def DoNothing(data):
return data
-def GetDataSets(directory=".", function=DoNothing):
+def AverageAllDataSets(directory=".", function=DoNothing):
dirs = {}
for f in os.listdir(directory):
if os.path.isdir(directory+"/"+str(f)) == True:
data_set = []
for datafile in os.listdir(directory+"/"+str(f)):
if datafile.split(".")[1] == "dat":
- data_set.append(function(map(lambda e : [e[1], e[2]], GetData("./"+str(f)+"/"+str(datafile)))))
+ data_set.append(GetData(f))
avg = Average(data_set)
dirs.update({f : avg})
return dirs
+def GetDataSets(directory="."):
+ data_sets = []
+ for f in os.listdir(directory):
+ if os.path.isdir(directory+"/"+str(f)) == False:
+ if (len(f.split(".")) > 1 and f.split(".")[1] == "dat"):
+ d = GetData(directory+"/"+str(f))
+ if len(d) > 0:
+ data_sets.append(d)
+ return data_sets
+
-def Derivative(data, a=0, b=1):
- result = []
+def Derivative(data, a=1, b=2, sigma=None,step=1):
+ result = [[]]
n = 0
- dI = 0
- dE = 0
- for i in range(1, len(data)-1):
- dE = data[i+1][a] - data[i][a]
- if (dE != 0):
- n = 0
- dI = 0
-
- n += 1
- dI += data[i+1][b] - data[i][b]
- if (dE != 0):
- result.append([data[i][a], (dI / (n * dE)) ] ) #/ data[i][2]])
- return result
+ dI = [0,0]
+ dE = [0,0]
+
+ for i in range(0, len(data),step):
+ result[len(result)-1] = [d for d in data[i]]
+ if (i >= step):
+ dE[0] = data[i][a] - data[i-step][a]
+ dI[0] = data[i][b] - data[i-step][b]
+ else:
+ dI[0] = None
-def MaxNormalise(data, u=1):
+ if (i < len(data)-step):
+ dE[1] = data[i+step][a] - data[i][a]
+ dI[1] = data[i+step][b] - data[i][b]
+ else:
+ dI[1] = None
-
+ if sigma != None:
+ #print str(data[i]) + " ["+str(sigma)+"] = " + str(data[i][int(abs(sigma))])
+ if sigma < 0:
+ if dI[0] != None: dI[0] -= 0.5*data[i][int(abs(sigma))]
+ if dI[1] != None: dI[1] -= 0.5*data[i][int(abs(sigma))]
+ else:
+ if dI[0] != None: dI[0] += 0.5*data[i][int(abs(sigma))]
+ if dI[1] != None: dI[1] += 0.5*data[i][int(abs(sigma))]
+
+ deltaE = 0.0
+ deltaI = 0.0
+ count = 0
+ if dI[0] != None:
+ deltaE += dE[0]
+ deltaI += dI[0]
+ count += 1
+ if dI[1] != None:
+ deltaE += dE[1]
+ deltaI += dI[1]
+ count += 1
+
+ deltaI /= float(count)
+ deltaE /= float(count)
+
+
+ if (deltaE != 0):
+ result[len(result)-1][b] = (deltaI / deltaE)
+ else:
+ result[len(result)-1][b] = 0.0
+ result.append([])
+
+ return result[0:len(result)-1]
+
+def MaxNormalise(data, u=1):
result = copy.deepcopy(data)
if (len(data) <= 0):
return result
avg = odict.odict()
for t in data_sets:
for p in t:
- if p[0] in avg:
- avg[p[0]][0] += p[u]
- avg[p[0]][1] += 1
+ if p[u] in avg:
+ #print "Already have " + str(p[u])
+ avg[p[u]][1] += 1
+ for i in range(0, len(p)):
+ avg[p[u]][0][i] += p[i]
else:
- avg.update({p[0] : [p[u], 1]})
+ #print "Create key for " + str(p[u])
+ avg.update({p[u] : [p, 1]})
for a in avg.keys():
- avg[a] = float(avg[a][0]) / float(avg[a][1])
- return sorted(avg.items(), key = lambda e : e[0])
-
-def Plot(*args):
- gnuplot.plot(args)
-
-def FitTCS(data):
- pass
+ for i in range(0, len(avg[a][0])):
+ avg[a][0][i] /= float(avg[a][1])
+ return map(lambda e : e[1][0], sorted(avg.items(), key = lambda e : e[0]))
def FullWidthAtHalfMax(data, u=1):
maxval = max(data, key = lambda e : e[u])
def SaveData(filename, data):
out = open(filename, "w", 0)
for a in data:
- out.write(str(a[0]) + "\t" + str(a[1]) + "\n")
+ for i in range(0, len(a)):
+ out.write(str(a[i]))
+ if (i < len(a) - 1):
+ out.write("\t")
+ out.write("\n")
+
+def CalibrateData(data, ammeter_scale=1e-6):
+ for i in range(0, len(data)):
+ data[i][1] = 16.8 * float(data[i][1]) / 4000.0
+ data[i][2] = ammeter_scale * 0.170 * float(data[i][2]) / 268.0
+ data[i][3] = ammeter_scale * 0.170 * float(data[i][3]) / 268.0
+ return data
+
+def ShowTCS(filename, calibrate=True, normalise=False, show_error=False, plot=gnuplot.plot,w="lp", step=1):
+ if type(filename) == type(""):
+ data = GetData(filename)
+ else:
+ data = filename
+ filename = "data"
+
+ if calibrate:
+ data = CalibrateData(data)
+ units = ["V", "uA / V"]
+ else:
+ units = ["DAC counts", "ADC counts / DAC counts"]
+ if not normalise:
+ gnuplot("set ylabel \"dI(E)/dE ("+str(units[1])+")\"")
+ else:
+ data = MaxNormalise(data)
+ gnuplot("set ylabel \"dI(E)/dE (normalised)\"")
+
+ gnuplot("set title \"S(E)\"")
+ gnuplot("set xlabel \"U ("+str(units[0])+")\"")
+
+
+ d = Derivative(data, 1, 2, step=step)
+
+ plot(Gnuplot.Data(d, using="2:3", with_=w,title="S(E) : " + str(filename)))
+ if (show_error):
+ error1 = Derivative(data, 1, 2, -3,step=step)
+ error2 = Derivative(data, 1, 2, +3,step=step)
+ gnuplot.replot(Gnuplot.Data(error1, using="2:3", with_=w,title="Error : Low bound"))
+ gnuplot.replot(Gnuplot.Data(error2, using="2:3", with_=w, title="Error : Upper bound"))
+
+ return data
+
+def ShowData(filename,calibrate=True, normalise=False, show_error=False, plot=gnuplot.plot,w="lp", step=1):
+ if type(filename) == type(""):
+ data = GetData(filename)
+ else:
+ data = filename
+ filename = "data"
+
+ if len(data) <= 0:
+ return
+ if calibrate:
+ data = CalibrateData(data)
+ units = ["V", "uA"]
+ else:
+ units = ["DAC counts", "ADC counts"]
+
+ if not normalise:
+ gnuplot("set ylabel \"I(E) ("+str(units[1])+")\"")
+ else:
+ data = MaxNormalise(data)
+ gnuplot("set ylabel \"I(E) (normalised)\"")
+
+ gnuplot("set title \"S(E)\"")
+ gnuplot("set xlabel \"U ("+str(units[0])+")\"")
+
+
+ #d = Derivative(data, 1, 2, step=step)
+
+ plot(Gnuplot.Data(data, using="2:3", with_=w,title="S(E) : " + str(filename)))
+ if (show_error):
+ error1 = copy.deepcopy(data)
+ error2 = copy.deepcopy(data)
+ for i in range(len(data)):
+ #print str(data[i])
+ error1[i][2] -= 0.50*float(data[i][3])
+ error2[i][2] += 0.50*float(data[i][3])
+ gnuplot.replot(Gnuplot.Data(error1, using="2:3", with_=w,title="Error : Low bound"))
+ gnuplot.replot(Gnuplot.Data(error2, using="2:3", with_=w, title="Error : Upper bound"))
+
+ return data
def main():
if (len(sys.argv) < 2):
#gnuplot("set term postscript colour")
#gnuplot("set output \"test.eps\"")
for i in range(1, len(sys.argv)):
- tcs.append(DoNothing(map(lambda e : [e[1], e[2]], GetData(sys.argv[i]))))
+ tcs.append(Derivative(GetData(sys.argv[i]), 1, 2))
#tcs.append(GetTCS(GetData(sys.argv[i])))
if (len(tcs[i-1]) > 0):
gnuplot.replot(Gnuplot.Data(tcs[i-1], title=sys.argv[i], with_="lp"))
avg = Average(tcs)
- #gnuplot.replot(Gnuplot.Data(avg, title="Average", with_="l lw 2"))
+ for a in avg:
+ sys.stdout.write(str(a[0]) + "\t" + str(a[1]) + "\t" + str(a[1]) + "\n")
+ gnuplot.replot(Gnuplot.Data(avg, title="Average", with_="l lw 2"))
sys.stdout.write("Save averaged data as (blank for no save): ")
filename = sys.stdin.readline().strip(" \r\n\t")