3b5ceb2fbfd4edf8060a1699b306d99c7b2c3e61
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <desctab.h>
8 #include <mm_virt.h>
9 #include <errno.h>
10 #if USE_MP
11 # include <mp.h>
12 #endif
13
14 // === FLAGS ===
15 #define DEBUG_TRACE_SWITCH      0
16
17 // === CONSTANTS ===
18 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
19 // Base is 1193182
20 #define TIMER_DIVISOR   11931   //~100Hz
21
22 // === IMPORTS ===
23 extern tGDT     gGDT[];
24 extern tIDT     gIDT[];
25 extern void APStartup();        // 16-bit AP startup code
26 extern Uint     GetEIP();       // start.asm
27 extern Uint32   gaInitPageDir[1024];    // start.asm
28 extern void     Kernel_Stack_Top;
29 extern volatile int     giThreadListLock;
30 extern int      giNumCPUs;
31 extern int      giNextTID;
32 extern int      giTotalTickets;
33 extern int      giNumActiveThreads;
34 extern tThread  gThreadZero;
35 extern tThread  *gActiveThreads;
36 extern tThread  *gSleepingThreads;
37 extern tThread  *gDeleteThreads;
38 extern tThread  *Threads_GetNextToRun(int CPU);
39 extern void     Threads_Dump();
40 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
41 extern void     Isr8(); // Double Fault
42
43 // === PROTOTYPES ===
44 void    ArchThreads_Init();
45 #if USE_MP
46 void    MP_StartAP(int CPU);
47 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
48 #endif
49 void    Proc_Start();
50 tThread *Proc_GetCurThread();
51 void    Proc_ChangeStack();
52  int    Proc_Clone(Uint *Err, Uint Flags);
53 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP);
54 void    Proc_Scheduler();
55
56 // === GLOBALS ===
57 // --- Multiprocessing ---
58 #if USE_MP
59 volatile int    giNumInitingCPUs = 0;
60 tMPInfo *gMPFloatPtr = NULL;
61 tAPIC   *gpMP_LocalAPIC = NULL;
62 Uint8   gaAPIC_to_CPU[256] = {0};
63 tCPU    gaCPUs[MAX_CPUS];
64 #else
65 tThread *gCurrentThread = NULL;
66 #endif
67 #if USE_PAE
68 Uint32  *gPML4s[4] = NULL;
69 #endif
70 tTSS    *gTSSs = NULL;
71 tTSS    gTSS0 = {0};
72 // --- Error Recovery ---
73 char    gaDoubleFaultStack[1024];
74 tTSS    gDoubleFault_TSS = {
75         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
76         .SS0 = 0x10,
77         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
78         .EIP = (Uint)Isr8,
79         .ESP = (Uint)&gaDoubleFaultStack[1023],
80         .CS = 0x08,     .SS = 0x10,
81         .DS = 0x10,     .ES = 0x10,
82         .FS = 0x10,     .GS = 0x10,
83 };
84
85 // === CODE ===
86 /**
87  * \fn void ArchThreads_Init()
88  * \brief Starts the process scheduler
89  */
90 void ArchThreads_Init()
91 {
92         Uint    pos = 0;
93         
94         #if USE_MP
95         tMPTable        *mptable;
96         
97         // Mark BSP as active
98         gaCPUs[0].State = 2;
99         
100         // -- Initialise Multiprocessing
101         // Find MP Floating Table
102         // - EBDA/Last 1Kib (640KiB)
103         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
104                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
105                         Log("Possible %p", pos);
106                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
107                         gMPFloatPtr = (void*)pos;
108                         break;
109                 }
110         }
111         // - Last KiB (512KiB base mem)
112         if(!gMPFloatPtr) {
113                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
114                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
115                                 Log("Possible %p", pos);
116                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
117                                 gMPFloatPtr = (void*)pos;
118                                 break;
119                         }
120                 }
121         }
122         // - BIOS ROM
123         if(!gMPFloatPtr) {
124                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
125                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
126                                 Log("Possible %p", pos);
127                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
128                                 gMPFloatPtr = (void*)pos;
129                                 break;
130                         }
131                 }
132         }
133         
134         // If the MP Table Exists, parse it
135         if(gMPFloatPtr)
136         {
137                  int    i;
138                 tMPTable_Ent    *ents;
139                 Log("gMPFloatPtr = %p", gMPFloatPtr);
140                 Log("*gMPFloatPtr = {");
141                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
142                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
143                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
144                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
145                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
146                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
147                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
148                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
149                         gMPFloatPtr->Features[4]
150                         );
151                 Log("}");
152                 
153                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
154                 Log("mptable = %p", mptable);
155                 Log("*mptable = {");
156                 Log("\t.Sig = 0x%08x", mptable->Sig);
157                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
158                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
159                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
160                 Log("\t.OEMID = '%8c'", mptable->OemID);
161                 Log("\t.ProductID = '%8c'", mptable->ProductID);
162                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
163                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
164                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
165                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
166                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
167                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
168                 Log("}");
169                 
170                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
171                 
172                 ents = mptable->Entries;
173                 giNumCPUs = 0;
174                 
175                 for( i = 0; i < mptable->EntryCount; i ++ )
176                 {
177                          int    entSize = 0;
178                         switch( ents->Type )
179                         {
180                         case 0: // Processor
181                                 entSize = 20;
182                                 Log("%i: Processor", i);
183                                 Log("\t.APICID = %i", ents->Proc.APICID);
184                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
185                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
186                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
187                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
188                                 
189                                 
190                                 if( !(ents->Proc.CPUFlags & 1) ) {
191                                         Log("DISABLED");
192                                         break;
193                                 }
194                                 
195                                 // Check if there is too many processors
196                                 if(giNumCPUs >= MAX_CPUS) {
197                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
198                                         break;
199                                 }
200                                 
201                                 // Initialise CPU Info
202                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
203                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
204                                 gaCPUs[giNumCPUs].State = 0;
205                                 giNumCPUs ++;
206                                 
207                                 // Send IPI
208                                 if( !(ents->Proc.CPUFlags & 2) )
209                                 {
210                                         MP_StartAP( giNumCPUs-1 );
211                                 }
212                                 
213                                 break;
214                         case 1: // Bus
215                                 entSize = 8;
216                                 Log("%i: Bus", i);
217                                 Log("\t.ID = %i", ents->Bus.ID);
218                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
219                                 break;
220                         case 2: // I/O APIC
221                                 entSize = 8;
222                                 Log("%i: I/O APIC", i);
223                                 Log("\t.ID = %i", ents->IOAPIC.ID);
224                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
225                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
226                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
227                                 break;
228                         case 3: // I/O Interrupt Assignment
229                                 entSize = 8;
230                                 Log("%i: I/O Interrupt Assignment", i);
231                                 Log("\t.IntType = %i", ents->IOInt.IntType);
232                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
233                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
234                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
235                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
236                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
237                                 break;
238                         case 4: // Local Interrupt Assignment
239                                 entSize = 8;
240                                 Log("%i: Local Interrupt Assignment", i);
241                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
242                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
243                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
244                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
245                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
246                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
247                                 break;
248                         default:
249                                 Log("%i: Unknown (%i)", i, ents->Type);
250                                 break;
251                         }
252                         ents = (void*)( (Uint)ents + entSize );
253                 }
254                 
255                 if( giNumCPUs > MAX_CPUS ) {
256                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
257                         giNumCPUs = MAX_CPUS;
258                 }
259         
260                 while( giNumInitingCPUs )
261                         MM_FinishVirtualInit();
262                 
263                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
264         }
265         else {
266                 Log("No MP Table was found, assuming uniprocessor\n");
267                 giNumCPUs = 1;
268                 gTSSs = &gTSS0;
269         }
270         #else
271         giNumCPUs = 1;
272         gTSSs = &gTSS0;
273         MM_FinishVirtualInit();
274         #endif
275         
276         // Initialise Double Fault TSS
277         /*
278         gGDT[5].LimitLow = sizeof(tTSS);
279         gGDT[5].LimitHi = 0;
280         gGDT[5].Access = 0x89;  // Type
281         gGDT[5].Flags = 0x4;
282         */
283         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
284         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
285         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
286         
287         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
288                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
289         gIDT[8].OffsetLo = 0;
290         gIDT[8].CS = 5<<3;
291         gIDT[8].Flags = 0x8500;
292         gIDT[8].OffsetHi = 0;
293         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
294                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
295         
296         //__asm__ __volatile__ ("xchg %bx, %bx");
297         
298         #if USE_MP
299         // Initialise Normal TSS(s)
300         for(pos=0;pos<giNumCPUs;pos++)
301         {
302         #else
303         pos = 0;
304         #endif
305                 gTSSs[pos].SS0 = 0x10;
306                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
307                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
308                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
309                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
310         #if USE_MP
311         }
312         for(pos=0;pos<giNumCPUs;pos++) {
313         #endif
314                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
315         #if USE_MP
316         }
317         #endif
318         
319         #if USE_MP
320         gaCPUs[0].Current = &gThreadZero;
321         #else
322         gCurrentThread = &gThreadZero;
323         #endif
324         
325         #if USE_PAE
326         gThreadZero.MemState.PDP[0] = 0;
327         gThreadZero.MemState.PDP[1] = 0;
328         gThreadZero.MemState.PDP[2] = 0;
329         #else
330         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
331         #endif
332         
333         // Set timer frequency
334         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
335         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
336         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
337         
338         // Create Per-Process Data Block
339         MM_Allocate(MM_PPD_CFG);
340         
341         // Change Stacks
342         Proc_ChangeStack();
343 }
344
345 #if USE_MP
346 void MP_StartAP(int CPU)
347 {
348         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
349         // Set location of AP startup code and mark for a warm restart
350         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
351         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
352         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
353         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
354         giNumInitingCPUs ++;
355 }
356
357 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
358 {
359         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
360         Uint32  val;
361         
362         // Hi
363         val = (Uint)APICID << 24;
364         Log("*%p = 0x%08x", addr+0x10, val);
365         *(Uint32*)(addr+0x10) = val;
366         // Low (and send)
367         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
368         Log("*%p = 0x%08x", addr, val);
369         *(Uint32*)addr = val;
370 }
371 #endif
372
373 /**
374  * \fn void Proc_Start()
375  * \brief Start process scheduler
376  */
377 void Proc_Start()
378 {
379         // Start Interrupts (and hence scheduler)
380         __asm__ __volatile__("sti");
381 }
382
383 /**
384  * \fn tThread *Proc_GetCurThread()
385  * \brief Gets the current thread
386  */
387 tThread *Proc_GetCurThread()
388 {
389         #if USE_MP
390         return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->ID.Val&0xFF] ].Current;
391         #else
392         return gCurrentThread;
393         #endif
394 }
395
396 /**
397  * \fn void Proc_ChangeStack()
398  * \brief Swaps the current stack for a new one (in the proper stack reigon)
399  */
400 void Proc_ChangeStack()
401 {
402         Uint    esp, ebp;
403         Uint    tmpEbp, oldEsp;
404         Uint    curBase, newBase;
405
406         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
407         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
408
409         oldEsp = esp;
410
411         // Create new KStack
412         newBase = MM_NewKStack();
413         // Check for errors
414         if(newBase == 0) {
415                 Panic("What the?? Unable to allocate space for initial kernel stack");
416                 return;
417         }
418
419         curBase = (Uint)&Kernel_Stack_Top;
420         
421         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
422
423         // Get ESP as a used size
424         esp = curBase - esp;
425         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
426         // Copy used stack
427         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
428         // Get ESP as an offset in the new stack
429         esp = newBase - esp;
430         // Adjust EBP
431         ebp = newBase - (curBase - ebp);
432
433         // Repair EBPs & Stack Addresses
434         // Catches arguments also, but may trash stack-address-like values
435         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
436         {
437                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
438                         *(Uint*)tmpEbp += newBase - curBase;
439         }
440         
441         Proc_GetCurThread()->KernelStack = newBase;
442         
443         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
444         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
445 }
446
447 /**
448  * \fn int Proc_Clone(Uint *Err, Uint Flags)
449  * \brief Clone the current process
450  */
451 int Proc_Clone(Uint *Err, Uint Flags)
452 {
453         tThread *newThread;
454         tThread *cur = Proc_GetCurThread();
455         Uint    eip, esp, ebp;
456         
457         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
458         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
459         
460         newThread = Threads_CloneTCB(Err, Flags);
461         if(!newThread)  return -1;
462         
463         // Initialise Memory Space (New Addr space or kernel stack)
464         if(Flags & CLONE_VM) {
465                 newThread->MemState.CR3 = MM_Clone();
466                 newThread->KernelStack = cur->KernelStack;
467         } else {
468                 Uint    tmpEbp, oldEsp = esp;
469
470                 // Set CR3
471                 newThread->MemState.CR3 = cur->MemState.CR3;
472
473                 // Create new KStack
474                 newThread->KernelStack = MM_NewKStack();
475                 // Check for errors
476                 if(newThread->KernelStack == 0) {
477                         free(newThread);
478                         return -1;
479                 }
480
481                 // Get ESP as a used size
482                 esp = cur->KernelStack - esp;
483                 // Copy used stack
484                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
485                 // Get ESP as an offset in the new stack
486                 esp = newThread->KernelStack - esp;
487                 // Adjust EBP
488                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
489
490                 // Repair EBPs & Stack Addresses
491                 // Catches arguments also, but may trash stack-address-like values
492                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
493                 {
494                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
495                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
496                 }
497         }
498         
499         // Save core machine state
500         newThread->SavedState.ESP = esp;
501         newThread->SavedState.EBP = ebp;
502         eip = GetEIP();
503         if(eip == SWITCH_MAGIC) {
504                 outb(0x20, 0x20);       // ACK Timer and return as child
505                 return 0;
506         }
507         
508         // Set EIP as parent
509         newThread->SavedState.EIP = eip;
510         
511         // Lock list and add to active
512         Threads_AddActive(newThread);
513         
514         return newThread->TID;
515 }
516
517 /**
518  * \fn int Proc_SpawnWorker()
519  * \brief Spawns a new worker thread
520  */
521 int Proc_SpawnWorker()
522 {
523         tThread *new, *cur;
524         Uint    eip, esp, ebp;
525         
526         cur = Proc_GetCurThread();
527         
528         // Create new thread
529         new = malloc( sizeof(tThread) );
530         if(!new) {
531                 Warning("Proc_SpawnWorker - Out of heap space!\n");
532                 return -1;
533         }
534         memcpy(new, &gThreadZero, sizeof(tThread));
535         // Set Thread ID
536         new->TID = giNextTID++;
537         // Create a new worker stack (in PID0's address space)
538         // The stack is relocated by this code
539         new->KernelStack = MM_NewWorkerStack();
540
541         // Get ESP and EBP based in the new stack
542         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
543         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
544         esp = new->KernelStack - (cur->KernelStack - esp);
545         ebp = new->KernelStack - (cur->KernelStack - ebp);      
546         
547         // Save core machine state
548         new->SavedState.ESP = esp;
549         new->SavedState.EBP = ebp;
550         eip = GetEIP();
551         if(eip == SWITCH_MAGIC) {
552                 outb(0x20, 0x20);       // ACK Timer and return as child
553                 return 0;
554         }
555         
556         // Set EIP as parent
557         new->SavedState.EIP = eip;
558         // Mark as active
559         new->Status = THREAD_STAT_ACTIVE;
560         Threads_AddActive( new );
561         
562         return new->TID;
563 }
564
565 /**
566  * \fn Uint Proc_MakeUserStack()
567  * \brief Creates a new user stack
568  */
569 Uint Proc_MakeUserStack()
570 {
571          int    i;
572         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
573         
574         // Check Prospective Space
575         for( i = USER_STACK_SZ >> 12; i--; )
576                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
577                         break;
578         
579         if(i != -1)     return 0;
580         
581         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
582         for( i = 0; i < USER_STACK_SZ/4069; i++ )
583                 MM_Allocate( base + (i<<12) );
584         
585         return base + USER_STACK_SZ;
586 }
587
588
589 /**
590  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
591  * \brief Starts a user task
592  */
593 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
594 {
595         Uint    *stack = (void*)Proc_MakeUserStack();
596          int    i;
597         Uint    delta;
598         Uint16  ss, cs;
599         
600         LOG("stack = 0x%x", stack);
601         
602         // Copy Arguments
603         stack = (void*)( (Uint)stack - DataSize );
604         memcpy( stack, ArgV, DataSize );
605         
606         // Adjust Arguments and environment
607         delta = (Uint)stack - (Uint)ArgV;
608         ArgV = (char**)stack;
609         for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
610         i ++;
611         EnvP = &ArgV[i];
612         for( i = 0; EnvP[i]; i++ )      EnvP[i] += delta;
613         
614         // User Mode Segments
615         ss = 0x23;      cs = 0x1B;
616         
617         // Arguments
618         *--stack = (Uint)EnvP;
619         *--stack = (Uint)ArgV;
620         *--stack = (Uint)ArgC;
621         while(*Bases)
622                 *--stack = *Bases++;
623         *--stack = 0;   // Return Address
624         
625         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
626 }
627
628 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
629 {
630         Uint    *stack = (void*)Stack;
631         *--stack = SS;          //Stack Segment
632         *--stack = Stack;       //Stack Pointer
633         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
634         *--stack = CS;          //Code Segment
635         *--stack = IP;  //EIP
636         //PUSHAD
637         *--stack = 0xAAAAAAAA;  // eax
638         *--stack = 0xCCCCCCCC;  // ecx
639         *--stack = 0xDDDDDDDD;  // edx
640         *--stack = 0xBBBBBBBB;  // ebx
641         *--stack = 0xD1D1D1D1;  // edi
642         *--stack = 0x54545454;  // esp - NOT POPED
643         *--stack = 0x51515151;  // esi
644         *--stack = 0xB4B4B4B4;  // ebp
645         //Individual PUSHs
646         *--stack = SS;  // ds
647         *--stack = SS;  // es
648         *--stack = SS;  // fs
649         *--stack = SS;  // gs
650         
651         __asm__ __volatile__ (
652         "mov %%eax,%%esp;\n\t"  // Set stack pointer
653         "pop %%gs;\n\t"
654         "pop %%fs;\n\t"
655         "pop %%es;\n\t"
656         "pop %%ds;\n\t"
657         "popa;\n\t"
658         "iret;\n\t" : : "a" (stack));
659         for(;;);
660 }
661
662 /**
663  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
664  * \brief Demotes a process to a lower permission level
665  * \param Err   Pointer to user's errno
666  * \param Dest  New Permission Level
667  * \param Regs  Pointer to user's register structure
668  */
669 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
670 {
671          int    cpl = Regs->cs & 3;
672         // Sanity Check
673         if(Dest > 3 || Dest < 0) {
674                 *Err = -EINVAL;
675                 return -1;
676         }
677         
678         // Permission Check
679         if(cpl > Dest) {
680                 *Err = -EACCES;
681                 return -1;
682         }
683         
684         // Change the Segment Registers
685         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
686         Regs->ss = ((Dest+1)<<4) | Dest;
687         // Check if the GP Segs are GDT, then change them
688         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
689         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
690         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
691         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
692         
693         return 0;
694 }
695
696 /**
697  * \fn void Proc_Scheduler(int CPU)
698  * \brief Swap current thread and clears dead threads
699  */
700 void Proc_Scheduler(int CPU)
701 {
702         Uint    esp, ebp, eip;
703         tThread *thread;
704         
705         // If the spinlock is set, let it complete
706         if(giThreadListLock)    return;
707         
708         // Clear Delete Queue
709         while(gDeleteThreads)
710         {
711                 thread = gDeleteThreads->Next;
712                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
713                         gDeleteThreads->Status = THREAD_STAT_NULL;
714                         free( gDeleteThreads );
715                 }
716                 gDeleteThreads = thread;
717         }
718         
719         // Check if there is any tasks running
720         if(giNumActiveThreads == 0) {
721                 Log("No Active threads, sleeping");
722                 __asm__ __volatile__ ("hlt");
723                 return;
724         }
725         
726         // Get current thread
727         #if USE_MP
728         thread = gaCPUs[CPU].Current;
729         #else
730         thread = gCurrentThread;
731         #endif
732         
733         // Reduce remaining quantum and continue timeslice if non-zero
734         if(thread->Remaining--) return;
735         // Reset quantum for next call
736         thread->Remaining = thread->Quantum;
737         
738         // Get machine state
739         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
740         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
741         eip = GetEIP();
742         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
743         
744         // Save machine state
745         thread->SavedState.ESP = esp;
746         thread->SavedState.EBP = ebp;
747         thread->SavedState.EIP = eip;
748         
749         // Get next thread
750         thread = Threads_GetNextToRun(CPU);
751         
752         // Error Check
753         if(thread == NULL) {
754                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
755                 return;
756         }
757         
758         #if DEBUG_TRACE_SWITCH
759         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
760                 thread->TID,
761                 thread->MemState.CR3,
762                 thread->SavedState.EIP
763                 );
764         #endif
765         
766         // Set current thread
767         #if USE_MP
768         gaCPUs[CPU].Current = thread;
769         #else
770         gCurrentThread = thread;
771         #endif
772         
773         // Update Kernel Stack pointer
774         gTSSs[CPU].ESP0 = thread->KernelStack-4;
775         
776         // Set address space
777         #if USE_PAE
778         # error "Todo: Implement PAE Address space switching"
779         #else
780                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
781         #endif
782         // Switch threads
783         __asm__ __volatile__ (
784                 "mov %1, %%esp\n\t"     // Restore ESP
785                 "mov %2, %%ebp\n\t"     // and EBP
786                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
787                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
788                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
789                 );
790         for(;;);        // Shouldn't reach here
791 }
792
793 // === EXPORTS ===
794 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au