Merge branch 'master' of git://localhost/acess2
[tpg/acess2.git] / KernelLand / Modules / Network / E1000 / e1000.c
1 /*
2  * Acess2 E1000 Network Driver
3  * - By John Hodge (thePowersGang)
4  *
5  * e1000.c
6  * - Intel 8254x Network Card Driver (core)
7  */
8 #define DEBUG   1
9 #define VERSION VER2(0,1)
10 #include <acess.h>
11 #include "e1000.h"
12 #include <modules.h>
13 #include <drv_pci.h>
14 #include <IPStack/include/adapters_api.h>
15 #include <timers.h>     // Time_Delay
16
17 const struct sSupportedCard {
18         Uint16  Vendor, Device;
19 } caSupportedCards[] = {
20         {0x8086, 0x100E},       // 82540EM-A Desktop
21         {0x8086, 0x1010},       // 82546EB-A1 Copper Dual Port
22         {0x8086, 0x1012},       // 82546EB-A1 Fiber
23         {0x8086, 0x1019},       // 82547[EG]I Copper
24         {0x8086, 0x101A},       // 82547EI Mobile
25         {0x8086, 0x101D},       // 82546EB-A1 Copper Quad Port
26 };
27 const int ciNumSupportedCards = sizeof(caSupportedCards)/sizeof(caSupportedCards[0]);
28
29 // === PROTOTYPES ===
30  int    E1000_Install(char **Arguments);
31  int    E1000_Cleanup(void);
32 tIPStackBuffer  *E1000_WaitForPacket(void *Ptr);
33  int    E1000_SendPacket(void *Ptr, tIPStackBuffer *Buffer);
34 void    E1000_IRQHandler(int Num, void *Ptr);
35  int    E1000_int_InitialiseCard(tCard *Card);
36 Uint16  E1000_int_ReadEEPROM(tCard *Card, Uint8 WordIdx);
37
38 // === GLOBALS ===
39 MODULE_DEFINE(0, VERSION, E1000, E1000_Install, E1000_Cleanup, NULL);
40 tIPStack_AdapterType    gE1000_AdapterType = {
41         .Name = "E1000",
42         .Type = ADAPTERTYPE_ETHERNET_1G,        // TODO: Differentiate differnet wire protos and speeds
43         .Flags = ADAPTERFLAG_OFFLOAD_MAC,       // TODO: IP/TCP/UDP checksum offloading
44         .SendPacket = E1000_SendPacket,
45         .WaitForPacket = E1000_WaitForPacket
46         };
47 tCard   *gaE1000_Cards;
48
49 // === CODE ===
50 int E1000_Install(char **Arguments)
51 {
52          int    card_count = 0;
53         for( int modelidx = 0; modelidx < ciNumSupportedCards; modelidx ++ )
54         {
55                 const struct sSupportedCard     *cardtype = &caSupportedCards[modelidx];
56                 card_count += PCI_CountDevices(cardtype->Vendor, cardtype->Device);
57         }
58         LOG("card_count = %i", card_count);
59         if( card_count == 0 ) {
60                 LOG("Zero cards located");
61                 return MODULE_ERR_NOTNEEDED;
62         }
63
64         // Allocate card array
65         gaE1000_Cards = calloc(sizeof(tCard), card_count);
66         if( !gaE1000_Cards ) {
67                 return MODULE_ERR_MALLOC;
68         }       
69
70         // Initialise cards
71         int card_idx = 0;
72         for( int modelidx = 0; modelidx < ciNumSupportedCards; modelidx ++ )
73         {
74                 const struct sSupportedCard     *cardtype = &caSupportedCards[modelidx];
75                 for( int id = -1, i = 0; (id = PCI_GetDevice(cardtype->Vendor, cardtype->Device, i)) != -1; i ++ )
76                 {
77                         tCard   *card = &gaE1000_Cards[card_idx++];
78                         Uint32  mmiobase = PCI_GetBAR(id, 0);
79                         if( mmiobase & (1|8) ) {
80                                 Log_Warning("E1000", "Dev %i: BAR0 should be non-prefetchable memory", id);
81                                 continue;
82                         }
83                         const int addrsize = (mmiobase>>1) & 3;
84                         if( addrsize == 0 ) {
85                                 // Standard 32-bit
86                                 card->MMIOBasePhys = mmiobase & ~0xF;
87                         }
88                         else if( addrsize == 2 ) {
89                                 // 64-bit
90                                 card->MMIOBasePhys = (mmiobase & ~0xF) | ((Uint64)PCI_GetBAR(id, 1)<<32);
91                         }
92                         else {
93                                 Log_Warning("E1000", "Dev %i: Unknown memory address size %i", id, (mmiobase>>1)&3);
94                                 continue;
95                         }
96
97                         card->IRQ = PCI_GetIRQ(id);
98                         IRQ_AddHandler(card->IRQ, E1000_IRQHandler, card);
99
100                         Log_Debug("E1000", "Card %i: %P IRQ %i", card_idx, card->MMIOBasePhys, card->IRQ);
101
102                         if( E1000_int_InitialiseCard(card) ) {
103                                 return MODULE_ERR_MALLOC;
104                         }
105                         
106                         card->IPStackHandle = IPStack_Adapter_Add(&gE1000_AdapterType, card, card->MacAddr);
107                 }
108         }
109         return MODULE_ERR_OK;
110 }
111
112 int E1000_Cleanup(void)
113 {
114         return 0;
115 }
116
117 void E1000_int_ReleaseRXD(void *Arg, size_t HeadLen, size_t FootLen, const void *Data)
118 {
119         tCard   **cardptr = Arg;
120         tCard   *Card = *cardptr;
121          int    rxd = (Arg - (void*)Card->RXBackHandles) / sizeof(void*);
122
123         LOG("RXD %p %i being released", Card, rxd);
124         ASSERT(rxd >= 0 && rxd < NUM_RX_DESC);
125
126         Card->RXDescs[rxd].Status = 0;
127         Mutex_Acquire(&Card->lRXDescs);
128         if( rxd == REG32(Card, REG_RDT) ) {
129                 while( rxd != Card->FirstUnseenRXD && !(Card->RXDescs[rxd].Status & RXD_STS_DD) ) {
130                         rxd ++;
131                         if( rxd == NUM_RX_DESC )
132                                 rxd = 0;
133                 }
134                 REG32(Card, REG_RDT) = rxd;
135                 LOG("Updated RDT=%i", rxd);
136         }
137         Mutex_Release(&Card->lRXDescs);
138 }
139
140 tIPStackBuffer *E1000_WaitForPacket(void *Ptr)
141 {
142         tCard   *Card = Ptr;
143         
144         if( Semaphore_Wait(&Card->AvailPackets, 1) != 1 )
145                 return NULL;
146         
147         ENTER("pPtr", Ptr);
148
149         Mutex_Acquire(&Card->lRXDescs);
150          int    first_rxd = Card->FirstUnseenRXD;
151          int    last_rxd = first_rxd;
152          int    nDesc = 1;
153         while( last_rxd != Card->LastUnseenRXD  ) {
154                 if( !(Card->RXDescs[last_rxd].Status & RXD_STS_DD) )
155                         break;  // Oops, should ahve found an EOP first
156                 if( Card->RXDescs[last_rxd].Status & RXD_STS_EOP )
157                         break;
158                 nDesc ++;
159                 last_rxd = (last_rxd + 1) % NUM_RX_DESC;
160         }
161         Card->FirstUnseenRXD = (last_rxd + 1) % NUM_RX_DESC;
162         Mutex_Release(&Card->lRXDescs);
163
164         LOG("nDesc = %i, first_rxd = %i", nDesc, first_rxd);
165         tIPStackBuffer *ret = IPStack_Buffer_CreateBuffer(nDesc);
166          int    rxd = first_rxd;
167         for( int i = 0; i < nDesc; i ++ )
168         {
169                 IPStack_Buffer_AppendSubBuffer(ret, 0, Card->RXDescs[rxd].Length, Card->RXBuffers[rxd],
170                         E1000_int_ReleaseRXD, &Card->RXBackHandles[rxd]);
171         }
172
173         LEAVE('p', ret);
174         return ret;
175 }
176
177 int E1000_SendPacket(void *Ptr, tIPStackBuffer *Buffer)
178 {
179         tCard   *Card = Ptr;
180
181         ENTER("pPtr pBuffer", Ptr, Buffer);
182
183          int    nDesc = 0;
184         size_t  len;
185         const void      *ptr;
186         // Count sub-buffers (including splitting cross-page entries)
187          int    idx = -1;
188         while( (idx = IPStack_Buffer_GetBuffer(Buffer, idx, &len, &ptr)) != -1 )
189         {
190                 if( len > PAGE_SIZE ) {
191                         LOG("len=%i > PAGE_SIZE", len);
192                         LEAVE('i', EINVAL);
193                         return EINVAL;
194                 }
195                 if( MM_GetPhysAddr(ptr) + len-1 != MM_GetPhysAddr((char*)ptr + len-1) ) {
196                         LOG("Buffer %p+%i spans non-contig physical pages", ptr, len);
197                         nDesc ++;
198                 }
199                 nDesc ++;
200         }
201         
202         // Request set of TX descriptors
203         int rv = Semaphore_Wait(&Card->FreeTxDescs, nDesc);
204         if(rv != nDesc) {
205                 LEAVE('i', EINTR);
206                 return EINTR;
207         }
208         Mutex_Acquire(&Card->lTXDescs);
209          int    first_txd = Card->FirstFreeTXD;
210         Card->FirstFreeTXD = (first_txd + nDesc) % NUM_TX_DESC;
211          int    last_txd = (first_txd + nDesc-1) % NUM_TX_DESC;
212
213         LOG("first_txd = %i, last_txd = %i", first_txd, last_txd);
214
215         // Populate buffers
216         idx = -1;
217          int txd = first_txd;
218         while( (idx = IPStack_Buffer_GetBuffer(Buffer, idx, &len, &ptr)) != -1 )
219         {
220                 if( MM_GetPhysAddr(ptr) + len-1 != MM_GetPhysAddr((char*)ptr + len-1) )
221                 {
222                         size_t  remlen = PAGE_SIZE - ((tVAddr)ptr & (PAGE_SIZE-1));
223                         // Split in two
224                         // - First Page
225                         Card->TXDescs[txd].Buffer = MM_GetPhysAddr(ptr);
226                         Card->TXDescs[txd].Length = remlen;
227                         Card->TXDescs[txd].CMD = TXD_CMD_RS;
228                         txd = (txd + 1) % NUM_TX_DESC;
229                         // - Second page
230                         Card->TXDescs[txd].Buffer = MM_GetPhysAddr((char*)ptr + remlen);
231                         Card->TXDescs[txd].Length = len - remlen;
232                         Card->TXDescs[txd].CMD = TXD_CMD_RS;
233                 }
234                 else
235                 {
236                         // Single
237                         volatile tTXDesc *txdp = &Card->TXDescs[txd];
238                         txdp->Buffer = MM_GetPhysAddr(ptr);
239                         txdp->Length = len;
240                         txdp->CMD = TXD_CMD_RS;
241                         LOG("%P: %llx %x %x", MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
242                 }
243                 txd = (txd + 1) % NUM_TX_DESC;
244         }
245         Card->TXDescs[last_txd].CMD |= TXD_CMD_EOP|TXD_CMD_IDE|TXD_CMD_IFCS;
246         Card->TXSrcBuffers[last_txd] = Buffer;
247
248         // Trigger TX
249         IPStack_Buffer_LockBuffer(Buffer);
250         LOG("Triggering TX - Buffers[%i]=%p", last_txd, Buffer);
251         REG32(Card, REG_TDT) = Card->FirstFreeTXD;
252         Mutex_Release(&Card->lTXDescs);
253         {
254                 volatile tTXDesc *txdp = Card->TXDescs + last_txd;
255                 LOG("%p %P: %llx %x %x", txdp, MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
256                 volatile tTXDesc *txdp_base = MM_MapTemp(MM_GetPhysAddr((void*)Card->TXDescs));
257                 txdp = txdp_base + last_txd;
258                 LOG("%p %P: %llx %x %x", txdp, MM_GetPhysAddr((void*)txdp), txdp->Buffer, txdp->Length, txdp->CMD);
259                 MM_FreeTemp( (void*)txdp_base);
260         }
261         LOG("Waiting for TX to complete");
262         
263         // Wait for completion (lock will block, then release straight away)
264         IPStack_Buffer_LockBuffer(Buffer);
265         IPStack_Buffer_UnlockBuffer(Buffer);
266
267         // TODO: Check status bits
268
269         LEAVE('i', 0);
270         return 0;
271 }
272
273 void E1000_IRQHandler(int Num, void *Ptr)
274 {
275         tCard   *Card = Ptr;
276         
277         Uint32  icr = REG32(Card, REG_ICR);
278         if( icr == 0 )
279                 return ;
280         LOG("icr = %x", icr);
281
282         // Transmit descriptor written
283         if( (icr & ICR_TXDW) || (icr & ICR_TXQE) )
284         {
285                  int    nReleased = 0;
286                  int    txd = Card->LastFreeTXD;
287                  int    nReleasedAtLastDD = 0;
288                  int    idxOfLastDD = txd;
289                 // Walk descriptors looking for the first non-complete descriptor
290                 LOG("TX %i:%i", Card->LastFreeTXD, Card->FirstFreeTXD);
291                 while( txd != Card->FirstFreeTXD )
292                 {
293                         nReleased ++;
294                         if(Card->TXDescs[txd].Status & TXD_STS_DD) {
295                                 nReleasedAtLastDD = nReleased;
296                                 idxOfLastDD = txd;
297                         }
298                         txd ++;
299                         if(txd == NUM_TX_DESC)
300                                 txd = 0;
301                 }
302                 if( nReleasedAtLastDD )
303                 {
304                         // Unlock buffers
305                         txd = Card->LastFreeTXD;
306                         LOG("TX unlocking range %i-%i", txd, idxOfLastDD);
307                         while( txd != (idxOfLastDD+1)%NUM_TX_DESC )
308                         {
309                                 if( Card->TXSrcBuffers[txd] ) {
310                                         LOG("- Unlocking %i:%p", txd, Card->TXSrcBuffers[txd]);
311                                         IPStack_Buffer_UnlockBuffer( Card->TXSrcBuffers[txd] );
312                                         Card->TXSrcBuffers[txd] = NULL;
313                                 }
314                                 txd ++;
315                                 if(txd == NUM_TX_DESC)
316                                         txd = 0;
317                         }
318                         // Update last free
319                         Card->LastFreeTXD = txd;
320                         Semaphore_Signal(&Card->FreeTxDescs, nReleasedAtLastDD);
321                         LOG("nReleased = %i", nReleasedAtLastDD);
322                 }
323                 else
324                 {
325                         LOG("No completed TXDs");
326                 }
327         }
328         
329         if( icr & ICR_LSC )
330         {
331                 // Link status change
332                 LOG("LSC");
333                 // TODO: Detect link drop/raise and poke IPStack
334         }
335
336         if( icr & ICR_RXO )
337         {
338                 LOG("RX Overrun");
339         }
340         
341         // Pending packet (s)
342         if( icr & ICR_RXT0 )
343         {
344                  int    nPackets = 0;
345                 LOG("RX %i:%i", Card->LastUnseenRXD, Card->FirstUnseenRXD);
346                 while( (Card->RXDescs[Card->LastUnseenRXD].Status & RXD_STS_DD) )
347                 {
348                         if( Card->RXDescs[Card->LastUnseenRXD].Status & RXD_STS_EOP )
349                                 nPackets ++;
350                         Card->LastUnseenRXD ++;
351                         if( Card->LastUnseenRXD == NUM_RX_DESC )
352                                 Card->LastUnseenRXD = 0;
353                         
354                         if( Card->LastUnseenRXD == Card->FirstUnseenRXD )
355                                 break;
356                 }
357                 Semaphore_Signal(&Card->AvailPackets, nPackets);
358                 LOG("nPackets = %i", nPackets);
359         }
360         
361         icr &= ~(ICR_RXT0|ICR_LSC|ICR_TXQE|ICR_TXDW);
362         if( icr )
363                 Log_Warning("E1000", "Unhandled ICR bits 0x%x", icr);
364 }
365
366 // TODO: Move this function into Kernel/drvutil.c
367 /**
368  * \brief Allocate a set of buffers in hardware mapped space
369  * 
370  * Allocates \a NumBufs buffers using shared pages (if \a BufSize is less than a page) or
371  * as a set of contiugious allocations.
372  */
373 int DrvUtil_AllocBuffers(void **Buffers, int NumBufs, int PhysBits, size_t BufSize)
374 {
375         if( BufSize >= PAGE_SIZE )
376         {
377                 const int       pages_per_buf = BufSize / PAGE_SIZE;
378                 ASSERT(pages_per_buf * PAGE_SIZE == BufSize);
379                 for( int i = 0; i < NumBufs; i ++ ) {
380                         Buffers[i] = (void*)MM_AllocDMA(pages_per_buf, PhysBits, NULL);
381                         if( !Buffers[i] )       return 1;
382                 }
383         }
384         else
385         {
386                 size_t  ofs = 0;
387                 const int       bufs_per_page = PAGE_SIZE / BufSize;
388                 ASSERT(bufs_per_page * BufSize == PAGE_SIZE);
389                 void    *page = NULL;
390                 for( int i = 0; i < NumBufs; i ++ )
391                 {
392                         if( ofs == 0 ) {
393                                 page = (void*)MM_AllocDMA(1, PhysBits, NULL);
394                                 if( !page )     return 1;
395                         }
396                         Buffers[i] = (char*)page + ofs;
397                         ofs += BufSize;
398                         if( ofs >= PAGE_SIZE )
399                                 ofs = 0;
400                 }
401         }
402         return 0;
403 }
404
405 int E1000_int_InitialiseCard(tCard *Card)
406 {
407         ENTER("pCard", Card);
408         
409         // Map required structures
410         Card->MMIOBase = (void*)MM_MapHWPages( Card->MMIOBasePhys, 7 );
411         if( !Card->MMIOBase ) {
412                 Log_Error("E1000", "%p: Failed to map MMIO Space (7 pages)", Card);
413                 LEAVE('i', 1);
414                 return 1;
415         }
416
417         // --- Read MAC address from EEPROM ---
418         {
419                 Uint16  macword;
420                 macword = E1000_int_ReadEEPROM(Card, 0);
421                 Card->MacAddr[0] = macword & 0xFF;
422                 Card->MacAddr[1] = macword >> 8;
423                 macword = E1000_int_ReadEEPROM(Card, 1);
424                 Card->MacAddr[2] = macword & 0xFF;
425                 Card->MacAddr[3] = macword >> 8;
426                 macword = E1000_int_ReadEEPROM(Card, 2);
427                 Card->MacAddr[4] = macword & 0xFF;
428                 Card->MacAddr[5] = macword >> 8;
429         }
430         Log_Log("E1000", "%p: MAC Address %02x:%02x:%02x:%02x:%02x:%02x",
431                 Card,
432                 Card->MacAddr[0], Card->MacAddr[1],
433                 Card->MacAddr[2], Card->MacAddr[3],
434                 Card->MacAddr[4], Card->MacAddr[5]);
435         
436         // --- Prepare for RX ---
437         LOG("RX Preparation");
438         Card->RXDescs = (void*)MM_AllocDMA(1, 64, NULL);
439         if( !Card->RXDescs ) {
440                 LEAVE('i', 2);
441                 return 2;
442         }
443         if( DrvUtil_AllocBuffers(Card->RXBuffers, NUM_RX_DESC, 64, RX_DESC_BSIZE) ) {
444                 LEAVE('i', 3);
445                 return 3;
446         }
447         for( int i = 0; i < NUM_RX_DESC; i ++ )
448         {
449                 Card->RXDescs[i].Buffer = MM_GetPhysAddr(Card->RXBuffers[i]);
450                 Card->RXDescs[i].Status = 0;    // Clear RXD_STS_DD, gives it to the card
451                 Card->RXBackHandles[i] = Card;
452         }
453         
454         REG64(Card, REG_RDBAL) = MM_GetPhysAddr((void*)Card->RXDescs);
455         REG32(Card, REG_RDLEN) = NUM_RX_DESC * 16;
456         REG32(Card, REG_RDH) = 0;
457         REG32(Card, REG_RDT) = NUM_RX_DESC;
458         // Hardware size, Multicast promisc, Accept broadcast, Interrupt at 1/4 Rx descs free
459         REG32(Card, REG_RCTL) = RX_DESC_BSIZEHW | RCTL_MPE | RCTL_BAM | RCTL_RDMTS_1_4;
460         Card->FirstUnseenRXD = 0;
461         Card->LastUnseenRXD = 0;
462
463         // --- Prepare for TX ---
464         LOG("TX Preparation");
465         Card->TXDescs = (void*)MM_AllocDMA(1, 64, NULL);
466         if( !Card->RXDescs ) {
467                 LEAVE('i', 4);
468                 return 4;
469         }
470         LOG("Card->RXDescs = %p [%P]", Card->TXDescs, MM_GetPhysAddr((void*)Card->TXDescs));
471         for( int i = 0; i < NUM_TX_DESC; i ++ )
472         {
473                 Card->TXDescs[i].Buffer = 0;
474                 Card->TXDescs[i].CMD = 0;
475         }
476         REG64(Card, REG_TDBAL) = MM_GetPhysAddr((void*)Card->TXDescs);
477         REG32(Card, REG_TDLEN) = NUM_TX_DESC * 16;
478         REG32(Card, REG_TDH) = 0;
479         REG32(Card, REG_TDT) = 0;
480         // Enable, pad short packets
481         REG32(Card, REG_TCTL) = TCTL_EN | TCTL_PSP | (0x0F << TCTL_CT_ofs) | (0x40 << TCTL_COLD_ofs);
482         Card->FirstFreeTXD = 0;
483
484         // -- Prepare Semaphores
485         Semaphore_Init(&Card->FreeTxDescs, NUM_TX_DESC, NUM_TX_DESC, "E1000", "TXDescs");
486         Semaphore_Init(&Card->AvailPackets, 0, NUM_RX_DESC, "E1000", "RXDescs");
487
488         // --- Prepare for full operation ---
489         LOG("Starting card");
490         REG32(Card, REG_CTRL) = CTRL_SLU|CTRL_ASDE;     // Link up, auto speed detection
491         REG32(Card, REG_IMS) = 0x1F6DC; // Interrupt mask
492         (void)REG32(Card, REG_ICR);     // Discard pending interrupts
493         REG32(Card, REG_RCTL) |= RCTL_EN;
494         LEAVE('i', 0);
495         return 0;
496 }
497
498 Uint16 E1000_int_ReadEEPROM(tCard *Card, Uint8 WordIdx)
499 {
500         REG32(Card, REG_EERD) = ((Uint32)WordIdx << 8) | 1;
501         Uint32  tmp;
502         while( !((tmp = REG32(Card, REG_EERD)) & (1 << 4)) ) {
503                 // TODO: use something like Time_MicroDelay instead
504                 Time_Delay(1);
505         }
506         
507         return tmp >> 16;
508 }

UCC git Repository :: git.ucc.asn.au