I really really hope they work anyway.
Tester doesn't fail too disastrously, but PN gives a worse result than doubles.
#Makefile
ARCH := $(shell uname -m)
# TODO: stb_truetype doesn't compile with some of these warnings.
-CXX = g++ -std=gnu++0x -g -Wall -Werror -Wshadow -pedantic -rdynamic
+CXX = g++ -std=c++11 -g -Wall -Werror -Wshadow -pedantic -rdynamic
MAIN = main.o
OBJ = log.o real.o bezier.o document.o objectrenderer.o view.o screen.o graphicsbuffer.o framebuffer.o shaderprogram.o stb_truetype.o gl_core44.o path.o paranoidnumber.o
{
g_count--;
for (int i = 0; i < NOP; ++i)
- delete m_next[i];
+ {
+ for (auto n : m_next[i])
+ delete n;
+ }
}
ParanoidNumber::ParanoidNumber(const char * str) : m_value(0)
ParanoidNumber n(1);
for (int i = dp+1; i < end; ++i)
{
- Debug("{%s} /= 10", n.Str().c_str());
n/=10;
- Debug("{%s}", n.Str().c_str());
ParanoidNumber b(str[i]-'0');
b*=n;
- Debug("{%s} += {%s}", Str().c_str(), b.Str().c_str());
this->operator+=(b);
}
}
m_value = a.m_value;
for (int i = 0; i < NOP; ++i)
{
- if (a.m_next[i] == NULL)
- {
- if (m_next[i] != NULL)
- delete m_next[i];
- m_next[i] = NULL;
- continue;
- }
-
- if (m_next[i] != NULL)
+ for (unsigned j = 0; j < m_next[i].size() && j < a.m_next[i].size(); ++j)
{
- m_next[i]->operator=(*(a.m_next[i]));
+ m_next[i][j]->operator=(*(a.m_next[i][j]));
}
- else
+
+ for (unsigned j = a.m_next[i].size(); j < m_next[i].size(); ++j)
{
- m_next[i] = new ParanoidNumber(*(a.m_next[i]));
+ delete m_next[i][j];
}
+ m_next[i].resize(a.m_next[i].size());
}
return *this;
}
stringstream s;
s << (double)m_value;
result += s.str();
- if (m_next[MULTIPLY] != NULL)
+ for (auto mul : m_next[MULTIPLY])
{
result += "*";
- if (m_next[MULTIPLY]->m_next[ADD] != NULL || m_next[MULTIPLY]->m_next[SUBTRACT] != NULL)
- result += "(" + m_next[MULTIPLY]->Str() + ")";
+ if (!mul->Floating())
+ result += "(" + mul->Str() + ")";
else
- result += m_next[MULTIPLY]->Str();
+ result += mul->Str();
}
- if (m_next[DIVIDE] != NULL)
+ for (auto div : m_next[DIVIDE])
{
result += "/";
- if (m_next[DIVIDE]->m_next[ADD] != NULL || m_next[DIVIDE]->m_next[SUBTRACT] != NULL)
- result += "(" + m_next[DIVIDE]->Str() + ")";
+ if (!div->Floating())
+ result += "(" + div->Str() + ")";
else
- result += m_next[DIVIDE]->Str();
+ result += div->Str();
}
- if (m_next[ADD] != NULL)
+ for (auto add : m_next[ADD])
{
result += "+";
- if (m_next[ADD]->m_next[MULTIPLY] != NULL || m_next[ADD]->m_next[DIVIDE] != NULL)
- result += "(" + m_next[ADD]->Str() + ")";
+ if (!add->Floating())
+ result += "(" + add->Str() + ")";
else
- result += m_next[ADD]->Str();
+ result += add->Str();
}
- if (m_next[SUBTRACT] != NULL)
+ for (auto sub : m_next[SUBTRACT])
{
result += "-";
- if (m_next[SUBTRACT]->m_next[MULTIPLY] != NULL || m_next[SUBTRACT]->m_next[DIVIDE] != NULL)
- result += "(" + m_next[SUBTRACT]->Str() + ")";
+ if (!sub->Floating())
+ result += "(" + sub->Str() + ")";
else
- result += m_next[SUBTRACT]->Str();
+ result += sub->Str();
}
return *this;
}
-/**
- * Performs the operation on a with argument b (a += b, a -= b, a *= b, a /= b)
- * @returns b if b can safely be deleted
- * @returns NULL if b has been merged with a
- * append indicates that b should be merged
- */
-ParanoidNumber * ParanoidNumber::Operation(ParanoidNumber * b, Optype op, ParanoidNumber ** parent)
+// a + b
+ParanoidNumber * ParanoidNumber::OperationTerm(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point, Optype * merge_op)
{
- if (b == NULL)
- return NULL;
-
- Optype invop = InverseOp(op); // inverse of p
- ParanoidNumber * append_at = this;
-
- if (Floating())
+
+ if (Floating() && m_value == 0) // 0 + b = b
{
- if ((op == ADD || op == SUBTRACT) && (m_value == 0))
+ m_value = b->m_value;
+ if (op == SUBTRACT)
{
- m_value = b->m_value;
- for (int i = 0; i < NOP; ++i)
- {
- m_next[i] = b->m_next[i];
- b->m_next[i] = NULL;
- }
- return b;
+ m_value = -m_value;
+ swap(b->m_next[ADD], b->m_next[SUBTRACT]);
}
- if ((op == MULTIPLY) && (m_value == 1))
+
+ for (int i = 0; i < NOP; ++i)
{
- m_value = b->m_value;
- for (int i = 0; i < NOP; ++i)
+ m_next[i] = b->m_next[i];
+ b->m_next[i].clear();
+ }
+ return b;
+ }
+ if (b->Floating() && b->m_value == 0) // a + 0 = a
+ return b;
+
+
+
+ if (NoFactors() && b->NoFactors())
+ {
+ if (ParanoidOp<digit_t>(m_value, b->m_value, op))
+ {
+ Optype addop = (op == ADD) ? ADD : SUBTRACT;
+ for (auto add : b->m_next[ADD])
{
- m_next[i] = b->m_next[i];
- b->m_next[i] = NULL;
+ delete OperationTerm(add, addop);
}
- return b;
+ Optype subop = (op == ADD) ? SUBTRACT : ADD;
+ for (auto sub : b->m_next[SUBTRACT])
+ delete OperationTerm(sub, subop);
+
+ b->m_next[ADD].clear();
+ b->m_next[SUBTRACT].clear();
return b;
}
+ }
+
+
+
+
+ bool parent = (merge_point == NULL);
+ ParanoidNumber * merge = this;
+ Optype mop = op;
+ assert(mop != NOP); // silence compiler warning
+ if (parent)
+ {
+ merge_point = &merge;
+ merge_op = &mop;
+ }
+ else
+ {
+ merge = *merge_point;
+ mop = *merge_op;
+ }
+ Optype invop = InverseOp(op); // inverse of p
+ Optype fwd = op;
+ Optype rev = invop;
+ if (op == SUBTRACT)
+ {
+ fwd = ADD;
+ rev = SUBTRACT;
}
- if (b->Floating())
+ for (auto prev : m_next[invop])
{
- if ((op == ADD || op == SUBTRACT) && (b->m_value == 0))
+ if (prev->OperationTerm(b, rev, merge_point, merge_op) == b)
return b;
- if ((op == MULTIPLY || op == DIVIDE) && (b->m_value == 1))
+
+ }
+ for (auto next : m_next[op])
+ {
+ if (next->OperationTerm(b, fwd, merge_point, merge_op) == b)
return b;
}
- // Operation can be applied directly to the m_value of this and b
- // ie: op is + or - and this and b have no * or / children
- // or: op is * or / and this and b have no + or - children
- if (Pure(op) && (b->Pure(op)))
- {
- if (ParanoidOp<digit_t>(m_value, b->m_value, op)) // op applied successfully...
- {
- Simplify(op);
- Simplify(invop);
- for (int i = 0; i < NOP; ++i) // Try applying b's children to this
- {
- delete Operation(b->m_next[i], Optype(i));
- b->m_next[i] = NULL;
- }
- return b; // can delete b
+
+
+
+ if (parent)
+ {
+ merge->m_next[*merge_op].push_back(b);
+ }
+ else
+ {
+ if (m_next[op].size() == 0)
+ {
+ *merge_point = this;
+ *merge_op = op;
}
}
+ return NULL;
+}
+
+ParanoidNumber * ParanoidNumber::OperationFactor(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point, Optype * merge_op)
+{
- // Try to simplify the cases:
- // a + b*c == (a/c + b)*c
- // a + b/c == (a*c + b)/c
- else if ((op == ADD || op == SUBTRACT) &&
- (Pure(op) || b->Pure(op)))
+ if (Floating() && m_value == 0)
{
-
- Debug("Simplify: {%s} %c {%s}", Str().c_str(), OpChar(op), b->Str().c_str());
- Optype adj[] = {MULTIPLY, DIVIDE};
- for (int i = 0; i < 2; ++i)
+ return b;
+ }
+
+ if (Floating() && m_value == 1 && op == MULTIPLY)
+ {
+ m_value = b->m_value;
+ for (int i = 0; i < NOP; ++i)
{
-
- Optype f = adj[i];
- Optype invf = InverseOp(f);
-
- Debug("Try %c", OpChar(f));
-
- if (m_next[f] == NULL && b->m_next[f] == NULL)
- continue;
-
- ParanoidNumber * tmp_a = new ParanoidNumber(*this);
- ParanoidNumber * tmp_b = new ParanoidNumber(*b);
-
+ for (auto n : m_next[i])
+ delete n;
+ m_next[i].clear();
+ swap(m_next[i], b->m_next[i]);
+ }
+ return b;
+ }
+ if (b->Floating() && b->m_value == 1)
+ return b;
- ParanoidNumber * af = (tmp_a->m_next[f] != NULL) ? new ParanoidNumber(*(tmp_a->m_next[f])) : NULL;
- ParanoidNumber * bf = (tmp_b->m_next[f] != NULL) ? new ParanoidNumber(*(tmp_b->m_next[f])) : NULL;
-
- Debug("{%s} %c {%s}", tmp_a->Str().c_str(), OpChar(op), tmp_b->Str().c_str());
- Debug("{%s} %c {%s}", tmp_a->Str().c_str(), OpChar(op), tmp_b->Str().c_str());
- if (tmp_a->Operation(af, invf) != af || tmp_b->Operation(bf, invf) != bf)
+ if (NoTerms() && b->NoTerms())
+ {
+ if (ParanoidOp<digit_t>(m_value, b->m_value, op))
+ {
+ Optype mulop = (op == MULTIPLY) ? MULTIPLY : DIVIDE;
+ for (auto mul : b->m_next[MULTIPLY])
{
- delete af;
- delete bf;
- delete tmp_a;
- delete tmp_b;
- continue;
- }
- Debug("{%s} %c {%s}", tmp_a->Str().c_str(), OpChar(op), tmp_b->Str().c_str());
-
- if (tmp_a->Operation(bf, invf) == bf && tmp_b->Operation(af, invf) == af) // a / c simplifies
- {
- if (tmp_a->Operation(tmp_b, op) != NULL) // (a/c) + b simplifies
- {
- this->operator=(*tmp_a);
- if (bf != NULL)
- delete Operation(bf, f);
- if (af != NULL)
- delete Operation(af, f);
- delete tmp_a;
- delete tmp_b;
- return b; // It simplified after all!
- }
- else
- {
- tmp_b = NULL;
- delete af;
- delete bf;
- }
+ delete OperationFactor(mul, mulop);
}
- //Debug("tmp_a : %s", tmp_a->PStr().c_str());
- //Debug("tmp_b : %s", tmp_b->PStr().c_str());
- delete tmp_a;
- delete tmp_b;
+ Optype divop = (op == MULTIPLY) ? DIVIDE : MULTIPLY;
+ for (auto div : b->m_next[DIVIDE])
+ delete OperationFactor(div, divop);
+
+ b->m_next[DIVIDE].clear();
+ b->m_next[MULTIPLY].clear();
+ return b;
}
}
- // See if operation can be applied to children of this in the same dimension
- {
- // (a / b) / c = a / (b*c)
- // (a * b) / c = a * (b/c)
- // (a / b) * c = a / (b/c)
- // (a * b) * c = a * (b*c)
- // (a + b) + c = a + (b+c)
- // (a - b) + c = a - (b-c)
- // (a + b) - c = a + (b-c)
- // (a - b) - c = a - (b+c)
- Optype fwd(op);
- Optype rev(invop);
- if (op == DIVIDE || op == SUBTRACT)
- {
- fwd = invop;
- rev = op;
- }
- // opposite direction first (because ideally things will cancel each other out...)
- if (m_next[invop] != NULL && m_next[invop]->Operation(b, rev, &append_at) != NULL)
- return b;
- // forward direction
- if (m_next[op] != NULL && m_next[op]->Operation(b, fwd, &append_at) != NULL)
- return b;
+
+ bool parent = (merge_point == NULL);
+ ParanoidNumber * merge = this;
+ Optype mop = op;
+ if (parent)
+ {
+ merge_point = &merge;
+ merge_op = &mop;
}
-
- // At this point, we have no choice but to merge 'b' with this ParanoidNumber
-
- // we are a child; the merge operation needs to be applied by the root, so leave
- if (parent != NULL)
+ else
{
- if (m_next[op] == NULL)
- *parent = this; // last element in list
- return NULL;
+ merge = *merge_point;
+ mop = *merge_op;
}
+
+ Optype invop = InverseOp(op); // inverse of p
+ Optype fwd = op;
+ Optype rev = invop;
+ if (op == DIVIDE)
+ {
+ fwd = MULTIPLY;
+ rev = DIVIDE;
+ }
+
+ ParanoidNumber * cpy_b = NULL;
- append_at->m_next[op] = b; // Merge with b
+ if (m_next[ADD].size() > 0 || m_next[SUBTRACT].size() > 0)
+ {
+ cpy_b = new ParanoidNumber(*b);
+ }
- // MULTIPLY and DIVIDE operations need to be performed on each term in the ADD/SUBTRACT dimension
- if (op == DIVIDE || op == MULTIPLY)
+ for (auto prev : m_next[invop])
{
- // apply the operation to each term
- if (m_next[ADD] != NULL) delete m_next[ADD]->Operation(new ParanoidNumber(*b), op);
- if (m_next[SUBTRACT] != NULL) delete m_next[SUBTRACT]->Operation(new ParanoidNumber(*b), op);
-
- // try and simplify this by adding the terms (you never know...)
- Simplify(ADD);
- Simplify(SUBTRACT);
+ if (prev->OperationFactor(b, rev, merge_point, merge_op) == b)
+ {
+ for (auto add : m_next[ADD])
+ delete add->OperationFactor(new ParanoidNumber(*cpy_b), op);
+ for (auto sub : m_next[SUBTRACT])
+ delete sub->OperationFactor(new ParanoidNumber(*cpy_b), op);
+
+ delete cpy_b;
+ return b;
+ }
}
- // failed to simplify
- return NULL;
-}
-
-bool ParanoidNumber::Simplify(Optype op)
-{
- ParanoidNumber * n = m_next[op];
- m_next[op] = NULL;
- if (Operation(n, Optype(op)))
+ for (auto next : m_next[op])
{
- delete n;
- return true;
+ if (next->OperationFactor(b, fwd, merge_point, merge_op) == b)
+ {
+ for (auto add : m_next[ADD])
+ delete add->OperationFactor(new ParanoidNumber(*cpy_b), op);
+ for (auto sub : m_next[SUBTRACT])
+ delete sub->OperationFactor(new ParanoidNumber(*cpy_b), op);
+ delete cpy_b;
+ return b;
+ }
}
- else
+
+ if (parent)
{
- m_next[op] = n;
- return false;
+ m_next[op].push_back(b);
+ for (auto add : m_next[ADD])
+ delete add->OperationFactor(new ParanoidNumber(*cpy_b), op);
+ for (auto sub : m_next[SUBTRACT])
+ delete sub->OperationFactor(new ParanoidNumber(*cpy_b), op);
}
+ return NULL;
+}
+
+
+
+/**
+ * Performs the operation on a with argument b (a += b, a -= b, a *= b, a /= b)
+ * @returns b if b can safely be deleted
+ * @returns NULL if b has been merged with a
+ * append indicates that b should be merged
+ */
+ParanoidNumber * ParanoidNumber::Operation(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point, Optype * merge_op)
+{
+
+ if (b == NULL)
+ return NULL;
+
+
+ if (op == SUBTRACT || op == ADD)
+ return OperationTerm(b, op, merge_point, merge_op);
+ if (op == MULTIPLY || op == DIVIDE)
+ return OperationFactor(b, op, merge_point, merge_op);
+ return b;
}
+
+
string ParanoidNumber::PStr() const
{
stringstream s;
for (int i = 0; i < NOP; ++i)
{
Optype f = Optype(i);
- s << this << OpChar(f) << m_next[f] << "\n";
+ s << this;
+ for (auto n : m_next[f])
+ {
+ s << OpChar(f) << n->PStr();
+ }
}
return s.str();
}
+bool ParanoidNumber::Simplify(Optype op)
+{
+ vector<ParanoidNumber*> next(0);
+ swap(m_next[op], next);
+ for (auto n : next)
+ {
+ ParanoidNumber * result = Operation(n, op);
+ if (result != NULL)
+ delete result;
+ else
+ m_next[op].push_back(n);
+ }
+ return (next.size() > m_next[op].size());
+}
#include <string>
#include "log.h"
#include <fenv.h>
+#include <vector>
+#include <cmath>
#define PARANOID_DIGIT_T float // we could theoretically replace this with a template
// but let's not do that...
(op == DIVIDE) ? MULTIPLY :
(op == NOP) ? NOP : NOP);
}
- inline Optype AdjacentOp(Optype op)
- {
- return ((op == ADD) ? MULTIPLY :
- (op == SUBTRACT) ? DIVIDE :
- (op == MULTIPLY) ? ADD :
- (op == DIVIDE) ? SUBTRACT :
- (op == NOP) ? NOP : NOP);
- }
+
inline char OpChar(int op)
{
static char opch[] = {'+','-','*','/'};
Construct();
for (int i = 0; i < NOP; ++i)
{
- if (cpy.m_next[i] != NULL)
- m_next[i] = new ParanoidNumber(*(cpy.m_next[i]));
+ for (auto next : cpy.m_next[i])
+ m_next[i].push_back(new ParanoidNumber(*next));
}
}
ParanoidNumber(const char * str);
- ParanoidNumber(const std::string & str) : ParanoidNumber(str.c_str()) {Construct();}
+ ParanoidNumber(const std::string & str) : ParanoidNumber(str.c_str()) {}
virtual ~ParanoidNumber();
inline void Construct()
{
- for (int i = 0; i < NOP; ++i)
- m_next[i] = NULL;
g_count++;
}
template <class T> T Convert() const;
- template <class T> T AddTerms(T value = T(0)) const;
- template <class T> T MultiplyFactors(T value = T(1)) const;
- template <class T> T Head() const {return (m_op == SUBTRACT) ? T(-m_value) : T(m_value);}
-
-
-
double ToDouble() const {return Convert<double>();}
- float ToFloat() const {return Convert<float>();}
digit_t Digit() const {return Convert<digit_t>();}
bool Floating() const
{
- for (int i = 0; i < NOP; ++i)
- {
- if (m_next[i] != NULL)
- return false;
- }
- return true;
+ return NoFactors() && NoTerms();
}
bool Sunken() const {return !Floating();} // I could not resist...
- bool Pure(Optype op) const
- {
- if (op == ADD || op == SUBTRACT)
- return (m_next[MULTIPLY] == NULL && m_next[DIVIDE] == NULL);
- return (m_next[ADD] == NULL && m_next[SUBTRACT] == NULL);
- }
+ bool NoFactors() const {return (m_next[MULTIPLY].size() == 0 && m_next[DIVIDE].size() == 0);}
+ bool NoTerms() const {return (m_next[ADD].size() == 0 && m_next[SUBTRACT].size() == 0);}
ParanoidNumber & operator+=(const ParanoidNumber & a);
ParanoidNumber & operator-=(const ParanoidNumber & a);
ParanoidNumber & operator/=(const ParanoidNumber & a);
ParanoidNumber & operator=(const ParanoidNumber & a);
-
- ParanoidNumber * Operation(ParanoidNumber * b, Optype op, ParanoidNumber ** parent = NULL);
+ ParanoidNumber * OperationTerm(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point = NULL, Optype * mop = NULL);
+ ParanoidNumber * OperationFactor(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point = NULL, Optype * mop = NULL);
+ ParanoidNumber * TrivialOp(ParanoidNumber * b, Optype op);
+ ParanoidNumber * Operation(ParanoidNumber * b, Optype op, ParanoidNumber ** merge_point = NULL, Optype * mop = NULL);
bool Simplify(Optype op);
std::string Str() const;
+ ParanoidNumber * CopyTerms()
+ {
+ ParanoidNumber * copy = new ParanoidNumber(*this);
+ copy->m_value = 0;
+ copy->Simplify(ADD);
+ copy->Simplify(SUBTRACT);
+ return copy;
+ }
+
+ ParanoidNumber * CopyFactors()
+ {
+ ParanoidNumber * copy = new ParanoidNumber(*this);
+ copy->m_value = 1;
+ copy->Simplify(MULTIPLY);
+ copy->Simplify(DIVIDE);
+ return copy;
+ }
+
static int64_t Paranoia() {return g_count;}
digit_t m_value;
Optype m_op;
- ParanoidNumber * m_next[4]; // Next by Operation
+ std::vector<ParanoidNumber*> m_next[4];
+
+ int m_size;
};
template <class T>
-T ParanoidNumber::AddTerms(T value) const
-{
- ParanoidNumber * add = m_next[ADD];
- ParanoidNumber * sub = m_next[SUBTRACT];
- while (add != NULL && sub != NULL)
- {
- value += add->m_value * add->MultiplyFactors<T>();
- value -= sub->m_value * sub->MultiplyFactors<T>();
- add = add->m_next[ADD];
- sub = sub->m_next[SUBTRACT];
- }
- while (add != NULL)
- {
- value += add->m_value * add->MultiplyFactors<T>();
- add = add->m_next[ADD];
- }
- while (sub != NULL)
- {
- value -= sub->m_value * sub->MultiplyFactors<T>();
- sub = sub->m_next[SUBTRACT];;
- }
- return value;
-}
-
-template <class T>
-T ParanoidNumber::MultiplyFactors(T value) const
+T ParanoidNumber::Convert() const
{
- ParanoidNumber * mul = m_next[MULTIPLY];
- ParanoidNumber * div = m_next[DIVIDE];
- while (mul != NULL && div != NULL)
+ T value(m_value);
+ for (auto mul : m_next[MULTIPLY])
{
- value *= (mul->m_value + mul->AddTerms<T>());
- value /= (div->m_value + div->AddTerms<T>());
- mul = mul->m_next[MULTIPLY];
- div = div->m_next[DIVIDE];
+ value *= mul->Digit();
}
- while (mul != NULL)
+ for (auto div : m_next[DIVIDE])
{
- value *= (mul->m_value + mul->AddTerms<T>());
- mul = mul->m_next[MULTIPLY];
- }
- while (div != NULL)
- {
- value /= (div->m_value + div->AddTerms<T>());
- div = div->m_next[DIVIDE];
+ value /= div->Digit();
}
+ for (auto add : m_next[ADD])
+ value += add->Digit();
+ for (auto sub : m_next[SUBTRACT])
+ value -= sub->Digit();
return value;
}
-
-
-template <class T>
-T ParanoidNumber::Convert() const
-{
- return MultiplyFactors<T>(m_value) + AddTerms<T>(0);
-}
-
-
-
}
#endif //_PARANOIDNUMBER_H
float fa = da;
while (cin.good())
{
+ Debug("a is {%s} \"%.40lf\"", a.Str().c_str(), a.ToDouble());
char op;
cin >> op;
token = "";
token += c;
c = cin.get();
}
+
//Debug("String is \"%s\"", token.c_str());
float fb = strtof(token.c_str(), NULL);
double db = strtod(token.c_str(), NULL);
ParanoidNumber b(token.c_str());
- Debug("a is {%s} \"%lf\"", a.Str().c_str(), a.ToDouble());
+
Debug("b is {%s} \"%lf\"", b.Str().c_str(), b.ToDouble());
Debug("db is %lf", db);
switch (op)
Debug("a is: {%s}", a.Str().c_str());
Debug("a as double: %.40lf", a.ToDouble());
- Debug("a as float: %.40f", a.ToFloat());
- Debug("a as int64_t: %ld", a.Convert<int64_t>());
- Debug("floats give: %.40f", fa);
+ //Debug("a as float: %.40f", a.ToFloat());
+ //Debug("a as int64_t: %ld", a.Convert<int64_t>());
+ //Debug("floats give: %.40f", fa);
Debug("double gives: %.40lf", da);
using namespace std;
using namespace IPDF;
-string RandomNumberAsString(int max_digits = 12)
+string RandomNumberAsString(int max_digits = 3)
{
string result("");
int digits = 1+(rand() % max_digits);
return result;
}
-bool CloseEnough(double d, ParanoidNumber & p)
+bool CloseEnough(long double d, ParanoidNumber & p, long double eps = 1e-6)
{
- double pd = p.ToDouble();
+ long double pd = p.Convert<long double>();
if (d == 0)
- return fabs(pd) <= 1e-6;
- return fabs((fabs(pd - d) / d)) <= 1e-6;
+ return fabs(pd) <= eps;
+ return fabs((fabs(pd - d) / d)) <= eps;
+}
+
+void TestOp(ParanoidNumber & p, double & d, Optype op, const double amount)
+{
+ string p0str(p.Str());
+ double p0 = p.ToDouble();
+ switch (op)
+ {
+ case ADD:
+ p += amount;
+ d += amount;
+ break;
+ case SUBTRACT:
+ p -= amount;
+ d -= amount;
+ break;
+ case MULTIPLY:
+ p *= amount;
+ d *= amount;
+ break;
+ case DIVIDE:
+ p /= amount;
+ d /= amount;
+ break;
+ default:
+ break;
+ }
+ if (!CloseEnough(d, p))
+ {
+ Debug("%lf %c= %lf failed", p0, OpChar(op), amount);
+ Debug("%lf vs %lf", p.ToDouble(), d);
+ Debug("Before: {%s}\n", p0str.c_str());
+ Debug("After: {%s}\n", p.Str().c_str());
+ Fatal(":-(");
+ }
+
+}
+
+void TestAddSubIntegers(int max=100)
+{
+ Debug("Test add/sub integers 0 -> %i", max);
+ ParanoidNumber p;
+ double d(0);
+ for (int a = 0; a < max; ++a)
+ {
+ TestOp(p, d, ADD, a);
+ for (int b = 0; b < max; ++b)
+ {
+ TestOp(p, d, SUBTRACT, b);
+ }
+ for (int b = 0; b < max; ++b)
+ {
+ TestOp(p, d, ADD, b);
+ }
+ }
+ for (int a = 0; a < max; ++a)
+ {
+ TestOp(p, d, SUBTRACT, a);
+ for (int b = 0; b < max; ++b)
+ {
+ TestOp(p, d, ADD, b);
+ }
+ for (int b = 0; b < max; ++b)
+ {
+ TestOp(p, d, SUBTRACT, b);
+ }
+ }
+ Debug("PN Yields: %.40lf", p.ToDouble());
+ Debug("Doubles Yield: %.40lf", d);
+ Debug("Complete!");
+
+}
+
+void TestMulDivIntegers(int max=50)
+{
+ Debug("Test mul/div integers 1 -> %i", max);
+ ParanoidNumber p(1.0);
+ double d(1.0);
+ for (int a = 1; a < max; ++a)
+ {
+ TestOp(p, d, MULTIPLY, a);
+ for (int b = 1; b < max; ++b)
+ {
+ TestOp(p, d, DIVIDE, b);
+ }
+ for (int b = 1; b < max; ++b)
+ {
+ TestOp(p, d, MULTIPLY, b);
+ }
+ }
+ for (int a = 1; a < max; ++a)
+ {
+ TestOp(p, d, DIVIDE, a);
+ for (int b = 1; b < max; ++b)
+ {
+ TestOp(p, d, MULTIPLY, b);
+ }
+ for (int b = 1; b < max; ++b)
+ {
+ TestOp(p, d, DIVIDE, b);
+ }
+ }
+ Debug("PN Yields: %.40lf", p.ToDouble());
+ Debug("Doubles Yield: %.40lf", d);
+ Debug("Complete!");
+
+}
+
+void TestRandomisedOps(int test_cases = 1000, int ops_per_case = 1, int max_digits = 4)
+{
+ Debug("Test %i*%i randomised ops (max digits = %i)", test_cases, ops_per_case, max_digits);
+ long double eps = 1e-6; //* (1e4*ops_per_case);
+ for (int i = 0; i < test_cases; ++i)
+ {
+ string s = RandomNumberAsString(max_digits);
+ ParanoidNumber a(s);
+
+ double da(a.ToDouble());
+ for (int j = 1; j <= ops_per_case; ++j)
+ {
+ double da2(a.ToDouble());
+ s = RandomNumberAsString(max_digits);
+ ParanoidNumber b(s);
+ double db(b.ToDouble());
+
+
+
+ Optype op = Optype(rand() % 4);
+
+ ParanoidNumber a_before(a);
+
+
+ switch (op)
+ {
+ case ADD:
+ a += b;
+ da += db;
+ da2 += db;
+ break;
+ case SUBTRACT:
+ a -= b;
+ da -= db;
+ da2 -= db;
+ break;
+ case MULTIPLY:
+ a *= b;
+ da *= db;
+ da2 *= db;
+ break;
+ case DIVIDE:
+ if (db == 0)
+ {
+ --i;
+ }
+ else
+ {
+ a /= b;
+ da /= db;
+ da2 /= db;
+ }
+ break;
+ case NOP:
+ break;
+ }
+ if (!CloseEnough(da2, a, eps))
+ {
+ Error("{%s} %c= {%s}", a_before.Str().c_str(), OpChar(op), b.Str().c_str());
+ Error("{%s}", a.Str().c_str());
+ Error("double Yields: %.40lf", da);
+ Error("PN Yields: %.40lf", a.ToDouble());
+ Fatal("Failed on case %i", i*ops_per_case + j-1);
+ }
+ }
+ if (!CloseEnough(da, a, eps))
+ {
+ Warn("double Yields: %.40lf", da);
+ Warn("PN Yields: %.40lf", a.ToDouble());
+ }
+ }
+ Debug("Complete!");
+
}
#define TEST_CASES 1000
int main(int argc, char ** argv)
{
- srand(time(NULL));
+ TestAddSubIntegers();
+ TestMulDivIntegers();
+ for (int i = 1; i <= 100; ++i)
+ TestRandomisedOps(1000, i);
+ return 0;
+ srand(0);//time(NULL)); //always test off same set
string number(RandomNumberAsString());
ParanoidNumber a(number);
+
float fa = strtof(number.c_str(), NULL);
double da = strtod(number.c_str(), NULL);
double diff = 0;
long double lda = strtold(number.c_str(), NULL);
-
+ Debug("a is %s", a.Str().c_str());
if (fabs(a.ToDouble() - da) > 1e-6)
{
Error("double %lf, pn %lf {%s}", da, a.ToDouble(), a.Str().c_str());
Fatal("Didn't construct correctly off %s", number.c_str());
+
}
char opch[] = {'+','-','*','/'};
break;
}
diff = 100.0*(fabs(a.ToDouble() - da) / da);
- if (!CloseEnough(da, a))
+ if (!CloseEnough(lda, a))
{
Error("Op %i: ParanoidNumber probably doesn't work", i);
Error("Operation: %lf %c %lf", oldda, opch[op], db);
Error("As PN: %lf %c %lf", olda.ToDouble(), opch[op], b.ToDouble());
+ Error("PN String before: %s", olda.Str().c_str());
Error("PN String: %s", a.Str().c_str());
- Error("Diff is %.40lf", diff);
Error("LONG double gives %.40llf", lda);
- Fatal("%.40lf, expected aboout %.40lf", a.ToDouble(), da);
+ Fatal("%.40llf, expected aboout %.40llf", a.Convert<long double>(), lda);
}