index 1588b03..41bbda3 100644 (file)
@@ -1,5 +1,5 @@

-Figure \ref{floats.pdf} shows the positive real numbers which can be represented exactly by an 8 bit floating point number encoded in the IEEE-754 format. We show two encodings using (1,2,5) and (1,3,4) bits to encode (sign, exponent, mantissa) respectively. For each distinct value of the exponent, the successive floating point representations lie on a straight line with constant slope. As the exponent increases, larger values are represented, but the distance between successive values increases; this can be seen in Figure\ref{}. The marked single point discontinuity at \verb/0x10/ and \verb/0x20/ occur when $e$ leaves the denormalised region and the encoding of $m$ changes. We have also plotted a fixed point representation for comparison; fixed point and integer representations appear as straight lines - the distance between points is always constant.
+Figure \ref{floats.pdf} shows the positive real numbers which can be represented exactly by an 8 bit floating point number encoded in the IEEE-754 format. We show two encodings using (1,2,5) and (1,3,4) bits to encode (sign, exponent, mantissa) respectively. For each distinct value of the exponent, the successive floating point representations lie on a straight line with constant slope. As the exponent increases, larger values are represented, but the distance between successive values increases; this can be seen in Figure\ref{}. The marked single point discontinuity at \verb/0x10/ and \verb/0x20/ occur when $e$ leaves the denormalised region and the encoding of $m$ changes. We have also plotted a fixed point representation for comparison; fixed point and integer representations appear on straight lines.

\begin{comment}
The earlier example $7.25$ would be converted to a (1,3,4) floating point representation as follows: UCC git Repository :: git.ucc.asn.au