Fixes to VM8086 handler to remove operand size errors.
[tpg/acess2.git] / Kernel / arch / x86 / proc.c
1 /*
2  * AcessOS Microkernel Version
3  * proc.c
4  */
5 #include <acess.h>
6 #include <proc.h>
7 #include <desctab.h>
8 #include <mm_virt.h>
9 #include <errno.h>
10 #if USE_MP
11 # include <mp.h>
12 #endif
13
14 // === FLAGS ===
15 #define DEBUG_TRACE_SWITCH      0
16
17 // === CONSTANTS ===
18 #define SWITCH_MAGIC    0xFFFACE55      // There is no code in this area
19 // Base is 1193182
20 #define TIMER_DIVISOR   11931   //~100Hz
21
22 // === IMPORTS ===
23 extern tGDT     gGDT[];
24 extern tIDT     gIDT[];
25 extern void APStartup();        // 16-bit AP startup code
26 extern Uint     GetEIP();       // start.asm
27 extern Uint32   gaInitPageDir[1024];    // start.asm
28 extern void     Kernel_Stack_Top;
29 extern volatile int     giThreadListLock;
30 extern int      giNumCPUs;
31 extern int      giNextTID;
32 extern int      giTotalTickets;
33 extern int      giNumActiveThreads;
34 extern tThread  gThreadZero;
35 extern tThread  *gActiveThreads;
36 extern tThread  *gSleepingThreads;
37 extern tThread  *gDeleteThreads;
38 extern tThread  *Threads_GetNextToRun(int CPU);
39 extern void     Threads_Dump();
40 extern tThread  *Threads_CloneTCB(Uint *Err, Uint Flags);
41 extern void     Isr8(); // Double Fault
42 extern void     Proc_AlterUserReturnAddr();
43
44 // === PROTOTYPES ===
45 void    ArchThreads_Init();
46 #if USE_MP
47 void    MP_StartAP(int CPU);
48 void    MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode);
49 #endif
50 void    Proc_Start();
51 tThread *Proc_GetCurThread();
52 void    Proc_ChangeStack();
53  int    Proc_Clone(Uint *Err, Uint Flags);
54 void    Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP);
55 void    Proc_CallFaultHandler(tThread *Thread);
56 void    Proc_Scheduler();
57
58 // === GLOBALS ===
59 // --- Multiprocessing ---
60 #if USE_MP
61 volatile int    giNumInitingCPUs = 0;
62 tMPInfo *gMPFloatPtr = NULL;
63 tAPIC   *gpMP_LocalAPIC = NULL;
64 Uint8   gaAPIC_to_CPU[256] = {0};
65 tCPU    gaCPUs[MAX_CPUS];
66 #else
67 tThread *gCurrentThread = NULL;
68 #endif
69 #if USE_PAE
70 Uint32  *gPML4s[4] = NULL;
71 #endif
72 tTSS    *gTSSs = NULL;
73 tTSS    gTSS0 = {0};
74 // --- Error Recovery ---
75 char    gaDoubleFaultStack[1024];
76 tTSS    gDoubleFault_TSS = {
77         .ESP0 = (Uint)&gaDoubleFaultStack[1023],
78         .SS0 = 0x10,
79         .CR3 = (Uint)gaInitPageDir - KERNEL_BASE,
80         .EIP = (Uint)Isr8,
81         .ESP = (Uint)&gaDoubleFaultStack[1023],
82         .CS = 0x08,     .SS = 0x10,
83         .DS = 0x10,     .ES = 0x10,
84         .FS = 0x10,     .GS = 0x10,
85 };
86
87 // === CODE ===
88 /**
89  * \fn void ArchThreads_Init()
90  * \brief Starts the process scheduler
91  */
92 void ArchThreads_Init()
93 {
94         Uint    pos = 0;
95         
96         #if USE_MP
97         tMPTable        *mptable;
98         
99         // Mark BSP as active
100         gaCPUs[0].State = 2;
101         
102         // -- Initialise Multiprocessing
103         // Find MP Floating Table
104         // - EBDA/Last 1Kib (640KiB)
105         for(pos = KERNEL_BASE|0x9F000; pos < (KERNEL_BASE|0xA0000); pos += 16) {
106                 if( *(Uint*)(pos) == MPPTR_IDENT ) {
107                         Log("Possible %p", pos);
108                         if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
109                         gMPFloatPtr = (void*)pos;
110                         break;
111                 }
112         }
113         // - Last KiB (512KiB base mem)
114         if(!gMPFloatPtr) {
115                 for(pos = KERNEL_BASE|0x7F000; pos < (KERNEL_BASE|0x80000); pos += 16) {
116                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
117                                 Log("Possible %p", pos);
118                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
119                                 gMPFloatPtr = (void*)pos;
120                                 break;
121                         }
122                 }
123         }
124         // - BIOS ROM
125         if(!gMPFloatPtr) {
126                 for(pos = KERNEL_BASE|0xE0000; pos < (KERNEL_BASE|0x100000); pos += 16) {
127                         if( *(Uint*)(pos) == MPPTR_IDENT ) {
128                                 Log("Possible %p", pos);
129                                 if( ByteSum((void*)pos, sizeof(tMPInfo)) != 0 ) continue;
130                                 gMPFloatPtr = (void*)pos;
131                                 break;
132                         }
133                 }
134         }
135         
136         // If the MP Table Exists, parse it
137         if(gMPFloatPtr)
138         {
139                  int    i;
140                 tMPTable_Ent    *ents;
141                 Log("gMPFloatPtr = %p", gMPFloatPtr);
142                 Log("*gMPFloatPtr = {");
143                 Log("\t.Sig = 0x%08x", gMPFloatPtr->Sig);
144                 Log("\t.MPConfig = 0x%08x", gMPFloatPtr->MPConfig);
145                 Log("\t.Length = 0x%02x", gMPFloatPtr->Length);
146                 Log("\t.Version = 0x%02x", gMPFloatPtr->Version);
147                 Log("\t.Checksum = 0x%02x", gMPFloatPtr->Checksum);
148                 Log("\t.Features = [0x%02x,0x%02x,0x%02x,0x%02x,0x%02x]",
149                         gMPFloatPtr->Features[0],       gMPFloatPtr->Features[1],
150                         gMPFloatPtr->Features[2],       gMPFloatPtr->Features[3],
151                         gMPFloatPtr->Features[4]
152                         );
153                 Log("}");
154                 
155                 mptable = (void*)( KERNEL_BASE|gMPFloatPtr->MPConfig );
156                 Log("mptable = %p", mptable);
157                 Log("*mptable = {");
158                 Log("\t.Sig = 0x%08x", mptable->Sig);
159                 Log("\t.BaseTableLength = 0x%04x", mptable->BaseTableLength);
160                 Log("\t.SpecRev = 0x%02x", mptable->SpecRev);
161                 Log("\t.Checksum = 0x%02x", mptable->Checksum);
162                 Log("\t.OEMID = '%8c'", mptable->OemID);
163                 Log("\t.ProductID = '%8c'", mptable->ProductID);
164                 Log("\t.OEMTablePtr = %p'", mptable->OEMTablePtr);
165                 Log("\t.OEMTableSize = 0x%04x", mptable->OEMTableSize);
166                 Log("\t.EntryCount = 0x%04x", mptable->EntryCount);
167                 Log("\t.LocalAPICMemMap = 0x%08x", mptable->LocalAPICMemMap);
168                 Log("\t.ExtendedTableLen = 0x%04x", mptable->ExtendedTableLen);
169                 Log("\t.ExtendedTableChecksum = 0x%02x", mptable->ExtendedTableChecksum);
170                 Log("}");
171                 
172                 gpMP_LocalAPIC = (void*)MM_MapHWPage(mptable->LocalAPICMemMap, 1);
173                 
174                 ents = mptable->Entries;
175                 giNumCPUs = 0;
176                 
177                 for( i = 0; i < mptable->EntryCount; i ++ )
178                 {
179                          int    entSize = 0;
180                         switch( ents->Type )
181                         {
182                         case 0: // Processor
183                                 entSize = 20;
184                                 Log("%i: Processor", i);
185                                 Log("\t.APICID = %i", ents->Proc.APICID);
186                                 Log("\t.APICVer = 0x%02x", ents->Proc.APICVer);
187                                 Log("\t.CPUFlags = 0x%02x", ents->Proc.CPUFlags);
188                                 Log("\t.CPUSignature = 0x%08x", ents->Proc.CPUSignature);
189                                 Log("\t.FeatureFlags = 0x%08x", ents->Proc.FeatureFlags);
190                                 
191                                 
192                                 if( !(ents->Proc.CPUFlags & 1) ) {
193                                         Log("DISABLED");
194                                         break;
195                                 }
196                                 
197                                 // Check if there is too many processors
198                                 if(giNumCPUs >= MAX_CPUS) {
199                                         giNumCPUs ++;   // If `giNumCPUs` > MAX_CPUS later, it will be clipped
200                                         break;
201                                 }
202                                 
203                                 // Initialise CPU Info
204                                 gaAPIC_to_CPU[ents->Proc.APICID] = giNumCPUs;
205                                 gaCPUs[giNumCPUs].APICID = ents->Proc.APICID;
206                                 gaCPUs[giNumCPUs].State = 0;
207                                 giNumCPUs ++;
208                                 
209                                 // Send IPI
210                                 if( !(ents->Proc.CPUFlags & 2) )
211                                 {
212                                         MP_StartAP( giNumCPUs-1 );
213                                 }
214                                 
215                                 break;
216                         case 1: // Bus
217                                 entSize = 8;
218                                 Log("%i: Bus", i);
219                                 Log("\t.ID = %i", ents->Bus.ID);
220                                 Log("\t.TypeString = '%6c'", ents->Bus.TypeString);
221                                 break;
222                         case 2: // I/O APIC
223                                 entSize = 8;
224                                 Log("%i: I/O APIC", i);
225                                 Log("\t.ID = %i", ents->IOAPIC.ID);
226                                 Log("\t.Version = 0x%02x", ents->IOAPIC.Version);
227                                 Log("\t.Flags = 0x%02x", ents->IOAPIC.Flags);
228                                 Log("\t.Addr = 0x%08x", ents->IOAPIC.Addr);
229                                 break;
230                         case 3: // I/O Interrupt Assignment
231                                 entSize = 8;
232                                 Log("%i: I/O Interrupt Assignment", i);
233                                 Log("\t.IntType = %i", ents->IOInt.IntType);
234                                 Log("\t.Flags = 0x%04x", ents->IOInt.Flags);
235                                 Log("\t.SourceBusID = 0x%02x", ents->IOInt.SourceBusID);
236                                 Log("\t.SourceBusIRQ = 0x%02x", ents->IOInt.SourceBusIRQ);
237                                 Log("\t.DestAPICID = 0x%02x", ents->IOInt.DestAPICID);
238                                 Log("\t.DestAPICIRQ = 0x%02x", ents->IOInt.DestAPICIRQ);
239                                 break;
240                         case 4: // Local Interrupt Assignment
241                                 entSize = 8;
242                                 Log("%i: Local Interrupt Assignment", i);
243                                 Log("\t.IntType = %i", ents->LocalInt.IntType);
244                                 Log("\t.Flags = 0x%04x", ents->LocalInt.Flags);
245                                 Log("\t.SourceBusID = 0x%02x", ents->LocalInt.SourceBusID);
246                                 Log("\t.SourceBusIRQ = 0x%02x", ents->LocalInt.SourceBusIRQ);
247                                 Log("\t.DestLocalAPICID = 0x%02x", ents->LocalInt.DestLocalAPICID);
248                                 Log("\t.DestLocalAPICIRQ = 0x%02x", ents->LocalInt.DestLocalAPICIRQ);
249                                 break;
250                         default:
251                                 Log("%i: Unknown (%i)", i, ents->Type);
252                                 break;
253                         }
254                         ents = (void*)( (Uint)ents + entSize );
255                 }
256                 
257                 if( giNumCPUs > MAX_CPUS ) {
258                         Warning("Too many CPUs detected (%i), only using %i of them", giNumCPUs, MAX_CPUS);
259                         giNumCPUs = MAX_CPUS;
260                 }
261         
262                 while( giNumInitingCPUs )
263                         MM_FinishVirtualInit();
264                 
265                 Panic("Uh oh... MP Table Parsing is unimplemented\n");
266         }
267         else {
268                 Log("No MP Table was found, assuming uniprocessor\n");
269                 giNumCPUs = 1;
270                 gTSSs = &gTSS0;
271         }
272         #else
273         giNumCPUs = 1;
274         gTSSs = &gTSS0;
275         MM_FinishVirtualInit();
276         #endif
277         
278         // Initialise Double Fault TSS
279         /*
280         gGDT[5].LimitLow = sizeof(tTSS);
281         gGDT[5].LimitHi = 0;
282         gGDT[5].Access = 0x89;  // Type
283         gGDT[5].Flags = 0x4;
284         */
285         gGDT[5].BaseLow = (Uint)&gDoubleFault_TSS & 0xFFFF;
286         gGDT[5].BaseMid = (Uint)&gDoubleFault_TSS >> 16;
287         gGDT[5].BaseHi = (Uint)&gDoubleFault_TSS >> 24;
288         
289         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
290                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
291         gIDT[8].OffsetLo = 0;
292         gIDT[8].CS = 5<<3;
293         gIDT[8].Flags = 0x8500;
294         gIDT[8].OffsetHi = 0;
295         Log_Debug("Proc", "gIDT[8] = {OffsetLo:%04x, CS:%04x, Flags:%04x, OffsetHi:%04x}", 
296                 gIDT[8].OffsetLo, gIDT[8].CS, gIDT[8].Flags, gIDT[8].OffsetHi);
297         
298         //__asm__ __volatile__ ("xchg %bx, %bx");
299         
300         #if USE_MP
301         // Initialise Normal TSS(s)
302         for(pos=0;pos<giNumCPUs;pos++)
303         {
304         #else
305         pos = 0;
306         #endif
307                 gTSSs[pos].SS0 = 0x10;
308                 gTSSs[pos].ESP0 = 0;    // Set properly by scheduler
309                 gGDT[6+pos].BaseLow = ((Uint)(&gTSSs[pos])) & 0xFFFF;
310                 gGDT[6+pos].BaseMid = ((Uint)(&gTSSs[pos])) >> 16;
311                 gGDT[6+pos].BaseHi = ((Uint)(&gTSSs[pos])) >> 24;
312         #if USE_MP
313         }
314         for(pos=0;pos<giNumCPUs;pos++) {
315         #endif
316                 __asm__ __volatile__ ("ltr %%ax"::"a"(0x30+pos*8));
317         #if USE_MP
318         }
319         #endif
320         
321         #if USE_MP
322         gaCPUs[0].Current = &gThreadZero;
323         #else
324         gCurrentThread = &gThreadZero;
325         #endif
326         
327         #if USE_PAE
328         gThreadZero.MemState.PDP[0] = 0;
329         gThreadZero.MemState.PDP[1] = 0;
330         gThreadZero.MemState.PDP[2] = 0;
331         #else
332         gThreadZero.MemState.CR3 = (Uint)gaInitPageDir - KERNEL_BASE;
333         #endif
334         
335         // Set timer frequency
336         outb(0x43, 0x34);       // Set Channel 0, Low/High, Rate Generator
337         outb(0x40, TIMER_DIVISOR&0xFF); // Low Byte of Divisor
338         outb(0x40, (TIMER_DIVISOR>>8)&0xFF);    // High Byte
339         
340         // Create Per-Process Data Block
341         MM_Allocate(MM_PPD_CFG);
342         
343         // Change Stacks
344         Proc_ChangeStack();
345 }
346
347 #if USE_MP
348 void MP_StartAP(int CPU)
349 {
350         Log("Starting AP %i (APIC %i)", CPU, gaCPUs[CPU].APICID);
351         // Set location of AP startup code and mark for a warm restart
352         *(Uint16*)(KERNEL_BASE|0x467) = (Uint)&APStartup - (KERNEL_BASE|0xFFFF0);
353         *(Uint16*)(KERNEL_BASE|0x469) = 0xFFFF;
354         outb(0x70, 0x0F);       outb(0x71, 0x0A);       // Warm Reset
355         MP_SendIPI(gaCPUs[CPU].APICID, 0, 5);
356         giNumInitingCPUs ++;
357 }
358
359 void MP_SendIPI(Uint8 APICID, int Vector, int DeliveryMode)
360 {
361         Uint32  addr = (Uint)gpMP_LocalAPIC + 0x300;
362         Uint32  val;
363         
364         // Hi
365         val = (Uint)APICID << 24;
366         Log("*%p = 0x%08x", addr+0x10, val);
367         *(Uint32*)(addr+0x10) = val;
368         // Low (and send)
369         val = ((DeliveryMode & 7) << 8) | (Vector & 0xFF);
370         Log("*%p = 0x%08x", addr, val);
371         *(Uint32*)addr = val;
372 }
373 #endif
374
375 /**
376  * \fn void Proc_Start()
377  * \brief Start process scheduler
378  */
379 void Proc_Start()
380 {
381         // Start Interrupts (and hence scheduler)
382         __asm__ __volatile__("sti");
383 }
384
385 /**
386  * \fn tThread *Proc_GetCurThread()
387  * \brief Gets the current thread
388  */
389 tThread *Proc_GetCurThread()
390 {
391         #if USE_MP
392         return gaCPUs[ gaAPIC_to_CPU[gpMP_LocalAPIC->ID.Val&0xFF] ].Current;
393         #else
394         return gCurrentThread;
395         #endif
396 }
397
398 /**
399  * \fn void Proc_ChangeStack()
400  * \brief Swaps the current stack for a new one (in the proper stack reigon)
401  */
402 void Proc_ChangeStack()
403 {
404         Uint    esp, ebp;
405         Uint    tmpEbp, oldEsp;
406         Uint    curBase, newBase;
407
408         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
409         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
410
411         oldEsp = esp;
412
413         // Create new KStack
414         newBase = MM_NewKStack();
415         // Check for errors
416         if(newBase == 0) {
417                 Panic("What the?? Unable to allocate space for initial kernel stack");
418                 return;
419         }
420
421         curBase = (Uint)&Kernel_Stack_Top;
422         
423         LOG("curBase = 0x%x, newBase = 0x%x", curBase, newBase);
424
425         // Get ESP as a used size
426         esp = curBase - esp;
427         LOG("memcpy( %p, %p, 0x%x )", (void*)(newBase - esp), (void*)(curBase - esp), esp );
428         // Copy used stack
429         memcpy( (void*)(newBase - esp), (void*)(curBase - esp), esp );
430         // Get ESP as an offset in the new stack
431         esp = newBase - esp;
432         // Adjust EBP
433         ebp = newBase - (curBase - ebp);
434
435         // Repair EBPs & Stack Addresses
436         // Catches arguments also, but may trash stack-address-like values
437         for(tmpEbp = esp; tmpEbp < newBase; tmpEbp += 4)
438         {
439                 if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < curBase)
440                         *(Uint*)tmpEbp += newBase - curBase;
441         }
442         
443         Proc_GetCurThread()->KernelStack = newBase;
444         
445         __asm__ __volatile__ ("mov %0, %%esp"::"r"(esp));
446         __asm__ __volatile__ ("mov %0, %%ebp"::"r"(ebp));
447 }
448
449 /**
450  * \fn int Proc_Clone(Uint *Err, Uint Flags)
451  * \brief Clone the current process
452  */
453 int Proc_Clone(Uint *Err, Uint Flags)
454 {
455         tThread *newThread;
456         tThread *cur = Proc_GetCurThread();
457         Uint    eip, esp, ebp;
458         
459         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
460         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
461         
462         newThread = Threads_CloneTCB(Err, Flags);
463         if(!newThread)  return -1;
464         
465         // Initialise Memory Space (New Addr space or kernel stack)
466         if(Flags & CLONE_VM) {
467                 newThread->MemState.CR3 = MM_Clone();
468                 newThread->KernelStack = cur->KernelStack;
469         } else {
470                 Uint    tmpEbp, oldEsp = esp;
471
472                 // Set CR3
473                 newThread->MemState.CR3 = cur->MemState.CR3;
474
475                 // Create new KStack
476                 newThread->KernelStack = MM_NewKStack();
477                 // Check for errors
478                 if(newThread->KernelStack == 0) {
479                         free(newThread);
480                         return -1;
481                 }
482
483                 // Get ESP as a used size
484                 esp = cur->KernelStack - esp;
485                 // Copy used stack
486                 memcpy( (void*)(newThread->KernelStack - esp), (void*)(cur->KernelStack - esp), esp );
487                 // Get ESP as an offset in the new stack
488                 esp = newThread->KernelStack - esp;
489                 // Adjust EBP
490                 ebp = newThread->KernelStack - (cur->KernelStack - ebp);
491
492                 // Repair EBPs & Stack Addresses
493                 // Catches arguments also, but may trash stack-address-like values
494                 for(tmpEbp = esp; tmpEbp < newThread->KernelStack; tmpEbp += 4)
495                 {
496                         if(oldEsp < *(Uint*)tmpEbp && *(Uint*)tmpEbp < cur->KernelStack)
497                                 *(Uint*)tmpEbp += newThread->KernelStack - cur->KernelStack;
498                 }
499         }
500         
501         // Save core machine state
502         newThread->SavedState.ESP = esp;
503         newThread->SavedState.EBP = ebp;
504         eip = GetEIP();
505         if(eip == SWITCH_MAGIC) {
506                 outb(0x20, 0x20);       // ACK Timer and return as child
507                 return 0;
508         }
509         
510         // Set EIP as parent
511         newThread->SavedState.EIP = eip;
512         
513         // Lock list and add to active
514         Threads_AddActive(newThread);
515         
516         return newThread->TID;
517 }
518
519 /**
520  * \fn int Proc_SpawnWorker()
521  * \brief Spawns a new worker thread
522  */
523 int Proc_SpawnWorker()
524 {
525         tThread *new, *cur;
526         Uint    eip, esp, ebp;
527         
528         cur = Proc_GetCurThread();
529         
530         // Create new thread
531         new = malloc( sizeof(tThread) );
532         if(!new) {
533                 Warning("Proc_SpawnWorker - Out of heap space!\n");
534                 return -1;
535         }
536         memcpy(new, &gThreadZero, sizeof(tThread));
537         // Set Thread ID
538         new->TID = giNextTID++;
539         // Create a new worker stack (in PID0's address space)
540         // The stack is relocated by this code
541         new->KernelStack = MM_NewWorkerStack();
542
543         // Get ESP and EBP based in the new stack
544         __asm__ __volatile__ ("mov %%esp, %0": "=r"(esp));
545         __asm__ __volatile__ ("mov %%ebp, %0": "=r"(ebp));
546         esp = new->KernelStack - (cur->KernelStack - esp);
547         ebp = new->KernelStack - (cur->KernelStack - ebp);      
548         
549         // Save core machine state
550         new->SavedState.ESP = esp;
551         new->SavedState.EBP = ebp;
552         eip = GetEIP();
553         if(eip == SWITCH_MAGIC) {
554                 outb(0x20, 0x20);       // ACK Timer and return as child
555                 return 0;
556         }
557         
558         // Set EIP as parent
559         new->SavedState.EIP = eip;
560         // Mark as active
561         new->Status = THREAD_STAT_ACTIVE;
562         Threads_AddActive( new );
563         
564         return new->TID;
565 }
566
567 /**
568  * \fn Uint Proc_MakeUserStack()
569  * \brief Creates a new user stack
570  */
571 Uint Proc_MakeUserStack()
572 {
573          int    i;
574         Uint    base = USER_STACK_TOP - USER_STACK_SZ;
575         
576         // Check Prospective Space
577         for( i = USER_STACK_SZ >> 12; i--; )
578                 if( MM_GetPhysAddr( base + (i<<12) ) != 0 )
579                         break;
580         
581         if(i != -1)     return 0;
582         
583         // Allocate Stack - Allocate incrementally to clean up MM_Dump output
584         for( i = 0; i < USER_STACK_SZ/4069; i++ )
585                 MM_Allocate( base + (i<<12) );
586         
587         return base + USER_STACK_SZ;
588 }
589
590
591 /**
592  * \fn void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
593  * \brief Starts a user task
594  */
595 void Proc_StartUser(Uint Entrypoint, Uint *Bases, int ArgC, char **ArgV, char **EnvP, int DataSize)
596 {
597         Uint    *stack = (void*)Proc_MakeUserStack();
598          int    i;
599         Uint    delta;
600         Uint16  ss, cs;
601         
602         LOG("stack = 0x%x", stack);
603         
604         // Copy Arguments
605         stack = (void*)( (Uint)stack - DataSize );
606         memcpy( stack, ArgV, DataSize );
607         
608         // Adjust Arguments and environment
609         delta = (Uint)stack - (Uint)ArgV;
610         ArgV = (char**)stack;
611         for( i = 0; ArgV[i]; i++ )      ArgV[i] += delta;
612         i ++;
613         EnvP = &ArgV[i];
614         for( i = 0; EnvP[i]; i++ )      EnvP[i] += delta;
615         
616         // User Mode Segments
617         ss = 0x23;      cs = 0x1B;
618         
619         // Arguments
620         *--stack = (Uint)EnvP;
621         *--stack = (Uint)ArgV;
622         *--stack = (Uint)ArgC;
623         while(*Bases)
624                 *--stack = *Bases++;
625         *--stack = 0;   // Return Address
626         
627         Proc_StartProcess(ss, (Uint)stack, 0x202, cs, Entrypoint);
628 }
629
630 void Proc_StartProcess(Uint16 SS, Uint Stack, Uint Flags, Uint16 CS, Uint IP)
631 {
632         Uint    *stack = (void*)Stack;
633         *--stack = SS;          //Stack Segment
634         *--stack = Stack;       //Stack Pointer
635         *--stack = Flags;       //EFLAGS (Resvd (0x2) and IF (0x20))
636         *--stack = CS;          //Code Segment
637         *--stack = IP;  //EIP
638         //PUSHAD
639         *--stack = 0xAAAAAAAA;  // eax
640         *--stack = 0xCCCCCCCC;  // ecx
641         *--stack = 0xDDDDDDDD;  // edx
642         *--stack = 0xBBBBBBBB;  // ebx
643         *--stack = 0xD1D1D1D1;  // edi
644         *--stack = 0x54545454;  // esp - NOT POPED
645         *--stack = 0x51515151;  // esi
646         *--stack = 0xB4B4B4B4;  // ebp
647         //Individual PUSHs
648         *--stack = SS;  // ds
649         *--stack = SS;  // es
650         *--stack = SS;  // fs
651         *--stack = SS;  // gs
652         
653         __asm__ __volatile__ (
654         "mov %%eax,%%esp;\n\t"  // Set stack pointer
655         "pop %%gs;\n\t"
656         "pop %%fs;\n\t"
657         "pop %%es;\n\t"
658         "pop %%ds;\n\t"
659         "popa;\n\t"
660         "iret;\n\t" : : "a" (stack));
661         for(;;);
662 }
663
664 /**
665  * \fn int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
666  * \brief Demotes a process to a lower permission level
667  * \param Err   Pointer to user's errno
668  * \param Dest  New Permission Level
669  * \param Regs  Pointer to user's register structure
670  */
671 int Proc_Demote(Uint *Err, int Dest, tRegs *Regs)
672 {
673          int    cpl = Regs->cs & 3;
674         // Sanity Check
675         if(Dest > 3 || Dest < 0) {
676                 *Err = -EINVAL;
677                 return -1;
678         }
679         
680         // Permission Check
681         if(cpl > Dest) {
682                 *Err = -EACCES;
683                 return -1;
684         }
685         
686         // Change the Segment Registers
687         Regs->cs = (((Dest+1)<<4) | Dest) - 8;
688         Regs->ss = ((Dest+1)<<4) | Dest;
689         // Check if the GP Segs are GDT, then change them
690         if(!(Regs->ds & 4))     Regs->ds = ((Dest+1)<<4) | Dest;
691         if(!(Regs->es & 4))     Regs->es = ((Dest+1)<<4) | Dest;
692         if(!(Regs->fs & 4))     Regs->fs = ((Dest+1)<<4) | Dest;
693         if(!(Regs->gs & 4))     Regs->gs = ((Dest+1)<<4) | Dest;
694         
695         return 0;
696 }
697
698 /**
699  * \brief Calls a signal handler in user mode
700  * \note Used for signals
701  */
702 void Proc_CallFaultHandler(tThread *Thread)
703 {
704         // Rewinds the stack and calls the user function
705         // Never returns
706         __asm__ __volatile__ ("mov %0, %%ebp;\n\tcall Proc_AlterUserReturnAddr" :: "r"(Thread->FaultHandler));
707         for(;;);
708 }
709
710 /**
711  * \fn void Proc_Scheduler(int CPU)
712  * \brief Swap current thread and clears dead threads
713  */
714 void Proc_Scheduler(int CPU)
715 {
716         Uint    esp, ebp, eip;
717         tThread *thread;
718         
719         // If the spinlock is set, let it complete
720         if(giThreadListLock)    return;
721         
722         // Clear Delete Queue
723         while(gDeleteThreads)
724         {
725                 thread = gDeleteThreads->Next;
726                 if(gDeleteThreads->IsLocked) {  // Only free if structure is unused
727                         gDeleteThreads->Status = THREAD_STAT_NULL;
728                         free( gDeleteThreads );
729                 }
730                 gDeleteThreads = thread;
731         }
732         
733         // Check if there is any tasks running
734         if(giNumActiveThreads == 0) {
735                 Log("No Active threads, sleeping");
736                 __asm__ __volatile__ ("hlt");
737                 return;
738         }
739         
740         // Get current thread
741         #if USE_MP
742         thread = gaCPUs[CPU].Current;
743         #else
744         thread = gCurrentThread;
745         #endif
746         
747         // Reduce remaining quantum and continue timeslice if non-zero
748         if(thread->Remaining--) return;
749         // Reset quantum for next call
750         thread->Remaining = thread->Quantum;
751         
752         // Get machine state
753         __asm__ __volatile__ ("mov %%esp, %0":"=r"(esp));
754         __asm__ __volatile__ ("mov %%ebp, %0":"=r"(ebp));
755         eip = GetEIP();
756         if(eip == SWITCH_MAGIC) return; // Check if a switch happened
757         
758         // Save machine state
759         thread->SavedState.ESP = esp;
760         thread->SavedState.EBP = ebp;
761         thread->SavedState.EIP = eip;
762         
763         // Get next thread
764         thread = Threads_GetNextToRun(CPU);
765         
766         // Error Check
767         if(thread == NULL) {
768                 Warning("Hmm... Threads_GetNextToRun returned NULL, I don't think this should happen.\n");
769                 return;
770         }
771         
772         #if DEBUG_TRACE_SWITCH
773         Log("Switching to task %i, CR3 = 0x%x, EIP = %p",
774                 thread->TID,
775                 thread->MemState.CR3,
776                 thread->SavedState.EIP
777                 );
778         #endif
779         
780         // Set current thread
781         #if USE_MP
782         gaCPUs[CPU].Current = thread;
783         #else
784         gCurrentThread = thread;
785         #endif
786         
787         // Update Kernel Stack pointer
788         gTSSs[CPU].ESP0 = thread->KernelStack-4;
789         
790         // Set address space
791         #if USE_PAE
792         # error "Todo: Implement PAE Address space switching"
793         #else
794                 __asm__ __volatile__ ("mov %0, %%cr3"::"a"(thread->MemState.CR3));
795         #endif
796         
797         #if 0
798         if(thread->SavedState.ESP > 0xC0000000
799         && thread->SavedState.ESP < thread->KernelStack-0x2000) {
800                 Log_Warning("Proc", "Possible bad ESP %p (PID %i)", thread->SavedState.ESP);
801         }
802         #endif
803         
804         // Switch threads
805         __asm__ __volatile__ (
806                 "mov %1, %%esp\n\t"     // Restore ESP
807                 "mov %2, %%ebp\n\t"     // and EBP
808                 "jmp *%3" : :   // And return to where we saved state (Proc_Clone or Proc_Scheduler)
809                 "a"(SWITCH_MAGIC), "b"(thread->SavedState.ESP),
810                 "d"(thread->SavedState.EBP), "c"(thread->SavedState.EIP)
811                 );
812         for(;;);        // Shouldn't reach here
813 }
814
815 // === EXPORTS ===
816 EXPORT(Proc_SpawnWorker);

UCC git Repository :: git.ucc.asn.au