Kernel/threads - Cleaning out delete queue
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <threads.h>
7 #include <proc.h>
8 #include <desctab.h>
9 #include <mm_virt.h>
10 #include <errno.h>
11 #if USE_MP
12 # include <mp.h>
13 #endif
14 #include <hal_proc.h>
15
16 // === FLAGS ===
17 #define DEBUG_TRACE_SWITCH      0
18 #define DEBUG_DISABLE_DOUBLEFAULT       1
19 #define DEBUG_VERY_SLOW_SWITCH  0
20
21 // === CONSTANTS ===
22 // Base is 1193182
23 #define TIMER_BASE      1193182
24 #if DEBUG_VERY_SLOW_PERIOD
25 # define TIMER_DIVISOR  1193    //~10Hz switch, with 10 quantum = 1s per thread
26 #else
27 # define TIMER_DIVISOR  11932   //~100Hz
28 #endif
29
30 // === TYPES ===
31 typedef struct sCPU
32 {
33         Uint8   APICID;
34         Uint8   State;  // 0: Unavaliable, 1: Idle, 2: Active
35         Uint16  Resvd;
36         tThread *Current;
37         tThread *IdleThread;
38 }       tCPU;
39
40 // === IMPORTS ===
41 extern tGDT     gGDT[];
42 extern tIDT     gIDT[];
43 extern void     APWait(void);   // 16-bit AP pause code
44 extern void     APStartup(void);        // 16-bit AP startup code
45 extern Uint     GetEIP(void);   // start.asm
46 extern Uint     GetEIP_Sched(void);     // proc.asm
47 extern void     NewTaskHeader(tThread *Thread, void *Fcn, int nArgs, ...);      // Actually takes cdecl args
48 extern Uint     Proc_CloneInt(Uint *ESP, Uint32 *CR3);
49 extern Uint32   gaInitPageDir[1024];    // start.asm
50 extern char     Kernel_Stack_Top[];
51 extern int      giNumCPUs;
52 extern int      giNextTID;
53 extern tThread  gThreadZero;
54 extern void     Isr8(void);     // Double Fault
55 extern void     Proc_ReturnToUser(tVAddr Handler, Uint Argument, tVAddr KernelStack);
56 extern char     scheduler_return[];     // Return address in SchedulerBase
57 extern char     IRQCommon[];    // Common IRQ handler code
58 extern char     IRQCommon_handled[];    // IRQCommon call return location
59 extern char     GetEIP_Sched_ret[];     // GetEIP call return location
60 extern void     SwitchTasks(Uint NewSP, Uint *OldSP, Uint NewIP, Uint *OldIO, Uint CR3);
61 extern void     Proc_InitialiseSSE(void);
62 extern void     Proc_SaveSSE(Uint DestPtr);
63 extern void     Proc_DisableSSE(void);
64
65 // === PROTOTYPES ===
66 //void  ArchThreads_Init(void);
67 #if USE_MP
68 void    MP_StartAP(int CPU);
69 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
70 #endif
71 void    Proc_IdleThread(void *Ptr);
72 //void  Proc_Start(void);
73 //tThread       *Proc_GetCurThread(void);
74 void    Proc_ChangeStack(void);
75 // int  Proc_NewKThread(void (*Fcn)(void*), void *Data);
76 // int  Proc_Clone(Uint *Err, Uint Flags);
77 Uint    Proc_MakeUserStack(void);
78 //void  Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize);
79 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP) NORETURN;
80  int    Proc_Demote(Uint *Err, int Dest, tRegs *Regs);
81 //void  Proc_CallFaultHandler(tThread *Thread);
82 //void  Proc_DumpThreadCPUState(tThread *Thread);
83 void    Proc_Scheduler(int CPU);
84
85 // === GLOBALS ===
86 // --- Multiprocessing ---
87 #if USE_MP
88 volatile int    giNumInitingCPUs = 0;
89 tMPInfo *gMPFloatPtr = NULL;
90 volatile Uint32 giMP_TimerCount;        // Start Count for Local APIC Timer
91 tAPIC   *gpMP_LocalAPIC = NULL;
92 Uint8   gaAPIC_to_CPU[256] = {0};
93  int    giProc_BootProcessorID = 0;
94 tTSS    gaTSSs[MAX_CPUS];       // TSS Array
95 #endif
96 tCPU    gaCPUs[MAX_CPUS];
97 tTSS    *gTSSs = NULL;  // Pointer to TSS array
98 tTSS    gTSS0 = {0};
99 // --- Error Recovery ---
100 char    gaDoubleFaultStack[1024] __attribute__ ((section(".padata")));
101 tTSS    gDoubleFault_TSS = {
102         .ESP0 = (Uint)&gaDoubleFaultStack[1024],
103         .SS0 = 0x10,
104         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
105         .EIP = (Uint)Isr8,
106         .ESP = (Uint)&gaDoubleFaultStack[1024],
107         .CS = 0x08,     .SS = 0x10,
108         .DS = 0x10,     .ES = 0x10,
109         .FS = 0x10,     .GS = 0x10,
110 };
111
112 // === CODE ===
113 /**
114  * \fn void ArchThreads_Init(void)
115  * \brief Starts the process scheduler
116  */
117 void ArchThreads_Init(void)
118 {
119         Uint    pos = 0;
120         
121         #if USE_MP
122         tMPTable        *mptable;
123         
124         // Mark BSP as active
125         gaCPUs[0].State = 2;
126         
127         // -- Initialise Multiprocessing
128         // Find MP Floating Table
129         // - EBDA/Last 1Kib (640KiB)
130         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
131                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
132                         Log("Possible %p", pos);
133                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
134                         gMPFloatPtr = (void*)pos;
135                         break;
136                 }
137         }
138         // - Last KiB (512KiB base mem)
139         if(!gMPFloatPtr) {
140                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
141                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
142                                 Log("Possible %p", pos);
143                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
144                                 gMPFloatPtr = (void*)pos;
145                                 break;
146                         }
147                 }
148         }
149         // - BIOS ROM
150         if(!gMPFloatPtr) {
151                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
152                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
153                                 Log("Possible %p", pos);
154                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
155                                 gMPFloatPtr = (void*)pos;
156                                 break;
157                         }
158                 }
159         }
160         
161         // If the MP Table Exists, parse it
162         if(gMPFloatPtr)
163         {
164                  int    i;
165                 tMPTable_Ent    *ents;
166                 Log("gMPFloatPtr = %p", gMPFloatPtr);
167                 Log("*gMPFloatPtr = {");
168                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
169                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
170                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
171                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
172                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
173                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
174                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
175                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
176                         gMPFloatPtr->Features[4]
177                         );
178                 Log("}");
179                 
180                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
181                 Log("mptable = %p", mptable);
182                 Log("*mptable = {");
183                 Log("\t.Sig = 0x%08x", mptable->Sig);
184                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
185                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
186                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
187                 Log("\t.OEMID = '%8c'", mptable->OemID);
188                 Log("\t.ProductID = '%8c'", mptable->ProductID);
189                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
190                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
191                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
192                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
193                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
194                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
195                 Log("}");
196                 
197                 gpMP_LocalAPIC = (void*)MM_MapHWPages(mptable->LocalAPICMemMap, 1);
198                 
199                 ents = mptable->Entries;
200                 giNumCPUs = 0;
201                 
202                 for( i = 0; i < mptable->EntryCount; i ++ )
203                 {
204                          int    entSize = 0;
205                         switch( ents->Type )
206                         {
207                         case 0: // Processor
208                                 entSize = 20;
209                                 Log("%i: Processor", i);
210                                 Log("\t.APICID = %i", ents->Proc.APICID);
211                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
212                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
213                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
214                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
215                                 
216                                 
217                                 if( !(ents->Proc.CPUFlags & 1) ) {
218                                         Log("DISABLED");
219                                         break;
220                                 }
221                                 
222                                 // Check if there is too many processors
223                                 if(giNumCPUs >= MAX_CPUS) {
224                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
225                                         break;
226                                 }
227                                 
228                                 // Initialise CPU Info
229                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
230                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
231                                 gaCPUs[giNumCPUs].State = 0;
232                                 giNumCPUs ++;
233                                 
234                                 // Set BSP Variable
235                                 if( ents->Proc.CPUFlags & 2 ) {
236                                         giProc_BootProcessorID = giNumCPUs-1;
237                                 }
238                                 
239                                 break;
240                         
241                         #if DUMP_MP_TABLES
242                         case 1: // Bus
243                                 entSize = 8;
244                                 Log("%i: Bus", i);
245                                 Log("\t.ID = %i", ents->Bus.ID);
246                                 Log("\t.TypeString = '%6C'", ents->Bus.TypeString);
247                                 break;
248                         case 2: // I/O APIC
249                                 entSize = 8;
250                                 Log("%i: I/O APIC", i);
251                                 Log("\t.ID = %i", ents->IOAPIC.ID);
252                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
253                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
254                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
255                                 break;
256                         case 3: // I/O Interrupt Assignment
257                                 entSize = 8;
258                                 Log("%i: I/O Interrupt Assignment", i);
259                                 Log("\t.IntType = %i", ents->IOInt.IntType);
260                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
261                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
262                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
263                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
264                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
265                                 break;
266                         case 4: // Local Interrupt Assignment
267                                 entSize = 8;
268                                 Log("%i: Local Interrupt Assignment", i);
269                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
270                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
271                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
272                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
273                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
274                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
275                                 break;
276                         default:
277                                 Log("%i: Unknown (%i)", i, ents->Type);
278                                 break;
279                         #endif
280                         }
281                         ents = (void*)( (Uint)ents + entSize );
282                 }
283                 
284                 if( giNumCPUs > MAX_CPUS ) {
285                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
286                         giNumCPUs = MAX_CPUS;
287                 }
288                 gTSSs = gaTSSs;
289         }
290         else {
291                 Log("No MP Table was found, assuming uniprocessor\n");
292                 giNumCPUs = 1;
293                 gTSSs = &gTSS0;
294         }
295         #else
296         giNumCPUs = 1;
297         gTSSs = &gTSS0;
298         #endif
299         
300         #if !DEBUG_DISABLE_DOUBLEFAULT
301         // Initialise Double Fault TSS
302         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
303         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
304         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
305         
306         // Set double fault IDT to use the new TSS
307         gIDT[8].OffsetLo = 0;
308         gIDT[8].CS = 5<<3;
309         gIDT[8].Flags = 0x8500;
310         gIDT[8].OffsetHi = 0;
311         #endif
312         
313         // Set timer frequency
314         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
315         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
316         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
317         
318         Log("Timer Frequency %i.%03i Hz",
319                 TIMER_BASE/TIMER_DIVISOR,
320                 ((Uint64)TIMER_BASE*1000/TIMER_DIVISOR)%1000
321                 );
322         
323         #if USE_MP
324         // Get the count setting for APIC timer
325         Log("Determining APIC Count");
326         __asm__ __volatile__ ("sti");
327         while( giMP_TimerCount == 0 )   __asm__ __volatile__ ("hlt");
328         __asm__ __volatile__ ("cli");
329         Log("APIC Count %i", giMP_TimerCount);
330         {
331                 Uint64  freq = giMP_TimerCount;
332                 freq /= TIMER_DIVISOR;
333                 freq *= TIMER_BASE;
334                 if( (freq /= 1000) < 2*1000)
335                         Log("Bus Frequency %i KHz", freq);
336                 else if( (freq /= 1000) < 2*1000)
337                         Log("Bus Frequency %i MHz", freq);
338                 else if( (freq /= 1000) < 2*1000)
339                         Log("Bus Frequency %i GHz", freq);
340                 else
341                         Log("Bus Frequency %i THz", freq);
342         }
343         
344         // Initialise Normal TSS(s)
345         for(pos=0;pos<giNumCPUs;pos++)
346         {
347         #else
348         pos = 0;
349         #endif
350                 gTSSs[pos].SS0 = 0x10;
351                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
352                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
353                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos]) >> 16) & 0xFFFF;
354                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
355         #if USE_MP
356         }
357         #endif
358         
359         // Load the BSP's TSS
360         __asm__ __volatile__ ("ltr %%ax"::"a"(0x30));
361         // Set Current Thread and CPU Number in DR0 and DR1
362         __asm__ __volatile__ ("mov %0, %%db0"::"r"(&gThreadZero));
363         __asm__ __volatile__ ("mov %0, %%db1"::"r"(0));
364         
365         gaCPUs[0].Current = &gThreadZero;
366         gThreadZero.CurCPU = 0;
367         
368         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
369         
370         // Create Per-Process Data Block
371         if( !MM_Allocate(MM_PPD_CFG) )
372         {
373                 Panic("OOM - No space for initial Per-Process Config");
374         }
375
376         // Initialise SSE support
377         Proc_InitialiseSSE();
378         
379         // Change Stacks
380         Proc_ChangeStack();
381 }
382
383 #if USE_MP
384 void MP_StartAP(int CPU)
385 {
386         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
387         
388         // Set location of AP startup code and mark for a warm restart
389         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APWait - (KERNEL_BASE|0xFFFF0);
390         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
391         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Set warm reset flag
392         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);   // Init IPI
393         
394         // Delay
395         inb(0x80); inb(0x80); inb(0x80); inb(0x80);
396         
397         // TODO: Use a better address, preferably registered with the MM
398         // - MM_AllocDMA mabye?
399         // Create a far jump
400         *(Uint8*)(KERNEL_BASE|0x11000) = 0xEA;  // Far JMP
401         *(Uint16*)(KERNEL_BASE|0x11001) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);     // IP
402         *(Uint16*)(KERNEL_BASE|0x11003) = 0xFFFF;       // CS
403         // Send a Startup-IPI to make the CPU execute at 0x11000 (which we
404         // just filled)
405         MP_SendIPI(gaCPUs[CPU].APICID, 0x11, 6);        // StartupIPI
406         
407         giNumInitingCPUs ++;
408 }
409
410 /**
411  * \brief Send an Inter-Processor Interrupt
412  * \param APICID        Processor's Local APIC ID
413  * \param Vector        Argument of some kind
414  * \param DeliveryMode  Type of signal?
415  */
416 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
417 {
418         Uint32  val;
419         
420         // Hi
421         val = (Uint)APICID << 24;
422         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[1], val);
423         gpMP_LocalAPIC->ICR[1].Val = val;
424         // Low (and send)
425         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
426         Log("*%p = 0x%08x", &gpMP_LocalAPIC->ICR[0], val);
427         gpMP_LocalAPIC->ICR[0].Val = val;
428 }
429 #endif
430
431 void Proc_IdleThread(void *Ptr)
432 {
433         tCPU    *cpu = Ptr;
434         cpu->IdleThread->ThreadName = strdup("Idle Thread");
435         Threads_SetPriority( cpu->IdleThread, -1 );     // Never called randomly
436         cpu->IdleThread->Quantum = 1;   // 1 slice quantum
437         for(;;) {
438                 HALT();
439                 Proc_Reschedule();
440         }
441 }
442
443 /**
444  * \fn void Proc_Start(void)
445  * \brief Start process scheduler
446  */
447 void Proc_Start(void)
448 {
449          int    tid;
450         #if USE_MP
451          int    i;
452         #endif
453         
454         #if USE_MP
455         // Start APs
456         for( i = 0; i < giNumCPUs; i ++ )
457         {
458                 if(i)   gaCPUs[i].Current = NULL;
459                 
460                 // Create Idle Task
461                 tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[i]);
462                 gaCPUs[i].IdleThread = Threads_GetThread(tid);
463                 
464                 // Start the AP
465                 if( i != giProc_BootProcessorID ) {
466                         MP_StartAP( i );
467                 }
468         }
469         
470         // BSP still should run the current task
471         gaCPUs[0].Current = &gThreadZero;
472         
473         // Start interrupts and wait for APs to come up
474         Log("Waiting for APs to come up\n");
475         __asm__ __volatile__ ("sti");
476         while( giNumInitingCPUs )       __asm__ __volatile__ ("hlt");
477         #else
478         // Create Idle Task
479         tid = Proc_NewKThread(Proc_IdleThread, &gaCPUs[0]);
480         gaCPUs[0].IdleThread = Threads_GetThread(tid);
481         
482         // Set current task
483         gaCPUs[0].Current = &gThreadZero;
484
485 //      while( gaCPUs[0].IdleThread == NULL )
486 //              Threads_Yield();
487         
488         // Start Interrupts (and hence scheduler)
489         __asm__ __volatile__("sti");
490         #endif
491         MM_FinishVirtualInit();
492 }
493
494 /**
495  * \fn tThread *Proc_GetCurThread(void)
496  * \brief Gets the current thread
497  */
498 tThread *Proc_GetCurThread(void)
499 {
500         #if USE_MP
501         return gaCPUs[ GetCPUNum() ].Current;
502         #else
503         return gaCPUs[ 0 ].Current;
504         #endif
505 }
506
507 /**
508  * \fn void Proc_ChangeStack(void)
509  * \brief Swaps the current stack for a new one (in the proper stack reigon)
510  */
511 void Proc_ChangeStack(void)
512 {
513         Uint    esp, ebp;
514         Uint    tmpEbp, oldEsp;
515         Uint    curBase, newBase;
516
517         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
518         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
519
520         oldEsp = esp;
521
522         // Create new KStack
523         newBase = MM_NewKStack();
524         // Check for errors
525         if(newBase == 0) {
526                 Panic("What the?? Unable to allocate space for initial kernel stack");
527                 return;
528         }
529
530         curBase = (Uint)&Kernel_Stack_Top;
531         
532         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
533
534         // Get ESP as a used size
535         esp = curBase - esp;
536         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
537         // Copy used stack
538         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
539         // Get ESP as an offset in the new stack
540         esp = newBase - esp;
541         // Adjust EBP
542         ebp = newBase - (curBase - ebp);
543
544         // Repair EBPs & Stack Addresses
545         // Catches arguments also, but may trash stack-address-like values
546         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
547         {
548                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
549                         *(Uint*)tmpEbp += newBase - curBase;
550         }
551         
552         Proc_GetCurThread()->KernelStack = newBase;
553         
554         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
555         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
556 }
557
558 void Proc_ClearThread(tThread *Thread)
559 {
560         Log_Warning("Proc", "TODO: Nuke address space etc");
561         if(Thread->SavedState.SSE) {
562                 free(Thread->SavedState.SSE);
563                 Thread->SavedState.SSE = NULL;
564         }
565 }
566
567 int Proc_NewKThread(void (*Fcn)(void*), void *Data)
568 {
569         Uint    esp;
570         tThread *newThread, *cur;
571         
572         cur = Proc_GetCurThread();
573         newThread = Threads_CloneTCB(0);
574         if(!newThread)  return -1;
575         
576         // Set CR3
577         newThread->MemState.CR3 = cur->MemState.CR3;
578
579         // Create new KStack
580         newThread->KernelStack = MM_NewKStack();
581         // Check for errors
582         if(newThread->KernelStack == 0) {
583                 free(newThread);
584                 return -1;
585         }
586
587         esp = newThread->KernelStack;
588         *(Uint*)(esp-=4) = (Uint)Data;  // Data (shadowed)
589         *(Uint*)(esp-=4) = 1;   // Number of params
590         *(Uint*)(esp-=4) = (Uint)Fcn;   // Function to call
591         *(Uint*)(esp-=4) = (Uint)newThread;     // Thread ID
592         
593         newThread->SavedState.ESP = esp;
594         newThread->SavedState.EIP = (Uint)&NewTaskHeader;
595         newThread->SavedState.SSE = NULL;
596         Log("New (KThread) %p, esp = %p\n", newThread->SavedState.EIP, newThread->SavedState.ESP);
597         
598 //      MAGIC_BREAK();  
599         Threads_AddActive(newThread);
600
601         return newThread->TID;
602 }
603
604 /**
605  * \fn int Proc_Clone(Uint *Err, Uint Flags)
606  * \brief Clone the current process
607  */
608 int Proc_Clone(Uint Flags)
609 {
610         tThread *newThread;
611         tThread *cur = Proc_GetCurThread();
612         Uint    eip;
613
614         // Sanity, please
615         if( !(Flags & CLONE_VM) ) {
616                 Log_Error("Proc", "Proc_Clone: Don't leave CLONE_VM unset, use Proc_NewKThread instead");
617                 return -1;
618         }
619         
620         // New thread
621         newThread = Threads_CloneTCB(Flags);
622         if(!newThread)  return -1;
623
624         newThread->KernelStack = cur->KernelStack;
625
626         // Clone state
627         eip = Proc_CloneInt(&newThread->SavedState.ESP, &newThread->MemState.CR3);
628         if( eip == 0 ) {
629                 // ACK the interrupt
630                 return 0;
631         }
632         newThread->SavedState.EIP = eip;
633         newThread->SavedState.SSE = NULL;
634         newThread->SavedState.bSSEModified = 0;
635         
636         // Check for errors
637         if( newThread->MemState.CR3 == 0 ) {
638                 Log_Error("Proc", "Proc_Clone: MM_Clone failed");
639                 Threads_Delete(newThread);
640                 return -1;
641         }
642
643         // Add the new thread to the run queue
644         Threads_AddActive(newThread);
645         return newThread->TID;
646 }
647
648 /**
649  * \fn int Proc_SpawnWorker(void)
650  * \brief Spawns a new worker thread
651  */
652 int Proc_SpawnWorker(void (*Fcn)(void*), void *Data)
653 {
654         tThread *new;
655         Uint    stack_contents[4];
656         
657         // Create new thread
658         new = Threads_CloneThreadZero();
659         if(!new) {
660                 Warning("Proc_SpawnWorker - Out of heap space!\n");
661                 return -1;
662         }
663
664         // Create the stack contents
665         stack_contents[3] = (Uint)Data;
666         stack_contents[2] = 1;
667         stack_contents[1] = (Uint)Fcn;
668         stack_contents[0] = (Uint)new;
669         
670         // Create a new worker stack (in PID0's address space)
671         new->KernelStack = MM_NewWorkerStack(stack_contents, sizeof(stack_contents));
672
673         // Save core machine state
674         new->SavedState.ESP = new->KernelStack - sizeof(stack_contents);
675         new->SavedState.EIP = (Uint)NewTaskHeader;
676         new->SavedState.SSE = NULL;
677         new->SavedState.bSSEModified = 0;
678         
679         // Mark as active
680         new->Status = THREAD_STAT_PREINIT;
681         Threads_AddActive( new );
682         
683         return new->TID;
684 }
685
686 /**
687  * \fn Uint Proc_MakeUserStack(void)
688  * \brief Creates a new user stack
689  */
690 Uint Proc_MakeUserStack(void)
691 {
692          int    i;
693         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
694         
695         // Check Prospective Space
696         for( i = USER_STACK_SZ >> 12; i--; )
697                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
698                         break;
699         
700         if(i != -1)     return 0;
701         
702         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
703         for( i = 0; i < USER_STACK_SZ/0x1000; i++ )
704         {
705                 if( !MM_Allocate( base + (i<<12) ) )
706                 {
707                         Warning("OOM: Proc_MakeUserStack");
708                         return 0;
709                 }
710         }
711         
712         return base + USER_STACK_SZ;
713 }
714
715 void Proc_StartUser(Uint Entrypoint, Uint Base, int ArgC, char **ArgV, int DataSize)
716 {
717         Uint    *stack;
718          int    i;
719         char    **envp = NULL;
720         Uint16  ss, cs;
721         
722         // Copy data to the user stack and free original buffer
723         stack = (void*)Proc_MakeUserStack();
724         stack -= DataSize/sizeof(*stack);
725         memcpy( stack, ArgV, DataSize );
726         free(ArgV);
727         
728         // Adjust Arguments and environment
729         if( DataSize )
730         {
731                 Uint delta = (Uint)stack - (Uint)ArgV;
732                 ArgV = (char**)stack;
733                 for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
734                 envp = &ArgV[i+1];
735                 for( i = 0; envp[i]; i++ )      envp[i] += delta;
736         }
737         
738         // User Mode Segments
739         ss = 0x23;      cs = 0x1B;
740         
741         // Arguments
742         *--stack = (Uint)envp;
743         *--stack = (Uint)ArgV;
744         *--stack = (Uint)ArgC;
745         *--stack = Base;
746         
747         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
748 }
749
750 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
751 {
752         Uint    *stack = (void*)Stack;
753         *--stack = SS;          //Stack Segment
754         *--stack = Stack;       //Stack Pointer
755         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
756         *--stack = CS;          //Code Segment
757         *--stack = IP;  //EIP
758         //PUSHAD
759         *--stack = 0xAAAAAAAA;  // eax
760         *--stack = 0xCCCCCCCC;  // ecx
761         *--stack = 0xDDDDDDDD;  // edx
762         *--stack = 0xBBBBBBBB;  // ebx
763         *--stack = 0xD1D1D1D1;  // edi
764         *--stack = 0x54545454;  // esp - NOT POPED
765         *--stack = 0x51515151;  // esi
766         *--stack = 0xB4B4B4B4;  // ebp
767         //Individual PUSHs
768         *--stack = SS;  // ds
769         *--stack = SS;  // es
770         *--stack = SS;  // fs
771         *--stack = SS;  // gs
772         
773         __asm__ __volatile__ (
774         "mov %%eax,%%esp;\n\t"  // Set stack pointer
775         "pop %%gs;\n\t"
776         "pop %%fs;\n\t"
777         "pop %%es;\n\t"
778         "pop %%ds;\n\t"
779         "popa;\n\t"
780         "iret;\n\t" : : "a" (stack));
781         for(;;);
782 }
783
784 /**
785  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
786  * \brief Demotes a process to a lower permission level
787  * \param Err   Pointer to user's errno
788  * \param Dest  New Permission Level
789  * \param Regs  Pointer to user's register structure
790  */
791 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
792 {
793          int    cpl = Regs->cs & 3;
794         // Sanity Check
795         if(Dest > 3 || Dest < 0) {
796                 *Err = -EINVAL;
797                 return -1;
798         }
799         
800         // Permission Check
801         if(cpl > Dest) {
802                 *Err = -EACCES;
803                 return -1;
804         }
805         
806         // Change the Segment Registers
807         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
808         Regs->ss = ((Dest+1)<<4) | Dest;
809         // Check if the GP Segs are GDT, then change them
810         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
811         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
812         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
813         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
814         
815         return 0;
816 }
817
818 /**
819  * \brief Calls a signal handler in user mode
820  * \note Used for signals
821  */
822 void Proc_CallFaultHandler(tThread *Thread)
823 {
824         // Rewinds the stack and calls the user function
825         // Never returns
826         Proc_ReturnToUser( Thread->FaultHandler, Thread->CurFaultNum, Thread->KernelStack );
827         for(;;);
828 }
829
830 void Proc_DumpThreadCPUState(tThread *Thread)
831 {
832         if( Thread->CurCPU > -1 )
833         {
834                  int    maxBacktraceDistance = 6;
835                 tRegs   *regs = NULL;
836                 Uint32  *stack;
837                 
838                 if( Thread->CurCPU != GetCPUNum() ) {
839                         Log("  Currently running");
840                         return ;
841                 }
842                 
843                 // Backtrace to find the IRQ entrypoint
844                 // - This will usually only be called by an IRQ, so this should
845                 //   work
846                 __asm__ __volatile__ ("mov %%ebp, %0" : "=r" (stack));
847                 while( maxBacktraceDistance -- )
848                 {
849                         // [ebp] = oldEbp
850                         // [ebp+4] = retaddr
851                         
852                         if( stack[1] == (tVAddr)&IRQCommon_handled ) {
853                                 regs = (void*)stack[2];
854                                 break;
855                         }
856                         
857                         stack = (void*)stack[0];
858                 }
859                 
860                 if( !regs ) {
861                         Log("  Unable to find IRQ Entry");
862                         return ;
863                 }
864                 
865                 Log("  at %04x:%08x", regs->cs, regs->eip);
866                 return ;
867         }
868         
869         tVAddr  diffFromScheduler = Thread->SavedState.EIP - (tVAddr)SwitchTasks;
870         tVAddr  diffFromClone = Thread->SavedState.EIP - (tVAddr)Proc_CloneInt;
871         tVAddr  diffFromSpawn = Thread->SavedState.EIP - (tVAddr)NewTaskHeader;
872         
873         if( diffFromClone > 0 && diffFromClone < 40 )   // When I last checked, .newTask was at .+27
874         {
875                 Log("  Creating process");
876                 return ;
877         }
878         
879         if( diffFromSpawn == 0 )
880         {
881                 Log("  Creating thread");
882                 return ;
883         }
884         
885         if( diffFromScheduler > 0 && diffFromScheduler < 128 )  // When I last checked, GetEIP was at .+0x30
886         {
887                 // Scheduled out
888                 Log("  At %04x:%08x", Thread->SavedState.UserCS, Thread->SavedState.UserEIP);
889                 return ;
890         }
891         
892         Log("  Just created (unknown %p)", Thread->SavedState.EIP);
893 }
894
895 void Proc_Reschedule(void)
896 {
897         tThread *nextthread, *curthread;
898          int    cpu = GetCPUNum();
899
900         // TODO: Wait for the lock?
901         if(IS_LOCKED(&glThreadListLock))        return;
902         
903         curthread = Proc_GetCurThread();
904
905         nextthread = Threads_GetNextToRun(cpu, curthread);
906
907         if(!nextthread)
908                 nextthread = gaCPUs[cpu].IdleThread;
909         if(!nextthread || nextthread == curthread)
910                 return ;
911
912         #if DEBUG_TRACE_SWITCH
913         LogF("\nSwitching to task %i, CR3 = 0x%x, EIP = %p, ESP = %p\n",
914                 nextthread->TID,
915                 nextthread->MemState.CR3,
916                 nextthread->SavedState.EIP,
917                 nextthread->SavedState.ESP
918                 );
919         #endif
920
921         // Update CPU state
922         gaCPUs[cpu].Current = nextthread;
923         gTSSs[cpu].ESP0 = nextthread->KernelStack-4;
924         __asm__ __volatile__("mov %0, %%db0\n\t" : : "r"(nextthread) );
925
926         // Save FPU/MMX/XMM/SSE state
927         if( curthread->SavedState.SSE )
928         {
929                 Proc_SaveSSE( ((Uint)curthread->SavedState.SSE + 0xF) & ~0xF );
930                 curthread->SavedState.bSSEModified = 0;
931                 Proc_DisableSSE();
932         }
933
934         SwitchTasks(
935                 nextthread->SavedState.ESP, &curthread->SavedState.ESP,
936                 nextthread->SavedState.EIP, &curthread->SavedState.EIP,
937                 nextthread->MemState.CR3
938                 );
939
940         return ;
941 }
942
943 /**
944  * \fn void Proc_Scheduler(int CPU)
945  * \brief Swap current thread and clears dead threads
946  */
947 void Proc_Scheduler(int CPU)
948 {
949         tThread *thread;
950         
951         // If the spinlock is set, let it complete
952         if(IS_LOCKED(&glThreadListLock))        return;
953         
954         // Get current thread
955         thread = gaCPUs[CPU].Current;
956         
957         if( thread )
958         {
959                 tRegs   *regs;
960                 Uint    ebp;
961                 // Reduce remaining quantum and continue timeslice if non-zero
962                 if( thread->Remaining-- )
963                         return;
964                 // Reset quantum for next call
965                 thread->Remaining = thread->Quantum;
966                 
967                 // TODO: Make this more stable somehow
968                 __asm__ __volatile__("mov %%ebp, %0" : "=r" (ebp));
969                 regs = (tRegs*)(ebp+(2+2)*4);   // EBP,Ret + CPU,CurThread
970                 thread->SavedState.UserCS = regs->cs;
971                 thread->SavedState.UserEIP = regs->eip;
972                 
973                 if(thread->bInstrTrace) {
974                         regs->eflags |= 0x100;  // Set TF
975                         Log("%p De-scheduled", thread);
976                 }
977                 else
978                         regs->eflags &= ~0x100; // Clear TF
979         }
980
981 #if 0
982         // TODO: Ack timer?
983         #if USE_MP
984         if( GetCPUNum() )
985                 gpMP_LocalAPIC->EOI.Val = 0;
986         else
987         #endif
988                 outb(0x20, 0x20);
989         __asm__ __volatile__ ("sti");
990         Proc_Reschedule();
991 #endif
992 }
993
994 // === EXPORTS ===
995 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au