Initial Commit
authorSam Moore <matches@ucc.asn.au>
Wed, 23 Jan 2013 13:21:09 +0000 (21:21 +0800)
committerSam Moore <matches@ucc.asn.au>
Wed, 23 Jan 2013 13:21:09 +0000 (21:21 +0800)
Now is probably a good time to start using git

1. Implemented quantum chess as described here:
        http://research.cs.queensu.ca/Parallel/QuantumChess/QuantumChess.html
- Except I have "white on the right"

2. Wrote sample agent "agent_bishop.py" which is already better at the game than I am

3. Sort of got sidetracked trying to split my original quantum chess python file into multiple files.
        - Difficulties because there are circular dependencies with the graphics / game stuff
        - eg: HumanPlayer needs to know about GraphicsThread to get its move
                and GraphicsThread needs to know about HumanPlayer to draw stuff and give it a move

4. Ended up writing a bash script to combine multiple python files into single qchess.py file.
        - It was easier than working out how __init__.py and __main__.py work / do not work
        - "from . import *" doesn't work and apparently is "bad practice" or something
        - Bash scripts are the best practice
        - It will probably backfire horribly. Hence, git

TODO:
        - Either borrow sigma from [DJA] again, or setup a new progcomp server at UCC
- Make website for results / information
- Depending upon how adventurous I feel it might be django
- Or a .html file created by a bash script
- Make judging / scoring system
- Need to implement move timeouts for AI players (remember to use select this time)
- Organise some sort of event for people to come to
- Should probably talk to #committee at some point
- Get people interested? Bribe them? Threaten them with account locking if they don't enter?
- If I get 4 entrants it will be a doubling in entries since 2010!

13 files changed:
agents/bishop.py [new file with mode: 0755]
agents/data [new symlink]
agents/qchess.py [new symlink]
qchess/board.py [new file with mode: 0644]
qchess/data/DejaVuSans.ttf [new file with mode: 0644]
qchess/game.py [new file with mode: 0644]
qchess/graphics.py [new file with mode: 0644]
qchess/main.py [new file with mode: 0644]
qchess/piece.py [new file with mode: 0644]
qchess/player.py [new file with mode: 0644]
qchess/qchess.py [new file with mode: 0755]
qchess/thread_util.py [new file with mode: 0644]
qchess/update.sh [new file with mode: 0755]

diff --git a/agents/bishop.py b/agents/bishop.py
new file mode 100755 (executable)
index 0000000..036e7a6
--- /dev/null
@@ -0,0 +1,321 @@
+#!/usr/bin/python -u
+
+from qchess import *
+
+"""
+       Agent Bishop
+       ( an agent, not an implementation of a bishop chess piece!)
+"""
+
+
+
+
+# Skeleton class for your agent
+class Agent(AgentRandom): # Inherits from AgentRandom (in qchess.py)
+       def __init__(self, name, colour):
+               AgentRandom.__init__(self, name, colour)
+               self.value = {"pawn" : 1, "bishop" : 3, "knight" : 3, "rook" : 5, "queen" : 9, "king" : 100, "unknown" : 4}
+
+               self.aggression = 2.0 # Multiplier for scoring due to aggressive actions
+               self.defence = 1.0 # Multiplier for scoring due to defensive actions
+               
+               self.depth = 0 # Current depth
+               self.max_depth = 2 # Recurse this many times (for some reason, makes more mistakes when this is increased???)
+               self.recurse_for = -1 # Recurse for the best few moves each times (less than 0 = all moves)
+
+               for p in self.board.pieces["white"] + self.board.pieces["black"]:
+                       p.last_moves = None
+                       p.selected_moves = None
+
+               
+
+       def get_value(self, piece):
+               if piece == None:
+                       return 0.0
+               return float(self.value[piece.types[0]] + self.value[piece.types[1]]) / 2.0
+               
+       # Score possible moves for the piece
+       # Highest score is 1.0 (which means: make this move!)
+       def prioritise_moves(self, piece):
+
+               #sys.stderr.write(sys.argv[0] + ": prioritise called for " + str(piece) + "\n")
+
+               
+               
+               grid = self.board.probability_grid(piece)
+               #sys.stderr.write("\t Probability grid " + str(grid) + "\n")
+               moves = []
+               for x in range(w):
+                       for y in range(h):
+                               if grid[x][y] < 0.3: # Throw out moves with < 30% probability
+                                       #sys.stderr.write("\tReject " + str(x) + "," + str(y) + " (" + str(grid[x][y]) + ")\n")
+                                       continue
+
+                               target = self.board.grid[x][y]
+                       
+                               
+                               
+                               
+                               # Get total probability that the move is protected
+                               [xx,yy] = [piece.x, piece.y]
+                               [piece.x, piece.y] = [x, y]
+                               self.board.grid[x][y] = piece
+                               self.board.grid[xx][yy] = None
+                               
+                               defenders = self.board.coverage(x, y, piece.colour, reject_allied = False)
+                               d_prob = 0.0
+                               for d in defenders.keys():
+                                       d_prob += defenders[d]
+                               if len(defenders.keys()) > 0:
+                                       d_prob /= float(len(defenders.keys()))
+
+                               if (d_prob > 1.0):
+                                       d_prob = 1.0
+
+                               # Get total probability that the move is threatened
+                               attackers = self.board.coverage(x, y, opponent(piece.colour), reject_allied = False)
+                               a_prob = 0.0
+                               for a in attackers.keys():
+                                       a_prob += attackers[a]
+                               if len(attackers.keys()) > 0:
+                                       a_prob /= float(len(attackers.keys()))
+
+                               if (a_prob > 1.0):
+                                       a_prob = 1.0
+
+                               self.board.grid[x][y] = target
+                               self.board.grid[xx][yy] = piece
+                               [piece.x, piece.y] = [xx, yy]
+
+                               
+                               # Score of the move
+                               value = self.aggression * (1.0 + d_prob) * self.get_value(target) - self.defence * (1.0 - d_prob) * a_prob * self.get_value(piece)
+
+                               # Adjust score based on movement of piece out of danger
+                               attackers = self.board.coverage(piece.x, piece.y, opponent(piece.colour))
+                               s_prob = 0.0
+                               for a in attackers.keys():
+                                       s_prob += attackers[a]
+                               if len(attackers.keys()) > 0:
+                                       s_prob /= float(len(attackers.keys()))
+
+                               if (s_prob > 1.0):
+                                       s_prob = 1.0
+                               value += self.defence * s_prob * self.get_value(piece)
+                               
+                               # Adjust score based on probability that the move is actually possible
+                               moves.append([[x, y], grid[x][y] * value])
+
+               moves.sort(key = lambda e : e[1], reverse = True)
+               #sys.stderr.write(sys.argv[0] + ": Moves for " + str(piece) + " are " + str(moves) + "\n")
+
+               piece.last_moves = moves
+               piece.selected_moves = None
+
+               
+
+               
+               return moves
+
+       def select_best(self, colour):
+
+               self.depth += 1
+               all_moves = {}
+               for p in self.board.pieces[colour]:
+                       self.choice = p # Temporarily pick that piece
+                       m = self.prioritise_moves(p)
+                       if len(m) > 0:
+                               all_moves.update({p : m[0]})
+
+               if len(all_moves.items()) <= 0:
+                       return None
+               
+               
+               opts = all_moves.items()
+               opts.sort(key = lambda e : e[1][1], reverse = True)
+
+               if self.depth >= self.max_depth:
+                       self.depth -= 1
+                       return list(opts[0])
+
+               if self.recurse_for >= 0:
+                       opts = opts[0:self.recurse_for]
+               sys.stderr.write(sys.argv[0] + " : Before recurse, options are " + str(opts) + "\n")
+
+               # Take the best few moves, and recurse
+               for choice in opts[0:self.recurse_for]:
+                       [xx,yy] = [choice[0].x, choice[0].y] # Remember position
+                       [nx,ny] = choice[1][0] # Target
+                       [choice[0].x, choice[0].y] = [nx, ny] # Set position
+                       target = self.board.grid[nx][ny] # Remember piece in spot
+                       self.board.grid[xx][yy] = None # Remove piece
+                       self.board.grid[nx][ny] = choice[0] # Replace with moving piece
+                       
+                       # Recurse
+                       best_enemy_move = self.select_best(opponent(choice[0].colour))
+                       choice[1][1] -= best_enemy_move[1][1] / float(self.depth + 1.0)
+                       
+                       [choice[0].x, choice[0].y] = [xx, yy] # Restore position
+                       self.board.grid[nx][ny] = target # Restore taken piece
+                       self.board.grid[xx][yy] = choice[0] # Restore moved piece
+                       
+               
+
+               opts.sort(key = lambda e : e[1][1], reverse = True)
+               sys.stderr.write(sys.argv[0] + " : After recurse, options are " + str(opts) + "\n")
+
+               self.depth -= 1
+               return list(opts[0])
+
+               
+
+       # Returns [x,y] of selected piece
+       def select(self):
+               
+               self.choice = self.select_best(self.colour)[0]
+               return [self.choice.x, self.choice.y]
+       
+       # Returns [x,y] of square to move selected piece into
+       def get_move(self):
+               self.choice.selected_moves = self.choice.last_moves
+               moves = self.prioritise_moves(self.choice)
+               if len(moves) > 0:
+                       return moves[0][0]
+               else:
+                       return AgentRandom.get_move(self)
+
+               
+               
+               
+# Horrible messy graphics class that draws what the agent is doing, kind of useful for testing
+class AgentGraphics(GraphicsThread):
+       def __init__(self, board, title):
+               GraphicsThread.__init__(self, board, title, grid_sz = [64,64])
+               self.choice = None
+               self.moves = None
+
+       def run(self):
+               square_img = pygame.Surface((self.grid_sz[0], self.grid_sz[1]),pygame.SRCALPHA) # A square image
+               while not self.stopped():
+               
+                       self.board.display_grid(window = self.window, grid_sz = self.grid_sz)   
+
+                       # Draw choice of the AI
+                       if agent.choice != None:
+                               mp = [self.grid_sz[i] * [agent.choice.x, agent.choice.y][i] for i in range(2)]
+                               square_img.fill(pygame.Color(0,255,0,64))
+                               self.window.blit(square_img, mp)
+
+                       # Draw calculated choices for the piece clicked on
+                       if self.choice != None:
+                               mp = [self.grid_sz[i] * [self.choice.x, self.choice.y][i] for i in range(2)]
+                               square_img.fill(pygame.Color(0,0,255,128))
+                               self.window.blit(square_img, mp)
+
+                       # Draw the choices the AI calculated from the selection of the chosen piece
+                       if agent.choice != None and agent.choice.selected_moves != None:
+                               for m in agent.choice.selected_moves:
+                                       mp = [m[0][i] * self.grid_sz[i] for i in range(2)]
+                                       square_img.fill(pygame.Color(128,128,255,128))
+                                       self.window.blit(square_img, mp)
+                                       font = pygame.font.Font(None, 14)
+                                       text = font.render("{0:.2f}".format(round(m[1],2)), 1, pygame.Color(255,0,0))
+                                       mp[0] = mp[0] + self.grid_sz[0] - text.get_width()
+                                       mp[1] = mp[1] + self.grid_sz[1] - text.get_height()
+                                       self.window.blit(text, mp)
+
+
+                       # Draw the choice the AI's chosen piece could have actually made
+                       if agent.choice != None and agent.choice.last_moves != None:
+                               for m in agent.choice.last_moves:
+                                       mp = [m[0][i] * self.grid_sz[i] for i in range(2)]
+                                       square_img.fill(pygame.Color(255,0,0,128))
+                                       self.window.blit(square_img, mp)
+                                       font = pygame.font.Font(None, 14)
+                                       text = font.render("{0:.2f}".format(round(m[1],2)), 1, pygame.Color(0,0,255))
+                                       mp[0] = mp[0] + self.grid_sz[0] - text.get_width()
+                                       self.window.blit(text, mp)
+
+                       
+
+
+                       if self.moves != None:
+                               for m in self.moves:
+                                       mp = [m[0][i] * self.grid_sz[i] for i in range(2)]
+                                       square_img.fill(pygame.Color(255,0,255,128))
+                                       self.window.blit(square_img, mp)
+                                       font = pygame.font.Font(None, 14)
+                                       text = font.render("{0:.2f}".format(round(m[1],2)), 1, pygame.Color(0,0,0))
+                                       self.window.blit(text, mp)
+                       
+                       
+       
+                       self.board.display_pieces(window = self.window, grid_sz = self.grid_sz)
+
+                       pygame.display.flip()
+                       
+                       for event in pygame.event.get():
+                               if event.type == pygame.QUIT:
+                                       self.stop()
+                                       break
+                               elif event.type == pygame.MOUSEBUTTONDOWN:
+                                       m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
+                                       p = agent.board.grid[m[0]][m[1]]
+                                       if p == None:
+                                               continue
+                                       self.choice = p
+                                       self.last_moves = self.choice.last_moves
+                                       self.selected_moves = self.choice.selected_moves
+                                       if event.button == 3 or self.choice.last_moves == None:
+                                               self.moves = agent.prioritise_moves(self.choice)
+                                       else:
+                                               self.moves = self.choice.last_moves
+                                       
+                               elif event.type == pygame.MOUSEBUTTONUP:
+                                       if self.choice == None:
+                                               continue
+                                       self.choice.last_moves = self.last_moves
+                                       self.choice.selected_moves = self.selected_moves
+                                       self.choice = None
+                                       self.moves = None
+                                       
+               pygame.display.quit()                           
+               
+
+
+# Main function; don't alter
+def main(argv):
+
+       global agent
+       colour = sys.stdin.readline().strip("\n") # Gets the colour of the agent from stdin
+       
+       agent = Agent(argv[0], colour) # Creates your agent
+
+       graphics = AgentGraphics(agent.board, title="Agent Bishop (" + str(colour) + ") - DEBUG VIEW")
+       graphics.start()
+
+       # Plays quantum chess using your agent
+       while True:
+               line = sys.stdin.readline().strip(" \r\n")
+               #sys.stderr.write(argv[0] + ": gets line \"" + str(line) + "\"\n")
+               if line == "SELECTION?":
+                       [x,y] = agent.select() # Gets your agent's selection
+                       #print "Select " + str(x) + "," + str(y)
+                       sys.stdout.write(str(x) + " " + str(y) + "\n")                          
+               elif line == "MOVE?":
+                       [x,y] = agent.get_move() # Gets your agent's move
+                       sys.stdout.write(str(x) + " " + str(y) + "\n")
+               elif line.split(" ")[0] == "QUIT":
+                       agent.quit(" ".join(line.split(" ")[1:])) # Quits the game
+#                      graphics.stop()
+                       break
+               else:
+                       agent.update(line) # Updates agent.board
+
+       graphics.stop()
+       graphics.join()
+       return 0
+
+# Don't touch this
+if __name__ == "__main__":
+       sys.exit(main(sys.argv))
diff --git a/agents/data b/agents/data
new file mode 120000 (symlink)
index 0000000..eed2d0b
--- /dev/null
@@ -0,0 +1 @@
+../data/
\ No newline at end of file
diff --git a/agents/qchess.py b/agents/qchess.py
new file mode 120000 (symlink)
index 0000000..daafe05
--- /dev/null
@@ -0,0 +1 @@
+../qchess.py
\ No newline at end of file
diff --git a/qchess/board.py b/qchess/board.py
new file mode 100644 (file)
index 0000000..4858168
--- /dev/null
@@ -0,0 +1,403 @@
+[w,h] = [8,8] # Width and height of board(s)
+
+# Class to represent a quantum chess board
+class Board():
+       # Initialise; if master=True then the secondary piece types are assigned
+       #       Otherwise, they are left as unknown
+       #       So you can use this class in Agent programs, and fill in the types as they are revealed
+       def __init__(self, style="agent"):
+               self.style = style
+               self.pieces = {"white" : [], "black" : []}
+               self.grid = [[None] * w for _ in range(h)] # 2D List (you can get arrays in python, somehow, but they scare me)
+               self.unrevealed_types = {"white" : piece_types.copy(), "black" : piece_types.copy()}
+               self.king = {"white" : None, "black" : None} # We need to keep track of the king, because he is important
+               for c in ["black", "white"]:
+                       del self.unrevealed_types[c]["unknown"]
+
+               # Add all the pieces with known primary types
+               for i in range(0, 2):
+                       
+                       s = ["black", "white"][i]
+                       c = self.pieces[s]
+                       y = [0, h-1][i]
+
+                       c.append(Piece(s, 0, y, ["rook"]))
+                       c.append(Piece(s, 1, y, ["knight"]))
+                       c.append(Piece(s, 2, y, ["bishop"]))
+                       k = Piece(s, 3, y, ["king", "king"]) # There can only be one ruler!
+                       k.types_revealed[1] = True
+                       k.current_type = "king"
+                       self.king[s] = k
+                       c.append(k)
+                       c.append(Piece(s, 4, y, ["queen"])) # Apparently he may have multiple wives though.
+                       c.append(Piece(s, 5, y, ["bishop"]))
+                       c.append(Piece(s, 6, y, ["knight"]))
+                       c.append(Piece(s, 7, y, ["rook"]))
+                       
+                       if y == 0: 
+                               y += 1 
+                       else: 
+                               y -= 1
+                       
+                       # Lots of pawn
+                       for x in range(0, w):
+                               c.append(Piece(s, x, y, ["pawn"]))
+
+                       types_left = {}
+                       types_left.update(piece_types)
+                       del types_left["king"] # We don't want one of these randomly appearing (although it might make things interesting...)
+                       del types_left["unknown"] # We certainly don't want these!
+                       for piece in c:
+                               # Add to grid
+                               self.grid[piece.x][piece.y] = piece 
+
+                               if len(piece.types) > 1:
+                                       continue                                
+                               if style == "agent": # Assign placeholder "unknown" secondary type
+                                       piece.types.append("unknown")
+                                       continue
+
+                               elif style == "quantum":
+                                       # The master allocates the secondary types
+                                       choice = types_left.keys()[random.randint(0, len(types_left.keys())-1)]
+                                       types_left[choice] -= 1
+                                       if types_left[choice] <= 0:
+                                               del types_left[choice]
+                                       piece.types.append(choice)
+                               elif style == "classical":
+                                       piece.types.append(piece.types[0])
+                                       piece.current_type = piece.types[0]
+                                       piece.types_revealed[1] = True
+                                       piece.choice = 0
+
+       def clone(self):
+               newboard = Board(master = False)
+               newpieces = newboard.pieces["white"] + newboard.pieces["black"]
+               mypieces = self.pieces["white"] + self.pieces["black"]
+
+               for i in range(len(mypieces)):
+                       newpieces[i].init_from_copy(mypieces[i])
+                       
+
+       def display_grid(self, window = None, grid_sz = [80,80]):
+               if window == None:
+                       return # I was considering implementing a text only display, then I thought "Fuck that"
+
+               # The indentation is getting seriously out of hand...
+               for x in range(0, w):
+                       for y in range(0, h):
+                               if (x + y) % 2 == 0:
+                                       c = pygame.Color(200,200,200)
+                               else:
+                                       c = pygame.Color(64,64,64)
+                               pygame.draw.rect(window, c, (x*grid_sz[0], y*grid_sz[1], (x+1)*grid_sz[0], (y+1)*grid_sz[1]))
+
+       def display_pieces(self, window = None, grid_sz = [80,80]):
+               if window == None:
+                       return
+               for p in self.pieces["white"] + self.pieces["black"]:
+                       p.draw(window, grid_sz)
+
+       # Draw the board in a pygame window
+       def display(self, window = None):
+               self.display_grid(window)
+               self.display_pieces(window)
+               
+
+               
+
+       def verify(self):
+               for x in range(w):
+                       for y in range(h):
+                               if self.grid[x][y] == None:
+                                       continue
+                               if (self.grid[x][y].x != x or self.grid[x][y].y != y):
+                                       raise Exception(sys.argv[0] + ": MISMATCH " + str(self.grid[x][y]) + " should be at " + str(x) + "," + str(y))
+
+       # Select a piece on the board (colour is the colour of whoever is doing the selecting)
+       def select(self, x,y, colour=None):
+               if not self.on_board(x, y): # Get on board everyone!
+                       raise Exception("BOUNDS")
+
+               piece = self.grid[x][y]
+               if piece == None:
+                       raise Exception("EMPTY")
+
+               if colour != None and piece.colour != colour:
+                       raise Exception("COLOUR")
+
+               # I'm not quite sure why I made this return a string, but screw logical design
+               return str(x) + " " + str(y) + " " + str(piece.select()) + " " + str(piece.current_type)
+
+
+       # Update the board when a piece has been selected
+       # "type" is apparently reserved, so I'll use "state"
+       def update_select(self, x, y, type_index, state):
+               piece = self.grid[x][y]
+               if piece.types[type_index] == "unknown":
+                       if not state in self.unrevealed_types[piece.colour].keys():
+                               raise Exception("SANITY: Too many " + piece.colour + " " + state + "s")
+                       self.unrevealed_types[piece.colour][state] -= 1
+                       if self.unrevealed_types[piece.colour][state] <= 0:
+                               del self.unrevealed_types[piece.colour][state]
+
+               piece.types[type_index] = state
+               piece.types_revealed[type_index] = True
+               piece.current_type = state
+
+               if len(self.possible_moves(piece)) <= 0:
+                       piece.deselect() # Piece can't move; deselect it
+               
+       # Update the board when a piece has been moved
+       def update_move(self, x, y, x2, y2):
+               piece = self.grid[x][y]
+               self.grid[x][y] = None
+               taken = self.grid[x2][y2]
+               if taken != None:
+                       if taken.current_type == "king":
+                               self.king[taken.colour] = None
+                       self.pieces[taken.colour].remove(taken)
+               self.grid[x2][y2] = piece
+               piece.x = x2
+               piece.y = y2
+
+               # If the piece is a pawn, and it reaches the final row, it becomes a queen
+               # I know you are supposed to get a choice
+               # But that would be effort
+               if piece.current_type == "pawn" and ((piece.colour == "white" and piece.y == 0) or (piece.colour == "black" and piece.y == h-1)):
+                       if self.style == "classical":
+                               piece.types[0] = "queen"
+                               piece.types[1] = "queen"
+                       else:
+                               piece.types[piece.choice] = "queen"
+                       piece.current_type = "queen"
+
+               piece.deselect() # Uncollapse (?) the wavefunction!
+               self.verify()   
+
+       # Update the board from a string
+       # Guesses what to do based on the format of the string
+       def update(self, result):
+               #print "Update called with \"" + str(result) + "\""
+               # String always starts with 'x y'
+               try:
+                       s = result.split(" ")
+                       [x,y] = map(int, s[0:2])        
+               except:
+                       raise Exception("GIBBERISH \""+ str(result) + "\"") # Raise expectations
+
+               piece = self.grid[x][y]
+               if piece == None:
+                       raise Exception("EMPTY")
+
+               # If a piece is being moved, the third token is '->'
+               # We could get away with just using four integers, but that wouldn't look as cool
+               if "->" in s:
+                       # Last two tokens are the destination
+                       try:
+                               [x2,y2] = map(int, s[3:])
+                       except:
+                               raise Exception("GIBBERISH \"" + str(result) + "\"") # Raise the alarm
+
+                       # Move the piece (take opponent if possible)
+                       self.update_move(x, y, x2, y2)
+                       
+               else:
+                       # Otherwise we will just assume a piece has been selected
+                       try:
+                               type_index = int(s[2]) # We need to know which of the two types the piece is in; that's the third token
+                               state = s[3] # The last token is a string identifying the type
+                       except:
+                               raise Exception("GIBBERISH \"" + result + "\"") # Throw a hissy fit
+
+                       # Select the piece
+                       self.update_select(x, y, type_index, state)
+
+               return result
+
+       # Gets each piece that could reach the given square and the probability that it could reach that square 
+       # Will include allied pieces that defend the attacker
+       def coverage(self, x, y, colour = None, reject_allied = True):
+               result = {}
+               
+               if colour == None:
+                       pieces = self.pieces["white"] + self.pieces["black"]
+               else:
+                       pieces = self.pieces[colour]
+
+               for p in pieces:
+                       prob = self.probability_grid(p, reject_allied)[x][y]
+                       if prob > 0:
+                               result.update({p : prob})
+               
+               self.verify()
+               return result
+
+
+               
+
+
+       # Associates each square with a probability that the piece could move into it
+       # Look, I'm doing all the hard work for you here...
+       def probability_grid(self, p, reject_allied = True):
+               
+               result = [[0.0] * w for _ in range(h)]
+               if not isinstance(p, Piece):
+                       return result
+
+               if p.current_type != "unknown":
+                       #sys.stderr.write(sys.argv[0] + ": " + str(p) + " moves " + str(self.possible_moves(p, reject_allied)) + "\n")
+                       for point in self.possible_moves(p, reject_allied):
+                               result[point[0]][point[1]] = 1.0
+                       return result
+               
+               
+               for i in range(len(p.types)):
+                       t = p.types[i]
+                       prob = 0.5
+                       if t == "unknown" or p.types_revealed[i] == False:
+                               total_types = 0
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       total_types += self.unrevealed_types[p.colour][t2]
+                               
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       prob2 = float(self.unrevealed_types[p.colour][t2]) / float(total_types)
+                                       p.current_type = t2
+                                       for point in self.possible_moves(p, reject_allied):
+                                               result[point[0]][point[1]] += prob2 * prob
+                               
+                       else:
+                               p.current_type = t
+                               for point in self.possible_moves(p, reject_allied):
+                                       result[point[0]][point[1]] += prob
+               
+               self.verify()
+               p.current_type = "unknown"
+               return result
+
+       def prob_is_type(self, p, state):
+               prob = 0.5
+               result = 0
+               for i in range(len(p.types)):
+                       t = p.types[i]
+                       if t == state:
+                               result += prob
+                               continue        
+                       if t == "unknown" or p.types_revealed[i] == False:
+                               total_prob = 0
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       total_prob += self.unrevealed_types[p.colour][t2]
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       if t2 == state:
+                                               result += prob * float(self.unrevealed_types[p.colour][t2]) / float(total_prob)
+                               
+
+
+       # Get all squares that the piece could move into
+       # This is probably inefficient, but I looked at some sample chess games and they seem to actually do things this way
+       # reject_allied indicates whether squares occupied by allied pieces will be removed
+       # (set to false to check for defense)
+       def possible_moves(self, p, reject_allied = True):
+               result = []
+               if p == None:
+                       return result
+
+               
+               if p.current_type == "unknown":
+                       raise Exception("SANITY: Piece state unknown")
+                       # The below commented out code causes things to break badly
+                       #for t in p.types:
+                       #       if t == "unknown":
+                       #               continue
+                       #       p.current_type = t
+                       #       result += self.possible_moves(p)                                                
+                       #p.current_type = "unknown"
+                       #return result
+
+               if p.current_type == "king":
+                       result = [[p.x-1,p.y],[p.x+1,p.y],[p.x,p.y-1],[p.x,p.y+1], [p.x-1,p.y-1],[p.x-1,p.y+1],[p.x+1,p.y-1],[p.x+1,p.y+1]]
+               elif p.current_type == "queen":
+                       for d in [[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]:
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "bishop":
+                       for d in [[-1,-1],[-1,1],[1,-1],[1,1]]: # There's a reason why bishops move diagonally
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "rook":
+                       for d in [[-1,0],[1,0],[0,-1],[0,1]]:
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "knight":
+                       # I would use two lines, but I'm not sure how python likes that
+                       result = [[p.x-2, p.y-1], [p.x-2, p.y+1], [p.x+2, p.y-1], [p.x+2,p.y+1], [p.x-1,p.y-2], [p.x-1, p.y+2],[p.x+1,p.y-2],[p.x+1,p.y+2]]
+               elif p.current_type == "pawn":
+                       if p.colour == "white":
+                               
+                               # Pawn can't move forward into occupied square
+                               if self.on_board(p.x, p.y-1) and self.grid[p.x][p.y-1] == None:
+                                       result = [[p.x,p.y-1]]
+                               for f in [[p.x-1,p.y-1],[p.x+1,p.y-1]]:
+                                       if not self.on_board(f[0], f[1]):
+                                               continue
+                                       if self.grid[f[0]][f[1]] != None:  # Pawn can take diagonally
+                                               result.append(f)
+                               if p.y == h-2:
+                                       # Slightly embarrassing if the pawn jumps over someone on its first move...
+                                       if self.grid[p.x][p.y-1] == None and self.grid[p.x][p.y-2] == None:
+                                               result.append([p.x, p.y-2])
+                       else:
+                               # Vice versa for the black pawn
+                               if self.on_board(p.x, p.y+1) and self.grid[p.x][p.y+1] == None:
+                                       result = [[p.x,p.y+1]]
+
+                               for f in [[p.x-1,p.y+1],[p.x+1,p.y+1]]:
+                                       if not self.on_board(f[0], f[1]):
+                                               continue
+                                       if self.grid[f[0]][f[1]] != None:
+                                               #sys.stderr.write(sys.argv[0] + " : "+str(p) + " can take " + str(self.grid[f[0]][f[1]]) + "\n")
+                                               result.append(f)
+                               if p.y == 1:
+                                       if self.grid[p.x][p.y+1] == None and self.grid[p.x][p.y+2] == None:
+                                               result.append([p.x, p.y+2])
+
+                       #sys.stderr.write(sys.argv[0] + " : possible_moves for " + str(p) + " " + str(result) + "\n")
+
+               # Remove illegal moves
+               # Note: The result[:] creates a copy of result, so that the result.remove calls don't fuck things up
+               for point in result[:]: 
+
+                       if (point[0] < 0 or point[0] >= w) or (point[1] < 0 or point[1] >= h):
+                               result.remove(point) # Remove locations outside the board
+                               continue
+                       g = self.grid[point[0]][point[1]]
+                       
+                       if g != None and (g.colour == p.colour and reject_allied == True):
+                               result.remove(point) # Remove allied pieces
+               
+               self.verify()
+               return result
+
+
+       # Scans in a direction until it hits a piece, returns all squares in the line
+       # (includes the final square (which contains a piece), but not the original square)
+       def scan(self, x, y, vx, vy):
+               p = []
+                       
+               xx = x
+               yy = y
+               while True:
+                       xx += vx
+                       yy += vy
+                       if not self.on_board(xx, yy):
+                               break
+                       if not [xx,yy] in p:
+                               p.append([xx, yy])
+                       g = self.grid[xx][yy]
+                       if g != None:
+                               return p        
+                                       
+               return p
+
+
+
+       # I typed the full statement about 30 times before writing this function...
+       def on_board(self, x, y):
+               return (x >= 0 and x < w) and (y >= 0 and y < h)
diff --git a/qchess/data/DejaVuSans.ttf b/qchess/data/DejaVuSans.ttf
new file mode 100644 (file)
index 0000000..27cff47
Binary files /dev/null and b/qchess/data/DejaVuSans.ttf differ
diff --git a/qchess/game.py b/qchess/game.py
new file mode 100644 (file)
index 0000000..1b568a0
--- /dev/null
@@ -0,0 +1,116 @@
+
+# A thread that runs the game
+class GameThread(StoppableThread):
+       def __init__(self, board, players):
+               StoppableThread.__init__(self)
+               self.board = board
+               self.players = players
+               self.state = {"turn" : None} # The game state
+               self.error = 0 # Whether the thread exits with an error
+               self.lock = threading.RLock() #lock for access of self.state
+               self.cond = threading.Condition() # conditional for some reason, I forgot
+               self.final_result = ""
+
+       # Run the game (run in new thread with start(), run in current thread with run())
+       def run(self):
+               result = ""
+               while not self.stopped():
+                       
+                       for p in self.players:
+                               with self.lock:
+                                       self.state["turn"] = p # "turn" contains the player who's turn it is
+                               #try:
+                               if True:
+                                       [x,y] = p.select() # Player selects a square
+                                       if self.stopped():
+                                               break
+
+                                       result = self.board.select(x, y, colour = p.colour)                             
+                                       for p2 in self.players:
+                                               p2.update(result) # Inform players of what happened
+
+
+
+                                       target = self.board.grid[x][y]
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["moves"] = self.board.possible_moves(target)
+                                                       graphics.state["select"] = target
+
+                                       time.sleep(turn_delay)
+
+
+                                       if len(self.board.possible_moves(target)) == 0:
+                                               #print "Piece cannot move"
+                                               target.deselect()
+                                               if isinstance(graphics, GraphicsThread):
+                                                       with graphics.lock:
+                                                               graphics.state["moves"] = None
+                                                               graphics.state["select"] = None
+                                                               graphics.state["dest"] = None
+                                               continue
+
+                                       try:
+                                               [x2,y2] = p.get_move() # Player selects a destination
+                                       except:
+                                               self.stop()
+
+                                       if self.stopped():
+                                               break
+
+                                       result = self.board.update_move(x, y, x2, y2)
+                                       for p2 in self.players:
+                                               p2.update(str(x) + " " + str(y) + " -> " + str(x2) + " " + str(y2)) # Inform players of what happened
+
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["moves"] = [[x2,y2]]
+
+                                       time.sleep(turn_delay)
+
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["select"] = None
+                                                       graphics.state["dest"] = None
+                                                       graphics.state["moves"] = None
+
+                       # Commented out exception stuff for now, because it makes it impossible to tell if I made an IndentationError somewhere
+                               #except Exception,e:
+                                       #result = "ILLEGAL " + e.message
+                                       #sys.stderr.write(result + "\n")
+                                       
+                                       #self.stop()
+                                       #with self.lock:
+                                       #       self.final_result = self.state["turn"].colour + " " + "ILLEGAL"
+
+                               if self.board.king["black"] == None:
+                                       if self.board.king["white"] == None:
+                                               with self.lock:
+                                                       self.final_result = "DRAW"
+                                       else:
+                                               with self.lock:
+                                                       self.final_result = "white"
+                                       self.stop()
+                               elif self.board.king["white"] == None:
+                                       with self.lock:
+                                               self.final_result = "black"
+                                       self.stop()
+                                               
+
+                               if self.stopped():
+                                       break
+
+
+               for p2 in self.players:
+                       p2.quit(self.final_result)
+
+               graphics.stop()
+
+       
+
+
+def opponent(colour):
+       if colour == "white":
+               return "black"
+       else:
+               return "white"
diff --git a/qchess/graphics.py b/qchess/graphics.py
new file mode 100644 (file)
index 0000000..2939e89
--- /dev/null
@@ -0,0 +1,286 @@
+import pygame
+
+# Dictionary that stores the unicode character representations of the different pieces
+# Chess was clearly the reason why unicode was invented
+# For some reason none of the pygame chess implementations I found used them!
+piece_char = {"white" : {"king" : u'\u2654',
+                        "queen" : u'\u2655',
+                        "rook" : u'\u2656',
+                        "bishop" : u'\u2657',
+                        "knight" : u'\u2658',
+                        "pawn" : u'\u2659',
+                        "unknown" : '?'},
+               "black" : {"king" : u'\u265A',
+                        "queen" : u'\u265B',
+                        "rook" : u'\u265C',
+                        "bishop" : u'\u265D',
+                        "knight" : u'\u265E',
+                        "pawn" : u'\u265F',
+                        "unknown" : '?'}}
+
+images = {"white" : {}, "black" : {}}
+small_images = {"white" : {}, "black" : {}}
+
+# A thread to make things pretty
+class GraphicsThread(StoppableThread):
+       def __init__(self, board, title = "UCC::Progcomp 2013 - QChess", grid_sz = [80,80]):
+               StoppableThread.__init__(self)
+               
+               self.board = board
+               pygame.init()
+               self.window = pygame.display.set_mode((grid_sz[0] * w, grid_sz[1] * h))
+               pygame.display.set_caption(title)
+               self.grid_sz = grid_sz[:]
+               self.state = {"select" : None, "dest" : None, "moves" : None, "overlay" : None, "coverage" : None}
+               self.error = 0
+               self.lock = threading.RLock()
+               self.cond = threading.Condition()
+
+               # Get the font sizes
+               l_size = 5*(self.grid_sz[0] / 8)
+               s_size = 3*(self.grid_sz[0] / 8)
+               for p in piece_types.keys():
+                       c = "black"
+                       images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0))})
+                       small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0))})
+                       c = "white"
+
+                       images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size+1).render(piece_char["black"][p], True,(255,255,255))})
+                       images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0)),(0,0))
+                       small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size+1).render(piece_char["black"][p],True,(255,255,255))})
+                       small_images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0)),(0,0))
+
+               
+       
+
+
+       # On the run from the world
+       def run(self):
+               
+               while not self.stopped():
+                       
+                       self.board.display_grid(window = self.window, grid_sz = self.grid_sz) # Draw the board
+
+                       self.overlay()
+
+                       self.board.display_pieces(window = self.window, grid_sz = self.grid_sz) # Draw the board                
+
+                       pygame.display.flip()
+
+                       for event in pygame.event.get():
+                               if event.type == pygame.QUIT:
+                                       if isinstance(game, GameThread):
+                                               with game.lock:
+                                                       game.final_result = "terminated"
+                                               game.stop()
+                                       self.stop()
+                                       break
+                               elif event.type == pygame.MOUSEBUTTONDOWN:
+                                       self.mouse_down(event)
+                               elif event.type == pygame.MOUSEBUTTONUP:
+                                       self.mouse_up(event)
+                                       
+
+                               
+                                                               
+                                               
+                                               
+               self.message("Game ends, result \""+str(game.final_result) + "\"")
+               time.sleep(1)
+
+               # Wake up anyone who is sleeping
+               self.cond.acquire()
+               self.cond.notify()
+               self.cond.release()
+
+               pygame.quit() # Time to say goodbye
+
+       # Mouse release event handler
+       def mouse_up(self, event):
+               if event.button == 3:
+                       with self.lock:
+                               self.state["overlay"] = None
+               elif event.button == 2:
+                       with self.lock:
+                               self.state["coverage"] = None   
+
+       # Mouse click event handler
+       def mouse_down(self, event):
+               if event.button == 1:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(2)]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                                       p = None
+                                       
+                                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       s = self.board.grid[m[0]][m[1]]
+                                       select = self.state["select"]
+                               if select == None:
+                                       if s != None and s.colour != p.colour:
+                                               self.message("Wrong colour") # Look at all this user friendliness!
+                                               time.sleep(1)
+                                               return
+                                       # Notify human player of move
+                                       self.cond.acquire()
+                                       with self.lock:
+                                               self.state["select"] = s
+                                               self.state["dest"] = None
+                                       self.cond.notify()
+                                       self.cond.release()
+                                       return
+
+                               if select == None:
+                                       return
+                                               
+                                       
+                               if self.state["moves"] == None:
+                                       return
+
+                               if not m in self.state["moves"]:
+                                       self.message("Illegal Move") # I still think last year's mouse interface was adequate
+                                       time.sleep(2)
+                                       return
+                                               
+                               with self.lock:
+                                       if self.state["dest"] == None:
+                                               self.cond.acquire()
+                                               self.state["dest"] = m
+                                               self.state["select"] = None
+                                               self.state["moves"] = None
+                                               self.cond.notify()
+                                               self.cond.release()
+               elif event.button == 3:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                               p = None
+                                       
+                                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       self.state["overlay"] = self.board.probability_grid(self.board.grid[m[0]][m[1]])
+
+               elif event.button == 2:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                               p = None
+                       
+                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       self.state["coverage"] = self.board.coverage(m[0], m[1], None, self.state["select"])
+                               
+       # Draw the overlay
+       def overlay(self):
+
+               square_img = pygame.Surface((self.grid_sz[0], self.grid_sz[1]),pygame.SRCALPHA) # A square image
+               # Draw square over the selected piece
+               with self.lock:
+                       select = self.state["select"]
+               if select != None:
+                       mp = [self.grid_sz[i] * [select.x, select.y][i] for i in range(len(self.grid_sz))]
+                       square_img.fill(pygame.Color(0,255,0,64))
+                       self.window.blit(square_img, mp)
+               # If a piece is selected, draw all reachable squares
+               # (This quality user interface has been patented)
+               with self.lock:
+                       m = self.state["moves"]
+               if m != None:
+                       square_img.fill(pygame.Color(255,0,0,128)) # Draw them in blood red
+                       for move in m:
+                               mp = [self.grid_sz[i] * move[i] for i in range(2)]
+                               self.window.blit(square_img, mp)
+               # If a piece is overlayed, show all squares that it has a probability to reach
+               with self.lock:
+                       m = self.state["overlay"]
+               if m != None:
+                       for x in range(w):
+                               for y in range(h):
+                                       if m[x][y] > 0.0:
+                                               mp = [self.grid_sz[i] * [x,y][i] for i in range(2)]
+                                               square_img.fill(pygame.Color(255,0,255,int(m[x][y] * 128))) # Draw in purple
+                                               self.window.blit(square_img, mp)
+                                               font = pygame.font.Font(None, 14)
+                                               text = font.render("{0:.2f}".format(round(m[x][y],2)), 1, pygame.Color(0,0,0))
+                                               self.window.blit(text, mp)
+                               
+               # If a square is selected, highlight all pieces that have a probability to reach it
+               with self.lock:                         
+                       m = self.state["coverage"]
+               if m != None:
+                       for p in m:
+                               mp = [self.grid_sz[i] * [p.x,p.y][i] for i in range(2)]
+                               square_img.fill(pygame.Color(0,255,255, int(m[p] * 196))) # Draw in pale blue
+                               self.window.blit(square_img, mp)
+                               font = pygame.font.Font(None, 14)
+                               text = font.render("{0:.2f}".format(round(m[p],2)), 1, pygame.Color(0,0,0))
+                               self.window.blit(text, mp)
+                       # Draw a square where the mouse is
+               # This also serves to indicate who's turn it is
+               
+               if isinstance(game, GameThread):
+                       with game.lock:
+                               turn = game.state["turn"]
+               else:
+                       turn = None
+
+               if isinstance(turn, HumanPlayer):
+                       mp = [self.grid_sz[i] * int(pygame.mouse.get_pos()[i] / self.grid_sz[i]) for i in range(2)]
+                       square_img.fill(pygame.Color(0,0,255,128))
+                       if turn.colour == "white":
+                               c = pygame.Color(255,255,255)
+                       else:
+                               c = pygame.Color(0,0,0)
+                       pygame.draw.rect(square_img, c, (0,0,self.grid_sz[0], self.grid_sz[1]), self.grid_sz[0]/10)
+                       self.window.blit(square_img, mp)
+
+       # Message in a bottle
+       def message(self, string, pos = None, colour = None, font_size = 32):
+               font = pygame.font.Font(None, font_size)
+               if colour == None:
+                       colour = pygame.Color(0,0,0)
+               
+               text = font.render(string, 1, colour)
+       
+
+               s = pygame.Surface((text.get_width(), text.get_height()), pygame.SRCALPHA)
+               s.fill(pygame.Color(128,128,128))
+
+               tmp = self.window.get_size()
+
+               if pos == None:
+                       pos = (tmp[0] / 2 - text.get_width() / 2, tmp[1] / 3 - text.get_height())
+               else:
+                       pos = (pos[0]*text.get_width() + tmp[0] / 2 - text.get_width() / 2, pos[1]*text.get_height() + tmp[1] / 3 - text.get_height())
+               
+
+               rect = (pos[0], pos[1], text.get_width(), text.get_height())
+       
+               pygame.draw.rect(self.window, pygame.Color(0,0,0), pygame.Rect(rect), 1)
+               self.window.blit(s, pos)
+               self.window.blit(text, pos)
+
+               pygame.display.flip()
+
+       def getstr(self, prompt = None):
+               result = ""
+               while True:
+                       #print "LOOP"
+                       if prompt != None:
+                               self.message(prompt)
+                               self.message(result, pos = (0, 1))
+       
+                       for event in pygame.event.get():
+                               if event.type == pygame.KEYDOWN:
+                                       if chr(event.key) == '\r':
+                                               return result
+                                       result += str(chr(event.key))
diff --git a/qchess/main.py b/qchess/main.py
new file mode 100644 (file)
index 0000000..a0a40db
--- /dev/null
@@ -0,0 +1,62 @@
+#!/usr/bin/python -u
+
+# Do you know what the -u does? It unbuffers stdin and stdout
+# I can't remember why, but last year things broke without that
+
+"""
+       UCC::Progcomp 2013 Quantum Chess game
+       @author Sam Moore [SZM] "matches"
+       @copyright The University Computer Club, Incorporated
+               (ie: You can copy it for not for profit purposes)
+"""
+
+# system python modules or whatever they are called
+import sys
+import os
+import time
+
+turn_delay = 0.5
+[game, graphics] = [None, None]
+
+
+# The main function! It does the main stuff!
+def main(argv):
+
+       # Apparently python will silently treat things as local unless you do this
+       # But (here's the fun part), only if you actually modify the variable.
+       # For example, all those 'if graphics_enabled' conditions work in functions that never say it is global
+       # Anyone who says "You should never use a global variable" can die in a fire
+       global game
+       global graphics
+
+       # Magical argument parsing goes here
+       if len(argv) == 1:
+               players = [HumanPlayer("saruman", "white"), AgentRandom("sabbath", "black")]
+       elif len(argv) == 2:
+               players = [AgentPlayer(argv[1], "white"), HumanPlayer("shadow", "black"), ]
+       elif len(argv) == 3:
+               players = [AgentPlayer(argv[1], "white"), AgentPlayer(argv[2], "black")]
+
+       # Construct the board!
+       board = Board(style = "quantum")
+       game = GameThread(board, players) # Construct a GameThread! Make it global! Damn the consequences!
+       #try:
+       if True:
+               graphics = GraphicsThread(board, grid_sz = [64,64]) # Construct a GraphicsThread! I KNOW WHAT I'M DOING! BEAR WITH ME!
+               game.start() # This runs in a new thread
+       #except NameError:
+       #       print "Run game in main thread"
+       #       game.run() # Run game in the main thread (no need for joining)
+       #       return game.error
+       #except Exception, e:
+       #       raise e
+       #else:
+       #       print "Normal"
+               graphics.run()
+               game.join()
+               return game.error + graphics.error
+
+
+# This is how python does a main() function...
+if __name__ == "__main__":
+       sys.exit(main(sys.argv))
diff --git a/qchess/piece.py b/qchess/piece.py
new file mode 100644 (file)
index 0000000..5fd3943
--- /dev/null
@@ -0,0 +1,89 @@
+import random
+
+# I know using non-abreviated strings is inefficient, but this is python, who cares?
+# Oh, yeah, this stores the number of pieces of each type in a normal chess game
+piece_types = {"pawn" : 8, "bishop" : 2, "knight" : 2, "rook" : 2, "queen" : 1, "king" : 1, "unknown" : 0}
+
+# Class to represent a quantum chess piece
+class Piece():
+       def __init__(self, colour, x, y, types):
+               self.colour = colour # Colour (string) either "white" or "black"
+               self.x = x # x coordinate (0 - 8), none of this fancy 'a', 'b' shit here
+               self.y = y # y coordinate (0 - 8)
+               self.types = types # List of possible types the piece can be (should just be two)
+               self.current_type = "unknown" # Current type
+               self.choice = -1 # Index of the current type in self.types (-1 = unknown type)
+               self.types_revealed = [True, False] # Whether the types are known (by default the first type is always known at game start)
+               
+
+               # 
+               self.last_state = None
+               self.move_pattern = None
+
+               
+
+       def init_from_copy(self, c):
+               self.colour = c.colour
+               self.x = c.x
+               self.y = c.y
+               self.types = c.types[:]
+               self.current_type = c.current_type
+               self.choice = c.choice
+               self.types_revealed = c.types_revealed[:]
+
+               self.last_state = None
+               self.move_pattern = None
+
+       
+
+       # Make a string for the piece (used for debug)
+       def __str__(self):
+               return str(self.current_type) + " " + str(self.types) + " at " + str(self.x) + ","+str(self.y)  
+
+       # Draw the piece in a pygame surface
+       def draw(self, window, grid_sz = [80,80]):
+
+               # First draw the image corresponding to self.current_type
+               img = images[self.colour][self.current_type]
+               rect = img.get_rect()
+               offset = [-rect.width/2,-3*rect.height/4] 
+               window.blit(img, (self.x * grid_sz[0] + grid_sz[0]/2 + offset[0], self.y * grid_sz[1] + grid_sz[1]/2 + offset[1]))
+               
+               
+               # Draw the two possible types underneath the current_type image
+               for i in range(len(self.types)):
+                       if self.types_revealed[i] == True:
+                               img = small_images[self.colour][self.types[i]]
+                       else:
+                               img = small_images[self.colour]["unknown"] # If the type hasn't been revealed, show a placeholder
+
+                       
+                       rect = img.get_rect()
+                       offset = [-rect.width/2,-rect.height/2] 
+                       
+                       if i == 0:
+                               target = (self.x * grid_sz[0] + grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])                             
+                       else:
+                               target = (self.x * grid_sz[0] + 4*grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])                           
+                               
+                       window.blit(img, target) # Blit shit
+       
+       # Collapses the wave function!          
+       def select(self):
+               if self.current_type == "unknown":
+                       self.choice = random.randint(0,1)
+                       self.current_type = self.types[self.choice]
+                       self.types_revealed[self.choice] = True
+               return self.choice
+
+       # Uncollapses (?) the wave function!
+       def deselect(self):
+               #print "Deselect called"
+               if (self.x + self.y) % 2 != 0:
+                       if (self.types[0] != self.types[1]) or (self.types_revealed[0] == False or self.types_revealed[1] == False):
+                               self.current_type = "unknown"
+                               self.choice = -1
+                       else:
+                               self.choice = 0 # Both the two types are the same
+
+       # The sad moment when you realise that you do not understand anything about a subject you studied for 4 years...
diff --git a/qchess/player.py b/qchess/player.py
new file mode 100644 (file)
index 0000000..4a3fa48
--- /dev/null
@@ -0,0 +1,158 @@
+import subprocess
+
+
+
+# A player who can't play
+class Player():
+       def __init__(self, name, colour):
+               self.name = name
+               self.colour = colour
+
+# Player that runs from another process
+class AgentPlayer(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               self.p = subprocess.Popen(name, stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=sys.stderr)
+               try:
+                       self.p.stdin.write(colour + "\n")
+               except:
+                       raise Exception("UNRESPONSIVE")
+
+       def select(self):
+               
+               #try:
+               self.p.stdin.write("SELECTION?\n")
+               line = self.p.stdout.readline().strip("\r\n ")
+               #except:
+               #       raise Exception("UNRESPONSIVE")
+               try:
+                       result = map(int, line.split(" "))
+               except:
+                       raise Exception("GIBBERISH \"" + str(line) + "\"")
+               return result
+
+       def update(self, result):
+               #print "Update " + str(result) + " called for AgentPlayer"
+#              try:
+               self.p.stdin.write(result + "\n")
+#              except:
+#              raise Exception("UNRESPONSIVE")
+
+       def get_move(self):
+               
+               try:
+                       self.p.stdin.write("MOVE?\n")
+                       line = self.p.stdout.readline().strip("\r\n ")
+               except:
+                       raise Exception("UNRESPONSIVE")
+               try:
+                       result = map(int, line.split(" "))
+               except:
+                       raise Exception("GIBBERISH \"" + str(line) + "\"")
+               return result
+
+       def quit(self, final_result):
+               try:
+                       self.p.stdin.write("QUIT " + final_result + "\n")
+               except:
+                       self.p.kill()
+
+# So you want to be a player here?
+class HumanPlayer(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               
+       # Select your preferred account
+       def select(self):
+               if isinstance(graphics, GraphicsThread):
+                       # Basically, we let the graphics thread do some shit and then return that information to the game thread
+                       graphics.cond.acquire()
+                       # We wait for the graphics thread to select a piece
+                       while graphics.stopped() == False and graphics.state["select"] == None:
+                               graphics.cond.wait() # The difference between humans and machines is that humans sleep
+                       select = graphics.state["select"]
+                       
+                       
+                       graphics.cond.release()
+                       if graphics.stopped():
+                               return [-1,-1]
+                       return [select.x, select.y]
+               else:
+                       # Since I don't display the board in this case, I'm not sure why I filled it in...
+                       while True:
+                               sys.stdout.write("SELECTION?\n")
+                               try:
+                                       p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
+                               except:
+                                       sys.stderr.write("ILLEGAL GIBBERISH\n")
+                                       continue
+       # It's your move captain
+       def get_move(self):
+               if isinstance(graphics, GraphicsThread):
+                       graphics.cond.acquire()
+                       while graphics.stopped() == False and graphics.state["dest"] == None:
+                               graphics.cond.wait()
+                       graphics.cond.release()
+                       
+                       return graphics.state["dest"]
+               else:
+
+                       while True:
+                               sys.stdout.write("MOVE?\n")
+                               try:
+                                       p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
+                               except:
+                                       sys.stderr.write("ILLEGAL GIBBERISH\n")
+                                       continue
+
+       # Are you sure you want to quit?
+       def quit(self, final_result):
+               sys.stdout.write("QUIT " + final_result + "\n")
+
+       # Completely useless function
+       def update(self, result):
+               if isinstance(graphics, GraphicsThread):
+                       pass
+               else:
+                       sys.stdout.write(result + "\n") 
+
+
+# Player that makes random moves
+class AgentRandom(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               self.choice = None
+
+               self.board = Board(style = "agent")
+
+       def select(self):
+               while True:
+                       self.choice = self.board.pieces[self.colour][random.randint(0, len(self.board.pieces[self.colour])-1)]
+                       all_moves = []
+                       # Check that the piece has some possibility to move
+                       tmp = self.choice.current_type
+                       if tmp == "unknown": # For unknown pieces, try both types
+                               for t in self.choice.types:
+                                       if t == "unknown":
+                                               continue
+                                       self.choice.current_type = t
+                                       all_moves += self.board.possible_moves(self.choice)
+                       else:
+                               all_moves = self.board.possible_moves(self.choice)
+                       self.choice.current_type = tmp
+                       if len(all_moves) > 0:
+                               break
+               return [self.choice.x, self.choice.y]
+
+       def get_move(self):
+               moves = self.board.possible_moves(self.choice)
+               move = moves[random.randint(0, len(moves)-1)]
+               return move
+
+       def update(self, result):
+               #sys.stderr.write(sys.argv[0] + " : Update board for AgentRandom\n")
+               self.board.update(result)
+               self.board.verify()
+
+       def quit(self, final_result):
+               pass
diff --git a/qchess/qchess.py b/qchess/qchess.py
new file mode 100755 (executable)
index 0000000..db73c94
--- /dev/null
@@ -0,0 +1,1144 @@
+#!/usr/bin/python -u
+# +++ board.py +++ #
+[w,h] = [8,8] # Width and height of board(s)
+
+# Class to represent a quantum chess board
+class Board():
+       # Initialise; if master=True then the secondary piece types are assigned
+       #       Otherwise, they are left as unknown
+       #       So you can use this class in Agent programs, and fill in the types as they are revealed
+       def __init__(self, style="agent"):
+               self.style = style
+               self.pieces = {"white" : [], "black" : []}
+               self.grid = [[None] * w for _ in range(h)] # 2D List (you can get arrays in python, somehow, but they scare me)
+               self.unrevealed_types = {"white" : piece_types.copy(), "black" : piece_types.copy()}
+               self.king = {"white" : None, "black" : None} # We need to keep track of the king, because he is important
+               for c in ["black", "white"]:
+                       del self.unrevealed_types[c]["unknown"]
+
+               # Add all the pieces with known primary types
+               for i in range(0, 2):
+                       
+                       s = ["black", "white"][i]
+                       c = self.pieces[s]
+                       y = [0, h-1][i]
+
+                       c.append(Piece(s, 0, y, ["rook"]))
+                       c.append(Piece(s, 1, y, ["knight"]))
+                       c.append(Piece(s, 2, y, ["bishop"]))
+                       k = Piece(s, 3, y, ["king", "king"]) # There can only be one ruler!
+                       k.types_revealed[1] = True
+                       k.current_type = "king"
+                       self.king[s] = k
+                       c.append(k)
+                       c.append(Piece(s, 4, y, ["queen"])) # Apparently he may have multiple wives though.
+                       c.append(Piece(s, 5, y, ["bishop"]))
+                       c.append(Piece(s, 6, y, ["knight"]))
+                       c.append(Piece(s, 7, y, ["rook"]))
+                       
+                       if y == 0: 
+                               y += 1 
+                       else: 
+                               y -= 1
+                       
+                       # Lots of pawn
+                       for x in range(0, w):
+                               c.append(Piece(s, x, y, ["pawn"]))
+
+                       types_left = {}
+                       types_left.update(piece_types)
+                       del types_left["king"] # We don't want one of these randomly appearing (although it might make things interesting...)
+                       del types_left["unknown"] # We certainly don't want these!
+                       for piece in c:
+                               # Add to grid
+                               self.grid[piece.x][piece.y] = piece 
+
+                               if len(piece.types) > 1:
+                                       continue                                
+                               if style == "agent": # Assign placeholder "unknown" secondary type
+                                       piece.types.append("unknown")
+                                       continue
+
+                               elif style == "quantum":
+                                       # The master allocates the secondary types
+                                       choice = types_left.keys()[random.randint(0, len(types_left.keys())-1)]
+                                       types_left[choice] -= 1
+                                       if types_left[choice] <= 0:
+                                               del types_left[choice]
+                                       piece.types.append(choice)
+                               elif style == "classical":
+                                       piece.types.append(piece.types[0])
+                                       piece.current_type = piece.types[0]
+                                       piece.types_revealed[1] = True
+                                       piece.choice = 0
+
+       def clone(self):
+               newboard = Board(master = False)
+               newpieces = newboard.pieces["white"] + newboard.pieces["black"]
+               mypieces = self.pieces["white"] + self.pieces["black"]
+
+               for i in range(len(mypieces)):
+                       newpieces[i].init_from_copy(mypieces[i])
+                       
+
+       def display_grid(self, window = None, grid_sz = [80,80]):
+               if window == None:
+                       return # I was considering implementing a text only display, then I thought "Fuck that"
+
+               # The indentation is getting seriously out of hand...
+               for x in range(0, w):
+                       for y in range(0, h):
+                               if (x + y) % 2 == 0:
+                                       c = pygame.Color(200,200,200)
+                               else:
+                                       c = pygame.Color(64,64,64)
+                               pygame.draw.rect(window, c, (x*grid_sz[0], y*grid_sz[1], (x+1)*grid_sz[0], (y+1)*grid_sz[1]))
+
+       def display_pieces(self, window = None, grid_sz = [80,80]):
+               if window == None:
+                       return
+               for p in self.pieces["white"] + self.pieces["black"]:
+                       p.draw(window, grid_sz)
+
+       # Draw the board in a pygame window
+       def display(self, window = None):
+               self.display_grid(window)
+               self.display_pieces(window)
+               
+
+               
+
+       def verify(self):
+               for x in range(w):
+                       for y in range(h):
+                               if self.grid[x][y] == None:
+                                       continue
+                               if (self.grid[x][y].x != x or self.grid[x][y].y != y):
+                                       raise Exception(sys.argv[0] + ": MISMATCH " + str(self.grid[x][y]) + " should be at " + str(x) + "," + str(y))
+
+       # Select a piece on the board (colour is the colour of whoever is doing the selecting)
+       def select(self, x,y, colour=None):
+               if not self.on_board(x, y): # Get on board everyone!
+                       raise Exception("BOUNDS")
+
+               piece = self.grid[x][y]
+               if piece == None:
+                       raise Exception("EMPTY")
+
+               if colour != None and piece.colour != colour:
+                       raise Exception("COLOUR")
+
+               # I'm not quite sure why I made this return a string, but screw logical design
+               return str(x) + " " + str(y) + " " + str(piece.select()) + " " + str(piece.current_type)
+
+
+       # Update the board when a piece has been selected
+       # "type" is apparently reserved, so I'll use "state"
+       def update_select(self, x, y, type_index, state):
+               piece = self.grid[x][y]
+               if piece.types[type_index] == "unknown":
+                       if not state in self.unrevealed_types[piece.colour].keys():
+                               raise Exception("SANITY: Too many " + piece.colour + " " + state + "s")
+                       self.unrevealed_types[piece.colour][state] -= 1
+                       if self.unrevealed_types[piece.colour][state] <= 0:
+                               del self.unrevealed_types[piece.colour][state]
+
+               piece.types[type_index] = state
+               piece.types_revealed[type_index] = True
+               piece.current_type = state
+
+               if len(self.possible_moves(piece)) <= 0:
+                       piece.deselect() # Piece can't move; deselect it
+               
+       # Update the board when a piece has been moved
+       def update_move(self, x, y, x2, y2):
+               piece = self.grid[x][y]
+               self.grid[x][y] = None
+               taken = self.grid[x2][y2]
+               if taken != None:
+                       if taken.current_type == "king":
+                               self.king[taken.colour] = None
+                       self.pieces[taken.colour].remove(taken)
+               self.grid[x2][y2] = piece
+               piece.x = x2
+               piece.y = y2
+
+               # If the piece is a pawn, and it reaches the final row, it becomes a queen
+               # I know you are supposed to get a choice
+               # But that would be effort
+               if piece.current_type == "pawn" and ((piece.colour == "white" and piece.y == 0) or (piece.colour == "black" and piece.y == h-1)):
+                       if self.style == "classical":
+                               piece.types[0] = "queen"
+                               piece.types[1] = "queen"
+                       else:
+                               piece.types[piece.choice] = "queen"
+                       piece.current_type = "queen"
+
+               piece.deselect() # Uncollapse (?) the wavefunction!
+               self.verify()   
+
+       # Update the board from a string
+       # Guesses what to do based on the format of the string
+       def update(self, result):
+               #print "Update called with \"" + str(result) + "\""
+               # String always starts with 'x y'
+               try:
+                       s = result.split(" ")
+                       [x,y] = map(int, s[0:2])        
+               except:
+                       raise Exception("GIBBERISH \""+ str(result) + "\"") # Raise expectations
+
+               piece = self.grid[x][y]
+               if piece == None:
+                       raise Exception("EMPTY")
+
+               # If a piece is being moved, the third token is '->'
+               # We could get away with just using four integers, but that wouldn't look as cool
+               if "->" in s:
+                       # Last two tokens are the destination
+                       try:
+                               [x2,y2] = map(int, s[3:])
+                       except:
+                               raise Exception("GIBBERISH \"" + str(result) + "\"") # Raise the alarm
+
+                       # Move the piece (take opponent if possible)
+                       self.update_move(x, y, x2, y2)
+                       
+               else:
+                       # Otherwise we will just assume a piece has been selected
+                       try:
+                               type_index = int(s[2]) # We need to know which of the two types the piece is in; that's the third token
+                               state = s[3] # The last token is a string identifying the type
+                       except:
+                               raise Exception("GIBBERISH \"" + result + "\"") # Throw a hissy fit
+
+                       # Select the piece
+                       self.update_select(x, y, type_index, state)
+
+               return result
+
+       # Gets each piece that could reach the given square and the probability that it could reach that square 
+       # Will include allied pieces that defend the attacker
+       def coverage(self, x, y, colour = None, reject_allied = True):
+               result = {}
+               
+               if colour == None:
+                       pieces = self.pieces["white"] + self.pieces["black"]
+               else:
+                       pieces = self.pieces[colour]
+
+               for p in pieces:
+                       prob = self.probability_grid(p, reject_allied)[x][y]
+                       if prob > 0:
+                               result.update({p : prob})
+               
+               self.verify()
+               return result
+
+
+               
+
+
+       # Associates each square with a probability that the piece could move into it
+       # Look, I'm doing all the hard work for you here...
+       def probability_grid(self, p, reject_allied = True):
+               
+               result = [[0.0] * w for _ in range(h)]
+               if not isinstance(p, Piece):
+                       return result
+
+               if p.current_type != "unknown":
+                       #sys.stderr.write(sys.argv[0] + ": " + str(p) + " moves " + str(self.possible_moves(p, reject_allied)) + "\n")
+                       for point in self.possible_moves(p, reject_allied):
+                               result[point[0]][point[1]] = 1.0
+                       return result
+               
+               
+               for i in range(len(p.types)):
+                       t = p.types[i]
+                       prob = 0.5
+                       if t == "unknown" or p.types_revealed[i] == False:
+                               total_types = 0
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       total_types += self.unrevealed_types[p.colour][t2]
+                               
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       prob2 = float(self.unrevealed_types[p.colour][t2]) / float(total_types)
+                                       p.current_type = t2
+                                       for point in self.possible_moves(p, reject_allied):
+                                               result[point[0]][point[1]] += prob2 * prob
+                               
+                       else:
+                               p.current_type = t
+                               for point in self.possible_moves(p, reject_allied):
+                                       result[point[0]][point[1]] += prob
+               
+               self.verify()
+               p.current_type = "unknown"
+               return result
+
+       def prob_is_type(self, p, state):
+               prob = 0.5
+               result = 0
+               for i in range(len(p.types)):
+                       t = p.types[i]
+                       if t == state:
+                               result += prob
+                               continue        
+                       if t == "unknown" or p.types_revealed[i] == False:
+                               total_prob = 0
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       total_prob += self.unrevealed_types[p.colour][t2]
+                               for t2 in self.unrevealed_types[p.colour].keys():
+                                       if t2 == state:
+                                               result += prob * float(self.unrevealed_types[p.colour][t2]) / float(total_prob)
+                               
+
+
+       # Get all squares that the piece could move into
+       # This is probably inefficient, but I looked at some sample chess games and they seem to actually do things this way
+       # reject_allied indicates whether squares occupied by allied pieces will be removed
+       # (set to false to check for defense)
+       def possible_moves(self, p, reject_allied = True):
+               result = []
+               if p == None:
+                       return result
+
+               
+               if p.current_type == "unknown":
+                       raise Exception("SANITY: Piece state unknown")
+                       # The below commented out code causes things to break badly
+                       #for t in p.types:
+                       #       if t == "unknown":
+                       #               continue
+                       #       p.current_type = t
+                       #       result += self.possible_moves(p)                                                
+                       #p.current_type = "unknown"
+                       #return result
+
+               if p.current_type == "king":
+                       result = [[p.x-1,p.y],[p.x+1,p.y],[p.x,p.y-1],[p.x,p.y+1], [p.x-1,p.y-1],[p.x-1,p.y+1],[p.x+1,p.y-1],[p.x+1,p.y+1]]
+               elif p.current_type == "queen":
+                       for d in [[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]:
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "bishop":
+                       for d in [[-1,-1],[-1,1],[1,-1],[1,1]]: # There's a reason why bishops move diagonally
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "rook":
+                       for d in [[-1,0],[1,0],[0,-1],[0,1]]:
+                               result += self.scan(p.x, p.y, d[0], d[1])
+               elif p.current_type == "knight":
+                       # I would use two lines, but I'm not sure how python likes that
+                       result = [[p.x-2, p.y-1], [p.x-2, p.y+1], [p.x+2, p.y-1], [p.x+2,p.y+1], [p.x-1,p.y-2], [p.x-1, p.y+2],[p.x+1,p.y-2],[p.x+1,p.y+2]]
+               elif p.current_type == "pawn":
+                       if p.colour == "white":
+                               
+                               # Pawn can't move forward into occupied square
+                               if self.on_board(p.x, p.y-1) and self.grid[p.x][p.y-1] == None:
+                                       result = [[p.x,p.y-1]]
+                               for f in [[p.x-1,p.y-1],[p.x+1,p.y-1]]:
+                                       if not self.on_board(f[0], f[1]):
+                                               continue
+                                       if self.grid[f[0]][f[1]] != None:  # Pawn can take diagonally
+                                               result.append(f)
+                               if p.y == h-2:
+                                       # Slightly embarrassing if the pawn jumps over someone on its first move...
+                                       if self.grid[p.x][p.y-1] == None and self.grid[p.x][p.y-2] == None:
+                                               result.append([p.x, p.y-2])
+                       else:
+                               # Vice versa for the black pawn
+                               if self.on_board(p.x, p.y+1) and self.grid[p.x][p.y+1] == None:
+                                       result = [[p.x,p.y+1]]
+
+                               for f in [[p.x-1,p.y+1],[p.x+1,p.y+1]]:
+                                       if not self.on_board(f[0], f[1]):
+                                               continue
+                                       if self.grid[f[0]][f[1]] != None:
+                                               #sys.stderr.write(sys.argv[0] + " : "+str(p) + " can take " + str(self.grid[f[0]][f[1]]) + "\n")
+                                               result.append(f)
+                               if p.y == 1:
+                                       if self.grid[p.x][p.y+1] == None and self.grid[p.x][p.y+2] == None:
+                                               result.append([p.x, p.y+2])
+
+                       #sys.stderr.write(sys.argv[0] + " : possible_moves for " + str(p) + " " + str(result) + "\n")
+
+               # Remove illegal moves
+               # Note: The result[:] creates a copy of result, so that the result.remove calls don't fuck things up
+               for point in result[:]: 
+
+                       if (point[0] < 0 or point[0] >= w) or (point[1] < 0 or point[1] >= h):
+                               result.remove(point) # Remove locations outside the board
+                               continue
+                       g = self.grid[point[0]][point[1]]
+                       
+                       if g != None and (g.colour == p.colour and reject_allied == True):
+                               result.remove(point) # Remove allied pieces
+               
+               self.verify()
+               return result
+
+
+       # Scans in a direction until it hits a piece, returns all squares in the line
+       # (includes the final square (which contains a piece), but not the original square)
+       def scan(self, x, y, vx, vy):
+               p = []
+                       
+               xx = x
+               yy = y
+               while True:
+                       xx += vx
+                       yy += vy
+                       if not self.on_board(xx, yy):
+                               break
+                       if not [xx,yy] in p:
+                               p.append([xx, yy])
+                       g = self.grid[xx][yy]
+                       if g != None:
+                               return p        
+                                       
+               return p
+
+
+
+       # I typed the full statement about 30 times before writing this function...
+       def on_board(self, x, y):
+               return (x >= 0 and x < w) and (y >= 0 and y < h)
+# --- board.py --- #
+# +++ game.py +++ #
+
+# A thread that runs the game
+class GameThread(StoppableThread):
+       def __init__(self, board, players):
+               StoppableThread.__init__(self)
+               self.board = board
+               self.players = players
+               self.state = {"turn" : None} # The game state
+               self.error = 0 # Whether the thread exits with an error
+               self.lock = threading.RLock() #lock for access of self.state
+               self.cond = threading.Condition() # conditional for some reason, I forgot
+               self.final_result = ""
+
+       # Run the game (run in new thread with start(), run in current thread with run())
+       def run(self):
+               result = ""
+               while not self.stopped():
+                       
+                       for p in self.players:
+                               with self.lock:
+                                       self.state["turn"] = p # "turn" contains the player who's turn it is
+                               #try:
+                               if True:
+                                       [x,y] = p.select() # Player selects a square
+                                       if self.stopped():
+                                               break
+
+                                       result = self.board.select(x, y, colour = p.colour)                             
+                                       for p2 in self.players:
+                                               p2.update(result) # Inform players of what happened
+
+
+
+                                       target = self.board.grid[x][y]
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["moves"] = self.board.possible_moves(target)
+                                                       graphics.state["select"] = target
+
+                                       time.sleep(turn_delay)
+
+
+                                       if len(self.board.possible_moves(target)) == 0:
+                                               #print "Piece cannot move"
+                                               target.deselect()
+                                               if isinstance(graphics, GraphicsThread):
+                                                       with graphics.lock:
+                                                               graphics.state["moves"] = None
+                                                               graphics.state["select"] = None
+                                                               graphics.state["dest"] = None
+                                               continue
+
+                                       try:
+                                               [x2,y2] = p.get_move() # Player selects a destination
+                                       except:
+                                               self.stop()
+
+                                       if self.stopped():
+                                               break
+
+                                       result = self.board.update_move(x, y, x2, y2)
+                                       for p2 in self.players:
+                                               p2.update(str(x) + " " + str(y) + " -> " + str(x2) + " " + str(y2)) # Inform players of what happened
+
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["moves"] = [[x2,y2]]
+
+                                       time.sleep(turn_delay)
+
+                                       if isinstance(graphics, GraphicsThread):
+                                               with graphics.lock:
+                                                       graphics.state["select"] = None
+                                                       graphics.state["dest"] = None
+                                                       graphics.state["moves"] = None
+
+                       # Commented out exception stuff for now, because it makes it impossible to tell if I made an IndentationError somewhere
+                               #except Exception,e:
+                                       #result = "ILLEGAL " + e.message
+                                       #sys.stderr.write(result + "\n")
+                                       
+                                       #self.stop()
+                                       #with self.lock:
+                                       #       self.final_result = self.state["turn"].colour + " " + "ILLEGAL"
+
+                               if self.board.king["black"] == None:
+                                       if self.board.king["white"] == None:
+                                               with self.lock:
+                                                       self.final_result = "DRAW"
+                                       else:
+                                               with self.lock:
+                                                       self.final_result = "white"
+                                       self.stop()
+                               elif self.board.king["white"] == None:
+                                       with self.lock:
+                                               self.final_result = "black"
+                                       self.stop()
+                                               
+
+                               if self.stopped():
+                                       break
+
+
+               for p2 in self.players:
+                       p2.quit(self.final_result)
+
+               graphics.stop()
+
+       
+
+
+def opponent(colour):
+       if colour == "white":
+               return "black"
+       else:
+               return "white"
+# --- game.py --- #
+# +++ graphics.py +++ #
+import pygame
+
+# Dictionary that stores the unicode character representations of the different pieces
+# Chess was clearly the reason why unicode was invented
+# For some reason none of the pygame chess implementations I found used them!
+piece_char = {"white" : {"king" : u'\u2654',
+                        "queen" : u'\u2655',
+                        "rook" : u'\u2656',
+                        "bishop" : u'\u2657',
+                        "knight" : u'\u2658',
+                        "pawn" : u'\u2659',
+                        "unknown" : '?'},
+               "black" : {"king" : u'\u265A',
+                        "queen" : u'\u265B',
+                        "rook" : u'\u265C',
+                        "bishop" : u'\u265D',
+                        "knight" : u'\u265E',
+                        "pawn" : u'\u265F',
+                        "unknown" : '?'}}
+
+images = {"white" : {}, "black" : {}}
+small_images = {"white" : {}, "black" : {}}
+
+# A thread to make things pretty
+class GraphicsThread(StoppableThread):
+       def __init__(self, board, title = "UCC::Progcomp 2013 - QChess", grid_sz = [80,80]):
+               StoppableThread.__init__(self)
+               
+               self.board = board
+               pygame.init()
+               self.window = pygame.display.set_mode((grid_sz[0] * w, grid_sz[1] * h))
+               pygame.display.set_caption(title)
+               self.grid_sz = grid_sz[:]
+               self.state = {"select" : None, "dest" : None, "moves" : None, "overlay" : None, "coverage" : None}
+               self.error = 0
+               self.lock = threading.RLock()
+               self.cond = threading.Condition()
+
+               # Get the font sizes
+               l_size = 5*(self.grid_sz[0] / 8)
+               s_size = 3*(self.grid_sz[0] / 8)
+               for p in piece_types.keys():
+                       c = "black"
+                       images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0))})
+                       small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0))})
+                       c = "white"
+
+                       images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size+1).render(piece_char["black"][p], True,(255,255,255))})
+                       images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0)),(0,0))
+                       small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size+1).render(piece_char["black"][p],True,(255,255,255))})
+                       small_images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0)),(0,0))
+
+               
+       
+
+
+       # On the run from the world
+       def run(self):
+               
+               while not self.stopped():
+                       
+                       self.board.display_grid(window = self.window, grid_sz = self.grid_sz) # Draw the board
+
+                       self.overlay()
+
+                       self.board.display_pieces(window = self.window, grid_sz = self.grid_sz) # Draw the board                
+
+                       pygame.display.flip()
+
+                       for event in pygame.event.get():
+                               if event.type == pygame.QUIT:
+                                       if isinstance(game, GameThread):
+                                               with game.lock:
+                                                       game.final_result = "terminated"
+                                               game.stop()
+                                       self.stop()
+                                       break
+                               elif event.type == pygame.MOUSEBUTTONDOWN:
+                                       self.mouse_down(event)
+                               elif event.type == pygame.MOUSEBUTTONUP:
+                                       self.mouse_up(event)
+                                       
+
+                               
+                                                               
+                                               
+                                               
+               self.message("Game ends, result \""+str(game.final_result) + "\"")
+               time.sleep(1)
+
+               # Wake up anyone who is sleeping
+               self.cond.acquire()
+               self.cond.notify()
+               self.cond.release()
+
+               pygame.quit() # Time to say goodbye
+
+       # Mouse release event handler
+       def mouse_up(self, event):
+               if event.button == 3:
+                       with self.lock:
+                               self.state["overlay"] = None
+               elif event.button == 2:
+                       with self.lock:
+                               self.state["coverage"] = None   
+
+       # Mouse click event handler
+       def mouse_down(self, event):
+               if event.button == 1:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(2)]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                                       p = None
+                                       
+                                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       s = self.board.grid[m[0]][m[1]]
+                                       select = self.state["select"]
+                               if select == None:
+                                       if s != None and s.colour != p.colour:
+                                               self.message("Wrong colour") # Look at all this user friendliness!
+                                               time.sleep(1)
+                                               return
+                                       # Notify human player of move
+                                       self.cond.acquire()
+                                       with self.lock:
+                                               self.state["select"] = s
+                                               self.state["dest"] = None
+                                       self.cond.notify()
+                                       self.cond.release()
+                                       return
+
+                               if select == None:
+                                       return
+                                               
+                                       
+                               if self.state["moves"] == None:
+                                       return
+
+                               if not m in self.state["moves"]:
+                                       self.message("Illegal Move") # I still think last year's mouse interface was adequate
+                                       time.sleep(2)
+                                       return
+                                               
+                               with self.lock:
+                                       if self.state["dest"] == None:
+                                               self.cond.acquire()
+                                               self.state["dest"] = m
+                                               self.state["select"] = None
+                                               self.state["moves"] = None
+                                               self.cond.notify()
+                                               self.cond.release()
+               elif event.button == 3:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                               p = None
+                                       
+                                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       self.state["overlay"] = self.board.probability_grid(self.board.grid[m[0]][m[1]])
+
+               elif event.button == 2:
+                       m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
+                       if isinstance(game, GameThread):
+                               with game.lock:
+                                       p = game.state["turn"]
+                       else:
+                               p = None
+                       
+                       
+                       if isinstance(p, HumanPlayer):
+                               with self.lock:
+                                       self.state["coverage"] = self.board.coverage(m[0], m[1], None, self.state["select"])
+                               
+       # Draw the overlay
+       def overlay(self):
+
+               square_img = pygame.Surface((self.grid_sz[0], self.grid_sz[1]),pygame.SRCALPHA) # A square image
+               # Draw square over the selected piece
+               with self.lock:
+                       select = self.state["select"]
+               if select != None:
+                       mp = [self.grid_sz[i] * [select.x, select.y][i] for i in range(len(self.grid_sz))]
+                       square_img.fill(pygame.Color(0,255,0,64))
+                       self.window.blit(square_img, mp)
+               # If a piece is selected, draw all reachable squares
+               # (This quality user interface has been patented)
+               with self.lock:
+                       m = self.state["moves"]
+               if m != None:
+                       square_img.fill(pygame.Color(255,0,0,128)) # Draw them in blood red
+                       for move in m:
+                               mp = [self.grid_sz[i] * move[i] for i in range(2)]
+                               self.window.blit(square_img, mp)
+               # If a piece is overlayed, show all squares that it has a probability to reach
+               with self.lock:
+                       m = self.state["overlay"]
+               if m != None:
+                       for x in range(w):
+                               for y in range(h):
+                                       if m[x][y] > 0.0:
+                                               mp = [self.grid_sz[i] * [x,y][i] for i in range(2)]
+                                               square_img.fill(pygame.Color(255,0,255,int(m[x][y] * 128))) # Draw in purple
+                                               self.window.blit(square_img, mp)
+                                               font = pygame.font.Font(None, 14)
+                                               text = font.render("{0:.2f}".format(round(m[x][y],2)), 1, pygame.Color(0,0,0))
+                                               self.window.blit(text, mp)
+                               
+               # If a square is selected, highlight all pieces that have a probability to reach it
+               with self.lock:                         
+                       m = self.state["coverage"]
+               if m != None:
+                       for p in m:
+                               mp = [self.grid_sz[i] * [p.x,p.y][i] for i in range(2)]
+                               square_img.fill(pygame.Color(0,255,255, int(m[p] * 196))) # Draw in pale blue
+                               self.window.blit(square_img, mp)
+                               font = pygame.font.Font(None, 14)
+                               text = font.render("{0:.2f}".format(round(m[p],2)), 1, pygame.Color(0,0,0))
+                               self.window.blit(text, mp)
+                       # Draw a square where the mouse is
+               # This also serves to indicate who's turn it is
+               
+               if isinstance(game, GameThread):
+                       with game.lock:
+                               turn = game.state["turn"]
+               else:
+                       turn = None
+
+               if isinstance(turn, HumanPlayer):
+                       mp = [self.grid_sz[i] * int(pygame.mouse.get_pos()[i] / self.grid_sz[i]) for i in range(2)]
+                       square_img.fill(pygame.Color(0,0,255,128))
+                       if turn.colour == "white":
+                               c = pygame.Color(255,255,255)
+                       else:
+                               c = pygame.Color(0,0,0)
+                       pygame.draw.rect(square_img, c, (0,0,self.grid_sz[0], self.grid_sz[1]), self.grid_sz[0]/10)
+                       self.window.blit(square_img, mp)
+
+       # Message in a bottle
+       def message(self, string, pos = None, colour = None, font_size = 32):
+               font = pygame.font.Font(None, font_size)
+               if colour == None:
+                       colour = pygame.Color(0,0,0)
+               
+               text = font.render(string, 1, colour)
+       
+
+               s = pygame.Surface((text.get_width(), text.get_height()), pygame.SRCALPHA)
+               s.fill(pygame.Color(128,128,128))
+
+               tmp = self.window.get_size()
+
+               if pos == None:
+                       pos = (tmp[0] / 2 - text.get_width() / 2, tmp[1] / 3 - text.get_height())
+               else:
+                       pos = (pos[0]*text.get_width() + tmp[0] / 2 - text.get_width() / 2, pos[1]*text.get_height() + tmp[1] / 3 - text.get_height())
+               
+
+               rect = (pos[0], pos[1], text.get_width(), text.get_height())
+       
+               pygame.draw.rect(self.window, pygame.Color(0,0,0), pygame.Rect(rect), 1)
+               self.window.blit(s, pos)
+               self.window.blit(text, pos)
+
+               pygame.display.flip()
+
+       def getstr(self, prompt = None):
+               result = ""
+               while True:
+                       #print "LOOP"
+                       if prompt != None:
+                               self.message(prompt)
+                               self.message(result, pos = (0, 1))
+       
+                       for event in pygame.event.get():
+                               if event.type == pygame.KEYDOWN:
+                                       if chr(event.key) == '\r':
+                                               return result
+                                       result += str(chr(event.key))
+# --- graphics.py --- #
+# +++ main.py +++ #
+#!/usr/bin/python -u
+
+# Do you know what the -u does? It unbuffers stdin and stdout
+# I can't remember why, but last year things broke without that
+
+"""
+       UCC::Progcomp 2013 Quantum Chess game
+       @author Sam Moore [SZM] "matches"
+       @copyright The University Computer Club, Incorporated
+               (ie: You can copy it for not for profit purposes)
+"""
+
+# system python modules or whatever they are called
+import sys
+import os
+import time
+
+turn_delay = 0.5
+[game, graphics] = [None, None]
+
+
+# The main function! It does the main stuff!
+def main(argv):
+
+       # Apparently python will silently treat things as local unless you do this
+       # But (here's the fun part), only if you actually modify the variable.
+       # For example, all those 'if graphics_enabled' conditions work in functions that never say it is global
+       # Anyone who says "You should never use a global variable" can die in a fire
+       global game
+       global graphics
+
+       # Magical argument parsing goes here
+       if len(argv) == 1:
+               players = [HumanPlayer("saruman", "white"), AgentRandom("sabbath", "black")]
+       elif len(argv) == 2:
+               players = [AgentPlayer(argv[1], "white"), HumanPlayer("shadow", "black"), ]
+       elif len(argv) == 3:
+               players = [AgentPlayer(argv[1], "white"), AgentPlayer(argv[2], "black")]
+
+       # Construct the board!
+       board = Board(style = "quantum")
+       game = GameThread(board, players) # Construct a GameThread! Make it global! Damn the consequences!
+       #try:
+       if True:
+               graphics = GraphicsThread(board, grid_sz = [64,64]) # Construct a GraphicsThread! I KNOW WHAT I'M DOING! BEAR WITH ME!
+               game.start() # This runs in a new thread
+       #except NameError:
+       #       print "Run game in main thread"
+       #       game.run() # Run game in the main thread (no need for joining)
+       #       return game.error
+       #except Exception, e:
+       #       raise e
+       #else:
+       #       print "Normal"
+               graphics.run()
+               game.join()
+               return game.error + graphics.error
+
+
+# This is how python does a main() function...
+if __name__ == "__main__":
+       sys.exit(main(sys.argv))
+# --- main.py --- #
+# +++ piece.py +++ #
+import random
+
+# I know using non-abreviated strings is inefficient, but this is python, who cares?
+# Oh, yeah, this stores the number of pieces of each type in a normal chess game
+piece_types = {"pawn" : 8, "bishop" : 2, "knight" : 2, "rook" : 2, "queen" : 1, "king" : 1, "unknown" : 0}
+
+# Class to represent a quantum chess piece
+class Piece():
+       def __init__(self, colour, x, y, types):
+               self.colour = colour # Colour (string) either "white" or "black"
+               self.x = x # x coordinate (0 - 8), none of this fancy 'a', 'b' shit here
+               self.y = y # y coordinate (0 - 8)
+               self.types = types # List of possible types the piece can be (should just be two)
+               self.current_type = "unknown" # Current type
+               self.choice = -1 # Index of the current type in self.types (-1 = unknown type)
+               self.types_revealed = [True, False] # Whether the types are known (by default the first type is always known at game start)
+               
+
+               # 
+               self.last_state = None
+               self.move_pattern = None
+
+               
+
+       def init_from_copy(self, c):
+               self.colour = c.colour
+               self.x = c.x
+               self.y = c.y
+               self.types = c.types[:]
+               self.current_type = c.current_type
+               self.choice = c.choice
+               self.types_revealed = c.types_revealed[:]
+
+               self.last_state = None
+               self.move_pattern = None
+
+       
+
+       # Make a string for the piece (used for debug)
+       def __str__(self):
+               return str(self.current_type) + " " + str(self.types) + " at " + str(self.x) + ","+str(self.y)  
+
+       # Draw the piece in a pygame surface
+       def draw(self, window, grid_sz = [80,80]):
+
+               # First draw the image corresponding to self.current_type
+               img = images[self.colour][self.current_type]
+               rect = img.get_rect()
+               offset = [-rect.width/2,-3*rect.height/4] 
+               window.blit(img, (self.x * grid_sz[0] + grid_sz[0]/2 + offset[0], self.y * grid_sz[1] + grid_sz[1]/2 + offset[1]))
+               
+               
+               # Draw the two possible types underneath the current_type image
+               for i in range(len(self.types)):
+                       if self.types_revealed[i] == True:
+                               img = small_images[self.colour][self.types[i]]
+                       else:
+                               img = small_images[self.colour]["unknown"] # If the type hasn't been revealed, show a placeholder
+
+                       
+                       rect = img.get_rect()
+                       offset = [-rect.width/2,-rect.height/2] 
+                       
+                       if i == 0:
+                               target = (self.x * grid_sz[0] + grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])                             
+                       else:
+                               target = (self.x * grid_sz[0] + 4*grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])                           
+                               
+                       window.blit(img, target) # Blit shit
+       
+       # Collapses the wave function!          
+       def select(self):
+               if self.current_type == "unknown":
+                       self.choice = random.randint(0,1)
+                       self.current_type = self.types[self.choice]
+                       self.types_revealed[self.choice] = True
+               return self.choice
+
+       # Uncollapses (?) the wave function!
+       def deselect(self):
+               #print "Deselect called"
+               if (self.x + self.y) % 2 != 0:
+                       if (self.types[0] != self.types[1]) or (self.types_revealed[0] == False or self.types_revealed[1] == False):
+                               self.current_type = "unknown"
+                               self.choice = -1
+                       else:
+                               self.choice = 0 # Both the two types are the same
+
+       # The sad moment when you realise that you do not understand anything about a subject you studied for 4 years...
+# --- piece.py --- #
+# +++ player.py +++ #
+import subprocess
+
+
+
+# A player who can't play
+class Player():
+       def __init__(self, name, colour):
+               self.name = name
+               self.colour = colour
+
+# Player that runs from another process
+class AgentPlayer(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               self.p = subprocess.Popen(name, stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=sys.stderr)
+               try:
+                       self.p.stdin.write(colour + "\n")
+               except:
+                       raise Exception("UNRESPONSIVE")
+
+       def select(self):
+               
+               #try:
+               self.p.stdin.write("SELECTION?\n")
+               line = self.p.stdout.readline().strip("\r\n ")
+               #except:
+               #       raise Exception("UNRESPONSIVE")
+               try:
+                       result = map(int, line.split(" "))
+               except:
+                       raise Exception("GIBBERISH \"" + str(line) + "\"")
+               return result
+
+       def update(self, result):
+               #print "Update " + str(result) + " called for AgentPlayer"
+#              try:
+               self.p.stdin.write(result + "\n")
+#              except:
+#              raise Exception("UNRESPONSIVE")
+
+       def get_move(self):
+               
+               try:
+                       self.p.stdin.write("MOVE?\n")
+                       line = self.p.stdout.readline().strip("\r\n ")
+               except:
+                       raise Exception("UNRESPONSIVE")
+               try:
+                       result = map(int, line.split(" "))
+               except:
+                       raise Exception("GIBBERISH \"" + str(line) + "\"")
+               return result
+
+       def quit(self, final_result):
+               try:
+                       self.p.stdin.write("QUIT " + final_result + "\n")
+               except:
+                       self.p.kill()
+
+# So you want to be a player here?
+class HumanPlayer(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               
+       # Select your preferred account
+       def select(self):
+               if isinstance(graphics, GraphicsThread):
+                       # Basically, we let the graphics thread do some shit and then return that information to the game thread
+                       graphics.cond.acquire()
+                       # We wait for the graphics thread to select a piece
+                       while graphics.stopped() == False and graphics.state["select"] == None:
+                               graphics.cond.wait() # The difference between humans and machines is that humans sleep
+                       select = graphics.state["select"]
+                       
+                       
+                       graphics.cond.release()
+                       if graphics.stopped():
+                               return [-1,-1]
+                       return [select.x, select.y]
+               else:
+                       # Since I don't display the board in this case, I'm not sure why I filled it in...
+                       while True:
+                               sys.stdout.write("SELECTION?\n")
+                               try:
+                                       p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
+                               except:
+                                       sys.stderr.write("ILLEGAL GIBBERISH\n")
+                                       continue
+       # It's your move captain
+       def get_move(self):
+               if isinstance(graphics, GraphicsThread):
+                       graphics.cond.acquire()
+                       while graphics.stopped() == False and graphics.state["dest"] == None:
+                               graphics.cond.wait()
+                       graphics.cond.release()
+                       
+                       return graphics.state["dest"]
+               else:
+
+                       while True:
+                               sys.stdout.write("MOVE?\n")
+                               try:
+                                       p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
+                               except:
+                                       sys.stderr.write("ILLEGAL GIBBERISH\n")
+                                       continue
+
+       # Are you sure you want to quit?
+       def quit(self, final_result):
+               sys.stdout.write("QUIT " + final_result + "\n")
+
+       # Completely useless function
+       def update(self, result):
+               if isinstance(graphics, GraphicsThread):
+                       pass
+               else:
+                       sys.stdout.write(result + "\n") 
+
+
+# Player that makes random moves
+class AgentRandom(Player):
+       def __init__(self, name, colour):
+               Player.__init__(self, name, colour)
+               self.choice = None
+
+               self.board = Board(style = "agent")
+
+       def select(self):
+               while True:
+                       self.choice = self.board.pieces[self.colour][random.randint(0, len(self.board.pieces[self.colour])-1)]
+                       all_moves = []
+                       # Check that the piece has some possibility to move
+                       tmp = self.choice.current_type
+                       if tmp == "unknown": # For unknown pieces, try both types
+                               for t in self.choice.types:
+                                       if t == "unknown":
+                                               continue
+                                       self.choice.current_type = t
+                                       all_moves += self.board.possible_moves(self.choice)
+                       else:
+                               all_moves = self.board.possible_moves(self.choice)
+                       self.choice.current_type = tmp
+                       if len(all_moves) > 0:
+                               break
+               return [self.choice.x, self.choice.y]
+
+       def get_move(self):
+               moves = self.board.possible_moves(self.choice)
+               move = moves[random.randint(0, len(moves)-1)]
+               return move
+
+       def update(self, result):
+               #sys.stderr.write(sys.argv[0] + " : Update board for AgentRandom\n")
+               self.board.update(result)
+               self.board.verify()
+
+       def quit(self, final_result):
+               pass
+# --- player.py --- #
+# +++ thread_util.py +++ #
+import threading
+
+# A thread that can be stopped!
+# Except it can only be stopped if it checks self.stopped() periodically
+# So it can sort of be stopped
+class StoppableThread(threading.Thread):
+       def __init__(self):
+               threading.Thread.__init__(self)
+               self._stop = threading.Event()
+
+       def stop(self):
+               self._stop.set()
+
+       def stopped(self):
+               return self._stop.isSet()
+# --- thread_util.py --- #
diff --git a/qchess/thread_util.py b/qchess/thread_util.py
new file mode 100644 (file)
index 0000000..2c79330
--- /dev/null
@@ -0,0 +1,15 @@
+import threading
+
+# A thread that can be stopped!
+# Except it can only be stopped if it checks self.stopped() periodically
+# So it can sort of be stopped
+class StoppableThread(threading.Thread):
+       def __init__(self):
+               threading.Thread.__init__(self)
+               self._stop = threading.Event()
+
+       def stop(self):
+               self._stop.set()
+
+       def stopped(self):
+               return self._stop.isSet()
diff --git a/qchess/update.sh b/qchess/update.sh
new file mode 100755 (executable)
index 0000000..0edb377
--- /dev/null
@@ -0,0 +1,34 @@
+#!/bin/bash
+
+# I still can't believe I am doing this
+
+target=qchess.py
+components="piece.py board.py player.py thread_util.py game.py graphics.py main.py"
+# The below seems nicer, but doesn't work because things need to be imported in the right order :(
+#components=$(ls *.py | tr '\t' '\n' | grep -v $target)
+
+header="#!/usr/bin/python -u"
+footer="# EOF - created from update.sh on $(date)"
+
+
+
+# If the target was modified more recently than any of the components, update the component file
+target_mod=$(stat -c %Y $target)
+
+merge_required=false
+
+for f in $components; do
+       if [ $(stat -c %Y $f) -lt $target_mod ]; then
+               nawk "/+++ $f +++/, /--- $f ---/" $target | grep -v "+++ $f +++" | grep -v "\--- $f ---" > $f
+       else
+               merge_required=true
+done
+
+if $merge_required; then
+       echo $header > $target
+       for f in $components; do
+               cat $components >> $target
+       done
+
+       echo $footer > $target
+fi

UCC git Repository :: git.ucc.asn.au