
258         LEAVE('i', 0);
259         return 0;
260 }
261
262 void E1000_IRQHandler(int Num, void *Ptr)
263 {
264         tCard   *Card = Ptr;
265         
266         Uint32  icr = REG32(Card, REG_ICR);
267         if( icr == 0 )
268                 return ;
269         LOG("icr = %x", icr);
270
271         // Transmit descriptor written
272         if( (icr & ICR_TXDW) || (icr & ICR_TXQE) )
273         {
274                  int    nReleased = 0;
275                  int    txd = Card->LastFreeTXD;
276                  int    nReleasedAtLastDD = 0;
277                  int    idxOfLastDD = txd;
278                 // Walk descriptors looking for the first non-complete descriptor
279                 LOG("TX %i:%i", Card->LastFreeTXD, Card->FirstFreeTXD);
280                 while( txd != Card->FirstFreeTXD )
281                 {
282                         nReleased ++;
283                         if(Card->TXDescs[txd].Status & TXD_STS_DD) {
284                                 nReleasedAtLastDD = nReleased;
285                                 idxOfLastDD = txd;
286                         }
287                         txd ++;
288                         if(txd == NUM_TX_DESC)
289                                 txd = 0;
290                 }
291                 if( nReleasedAtLastDD )
292                 {
293                         // Unlock buffers
294                         txd = Card->LastFreeTXD;
295                         LOG("TX unlocking range %i-%i", txd, idxOfLastDD);
296                         while( txd != (idxOfLastDD+1)%NUM_TX_DESC )
297                         {
298                                 if( Card->TXSrcBuffers[txd] ) {
299                                         LOG("- Unlocking %i:%p", txd, Card->TXSrcBuffers[txd]);
300                                         IPStack_Buffer_UnlockBuffer( Card->TXSrcBuffers[txd] );
301                                         Card->TXSrcBuffers[txd] = NULL;
302                                 }
303                                 txd ++;
304                                 if(txd == NUM_TX_DESC)
305                                         txd = 0;
306                         }
307                         // Update last free
308                         Card->LastFreeTXD = txd;
309                         Semaphore_Signal(&Card->FreeTxDescs, nReleasedAtLastDD);
310                         LOG("nReleased = %i", nReleasedAtLastDD);
311                 }
312                 else
313                 {
314                         LOG("No completed TXDs");
315                 }
316         }
317         
318         if( icr & ICR_LSC )
319         {
320                 // Link status change
321                 LOG("LSC");
322                 // TODO: Detect link drop/raise and poke IPStack
323         }
324
325         if( icr & ICR_RXO )
326         {
327                 LOG("RX Overrun");
328         }
329         
330         // Pending packet (s)
331         if( icr & ICR_RXT0 )
332         {
333                  int    nPackets = 0;
334                 LOG("RX %i:%i", Card->LastUnseenRXD, Card->FirstUnseenRXD);
335                 while( (Card->RXDescs[Card->LastUnseenRXD].Status & RXD_STS_DD) )
336                 {
337                         if( Card->RXDescs[Card->LastUnseenRXD].Status & RXD_STS_EOP )
338                                 nPackets ++;
339                         Card->LastUnseenRXD ++;
340                         if( Card->LastUnseenRXD == NUM_RX_DESC )
341                                 Card->LastUnseenRXD = 0;
342                         
343                         if( Card->LastUnseenRXD == Card->FirstUnseenRXD )
344                                 break;
345                 }
346                 Semaphore_Signal(&Card->AvailPackets, nPackets);
347                 LOG("nPackets = %i", nPackets);
348         }
349         
350         icr &= ~(ICR_RXT0|ICR_LSC|ICR_TXQE|ICR_TXDW);
351         if( icr )
352                 Log_Warning("E1000", "Unhandled ICR bits 0x%x", icr);
353 }
354
355 // TODO: Move this function into Kernel/drvutil.c
356 /**
357  * \brief Allocate a set of buffers in hardware mapped space
358  * 
359  * Allocates \a NumBufs buffers using shared pages (if \a BufSize is less than a page) or
360  * as a set of contiugious allocations.
361  */
362 int DrvUtil_AllocBuffers(void **Buffers, int NumBufs, int PhysBits, size_t BufSize)
363 {
364         if( BufSize >= PAGE_SIZE )
365         {
366                 const int       pages_per_buf = BufSize / PAGE_SIZE;
367                 ASSERT(pages_per_buf * PAGE_SIZE == BufSize);
368                 for( int i = 0; i < NumBufs; i ++ ) {
369                         Buffers[i] = (void*)MM_AllocDMA(pages_per_buf, PhysBits, NULL);
370                         if( !Buffers[i] )       return 1;
371                 }
372         }
373         else
374         {
375                 size_t  ofs = 0;
376                 const int       bufs_per_page = PAGE_SIZE / BufSize;
377                 ASSERT(bufs_per_page * BufSize == PAGE_SIZE);
378                 void    *page = NULL;
379                 for( int i = 0; i < NumBufs; i ++ )
380                 {
381                         if( ofs == 0 ) {
382                                 page = (void*)MM_AllocDMA(1, PhysBits, NULL);
383                                 if( !page )     return 1;
384                         }
385                         Buffers[i] = (char*)page + ofs;
386                         ofs += BufSize;
387                         if( ofs >= PAGE_SIZE )
388                                 ofs = 0;
389                 }
390         }
391         return 0;
392 }
393
394 int E1000_int_InitialiseCard(tCard *Card)
395 {
396         ENTER("pCard", Card);
397         
398         // Map required structures
399         Card->MMIOBase = (void*)MM_MapHWPages( Card->MMIOBasePhys, 7 );
400         if( !Card->MMIOBase ) {
401                 Log_Error("E1000", "%p: Failed to map MMIO Space (7 pages)", Card);
402                 LEAVE('i', 1);
403                 return 1;
404         }
405
406         // --- Read MAC address from EEPROM ---
407         {
408                 Uint16  macword;
409                 macword = E1000_int_ReadEEPROM(Card, 0);
410                 Card->MacAddr[0] = macword & 0xFF;
411                 Card->MacAddr[1] = macword >> 8;
412                 macword = E1000_int_ReadEEPROM(Card, 1);
413                 Card->MacAddr[2] = macword & 0xFF;
414                 Card->MacAddr[3] = macword >> 8;
415                 macword = E1000_int_ReadEEPROM(Card, 2);
416                 Card->MacAddr[4] = macword & 0xFF;
417                 Card->MacAddr[5] = macword >> 8;
418         }
419         Log_Log("E1000", "%p: MAC Address %02x:%02x:%02x:%02x:%02x:%02x",
420                 Card,
421                 Card->MacAddr[0], Card->MacAddr[1],
422                 Card->MacAddr[2], Card->MacAddr[3],
423                 Card->MacAddr[4], Card->MacAddr[5]);
424         
425         // --- Prepare for RX ---
426         LOG("RX Preparation");
427         Card->RXDescs = (void*)MM_AllocDMA(1, 64, NULL);
428         if( !Card->RXDescs ) {
429                 LEAVE('i', 2);
430                 return 2;
431         }
432         if( DrvUtil_AllocBuffers(Card->RXBuffers, NUM_RX_DESC, 64, RX_DESC_BSIZE) ) {
433                 LEAVE('i', 3);
434                 return 3;
435         }
436         for( int i = 0; i < NUM_RX_DESC; i ++ )
437         {
438                 Card->RXDescs[i].Buffer = MM_GetPhysAddr(Card->RXBuffers[i]);
439                 Card->RXDescs[i].Status = 0;    // Clear RXD_STS_DD, gives it to the card
440                 Card->RXBackHandles[i] = Card;
441         }
442         
443         REG64(Card, REG_RDBAL) = MM_GetPhysAddr((void*)Card->RXDescs);
444         REG32(Card, REG_RDLEN) = NUM_RX_DESC * 16;
445         REG32(Card, REG_RDH) = 0;
446         REG32(Card, REG_RDT) = NUM_RX_DESC;
447         // Hardware size, Multicast promisc, Accept broadcast, Interrupt at 1/4 Rx descs free
448         REG32(Card, REG_RCTL) = RX_DESC_BSIZEHW | RCTL_MPE | RCTL_BAM | RCTL_RDMTS_1_4;
449         Card->FirstUnseenRXD = 0;
450         Card->LastUnseenRXD = 0;
451
452         // --- Prepare for TX ---
453         LOG("TX Preparation");
454         Card->TXDescs = (void*)MM_AllocDMA(1, 64, NULL);
455         if( !Card->RXDescs ) {
456                 LEAVE('i', 4);
457                 return 4;
458         }
459         LOG("Card->RXDescs = %p [%P]", Card->TXDescs, MM_GetPhysAddr((void*)Card->TXDescs));
460         for( int i = 0; i < NUM_TX_DESC; i ++ )
461         {
462                 Card->TXDescs[i].Buffer = 0;
463                 Card->TXDescs[i].CMD = 0;
464         }
465         REG64(Card, REG_TDBAL) = MM_GetPhysAddr((void*)Card->TXDescs);
466         REG32(Card, REG_TDLEN) = NUM_TX_DESC * 16;
467         REG32(Card, REG_TDH) = 0;
468         REG32(Card, REG_TDT) = 0;
469         // Enable, pad short packets
470         REG32(Card, REG_TCTL) = TCTL_EN | TCTL_PSP | (0x0F << TCTL_CT_ofs) | (0x40 << TCTL_COLD_ofs);
471         Card->FirstFreeTXD = 0;
472
473         // -- Prepare Semaphores
474         Semaphore_Init(&Card->FreeTxDescs, NUM_TX_DESC, NUM_TX_DESC, "E1000", "TXDescs");
475         Semaphore_Init(&Card->AvailPackets, 0, NUM_RX_DESC, "E1000", "RXDescs");
476
477         // --- Prepare for full operation ---
478         LOG("Starting card");
479         REG32(Card, REG_CTRL) = CTRL_SLU|CTRL_ASDE;     // Link up, auto speed detection
480         REG32(Card, REG_IMS) = 0x1F6DC; // Interrupt mask
481         (void)REG32(Card, REG_ICR);     // Discard pending interrupts
482         REG32(Card, REG_RCTL) |= RCTL_EN;
483         LEAVE('i', 0);
484         return 0;
485 }
486
487 Uint16 E1000_int_ReadEEPROM(tCard *Card, Uint8 WordIdx)
488 {
489         REG32(Card, REG_EERD) = ((Uint32)WordIdx << 8) | 1;
490         Uint32  tmp;
491         while( !((tmp = REG32(Card, REG_EERD)) & (1 << 4)) ) {
492                 // TODO: use something like Time_MicroDelay instead
493                 Time_Delay(1);
494         }
495         
496         return tmp >> 16;
497 }

UCC git Repository :: git.ucc.asn.au