Wrote code to implement camera
[matches/MCTX3420.git] / server / dilatometer.c
index dd578d3..83cdc4c 100644 (file)
 #include "dilatometer.h"
 #include <math.h>
 
-/** Buffer for storing image data. Stored as a  **/
-static CvMat * g_data = NULL;
+// test positions
+static double test_left, test_right;
 
+// Canny Edge algorithm variables
+int blur = 5;
+int lowThreshold = 30;
+int ratio = 3;
+int kernel_size = 3;
 
-/** Camera capture pointer **/
+/** Buffers for storing image data.  **/
+static CvMat * g_srcRGB  = NULL;       // Source Image
+static CvMat * g_srcGray = NULL;       // Gray scale of source image
+static CvMat * g_edges          = NULL;        // Detected Edges
+
+/** Pointers for capturing image **/
 static CvCapture * g_capture = NULL;
+static IplImage * frame  = NULL;       // This is required as you can not use capture with CvMat in C
+
 
 /**
- * Create a test image
+ * Create a test image using left as left edge and right as right edge positions
  */
 void Dilatometer_TestImage()
 {
        
-       CvMat *g_dataRGB;
-       g_dataRGB = cvCreateMat(480, 640, CV_8UC3); //32
+       g_srcRGB = cvCreateMat(480, 640, CV_8UC3);
 
-       //Make a rectangle from col=300 to 500, row=150 to 350
-       /*for (int x = 100; x < 500; ++x)
-       {
-               CvScalar s; 
-               s.val[0] = 150; s.val[1] = 233; s.val[2] = 244;
-               cvSet2D(g_dataRGB,150,x,s);
-               cvSet2D(g_dataRGB,350,x,s);
-       }*/
-       for (int y = 0; y < 480; ++y)
+       for( int x = 0; x < 640; ++x)
        {
-               CvScalar s; 
-               s.val[0] = 200; s.val[1] = 233; s.val[2] = 244;
-               cvSet2D(g_dataRGB,y,100,s);
-               cvSet2D(g_dataRGB,y,500,s);
+               for (int y = 0; y < 480; ++y)
+               {
+                       CvScalar s; 
+                       for( int i = 0; i < 3; ++i)
+                       {
+                               s.val[i]  =  210 + (rand() % 1000) * 1e-0 - (rand() % 1000) * 1e-0;
+                               // Produce an exponential decay around left edge
+                               if( x < test_left)
+                                       s.val[i] *= exp( (x - test_left) / 25);
+                               else if( x < 320)
+                                       s.val[i] *= exp( (test_left - x) / 25); 
+                               // Produce an exponential decay around right edge
+                               else if( x < test_right)
+                                       s.val[i] *= exp( (x - test_right) / 25); 
+                               else
+                                       s.val[i] *= exp( (test_right - x) / 25);                                
+                       }       
+                       cvSet2D(g_srcRGB,y,x,s);
+               }
+               
        }
-       if (g_data == NULL)
+       if (g_srcGray == NULL)
        {
-               g_data = cvCreateMat(g_dataRGB->rows,g_dataRGB->cols,CV_8UC1); //IPL_DEPTH_8U?
-               cvCvtColor(g_dataRGB,g_data,CV_RGB2GRAY);
+               g_srcGray = cvCreateMat(g_srcRGB->rows,g_srcRGB->cols,CV_8UC1);
        }
+       cvCvtColor(g_srcRGB,g_srcGray,CV_RGB2GRAY);
 }      
 
 /**
- * Initialise the dilatometer
- */
-void Dilatometer_Init()
-{
-       
-       // Make an initial reading (will allocate memory the first time only).
-       Dilatometer_Read(1); 
-}
-
-/**
- * Cleanup Interferometer stuff
+ * Cleanup Dilatometer pointers
  */
 void Dilatometer_Cleanup()
 {
-       if (g_data != NULL)
-               cvReleaseMat(&g_data);
-
        if (g_capture != NULL)
                cvReleaseCapture(&g_capture);
-
+       if (frame != NULL)
+               cvReleaseImageHeader(&frame);
+       //if (g_srcRGB != NULL)
+       //      cvReleaseMat(&g_srcRGB);        // Causing run time error in cvReleaseMat
+       if (g_srcGray != NULL)
+               cvReleaseMat(&g_srcGray);
+       if (g_edges != NULL)
+               cvReleaseMat(&g_edges);
 }
 
 /**
  * Get an image from the Dilatometer
  */
-static void Dilatometer_GetImage()
+static bool Dilatometer_GetImage()
 {      
-       //Test image
-       Dilatometer_TestImage();
-       //Need to implement camera
+       bool result = true;
+       // If more than one camera is connected, then input needs to be determined, however the camera ID may change after being unplugged
+       if( g_capture == NULL)
+       {
+               g_capture = cvCreateCameraCapture(0);
+               //If cvCreateCameraCapture returns NULL there is an error with the camera
+               if( g_capture == NULL)
+               {
+                       result = false;
+                       return;
+               }
+       }
+
+       // Get the frame and convert it to CvMat
+       frame =  cvQueryFrame(g_capture);
+       CvMat stub;
+       g_srcRGB = cvGetMat(frame,&stub,0,0);
+
+       if( g_srcRGB == NULL)
+               result = false;
+       
+       // Convert the image to grayscale
+       if (g_srcGray == NULL)
+       {
+               g_srcGray = cvCreateMat(g_srcRGB->rows,g_srcRGB->cols,CV_8UC1);
+       }
+
+       cvCvtColor(g_srcRGB,g_srcGray,CV_RGB2GRAY);
+       
+       return result;
 }
-/**
- * Read the dilatometer; gets the latest image, processes it, THEN DOES WHAT
+
+void CannyThreshold()
+{
+       if ( g_edges == NULL)
+       {
+               g_edges = cvCreateMat(g_srcGray->rows,g_srcGray->cols,CV_8UC1);
+       }
+       
+       // Commented out lines are used during testing to show the image to screen, can also save the test images
+       //cvShowImage("display", g_srcGray);
+       //cvWaitKey(0);         
+       
+       // Reduce noise with a kernel blurxblur. Input the grayscale source image, output to edges. (0's mean it's determined from kernel sizes)
+       cvSmooth( g_srcGray, g_edges, CV_GAUSSIAN, blur, blur ,0 ,0 );
+       
+       //Save the image
+       //cvSaveImage("test_blurred.jpg",g_edges,0);
+
+       //cvShowImage("display", g_edges);
+       //cvWaitKey(0); 
+
+       // Find the edges in the image
+       cvCanny( g_edges, g_edges, lowThreshold, lowThreshold*ratio, kernel_size );
+       
+       //Save the image
+       //cvSaveImage("test_edge.jpg",g_edges,0);
+
+       //cvShowImage("display", g_edges);
+       //cvWaitKey(0);         
+
+}
+
+ /**
+ * Read the dilatometer image. The value changed will correspond to the new location of the edge.
+ * @param val - Will store the read value if successful
  * @param samples - Number of rows to scan (increasing will slow down performance!)
- * @returns the average width of the can
+ * @returns true on successful read
  */
-double Dilatometer_Read(int samples)
+bool Dilatometer_GetEdge( double * value, int samples)
 {
-       //Get the latest image
-       Dilatometer_GetImage();
+       bool result = false; 
+       double average = 0;
+       // Get the image from the camera
+       result = Dilatometer_GetImage();
+       // If an error occured when capturing image then return
+       if (!result)
+               return result;
+       
+       // Apply the Canny Edge theorem to the image
+       CannyThreshold();
 
-       int width = g_data->cols;
-       int height = g_data->rows;
+       int width = g_edges->cols;
+       int height = g_edges->rows;
+       
        // If the number of samples is greater than the image height, sample every row
        if( samples > height)
        {
-               //Log(LOGNOTE, "Number of samples is greater than the dilatometer image height, sampling every row instead.\n");
                samples = height;
        }
-
-       // Stores the width of the can at different sample locations. Not necessary unless we want to store this information
-       //double widths[samples];
-       // The average width of the can
-       double average_width;
+       
        int sample_height;
-       printf("here2; %d\n", width);
+       int num_edges = 0;      // Number of edges. if each sample location has an edge, then num_edges = samples
+
        for (int i=0; i<samples; i++)
        {
-               // Contains the locations of the 2 edges
-               double edges[2] = {0.0,0.0};
-               printf("edges init %f; %f\n", edges[0], edges[1]);
-               int pos = 0;    // Position in the edges array (start at left edge)
-               int num = 0;    // Keep track of the number of columns above threshold
-
                // Determine the position in the rows to find the edges. 
+               // This will give you a number of evenly spaced samples
                sample_height = ceil(height * (i + 1) / samples) -1;
-               printf("sample height is %d\n", sample_height);
-
-               //CvScalar test = cvGet2D(g_data, 150,300);
-               //printf("test is %f,%f,%f,%f\n", test.val[0], test.val[1], test.val[2], test.val[3]);
-
-
+               
+               // Need to go through each pixel of a row and find all the locations of a line. If there is more than one pixel, average it. note this only works if the canny edge algorithm returns lines about the actual line (no outliers).
+               
+               int edge_location=0;
+               int num=0;
                for ( int col = 0; col < width; col++)
                {
-                       //if ( CV_MAT_ELEM( *g_data, double, col, sample_height) > THRES)
-                       
-                       //printf("val is %f\n", cvGet2D(g_data, col, sample_height));
-                       //printf("position is col: %d, row: %d\n",col, sample_height);
-                       CvScalar value = cvGet2D(g_data, sample_height, col);
-                       //printf("value is %f\n", value.val[0]);
+                       // Count the number of points
+                       // Get the threshold of the pixel at the current location
+                       CvScalar value = cvGet2D(g_edges, sample_height, col);
                        if( value.val[0]> THRES)
                        {
-                               edges[pos] += (double) col;
+                               edge_location += col;
                                num++;
-                               printf("here; %f\n", edges[pos]);
-                       }
-                       // If num > 0 and we're not above threshold, we have left the threshold of the edge
-                       else if( num > 0)
-                       {
-                               // Find the mid point of the edge
-                               edges[pos] /= num;
-                               if( edges[1] == 0) 
-                               {
-                                       pos = 1;        // Move to the right edge
-                                       num = 0;
-                               }
-                               else
-                                       break;          // Exit the for loop
                        }
                }
-               // Determine the width of the can at this row
-               //widths[i] = edges[1] - edges[0];
-               average_width += (edges[1] - edges[0]);
+               if( num > 0)
+               {
+                       average += ( edge_location / num );
+                       num_edges++;
+               }
+       }
+       if (num_edges > 0)
+               average /= num_edges;
+       
+       if( average > 0)
+       {       
+               result = true; //Successfully found an edge
+               *value = average;
        }
-               average_width /= samples;
-               printf("the average width is %f\n", average_width);
-               return average_width;
+       return result;
+}
+
+ /**
+ * Read the dilatometer image. The value changed will correspond to the new location of the edge.
+ * @param val - Will store the read value if successful
+ * @returns true on successful read
+ */
+bool Dilatometer_Read( double * value)
+{
+       bool result = Dilatometer_GetEdge(value, SAMPLES);
+       return result;
 }
 
+/**
+ * Initialise the dilatometer
+ */
+void Dilatometer_Init()
+{
+       // Make an initial reading (will allocate memory the first time only).
+       double val;
+       Dilatometer_GetEdge(&val, 1); 
+}
+
+// Overlays a line over the given edge position
+void Draw_Edge(double edge)
+{
+       CvScalar value;
+       value.val[0]=244;
+       for( int i = 0; i < g_srcGray->rows; i++)
+       {
+               cvSet2D(g_edges,i,edge,value);
+       }
+       cvShowImage("display", g_edges);
+       cvWaitKey(0);   
+       //cvSaveImage("test_edge_avg.jpg",g_edges,0);
+}
+
+/* // Test algorithm
+static void Dilatometer_GetImageTest( )
+{      
+       //Generates Test image
+       //Dilatometer_TestImage();
+       
+       //Load Test image
+       g_srcGray = cvLoadImageM ("testimage4.jpg",CV_LOAD_IMAGE_GRAYSCALE );
+}*/
+
 /**
  * For testing purposes
  */
@@ -163,12 +271,20 @@ int main(int argc, char ** argv)
 {
        //cvNamedWindow( "display", CV_WINDOW_AUTOSIZE );// Create a window for display.
        //gettimeofday(&start, NULL);
-       
+       test_left = 100;
+       test_right = 500;
        Dilatometer_Init();
-
+       
        cvNamedWindow( "display", CV_WINDOW_AUTOSIZE);
-       cvShowImage("display", g_data);
-       cvWaitKey(0);   
-       Dilatometer_Read(5);
+       //double width;
+       
+       double edge;
+       Dilatometer_GetEdge(&edge,20000);
+       //For testing purposes, overlay the given average line over the image
+       //Draw_Edge(edge);
+       
+       cvDestroyWindow("display");
+
+       Dilatometer_Cleanup();
 }
 

UCC git Repository :: git.ucc.asn.au