Multiple IPStack Related changes (and other bugfixes)
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14
15 // === FLAGS ===
16 #define DEBUG_TRACE_SWITCH      0
17 #define DEBUG_DISABLE_DOUBLEFAULT       1
18
19 // === CONSTANTS ===
20 #define SWITCH_MAGIC    0xFF5317C8      // FF SWITCH - There is no code in this area
21 // Base is 1193182
22 #define TIMER_BASE      1193182
23 #define TIMER_DIVISOR   11932   //~100Hz
24
25 // === TYPES ===
26 #if USE_MP
27 typedef struct sCPU
28 {
29         Uint8   APICID;
30         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
31         Uint16  Resvd;
32         tThread *Current;
33         tThread *IdleThread;
34 }       tCPU;
35 #endif
36
37 // === IMPORTS ===
38 extern tGDT     gGDT[];
39 extern tIDT     gIDT[];
40 extern void APWait(void);       // 16-bit AP pause code
41 extern void APStartup(void);    // 16-bit AP startup code
42 extern Uint     GetEIP(void);   // start.asm
43 extern int      GetCPUNum(void);        // start.asm
44 extern Uint32   gaInitPageDir[1024];    // start.asm
45 extern char     Kernel_Stack_Top[];
46 extern tShortSpinlock   glThreadListLock;
47 extern int      giNumCPUs;
48 extern int      giNextTID;
49 extern tThread  gThreadZero;
50 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
51 extern void     Isr8(void);     // Double Fault
52 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument);
53
54 // === PROTOTYPES ===
55 void    ArchThreads_Init(void);
56 #if USE_MP
57 void    MP_StartAP(int CPU);
58 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
59 #endif
60 void    Proc_Start(void);
61 tThread *Proc_GetCurThread(void);
62 void    Proc_ChangeStack(void);
63  int    Proc_Clone(Uint *Err, Uint Flags);
64 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP);
65 void    Proc_CallFaultHandler(tThread *Thread);
66 void    Proc_Scheduler(int CPU);
67
68 // === GLOBALS ===
69 // --- Multiprocessing ---
70 #if USE_MP
71 volatile int    giNumInitingCPUs = 0;
72 tMPInfo *gMPFloatPtr = NULL;
73 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
74 tAPIC   *gpMP_LocalAPIC = NULL;
75 Uint8   gaAPIC_to_CPU[256] = {0};
76 tCPU    gaCPUs[MAX_CPUS];
77 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
78  int    giProc_BootProcessorID = 0;
79 #else
80 tThread *gCurrentThread = NULL;
81 tThread *gpIdleThread = NULL;
82 #endif
83 #if USE_PAE
84 Uint32  *gPML4s[4] = NULL;
85 #endif
86 tTSS    *gTSSs = NULL;  // Pointer to TSS array
87 tTSS    gTSS0 = {0};
88 // --- Error Recovery ---
89 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
90 tTSS    gDoubleFault_TSS = {
91         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
92         .SS0 = 0x10,
93         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
94         .EIP = (Uint)Isr8,
95         .ESP = (Uint)&gaDoubleFaultStack[1024],
96         .CS = 0x08,     .SS = 0x10,
97         .DS = 0x10,     .ES = 0x10,
98         .FS = 0x10,     .GS = 0x10,
99 };
100
101 // === CODE ===
102 /**
103  * \fn void ArchThreads_Init(void)
104  * \brief Starts the process scheduler
105  */
106 void ArchThreads_Init(void)
107 {
108         Uint    pos = 0;
109         
110         #if USE_MP
111         tMPTable        *mptable;
112         
113         // Mark BSP as active
114         gaCPUs[0].State = 2;
115         
116         // -- Initialise Multiprocessing
117         // Find MP Floating Table
118         // - EBDA/Last 1Kib (640KiB)
119         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
120                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
121                         Log("Possible %p", pos);
122                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
123                         gMPFloatPtr = (void*)pos;
124                         break;
125                 }
126         }
127         // - Last KiB (512KiB base mem)
128         if(!gMPFloatPtr) {
129                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
130                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
131                                 Log("Possible %p", pos);
132                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
133                                 gMPFloatPtr = (void*)pos;
134                                 break;
135                         }
136                 }
137         }
138         // - BIOS ROM
139         if(!gMPFloatPtr) {
140                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
141                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
142                                 Log("Possible %p", pos);
143                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
144                                 gMPFloatPtr = (void*)pos;
145                                 break;
146                         }
147                 }
148         }
149         
150         // If the MP Table Exists, parse it
151         if(gMPFloatPtr)
152         {
153                  int    i;
154                 tMPTable_Ent    *ents;
155                 Log("gMPFloatPtr = %p", gMPFloatPtr);
156                 Log("*gMPFloatPtr = {");
157                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
158                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
159                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
160                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
161                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
162                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
163                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
164                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
165                         gMPFloatPtr->Features[4]
166                         );
167                 Log("}");
168                 
169                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
170                 Log("mptable = %p", mptable);
171                 Log("*mptable = {");
172                 Log("\t.Sig = 0x%08x", mptable->Sig);
173                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
174                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
175                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
176                 Log("\t.OEMID = '%8c'", mptable->OemID);
177                 Log("\t.ProductID = '%8c'", mptable->ProductID);
178                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
179                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
180                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
181                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
182                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
183                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
184                 Log("}");
185                 
186                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
187                 
188                 ents = mptable->Entries;
189                 giNumCPUs = 0;
190                 
191                 for( i = 0; i < mptable->EntryCount; i ++ )
192                 {
193                          int    entSize = 0;
194                         switch( ents->Type )
195                         {
196                         case 0: // Processor
197                                 entSize = 20;
198                                 Log("%i: Processor", i);
199                                 Log("\t.APICID = %i", ents->Proc.APICID);
200                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
201                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
202                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
203                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
204                                 
205                                 
206                                 if( !(ents->Proc.CPUFlags & 1) ) {
207                                         Log("DISABLED");
208                                         break;
209                                 }
210                                 
211                                 // Check if there is too many processors
212                                 if(giNumCPUs >= MAX_CPUS) {
213                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
214                                         break;
215                                 }
216                                 
217                                 // Initialise CPU Info
218                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
219                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
220                                 gaCPUs[giNumCPUs].State = 0;
221                                 giNumCPUs ++;
222                                 
223                                 // Set BSP Variable
224                                 if( ents->Proc.CPUFlags & 2 ) {
225                                         giProc_BootProcessorID = giNumCPUs-1;
226                                 }
227                                 
228                                 break;
229                         
230                         #if DUMP_MP_TABLES
231                         case 1: // Bus
232                                 entSize = 8;
233                                 Log("%i: Bus", i);
234                                 Log("\t.ID = %i", ents->Bus.ID);
235                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
236                                 break;
237                         case 2: // I/O APIC
238                                 entSize = 8;
239                                 Log("%i: I/O APIC", i);
240                                 Log("\t.ID = %i", ents->IOAPIC.ID);
241                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
242                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
243                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
244                                 break;
245                         case 3: // I/O Interrupt Assignment
246                                 entSize = 8;
247                                 Log("%i: I/O Interrupt Assignment", i);
248                                 Log("\t.IntType = %i", ents->IOInt.IntType);
249                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
250                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
251                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
252                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
253                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
254                                 break;
255                         case 4: // Local Interrupt Assignment
256                                 entSize = 8;
257                                 Log("%i: Local Interrupt Assignment", i);
258                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
259                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
260                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
261                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
262                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
263                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
264                                 break;
265                         default:
266                                 Log("%i: Unknown (%i)", i, ents->Type);
267                                 break;
268                         #endif
269                         }
270                         ents = (void*)( (Uint)ents + entSize );
271                 }
272                 
273                 if( giNumCPUs > MAX_CPUS ) {
274                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
275                         giNumCPUs = MAX_CPUS;
276                 }
277                 gTSSs = gaTSSs;
278         }
279         else {
280                 Log("No MP Table was found, assuming uniprocessor\n");
281                 giNumCPUs = 1;
282                 gTSSs = &gTSS0;
283         }
284         #else
285         giNumCPUs = 1;
286         gTSSs = &gTSS0;
287         MM_FinishVirtualInit();
288         #endif
289         
290         #if !DEBUG_DISABLE_DOUBLEFAULT
291         // Initialise Double Fault TSS
292         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
293         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
294         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
295         
296         // Set double fault IDT to use the new TSS
297         gIDT[8].OffsetLo = 0;
298         gIDT[8].CS = 5<<3;
299         gIDT[8].Flags = 0x8500;
300         gIDT[8].OffsetHi = 0;
301         #endif
302         
303         // Set timer frequency
304         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
305         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
306         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
307         
308         Log("Timer Frequency %i.%03i Hz",
309                 TIMER_BASE/TIMER_DIVISOR,
310                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
311                 );
312         
313         #if USE_MP
314         // Get the count setting for APIC timer
315         Log("Determining APIC Count");
316         __asm__ __volatile__ ("sti");
317         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
318         __asm__ __volatile__ ("cli");
319         Log("APIC Count %i", giMP_TimerCount);
320         {
321                 Uint64  freq = giMP_TimerCount;
322                 freq /= TIMER_DIVISOR;
323                 freq *= TIMER_BASE;
324                 if( (freq /= 1000) < 2*1000)
325                         Log("Bus Frequency %i KHz", freq);
326                 else if( (freq /= 1000) < 2*1000)
327                         Log("Bus Frequency %i MHz", freq);
328                 else if( (freq /= 1000) < 2*1000)
329                         Log("Bus Frequency %i GHz", freq);
330                 else
331                         Log("Bus Frequency %i THz", freq);
332         }
333         
334         // Initialise Normal TSS(s)
335         for(pos=0;pos<giNumCPUs;pos++)
336         {
337         #else
338         pos = 0;
339         #endif
340                 gTSSs[pos].SS0 = 0x10;
341                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
342                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
343                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
344                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
345         #if USE_MP
346         }
347         #endif
348         
349         // Load the BSP's TSS
350         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
351         // Set Current Thread and CPU Number in DR0 and DR1
352         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
353         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
354         
355         #if USE_MP
356         gaCPUs[0].Current = &gThreadZero;
357         #else
358         gCurrentThread = &gThreadZero;
359         #endif
360         gThreadZero.CurCPU = 0;
361         
362         #if USE_PAE
363         gThreadZero.MemState.PDP[0] = 0;
364         gThreadZero.MemState.PDP[1] = 0;
365         gThreadZero.MemState.PDP[2] = 0;
366         #else
367         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
368         #endif
369         
370         // Create Per-Process Data Block
371         MM_Allocate(MM_PPD_CFG);
372         
373         // Change Stacks
374         Proc_ChangeStack();
375 }
376
377 #if USE_MP
378 void MP_StartAP(int CPU)
379 {
380         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
381         
382         // Set location of AP startup code and mark for a warm restart
383         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
384         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
385         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
386         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
387         
388         // Delay
389         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
390         
391         // TODO: Use a better address, preferably registered with the MM
392         // - MM_AllocDMA mabye?
393         // Create a far jump
394         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
395         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
396         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
397         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
398         // just filled)
399         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
400         
401         giNumInitingCPUs ++;
402 }
403
404 /**
405  * \brief Send an Inter-Processor Interrupt
406  * \param APICID        Processor's Local APIC ID
407  * \param Vector        Argument of some kind
408  * \param DeliveryMode  Type of signal?
409  */
410 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
411 {
412         Uint32  val;
413         
414         // Hi
415         val = (Uint)APICID << 24;
416         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
417         gpMP_LocalAPIC->ICR[1].Val = val;
418         // Low (and send)
419         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
420         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
421         gpMP_LocalAPIC->ICR[0].Val = val;
422 }
423 #endif
424
425 /**
426  * \fn void Proc_Start(void)
427  * \brief Start process scheduler
428  */
429 void Proc_Start(void)
430 {
431         #if USE_MP
432          int    i;
433         #endif
434         
435         #if USE_MP
436         // Start APs
437         for( i = 0; i < giNumCPUs; i ++ )
438         {
439                  int    tid;
440                 if(i)   gaCPUs[i].Current = NULL;
441                 
442                 // Create Idle Task
443                 if( (tid = Proc_Clone(0, 0)) == 0)
444                 {
445                         for(;;) HALT(); // Just yeilds
446                 }
447                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
448                 gaCPUs[i].IdleThread->ThreadName = "Idle Thread";
449                 Threads_SetPriority( gaCPUs[i].IdleThread, -1 );        // Never called randomly
450                 gaCPUs[i].IdleThread->Quantum = 1;      // 1 slice quantum
451                 
452                 
453                 // Start the AP
454                 if( i != giProc_BootProcessorID ) {
455                         MP_StartAP( i );
456                 }
457         }
458         
459         // BSP still should run the current task
460         gaCPUs[0].Current = &gThreadZero;
461         
462         // Start interrupts and wait for APs to come up
463         Log("Waiting for APs to come up\n");
464         __asm__ __volatile__ ("sti");
465         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
466         #else
467         // Create Idle Task
468         if(Proc_Clone(0, 0) == 0)
469         {
470                 gpIdleThread = Proc_GetCurThread();
471                 gpIdleThread->ThreadName = "Idle Thread";
472                 Threads_SetPriority( gpIdleThread, -1 );        // Never called randomly
473                 gpIdleThread->Quantum = 1;      // 1 slice quantum
474                 for(;;) HALT(); // Just yeilds
475         }
476         
477         // Set current task
478         gCurrentThread = &gThreadZero;
479         
480         // Start Interrupts (and hence scheduler)
481         __asm__ __volatile__("sti");
482         #endif
483         MM_FinishVirtualInit();
484 }
485
486 /**
487  * \fn tThread *Proc_GetCurThread(void)
488  * \brief Gets the current thread
489  */
490 tThread *Proc_GetCurThread(void)
491 {
492         #if USE_MP
493         return gaCPUs[ GetCPUNum() ].Current;
494         #else
495         return gCurrentThread;
496         #endif
497 }
498
499 /**
500  * \fn void Proc_ChangeStack(void)
501  * \brief Swaps the current stack for a new one (in the proper stack reigon)
502  */
503 void Proc_ChangeStack(void)
504 {
505         Uint    esp, ebp;
506         Uint    tmpEbp, oldEsp;
507         Uint    curBase, newBase;
508
509         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
510         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
511
512         oldEsp = esp;
513
514         // Create new KStack
515         newBase = MM_NewKStack();
516         // Check for errors
517         if(newBase == 0) {
518                 Panic("What the?? Unable to allocate space for initial kernel stack");
519                 return;
520         }
521
522         curBase = (Uint)&Kernel_Stack_Top;
523         
524         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
525
526         // Get ESP as a used size
527         esp = curBase - esp;
528         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
529         // Copy used stack
530         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
531         // Get ESP as an offset in the new stack
532         esp = newBase - esp;
533         // Adjust EBP
534         ebp = newBase - (curBase - ebp);
535
536         // Repair EBPs & Stack Addresses
537         // Catches arguments also, but may trash stack-address-like values
538         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
539         {
540                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
541                         *(Uint*)tmpEbp += newBase - curBase;
542         }
543         
544         Proc_GetCurThread()->KernelStack = newBase;
545         
546         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
547         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
548 }
549
550 /**
551  * \fn int Proc_Clone(Uint *Err, Uint Flags)
552  * \brief Clone the current process
553  */
554 int Proc_Clone(Uint *Err, Uint Flags)
555 {
556         tThread *newThread;
557         tThread *cur = Proc_GetCurThread();
558         Uint    eip, esp, ebp;
559         
560         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
561         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
562         
563         newThread = Threads_CloneTCB(Err, Flags);
564         if(!newThread)  return -1;
565         
566         // Initialise Memory Space (New Addr space or kernel stack)
567         if(Flags & CLONE_VM) {
568                 newThread->MemState.CR3 = MM_Clone();
569                 newThread->KernelStack = cur->KernelStack;
570         } else {
571                 Uint    tmpEbp, oldEsp = esp;
572
573                 // Set CR3
574                 #if USE_PAE
575                 # warning "PAE Unimplemented"
576                 #else
577                 newThread->MemState.CR3 = cur->MemState.CR3;
578                 #endif
579
580                 // Create new KStack
581                 newThread->KernelStack = MM_NewKStack();
582                 // Check for errors
583                 if(newThread->KernelStack == 0) {
584                         free(newThread);
585                         return -1;
586                 }
587
588                 // Get ESP as a used size
589                 esp = cur->KernelStack - esp;
590                 // Copy used stack
591                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
592                 // Get ESP as an offset in the new stack
593                 esp = newThread->KernelStack - esp;
594                 // Adjust EBP
595                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
596
597                 // Repair EBPs & Stack Addresses
598                 // Catches arguments also, but may trash stack-address-like values
599                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
600                 {
601                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
602                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
603                 }
604         }
605         
606         // Save core machine state
607         newThread->SavedState.ESP = esp;
608         newThread->SavedState.EBP = ebp;
609         eip = GetEIP();
610         if(eip == SWITCH_MAGIC) {
611                 __asm__ __volatile__ ("mov %0, %%db0" : : "r" (newThread) );
612                 #if USE_MP
613                 // ACK the interrupt
614                 if( GetCPUNum() )
615                         gpMP_LocalAPIC->EOI.Val = 0;
616                 else
617                 #endif
618                         outb(0x20, 0x20);       // ACK Timer and return as child
619                 __asm__ __volatile__ ("sti");   // Restart interrupts
620                 return 0;
621         }
622         
623         // Set EIP as parent
624         newThread->SavedState.EIP = eip;
625         
626         // Lock list and add to active
627         Threads_AddActive(newThread);
628         
629         return newThread->TID;
630 }
631
632 /**
633  * \fn int Proc_SpawnWorker(void)
634  * \brief Spawns a new worker thread
635  */
636 int Proc_SpawnWorker(void)
637 {
638         tThread *new, *cur;
639         Uint    eip, esp, ebp;
640         
641         cur = Proc_GetCurThread();
642         
643         // Create new thread
644         new = malloc( sizeof(tThread) );
645         if(!new) {
646                 Warning("Proc_SpawnWorker - Out of heap space!\n");
647                 return -1;
648         }
649         memcpy(new, &gThreadZero, sizeof(tThread));
650         // Set Thread ID
651         new->TID = giNextTID++;
652         // Create a new worker stack (in PID0's address space)
653         // - The stack is relocated by this function
654         new->KernelStack = MM_NewWorkerStack();
655
656         // Get ESP and EBP based in the new stack
657         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
658         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
659         esp = new->KernelStack - (cur->KernelStack - esp);
660         ebp = new->KernelStack - (cur->KernelStack - ebp);      
661         
662         // Save core machine state
663         new->SavedState.ESP = esp;
664         new->SavedState.EBP = ebp;
665         eip = GetEIP();
666         if(eip == SWITCH_MAGIC) {
667                 __asm__ __volatile__ ("mov %0, %%db0" : : "r"(new));
668                 #if USE_MP
669                 // ACK the interrupt
670                 if(GetCPUNum())
671                         gpMP_LocalAPIC->EOI.Val = 0;
672                 else
673                 #endif
674                         outb(0x20, 0x20);       // ACK Timer and return as child
675                 __asm__ __volatile__ ("sti");   // Restart interrupts
676                 return 0;
677         }
678         
679         // Set EIP as parent
680         new->SavedState.EIP = eip;
681         // Mark as active
682         Threads_AddActive( new );
683         
684         return new->TID;
685 }
686
687 /**
688  * \fn Uint Proc_MakeUserStack(void)
689  * \brief Creates a new user stack
690  */
691 Uint Proc_MakeUserStack(void)
692 {
693          int    i;
694         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
695         
696         // Check Prospective Space
697         for( i = USER_STACK_SZ >> 12; i--; )
698                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
699                         break;
700         
701         if(i != -1)     return 0;
702         
703         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
704         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
705                 MM_Allocate( base + (i<<12) );
706         
707         return base + USER_STACK_SZ;
708 }
709
710 /**
711  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
712  * \brief Starts a user task
713  */
714 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
715 {
716         Uint    *stack = (void*)Proc_MakeUserStack();
717          int    i;
718         Uint    delta;
719         Uint16  ss, cs;
720         
721         //Log("stack = %p", stack);
722         
723         // Copy Arguments
724         stack -= DataSize/sizeof(*stack);
725         memcpy( stack, ArgV, DataSize );
726         
727         //Log("stack = %p", stack);
728         
729         if( DataSize )
730         {
731                 // Adjust Arguments and environment
732                 delta = (Uint)stack - (Uint)ArgV;
733                 ArgV = (char**)stack;
734                 for( i = 0; ArgV[i]; i++ )
735                         ArgV[i] += delta;
736                 i ++;
737                 
738                 // Do we care about EnvP?
739                 if( EnvP ) {
740                         EnvP = &ArgV[i];
741                         for( i = 0; EnvP[i]; i++ )
742                                 EnvP[i] += delta;
743                 }
744         }
745         
746         // User Mode Segments
747         ss = 0x23;      cs = 0x1B;
748         
749         // Arguments
750         *--stack = (Uint)EnvP;
751         *--stack = (Uint)ArgV;
752         *--stack = (Uint)ArgC;
753         while(*Bases)
754                 *--stack = *Bases++;
755         *--stack = 0;   // Return Address
756         
757         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
758 }
759
760 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
761 {
762         Uint    *stack = (void*)Stack;
763         *--stack = SS;          //Stack Segment
764         *--stack = Stack;       //Stack Pointer
765         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
766         *--stack = CS;          //Code Segment
767         *--stack = IP;  //EIP
768         //PUSHAD
769         *--stack = 0xAAAAAAAA;  // eax
770         *--stack = 0xCCCCCCCC;  // ecx
771         *--stack = 0xDDDDDDDD;  // edx
772         *--stack = 0xBBBBBBBB;  // ebx
773         *--stack = 0xD1D1D1D1;  // edi
774         *--stack = 0x54545454;  // esp - NOT POPED
775         *--stack = 0x51515151;  // esi
776         *--stack = 0xB4B4B4B4;  // ebp
777         //Individual PUSHs
778         *--stack = SS;  // ds
779         *--stack = SS;  // es
780         *--stack = SS;  // fs
781         *--stack = SS;  // gs
782         
783         __asm__ __volatile__ (
784         "mov %%eax,%%esp;\n\t"  // Set stack pointer
785         "pop %%gs;\n\t"
786         "pop %%fs;\n\t"
787         "pop %%es;\n\t"
788         "pop %%ds;\n\t"
789         "popa;\n\t"
790         "iret;\n\t" : : "a" (stack));
791         for(;;);
792 }
793
794 /**
795  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
796  * \brief Demotes a process to a lower permission level
797  * \param Err   Pointer to user's errno
798  * \param Dest  New Permission Level
799  * \param Regs  Pointer to user's register structure
800  */
801 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
802 {
803          int    cpl = Regs->cs & 3;
804         // Sanity Check
805         if(Dest > 3 || Dest < 0) {
806                 *Err = -EINVAL;
807                 return -1;
808         }
809         
810         // Permission Check
811         if(cpl > Dest) {
812                 *Err = -EACCES;
813                 return -1;
814         }
815         
816         // Change the Segment Registers
817         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
818         Regs->ss = ((Dest+1)<<4) | Dest;
819         // Check if the GP Segs are GDT, then change them
820         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
821         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
822         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
823         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
824         
825         return 0;
826 }
827
828 /**
829  * \brief Calls a signal handler in user mode
830  * \note Used for signals
831  */
832 void Proc_CallFaultHandler(tThread *Thread)
833 {
834         // Rewinds the stack and calls the user function
835         // Never returns
836         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum );
837         for(;;);
838 }
839
840 /**
841  * \fn void Proc_Scheduler(int CPU)
842  * \brief Swap current thread and clears dead threads
843  */
844 void Proc_Scheduler(int CPU)
845 {
846         Uint    esp, ebp, eip;
847         tThread *thread;
848         
849         // If the spinlock is set, let it complete
850         if(IS_LOCKED(&glThreadListLock))        return;
851         
852         // Get current thread
853         #if USE_MP
854         thread = gaCPUs[CPU].Current;
855         #else
856         thread = gCurrentThread;
857         #endif
858         
859         if( thread )
860         {
861                 // Reduce remaining quantum and continue timeslice if non-zero
862                 if( thread->Remaining-- )
863                         return;
864                 // Reset quantum for next call
865                 thread->Remaining = thread->Quantum;
866                 
867                 // Get machine state
868                 __asm__ __volatile__ ( "mov %%esp, %0" : "=r" (esp) );
869                 __asm__ __volatile__ ( "mov %%ebp, %0" : "=r" (ebp) );
870                 eip = GetEIP();
871                 if(eip == SWITCH_MAGIC) return; // Check if a switch happened
872                 
873                 // Save machine state
874                 thread->SavedState.ESP = esp;
875                 thread->SavedState.EBP = ebp;
876                 thread->SavedState.EIP = eip;
877         }
878         
879         // Get next thread to run
880         thread = Threads_GetNextToRun(CPU, thread);
881         
882         // No avaliable tasks, just go into low power mode (idle thread)
883         if(thread == NULL) {
884                 #if USE_MP
885                 thread = gaCPUs[CPU].IdleThread;
886                 Log("CPU %i Running Idle Thread", CPU);
887                 #else
888                 thread = gpIdleThread;
889                 #endif
890         }
891         
892         // Set current thread
893         #if USE_MP
894         gaCPUs[CPU].Current = thread;
895         #else
896         gCurrentThread = thread;
897         #endif
898         
899         #if DEBUG_TRACE_SWITCH
900         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
901                 thread->TID,
902                 thread->MemState.CR3,
903                 thread->SavedState.EIP
904                 );
905         #endif
906         
907         #if USE_MP      // MP Debug
908         Log("CPU = %i, Thread %p", CPU, thread);
909         #endif
910         
911         // Update Kernel Stack pointer
912         gTSSs[CPU].ESP0 = thread->KernelStack-4;
913         
914         // Set address space
915         #if USE_PAE
916         # error "Todo: Implement PAE Address space switching"
917         #else
918         __asm__ __volatile__ ("mov %0, %%cr3" : : "a" (thread->MemState.CR3));
919         #endif
920         
921         #if 0
922         if(thread->SavedState.ESP > 0xC0000000
923         && thread->SavedState.ESP < thread->KernelStack-0x2000) {
924                 Log_Warning("Proc", "Possible bad ESP %p (PID %i)", thread->SavedState.ESP);
925         }
926         #endif
927         
928         // Switch threads
929         __asm__ __volatile__ (
930                 "mov %1, %%esp\n\t"     // Restore ESP
931                 "mov %2, %%ebp\n\t"     // and EBP
932                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
933                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
934                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
935                 );
936         for(;;);        // Shouldn't reach here
937 }
938
939 // === EXPORTS ===
940 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au